
On tree hook length formulae, Feynman rules and B-series

by
Bradley Robert Jones

B.Sc., Simon Fraser University, 2012
Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

© Bradley Robert Jones 2014
SIMON FRASER UNIVERSITY

Fall 2014

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Bradley Robert Jones

Degree: Master of Science (Mathematics)

Title of Thesis: On tree hook length formulae, Feynman rules and B-series

Examining Committee: Dr. Paul Tupper, Associate Professor
Chair

Dr. Karen Yeats, Associate Professor
Senior Supervisor

Dr. Cedric Chauve, Professor
Supervisor

Dr. Tamon Stephen, Associate Professor
Examiner

Date Approved: September 25, 2014

ii

Partial Copyright Licence

iii

Abstract

This thesis relates similar ideas from enumerative combinatorics, Hopf algebraic quantum field theory
and differential analysis. Hook length formulae, from enumerative combinatorics, are equations that can
lead to bijections between tree classes and other combinatorial classes. Feynman rules are maps used in
quantum field theory to generate integrals from particle interaction diagrams. Here we consider Feynman
rules from the Hopf algebra perspective. B-series are powers series that sum over trees and are used in
differential analysis to analyze Runge-Kutta methods. The aim of this thesis is to bring together the
ideas of the three communities. We show how to use differential equations to obtain new hook length
formulae. Some of these new hook length formulae result in new combinatorial bijections. We use hook
length formulae to express differential equations combinatorially. We also provide a generalization to
hook length. Finally we include a catalogue of known hook length formulae.

iv

To my parents.

v

“Vix prece finita torpor gravis occupat artus,
mollia cinguntur tenui praecordia libro,

in frondem crines, in ramos bracchia crescunt,
pes modo tam velox pigris radicibus haeret,

ora cacumen habet: remanet nitor unus in illa.”

Metamorphoses, Ovid

vi

Acknowledgements

I would foremost like to thank my senior supervisor, Karen Yeats. Without you I would not have found
this topic. I am very appreciative of all the input regarding this thesis, without which this thesis would
merely be a mass of theorems and equations. Thank you for motivating me to write paragraphs and
actually finish this work.

I would also like to thank my other supervisor, Cedric Chauve. Thank you for reminding me that I have
to justify my work. My thanks to Marni Mishna who kindled my interest in combinatorics. Thanks
to Philippe for reassurance and advice and to Justin for using every chance he could get to tell people
that I study trees. Finally, I wish to thank my parents for their love, support and learning how to say
com·bi·na·or·ics.

I would like to thank the Online Encyclopedia of Integer Sequences (OEIS) [50], which I used many times
to check for sequences. Sequences I looked up include: A003319 (connected permutations), A000311
(Schröder’s 4th problem), A000111 (Euler numbers), A006963 (planar embedded trees), A000312 (nn),
A113583 (permutations with no local minima at even pos), A038037 (mobiles), A048802 (labelled dec-
orated trees), A007317 (decorated plane tree), A007106 (number of labelled odd degree trees with 2n

nodes) and A151374 (a class of walks n the quarter plane). I also created a new entry to the OEIS,
A227917, for labelled binary trees where each label is greater than the labels of its ancestors of degree 2.

I used Maple’s [41] dsolve function to solve most of the differential equations appearing in this paper.
I also developed a small script to calculate hook length formulae coefficients using Maple.

vii

Contents

Approval ii

Abstract iv

Dedication v

Quotation vi

Acknowledgements vii

Contents viii

List of Tables xi

List of Figures xii

I Introduction 1

II Hook length formulae 6
2.1 Combinatorial classes . 6

2.1.1 Simple tree classes . 9
2.2 Hook length series . 12
2.3 Hook length formulae and isomorphisms . 16
2.4 Some new hook length formulae . 32
2.5 Decorated trees . 35
2.6 General hook length operators . 38

IIIThe Connes-Kreimer Hopf algebra and hook length 40
3.1 Hopf algebra of rooted trees . 40
3.2 The L∗B operator . 45

3.2.1 Examples of L∗B . 46
3.2.2 The universal property and L∗B . 48

viii

IVDifferential equations of hook length series 50
4.1 B-series and Runge-Kutta methods . 50
4.2 Mazza’s differential equation . 52
4.3 Hypergeometric differential equations . 55
4.4 New hook length formulae using Mazza’s differential equation 57
4.5 The differential equation for decorated trees and general

hook length operators . 59
4.6 New methods of finding hook length formulae . 63

4.6.1 Leafless method . 63
4.6.2 System method . 65
4.6.3 Scaled method . 66

4.7 Representing differential equations combinatorially . 70
4.7.1 More on the theta operator . 70
4.7.2 Combinatorial solutions to differential equations 73

V Conclusion 77

VICatalogue of hook length formulae 81
6.1 Lines . 81
6.2 Binary trees . 82
6.3 Complete binary trees . 83
6.4 Semicomplete binary trees . 84
6.5 Fibonacci trees . 85
6.6 Motzkin trees . 85
6.7 r-ary trees . 86
6.8 Complete r-ary trees . 86
6.9 Plane trees . 87
6.10 Fat plane trees . 87
6.11 Labelled unordered trees . 88
6.12 Labelled unordered binary trees . 88
6.13 Labelled unordered complete binary trees . 88
6.14 Labelled unordered even trees . 89
6.15 Labelled unordered odd trees . 89
6.16 Cyclic trees . 89
6.17 Schröder trees . 89
6.18 Plane forests . 90
6.19 Labelled unordered forests . 91
6.20 Cyclic forests . 91
6.21 Single forest . 92

Bibliography 93

ix

Definitions 97

x

List of Tables

2.1.1 Some combinatorial operators . 9

4.1.1 Some examples of tree differentials . 51

xi

List of Figures

2.1.1 A tree and a forest . 10
2.1.2 An increasing tree . 11
2.1.3 The rooted plane trees of size 4 . 11
2.3.1 An isomorphism from increasing binary trees to permutations 17
2.3.2 An isomorphism from increasing Fibonacci trees to involutions 18
2.3.3 A bijection from trees to matchings . 20
2.3.4 An isomorphism from bilabelled forests with the second labelling increasing to a permu-

tation/restricted sequence pair . 21
2.3.5 An isomorphism from permutations to increasing forests 22
2.3.6 An isomorphism from increasing plane trees to labelled cycles. 23
2.3.7 An isomorphism from increasing Schröder trees to phylogenetic trees 24
2.3.8 The inverse isomorphism from phylogenetic trees to increasing Schröder trees 26
2.3.9 An isomorphism from labelled bicolored binary trees with one color increasing to labelled

bicolored unordered forests . 28
2.3.10 A bijection from bilabelled increasing unordered trees to increasing unordered complete

binary trees. 29
2.3.11 An isomorphism from pointed cyclic trees to connected permutations 31
2.5.1 The decorated plane trees of size 3 . 36

3.1.1 Examples of how to decompose elements of HR into compositions and products of B+

applied to 1. 44

4.1.1 Matrices of Runge-Kutta methods . 53
4.5.1 An example of an isomorphism between a type of increasing binary trees and a class of

permutations . 60
4.5.2 An example of a labelled binary tree where the label of each node is greater than the

label of its ancestors of degree 2 . 62

5.0.1 The history of hook length formulae, B-series and Feynman rules 78

xii

Chapter I

Introduction

There are many cases in the history of mathematics where multiple communities have stumbled upon the
same problem and proceeded to solve it in their own ways. Here we consider such a problem appearing
in three communities: enumerative combinatorics, quantum field theory and differential analysis. The
notions we will compare, and see how they are related to each other, are hook length formulae, Feynman
rules and B-series.

