
Double Triangle Descendants of K5
by

Mohamed Laradji

B.Sc. in Mechanical Engineering, King Fahd University of Petroleum and Minerals, 2015

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

c© Mohamed Laradji 2017
SIMON FRASER UNIVERSITY

Fall 2017

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Mohamed Laradji

Degree: Master of Science (Mathematics)

Title: Double Triangle Descendants of K5

Examining Committee: Chair: Tom Archibald
Professor

Karen Yeats
Senior Supervisor
Associate Professor

Matthew DeVos
Supervisor
Associate Professor

Marni Mishna
Supervisor
Associate Professor

Luis Goddyn
Internal Examiner
Professor

Date Defended: December 5, 2017

ii

Abstract

Feynman diagrams in φ4 theory can be represented as 4-regular graphs. The Feynman in-
tegral, or even the Feynman period, is very hard to calculate. A graph invariant, called
the c2-invariant, is conjecturally thought to be equal for two graphs when their periods are
equal. Double triangle reduction of 4-regular graphs is known to preserve the c2-invariant.
Double triangle descendants of K5 all have a c2-invariant that is a constant −1, and con-
jecturally, are the only graphs with this c2-invariant. This thesis studies the structure of
K5-descendants to gain insight on the c2-invariant, get closer to solving the conjecture, and
to study what is an interesting combinatorial operation in its own right. It will be shown
that the minimum number of triangles in a descendant is 4. Closed-form generating func-
tions are found for three families of K5-descendants. Two encodings, one for n-zigzags, and
a general one for all K5-descendants, are found.

Keywords: φ4 theory; Feynman diagram; Feynman period; c2-invariant; constant c2-invariant;
double triangle reduction; double triangle expansion;K5-descendants; classes ofK5-descendants;
zigzag graphs; n-zigzag graphs; enumeration

iii

Acknowledgements

I would like to thank Karen Yeats for introducing me to the problem of characterizing K5-
descendants, and for her constant support. I would also like to thank Marni Mishna for her
useful comments throughout the editing process, Matt Devos for our insightful meetings,
and Dana and Sam for their friendship and support.

iv

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background 3
2.1 Partitions of Integers . 3
2.2 Graph Theory . 5
2.3 The c2-invariant . 9
2.4 φ4-Theory . 11

3 Double Triangle Expansion 14

4 K5-descendants 21
4.1 List of some K5-descendants . 21
4.2 Zigzags and Chains . 24
4.3 Encoding of K5-descendants . 27
4.4 Pseudo-descendant Parameters . 33
4.5 Order and Triangle Count . 36
4.6 Minimum Number of Triangles is 4 . 47

5 Conclusion 53

Bibliography 56

Appendix A Code 58

v

List of Tables

Table 4.1 Psuedo-descendant quantities . 34
Table 4.2 K5-descendants Order-Triangle Count 35
Table 4.3 Table of level sequences. 35
Table 4.4 Double Triangle Expansion and the Chain Vector 49

vi

List of Figures

Figure 2.1 K5 and C3 . 6
Figure 2.2 Double Triangle, Triple Triangle . 7
Figure 2.3 Spanning trees of C3. 8
Figure 2.4 K4 . 8
Figure 2.5 K5 and its decompletion K4 . 12

Figure 3.1 Double triangle expansion . 15
Figure 3.2 Double triangle expansion on K5 15
Figure 3.3 Neighbor choice in DTE is inconsequential 16
Figure 3.4 Double triangle expansion by subdividing 16
Figure 3.5 Double triangle expansion by turning a crossing into a vertex . . . 16
Figure 3.6 Double triangle reduction . 17
Figure 3.7 Commutativity of DTRs. 17
Figure 3.8 Product of K5 with itself. 17

Figure 4.1 The complete graph K5. 21
Figure 4.2 K5-descendants of order ≤ 10. 23
Figure 4.3 Zigzag graphs . 26
Figure 4.4 1-zigzag graphs . 26
Figure 4.5 Proper n-zigzag graphs . 26
Figure 4.6 A (3, 3, 2)-chain . 26
Figure 4.7 Outer vertices of a (3, 3, 2)-chain in a chain order 27
Figure 4.8 (3, 1, 0, 3, 0,−1)-graph . 30
Figure 4.9 A K5-descendant and a non-descendant. 30
Figure 4.10 Triangle Types . 39
Figure 4.11 A non-K5-descendant with L(G) = 1. 41
Figure 4.12 Illustration for proof of Theorem 4.35. 52

vii

Chapter 1

Introduction

The broad objective of this thesis is to uncover combinatorial structure in order to simplify
calculations of a specific graph-defined integral. In particular, the thesis aims to characterize
the effect of repeated applications of a certain graph operation combinatorially, in the hope
of getting closer to solving a related conjecture. In addition, several interesting sequences
arise when enumerating these graphs that are produced by the operation.

The aforementioned graph operation is called double triangle expansion. One of the
main reasons it is of interest is that, for a large number of graphs, it preserves a graph
invariant known as the c2-invariant. Broadly speaking, the c2-invariant is related to the
number of solutions to a graph polynomial, called the Kirchhoff polynomial. The following
paragraphs aim to explain the motivation for the problem. The terms used here are defined
more rigorously in the background chapter, Chapter 2.

Kontsevich conjectured in 1997 that the point-counting function of the zeroes of the
Kirchhoff polynomial (Ψ(G)) of a graph G over the finite field with q elements, [Ψ(G)]q, is a
polynomial in q. If this were true then the quadratic coefficient of this purported polynomial,
known as the c2-invariant,

c
(q)
2 (G) = [Ψ(G)]q

q2 mod q,

would be a constant. Indeed, this was verified for all graphs with at most 11 edges [15,
p380]. Surprisingly, however, this conjecture was disproved in 2003 by Belkale and Brosnan
[2, p171-2].

1

There exist infinite families of graphs with a constant c2-invariant. For instance, Brown
and Schnetz showed that if a primitive-divergent φ4 graph G is two-vertex reducible, or
has weight drop, then G has a zero c2-invariant. If G has vertex width ≤ 3, then G has a
constant c2-invariant [4, p4]. Double triangle reduction and expansion of a 4-regular graph
G is known to preserve the c2-invariant [4, Corollary 35, p16], and so if G has a constant
c2-invariant and it has at least one triangle, an infinite family with constant c2-invariants
could then be constructed by repeated double triangle expansions of G. One such example
is K5, whose (decompleted) c2-invariant is equal to a constant −1 [17, p6].

Since K5 has at least one triangle, we can double triangle expand and construct an
infinite family with the same (decompleted) c2-invariant, which we call the family of K5-
descendants. Interestingly, every completed primitive graph G whose decompletions have a
constant −1 c2-invariant turned out to be a descendant of K5. Brown and Schnetz conjec-
tured that this is always the case [5, Conjecture 25, p16]. This is a strong conjecture, and
if it is true, it suggests that there is some significance in the structure of K5-descendants.
Studying the structure of K5-descendants can shed some light on the c2-invariant and on
the double triangle operations. It is hoped that it will get us closer to solving the aforemen-
tioned conjecture, and to understanding the double triangle operations better.

The next chapter aims to introduce the reader to background material that is used later
on. The main topics covered include partitions of integers in Section 2.1, and the c2-invariant
in Section 2.3. Section 2.2 aims to familiarize the reader with the definitions and notations
used here for some concepts in graph theory. In Chapter 3, the double triangle operations
are introduced, followed by some known results on them.

Chapter 4 presents new results on the family ofK5-descendants. A list ofK5-descendants
up to order 10 appears in Section 4.1. A notation for common subgraphs of K5-descendants
is introduced in Section 4.2, along with clarifying examples. In Section 4.3, an encoding
for graphs with similar structure to K5-descendants is introduced. This encoding is used
in Section 4.5 to derive the closed-form generating functions for several order and triangle
count combinations. The encoding is used again in Section 4.6, where it is proved that any
K5-descendant has at least 4 triangles.

2

Chapter 2

Background

This chapter aims to familiarize the reader with some definitions and known results that are
used later in the document. Section 2.1 defines partitions of integers, and contains proofs
for two known results that are later used in Section 4.5. Section 2.2 defines several graph
classes and properties that are used throughout this document. Section 2.3 goes through
some of the definitions in algebraic geometry, which are used to define the c2-invariant.
Section 2.4 is a short introduction to quantum field theory and φ4-theory, from which the
motivation of studying K5-descendants ultimately comes.

2.1 Partitions of Integers

For an introduction to enumerative combinatorics, refer to Erickson’s “Introduction to Com-
binatorics” [11]. The main results of this section are Lemma 2.1 and Lemma 2.2 on enu-
merating partitions with certain restrictions.

Let C be a set, and | · |C : C → N be a size function, with the property that
Cn := {γ : |γ|C = n} is finite for all n ∈ N. We call the pair (C, | · |C) a combinatorial class.
Defining Cn := |Cn|C , the ordinary generating function of C is the formal sum

C(x) =
∑
n≥0

Cnx
n.

In Section 4.5, the generating functions for several sequences are found by counting
partitions. Recall that a partition of a positive integer n is an ordered list of positive integers
n1 ≥ n2 ≥ · · · ≥ nk such that n1 + · · ·+nk = n. We present the following two known results,
which are used in the proofs of Proposition 4.27 and Proposition 4.30 of Section 4.5.

3

Lemma 2.1. The number of partitions of n into exactly k parts, each part ≥ 1, is generated
by

pk(x) = xk
k∏
i=1

1
1− xi .

Proof. Observe that the number of partitions of n into at least k non-negative parts is the
same as the number of partitions of n where the largest part is at least k. The number of
partitions of n where the largest part is at least k is generated by

p≥k(x) =
∞∏
i=k

1
1− xi .

Thus, the number of partitions of n into exactly k non-negative parts is generated by

pk(x) = p≥k(x)− p≥k−1(x) =
∞∏
i=k

1
1− xi −

∞∏
i=k−1

1
1− xi

=
∞∏
i=k

1
1− xi − (1− xk)

∞∏
i=k

1
1− xi

= xk
k∏
i=1

1
1− xi ,

as desired.

Lemma 2.2. The number of partitions of n into exactly k distinct parts, each part ≥ 1, is
generated by

qk(x) = xk+(k
2)

k∏
i=1

1
1− xi .

Proof. Fix positive integers n ≥ k. We prove the result by constructing a bijection between
the set S1 of partitions of n −

(k
2
)
with exactly k parts, and the set S2 of partitions of n

with exactly k distinct parts. Define φ : S1 → S2, with

φ(m0,m1, · · · ,mk−1) = (m0 + 0,m1 + 1, · · · ,mi + i, · · · ,mk−1 + k − 1).

We first want to show that φ is well-defined. Suppose that

n−
(
k

2

)
=

k−1∑
i=0

mi,

4

for some 1 ≤ m0 ≤ m1 ≤ · · · ≤ mk−1. Let ni = mi + i. Since mi ≤ mi+1,

ni = mi + i < mi+1 + i+ 1 = ni+1

Hence, n0, n1, · · · , nk−1 are distinct. Furthermore,

k−1∑
i=0

ni =
k−1∑
i=0

(mi + i) =
k−1∑
i=0

mi +
k−1∑
i=0

i = n−
(
k

2

)
+
(
k

2

)
= n,

and so φ is well-defined, as desired. It remains to show that φ is a bijection. This follows
from the fact that φ has a well-defined inverse, φ−1 : S2 → S1, with

φ−1(n0, n1, · · · , nk−1) = (n0 − 0, n1 − 1, · · · , ni − 2, · · · , nk−1 − (k − 1)).

This "inverse" is well-defined since n0 ≥ 1, n1 ≥ 2, · · · , nk−1 ≥ k, and so

(n0 − 0, n1 − 1, · · · , ni − 2, · · · , nk−1 − (k − 1)) ∈ S1,

as desired. The result then follows from Lemma 2.1, where we get

qk(x) = x(k
2)pk(x) = xk+(k

2)
k∏
i=1

1
1− xi ,

as desired.

2.2 Graph Theory

In this section, we recall some graph theory notation and results, and introduce some def-
initions that will be used later in the document. For a treatment of basic graph theory
definitions, refer to Pete Clark’s “Graph Theory” [10]. In this section, we only consider
simple graphs.

A graph central in this work is K5, the complete graph on 5 vertices. If a graph G has
a subgraph isomorphic to Kn for some n, then we say that G has an n-clique. We will
study the operation of double triangle expansion, which is done on a triangle of a graph. A
triangle refers to C3, where Cn denotes the cycle on n vertices. The graphs K5 and C3 are
shown in Figure 2.1.

In φ4-theory, introduced in Section 2.4, graphs have a property known as completed
primitiveness if they are internally 6-edge-connected. We present a definition of connectiv-
ity, followed by two examples.

5

1

2

34

5

1

23

Figure 2.1: The complete graph K5, and the triangle C3.

Definition 2.3 (Connectivity). Let G be a graph. We say G is connected if there exists
a u, v-path for any u, v ∈ V (G). G is k-connected if G \ S is non-empty and connected
for any S ⊆ V (G) with |S| ≤ k − 1. G is k-edge-connected if G \ S is connected for any
S ⊆ E(G) with |S| ≤ k − 1. The connectivity of G is denoted by κ, and κ = k if G is
k-connected but not (k + 1)-connected. The edge-connectivity of G is denoted by λ, and
λ = k if G is k-edge-connected but not (k + 1)-edge-connected. A graph G is said to be
internally k-edge-connected if the only way to disconnect the graph by removing k − 1 or
fewer edges is to separate off a single vertex.

Example 2.4. For n ≥ 1, κ(Kn) = λ(Kn) = n− 1. For n ≥ 3, κ(Cn) = λ(Cn) = 2. If T is
a tree, κ(T) = λ(T) = 1.

Example 2.5. The complete graph Kn is internally n-edge-connected. The cycle Cn is
internally 2-edge-connected.

Definition 2.6 (Induced subgraph). A subgraph H of a graph G is said to be an induced
subgraph on V (H) if for any u, v ∈ V (H), (u, v) ∈ E(G) =⇒ (u, v) ∈ E(H). In this case,
we write H = G[V (H)].

In Section 4.5, we study the triangle count of K5-descendants. We will introduce some
relevant definitions, followed by an illustrating figure (Figure 2.2).

Definition 2.7 (Triangle Count). The triangle count of a graph G is the number of distinct
triangles in G. We denote this number as tri(G).

Definition 2.8 (Double Triangle). Suppose that a graph G contains distinct vertices
0, 1, 2, 3 such that (0, 1, 2), (1, 2, 3) are triangles. We call the ordered 4-tuple (0, 1, 2, 3) a
double triangle, denoted as T 2.

Definition 2.9 (Triple Triangle). Let G be a graph with distinct vertices 0, 1, 2, 3, 4 such
that (0, 1, 2), (0, 1, 3), (0, 1, 4) are triangles. We call the ordered 5-tuple (0, 1, 2, 3, 4) a triple
triangle, denoted as T 3.

6

0

3

1 2

0 1

2 3 4

Figure 2.2: The double triangle (0, 1, 2, 3), and the triple triangle (0, 1, 2, 3, 4).

A lot of the graphs considered here, and all descendants of K5, are 4-regular graphs. A
graph G is n-regular if deg(v) = n for all v ∈ V (G). A graph G is regular if it is n-regular
for some n. For example, K5 is 4-regular and C3 is 2-regular, and they are both regular
graphs. We will often want to group vertices of like degree together, and so we present the
following definition.

Definition 2.10 (Degree set). Let G be a graph. We define the degree set

Di(G) := {v ∈ V (G) : deg v = i}.

The c2-invariant of a graph G, defined in Section 2.3, depends on the Kirchhoff poly-
nomial of G, which can be calculated using the spanning trees of G. A tree is a connected
acyclic graph. We present the definitions of a spanning tree and the Kirchhoff polynomial,
followed by some examples.

Definition 2.11 (Spanning Tree). For a graph G, a subgraph T is a spanning tree (of G)
if V (T) = V (G) and T is a tree.

Definition 2.12 (Kirchhoff Polynomial). Let G be a graph. The Kirchhoff Polynomial is
defined as

ΨG =
∑
T

∏
e/∈E(T)

ae

where the sum runs over the spanning trees of G, and the ae’s are variables indexed by the
edges of G.

Example 2.13 (Kirchhoff polynomial of C3). We will derive the Kirchhoff polynomial of
the triangle, C3. Referring to Figure 2.3, we obtain

ΨC3 =
∑
T

∏
e/∈E(T)

ae = a1 + a2 + a3.

7

1

2 3

a2

a3

1

2 3

a1

a3

1

2 3

a1 a2

Figure 2.3: Edge-labelled spanning trees of C3.

a1

a2

a3

a4

a5

a6

Figure 2.4: The complete graph K4, with edges labelled.

Example 2.14 (Kirchhoff polynomial of K4). The graph of K4 with edges labelled is
shown in Figure 2.4. Consider that any triple of edges adjacent to the same vertex, such
as a1, a2, a3, will not appear in the Kirchhoff polynomial. That is because the compliment,
which in our example will be a4, a5, a6, would be a cycle. On the other hand, we cannot
pick a triple of edges that is disconnected, since 3 distinct edges will be adjacent to a total
of at least 4 vertices. Therefore, any triple of edges whose compliment is not a cycle will
appear in the Kirchhoff polynomial, since the compliment will be a spanning tree. Thus,
the Kirchhoff polynomial is given by

ΨK4 =
∑
T

∏
e/∈E(T)

ae =
∑

1≤i<j<k≤6
aiajak − (a1a2a3 + a1a4a5 + a2a4a6 + a3a5a6).

Another important property of a graph is vertex-transitivity and similar vertices. We
present both definitions below.

Definition 2.15 (Similar vertices). Let G be a graph with (at least) 2 distinct vertices u, v.
We say that u and v are similar if there exists an automorphism f : G→ G with f(u) = v.

Definition 2.16 (Vertex-transitivity). Let G be a graph. We say that G is vertex-transitive
if its vertices are pairwise similar. That is, for any u, v ∈ V (G), there exists an automorphism
f : G→ G with f(u) = v.

8

2.3 The c2-invariant

We have referred to Daniel Bump’s “Algebraic Geometry”, [8], in the write-up of this sec-
tion. The definitions presented here will be helpful in defining the c2-invariant.

Definition 2.17 (Finite Field Fq). Let q be a prime power. We let Fq denote the unique
finite field with q elements.

Definition 2.18 (Affine Variety). Let f1, · · · , fm ∈ k[x1, · · · , xn]. The affine variety of
f1, · · · , fm is defined as

V (f1, · · · , fm) := {x = (x1, · · · , xn) : f1(x) = f2(x) = · · · = fm(x) = 0}.

Definition 2.19 (Point Count). Let f1, · · · , fm ∈ Fq[x1, · · · , xn] for some prime power q.
We define the point count of the variety of f1, · · · , fm over Fq to be the number

[f1, · · · , fm]q := |V (f1, · · · , fm)|.