The tree factorial, t!, for a rooted t is the product of the sizes of the subtrees of t. The reciprocal of the
tree factorial is of interest. Knuth [32, § 5.1.4] found, for example, that |t|!t! counts the number of ways to
label a plane tree, t, with increasing labels. 1

t! was used as a Feynman rule by Panzer [44, p. 38]. The tree
factorial is also used as a statistic in the analysis of Runge-Kutta methods for computing approximate
solutions of differential equations [25].

A hook length operator is a generalization of the tree factorial. Hook length operators act on trees and
generalize the tree factorial by considering arbitrary functions of the subtrees, instead of just their sizes.
We can use a hook length operator to define a formal power series from a hook length operator, B:

FT ,B(z) =
∑
t∈T

B(f)z|t|.

This power series is called a hook length series and in the following, we will consider it indexed by a set
of trees, T , that form what is known as a simple class of trees. FT ,B(z) is thus a weighted generating
function as opposed to a counting generating function that enumerates the objects of a combinatorial
class.

One interesting application of hook length series, that we will explore in detail, aims at finding functional
identities between hook length series and counting generating functions, called hook length formulae. One
of the earliest examples of hook length formula was given by Postnikov in 2004 [45]:∑

t∈Bn

n!
∏

v∈V (t)

(
1 +

1

|tv|

)
= 2n(n+ 1)n−1. (1.0.1)

1

The left-hand side of this equation is the coefficient of zn in a hook length series. The simple tree class is
B, the class of binary trees, and the hook length operator is B(t) =

∏
v∈V (t)

(
1 + 1

|tv|

)
. The right-hand

size of the equation is the counting sequence for bicolored labelled forests with n nodes.

A recent line of work in the combinatorial enumeration community is to look for bijective proofs of hook
length formulae. When the hook length operator can be used to count specific types of trees — such as
the case for the tree factorial counting increasing trees — the identity of a hook length formula induces a
bijection between the class of trees counted by the hook length series and the combinatorial class counted
by the counting generating function of the hook length formula. For example, Seo [48] found that the
hook length operator in Postnikov’s formula counts labeled bicolored trees where nodes of one color are
labelled increasingly. He developed a bijection from binary trees with this type of labelling to bicolored
labelled forests. In Chapter II, we will give numerous examples, some new, of such bijective proofs.

Recently, Kuba and Panholzer [35] discovered an identity of hook length series that induces a recurrence
relation on the coefficients of the hook length series.

Theorem (Kuba, Panholzer 2013 [35]). Let T be a simple tree class and B be a hook length operator.
Then for all k ≥ 1 the hook length series, FT ,B, satisfies:

Bk =
[zk]FT ,B(z)

[zk−1]φ(FT ,B(z))
.

Here φ is a power series which specifies the simple tree class, T . This identity can be used to create
hook length formulae. It also categorizes hook length series as the power series that satisfy Kuba and
Panholzer’s identity. Kuba and Panholzer’s identity is equivalent to a differential equation of B-series
discovered by Mazza in 2004 [42], which leads us to look at the work of a different community, whose
interest is the numerical approximation of differential equations.

B-series, like hook length series, are formal power series indexed by trees. They were developed by
Butcher [7] to analyze Runge-Kutta methods to compute numerical solutions to differential equations of
the form

y′(z) = φ(y(z)).

B-series are power series, denoted Yφ,a(z), that depend on the φ of differential equation and a, a map
from trees to reals that is defined from the parameters of a Runge-Kutta method. The B-series Yφ,1(z)

is the solution to the above differential equation. Mazza used hook length operator to produce B-series
that are solutions to other differential equations [42].

For a hook length operator we can define an operator, LB(1 + θ), which is a polynomial of derivatives.
This operator leads to a differential equation of B-series.

Theorem (Mazza 2004 [42]). Let B be a hook length operator and φ : R → R. Then the B-series,
F = Yφ,B·!(z), satisfies the differential equation:

F ′(z) = LB(1 + θ)φ(F (z)).

2

Mazza, without being aware of current development in combinatorics, showed that the B-series, Yφ,B·!(z)
is equal to what we know as the hook length series FT ,B(z). In fact, this differential equation of B-series
is equivalent to Kuba and Panholzer’s recurrence identity. The existence of this differential equation
was unknown so far to the combinatorialists investigating hook length formulae. The novelty of this
equivalence is that it links the two communities of enumerative combinatorics and differential analysis.
It also allows the use of this differential equation to aid in the formation of hook length length formulae.

The last important notion that we study in this thesis comes from a technique called renormalization.
Renormalization is a technique in quantum field theory for fixing infinities in computations. In essence
it is about “extract[ing] sensible results from apparently ill-defined equations.” [30, p. 318] One type of
computation that physicists use renormalization for is in Feynman models. Calculations on Feynman
models involve applying Feynman rules to Feynman diagrams in order to compute values such as particle
trajectories. A Feynman diagram is a graph representing particle interactions and Feynman rules are
operators on Feynman diagrams that give probability amplitudes which sum together to give probabilities
of particle interactions. See [30, Chapters 6–8].

To aid in the analysis of renormalization, Connes and Kreimer developed a Hopf algebra of rooted trees
[13]. In this framework Feynman diagrams are converted into polynomials of trees and Feynman rules
are viewed as morphisms from the Connes-Kreimer Hopf algebra to parametrized algebras. One can also
work directly with Hopf algebras of Feynman diagrams.

In 2000, [5] Brouder discovered that B-series can be used in the analysis of renormalization. He used
these B-series to examine a toy problem of Kreimer. Recently Panzer [44] continued Brouder’s analysis
and discovered a universal property of the Connes-Kreimer Hopf algebra that relates Feynman rules to
hook length operators.

A class of Feynman rules that are of interest to us are Feynman rules that through Panzer’s universal
property of the Connes-Kreimer Hopf algebra give us hook length operators. We denote each of these
operators by L∗B , where B is a hook length operator.

Using this L∗B operator, we developed an equivalent statement to Kuba and Panholzer’s identity and
Mazza’s differential equation in the framework of Feynman rules.

Theorem. Let T be a simple tree class and B be a hook length operator. Then the hook length series,
FT ,B(z) satisfies:

FT ,B(z) = L∗B(φ(FT ,B(z))).

The importance of the identity in this theorem for mathematical physicists is that it relates hook length
formulae to interesting toy models. The simple tree classes and hook length operators can be used
to represent Dyson-Schwinger equations and Feynman rules respectively. In this representation hook
length formulae correspond to toy models with exact solutions. The identity is also interesting from a
combinatorial perspective as it gives a specification of hook length series.