We now define the c2-invariant. The Kirchhoff polynomial ΨG is defined in Definition
2.12 in page 7. The c2-invariant as presented below is well-defined as long as the graph G
has at least 3 vertices. This is ensured by Proposition 2 in [4, p3], which roughly states that
p2 divides [ΨG]p.

Definition 2.20 (c2-invariant). Let G be a graph with at least 3 vertices. The c2-invariant
is the sequence over the primes, where the term at prime p is given by

c
(p)
2 (G) = [ΨG]p

p2 mod p.

The Chevalley-Warning Theorem is helpful for exploiting some of the combinatorial
structure of the c2-invariant [4, p5]. We present Ax’s proof in [1], using some arguments
found in lecture notes of Clark [9].

Theorem 2.21 (Chevalley-Warning. [9]). Let Fq be the finite field of q elements, and let
f1, · · · , fr ∈ F[x1, · · · , xn] be polynomials with zero constant terms, with corresponding de-
grees d1, · · · , dr ∈ N such that d1 + · · ·+ dr < n. Then,

[f1, · · · , fr]q ≡ 0 mod q.

9

Proof. Define the following function f for x ∈ Zq:

f(x) :=
r∏
i=1

(1− fi(x)q−1).

Consider that f(x) = 0 if fi(x) 6= 0 for some 1 ≤ i ≤ r, and f(x) = 1 if fi(x) = 0 for all
1 ≤ i ≤ r. Hence, the function

N(f) :=
∑
x∈Fn

q

f(x) =
∑
x∈Fn

q

r∏
i=1

(1− fi(x)q−1).

counts the number of zeroes of f1, · · · , fr in Fnq . We want to show that N(f) ≡ 0 mod q.

Suppose u is some monomial vector, and assume first that ui = mi(q − 1) for some
mi ∈ N ∀1 ≤ i ≤ n. Then,

∑
x∈Fn

q

xu =
n∏
i=1

∑
xi∈Fq

xui
i =

n∏
i=1

(−1) = (−1)n.

Now, assume that for some 1 ≤ m ≤ n, um is not a positive multiple of q − 1, and let k be
a generator of the cyclic group F∗q := Fq \ {0}. Let a = kum . Then,

∑
xm∈Fq

xum = 0 +
∑

xm∈F∗
q

xum =
q−2∑
i=0

(ki)um =
q−2∑
i=0

ai = 1− aq−1

1− a = 0,

and so

∑
x∈Fn

q

xu =
n∏
i=1

∑
xi∈Fq

xui
i = 0.

Now, consider that

deg f(x) ≤
r∑
i=1

(q − 1)di < (q − 1)n,

which implies that for every monomial vector u in f , ui < q− 1 for some 1 ≤ i ≤ n, and so

∑
x∈Fn

q

xu = 0.

for every monomial vector. Hence, N(f) ≡ 0 mod q, as desired.

The following result is a known corollary of Theorem 2.21, a short proof of which can
be found in [17].

10

Corollary 2.22. Suppose f ∈ Z[x1, · · · , xn] is of degree n. For any prime p, the coefficient
of
∏

1≤i≤n xi
p−1 in fp−1 is [f]p mod p.

2.4 φ4-Theory

For an introduction to quantum field theory, we refer the reader to Ryder’s “Quantum Field
Theory” [13].

Suppose we conduct an experiment, where we input some known particles into some
playground in which they might interact, and then measure the output particles, if any.
Even with the input and output particles being known, we do not know the collisions that
might have occurred. We could, however, take a sum over all the ways that the collisions
could have happened. If we were to draw the propagating particles as half-edges, paired
up into edges within the process, and the interactions between particles as vertices, then a
particular set of collisions could be interpreted as a time-dependent graph. Forgetting this
time-dependence produces the graphs known as Feynman graphs. [18, p5]

Quantum field theory (QFT) is the combination of quantum theory and field theory. A
QFT describes interactions between particles, and the types of particles being considered
are determined by the QFT in use. The Feynman graphs of a particular QFT are determined
by the allowable half-edge types. For instance, QED has 3 half-edge types, a half-proton,
a forward half-electron and a backward half-electron. In φ4 theory, an example of a scalar
QFT, there is only one half-edge type, resulting in one edge type and one vertex type.

Quantum electrodynamics (QED), first conceived in 1950, is an attempt to describe and
explain electrodynamic phenomena, and as such it has been hugely successful. For example,
QED predicted the magnetic moment of an electron quite accurately [13, 1.1]. In QED, the
interacting particles are photons, electrons and positrons [16, p12].

The scalar φ4-theory is the theory that is relevant in the rest of this document. The most
important Feynman graphs of φ4-theory are 4-regular graphs with a vertex removed, say
v, with half-edges, known as external edges, incident to the vertices that were adjacent to
v. These graphs are called 4-point graphs in φ4-theory, referring to the four external edges.
This justifies the following definition, which is illustrated in Figure 2.5.

Definition 2.23 (Completion/Decompletion). Let G be a 4-regular graph. A decompletion
H of G is formed by removing a vertex and the edges adjacent to it from G. In this case,
G is called the completion of H.

11

1

2

34

5

1

2

3

4

Figure 2.5: The complete graph K5, and its decompletion, K4. In general, a 4-regular graph
might have several non-isomorphic decompletions.

When predicting the output particles of a collision experiment, given a certain input, we
take a weighted sum over all the possible ways that these particles could have interacted,
the Feynman graphs. The weight of a Feynman graph is its Feynman integral, which is
determined by the Feynman rules given by the QFT in use [18, p5-6]. We say that the
Feynman graph γ is divergent if its Feynman integral is divergent, and we further say that
γ is primitive divergent if no proper subset of its integration variables is divergent. Although
the superficial degree of divergence of a Feynman graph has a more general definition (for
example, see [18, p39]), in the case of graphs in φ4 theory, a graph γ is divergent if

4`(γ)− 2|E(γ)| ≥ 0,

where `(γ) is the first Betti number, defined by

`(γ) := |E(γ)| − |V(γ)|+ number of components,

This is equivalent to the graph condition that γ’s completionG is internally 6-edge-connected,
the requirement that any 5-edge cut of G separates at most a single vertex from the rest of
the graph [18, p87]. This is stated in the following theorem, a proof of which can be found
in [18, p87].

Theorem 2.24. Let γ be a graph in φ4 theory. The graph γ is divergent if and only if it
has at most 4 external edges.

We would like to define a quantity on a 4-regular graph G known as the Feynman period.
The convergence of this quantity, which is an integral, is guaranteed if G is completed
primitive, which is equivalent to G being internally 6-edge-connected [14, p10]. Schnetz
proved in [14, p10] that G is completed primitive if and only if G−v is primitive, where v is
any vertex in G. We can then define the Feynman period, justifed by the following theorem.

12

Definition 2.25 (Feynman period). Let G be a 4-regular graph with loop number `. We
define the period PG of G as the multiple integral

PG =
∫
αi≥0

Ω(α)
Ψ2
G−v(α) ,

where v is some vertex of G, ΨG−v is the Kirchhoff polynomial of G− v and

Ω(α) =
|E(G)|∑
i=1

∏
j 6=i

dαj .

Theorem 2.26 (Schnetz. [14, p11]). Let G be a 4-regular graph. Then PG exists (that is,
the integral converges) if and only if G is completed primitive.

The period has many symmetries. The period of a primitive 4-regular graph is com-
pletion/decompletion invariant. The period is equal for planar decompleted duals, and is
invariant under an operation on 4-regular graphs with 4-vertex cuts known as the Schnetz
twist. [18, p93-5]

We end this section by re-presenting the definition of the c2-invariant (Definition 2.20),
followed by a proposition stating some trivial cases for the c2-invariant. A graph G is said
to be 2-vertex-reducible if G−{u, v} is disconnected for some distinct vertices u, v [4, p15].

Definition 2.27 (c2-invariant). Let p be a prime. Let [f]p denote the point count of the
affine variety of f over Fp, the finite field with characteristic p. The c2-invariant is the
sequence over the primes, where the term at prime p is given by

c
(p)
2 (G) = [ΨG]p

p2 mod p.

Proposition 2.28 (Trivial c2-invariant. [4, p15]). Let γ be a decompleted graph. If γ is
2-vertex-reducible or contains a doubled edge, then c(p)

2 (G) ≡ 0 mod p for all primes p.

13

Chapter 3

Double Triangle Expansion

In this section, double triangle expansion (DTE), and its inverse operation, double triangle
reduction (DTR), are discussed. Throughout this section, unless otherwise stated, G is a
4-regular graph with loop number ` ≤ |V(G)| ≥ 5. We begin by defining DTE and DTR.
The operations are illustrated in Figure 3.1 and Figure 3.6, and an example DTE is shown
in Figure 3.2. Although DTR can be defined more generally, we restrict it to the case of
proper double triangles (Definition 3.2). This was done in order to simplify the expressions
for Proposition 3.9 and Theorem 3.10.

Definition 3.1 (Double-Triangle Expansion). Let T = (v1, v2, v3) be a triangle in a graph
G. Let v4 ∈ NG(v2)\{v1, v3}, and let e = (v2, v4). In double triangle expansion, a new graph
H := DTEG(T, e) is created, by adding a new vertex v5, removing the edges (v1, v3) and
(v2, v4), and adding the edges (v1, v5), (v2, v5), (v3, v5) and (v4, v5).

Definition 3.2 (Proper double triangle). A double triangle D in a graph G is said to be
proper if D is not part of any triple triangles in G. If G has no proper double triangles, then
we say that G is double-triangle-free.

Definition 3.3 (Double Triangle Reduction). Let D = (v1, v2, v3, v4) be a proper double
triangle ((v1, v2, v3) and (v2, v3, v4) are triangles) in a graph G. In a new graph H :=
DTRG(D), we identify the vertices v2 and v3, discarding any repeated edges, and add the
edge (v1, v4), producing a new triangle (v1, v2, v4). This process is called a double triangle
reduction.

Definition 3.4 (Parent/Child). Let G be a graph, and H be G after one DTR is done. We
call H a parent of G, and G a child of H.

The graph H that results from expanding a triangle in a graph G depends on the choice
of triangle, the choice of special vertex, and the choice of a neighbour of the special vertex.
In case of dealing with unlabelled 4-regular graphs, the choice of neighbour turns out to be
inconsequential, as the next proposition shows.

14

v2

v1 v3

v4

v2

v1 v3

v4

v5

Figure 3.1: The operation DTE((v1, v2, v3), (v2, v4)) is shown here.

Figure 3.2: The graph Z3 ∼= K5 and Z4 are shown here. Z4 can be obtained from Z3 by
DTE of any triangle.

Proposition 3.5. Let (v1, v2, v3) be a triangle in a 4-regular graph G. Let {v4, v5} =
NG(v2) \ {v1, v3}. Let Hv denote the graph produced by expanding the triangle (v1, v2, v3),
with v2 as the special vertex, and v the neighbour of v2. Then,

Hv4
∼= Hv5 .

Proof. Let v6 be the vertex created by the DTE. Define φ : V (Hv4)→ V (Hv5) with φ(v2) =
v6, φ(v6) = v2, and φ(v) = v otherwise. We claim that φ is an isomorphism. By construction,
φ is a bijection. To show that φ preserves adjacencies, we only have to consider the vertices
v1, · · · , v6, and the result immediately follows from Definition 3.1. See Figure 3.3.

DTE can also be thought of in other ways. We can define DTE as taking a triangle T
and an edge e not in T but incident to a vertex of T , subdividing e and the edge in the
triangle that is opposite to e, and then identifying the resultant degree 2 vertices. This is
shown in Figure 3.4. Another definition is taking a triangle and a crossing at some edge of
the triangle by an edge, that is not in the triangle and is adjacent to the vertex opposite to
the triangle edge, and turning the crossing into a degree 4 vertex. This is shown in Figure
3.5.

15

v2

v1 v3

v4

v5

v6

v2

v1 v3

v5

v4

v6

Figure 3.3: This figure illustrates the proof of Proposition 3.5. The graphs shown here, from
left to right, are Hv4 and Hv5 .

v2

v1 v3

v4 v2

v1 v3

v4

v2

v1 v3

v4

v5

Figure 3.4: A DTE can be done by subdividing an edge not in the triangle and the opposite
edge in the triangle, and then identifying the degree 2 vertices.

v2

v1 v3

v4

v2

v1 v3

v4

v5

Figure 3.5: A DTE can be done by turning a crossing at a triangle edge into a new vertex.

16

v2

v1 v4v3

v5

v1 v4

v5

v1 v4

Figure 3.6: The operation DTR((v1, v2, v3, v4)) is shown here. In the intermediate step,
vertices v2, v3 are identified to create v5.

Figure 3.7: This figure shows 2 DTR’s done on two double triangles that share a triangle.
Notice that the order of the DTR’s doesn’t matter in this case. In general, DTR’s commute
in the sense that if a completed primitive graph G has distinct double triangles D1 and D2,
then DTR of D1 and D2 in either order results in the same graph.

×

Figure 3.8: If G is the graph on the right, then G = K5 ×K5. In this case, K5 is a product
split of G.

17

DTR and DTE have other interesting properties. In [14], Schnetz proved that DTR’s
preserve completed primitiveness, and are commutative (see Figure 3.7) if the graph is com-
pleted primitive. DTR’s also commute with an operation called the product split, which is
defined in Definition 3.6. Schnetz also proved that if a completed primitive graph G has
vertex-connectivity 3, then it is the product of two completed primitive graphs. Finally, it
follows that, since DTR’s and product splits commute, any sequence of DTR’s and product
splits terminate at a unique ancestor. An example of a product split is shown in Figure 3.8.
This product is also known as a 3-sum.

Definition 3.6 (Product split. [14, Theorem 2.10, p14]). Suppose a completed primitive
graph G can be obtained by identifying two triangles from two completed primitive graphs
G1, G2, respectively, and removing the triangle edges. Then, either of G1, G2 is a product
split of G, and G is a product of G1, G2.

Definition 3.7 (Reducible graph. [14, Definition 2.9, p14]). A completed primitive graph
is reducible if it has vertex-connectivity 3, and is irreducible if otherwise.

Theorem 3.8 (Schnetz. [14, Theorem 2.10, p14]). Let G be a reducible completed primitive
graph. Then, G is the product of two completed primitive graphs G1, G2. Furthermore, the
period of G is the product of the periods of G1, G2.

Proposition 3.9 (Schnetz. [14, Proposition 2.19, p20-1]). Suppose that G is a child of H.
Then G is completed primitive if and only if H is completed primitive.

Theorem 3.10 (Schnetz. [14, Definition 2.23, p22]). Let G be a completed primitive graph.
DTR’s and product splits of G commute, and any sequence of DTR’s and product splits
terminates at a product of double-triangle-free irreducible graphs, A.

Definition 3.11 (Descendant/Ancestor/Family). Let G be a completed primitive graph.
Let A be the graph(s) that is the termination of a sequence of DTR’s and product splits
on G as in Theorem 3.10. We call G a descendant of A, and A the ancestor of G. The set
of descendants of the ancestor A is called the family of A.

To find the ancestor of a family, one could start with any member of that family, and
perform DTR’s and product splits until unable to do so. The remaining graph(s) is the
ancestor of the family. Note that the ancestor is not necessarily one graph, but it is, in the
most general case, a multiset. For instance, the ancestor of K5 ×K5, shown in Figure 3.8,
is the multiset {K5,K5}.

18

Since K5 has no proper double triangles, no further DTR’s can be done. Since it has no
non-trivial 3-vertex cut, it cannot be (non-trivially) product split. Thus, K5 is the ancestor
of its family. K5-descendants are studied in more detail in Chapter 4.

Roughly speaking, a Feynman integral is said to be linearly reducible if, for some order-
ing of the edges of the Feynman graph, the integral in parametric form can be evaluated
iteratively using a class of functions known as multiple polylogarithms [12]. The evaluation
of a Feynman integral can be done through an algorithm that Brown constructed in [3].
Linear reducibility was proven by Brown in [3] to be minor-closed, and in [12], Moore and
Yeats study the structure of linearly reducible Feynman graphs.

The transcendental weight of a number is very roughly the minimum number of nested
integrals needed to write an integral expression for that number, with an argument that is
a rational expression with rational coefficients, and rational integral bounds. The maximal
(transcendental) weight (of the period) of a graph G in φ4-theory with loop number ` is
2` − 3. The graph G is said to have weight drop if the weight of its period is less than its
maximal weight. [7]

One of the earliest occurrences of DTE is Theorem 35 of a paper by Brown and Yeats
([7, p23]), which states that DTE’s preserve linear reducibility and weight drop.

Theorem 3.12 (Brown and Yeats. [7, Theorem 35, p23]). Let G′ be the graph G after one
DTE. Then G is linearly reducible if and only if G′ is linearly reducible, and G has weight
drop if and only if G′ has weight drop.

It can also be shown that DTE’s preserve the c2-invariant, and this result appears as
Corollary 34 of a paper by Brown and Schnetz ([4, p16]).

Theorem 3.13 ([4, Corollary 35, p16]). Let G2 be the graph G1 after one DTE. Let H1

and H2 be any decompletions of G1 and G2, respectively. Then, for all primes p,

c
(p)
2 (H1) ≡ c(p)

2 (H2) mod p.

It is known that c2(K4) = (−1,−1, · · ·) (See, for example, Yeats’ proof in [17, Proposi-
tion 3.1, p6].). By Theorem 3.13, if G is a decompletion of some double-triangle descendant
of K5, then c2(G) = (−1,−1, · · ·). Interestingly, all currently known graphs that have this
c2-invariant happen to be double-triangle descendants of K5. In a conjecture due to Brown
and Schnetz, that is always the case.

19

Conjecture 3.14 (Brown and Schnetz. [5, Conjecture 25, p16]). Let G be a completed
primitive graph and let G̃ be any decompletion of G. Then,

c2(G̃) = (−1,−1, · · ·) ⇐⇒ G ∼= K5 or G is a double-triangle descendant of K5.

Conjecture 3.14 suggests that there might be something unique to K5-descendants.
Studying their structure, then, would hopefully be a step in solving the conjecture, and
might also shed some light on the c2-invariant. In the next section, known results and new
results about some K5-descendants are presented. An encoding for K5-descendants is con-
structed to aid in understanding their structure. A list of K5-descendants up to order 10 is
provided.

20

Chapter 4

K5-descendants

In this chapter, we introduce K5-descendants. We begin in Section 4.1 by listing all K5-
descendants of order ≤ 10. In Section 4.2, we introduce several classes of graphs that reap-
pear throughout this chapter. In Section 4.3, we introduce an encoding of K5-descendants,
and we prove a small result about pseudo-descendants in Section 4.4. In Section 4.5, an enu-
meration of K5-descendants based on their order and triangle counts is listed, and closed
forms are found for several sequences from this enumeration. In Section 4.6, we prove that
the number of triangles in a K5-descendants is at least 4. For clarity, we present Definition
4.1 and Figure 4.1.

Definition 4.1 (K5-descendant). A graph G is a K5-descendant if it is in the family of
K5. That is, G is a K5-descendant if it can be double triangle reduced to K5.

4.1 List of some K5-descendants

In this section, we list all double triangle descendants of K5 of order ≤ 10 in Figure 4.2.
The graphs were generated using createfigures.py.

1

2

34

5

Figure 4.1: The complete graph on 5 vertices, K5, is shown here.

21

0

1

2 3

4

0

1

2

3

4

5

0

1

2

3 4

5

6

0
1

2

3
4

5

6

7
0

1

2

3
4

5

6

7
0

1

2

3

4 5

6

7

8

0
1

2

3

4 5

6

7

8
0

1

2

3

4 5

6

7

8
0

1

2

3

4 5

6

7

8

0
1

2

3

4
5

6

7

8

9
0

1

2

3

4
5

6

7

8

9
0

1

2

3

4
5

6

7

8

9

22

0
1

2

3

4
5

6

7

8

9
0

1

2

3

4
5

6

7

8

9
0

1

2

3

4
5

6

7

8

9

0
1

2

3

4
5

6

7

8

9
0

1

2

3

4
5

6

7

8

9
0

1

2

3

4
5

6

7

8

9

0
1

2

3

4
5

6

7

8

9
0

1

2

3

4
5

6

7

8

9
0

1

2

3

4
5

6

7

8

9

0
1

2

3

4
5

6

7

8

9
0

1

2

3

4
5

6

7

8

9

Figure 4.2: This figure lists all K5-descendants up to order 10. The graphs are ordered first
by the number of vertices, and then by descending level L.

23

4.2 Zigzags and Chains

We now introduce graphs that will appear in the later sections of this chapter. The zigzag
graphs are a class of K5 descendants that have been previously studied, such as in [17]
and [6]. We make the generalization here from zigzags to n-zigzag graphs, as many of these
graphs are K5-descendants. In view of the generalization, we will refer to the zigzag graphs
as 1-zigzag graphs and reserve the term zigzag alone to refer to the zigzag pieces making
up the different n-zigzag classes. We begin with definitions of these classes of graphs, and
we present some illustrating figures in 4.3, 4.4 and 4.5.

Definition 4.2 (Zigzag). A zigzag graph Z∗n is a graph whose vertices can be labelled
V (Z∗n) = {1, · · · , n+ 2} such that

E(Z∗n) = {(i, i+ 1) : 1 ≤ i ≤ n+ 1} ∪ {(i, i+ 2) : 1 ≤ i ≤ n}.

Definition 4.3 (n-zigzag). A graph G is a 1-zigzag if it is a zigzag with additional edges to
make it 4-regular. G is a 2-zigzag if G consists of 2 zigzags sharing exactly 2 vertices, along
with additional edges to make it 4-regular. For n ≥ 2, G is an n-zigzag if G is 4-regular, and
consists of n zigzags arranged in a circle, where each zigzag shares exactly one vertex with
each of the previous zigzag and the next zigzag. G is a proper n-zigzag if G is an n-zigzag,
but not an (n− 1)-zigzag, or if G is a 1-zigzag.

We refer to the unique 1-zigzag with n+ 2 vertices as Zn. The uniqueness is justified by
the following proposition.

Proposition 4.4. For 0 ≤ n < 3, there exist no 1-zigzag of order n + 2. For n ≥ 3, there
is exactly one 1-zigzag of order n+ 2.

Proof. Let G be a 1-zigzag of order n + 2. By definition, G must be 4-regular, and hence
n ≥ 3. Zn is produced by adding edges to Z∗n. Consider that, using the labelling in Definition
4.2, all of the vertices in V (Z∗n) are of degree 4, except for the vertices 1, 2, n+1, n+2. Since
degZ∗

n
(n+ 2) = 2 and (n+ 1, n+ 2) ∈ E(G), we must have that (1, n+ 2), (2, n+ 2) ∈ E(G),

This leaves vertex 1 and n+ 1 to be of degree 3, and every other vertex to be of degree 4.
Hence, (1, n + 1) ∈ E(G), and now G is 4-regular. Since there was one way to do this, we
have proved the proposition.

It will be shown in Section 4.5 that K5-descendants are either n-zigzags, or consist of
one or more chains of zigzags, with 0 or more lone vertices that are not part of any triangle.
We present the definition of zigzag chains and lone vertices. This is illustrated in Figure
4.6.

24

Definition 4.5 (Zigzag chain). Let G be a graph. Suppose there is a sequence of pairwise
disjoint sets S1, · · · , Sn ⊆ V (G) satisfying the following:

• For all 1 ≤ i ≤ n, G[Si] ∼= Z∗mi
for some mi ∈ N;

• For each i, Si is maximal in the sense that for any D) Si, G[D] � Z∗m for any m ∈ N;

• For i < j with j − i = 1, we have Si ∩ Sj = {v} for some v ∈ V(G). Furthermore,

degG[Si] v = degG[Sj] v = 2;

• The sequence of sets is maximal. That is, if S is the union of the Si’s, then, for any
non-empty set Sn+1 with Sn+1∩S = ∅, the sequence of sets S1, · · · , Sn, Sn+1 does not
satisfy all of the above conditions.

In this case, we call the sequence S1, · · · , Sn a chain. Defining si = |Si|−2, we also sometimes
call the sequence an (s1, · · · , sn)-chain. The chain is open if there exist v1 ∈ S1 and v2 ∈ Sn
such that

degG[S] v1 = degG[S] v2 = 2,

where S is the union of the Si’s. If n = 2, the chain is closed if S1 ∩ S2 = {u, v} with

degG[S1] u = degG[S1] v = degG[S2] u = degG[S2] v = 2.

For n > 2, the chain is closed if S1 ∩ Sn = {v} where

degG[S1] v = degG[Sn] v = 2.

In view of the above definition, an n-zigzag is a closed (s1, · · · , sn)-chain for some
s1, · · · , sn ∈ N, with additional edges to make it 4-regular.

Definition 4.6 (Lone vertex). A vertex v in a graph G is said to be a lone vertex if it is
not part of any triangles.

25

Figure 4.3: The zigzag graphs Z∗3 and Z∗4 are shown here.

Figure 4.4: The 1-zigzag graphs Z4 and Z5 are shown here.

v1

v2

v3

v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

Figure 4.5: A proper 2-zigzag graph and a proper 4-zigzag graph are shown here.

Figure 4.6: A (3, 3, 2)-chain is shown here.

26

v1

v2 v3 v4 v5 v6

v7

v8

Figure 4.7: A (3, 3, 2)-chain is shown here. The outer vertices of the chain are ordered along
some direction of the path indicated by the red/bold line.

4.3 Encoding of K5-descendants

At first glance, K5-descendants do not seem to have any obvious structure. As a first step
in characterizing them, we introduce a set of two vectors that will represent their structure,
which is, to the author’s knowledge, have not been done for this class of graphs before.
We will define a map that takes a K5-descendant and outputs a set of vectors from which
the graph can be reproduced. This representation has several advantages. It will allow eas-
ier tabulation of K5-descendants, and quick calculations of some properties, such as the
order, triangle count, and zigzag counts. The main potential benefit of the representation,
however, is to obtain clues about the structure of the graphs through a different perspective.

The aforementioned vector representation does have several weaknesses. Perhaps the
most glaring weakness is that not all graphs characterized by these vectors are descendants
of K5, and some collections of vectors are not even graphic. Another flaw is that it is not
obvious or simple to perform double-triangle reductions or expansions on the vectors di-
rectly, since, from the way it’s constructed, these operations can affect the vectors globally,
even though the operations are local phenomena on the graph.

The problem of characterizing the descendants of K5 thus becomes the problem of char-
acterizing which collections of vectors are realizable as K5-descendants. Another problem
is discerning whether two collections of vectors are representations of isomorphic graphs,
more efficiently than directly analysing the two graphs. In this section, we will introduce
this vector representation, which is a set of two vectors, the chain vector and the chord
vector.

Definition 4.7 (Chain vector of n-zigzags). Let G be an n-zigzag graph. Then G is a closed
(z1, · · · , zn)-chain for some z1, · · · , zn ∈ N. The chain vector of G is defined as

C(G) := [z1, z2, · · · , zn].

We call V (G), ∅ a chain partition of G, where ∅ is the empty set.

27

Definition 4.8 (Chain vector of general graphs). Let G be a graph that is not an n-zigzag.
Suppose that the vertices of G can be partitioned into sets C1, C2, · · · , Cr, L such that:

• For all i, G[Ci] is an open ci-chain, where ci = (z1, · · · , zki
) for some z1, · · · , zki

≥ 1;

• L is the set of lone vertices of G. That is, for any v ∈ L, v is not part of any triangle
in G. We let l := |L|.

The chain vector of G is defined as

C(G) := [c1, 0, c2, 0, · · · , cr, 0,−l].

We call the sequence of sets C1, C2, · · · , Cr, L a chain partition of G.

Definition 4.9 (Special vertices of a chain). Let C be a chain in a graph G. We define the
following sets

• The set of middle vertices

M := {v : v is part of exactly two zigzags}.

• The set of internal vertices

I := {v : v is part of exactly one zigzag and degG[C](v) = 4}.

• The set of chord vertices

B = {v : degG[C] (v) = 3, or degG[C] (v) = 2 and v is not an end vertex}.

• The set of end vertices

E = {v : degG[C] (v) = 2 and v is adjacent to at most one middle vertex}.

• The set of outer vertices

U = B ∪ E.

We define an outer path of C, P(C), as a path in C that starts on an end vertex of the first
zigzag, ends on an end vertex of the last zigzag, and passes through all the vertices in B,E.
If U = {v1, · · · , vk}, we say that U is ordered w.r.t P (C) if, for any i < j, vi appears before
vj in P(C), with P(C) traversed in either direction. We note that although the outer path
is not necessarily unique, the outer vertices are always in the same order (Figure 4.7).

28

Definition 4.10 (Chord vector). Let G be a graph with a chain partition C1, C2, · · · , Cr, L.
Let U1, · · · , Ur be the outer vertices of C1, · · · , Cr, respectively. We order the vertices of
Ui := {vi1, · · · , vimi

} along P(Ci). Let A be a set defined by

A := E(G) \
r⋃
i=1

E(Ci).

Label the edges in A in some order as 1, 2, · · · , k. Let ej1, · · · , e
j
tj be the (labels of the) edges

in A adjacent to vij . The partial chord vector of Ci is given by

PCh(Ci) := [e1
1, · · · , e1

t1 , e
2
1, · · · , e2

t2 , · · · , e
mi
1 , · · · , emi

tmi
].

Order the vertices in L arbitrarily as l1, · · · , ln. Let f j1 , · · · , f jnj
be the edges adjacent to lj .

The lone chord vector is given by

PCh(L) := [f1
1 , · · · , f1

n1 , f
2
1 , · · · , f2

n2 , · · · , f
n
1 , · · · , fnnn

].

The chord vector of G is given by

Ch(G) := [PCh(C1), · · · ,PCh(Cr),PCh(L)].

Definition 4.11 (Vector representation). Suppose a graph G has a chain vector C(G) and
a corresponding chord vector Ch(G). A vector representation of G is given by the pair
C(G),Ch(G). An example is given in Figure 4.8.

As was previously mentioned, this vector representation is not unique toK5-descendants.
This justifies the following definition. An example is shown in Figure 4.9.

Definition 4.12 (Pseudo-descendant). A graph G is a pseudo-descendant if it admits a vec-
tor representation. A non-descendant is a pseudo-descendant that is not a K5-descendant.

We note that since the chain and chord vectors depend on the particular orderings on
the vertices and edges of G, a graph G might have several distinct vector representations.
We say that two vector representations are equivalent if they arise from isomorphic graphs.
We would like to remove as many redundancies as possible from the definition of the vector
representation, and so we will define a standard vector, based on the vector representation.
We begin with preliminary definitions.

29

1, 2

3 4 5, 6

1, 7 7, 8

4 9

2, 6

3, 5, 8, 9

Figure 4.8: An example of a pseudo-descendant. Vertices that share
the same label are adjacent. This graph has a vector representation
[(3, 1, 0, 3, 0,−1)], (1, 2, 3, 4, 5, 6, 1, 7, 7, 8, 4, 9, 2, 6, 3, 5, 8, 9)] and a standard vector
((3, 1, 0, 3, 0,−1), (4, 8, 8, 4, 6, 5, 1, 4, 2)).

0
1

2

3

4

5
6 7

8

9

10

11

12
0

1

2

3

4

5
6 7

8

9

10

11

12

Figure 4.9: The graph on the left has a standard vector ((5, 0, 3, 0,−1), (5, 8, 6, 6, 1, 3, 4, 1))
and is a descendant of K5. The graph on the right has a standard vector
((5, 0, 3, 0,−1), (6, 8, 3, 5, 2, 5, 4, 1)) and is a non-descendant. We call both graphs pseudo-
descendants. In both graphs, the two zigzags are the vertices 0 through 6 and 7 through 11,
respectively. The plots were generated using pdplot(G,1,filename,graphicsize).

30

Definition 4.13 (Standard chain ordering). Let G be a pseudo-descendant. Let C1, · · · , Cr
be the chains of G with corresponding chain sizes c1, · · · , cr, with ci = z1, · · · , zni . Suppose
that the following two conditions are satisfied

• For each i, (z1, · · · , zni) ≥lex C∗, for any cyclic permutation C∗ of Ci or C−1
i , where

C−1
i is the reverse of Ci;

• For 1 ≤ i ≤ r − 1, ci ≥lex ci+1;

where ≥lex is the lexicographical orderding. In this case, we say that C1, · · · , Cr are in
standard chain ordering.

Definition 4.14 (Chord length vector). Let G be a pseudo-descendant and let C1, · · · , Cr
be the chains of G in standard chain ordering. Let l1, · · · , lk be the lone vertices of G. We
label the outer vertices of G from 1, · · · ,m in order of their appearance in the sequence
P(C1), · · · ,P(Cr), where P(Ci) is the outer path, traversed from left to right on Ci. We
label the lone vertices in some order as m+ 1, · · · ,m+ k. We start with an empty list, and
construct a position list PL iteratively as follows:

• If i, j are chord vertices in a 2-triangle zigzag, they will be placed together in a new
position;

• If i is not a chord vertex of a 2-triangle zigzag, it is placed on its own in a new position.

Define the position function

Pos(v) := the position in PL where v appears.

Let H be G after all edges whose vertices are contained in a single chain are removed. Label
the edge list as e1, · · · , en ordered by the smaller Pos of their endpoints (and arbitrarily for
edges with the same smaller endpoint). We define a chord length vector CLV of length n

where, if ei = (u, v), the ith component of CLV is given by

CLVi = Pos(v)− Pos(u).

Definition 4.15 (Standard vector). Let G be a pseudo-descendant and let C1, · · · , Cr be
the chains of G in standard chain ordering, with corresponding chain sizes c1, · · · , cr. If G
is a 1-zigzag, a standard vector of G is given by the pair ((c1), (,)). Let k be the number of
lone vertices of G. Let V be a chord length vector of G. A standard vector of G is given by
the pair

((c1, 0, c2, 0, · · · , cr, 0,−k), V);

unless G is an n-zigzag with n > 1, then a standard vector of G is given by the pair ((c1), V).

31

Although the standard vector is a more condensed form of the vector representation,
it still contains some redundancies. For a pseudo-descendant G, the chain vector part of
any standard vector is the same, but the chord length vector is not necessarily unique.
For instance, for the K5-descendant in Figure 4.9, ((5, 0, 3, 0,−1), (5, 8, 6, 6, 1, 3, 4, 1)) and
((5, 0, 3, 0,−1), (8, 5, 6, 6, 1, 3, 4, 1)) are equivalent standard vectors. Factors that can affect
the chord length vector are the ordering of chains with identical chain sizes, the ordering
of the lone vertices, and the direction in which the outer path of the chains is taken. We
could construct a unique representation of a pseudo-descendant if we further require that
the chord length vector part is maximal in some ordering, and in the next definition, we do
so with the lexicographical ordering.

Definition 4.16 (Ordered standard vector). LetG be a pseudo-descendant and let C1, · · · , Cr
and l1, · · · , lk be the chains in standard chain ordering and lone vertices, respectively, of
G. Let the corresponding chain sizes be c1, · · · , cr. If G is a 1-zigzag, the ordered standard
vector of G is given by ((c1), (,)). Otherwise, we reorder the chains and lone vertices such
that:

• The chains are in standard chain ordering.

• The order produces the maximum chord length vector CLV in the lexicographical
ordering.

If G is not an n-zigzag, then the ordered standard vector of G is given by the pair

((c1, 0, c2, 0, · · · , cr, 0,−k),CLV);

If G is an n-zigzag with n > 1, then the ordered standard vector of G is given by the pair
((c1),CLV).

Although the ordered standard vector might have some theoretical potential, it is ineffi-
cient for practical calculations. If G has m distinct chain, each appearing nm times, finding
the standard chord vector will require ∏n

i=1 ni! standard chord vector calculations. As it
turns out, for large orders, it is much slower to compare two graphs by calculating their
ordered standard vectors and comparing them, than it is to simply check if the graphs are
isomorphic. Thus, in searching for K5-descendants by expanding all triangles and removing
the isomorphic ones (as is done in K5dsearch.py), checking isomorphisms is much faster
than calculating ordered standard vectors and checking equality, due to the large number of
isomorphic graphs that are produced. The ordered standard vector representation is useful
in that it turns the question of isomorphism of two pseudo-descendants into simply calcu-
lating their ordered standard vector representations, and comparing them, as the following
proposition states.

32

Proposition 4.17. Let G,H be pseudo-descendents, and let VG, VH denote the ordered
standard vector representations of G and H, respectively. Then,

G ∼= H ⇐⇒ VG = VH

Proof. (VG = VH =⇒ G ∼= H) Consider that from the first part of the VG, the chains of G
can be constructed, and the outer vertices of each chain can be found and uniquely ordered.
The second part of VG constructs all the remaining edges and the lone vertices. Thus, VG
uniquely determines G, as desired.
(G ∼= H =⇒ VG = VH) Let V (1)

G and V
(2)
G denote the first and second part of VG,

respectively. Consider that V (1)
G is constructed by taking the ordering and orientation of the

chains of G that give the maximum in lexicographical ordering. Hence, the chain structure
of G uniquely determines V (1)

G . In constructing V (2)
G , a finer ordering of the identical chains

and of the lone vertices of G is chosen that produces the maximum chord length vector.
Hence, V (2)

G is uniquely determined.

Observe that if a graph is triangle-free, then it is a pseudo-descendant, but certainly not
a K5-descendant. A standard vector of that graph is simply a list of edges adjacent to each
vertex.

4.4 Pseudo-descendant Parameters

We begin by defining some parameters that are well defined for pseudo-descendants.