Finally in this thesis we introduce the notion of hook length series of decorated trees. Decorated trees
are trees whose nodes have a positive integer size. We extend hook length operators to decorated and

3

investigate the power series indexed by a simple class of decorated, T ′:

FT ′,B(z) =
∑
t∈T ′

B(f)z|t|.

We call this power series a hook length series of decorated trees.

Simple ordinary tree classes naturally extend to simple decorated tree classes; simple decorated tree
classes add control over the size of the nodes. The generalization to decorated trees naturally produces
the results from the three communities described above.

Theorem. Let T be a simple tree class and B be a hook length operator. Then

• for all k ≥ 1:

Bk =
[zk]FT ,B(z)

[zk−1]φ(z, FT ,B(z))
.

• FT ,B(z) solves the differential equation:

FT ,B(z) = LB(1 + θ)φ(z, FT ,B(z))

and

• FT ,B(z) satisfies:
FT ,B(z) = L∗B(φ(z, FT ,B(z))).

Here φ is a power series which specifies the simple decorated tree class, T . The φ functions for simple
decorated tree classes are a generalization of the φ functions for simple ordinary tree classes.

The three results of the above theorem are equivalent statements like in the case of ordinary trees. The
difference with decorated trees is that decorated trees can have nodes with size greater than 1. This
allows us to consider more general tree classes and more kinds of differential equations.

Using decorated tree classes we were able to prove results about more general tree classes and a gener-
alization of the hook length operator. These generalizations enabled us to extend Mazza’s differential
equation to develop new methods to solve hook length formulae. In particular, these methods allow us
to use differential equations with hook length operators that are not rational functions.

We also used our decorated tree classes and Mazza’s differential to extend the work of Leroux and
Viennot [39, 40] of finding combinatorial solutions to differential equations. Here combinatorial solutions
are solutions that arise from weighted generating function of weight combinational classes — in this case
hook length series.

This thesis includes new hook length formulae discovered by the author. Six of these hook length formulae
are proved by Kuba and Panholzer’s recurrence, five are proved using Mazza’s differential equation and
are eight proved using the new methods developed in this thesis. For two of these hook length formulae
we also include bijective proofs. Each of the bijections in the proofs were from the trees classes derived
from the hook length series to the combinatorial classes counted in the hook length formulae.

4

As the final chapter of this thesis we include a catalogue of known hook length formulae. Han’s 2008
paper [27] contained most of the known hook length formulae for binary trees and Chen, Gao and Guo
[10] had most of the hook length formula for the other tree and forest classes in their 2009 paper. However
this catalogue is the most complete resource of known hook length formulae and the only resource to be
compiled in a useful catalogue form.

5

Chapter II

Hook length formulae

In this chapter we begin with an introduction to combinatorial specification. Next we define hook length
operators, hook length series and hook length formulae which are the main topic of this work. We also
provide an important recurrence relation found by Kuba and Panholzer that can be used to find hook
length formulae. We provide some new hook length formulae that were found using the recurrence. We
explain how hook length formulae are used to find surprising bijections between combinatorial classes.
Finally we generalize hook length to the as yet unconsidered decorated trees and use this generalization
to expand Kuba and Panholzer’s recurrence.

2.1 Combinatorial classes

This section is an introduction to combinatorial specification based on Flajolet and Sedgewick’s book
[20]. We will use combinatorial specifiation as a language to define and manipulate combinatorial classes.

A combinatorial class, C, is a multiset, C, and a size function, | · |, such that for all n ∈ N, Cn =

{c ∈ C : |c| = n} is a finite multiset. The members of a combinatorial class are called combinatorial
objects. Note that a combinatorial class C can be partitioned as {Cn}n∈N.

An example of a combinatorial class is the class of binary words, W. A binary word is a finite string of
1’s and 0’s. The size of a binary word is the length of the string. Since there are 2n strings of 1’s and
0’s of length n we can see that W is indeed a combinatorial class.

We say that a map γ between two combinatorial classes, C and D is an (combinatorial) isomorphism of
combinatorial classes if γ is a bijection and |c| = |γ(c)| for all c ∈ C. If such an isomorphism exists we
say C and D are (combinatorially) isomorphic and write C ∼= D. It is important to note that C ∼= D if
and only if ‖Cn‖ = ‖Dn‖ for all n ∈ N, where ‖ · ‖ denotes cardinality.

For an arbitrary combinatorial class we want to calculate and encode the values ‖Cn‖ for all n ∈ N. To do
this we use a structure called a generating function. The ordinary generating function of a combinatorial

6

class, C, is the formal power series:
C(z) =

∑
n≥0

‖Cn‖zn.

By definition two combinatorial classes are isomorphic exactly when they have the same ordinary gener-
ating function.

For example, the ordinary generating function for the class of binary words, W, is W (z) =
∑∞
n=0 2nzn.

W (z) is the Taylor expansion of 1
1−2z about z = 0. Thus we can say that W (z) = 1

1−2z .

A combinatorial object, c, is labelled if it contains |c| elements called atoms each of which is given a
unique label from {1, . . . , |c|}. A combinatorial class is labelled is it contains only labelled objects and
unlabelled if it contains no labelled objects.

An example of a labelled combinatorial class is the class of permutations, S. A permutation of size n
is word of length n with unique letters from the alphabet {1, . . . , n}. Since the number of permutations
of size n is n!, we see that S is indeed a combinatorial class. We can view a permutation as a labelled
combinatorial object by identifying each position of the permutation with an atom and labelling the
atom with the letter at that position.

For labelled classes it is convenient to use an alternative to an ordinary generating function. The
exponential generating function of a labelled combinatorial class, C, is the formal power series:

C(z) =
∑
n≥0

‖Cn‖
zn

n!
.

The exponential generating function of S is S(z) =
∑∞
n=0 n! z

n

n! = 1
1−z . Notice that the ordinary

generating function of S is
∑∞
n=0 n!zn which is not a convergent Taylor expansion.

In general we do not want to have to distinguish between labelled and unlabelled classes, but we still
wish to utilize exponential generating functions. To do this we will define the generating function of a
combinatorial class, C, to be the formal power series:

C(z) =
∑
n≥0

‖Cn‖ζ(n) (2.1.1)

where

ζ(n) =

zn if C is an unlabelled classes
zn

n! if C is a labelled class.

An m-variate operator Φ taking m combinatorial classes as input and returning a combinatorial class as
output is called a combinatorial operator if for any 2 lists of m combinatorial classes C(1), . . . , C(m) and
C(1), . . . , C(m) such that C(1) ∼= D(1), . . . , C(m) ∼= D(m) we have Φ(C(1), . . . , C(m)) ∼= Φ(D(1), . . . ,D(m)).

An example of a combinatorial operator is the Cartesian product, ×. If we have two unlabelled combi-
natorial classes, C and D, and c ∈ C, d ∈ D then we can define the size of (c, d) ∈ C ×D to be |c|+ |d|. If

7

A = C × D then its (ordinary) generating function is given by A(z) = C(z)D(z). To see this we expand
A(z):

A(z) =
∑
n≥0

‖(C × D)n‖ zn

=
∑
n≥0

‖{(c, d) ∈ C × D : |c|+ |d| = n}‖ zn

=
∑
n≥0

n∑
k=0

‖Ck‖‖Dn−k‖zn

=

∑
n≥0

‖Cn‖zn
∑

m≥0

‖Dm‖zm


= C(z)D(z).