Definition 4.18. Let G be a pseudo-descendant. By definition, G will consist of either a
single closed chain, or no closed chains and some positive number of open chains. We let
c, z, t, l, n denote the number of open chains, zigzags, triangles, lone vertices, and vertices, in
G, respectively. We let zk denote the number of zigzags containing exactly k triangles. We
denote the number of middle, internal, boundary, and end vertices, respectively, by nm, ni,
nb, ne, respectively. These quantities are defined in Definition 4.9 on page 28. A summary
of these quantities is provided in Table 4.1.

While we don’t expect to obtain a full characterization of K5 descendants using the
aforementioned quantities, relations between those quantities that are satisfied for pseudo-
descendants can help in determining whether a graph is not a pseudo-descendant. A simple
result in that direction is the following proposition.

Proposition 4.19. If G is a pseudo-descendant, then n = c+ z + t+ l.

33

Table 4.1: Summary of the psuedo-descendant quantities defined in Definition 4.18.

Quantity (number of) Symbol
triangles t

zigzags z

open chains c

k-triangle zigzags zk
vertices n

middle vertices nm
internal vertices ni
boundary vertices nb
end vertices ne
lone vertices l

Proof. Let G be a pseudo-descendant. We have that

n = nm + ni + nb + ne + l (4.1)

Each open chain contributes two end vertices. Each zigzag of k ≥ 2 triangles contributes 2
boundary vertices and k−2 internal vertices. Each 1-triangle zigzag contributes 1 boundary
vertex. Thus,

ne = 2c (4.2)

nb =
∑
k≥2

2 + z1 (4.3)

ni =
∑
k≥2

(k − 2)zk (4.4)

Let the number of zigzags in a chain be denoted as z(C). A chain C contributes z(C) − 1
middle vertices. Thus,

nm =
∑
C

(z(C)− 1) =
∑
C

z(C)−
∑
C

1 = z − c (4.5)

Combining the equations, we get

n = z − c+
∑
k≥2

(k − 2)zk +
∑
k≥2

2 + z1 + 2c+ l = z + c+ l +
∑
k≥1

kzk = z + c+ l + t

34

Table 4.2: This table lists the number of K5-descendants of a of order n and triangle count
t. We start the count from tri(G) = 4, justified by the fact that any K5-descendant has at
least 4 triangles, a fact proved in Section 4.6. The enumeration was produced through the
code in K5dordertritable.py.

n/t 4 5 6 7 8 9 10 11 12 13 14
5 0 0 0 0 0 0 1 0 0 0 0
6 0 0 0 0 1 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 0 0 0
8 0 0 1 0 1 0 0 0 0 0 0
9 0 1 1 1 0 1 0 0 0 0 0
10 1 2 6 2 2 0 1 0 0 0 0
11 3 8 19 15 4 2 0 1 0 0 0
12 8 37 88 76 34 7 3 0 1 0 0
13 21 147 390 435 218 61 10 3 0 1 0
14 67 550 1758 2405 1576 505 106 14 4 0 1

Table 4.3: This table lists a few terms of the counting sequences for K5-descendants of levels
0 to 4. The counts start at |V(G)| = 7. The table also lists the denominator and numerator
of the generating functions for each sequence. The generating functions for levels 0 to 3
were derived in propositions 4.25, 4.26, 4.27 and 4.30. The conjectured generating function
for level 4 is also shown here.
In the row for L = 4, f(x) = x20−x19+3x18−3x17+4x16+4x14+3x13+6x12+3x11+4x10+x9.

Level Sequence Numerator Denominator
0 1, 1, 1, . . . x7 (1− x)
1 0, 0, 0, . . . 0 1
2 0, 1, 1, 2, 2, 3, 3, . . . x8 (1− x)2(1 + x)
3 0, 0, 1, 2, 4, 7, 10, 14, . . . (x9 + x11) (1− x)3(1 + x+ x2)
4 0, 0, 1, 6, 15, 34, 61, 106, . . . ?= f(x) ?= (1− x)4(1 + x)(1 + x+ x2 + x3)

35

4.5 Order and Triangle Count

In this section, we enumerate K5-descendants up to order 14, grouping them by their level,
defined in Definition 4.20. Some interesting sequences arise when looking at the number of
descendants of K5 of certain levels. Table 4.2 lists the number of K5-descendants grouped
by their order and triangle counts, and Table 4.3 lists the first 5 level sequences. We derive
the closed form of the sequences for L(G) = 0, 1, 2, 3 in propositions 4.25, 4.26, 4.27, and
4.30. We begin by proving Lemma 4.24.

Definition 4.20 (Level). Let G be a graph. We define the level of G to be

L(G) = order(G)− tri(G).

Lemma 4.21. If G is a K5-descendant of order > 5, then neither K4 nor the triple triangle
T 3 are subgraphs of G.

Proof. Observe that since K5 is completed primitive, by Proposition 3.9, all K5-descendants
are completed primitive. Let G be a K5-descendant of order > 5. If K4 is a subgraph of G,
then G has a non-trivial internal 4-edge-cut, and so it is not internally 6-edge-connected,
and, by Theorem 2.24, G is not completed primitive, a contradiction.
Suppose now that T 3 is a subgraph of G. Then G has a 3-vertex-cut. By Theorem 3.10, we
can find the ancestor of G by performing all double triangle reductions first. Since K5 has
no 3-vertex-cut, it cannot be the ancestor of G, a contradiction.

Lemma 4.22. Let G be a K5-descendant of order > 5, and let H be a child of G. Then,
tri(H) = tri(G) + c, where c ∈ {−1, 0, 1}.

Proof. Let v1, v2, v3 be a triangle in G, and let v4 ∈ N(v1) \ {v2, v3}. In a double triangle
expansion, WLOG, the edges (v1, v4), (v2, v3) are removed, a new vertex v5 is added, and the
edges (v5, v1), (v5, v2), (v5, v3), (v5, v4) are added. Let H denote G after this double triangle
expansion. If any triangles not containing v5 have been removed, they necessarily must con-
tain both v2, v3, or both v1, v4. Consider that in G[v1, v2, v3, v4] (the induced subgraph of
G on v1, v2, v3, v4), deg(v4) = 1, deg v2 = deg v3 = 2, and deg v1 = 3. Hence, using Lemma
4.21, there is at most 1 additional triangle containing v2, v3 (other than v1, v2, v3) in G, and
at most one triangle containing v1, v4.

36

On the other hand, if new triangles are created, then these triangles must each contain
one of the edges (v5, v1), (v5, v2), (v5, v3), (v5, v4). Other than the double triangle (v1, v2, v5, v3),
triangles would be created if G contains the edge (v2, v4) or (v3, v4) (G cannot contain both
these edges as that would make a 4-clique, which is impossible due to Lemma 4.21). Suppose
then that G contains (v2, v4). Double triangle expansion removes the triangle (v2, v3, v4) by
deleting (v2, v4), and creates the triangle (v3, v4, v5). Thus, the net contribution of having
the edge (v2, v4), and similarly for (v3, v4), is 0. It thus suffices to consider three cases.

Case 1: G has the triangles (v2, v3, a), (v1, v4, b), for some vertices a, b /∈ {v1, v2, v3, v4} and
a 6= b, since a = b implies G contains a 4-clique, which is not possible. Double triangle
expansion thus removes a total of 3 triangles in G, and adds a double triangle. Hence,
tri(H) = tri(G)− 3 + 2 = tri(G)− 1.

Case 2: G has the triangle (v2, v3, a) for some vertex a /∈ {v1, v2, v3, v4}, and does not
contain a triangle (v1, v4, b) for any b /∈ {v1, v2, v3, v4}. Double triangle expansion
removes a total of 2 triangles in G, and adds a double triangle. Hence, tri(H) = tri(G).

Case 3: G has the triangle (v1, v4, a) for some vertex a /∈ {v1, v2, v3, v4}, and does not con-
tain a triangle v2, v3, b for any b /∈ {v1, v2, v3, v4}. Double triangle expansion removes
2 triangles, and adds a double triangle. Hence, tri(H) = tri(G).

Case 4: G does not have a triangle (v2, v3, a) or (v1, v4, a) for any a ∈ {v1, v2, v3, v4}.
Double triangle expansion removes 1 triangle, and adds a double triangle. Hence,
tri(H) = tri(G) + 1.

In light of the above lemma, we can define triangle types depending on which of the
four cases the triangle is in. This is illustrated in Figure 4.10.

Definition 4.23 (Triangle Types). Suppose a graph G contains a triangle (v1, v2, v3). If
there exist vertices v4, v5, v6 /∈ {v1, v2, v3} with (v1, v4, v5) and (v2, v3, v6) triangles, we call
double triangle expansion of this triangle with v1 as the special vertex a Type I operation.
If there exist vertices v4, v5 /∈ {v1, v2, v3} with (v1, v4, v5) a triangle, and the edge (v2, v3)
is part of exactly one triangle, we call double triangle expansion of this triangle with v1

as the special vertex a Type II operation. If there exist a vertex v4 /∈ {v1, v2, v3} so that
(v2, v3, v4) is a triangle, and v1, a, b is not a triangle for any a, b /∈ {v2, v3}, we call double
triangle expansion of this triangle with v1 as the special vertex a type III operation. Finally,
if (v2, v3, a) and (v1, b, c) is not a triangle for any a 6= v1 and b, c /∈ {v2, v3}, we call double
triangle expansion of this triangle with v1 as the special vertex a type IV operation.

37

Type Ia

1

2

3

4

5

6 1

2

4a

4b

3

5

6

Type Ib

1

2

3

4

5

6 1

2

4a

4b

3

5

6

Type IIa

1

2

3

4

5

1

2

4a

4b

3

5

Type IIb

1

2

3

4 1

2

4a

4b

3

38

Type III

1

2

3

4

5 1

3a

3b

2

4

5

Type IV

1

2

3

4

1

2

3a

3b

4

1

2

3 1

2a

2b

3

Figure 4.10: This figure shows a double triangle expansion of a triangle in various configura-
tions. The vertices suffixed with a letter, such as 3a and 3b in the first right figure, indicate
which triangle and special vertex were chosen for each vector expansion. Each vertex is of
degree 4 in the graph. Edges that are not part of any triangle in the graph are drawn as half-
edges here. Missing edges are edges that can be, but are not necessarily, part of any triangle.
For instance, in the third figure on the left, vertex 2 is missing one edge, indicating that
vertices 1 and 2 might be adjacent to a common vertex v, thus making a triangle. Vertex
4, on the other hand, is adjacent to a half-edge, which means that the fourth edge adjacent
to vertex 4 cannot be part of any triangle. The effect of the double triangle expansions on
the chain vector is summarized in Table 4.4 in page 49.

39

Lemma 4.24. Let G be a K5-descendant, and let H be a child of G. Then, L(H) = L(G)+c,
where c ∈ {0, 1, 2}.

Proof of Lemma 4.24. We have order(H) = order(G)+1. By Lemma 4.32, tri(H) = tri(G)+
c, where c ∈ {−1, 0, 1}. Hence,

L(H)− L(G) = (order(H)− tri(H))− (order(G)− tri(G))

= (order(H)− order(G))− (tri(H)− tri(G)) = 1− c ∈ {0, 1, 2},

as desired.

Proposition 4.25 (1-zigzags). If G of order n ≥ 7 is a K5-descendant with L(G) = 0,
then G is a 1-zigzag graph. Furthermore, there is only one 1-zigzag at each order, up to
isomorphism.

Proof. We proceed by induction on the order of G, n. If n = 7, then there is indeed one
K5-descendant with L = 0, and it is the 1-zigzag graph Z5. Now assume, for some k ≥ 7,
that n = k,L(G) = 0 =⇒ G is a 1-zigzag. Suppose G is a K5-descendant of order k. By
Lemma 4.24, any child H of G has L(H) = L(G) + a, where a ∈ {0, 1, 2}. In particular, a
graph H with L(H) = 0 can only be a child of G if L(G) = 0, implying that G is a 1-zigzag
graph. In order for L(H) = 0, the operation that produces H from G needs to be a Type
I double triangle expansion. Consider that a 1-zigzag graph is vertex-transitive, implying
that the neighbourhood of any vertex is the same up to symmetry. There is one Type I
triangle at each vertex, and so all Type I triangles are the same, up to isomorphism. Hence,
there is only one graph H with L(H) = 0, and the Type I operation will result in a zigzag
graph of the next order. By induction, there is only one 1-zigzag graph at each order, and
those are precisely the graphs with L(G) = 0.

Proposition 4.26. There is no K5-descendant G with L(G) = 1.

Proof. We proceed by induction on the order of G, n. At n = 7, there are noK5-descendants
with L = 1. Suppose that for some n = k ≥ 7, it is true that there are no K5-descendants
with L = 1. Let G be a K5-descendant with order(G) = k. By Lemma 4.24, in order to
obtain a graph H from G with L(H) = 1, either L(G) = 0 or L(G) = 1. Hence, we need
L(G) = 0, and so by Proposition 4.25, G is a 1-zigzag. We need to perform a DTE on a
Type II or a Type III triangle in G, but 1-zigzags, and in particular G, contain no such
triangles. Thus, no graph H with L(H) = 1 can be produced. By induction, there is no
K5-descendant with L = 1.

We note that there exists 4-regular graphs with L(G) = 1 that are therefore not K5-
descendants. One such example is the graph in Figure 4.11.

40

Figure 4.11: The graph shown here has 7 vertices and 6 triangles, and so L = 1. The ancestor
of this graph is the multiset {K5,K5}.

Proposition 4.27 (2-zigzags). Let G of order n ≥ 7 be a K5-descendant with L(G) = 2.
Then, G is a 2-zigzag graph. The number of such graphs, that are descendants of K5, is
given by the sequence (0, 0, 1, 1, 2, 2, 3, 3, . . .), generated by the function

F2(x) = x8

(1− x)(1− x2) .

Proof. Recall the definition of 2-zigzags, defined in Definition 4.3 in page 24, which is a
graph consisting of two zigzags sharing a vertex at each end. A standard vector, defined
in Definition 4.15 in page 31, of a 2-zigzag graph is ((z1, z2), (a, b)), where z1, z2 are the
number of triangles in each zigzag, respectively, and (a, b) is the chord length vector. We
want to show that the K5-descendants with L = 2 are precisely the 2-zigzags with z1, z2 ≥ 3
and (a, b) = (2, 2). The result then follows, and F2(x) is given by the generating function
for partitions of i+ j with i, j ≥ 3, which is the same as the generating function F2(x) for
partitions of i+ j − 6 with i, j ≥ 0. Using Lemma 2.1 in page 4, we obtain

F2(x) = x2x4p2(x) = x8

(1− x)(1− x2) ,

where we multiplied by x2 to index by order instead of triangle count, and by x4 since
i, j ≥ 3 instead of i, j ≥ 1.

Observe that a Type I DTE of a 1-zigzag Zn, with n ≥ 7, produces a 2-zigzag graph
with a standard vector ((n1, n2), (2, 2)), where n1, n2 ≥ 3 and n1 +n2 = n. A Type IV DTE
of a 2-zigzag with a standard vector ((z1, z2), (2, 2)) produces a 2-zigzag with a vector repre-
sentation ((z1 + 1, z2), (2, 2)) or ((z1, z2 + 1), (2, 2)), with the observation that ((a, b), (2, 2))
and ((b, a), (2, 2)) describe the same graph. We prove the result by induction on the order.

41

There are no K5-descendants of order ≤ 7 with L = 2. Now, assume that, for some
k ≥ 7, that any graph of order k and level L = 2 is a 2-zigzag with a standard vector
((z1 ≥ 3, z2 ≥ 3), (2, 2)). Let G be a K5-descendant with L(G) = 2 and order k + 1.
Consider that, by Lemma 4.24 and propositions 4.25 and 4.26, G can only be obtained by
DTE of a Type I triangle of a 1-zigzag, or a Type IV triangle of an L = 2 graph. But, given
the induction hypothesis, either of these operations will result in a 2-zigzag with a standard
vector ((z1 ≥ 3, z2 ≥ 3), (2, 2)). By induction, the result is true for all orders.

Before proceeding to prove Proposition 4.30 for L = 3, we prove some preliminary lemmas.

Lemma 4.28. Suppose that a pseudo-descendant G has a standard vector ((z1, z2, z3), C)
where z1 ≥ z2 ≥ z3 ≥ 3 and C ∈ {(2, 3, 2), (3, 4, 2), (4, 2, 3)}. Then, G admits exactly 1,
2, or 3 chord length vectors from {(2, 3, 2), (3, 4, 2), (4, 2, 3)}, if the zi’s are distinct, exactly
two of the zi’s are equal, or the zi’s are all equal, respectively. Furthermore, G, in all cases,
does not admit the chord length vector (3, 3, 3).

Proof. Let z11, z12, z21, z22, z31, z32 be the chord vertices, in order along an outer path of the
closed chain (z1, z2, z3). The chords in G if C = (2, 3, 2), (3, 4, 2), or (4, 2, 3) are respectively
given by {(z11, z21), (z12, z31), (z22, z32)}, {(z11, z22), (z12, z32), (z21, z31)}, or
{(z11, z31), (z12, z22), (z21, z32)}. Define the length of a chord (u, v) as the smaller of Pos(u)−
Pos(v) mod 6 and Pos(v)−Pos(u) mod 6. The lengths of chords are respectively given by
(2, 3, 2), (3, 2, 2) and (2, 2, 3). The lengths of chords adjacent to chord vertices in the first
zigzag are respectively given by (2, 3), (3, 2) and (2, 2). The lengths of chords adjacent to
chord vertices in the second zigzag are respectively given by (2, 2), (3, 2) and (2, 3). The
lengths of chords adjacent to chord vertices in the third zigzag are respectively given by
(3, 2), (2, 2) and (2, 3).

Suppose that z1 > z2 > z3. Then, each of the chord length vectors (2, 3, 2), (3, 4, 2), or
(4, 2, 3) represent a different graph, since the lengths of chords adjacent to each zigzag are
different for each case. Suppose that z1 = z2 > z3. Then, (2, 3, 2) and (4, 2, 3) represent the
same graph, and (3, 4, 2) represents a different graph. If z1 > z2 = z3, then (2, 3, 2) and
(3, 4, 2) represent the same graph, and (4, 2, 3) represents a different graph. If z1 = z2 = z3,
then (2, 3, 2), (3, 4, 2), and (4, 2, 3) all represent the same graph.

Finally, G does not admit the chord length vector (3, 3, 3), since, if it did, all of its chords
will have length 3, but since G admits one of {(2, 3, 2), (3, 4, 2), (4, 2, 3)}, it has two chords
of length 2 and one chord of length 3, a contradiction.

42

Lemma 4.29. A K5-descendant G has L = 3 if and only if G has one of the following
standard vectors:

• ((z1, z2, 0), (3, 5, 3, 3)) where z1 ≥ z2 ≥ 3;

• ((z1, z2, z3), (3, 3, 2)) where z1 ≥ z2 ≥ 3 and 1 ≤ z3 ≤ 2;

• ((z1, z2, z3), (3, 3, 3) where z1 ≥ z2 ≥ z3 ≥ 3.

• ((z1, z2, z3), C) where z1 ≥ z2 ≥ z3 ≥ 3 and C ∈ {(2, 3, 2), (3, 4, 2), (4, 2, 3)}.

Proof. (⇐=) Using Proposition 4.19 in page 33, we have that L(G) = n − t = c + z + l.
In the first case, c = 1, z = 2 and l = 0, and so L(G) = 3. In the remaining three cases,
c = 0, z = 3 and l = 0, and so L(G) = 3, as desired.

(=⇒) We prove this by induction on the order of G. The result is true for order = 9.
Suppose that the result is true for some order n ≥ 9, and let G be a K5-descendant of order
n. By Lemma 4.24, to obtain a graph H with L(H) = 3, we need to DTE a Type I triangle
of G if L(G) = 1, a Type II or III triangle of G if L(G) = 2, and a Type IV triangle of G if
L(G) = 3.

There are no graphs with L(G) = 1 by Proposition 4.26, and so we assume first that
L(G) = 2, which implies that G is a 2-zigzag with a standard vector ((z1, z2), (2, 2)) with
z1, z2 ≥ 3, by Proposition 4.27. We can only DTE Type II triangles since G has no Type
III triangles. Observe that we have a total of 4 Type II triangles in G, 2 for each zigzag.
Since the chord vertices of a specific zigzag in G are vertex-transitive, we have a total of 2
possibly different Type II triangles in G. Suppose we DTE a Type II triangle in the zigzag
with zi triangles. Let zj be the number of triangles in the other zigzag. Then, the graph H
that is produced will have a chain vector (zi − 3, 3, zj), with zi − 3 possibly zero. We have
three cases: zi − 3 ≥ 3, 1 ≤ zi − 3 ≤ 2, or zi − 3 = 0. These cases result, respectively, in the
following standard vectors

• ((k1, k2, 0), (3, 5, 3, 3)) where k1 ≥ k2 ≥ 3;

• ((k1, k2, k3), (3, 3, 2)) where k1 ≥ k2 ≥ 3 and 1 ≤ k3 ≤ 2;

• ((k1, k2, k3), (3, 3, 3) where k1 ≥ k2 ≥ k3 ≥ 3;

as desired.

Suppose now that L(G) = 3. Then, G, by the induction hypothesis, admits one of the
following standard vectors:

• ((z1, z2, 0), (3, 5, 3, 3)) where z1 ≥ z2 ≥ 3;

43

• ((z1, z2, z3), (3, 3, 2)) where z1 ≥ z2 ≥ 3 and 1 ≤ z3 ≤ 2;

• ((z1, z2, z3), (3, 3, 3) where z1 ≥ z2 ≥ z3 ≥ 3.

• ((z1, z2, z3), C) where z1 ≥ z2 ≥ z3 ≥ 3 and C ∈ {(2, 3, 2), (3, 4, 2), (4, 2, 3)}.

To obtain a graph with L = 3, we can only do Type IV DTE’s. The effect of a Type IV
DTE is to increase the number of triangles in a zigzag by 1. If G has the first, the third,
or the fourth standard vector, then a Type IV DTE on G produces a graph with the same
form of standard vector. Suppose then that G has the second standard vector. That is,
SV (G) = ((z1, z2, z3), (3, 3, 2)) where z1 ≥ z2 ≥ 3 and 1 ≤ z3 ≤ 2. If z3 = 1, or if we DTE
one of the first two zigzags, then a standard vector of the child is one of the following (note
that the chain vectors might not be ordered)

• ((z1 + 1, z2, z3), (3, 3, 2)) where z1 ≥ z2 ≥ 3 and 1 ≤ z3 ≤ 2;

• ((z1, z2 + 1, z3), (3, 3, 2)) where z1 ≥ z2 ≥ 3 and 1 ≤ z3 ≤ 2;

• ((z1, z2, 2), (3, 3, 2)) where z1 ≥ z2 ≥ z3 ≥ 3,

as desired.

Assume then that z3 = 2, and that we DTE a Type IV triangle in the third zigzag. There
are two such triangles, and DTE of each triangle results in exactly one of the following vector
representations

• ((z1, z2, 3), (3, 3, 3) where z1 ≥ z2 ≥ 3.

• ((z1, z2, 3), C) where z1 ≥ z2 ≥ 3 and C ∈ {(2, 3, 2), (3, 4, 2), (4, 2, 3)}.

as desired.

We have exhausted all possible cases, and in each case, the child graph admitted one of
the standard vectors in the lemma. By induction, the lemma is true for all orders.

Proposition 4.30 (Level 3). The number of K5-descendants G with L(G) = 3 is given by
the sequence (0, 0, 1, 2, 4, 7, 10, 14, . . .), generated by

F3(x) = x9(1 + x2)
(1− x)3(1 + x+ x2) .

Proof. By Lemma 4.29, we have that a K5-descendant G has L = 3 if and only if G is an
element of at least one of the following sets:

44

S1 := {G : G admits the standard vector ((z1, z2, 0), (3, 5, 3, 3)), z1 ≥ z2 ≥ 3},

S2 := {G : G admits the standard vector ((z1, z2, z3), (3, 3, 2)), z1 ≥ z2 ≥ 3, 1 ≤ z3 ≤ 2},

S3 := {G : G admits the standard vector ((z1, z2, z3), (3, 3, 3), z1 ≥ z2 ≥ z3 ≥ 3},

S4 := {G : G admits the standard vector ((z1, z2, z3), C), z1 > z2 > z3 ≥ 3,

C ∈ {(2, 3, 2), (3, 4, 2), (4, 2, 3)}},

S5 := {G : G admits the standard vector ((z, z, z3), C), z > z3 ≥ 3,

C ∈ {(2, 3, 2), (3, 4, 2), (4, 2, 3)}},

S6 := {G : G admits the standard vector ((z1, z, z), C), z1 > z ≥ 3,

C ∈ {(2, 3, 2), (3, 4, 2), (4, 2, 3)}},

S7 := {G : G admits the standard vector ((z, z, z), C), z ≥ 3,

C ∈ {(2, 3, 2), (3, 4, 2), (4, 2, 3)}}.

Consider that, since the chain vector, the first part of a standard vector, is uniquely
determined by the graph, and using Lemma 4.28, it follows that the Si’s are pairwise
disjoint. Fix a positive integer t, denoting the number of triangles. Define the following
counts:

N1(t) := number of 3-part partitions of t where two parts are P1 ≥ P2 ≥ 3,

and one part is 0 ≤ P3 ≤ 2,

N2(t) := number of 3-part partitions of t where the parts are P1 > P2 > P3 ≥ 3,

N3(t) := number of 3-part partitions of t where the parts are P1 = P2 > P3 ≥ 3,

N4(t) := number of 3-part partitions of t where the parts are P1 > P2 = P3 ≥ 3,

N5(t) := number of 3-part partitions of t where the parts are P1 = P2 = P3 ≥ 3.

Let Sti denote the graphs in Si with exactly t triangles. By Lemma 4.28, we have that

7∑
i=4
|Sti | = 3N2(t) + 2N3(t) + 2N4(t) +N5(t).

We also have that

3∑
i=1
|Sti | = N1(t) +N2(t) +N3(t) +N4(t) +N5(t).

45

Thus,

7∑
i=1
|Sti | = N1(t) + 4N2(t) + 3N3(t) + 3N4(t) + 2N5(t).

F3(x) is then given by the generating function

x−3F3(x) =
∑
t≥0

7∑
i=1
|Sti |xt =

∑
t≥0

(N1(t) + 4N2(t) + 3N3(t) + 3N4(t) + 2N5(t))xt

= f1(x) + 4f2(x) + 3f3(x) + 3f4(x) + 2f5(x),

where fi(x) := ∑
t≥0Ni(t)xt. We multiplied F3(x) by x−3 to index using order instead of

triangle count. Using Lemma 2.1 in page 4, we have that

f1(x) = (1 + x+ x2)x4p2(x) = x6(1 + x+ x2)
(1− x)(1− x2) ,

(f2 + f3 + f4 + f5)(x) = x6p3(x) = x9

(1− x)(1− x2)(1− x3) ,

(f2 + f3 + f4)(x) = x6p3(x)− x9

1− x3 = x10 + x11 − x12

(1− x)(1− x2)(1− x3) .

Using Lemma 2.2 in page 4, we have that

f2(x) = x6q3(x) = x6 x3+(3
2)

(1− x)(1− x2)(1− x3) = x12

(1− x)(1− x2)(1− x3) .

Thus,

F3(x)
x3 = f1(x) + f2(x) + 2(f2 + f3 + f4 + f5)(x) + (f2 + f3 + f4)(x) = x6(1 + x2)

(1− x)3(1 + x+ x2) ,

as desired.

We end this section with a conjecture on the closed form of the sequence for L(G) = 4
in Table 4.3. The sequence continues as

0, 1, 6, 15, 34, 61, 106, 162, 246, 342, 477, 626, 825, 1039, 1314, 1606, 1970, 2352, 2817, 3302, . . .

The candidate closed form of the generating function was found by noting that, starting at
order 18, the fourth difference of the terms is the sequence (10,−9, 9,−10, 10,−9, 9,−10, . . .).

46

Conjecture 4.31. The number ofK5-descendantsG with L(G) = 4 is given by the sequence
(0, 1, 6, 15, 34, 61, 106, 162, 246, · · ·), given by

F4(x) = x20 − x19 + 3x18 − 3x17 + 4x16 + 4x14 + 3x13 + 6x12 + 3x11 + 4x10 + x9

(1− x)4(1 + x)2(1 + x2) .

4.6 Minimum Number of Triangles is 4

Double triangle expansion always produces a double triangle, and thus, trivially, any K5-
descendant has at least two triangles. Interestingly, it can be shown that K5-descendants
have at least 4 triangles. To prove this, we will look at the effect of a double triangle expan-
sion (DTE) of a psuedo-descendant on its chain vector. Note that consecutive 0’s in a chain
vector are considered the same as one 0. For example, (3, 0, 1, 0, 0, 2, 0) = (3, 0, 1, 0, 2, 0).
Note also that the chain vectors referred to here are not assumed to be in standard ordering.

Lemma 4.32. Let G be a pseudo-descendent with a chain vector (z1, z2, · · · , zk), where
k ≥ 1, z1 ≥ 1, and zi ≥ 0 for 2 ≤ i ≤ k. Let G̃ be G after one double triangle expansion.
Then, G̃ has one of the chain vectors in the fourth column of Table 4.4.

Since double triangle reduction is the inverse of double triangle expansion, we can con-
clude the following corollary.

Corollary 4.33. Let G be a pseudo-descendant with a chain vector (z1, z2, · · · , zk), where
k ≥ 1, z1 ≥ 1, and zi ≥ 0 for 2 ≤ i ≤ k. Let G̃ be G after one double triangle reduction.
Then, G̃ has one of the chain vectors in the third column of Table 4.4.

Proof of Lemma 4.32. We will begin with Type I DTE’s. Figure 4.10 shows the two ways
a Type I DTE changes a zigzag(s). When expanding a Type Ia triangle, one zigzag of size
m + n + 4 for some m,n ≥ 0 is operated on, where m is the number of triangles in the
zigzag to the left of the chosen operating four triangle segment, and n is the number of such
triangles to the right. This zigzag’s contribution to the chain vector is (· · · ,m+n+ 4, · · ·).
The resulting vector representation depends on which four triangle segment of the zigzag is
operated on, and how large the zigzag is. WLOG, we have three possible cases. If m,n = 0,
the resulting vector representation will be (· · · ,m, 3, n, · · ·), since the resulting zigzag is iso-
lated from both left and right. If m > 0 and n = 0, the resulting vector is (· · · ,m, 3, n, · · ·),
since the resulting zigzag shares a vertex with the zigzag on the left, and is isolated from
the right. Similarly, if m,n > 0, the resulting chain vector is (· · · ,m, 3, n, · · ·). Thus, in all
cases, (· · · ,m+ n+ 4, · · ·) is changed to (· · · ,m, 3, n, · · ·) for all m,n ≥ 0.

47

When expanding a Type Ib triangle, two zigzags of sizes m+ 2 and n+ 1, respectively,
are operated on, where m indicates the number of triangles to the left of the leftmost zigzag,
and n the number of triangles to the right of the rightmost zigzag. The chain vector contri-
bution of the two zigzags is (· · · ,m+ 2, n+ 1, · · ·). We have three cases. If m,n = 0, that
part of the vector becomes (· · · , 0, 2, 0, 0, · · ·) = (· · · ,m, 2, 0, n, · · ·). If m > 0, n = 0, we
get (· · · ,m, 2, 0, 0, · · ·) = (· · · ,m, 2, 0, n, · · ·) and if m,n > 0, we get (· · · ,m, 2, 0, n, · · ·).
In all cases, (· · · ,m+ 2, n+ 1, · · ·) is changed to (· · · ,m, 2, 0, n, · · ·) for all m,n ≥ 0.

We now move on to Type II DTE’s. Referring to Figure 4.10, there are two cases: either
the special vertex (vertex 4 in the corresponding figure) is part of exactly two triangles, or
it is part of exactly one triangle. Suppose first that it is part of exactly two triangles. The
part of the chain vector that is being operated on is (· · · ,m + 3, · · ·), where m ≥ 0 is the
number of triangles to the left of the three triangle segment. If m = 0, then the vector part
after DTE becomes (· · · , 0, 3, · · ·) = (· · · ,m, 3, · · ·). If m > 0, then the vector part after
DTE becomes (· · · ,m, 3, · · ·). In either case, (· · · ,m+ 3, · · ·) is changed to (· · · ,m, 3, · · ·).

Suppose now that the special vertex is part of exactly one triangle. The part of the
chain vector that is being operated on is (· · · ,m + 2, 0, · · ·), where m ≥ 0 is the num-
ber of triangles to the left of the two triangle segment (See Type IIb in Figure 4.10). If
m = 0, the vector segment becomes (· · · , 0, 2, 0, · · ·) = (· · · ,m, 2, 0, · · ·), and if m > 0, it
becomes (· · · ,m, 2, 0, · · ·). In either case, (· · · ,m+2, 0, · · ·) is changed to (· · · ,m, 2, 0, · · ·).

Next, we move on to the Type III DTE. The triangle being expanded will be as shown
in Figure 4.10 (Type III). The zigzag containing the triangle being operated on ((1, 2, 3) in
Figure 4.10) must contain exactly 1 triangle, as, otherwise, the zigzag containing (1, 2, 3)
will be longer and it becomes a Type Ib operation. Let m be the number of triangles to the
right of the rightmost triangle (and part of the same zigzag). A DTE of (1, 2, 3) with 3 as
the special vertex will result in a 2-triangle zigzag Z, and, if m > 0, an m-triangle zigzag
that does not share any vertex with Z, or, if m = 0, it will add 2 lone vertices (4 and 5).
If vertex 1 was part of two zigzags, it will also be part of two zigzags after expansion. In
either case, the chain vector (· · · , 1,m+ 1, · · ·) will be changed to (· · · , 2, 0,m, · · ·).

Finally, we move on to Type IV DTE. There are two cases. Either the triangle is part of
a larger zigzag, or it’s part of a 1-triangle zigzag. In the first case, we operate on (· · · ,m+
1, · · ·), where m ≥ 0 is the number of triangles to the left or right of the triangle being
operated on. In either case, a Type IV DTE’s only effect is to add one triangle to the zigzag
containing the triangle being expanded. Thus, the chain vector (· · · ,m+ 1, · · ·) is changed
to · · · ,m+ 2, · · · .

48

Table 4.4: This table summarizes the different ways double triangle expansion can change
the chain vector of a pseudo-descendant. Refer to Figure 4.10 in page 39.

Triangle Type Parameters Vector before expansion Vector after expansion
Ia m,n ≥ 0 (· · · ,m+ n+ 4, · · ·) (· · · ,m, 3, n, · · ·)
Ib m,n ≥ 0 (· · · ,m+ 2, n+ 1, · · ·) (· · · ,m, 2, 0, n, · · ·)
IIa m ≥ 0 (· · · ,m+ 3, · · ·) (· · · ,m, 3, · · ·)
IIb m ≥ 0 (· · · ,m+ 2, 0, · · ·) (· · · ,m, 2, 0, · · ·)
III m ≥ 0 (· · · , 1,m+ 1, · · ·) (· · · , 2, 0,m, · · ·)
IV m ≥ 0 (· · · ,m+ 1, · · ·) (· · · ,m+ 2, · · ·)
IV None (· · · , 0, 1, 0, · · ·) (· · · , 0, 2, 0, · · ·)

We will now proceed to prove the main result of the section after the following lemma.

Lemma 4.34. All K5-descendants of order ≥ 8 that are not 1-zigzags can be double triangle
reduced to the K5-descendant with standard vector ((3, 3), (2, 2)).

Proof. This result immediately follows from Lemma 4.24 and propositions 4.25, 4.26 and
4.27.

Theorem 4.35. If G is a K5-descendant, then tri(G) ≥ 4.

Proof. Let G be a K5-descendant with tri(G) ≤ 3. We know that tri(G) ≥ 4 if order(G) < 8,
so we assume order(G) ≥ 8. By Proposition 4.25, we have that if G is a 1-zigzag, then
tri(G) = order(G) ≥ 8. We assume then that G is not a 1-zigzag. By Theorem 3.10 and
Lemma 4.34, we should be able to reach the chain vector (3, 3) from G through double
triangle reductions exclusively (that is, without double triangle expansions). Since double
triangle expansion always leaves a double triangle, at least one of the zigzags in G has ≥ 2
triangles. Thus, the chain vector of G is one of the following:

(3), (2, 1), (2), (3, 0), (2, 1, 0), (2, 0), (2, 0, 1, 0).

The chain vectors (3), (2, 1) and (2) are not possible since G will have 5, 6 or 4 vertices,
respectively, but order(G) ≥ 8. Therefore, there remains four cases to consider. We will refer
to Table 4.4 in page 49, and we want to show that for each case, successive double triangle
reductions either leads to a chain vector in another case, or to an unrealizable chain vector.

49

Case 1: CV1 = (3, 0).

First, observe that the only way to have a DTR strictly increase the number of non-zero
entries in the chain vector is through Type Ib with m = n = 0, or Type III with m = 0. In
either case, the chain vector needs to contain a 2.

Using a Type Ia reduction with m = n = 0 gives us CV2 = (4, 0), which will force us to
use Type IV reduction to get to (3, 0) again since we need a 2. Using a Type IIa reduction
on (3, 0) results in (3), which has already been excluded, or (3, 0) = CV1. The only possible
useful step at this point, then, is to use Type IV reduction to obtain CV2 = (2, 0), which is
considered in Case 3.

Case 2: CV1 = (2, 1, 0) = (1, 2, 0).