For labelled combinatorial classes we define a slightly different product, ?. To define ?, we first need to
define an operator iS on labelled combinatorial objects. Let c be a combinatorial object and S ⊂ N+

with ‖S‖ = |c|, then iS(c) is the combinatorial object that is the same as c except for each i = 1, . . . , n

the atom labelled i in c is labelled with the ith greatest element of S in iS(c).

If C and D are labelled classes then we define

A = C ?D =
{

(iS(c), i{1,...,|c|+|d|}\S(d)) : c ∈ C, d ∈ D, S ⊂ N+, ‖S‖ = |c|,maxS ≤ |c|+ |d|
}
.

The multiset of atoms of (iS(c), i{1,...,|c|+|d|\S(d)) ∈ C ? D is the disjoint union of the atoms of c and
the atoms of d and |(iS(c), i{1,...,|c|+|d|\S(d))| = |c|+ |d|. Like for the unlabelled Cartesian product, the
(exponential) generating function for A is given by A(z) = C(z)D(z). The proof of this is similar to the
proof for unlabelled classes. We include it here to point out the difference. Expanding A(z) we get

A(z) =
∑
n≥0

‖(C ?D)n‖ zn

=
∑
n≥0

∥∥{(iS(c), i{1,...,|c|+|d|\S(d)) : c ∈ C, d ∈ D, S ⊂ N+, ‖S‖ = |c|,maxS ≤ |c|+ |d| = n
}∥∥zn

n!

=
∑
n≥0

n∑
k=0

‖Ck‖‖Dn−k‖
∥∥{S ⊂ N+ : ‖S‖ = |c|,maxS ≤ n

}∥∥ zn
n!

=
∑
n≥0

n∑
k=0

‖Ck‖‖Dn−k‖
n!

k!(n− k)!

zn

n!

=

∑
n≥0

‖Cn‖
zn

n!

∑
m≥0

‖Dm‖
zm

m!


= C(z)D(z).

Since the two products have the same effect on the generating functions we shall use × to denote the
product, ?, for labelled classes as well.

8

Type C C(z)

Elementary class C ∼= 1 C(z) = 1

Singleton class C ∼= Z C(z) = z

Disjoint union C ∼= A+ B C(z) = A(z) +B(z)

Cartesian product C ∼= A× B C(z) = A(z)B(z)

r copies C ∼= rA C(z) = rA(z)

r length sequence C ∼= Ar C(z) = A(z)r

Sequence C ∼= SEQ(A) C(z) = 1
1−A(z)

Pointing C ∼= Θ(A) C(z) = z d
dzA(z)

Coefficient extraction C ∼= An C(z) = zn[zn]A(z)

Even objects C ∼= Aeven C(z) = A(z)+A(-z)
2

Odd objects C ∼= Aodd C(z) = A(z)−A(-z)
2

Set (labelled only) C ∼= SET(A) C(z) = eA(z)

Cycle (labelled only) C ∼= CYC(A) C(z) = log
(

1
1−A(z)

)
Table 2.1.1: Some combinatorial operators and the combinatorial classes 1 and Z.

See Table 2.1.1 for a list of more combinatorial operators.

Two useful combinatorial classes are the elementary class, 1 = {1}, where 1 has size 0 and the singleton
class, Z = {•}, where • has size 1. • in a labelled class is identified as an atom. Combining these
classes with the combinatorial operators of Table 2.1.1 we can build a variety of combinatorial classes.
For example the class of binary words can be expressed as W ∼= SEQ(2Z). We can also express a
combinatorial class as the solution of an equation (or system of equations) involving combinatorial
operators. This will be used later to define simple tree classes. When a combinatorial class is expressed
as a solution of such an equation we call the equation a (combinatorial) specification of the class.

A weighted combinatorial class is a pair D = (C, ω) of a combinatorial class, A and a map, ω : C → K,
where K is some ring. We define ω(S) =

∑
s∈S ω(S) for all S ⊆ D and define the generating function of

D as:
D(z) =

∑
n≥0

ω(Dn)ζ(n).

In this thesis we are primary interested in weighted classes. In particular we are interested in the weighted
classes of trees defined in Section 2.2. Using weighted classes allows us to use combinatorial specifications
for sets of weighted combinatorial objects.

2.1.1 Simple tree classes

Here we give the definitions for trees and forests. We also define simple tree and simple forest classes.

9

(a) A tree (b) A forest

Figure 2.1.1: A tree and a forest.

A (rooted) tree is a connected acyclic graph with a distinguished vertex called the root . We call the
vertices of tree, nodes. We denote the set of nodes of tree, t, by V (t) and the root by root(t). We define
the size of a tree by |t| = ‖V (t)‖ and thus we can make combinatorial classes of trees. We can view
a tree as a combinatorial object consisting of a node called the root attached to any finite number of
rooted trees. In this thesis we will primarily want to view trees this way. We visualize trees as a graph
with the root at the top and children drawn below their parents. See Figure 2.1.1a.

A (rooted) forest is a finite multiset of rooted trees. We define nodes and size similarly for forests. The
class of all forests is denoted F . We can identify a rooted tree, t, with the rooted forest that only contains
t. The empty forest, denoted 1, is the forest that contains zero trees. We will visualize forests as trees
drawn beside each other. See Figure 2.1.1b.

Given a forest f , we say w ∈ V (f) is a descendant of v ∈ V (f) if there is a path in f from a root to w
that contains v. We say w is a child of v if w is a descendant of v and w is adjacent to v. Nodes with
no children are called leaves. The set of leaves of a forest, f , is denoted l(f). Given a forest f , we say
w ∈ V (f) is an ancestor of v ∈ V (f) if there is a path in f from a root to v that contains w. We say
w is a parent of v if w is an ancestor of v and w is adjacent to v. Each node in a forest has exactly one
parent unless it is a root in which case it has zero parents.

For a rooted forest f and a node v ∈ V (f) let fv be the subtree in f whose root is v. fv contains v and
all the descendants of v.

We can label a forest, t, by assigning a unique integer from 1 to |t| to each node. This makes the forest a
labelled combinatorial object by associating nodes with atoms. We visualize a labelled forest by writing
the label inside the node. See Figure 2.1.2. A labelled node is increasing if the label of each descendant of
the node is greater than the label of the node. A labelled forest is increasing is every node is increasing.
See Figure 2.1.2 for an example.

Two forests, f1 and f2, are said to have the same shape if there is a bijection, π : V (f1) → V (f2), such
that v1 ∈ V (f1) is a child of v2 ∈ V (f1) in F1 if and only if π(v1) is a child of π(v2) in f2. The property
of having the same shape defines an equivalence class of forests. Let F be this equivalence class and T

be the equivalence of shapes of trees. For a class of forests, T , let [f]T be the set of forests with shape
f in T . Hook length operators, defined in the next section, are invariant under shape.

10

1

2

34

5

6 7

8

9

Figure 2.1.2: An increasing tree.