Using a Type Ib reduction with m = 1 and n = 0 results in CV2 = (3, 1) or (3, 1, 0).
Suppose that CV2 = (3, 1). The graph with chain vector (3, 1), if it exists, has order 6 and 4
triangles, but the only K5-descendant of order 6 (the zigzag graph Z4) has 8 triangles, and
so this subcase is not possible. So we suppose that CV2 = (3, 1, 0). A Type Ia reduction with
m = 0 and n = 1 results in CV3 = (4) or (4, 0). If CV3 = (4), then the graph, if it exists, will
have 6 vertices. The only K5-descendant with 6 vertices, Z4, has exactly one child, Z5, for
which the chain vector (3, 1, 0) is not a valid representation. Thus, we assume CV3 = (4, 0).
As was argued in Case 1, this forces us to use Type IV reduction twice to obtain CV5 = (2, 0).

We start over at CV1 = (2, 1, 0). The only other possible operation is a Type IIb re-
duction with m = 1, which results in CV2 = (3, 0), forcing us to do a Type IV reduction,
resulting in CV3 = (2, 0).

Case 3: CV1 = (2, 0).

We have three options for the next step.

• Subcase 1: We use a Type Ib reduction with m = n = 0, giving us CV2 = (2, 1) or
CV2 = (2, 1, 0). The chain vector (2, 1) is not realizable, while (2, 1, 0), dealt with in
Case 2, can only lead us back to (2, 0).

• Subcase 2: We use a Type IIb reduction with m = 0, which results in CV2 = (2, 0).

• Subcase 3: We use a Type III reduction with m = 0, which results in CV2 = (1, 1)
or CV2 = (0, 1, 1). In either case, the chain vector is not possible, since at least one
zigzag must contain more than one triangle for any K5-descendants.

50

In all subcases, we either get back to (2, 0) or reach an unrealizable (for a K5-descendant)
chain vector.

Case 4: CV1 = (2, 0, 1, 0).

We have three options for the next step.

• Subcase 1: We use a Type Ib reduction with m = 0 and n = 1, giving us CV2 = (2, 2)
or CV2 = (2, 2, 0). If a graph has chain vector (2, 2), then it has 6 vertices, but the
only K5-descendant of 6 vertices is Z4, for which (2, 2) is not a valid chain vector.
We suppose then that CV2 = (2, 2, 0). If we do a Type Ib reduction with m = 2 and
n = 0, we obtain CV3 = (4, 1) or (4, 1, 0). If a graph has chain vector (4, 1), then it has
7 vertices, but the only K5-descendant of 7 vertices is Z5, which has 7 triangles, not
5 = 4 + 1. Thus we assume CV3 = (4, 1, 0). We are forced to use a Type IV reduction
to obtain CV4 = (3, 1, 0), which was already dealt with in Case 2 and will eventually
result in CV = (2, 0).

We return to CV2 = (2, 2, 0). We can do a Type IIb reduction with m = 2 to obtain
CV3 = (4, 0), which ultimately lead to CV = (2, 0). The only other possible operation
on CV2 is a Type IV operation to obtain CV3 = (2, 1, 0), which is dealt with in Case
2, and will eventually lead to CV = (2, 0).

• Subcase 2: We use a Type IIb reduction withm = 0, which results in CV2 = (2, 0, 1) =
(2, 1, 0), which is dealt with in Case 2.

• Subcase 3: We use a Type III reduction with m = 1, which results in CV2 = (0, 1, 2),
which is dealt with in Case 2, or CV2 = (1, 2), which has been already excluded.

In all cases, we either get back to (2, 0), or reach an unrealizable chain vector.

51

(2, 0)(1, 1, 0)

(3, 0)

(5, 0)

(2, 1, 0)

(4, 0)

(3, 1)

(3)

(1, 1)

(2, 2, 0)

(4, 1)

(2, 0, 1, 0)

(2, 1) (2, 2)

(3, 1, 0) (4)

(4, 1, 0)

___ Ia
___ Ib

___ IIa
___ IIb

___ III
___ IV

Figure 4.12: This figure illustrates the proof of Theorem 4.35. It shows the various ways
DTR can affect the chain vector when starting with < 4 triangles. The key observation is
that if you start with a chain vector that has at most 3 triangles, then no sequence of DTR’s
can result in the chain vector that is admissible for some K5-descendant.

52

Chapter 5

Conclusion

The aim of this document was to better understand the structure of K5-descendants, which
are a combinatorially interesting class of graphs, and are interesting in φ4-theory given
Brown and Schnetz’s conjecture that these graphs are the only graphs in φ4-theory with
constant −1 c2-invariant,

Conjecture 3.14 (Brown and Schnetz. [5, Conjecture 25, p16]). Let G be a completed
primitive graph and let G̃ be any decompletion of G. Then,

c2(G̃) = (−1,−1, · · ·) ⇐⇒ G ∼= K5 or G is a double-triangle descendant of K5.

A better understanding of the structure of K5-descendants is our best way to step to-
wards proving this conjecture. Additionally, the double triangle operations are interesting
graph operations, both graph theoretically and in φ4-theory, given that they preserve the
c2-invariant, completed primitiveness, and several other graph properties. The main con-
tributions of this thesis are the vector encoding for K5-descendants presented in Section
4.3, the counting propositions in Section 4.5, and the result that the minimum number of
triangles in a K5-descendant is 4.

The vector encoding is a step towards characterization of these graphs. It is also use-
ful for quickly checking non-isomorphism of graphs that have different chain vectors. The
counting propositions are interesting enumerative combinatorics and the technique used in
the proofs could potentially be generalized. The minimum triangle count result is interest-
ing because, firstly, it is not obvious that minimum should not just be two, instead of 4 as
the result shows. Secondly, it is not as simple as having 2 separate double triangles, but in
fact a K5-descendant with (exactly) 4 triangles could have one 2-triangle zigzag and two
1-triangle zigzags.

53

Computer programs were heavily used in discovering some of the results. The software
that was used for coding is the SageMath software package, an open source programming
platform based on Python. SageMath was chosen due to the large number of graph theory
libraries available, and the ease at which programs can be coded and debugged. Some of
the code used is included in the appendix. This code can be used to enumerate the descen-
dants of K5 or any other simple 4-regular graph, calculate the double triangle ancestor of
a 4-regular graph, calculate a standard vector representation for a pseudo-descendant, and
plot pseudo-descendants in an easy to read manner. Given a chain vector, the code can be
used to list and separately enumerate K5-descendants and non-K5-descendants with that
chain vector.

There is potentially more that can be done with the standard vector representation.
The effect of double triangle expansion on the chain vector was calculated in Section 4.6,
but calculating the effect of DTE’s on the chord length vector could prove insightful on the
structure of K5-descendants. Additionally, in the standard vector, there are no restrictions
on lone vertices, but it seems likely that only certain lone vertex structures are possible. If
so, this could both improve the usefulness of the standard vector representation, and help
in full characterization.

Solving the author’s conjecture for the closed form of the generating function that counts
K5-descendants with level L = 4 could potentially give some clues as to how to approach
the enumeration of K5-descendants of the next levels, L ≥ 5.

Conjecture 4.31. The number ofK5-descendantsG with L(G) = 4 is given by the sequence
(0, 1, 6, 15, 34, 61, 106, 162, 246, · · ·), given by

F4(x) = x20 − x19 + 3x18 − 3x17 + 4x16 + 4x14 + 3x13 + 6x12 + 3x11 + 4x10 + x9

(1− x)4(1 + x)2(1 + x2) .

The pseudo-descendant quantities introduced in Section 4.4 could be useful to quickly
weed out graphs that do not have the right relation between those quantities. The effect
of double triangle expansion on the n, c, z, t, l parameters can be determined, resulting in
vectors representing how DTE can change these values. The positive integer span of these
vectors spans all K5-descendant graphs, and expectedly many non-K5-descendants. How-
ever, graphs that are not in the span can be ruled out.

54

The question of the complexity of this problem is also interesting. For instance, could
double triangle expansion on a pseudo-descendant create local non-planarities? If not, this
suggests that the class of K5-descendants is somewhat more tangible than thought, giving
hope for a full characterization. If the answer is yes, what does this say about the difficulty
of the problem? The author thanks supervisor Matthew DeVos for suggesting this interest-
ing problem.

Brown and Schnetz’s conjecture that only K5-descendants have c2 = −1 remains un-
solved, and we do not seem to be closer to the answer in either direction.

55

Bibliography

[1] James Ax. Zeroes of polynomials over finite fields. Amer. J. Math., 86:255–261, 1964.

[2] Prakash Belkale and Patrick Brosnan. Matroids, motives, and a conjecture of Kontse-
vich. Duke Math. J., 116(1):147–188, 2003.

[3] F. C. S. Brown. On the periods of some Feynman integrals. ArXiv e-prints, October
2009, 0910.0114.

[4] Francis Brown and Oliver Schnetz. A K3 in φ4. Duke Math. J., 161(10):1817–1862,
2012.

[5] Francis Brown and Oliver Schnetz. Modular forms in quantum field theory. Commun.
Number Theory Phys., 7(2):293–325, 2013.

[6] Francis Brown and Oliver Schnetz. Single-valued multiple polylogarithms and a proof
of the zig-zag conjecture. J. Number Theory, 148:478–506, 2015.

[7] Francis Brown and Karen Yeats. Spanning forest polynomials and the transcendental
weight of Feynman graphs. Comm. Math. Phys., 301(2):357–382, 2011.

[8] D. Bump. Algebraic Geometry. World Scientific, 1998.

[9] Pete L. Clark. The Chevalley-Warning Theorem (featuring. . . the Erdos-Ginzburg-
Ziv Theorem). from http://math.uga.edu/ pete/4400ChevalleyWarning.pdf. Retrieved
August 20 2017.

[10] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer, Berlin, fifth edition, 2017.

[11] Martin J. Erickson. Introduction to combinatorics. Wiley Series in Discrete Math-
ematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, second edition,
2013.

[12] B. Moore and K. Yeats. Graph Minors and the Linear Reducibility of Feynman Dia-
grams. ArXiv e-prints, August 2017, 1708.01691.

[13] Lewis H. Ryder. Quantum field theory. Cambridge University Press, Cambridge, second
edition, 1996.

[14] Oliver Schnetz. Quantum periods: a census of φ4-transcendentals. Commun. Number
Theory Phys., 4(1):1–47, 2010.

56

[15] John R. Stembridge. Counting points on varieties over finite fields related to a conjec-
ture of Kontsevich. Ann. Comb., 2(4):365–385, 1998.

[16] Karen Yeats. Growth estimates for Dyson-Schwinger equations. ProQuest LLC, Ann
Arbor, MI, 2008. Thesis (Ph.D.)–Boston University.

[17] Karen Yeats. A few c2 invariants of circulant graphs. Commun. Number Theory Phys.,
10(1):63–86, 2016.

[18] Karen Yeats. A combinatorial perspective on quantum field theory, volume 15 of
SpringerBriefs in Mathematical Physics. Springer, Cham, 2017.

57

Appendix A

Code

Computer programs were heavily used in discovering some of the results. The software
that was used for coding is the SageMath software package, an open source programming
platform based on Python. SageMath was chosen due to the large number of graph theory
libraries available, and the ease at which programs can be coded and debugged. Some of
the code used is included in the appendix. This code can be used to enumerate the descen-
dants of K5 or any other simple 4-regular graph, calculate the double triangle ancestor of
a 4-regular graph, calculate a standard vector representation for a pseudo-descendant, and
plot pseudo-descendants in an easy to read manner. Given a chain vector, the code can be
used to list and separately enumerate K5-descendants and non-K5-descendants with that
chain vector.

The code can be found at https://github.com/mlaradji/k5-descendants.

58

Listings

./code/init.py . 60

./code/initializevectorsearch.py . 60

./code/k5dsearch_save.py . 61

./code/k5dsearch_load.py . 61

./code/K5dsearch.py . 62

./code/skeletonsearch.py . 65

./code/DTRfunctions.py . 68

./code/DTRchainfunctions.py . 70

./code/generalfunctions.py . 75

./code/PDvectorrepresentation.py . 78

./code/PDgraphrepresentation.py . 84

./code/createfigures.py . 89

59

init.py

import i t e r t o o l s
import time
from c o l l e c t i o n s import deque
import sympy as sp
import p i c k l e

execf i le (’ g en e r a l f un c t i o n s . py ’)

execf i le (’ DTRchainfunctions . py ’)
execf i le (’ DTRfunctions . py ’)
execf i le (’ PDgraphrepresentat ion . py ’)
execf i le (’ PDvectorrepresentat ion . py ’)

execf i le (’ K5dsearch . py ’)
execf i le (’ s k e l e t on s e a r ch . py ’)

initializevectorsearch.py

###
Execut ing t h i s f i l e produces the o b j e c t s r e qu i r ed to execu te
K5dsearch (s t a r t , t a r ge t , Gseq , SVseq , parents , expanded) . Use s t a r t =1.
#
Note t ha t t h i s e ra se s any p r e v i o u s l y s t o r ed output o f K5dsearch from
memory .
#

ve r s i on=0
Gseq = [[] for i in range (0 , 5)]
SVseq=dict ()
expanded=dict ()
l s t 1 = [[] for i in range (0 , 1 1)]
Gseq . append (l s t 1)
Gseq [5] [1 0] . append ([[graphs . CompleteGraph (5)]])
SVseq [tuple ([5 , 1 0 , 0 , 0 , 0])]= tuple ([tuple ([tuple ([1 0]) , tuple ([])])])
expanded [tuple ([5 , 1 0 , 0 , 0 , 0])]=0
parents=dict ()

60

k5dsearch_save.py

ve r s i on+=1

with open(" K5dsearch_version . f i l e " , "wb") as f :
p i c k l e . dump(vers ion , f , p i c k l e .HIGHEST_PROTOCOL)

with open("K5dsearch_Gseq_ "+str (v e r s i on)+" . f i l e " , "wb") as f :
p i c k l e . dump(Gseq , f , p i c k l e .HIGHEST_PROTOCOL)

with open("K5dsearch_SVseq_ "+str (v e r s i on)+" . f i l e " , "wb") as f :
p i c k l e . dump(SVseq , f , p i c k l e .HIGHEST_PROTOCOL)

with open("K5dsearch_expanded_ "+str (v e r s i on)+" . f i l e " , "wb") as f :
p i c k l e . dump(expanded , f , p i c k l e .HIGHEST_PROTOCOL)

with open(" K5dsearch_parents_ "+str (v e r s i on)+" . f i l e " , "wb") as f :
p i c k l e . dump(parents , f , p i c k l e .HIGHEST_PROTOCOL)

k5dsearch_load.py

with open(" K5dsearch_version . f i l e " , " rb ") as f :
v e r s i on = p i c k l e . load (f)

with open("K5dsearch_Gseq_ "+str (v e r s i on)+" . f i l e " , " rb ") as f :
Gseq = p i c k l e . load (f)

with open("K5dsearch_SVseq_ "+str (v e r s i on)+" . f i l e " , " rb ") as f :
SVseq = p i c k l e . load (f)

with open("K5dsearch_expanded_ "+str (v e r s i on)+" . f i l e " , " rb ") as f :
expanded = p i c k l e . load (f)

with open(" K5dsearch_parents_ "+str (v e r s i on)+" . f i l e " , " rb ") as f :
parents = p i c k l e . load (f)

61

K5dsearch.py

###
Input : s t a r t − The order at which to s t a r t the search . Note t ha t
Gseq must conta in at l e a s t one graph o f order s t a r t −1.
I f i n i t i a l i z e v e c t o r s e a r c h . py i s executed , use s t a r t =1.
t a r g e t − The order at which to s top .
Gseq − L i s t o f K5 descendants . Gseq [order] [t r i] i s a l i s t
conta in ing graphs wi th order v e r t i c e s and t r i t r i a n g l e s .
SVseq − d i c t i ona r y wi th keys (order , t r i a n g l e count , index) .
SVseq [(order , t r i , index)] g i v e s the standard
vec to r o f Gseq [order] [t r i] [index] .
parents − d i c t i ona r y wi th keys (order , t r i a n g l e count , index) .
parents [(order , t r i , index)] g i v e s the s tandard
rep r e s en t a t i on o f the parents o f
Gseq [order] [t r i] [index] .
expanded − d i c t i ona r y wi th keys (order , t r i a n g l e count , index) .
expanded [(order , t r i , index)]=1 i f a l l the
descendants o f Gseq [order] [t r i] [index] have been
found , 0 o the rw i s e .
#
Output : Gseq , SVseq , parents , expanded
#
Note 1 : Gseq and SVseq are on ly saved in memory , and not to d i s k . To
save to d isk , use the command e x e c f i l e (’ k5dsearch_save . py ’) . To load
from disk , use the command e x e c f i l e (’ k5dsearch_load . py ’) .
#
Note 2 : The parents d i c t i ona r y i s c u r r en t l y d i s a b l e d due to bugs .
#

def K5dsearch (s ta r t , target , Gseq , SVseq , parents , expanded) :

start_time = time . time ()
for order in range (s t a r t , t a r g e t +1):

while len (Gseq)<order+1:
Gseq . append ([[]])

int_time , nc_time=time . time () , time . time ()

for t r i c oun t in range (0 , len (Gseq [order −1])) :
for chaincount in range (0 , len (Gseq [order −1] [t r i c oun t])) :

for l onecount in range (0 , len (
Gseq [order −1] [t r i c oun t] [chaincount])) :
for index in range (0 , len (

Gseq [order −1] [t r i c oun t] [chaincount] [lonecount])) :
G=copy (Gseq [order −1] [t r i c oun t] [

62

chaincount] [lonecount] [index])
t r i s e t=set ()
i f not expanded [tuple ([order −1, t r i count ,

chaincount ,
lonecount , index])] :

t r i l i s t=l i s t t r i a n g l e s (G)
for i in range (0 , 3) :

t r i s e t=t r i s e t . union (t r i l i s t [i])

for t r i in t r i s e t :
candidate=copy (G)
d t r i (candidate , t r i [1] , t r i [2] , t r i [0] , 0)
candidate=pdr e l abe l (candidate)
candSV=tuple (s tandardvector (candidate))
candPDparam=PDparameters (candSV [0])
candtr i count=candPDparam [0]
candchaincount=candPDparam [1]
candlonecount=candPDparam [3]

while len (Gseq [order])< candtr i count +1:
Gseq [order] . append ([])

while len (Gseq [order] [
candtr i count])< candchaincount+1:
Gseq [order] [candtr i count] . append ([])

while len (Gseq [order] [candtr i count] [
candchaincount])< candlonecount+1:
Gseq [order] [candtr i count] [

candchaincount] . append ([])

i s o=0

for i in range (0 , len (Gseq [order] [
candtr i count] [candchaincount] [
candlonecount])) :
i f candSV[0]==SVseq [tuple ([

order , candtr icount ,
candchaincount , candlonecount , i])] [0] :

#parents [
t up l e ([order , candtr icount , i])] . add (
tup l e ([order −1, t r i coun t , index]))

i f candidate . i s_isomorphic (Gseq [
order] [candtr i count] [
candchaincount] [candlonecount] [i]) :
i s o=1
break

63

i f not i s o :
Gseq [order] [candtr i count] [

candchaincount] [
candlonecount] . append (candidate)

t p l=tuple ([order , candtr icount ,
candchaincount , candlonecount , len (

Gseq [order] [candtr i count] [
candchaincount] [
candlonecount]) −1])

SVseq [t p l]=candSV
#parents [t p l]= s e t ([t u p l e ([
order −1, t r i coun t , index])])
expanded [t p l]=0

expanded [tuple ([order −1, t r i count ,
chaincount , lonecount , index])]=1

print (str (order)+ ’− ’+str (time . time () − int_time))
print ("−−−␣%s␣ seconds ␣−−−" % (time . time () − start_time))

###

64

skeletonsearch.py

###
Input : L i s a l i s t o f nonnegat ive i n t e g e r s .
Output : descendants − l i s t o f descendants wi th L as t h e i r chain vec t o r .
i l l e g a l s − l i s t o f pseudo−descendants wi th chain vec to r L .
Example input : L=[3 ,3 ,3] , L=[3 ,3 ,0] or L=[3 ,0 ,3 ,0 ,−1].
#
Note t ha t i f t h e r e are s e v e r a l lone v e r t i c e s , then each one i s to be
repre sen t ed as −1 in L .

def l i s t g r a ph s 3 (L) :
S ,V1 ,V2 ,V4=ske l e t on (L)
Lz=l i s t z i g z a g s (S)
n o f t r i=0
for i in iter (L) :

i f i >0:
n o f t r i+=i

descendants =[]
i l l e g a l s =[]
K5=graphs . CompleteGraph (5)
po s s i b l e n e i g hbo r s r=dict ()
remain ingdegree=dict ()
Vs=set (union (set (V1) , union (set (V2) , set (V4))))
for i in iter (V1) :

p o s s i b l e n e i g hbo r s r [i]=Vs . d i f f e r e n c e (set (
r e tu rn z i g z ag con ta i n i ngv e r t ex (Lz , i)))

p o s s i b l e n e i g hbo r s r [i] . d i s ca rd (i)
remain ingdegree [i]=1

for i in iter (V2) :
p o s s i b l e n e i g hbo r s r [i]=Vs . d i f f e r e n c e (set (

r e tu rn z i g z ag con ta i n i ngv e r t ex (Lz , i)))
p o s s i b l e n e i g hbo r s r [i] . d i s ca rd (i)
remain ingdegree [i]=2

for i in iter (V4) :
p o s s i b l e n e i g hbo r s r [i]=copy (Vs)
po s s i b l e n e i g hbo r s r [i] . d i s ca rd (i)
remain ingdegree [i]=4

po s s i b l e n e i ghbo r s=copy (po s s i b l e n e i g hbo r s r)
v=Vs . pop ()
Vs . add (v)
p o s s i b l e e d g e s l i s t=deque ([deque ([(v , i) for i in iter (

p o s s i b l e n e i ghbo r s [v])])])
e d g e s l i s t=deque ()
no fmi s s ingedges=(len (V1)+2∗ len (V2)+4∗ len (V4))/2
print (no fmi s s ingedges)
l ength=1

65

while l ength >0:
i f len (p o s s i b l e e d g e s l i s t [−1]) >0:

edge=p o s s i b l e e d g e s l i s t [−1] . pop ()
e d g e s l i s t . append (edge)
i f len (e d g e s l i s t)<no fmi s s ingedges :

u=edge [0]
v=edge [1]
p o s s i b l e n e i ghbo r s [u] . d i s ca rd (v)
po s s i b l e n e i ghbo r s [v] . d i s ca rd (u)
remain ingdegree [u]−=1
remain ingdegree [v]−=1
i f remain ingdegree [u]==0:

Vs . d i s ca rd (u)
for i in iter (Vs) :

p o s s i b l e n e i ghbo r s [i] . d i s ca rd (u)
i f remain ingdegree [v]==0:

Vs . d i s ca rd (v)
for i in iter (Vs) :

p o s s i b l e n e i ghbo r s [i] . d i s ca rd (v)
u=Vs . pop ()
Vs . add (u)
p o s s i b l e e d g e s l i s t . append (

deque ([(u , i) for i in iter (p o s s i b l e n e i ghbo r s [u])]))
l ength+=1

else :
K=copy (S)
K. add_edges (e d g e s l i s t)
e d g e s l i s t . pop ()
i f K. is_connected () and K. i s_regu l a r (
) and K. t r i ang l e s_count ()==no f t r i :

i f d t r i a n c e s t o r (K) . order ()==5:
i s o=0
for D in iter (descendants) :

i f K. is_isomorphic (D) :
i s o=1
break

i f not i s o :
descendants . append (K)

else :
i s o=0
for I in iter (i l l e g a l s) :

i f K. is_isomorphic (I) :
i s o=1
break

i f not i s o :
i l l e g a l s . append (K)

else :

66

p o s s i b l e e d g e s l i s t . pop ()
length−=1
i f len (e d g e s l i s t)>0:

edge=e d g e s l i s t . pop ()
u=edge [0]
v=edge [1]
p o s s i b l e n e i ghbo r s [u] . add (v)
po s s i b l e n e i ghbo r s [v] . add (u)
remain ingdegree [u]+=1
remain ingdegree [v]+=1
for i in iter (Vs) :

Cu=u in po s s i b l e n e i g hbo r s r [i]
Cv=v in po s s i b l e n e i g hbo r s r [i]
i f not conts (e d g e s l i s t , (i , u)) and not S . has_edge (i , u) :

p o s s i b l e n e i ghbo r s [i] . add (u)
i f not conts (e d g e s l i s t , (i , v)) and not S . has_edge (i , v) :

p o s s i b l e n e i ghbo r s [i] . add (v)
Vs . add (u)
Vs . add (v)

return descendants , i l l e g a l s

###

def s k e l e t on (L) :
G=graphs . CompleteGraph (0)
ind=0
V1=[]
V2=[]
V4=[]
for i in range (0 , len (L)) :

i f L [i] >0:
z i g zag (G, [j+ind for j in range (0 ,L [i]+2)])
i f L [i −1]<1:

#i f L [i−1]==−1:
i f i >=1:
G. add_edge (ind−1, ind)
V1. append (ind)
#e l s e :
V2 . append (ind)

i f L [i] >1:
V1 . append (ind+1)
V1 . append (ind+L [i])

else :
V2 . append (ind+1)

l=L [mod(i +1, len (L))]
i f l >0:

67

ind+=L [i]+1
e l i f l ==0:

V2 . append (ind+L [i]+1)
ind+=L [i]+2

else :
V1 . append (ind+L [i]+1)
ind+=L [i]+2

e l i f L [i]==−1:
G. add_vertex (ind)
V4 . append (ind)
#i f i >=1:
G. add_edge (ind , ind−1)
ind+=1

i f L[−1]>0 and L[0] >0 :
G. merge_vert ices ((0 , ind))

#e l i f L[0]==−1 or L[−1]==−1:
G. add_edge (ind −1 ,0)
return G,V1 ,V2 ,V4

###

def r e tu rn z i g z ag con ta i n i ngv e r t ex (L , v) :
for l in L :

i f conts (l , v) :
return l

return []

###

DTRfunctions.py

###

def d t r i a n c e s t o r (G) :
A=copy (G)
no t r i=0
while not no t r i :

dt=f i n d d t r i (A)
i f dt !=None :

d t r i r e d (A, dt [0] , dt [1] , dt [2] , dt [3])
else :

n o t r i=1
return A

68

###

def d t r i (G, v1 , v2 , v3 , c) :
G. de lete_edge (v1 , v2)
vn=max(G. v e r t i c e s ())+1
G. add_edges (((v1 , vn) , (v2 , vn) , (v3 , vn)))
S=setminus (G. ne ighbors (v3) , (v1 , v2 , vn))
i f len (S)==1:

c=0
G. delete_edge (S [c] , v3)
G. add_edge (S [c] , vn)
return

###

def d t r i r e d (G, v1 , v2 , v3 , v4) :
G. de le te_edges ([(v1 , v4) , (v2 , v4) , (v3 , v4)])
v=G. ne ighbors (v4) [0]
G. add_edges ([(v1 , v3) , (v , v2)])
G. de l e te_ver tex (v4)
return

###

def f i n d d t r i (G) :
A=copy (G)
A1=A. ve r t ex_ i t e r a t o r ()
for i in A1 :

A2=A. ne ighbor_ i t e ra to r (i)
for j in A2 :

A. de lete_edge (i , j)
A3=A. ne ighbor_ i t e ra to r (j)
for k in A3 :

i f not A. has_edge (i , k) :
A. de lete_edge (j , k)
A4=A. ne ighbor_ i t e ra to r (k)
for l in A4 :

i f A. has_edge (i , l) and A. has_edge (
j , l) and A. has_edge (k , l) :
A. de lete_edges ([(i , l) , (j , l) , (k , l)])
m=A. ne ighbors (l) [0]
i f not A. has_edge (j ,m) :

return [i , j , k , l]
A. add_edges ([(i , l) , (j , l) , (k , l)])

A. add_edge (j , k)

69

A. add_edge (i , j)
return None

###

def i s k5d s c (G) :
A=copy (G)
n=A. order ()
A. al low_mult iple_edges (1)
while n>5:

dt=f i n d d t r i (A)
i f dt !=None :

d t r i r e d (A, dt [0] , dt [1] , dt [2] , dt [3])
n−=1
print (n)

else :
print (’ n o t r i ’)
return 0

print (’ i s o ’)
return A. is_isomorphic (graphs . CompleteGraph (5))

###

DTRchainfunctions.py

###
#l i s t c h a i n s (G) c r ea t e s two l i s t s from G, the f i r s t o f which i s a l i s t
of l i s t s (cha ins) o f z i g z a g l e n g t h s . The second l i s t i s a l i s t o f l i s t s
of l i s t s o f z i g z a g v e r t i c e s .
#
Example output : [[3 , 3]] , [[[0 , 6 , 7 , 4 , 1] , [1 , 5 , 8 , 2 , 3]]]
#

def l i s t c h a i n s (G) :
A=copy (G)
r e v e r s e d i r=0
startnewcha in=1
c h a i n l i s t =[]
c h a i n v e r t i c e s =[]

while A. t r i ang l e s_count () >0:

i f s tartnewcha in :
Z=f i nd z i g z a g (A,−1)
A. d e l e t e_ve r t i c e s (Z [1 : −1])
i f A. subgraph (Z) . i s_r egu l a r (4) :

70

t r i=len (Z)
else :

t r i=len (Z)−2
c h a i n l i s t . append ([t r i])
c h a i n v e r t i c e s . append ([Z])
s tartnewcha in=0
c u r r f i r s t v a l=Z [0]
c u r r l a s t v a l=Z[−1]

else :
i f r e v e r s e d i r :

va l=cha i n v e r t i c e s [− 1] [0] [0]
Z=f i nd z i g z a g (A, va l)

i f not Z :
A. de l e te_ver tex (va l)
s tartnewcha in=1
r e v e r s e d i r=0

else :
i f Z[0]== val :

Z . r e v e r s e ()
t r i=len (Z)−2
c h a i n l i s t [−1] . i n s e r t (0 , t r i)
c h a i n v e r t i c e s [−1] . i n s e r t (0 ,Z)
A. d e l e t e_ve r t i c e s (Z [1 : −1])

else :
va l=cha i n v e r t i c e s [−1] [−1] [−1]
Z=f i nd z i g z a g (A, va l)
#pr in t (v a l)
#pr i n t (A. edges ())

i f not Z :
A. de l e te_ver tex (va l)
r e v e r s e d i r=1

else :
i f Z[−1]==val :

Z . r e v e r s e ()
t r i=len (Z)−2
c h a i n l i s t [−1] . append (t r i)
c h a i n v e r t i c e s [−1] . append (Z)
A. d e l e t e_ve r t i c e s (Z [1 : −1])

return c h a i n l i s t , c h a i n v e r t i c e s

###

71

#f i n d t r i r e tu rns a t r i a n g l e in G i f s i s un s p e c i f i e d . I f s>=0, i t
re turns a t r i a n g l e con ta in ing s . I f G con ta in t s no t r i a n g l e s ,
i t r e turns 0 .

def f i n d t r i (G, s=−1):
A=copy (G)
i f s !=−1 and A. has_vertex (s) :

A1=i ter ([s])
else :

A1=A. ve r t ex_ i t e r a t o r ()
for i in A1 :

for j in A. ne ighbor_ i t e ra to r (i) :
A. de lete_edge (i , j)
for k in A. ne ighbor_ i t e ra to r (j) :

i f A. has_edge (i , k) :
return [i , j , k]

A. add_edge (i , j)
return 0

###
#f i n d z i g z a g s t a r t s wi th a t r i a n g l e and f i n d s a maximal z i g z a g con ta in ing
tha t t r i a n g l e . I f G conta ins no t r i a n g l e s , i t r e tu rns 0 .
I f s i s s p e c i f i e d , i t r e tu rns a z i g z a g con ta in ing the v e r t e x s i f i t
e x i s t s , and 0 o therw i s e .

def f i n d z i g z a g (G, s=−1):
A=copy (G)
i f A. t r i ang l e s_count ()==0:

return 0
Z=f i n d t r i (A, s)
i f not Z :

return 0

L=[]
for i in range (0 , 2) :

for j in range (i +1 ,3) :
L . append ([Z [i] , Z [j]])
A. de lete_edge ([Z [i] , Z [j]])

k=0
while len (L)>k :

V=i n t e r (A. ne ighbors (L [k] [0]) ,A. ne ighbors (L [k] [1]))
i f len (V)==0:

k+=1
else :

v=V[0]
Z . append (v)

72

L . append ([v ,L [k] [0]])
L . append ([v ,L [k] [1]])
A. de lete_edges ([(v , L [k] [0]) , (v , L [k] [1])])
k+=1

i f len (Z)>3:
H=G. subgraph (Z)
for i in range (0 , len (Z)) :

i f H. degree (Z [i])==2:
Zo=[Z [i]]
break

N=H. ne ighbors (Zo [0])
for i in range (0 , len (N)) :

i f H. degree (N[i])==3:
Zo . append (N[i])
break

H. delete_edge (Zo)

i=0
while H. s i z e () >0:

S=i n t e r (H. ne ighbors (Zo [i]) ,H. ne ighbors (Zo [i +1]))
Zo . append (S [0])
H. de lete_edges ([(Zo [i] , S [0]) , (Zo [i +1] ,S [0])])
i+=1

e l i f len (Z)==3:
Zo=Z
i f G. c l u s t e r_ t r i a n g l e s (Z[1])==2:

Zo=[Zo [0] , Zo [2] , Zo [1]]

i f s !=Z [0] and G. c l u s t e r_ t r i a n g l e s (
Z[0])==1 and G. c l u s t e r_ t r i a n g l e s (Z[1])==2:
Zo=[Zo [1] , Zo [0] , Zo [2]]

return Zo

###

def l i s t t r i a n g l e s (G) :
A=copy (G)
S0=set ()
S1=set ()
S2=set ()
for v1 in A. ve r t ex_ i t e r a t o r () :

for v2 in A. ne ighbor_ i t e ra to r (v1) :
S=set ([v1 , v2])
for v3 in A. ne ighbor_ i t e ra to r (v2) :

73

i f v3>v2 and v3 not in S and A. has_edge (v1 , v3) :
S=set ([v1 , v2 , v3])
S0 . add ((v1 , v2 , v3))
for v4 in A. ne ighbor_ i t e ra to r (v2) :

i f v4 not in S and A. has_edge (v2 , v4) and A. has_edge (
v3 , v4) :
S1 . add ((v1 , v2 , v3))

for v4 in A. ne ighbor_ i t e ra to r (v1) :
i f v4 not in S :

S=set ([v1 , v2 , v3 , v4])
for v5 in A. ne ighbor_ i t e ra to r (v4) :

i f v5>v4 and v5 not in S and A. has_edge (
v1 , v5) :
S2 . add ((v1 , v2 , v3))

S12=S1 . union (S2)
T2=S1 . i n t e r s e c t i o n (S2)
T1=S12 . d i f f e r e n c e (T2)
T0=S0 . d i f f e r e n c e (S12)
return T0 ,T1 ,T2

###

def l i s t u n i q u e t r i a n g l e s (G) :
c h a i n l i s t , c h v e r t e x l i s t=l i s t c h a i n s (G)
t r i l i s t=l i s t t r i a n g l e s (G)
t r i l i s t 0=t r i l i s t [0]
newT0=set ()
found=dict ()
for i in range (0 , len (c h a i n l i s t)) :

for j in range (0 , len (c h a i n l i s t [i])) :
i f c h a i n l i s t [i] [j]>=1:

tp l=i ter ([i , j])
for k in iter (c h v e r t e x l i s t [i] [j] [1 : − 1]) :

toremove=set ()
for t r i in iter (t r i l i s t 0) :

i f t r i [0]==k :
i f t p l not in found :

newT0 . add (t r i)
found [t p l]=1

toremove . add (t r i)

t r i l i s t 0=t r i l i s t 0 . d i f f e r e n c e (toremove)
return newT0 , t r i l i s t [1] , t r i l i s t [2]

generalfunctions.py

74

###
Some s e t f unc t i on s

def i n t e r (A,B) :
C=[]
for i in range (0 , len (A)) :

for j in range (0 , len (B)) :
i f A[i]==B[j] :

C. append (A[i])
return C

def conts (A, a) :
cont=0
for i in range (0 , len (A)) :

i f a==A[i] :
cont=1
break

return cont

def setminus (A,B) :
C=[]
for i in range (0 , len (A)) :

i f not conts (B,A[i]) :
C. append (A[i])

return C

###
#cyc l i c p e rmu ta t i on s produces an i t e r a b l e o f a c y c l i c permutat ion o f
l en g t h " l e n g t h " .

def cyc l i cpe rmuta t i on s (l ength) :
S=[i for i in range (0 , l ength)]
index=0
while 1 :

y i e l d S
index+=1
i f index==length :

raise S top I t e r a t i on
S=[S [mod(i +1, l ength)] for i in range (0 , l ength)]

###

def sumvectors (v1 , v2) :
return tuple ([v1 [i]+v2 [i] for i in range (0 , len (v1))])

75

###

def modvector (vector , modulus) :
work ingvector=l i s t (vec to r)
for i in range (len (vec to r)−1 ,0 ,−1):

v=workingvector [i]
m=modulus [i]
quot i ent=int (v/m)
remainder=v−m∗ quot i ent
workingvector [i]= remainder
workingvector [i−1]+=quot i ent

workingvector [0]=mod(work ingvector [0] , modulus [0])
return tuple (work ingvector)

###

def i t e r t u p l e s (modu lu s l i s t) :
un i t =[0 for i in range (0 , len (modu lu s l i s t)−1)]
z e r ove c t o r=copy (un i t)
z e r ove c t o r . append (0)
z e r ove c t o r=tuple (z e r ove c t o r)
un i t . append (1)
un i t=tuple (un i t)
t p l=ze rove c t o r
while 1 :

y i e l d tp l
t p l=modvector (sumvectors (tp l , un i t) , modu lu s l i s t)
i f t p l==ze rove c to r :

raise S top I t e r a t i on

###

def c h a i n s i g n l i s t (l e n g t h l i s t , s ymmet r i c l i s t) :
S=[i t e r t u p l e s ([s ymmet r i c l i s t [i]+1 for j in range (