7→

(
,

{ })
; 7→

(
,

{ })
; 7→

(
,

{
,
})

; 7→
(

,

{
,
})

;

7→ (, { , , })

Figure 2.1.3: The plane trees of size 4 and their decompositions.

Now that we have introduced trees and forests we will look at classes of trees and forests. A class
of rooted trees, T , is called simple if there exists a combinatorial operator, Φ, and an isomorphism
γ : T → Z × Φ(T), called the decomposition, such that if x ∈ Φ(T) then x = {t1, . . . , tj} for some
t1, . . . , tj ∈ T and γ(t) = (•, {t1, . . . , tj}) if and only if t1, . . . , tj are the subtrees of t whose roots are the
children of the root of t.

Most combinatorial operators are isomorphic to an operator of the form of Φ above. Thus we can say
that a class of trees is simple if it satisfies the recurrence T ∼= Z × Ψ(T) for some operator Ψ ∼= Φ and
also has a decomposition.

An example of a class of simple trees is the class of plane trees, denoted O. A plane tree is a rooted
tree where the sub trees of each node are ordered in a sequence. O is also the equivalence class of plane
embbeddings of rooted trees. The class of plane trees satisfies the equation O = Z ×SEQ(O) showing it
is simple. The generating function of O satisfies O(z) = z

1−O(z) and hence by solving: O(z) = 1−
√

1−4z
2 .

The plane trees of size 4 are shown in Figure 2.1.3.

Remember that from the definition of the size of a tree, the coefficent of zn in O(z) is the number of
plane trees with n nodes.

Another simple tree class is the class of binary trees, B, introduced in the introduction. Each node
in a binary tree has either a left child, a right child, both a left and right child or no children. The
class of binary trees satisfies the specification B ∼= Z × (1 + B)2 and has the generating function,
B(z) = 1−

√
1−4z

2z − 1.

Motzkin trees are plane trees where each node has at most two children. They are called Motzkin trees
because they are counted by the Motzkin numbers. See [20, §I.5]. The class of Motzkin trees satisfies
the specificationM∼= Z × (1 +M+M2) and has the generating function, M(z) = 1−z−

√
1−2z−32

2z .

11

r-ary trees are like binary trees except that instead of left and right children there are r types of children.
In other words for each node there are r spaces to put children and there are

(
r
m

)
ways for a node to have

m children. The class of r-ary trees satisfies the specification T ∼= Z × (1 + T)r and ‖Tn‖ = 1
n

(
rn
n−1

)
.

Complete r-ary trees are plane trees where every node has r children or is a leaf. The class of complete
r-ary trees satisfies the specification T ∼= Z × (1 + T r) and ‖Trm+1‖ = 1

rm+1

(
rm+1
m

)
.

Another important class of trees is the class of rooted labelled trees, denoted R. The class of rooted
labelled trees satisfies R ∼= Z × SET(R) and thus is simple. The generating function of R is W(z) =∑
n≥1

nn−1

n! zn and satisfies W(z) = zeW(z). We use W instead of R because W is related to the Lambert
W function, W , which satisfies z = W (z)eW (z). Substituting we can see that W(z) = -W (-z). See [14].

Another class of rooted labelled trees is the class of cyclic trees, C. Cyclic trees are labelled trees where
the children of each node are arranged in a cycle. C satisfies the specification, C = Z × (1 + CYC(C)).
The generating function of C does not have a nice closed form.

We can define a similar notion for forests. A class of rooted forests, T ∗, is called simple if there exists a
simple tree class T = Z ×Φ(T) and an isomorphism γ : T ∗ → Φ(T) such that γ(f) = {t1, . . . , tj} if and
only if t1, . . . , tj are all the trees contained in f .

Note that if T is a simple tree class with operator Φ and T ∗ is a simple forest class with operator Φ then
T ∼= Z × T ∗. This leads to the specifications: T ∼= Z × T ∗ and T ∗ ∼= Φ(Z × T ∗). We will often identify
a simple forest class as a solution to the later equation.

One simple class of forests is the class of rooted labelled forests, R∗. R∗ satisfies the specifications:
R∗ ∼= SET(R) and R∗ ∼= SET(Z × R∗). The generating function of R∗ is ε(z), which is Eisenstein’s
function that solves the equation ε(z) = ezε(z) [24, §5.4]. Since R is the simple tree class associated with
R∗ it follows that ε(z) = W(z)/z.

Another simple forest class is the class of plane forests, O∗. Here each tree in a forest is a plane tree and
the trees of a forest are arranged in a linear order. The class of plane forests satisfies the specifications:
O∗ ∼= SEQ(O) and O∗ ∼= SEQ(Z × O∗). The generating function of plane forests is O∗(z) = 1−

√
1−4z

2z ,
which is the generating function of the Catalan numbers. See [20, p. 6].

One more class of simple forests is the class of cyclic forests, C∗. Here each forest is a cycle of cyclic
trees. The class of cyclic forests satisfies the specifications: C∗ ∼= 1+CYC(C) and C∗ ∼= 1+CYC(Z×C∗).
The generating function for cyclic forests does not have a nice closed form.

2.2 Hook length series

In this section we define hook length and hook length series for trees and forests. Then we discuss recent
recurrence equations found by Kuba and Panholzer.

We call an operator, B : F → K, a hook length operator if there exists Bk ∈ K for each positive integer,
k, such that for all forests, f , B(f) =

∏
v∈V (f)B|fv|. Here (and for the rest of the paper) K is any field,

12

but we can view K as either C or Q.

One property of a hook length operator, B, is that if t is the tree whose root is attached to the trees
t1, . . . , tm then B(t) = B|t|

∏m
i=1B(ti) and if f is the forest that contains the trees t1, . . . , tm then

B(f) =
∏m
i=1B(ti).

The simplest example of a hook length operator is the tree factorial. The tree factorial is defined as
f ! =

∏
v∈V (f) |fv|; here Bk = k. The tree factorial is called a factorial because of its recursive expansion.

If t is a tree whose root is attached to the trees t1, . . . , tm then t! = |t|
∏m
i=1 ti!. This is similar to the

factorization of the ordinary factorial: n! = n(n− 1)!.

Another, more useful, hook length operator is σ(f) = 1
f ! ; here σk = 1

k . In his book, Knuth [32,
§ 5.1.4 Excerise 20] gave an exercise to show that the number of increasing labellings of a plane tree, t, is
given by |t|!t! = |t|!σ(t). The proof of this can be given by a simple inductive argument. There is exactly
one increasing labelling of a plane tree with one node. If a tree has more than one node then the root is
attached to trees, t1, . . . , tm. Any increasing labelling of t must have the root labelled 1 and the labels
of t1, . . . , tm must be increasing. By induction there are |ti|!ti!

increasing labelling of each of these trees.
There are

(|t|−1
|t1|,...,|tm|

)
ways to partition the labels to each subtree and thus there are(

|t| − 1

|t1|, . . . , |tm|

) m∏
i=1

|ti|!
ti!

=
(|t| − 1)!

|t1|! · · · |tm|!

m∏
i=1

|ti|!
ti!

=
|t|
|t|

(|t| − 1)!

m∏
i=1

1

ti!

= |t|!
∏

v∈V (t)

1

|tv|

=
|t|!
t!

increasing labellings of t. Because the multiplicative nature of σ it also follows that the number of
increasing labellings of a plane forest, f , is |f |!f ! .

Hook length operators are given that name because of the relationship between σ and increasing trees,
which is analogous to hook length for partitions that can be used to count standard Young tableaux
(increasing partitions) [22].

Another interesting hook length operator is the one given by Bk = 1 + 1
k . This hook length operator

is employed in Postnikov’s formula, Equation 1.0.1. Applying this hook length operator to a forest, f ,
gives the number of labelled trees with shape f that have nodes coloured white or black where white
coloured nodes must be increasing.

We shall now combine hook length operators with generating functions to create hook length formulae.

Definition 2.2.1. Let T be a class of forests and B be a hook length operator. Define FT ,B(z) to be
the generating function of the weighted combinatorial class (T , B). In other words:

FT ,B(z) =
∑
t∈T

B(t)ζ(|t|).

13

We call FT ,B the tree hook length series of T with respect to B.

When B is a general hook length operator we may write FT instead of FT ,B .

It is often easier, such as in proofs, to consider the following more general version of the hook length
series. We will use the following hook length series to derive the recurrence relation for FT ,B .

Definition 2.2.2. Given a formal power series φ(x) =
∑
i≥0 φix

i define for a forest, f ,

wφ(f) =
∏

v∈V (f)

φdeg(v),

where deg(v) is the number of children of v. We define

Fφ,B(z) =
∑
t∈O

B(t)wφ(t)z|t|.

We call Fφ,B the tree hook length series of φ with respect to B.

Fφ,B is a generalization of FT ,B when T is simple. The following proposition shows this:

Proposition 2.2.3 (Kuba, Panholzer 2013 [35]). If T ∼= Z × Φ(T) is a simple tree class and φ is the
power series of Φ then

FT ,B(z) = Fφ,B(z).

This follows from the fact that B is invariant under shape and the number of trees in T with the shape
of t ∈ O is given by ‖[t]T ‖ = wφ(t)‖[t]O‖.

We are primarily interested in hook length formulae. A hook length formula is an equation

FT ,B(z) = g(z)

or
Fφ,B(z) = g(z)

where T is a tree class, φ and g are power series and B is a hook length operator. One reason these
formulae are of interest is because they lead to new bijections and combinatorial properties. See Sec-
tion 2.3.

While studying hook length formulae of binary trees, Han [27] discovered a recurrence relation of hook
length series. Kuba and Panholzer extended this relation in 2013.

Theorem 2.2.4 (Kuba, Panholzer 2013 [35]). Let B be a hook length operator and φ(x) =
∑
i≥0 φix

i

be a formal power series then for all k ≥ 1:

Bk =
[zk]Fφ,B(z)

[zk−1]φ(Fφ,B(z))
.

Using the fact that Fφ = FT when T is simple, we get the corollary:

14

Corollary 2.2.5. Let φ(z) =
∑
i≥0 φiz

i be the formal power series of Φ(Z). If T ∼= Z × Φ(T) is a
simple tree class then for all k ≥ 1:

Bk =
[zk]FT ,B(z)

[zk−1]φ(FT ,B(z))
.

This recurrence gives a simple method to find hook length formulae given a tree class and a target formula,
F (z). Simply apply coefficient extraction to F (z) and φ(F (z)) to obtain a hook length operator. This
is not always practical, say if it is difficult to find the coefficient expansion of the composition of φ and
F (z). This recurrence is also not very useful if we know the hook length operator and the tree class and
want to find the hook length series. In Section 4.2 we will present another method using a differential
equation for finding hook length formula that is better suited to this situation. The method in Section 4.2
also gives some insight into when nice hook length formulae exist, which the recurrence does not give.

We can also define a similar power series for forests.

Definition 2.2.6. Let φ(x) =
∑
i≥0 φix

i be a formal power series. Then we define

Gφ,B(z) =
∑
t∈O∗

B(t)wφ(t)z|t|.

We call Gφ,B the forest hook length series of φ with respect to B.

As with simple tree classes, if T ∗ ∼= Φ(Z × T ∗) is a simple forest class then Gφ,B(z) = FT ∗,B(z). Also
Gφ,B(z) = φ(Fφ,B(z)).

We also call Gφ,B(z) = g(z) a hook length formula.

This gives the following recurrence.

Theorem 2.2.7 (Kuba, Panholzer 2013 [35]). Let B be a hook length operator and φ(x) =
∑
i≥0 φix

i

be a formal power series with φ0 6= 0 then for all k ≥ 1:

Bk =
[zk]φ-1(Gφ,B(z))

[zk−1]Gφ,B(z)
.

This theorem comes with an analogous corollary for simple forest classes.

Corollary 2.2.8. Let φ(z) =
∑
i≥0 φiz

i be the formal power series of Φ(Z). If T ∗ ∼= Φ(Z × T ∗) is a
simple forest class then for all k ≥ 1:

Bk =
[zk]φ-1(FT ∗,B(z))

[zk−1]FT ∗,B(z)
.

These two theorems are related to each other in the same way as Theorem 2.2.4 and Corollary 2.2.5,
where the theorem is a generalization of the corollary. The difference in lettering between Gφ,B(z) and
FT ∗,B(z) is due to notation as the G is needed to distinguish the forest hook length series of a power
series from the tree hook length series of a power series, Fφ,B ; however both Gφ,B(z) and FT ∗,B(z) are
hook length series of forest.

15

2.3 Hook length formulae and isomorphisms

A hook length formula is often an equation involving the generating function, FT ,B , of a weighted class,
(T , B) and a generating function, G, of another combinatorial class, G. When the hook length operator
counts a combinatorial object — for example σ(t) counts the number increasing labellings of a plane
embedding of t — FT ,B is the generating function of the class of those objects, A, with respect to T .
The equality of FT ,B and G implies that there is an isomorphism between A and G. The presence of
such isomorphisms is not always obvious — as was the case for Postnikov’s formula (Equation 1.0.1) —
and so the search for such an isomorphism is not started until after the associated hook length formula is
found. Here we will investigate some of these isomorphisms as well as some new ones that can be found
in Examples 2.3.3, 2.3.4 and 2.3.7.

Another goal of the hook length community is to find other kinds of combinatorial proofs of hook length
formulae. Various authors have produced these kinds of proofs [12, 34]. These proofs involve calculating
both sides of the equations in different ways. Sagan [47] also came up with probabilistic proofs for some
hook length formulae. In this thesis, we are only interested in combinatorial proofs involving bijections
as we feel that these are more beautiful.

We will start with four examples using classes of increasing trees. From the discussion in the previous
section we can see that FT ,σ(z) is the exponential generating function of increasing trees with shapes from
the tree class T . When this hook length series equals the generating function of another combinatorial
class, there is an isomorphism between that class and the class of increasing trees.

Example 2.3.1. Here we present an isomorphism between increasing binary trees and permutations.
The generating function for increasing binary tress is the same as the hook length series FB,σ(z), where
B is the class of binary trees. We know that F (z)B,σ(z) = z

1−z , which is the generating function of
permutations.