0 , l e n g t h l i s t [i])]) for i in range (0 , len (l e n g t h l i s t))]
CS=[S [i] . next () for i in range (0 , len (S))]
index=0
found=0
while 1 :

y i e l d CS
while not found :

try :
CS [index]=S [index] . next ()
found=1

76

except S top I t e r a t i on :
S [index]= i t e r t u p l e s ([s ymmet r i c l i s t [

index]+1 for j in range (
0 , l e n g t h l i s t [index])])

CS [index]=S [index] . next ()
index+=1
i f index==len (l e n g t h l i s t) :

raise S top I t e r a t i on
found=0
index=0

###
#chainpermutat ions t a k e s a l i s t o f p o s i t i v e in t e g e r s , and produces
as an output an i t e r a b l e o f a l i s t o f permutat ions o f l e n g t h s as in
l e n g t h l i s t .

def chainpermutat ions (l e n g t h l i s t) :
P=[i t e r t o o l s . permutat ions (range (0 , l e n g t h l i s t [i])) for i in range (

0 , len (l e n g t h l i s t))]
CP=[P[i] . next () for i in range (0 , len (P))]
index=0
found=0
while 1 :

y i e l d CP
while not found :

try :
CP[index]=P[index] . next ()
found=1

except S top I t e r a t i on :
P[index]= i t e r t o o l s . permutat ions (range (0 , l e n g t h l i s t [

index]))
CP[index]=P[index] . next ()
index+=1
i f index==len (l e n g t h l i s t) :

raise S top I t e r a t i on
found=0
index=0

###

def symmetr icvector (v) :
return l i s t (v)== l i s t (reversed (v))

###

77

PDvectorrepresentation.py

###

def s tandardvector (G) :

i f i s z i g z a g (G) :
return tuple ([tuple ([G. t r i ang l e s_count ()]) , tuple ()])

K=pdre l abe l (G)

#This p i e ce o f code con s t ru c t s an ordered l i s t o f edges t ha t are not
in chains . These w i l l be the " chords " in our graph .
#

c h a i n l i s t , c h a i n v e r t e x l i s t=l i s t c h a i n s (K)
c h a i n l i s t , c h a i n v e r t e x l i s t=o r d e r c h a i n l i s t (c h a i n l i s t , c h a i n v e r t e x l i s t)
c h a i n e d g e l i s t =[]
l o n e v e r t i c e s=deepcopy (K. v e r t i c e s ())
for chain in iter (c h a i n v e r t e x l i s t) :

for z i g zag in iter (chain) :
c h a i n e d g e l i s t . extend (K. subgraph (z i g zag) . edges ())
for i in range (0 , len (z i g zag)) :

try :
l o n e v e r t i c e s . remove (z i g zag [i])

except :
continue

H=deepcopy (K)
H. de lete_edges (c h a i n e d g e l i s t)
E=deepcopy (H. edges ())

p o s i t i o n=p o s i t i o n s o f v e r t i c e s (H, c h a i n v e r t e x l i s t , l o n e v e r t i c e s)
#pr in t (p o s i t i o n)
poc=dict () #po s i t i o n s o f chords

for i in range (0 , len (E)) :
u , v=E[i] [0] , E [i] [1]
pos1 = next (key for key , va lue in po s i t i o n . i tems () i f u in set (va lue))
pos2 = next (key for key , va lue in po s i t i o n . i tems () i f v in set (va lue))
poc [i]=[pos1 , pos2]

chord l engthvec to r=[abs (poc [i] [1] − poc [i] [0]) for i in range (0 , len (E))]
chainv=cha invec to r (c h a i n l i s t , len (l o n e v e r t i c e s))

return chainv , chord l engthvec to r

78

###

def cha invec to r (c h a i n l i s t , lvcount) :
cv =[]
cond0=len (c h a i n l i s t)==1 and lvcount==0

for chain in iter (c h a i n l i s t) :
for Z in iter (chain) :

cv . append (Z)
i f not cond0 :

cv . append (0)

i f lvcount >0:
cv . append(− lvcount)

return tuple (cv)

###

def p o s i t i o n s o f v e r t i c e s (G, c h a i n v e r t e x l i s t , l v l i s t) :
p o s i t i on i ndex=0
po s i t i o n=dict ()

for chain in iter (c h a i n v e r t e x l i s t) :
for z i g zg in iter (chain) :

i f len (chain)==1:
z i g zag=sorted (z i g zg)

else :
z i g zag=z i g zg

for i in range (0 , len (z i g zag)) :
i f G. degree (z i g zag [i])==2:

p o s i t i o n [po s i t i on i ndex]=[z i g zag [i]]
p o s i t i on i ndex+=1

e l i f G. degree (z i g zag [i])==1:
i f len (z i g zag)==4:

i f po s i t i on i ndex not in po s i t i o n :
p o s i t i o n [po s i t i on i ndex]=[z i g zag [i]]

else :
p o s i t i o n [po s i t i on i ndex] . append (z i g zag [i])
po s i t i on i ndex+=1

else :
p o s i t i o n [po s i t i on i ndex]=[z i g zag [i]]
p o s i t i on i ndex+=1

i f len (l v l i s t)>0:

79

ver tex=l v l i s t [0]
l=−len (l v l i s t)
while l <0:

p o s i t i o n [po s i t i on i ndex]=[ver tex]
po s i t i on i ndex+=1
vertex+=1
l+=1

return po s i t i o n

###

def pdr e l abe l (G, outputco lo r=0, c o l o r l i s t =0):
i f i s z i g z a g (G) :

return G

cha i n l i s t , c h a i n v e r t e x l i s t=l i s t c h a i n s (G)
ch a i n v e r t e x l i s t , c h a i n l i s t=o r d e r c h a i n l i s t (c h a i n v e r t e x l i s t , c h a i n l i s t)

#H=deepcopy (G)
K=deepcopy (G)
lv=K. v e r t i c e s ()
index=0
co l o r i ndex=0
l a b e l=dict ()
c o l o r=dict ()
r c o l o r=dict ()

i f not c o l o r l i s t :
c o l o r l i s t =[’ b lue ’ , ’ green ’ , ’ red ’ , ’ cyan ’ , ’m’ , ’ ye l low ’ ,

’ b lack ’ , ’ white ’]

for chain in iter (c h a i n v e r t e x l i s t) :
for z i g zag in iter (chain) :

for i in range (0 , len (z i g zag)) :
i f not z i g zag [i] in l a b e l :

l a b e l [z i g zag [i]]= index
r c o l o r [index]= c o l o r l i s t [c o l o r i ndex]
i f c o l o r l i s t [c o l o r i ndex] in c o l o r :

c o l o r [c o l o r l i s t [c o l o r i ndex]] . append (index)
else :

c o l o r [c o l o r l i s t [c o l o r i ndex]]= [index]
index+=1
lv . remove (z i g zag [i])

c o l o r i ndex+=1

80

for ver tex in iter (l v) :
l a b e l [ve r tex]= index
r c o l o r [index]= c o l o r l i s t [c o l o r i ndex]
c o l o r [c o l o r l i s t [c o l o r i ndex]]= [index]
index+=1
co l o r i ndex+=1

K. r e l a b e l (l a b e l)

i f outputco lo r :
return K, co lo r , r c o l o r

else :
return K

###

def o r d e r c h a i n l i s t (c h a i n l i s t , c h a i n v e r t e x l i s t) :
for i in range (0 , len (c h a i n l i s t)) :

C=ch a i n v e r t e x l i s t [i]
c=c h a i n l i s t [i]
C, c=ordercha in (C, c)
c=l i s t (c)
c h a i n v e r t e x l i s t [i]=C
c . append(− i)
c h a i n l i s t [i]=tuple (c)

c h a i n l i s t=mergesort (c h a i n l i s t)
n ewcha inve r t ex l i s t =[]

for i in range (0 , len (c h a i n l i s t)) :
i d e n t i f i e r=−c h a i n l i s t [i] [−1]
c h a i n l i s t [i]=tuple (c h a i n l i s t [i] [0 : − 1])
n ewcha inve r t ex l i s t . append (c h a i n v e r t e x l i s t [i d e n t i f i e r])

return c h a i n l i s t , n ewcha inve r t ex l i s t

###
obta ined from pythonandr . com/2015/07/05/ the−merge−sor t−python−code/
Author : Anirudh Jay (pythonandr . com/author / anirudh jay /)

def merge (a , b) :
" " " Function to merge two arrays " " "
c = []
while len (a) != 0 and len (b) != 0 :

i f a [0] < b [0] :
c . append (a [0])

81

a . remove (a [0])
else :

c . append (b [0])
b . remove (b [0])

i f len (a) == 0 :
c += b

else :
c += a

return c

Code f o r merge s o r t

def mergesort (x) :
" " " Function to s o r t an array us ing merge s o r t a l gor i thm " " "
i f len (x) == 0 or len (x) == 1 :

return x
else :

middle = len (x)/2
a = mergesort (x [: middle])
b = mergesort (x [middle :])

return merge (a , b)

###

def ordercha in (C, c) :
maxC=C
maxc=tuple (c)
n=len (c)

for P in cyc l i cpe rmuta t i on s (n) :
for i in range (0 , 2) :

i f i :
newc=tuple ([c [P [n−1− i]] for i in range (0 , n)])

else :
newc=tuple ([c [P [i]] for i in range (0 , n)])

i f newc>maxc :
maxc=newc
maxC=[C[P[i]] for i in range (0 , n)]

return maxC,maxc

###

def ch a i n s i z e (C, c) :

82

s i z e=0
for i in range (0 , len (c)) :

s i z e+=c [i]
return s i z e

###

83

PDgraphrepresentation.py

###
This func t i on conver t s a standard vec t o r r ep r e s en t a t i on to a graph .
I f us ing a chord vector , use
conver t s v tog raph (c h a i n l i s t , c l=chordvec tor) .
I f us ing a chord l en g t h vec t o r c l v , use
conver t s v tog raph (c h a i n l i s t , c l=c l v) .

def convertsvtograph (c h a i n l i s t , c l =0, c l l =0):
n ewcha in l i s t=l i s t (c h a i n l i s t)

i f len (c h a i n l i s t)==1:
return createZ (c h a i n l i s t [0])

#This s t ep d i v i d e s the lone v e r t i c e s , so t ha t i t can be used as
input f o r the s k e l e t on () func t i on . We convert , e . g . , [1 ,2 ,0 ,−3]
to [1 ,2 ,0 ,−1 ,−1 ,−1].
l=newcha in l i s t [−1]
i f l <0:

n ewcha in l i s t [−1]=−1
l+=1
while l <0:

n ewcha in l i s t . append(−1)
l+=1

#sk e l e t on (c h a i n l i s t) c r e a t e s a s k e l e t on t ha t has the corresponding
c h a i n l i s t . There are no chord edges yet , and those w i l l be added
l a t e r .
G=ske l e t on (newcha in l i s t) [0]
c h a i n v e r t e x l i s t=l i s t c h a i n s (G) [1]
L=deepcopy (G. v e r t i c e s ())
#G. a l low_mul t ip l e_edges (1)

#The f o l l ow i n g p i e ce o f code c a l c u l a t e s the p o s i t i o n o f each v e r t e x
based on the d e f i n i t i o n o f the s tandard vector , and a s s i gn s
chords to each po s i t i o n .
po s i t i on i ndex=0
i f c l :

chordindex=0
chords=dict ()

p o s i t i o n=dict ()
va lency=dict ()
n ewcha inve r t ex l i s t =[]
for chain in iter (c h a i n v e r t e x l i s t) :

for z i g zg in iter (chain) :

84

z i g zag=sorted (z i g zg)
for i in range (0 , len (z i g zag)) :

try :
L . remove (z i g zag [i])

except :
continue

i f G. degree (z i g zag [i])==2:
p o s i t i o n [po s i t i on i ndex]=[z i g zag [i]]
i f c l :

chords [po s i t i on index , 0]= [
c h o r d l i s t [chordindex] , c h o r d l i s t [chordindex +1]]

chordindex+=2
valency [po s i t i on index ,0]=2
po s i t i on i ndex+=1

e l i f G. degree (z i g zag [i])==3:
i f len (z i g zag)==4:

i f po s i t i on i ndex not in po s i t i o n :
p o s i t i o n [po s i t i on i ndex]=[z i g zag [i]]
va lency [po s i t i on index ,0]=1
i f c l :

chords [po s i t i on index , 0]= [
c h o r d l i s t [chordindex]]

chordindex+=1
else :

p o s i t i o n [po s i t i on i ndex] . append (z i g zag [i])
va lency [po s i t i on index ,1]=1
i f c l :

chords [po s i t i on index , 1]= [
c h o r d l i s t [chordindex]]

chordindex+=1
po s i t i on i ndex+=1

else :
p o s i t i o n [po s i t i on i ndex]=[z i g zag [i]]
va lency [po s i t i on index ,0]=1
i f c l :

chords [po s i t i on index , 0]= [
c h o r d l i s t [chordindex]]

chordindex+=1
po s i t i on i ndex+=1

#This p i e ce o f code addes the lone v e r t i c e s to the p o s i t i o n and chord
d i c t i o n a r i e s .
i f len (L)>0:

ver tex=L [0]
l=−len (L)
while l <0:

85

po s i t i o n [po s i t i on i ndex]=[ver tex]
va lency [po s i t i on index ,0]=4
i f c l :

chords [po s i t i on index , 0]= [
c h o r d l i s t [chordindex+i] for i in range (0 , 4)]

chordindex+=4
po s i t i on i ndex+=1
vertex+=1
l+=1

#This p i e ce o f code c a l c u l a t e s the condensed c h o r d l e n g t h l i s t .
i f c l :

fpos , l po s=dict () , dict ()
c h o r d l e n g t h l i s t =[]

i f c l :
for pos in range (0 , po s i t i on i ndex) :

for subpos in range (0 , len (p o s i t i o n [pos])) :
for chord in iter (chords [pos , subpos]) :

i f chord not in fpo s :
fpos [chord]=pos

else :
l po s [chord]=pos

#pr in t (chords)
#pr in t (f pos)
#pr in t (l p o s)

i f c l :
c h o r d l e n g t h l i s t =[lpo s [i]− fpo s [i] for i in range (

1 , len (c h o r d l i s t)/2+1)]

#This p i e ce o f code adds the remaining edges to the s k e l e t on graph .
H=deepcopy (G)
chordindex=1
posindex=0
i f not c l :

c h o r d l e n g t h l i s t=deepcopy (c l l)
#pr in t (va l ency)
#pr in t (c h a i n v e r t e x l i s t)
#pr i n t (p o s i t i o n)
#pr in t (c h o r d l e n g t h l i s t)

while chordindex<len (c h o r d l e n g t h l i s t)+1:
nextpos=1
while nextpos :

for i in range (0 , len (p o s i t i o n [pos index])) :
i f valency [posindex , i] >0:

86

fv=po s i t i o n [pos index] [i]
va lency [posindex , i]−=1
nextpos=0
break

i f nextpos :
pos index+=1

lpos=posindex+cho r d l e n g t h l i s t [chordindex −1]

nextpos=1
while nextpos :

for i in range (0 , len (p o s i t i o n [l po s])) :
i f valency [lpos , i] >0:

l v=po s i t i o n [l po s] [i]
va lency [lpos , i]−=1
nextpos=0
break

i f nextpos :
l po s+=1

H. add_edge (fv , l v)
chordindex+=1

return H

###
#This func t i on c r ea t e s the graph o f Zn , wi th n as input .
#

def createZ (n) :
G=Graph ()
G. add_vert ices ([i for i in range (0 , n+2)])
G. add_edges ([i ,mod(i +1,n+2)] for i in range (0 , n+2))
G. add_edges ([i ,mod(i +2,n+2)] for i in range (0 , n+2))
return G

###

def pdplot (G, r e t u rn l a t e x =0, f i l ename=’ f i g ’ , g r a ph i c s i z e =(8 ,8) ,
v e r t e x l a b e l s =1):

from sage . graphs . graph_latex import check_tkz_graph
K, co lo r , c o l o r l i s t=pdr e l abe l (G, outputco lo r=1)

i f r e t u rn l a t e x :
check_tkz_graph ()
K. set_pos (K. l ayou t_c i r cu l a r (rad iu s =3))
p l t=p lo t (K, layout=’ c i r c u l a r ’ , v e r t ex_co lo r s=co lo r , ve r t ex_s i z e =400)

87

K. set_latex_opt ion (tkz_style , ’Normal ’)
K. set_latex_opt ions (ve r t ex_labe l_co lo r s=c o l o r l i s t ,

g raph i c_s i ze=g r aph i c s i z e)
i f not v e r t e x l a b e l s :

K. set_latex_opt ion (ver tex_labe l s , 0)
opts=K. latex_opt ions ()
with open(f i l ename+" . tex " , "wb") as f :

f . wr i t e (opts . tkz_picture ())
return p l t

return p lo t (K, layout=’ c i r c u l a r ’ , v e r t ex_co lo r s=co l o r)

###

88

createfigures.py

###

#fi l ename1=’k5d50300 ’
#f i l ename2=’nonk5d50300 ’
#g r a p h i c s i z e =(6 ,6)
#G=Gseq [1 3] [8] [2] [1] [0]
#SV=standardvec to r (G)
#H=conver t s v tog raph (SV[0] , c l l=SV[1])
#H. de l e t e_edges ([[5 , 1 2] , [6 , 7]])
#H. add_edges ([[6 , 1 2] , [5 , 7]])
#pdp l o t (G,1 , f i lename1 , g r a p h i c s i z e)
#pdp l o t (H,1 , f i lename2 , g r a p h i c s i z e)

###
g r aph i c s i z e =(4 ,4)
with open(" f i g u r e f i l e n ame s . tex " , "wb") as f :

for n in range (0 , len (Gseq)) :
for t in range (0 , len (Gseq [n])) :

for c in range (0 , len (Gseq [n] [t])) :
for l in range (0 , len (Gseq [n] [t] [c])) :

for i in range (0 , len (Gseq [n] [t] [c] [l])) :
G=deepcopy (Gseq [n] [t] [c] [l] [i])
f i l ename=’ k5d l i s t n ’+str (n)+ ’ t ’+str (t)+ ’ c ’+str (

c)+ ’ l ’+str (l)
pdplot (G, 1 , f i l ename , g r aph i c s i z e , v e r t e x l a b e l s =0)
f . wr i t e (’ \ input { ’+f i l ename+’ . tex }\n ’)

###

89

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Partitions of Integers
	Graph Theory
	The c2-invariant
	4-Theory

	Double Triangle Expansion
	K5-descendants
	List of some K5-descendants
	Zigzags and Chains
	Encoding of K5-descendants
	Pseudo-descendant Parameters
	Order and Triangle Count
	Minimum Number of Triangles is 4

	Conclusion
	Bibliography
	Appendix Code