Consider the bijection given by Donaghey [16] that, for S ⊂ N+, takes words on the finite alphabet S
such that each letter appears exactly once in the word to increasing binary trees of size ‖S‖ with labels
from S. Taking S = {1, . . . , n} gives us the isomorphism from permutations to increasing binary trees.
Let w = w1w2 · · ·w‖S‖ be a word on the finite alphabet S with each letter of S appearing exactly once
in w. Let m = minS and wi = m. Let l = w1 · · ·wm−1 and r = wm+1 · · ·w‖S‖. Let t be the binary tree
whose root is labelled with m and whose children are given as follows. If l is not the empty word then
the left child of the root is the image of l from the bijection, otherwise the root has no left child. If r is
not the empty word then the right child of the root is the image of r from the bijection, otherwise the
root has no right child. Then t is an increasing tree with labels from S. The inverse bijection is obtained
by simply reading off the label of the tree in infix order. See Figure 2.3.1 for an example.

Donaghey also investigated the image of the isomorphism when we restrict the class of binary trees. He
considered the class of complete binary trees, where each node has exactly two children or is a leaf. After
applying the isomorphism to this class we obtain half of the class of odd-sized alternating permutations.
A permutation, π, is alternating if π(i) < π(i+1) if and only if π(i+1) > π(i+2) for all i = 1, . . . , |π|−2.

16

7, 11, 10, 12, 5, 1, 6, 4, 9, 2, 8, 3

(a) A permutation

7, 11, 10, 12, 5 1 6, 4, 9, 2, 8, 3

(b) Split the permutation into the word before 1
and the word after 1

7, 11, 10, 5 6, 4, 9, 2, 8, 7

1

(c) Connect 1 to the left and right words
1

2

34

5

6

7

8910

11 12

(d) Apply the the isomorphism recursively

Figure 2.3.1: An example of the isomorphism from permutations to increasing binary trees. Reading off
the labels of the resulting tree in infix order we get back the original permutation.

In fact, the bijection gives us the odd-sized alternating permutations with π(1) > π(2).

We can extend the class of complete binary trees by also including complete binary trees with the
rightmost leaf removed. We call this tree class, B(C), the class of semicomplete binary trees as it is an
extension of the class of complete binary trees. The class of semicomplete binary trees can be specified
with the formula:

B(C) ∼= Z × (1 + B(C)
odd × (1 + B(C))).

This means B(C) is a simple tree class. This class extends the image of the isomorphism to include all
alternating permutations (odd and even sized) that have π(1) > π(2). These permutations are counted
by the Eulerian numbers and their generating function is tan z + sec z − 1. See [55].

One more interesting restriction is to restrict to the class of binary trees where the right subtree of each
node is either a leaf or empty. This class is called the class of Fibonacci trees as it is counted by the
Fibonacci numbers [52]. Though the class of Fibonacci trees is not simple it satisfies the equation:

B(F) ∼= Z × (1 + B(F))× (Z + 1).

By applying the isomorphism to increasing Fibonacci trees we do not get an interesting class of permuta-
tions; however Stanley [52] gave a different isomorphism mapping the class of increasing Fibonacci trees
to the class of involutions.

The isomorphism is as follows. Let t be a Fibonacci tree. For each v ∈ V (t) let πv be the identity
permutation if v has no right child or the transposition that swaps the label of v with the label of its

17

1

2

3

4

5

6

78

9

(a) A Fibonacci tree

1

2

3

4

5

6

78

9

(b) Find the right children
(19)(25)(3)(4)(5)(67)(7)(8)(9)

(c) Compose the πv — here the permutations are
written in cyclic notation

(19)(25)(67) = 953427681

(d) The resulting transposition

Figure 2.3.2: An example of the isomorphism from increasing Fibonacci trees to involutions. Note that
reading off the labels of the tree in infix order gives the permutation 867432519 that is not an involution.

right child if v has a right child. Then ©v∈V πv is a involution, where © denotes iterated composition
(©n

i=1φi = φ1 ◦ φ2 ◦ · · · ◦ φn). See Figure 2.3.2 for an example of the isomorphism.

�

Example 2.3.2. In this example we do not have an isomorphism, but instead have a bijection as the
bijection does not preserve size.

Consider the class of increasing plane trees. Chen [9] found that there is a bijection between increasing
plane trees with n + 1 nodes and matchings on 2n vertices. A matching is a labelled graph where each
vertex is adjacent to exactly one other vertex.

This bijection is ecapsulated in the hook length formula:∑
t∈On+1

|t|!
t!

= (2n− 1)!!,

since the left-hand side countas increasing plane trees on n+ 1 nodes and the right-hand side counts the
number of matchings on 2n nodes.

The bijection is as follows.

If n = 1 then we only have the matching of 1 to 2 and the increasing plane tree with root 1 and child 2.
So we shall map these to each other.

For n > 1 the bijection is as follows. Let M be a matching on 2n vertices. Color the vertices of M white
if their label is larger than n + 1 and view every connected component of M as a rooted tree whose
root is the minimum element of that component. Find the connected component, C1, of M with the

18

smallest label among components with no white vertices (components with no white nodes exist by the
pigeonhole principle) and find the connected component, C2, of M with that the smallest white label. If
C2’s root is white then connect the children of the root of C2 to the right of the children of the root of C1

and remove C2 from M (this process is called horizontal merge). If the root, r, of C2 is not white then
either the label of r is less than the label of the root of C1 or the label of r is greater than the label of
the root of C1. If the label of r is less than label of the root of C1 then replace the white node with the
smallest label in C2 with C1 and remove C1 from M (this process is called vertical merge). If the label
of r is greater than label of the root of C1 then switch the label of the root of C2 and smallest white
label in C2 and horizontally merge C1 and C2 (this process is called lift and merge). Repeat this until
there are no white vertices and M will be an increasing plane tree with n + 1 nodes. See Figure 2.3.3
for a example of this bijection.

The reverse bijection for n > 1 is as follows. Let t be an increasing plane trees with n + 1 nodes. Set
k := n+ 2 and set M to be the empty matching. Find the minimum node, v, in t whose left-most child
is a leaf. Set j := k and set k := k+ 1. Add v paired with its left-most node to M . For each other child,
w, of v from left to right add w paired with k to M and set k := k + 1. When n = 2n+ 1, M will be a
matching with 2n vertices.

�

Example 2.3.3. Consider R∗, the class of labelled unordered forests. Again we know that that the
generating function for increasing unordered forests is the same as the hook length series FR∗,σ(z).
However in this case the nodes of the forests actually get two labels — one from the labelling of the
original forest and the other from the increasing labelling.

Du and Liu [18] found that FR∗,σ(z) = 1
1−z . This exponential generating function also counts permu-

tations. With two labels, the generating function, 1
1−z =

∑
n≥0 an

zn

n!n! , counts the number of pairs of a
permutation and a growing word, which is a word, w, such that for all i, wi ≤ i [10].

The following isomorphism between increasing labelled unordered forest and pairs of a permutation and a
growing word is attributed to Thomas by private communication with Chen, Gao and Guo [10]. Let f be
an unordered forest where each node, v, of the forest gets a label (av, bv) such that the av form a labelling
and the bv form an increasing labelling. Find the node, v, with the label (av, |f |). Set π(|f |) = av. If
v has a parent then let p be the parent of v and set w|f | = bp. If v has no parent then set w|f | = |f |
Repeat the isomorphism on f \ v. See Figure 2.3.4 for an example.

The inverse isomorphism is as follows. Let π be a permutation of size n and w a growing word of size
n. Iterating i = 1, . . . , n if wi = i add the tree with a single node labelled (π(i), i) to f . If wi < i then
connect a node with label (π(i), i) to the node in f whose label is (π(v), wi).

Since the increasing labelling distinguishes each node, the original labelling is unnecessary. In other
words changing the original labelling of a bilabelled forest only changes the permutation in the image of
Thomas’ isomorphism. This implies there is an isomorphism between increasing unordered forests and
permutations.

19

1 2 3

45

6 7 8

9 101112

(a) A matching

1 2 3

45

6 7 8

9 101112

(b) Color nodes

1 23

45

6 7

910 11 12

(c) Horizontally merge 8

1 23

45 6

7

10 11 12

(d) Lift and merge 9

1 2

3

4

5

6

7

11 12

(e) Lift and merge 10

1 2

3

4

5

6

7 12

(f) Vertically merge 11

1

23

4

5

6

7

(g) Vertically merge 12

1

23

4

5

6

7*

(h) Find the node with the least
label that has only leaves for chil-
dren

1

2

3

45

6

78 9

(i) Relabel node and add children
to matching

1

2

3

45

6

78 9

*

(j) Find the node with the least
label that has only leaves for chil-
dren

1 2 3

45

678

910 11 12

(k) Add children to matching

Figure 2.3.3: An example of the bijection from matchings to increasing plane trees. (b)–(g) is the
bijection and (h)–(k) is the reverse bijection

20

5,1

6,2

1,3

12,4 3,5

10,6

2,77,8 8,9

9,10

11,11

4,12

(a) A bilabelled forest with the second labelling
increasing

5,1

6,2

1,3

12,4 3,5

10,6

2,77,8 8,9

9,10

11,11

(4, 4)

(b) Remove (4, 12) and write 4 paired with its par-
ent’s right label

((5, 6, 1, 12, 3, 10, 2, 7, 8, 9, 11, 4), (1, 1, 3, 1, 3, 4, 3, 1, 1, 7, 3, 4))

(c) Repeat for the remaining forest

((6, 1, 12, 3, 10, 2, 7, 8, 9, 11, 4), (1, 3, 1, 3, 4, 3, 1, 1, 7, 3, 4))
5,1

(d) Make a node with label (1, 5)

((1, 12, 3, 10, 2, 7, 8, 9, 11, 4), (3, 1, 3, 4, 3, 1, 1, 7, 3, 4))

5,1

6,2

(e) Make a node with label (6, 2) and connect it to the node with label (π1, 1)

5,1

6,2

1,3

12,4 3,5

10,6

2,77,8 8,9

9,10

11,11

4,12

(f) Repeating for each entry gives the original forest

Figure 2.3.4: An example of the isomorphism from bilabelled forest with the second labelling increas-
ing to a permutation/restricted sequence pair. (b)–(c) is the isomorphism and (d)–(f) is the reverse
isomorphism.

21

7, 11, 10, 12, 5, 1, 6, 4, 9, 2, 8, 3

(a) A permutation

7, 11, 10, 12, 5 1 6, 4, 9, 2, 8, 3

(b) Split the permutation into the word before 1
and the word after 1

1

7, 11, 10, 12, 5

6, 4, 9, 2, 8, 3

(c) Make a node with label 1 and connect the left
word to that node

1 2 3

45

67

89

10

11

12

(d) Apply the algorithm recursively

Figure 2.3.5: An example of the isomorphism from permutations to increasing forests. Reading off the
labels of the resulting forest in depth-first postfix order gives us the original permutation.

We found a different isomorphism between permutations and increasing unordered forest based on the
isomorphism for increasing binary trees. In fact by composing these isomorphisms we get a simple
isomorphism between increasing binary trees and increasing unordered forests. Our isomorphism between
permutations and increasing unordered forests is as follows. Let w be a finite word with unique letters
in N+. Let wi be the least letter in w. Let t be the tree whose root is labelled wi and whose children
of the root are the image of w1 · · ·wi−1. Output the increasing forest that is the disjoint union of t and
the image of wi+1 · · ·w|w|. See Figure 2.3.5 for an example.

To reverse the isomorphism simply order the roots of the trees and the children of the nodes in increasing
order left to right and then read off the labels in depth-first prefix order.

We will prove that the above map is an isomorphism by showing that the map and the reverse map
are inverses. We can see that π = 1 is mapped to a tree that is a root labelled 1 and vice versa. Let
π = π1 · · ·πk1πk+2 · · ·πn be a permutation. Then π is mapped to an increasing forest f = {t1, . . . , tm}
where t1 has 1 as the root and a forest f1 as its children. Let π′ be the image of f1 under the reverse
map and π′′ be the image of {t2, . . . , tm} under the reverse map. by induction π′ = π1 · · ·πk and
π′′ = πk+2 · · ·πn. Therefore the image of f under the reverse map is π. Starting with an increasing
forest applying both maps we see that we can also show that we get the original forest back and thus
the maps are inverse and hence isomorphisms.

We can also restrict the above isomorphisms to unordered trees. For Thomas’ isomorphism of bilabelled
forests this would restrict the image to words where wi < i for all i > 1. For our isomorphism of increasing
forests the resulting permutations would always end with 1. By linking the front of the permutation to
the end of permutation we get unique labelled cycles, see Figure 2.3.6. Thus our isomorphism is also an
isomorphism from increasing unordered trees to labelled cycles.

�

Example 2.3.4. A Schröder tree is a rooted tree where the children of each node are arranged in an
ordered partition. An ordered partition is a sequence of sets (called blocks). The class of labelled Schröder

22

1

2

3 4

5

6

7→ 354621 7→ 1

2

3

4

5

6

Figure 2.3.6: An example of the isomorphism from increasing plane trees to labelled cycles.

trees, S, is simple and satisfies the specification:

S ∼= Z × SEQ(SET≥1(S)).

The generating function of increasing Schröder tree is equal to the hook length series FS,σ(z). This hook
length series is given by:

W

(
1

2
exp

(
z − 1

2

))
+
z − 1

2
.

This generating function is also the generating function for the class of complete partitions, which is the
subject of Schröder fourth problem [53, §6.2].

Chen [9] gave a map that solves Schröder’s fourth problem. Here we will extend his bijection to an
isomorphism between increasing Schröder trees and phylogenetic trees. Phylogenetic trees are trees
where each internal node has at least two children and the leaves are labelled. The size of a phylogenetic
tree is the number of leaves. The class of phylogenetic trees, P, satisfies the specification:

P ∼= Z + SET≥2(P).

Note that P is not simple because the Z is added to, not multiplied by, the combinatorial operator. P
is isomorphic to the class of complete partitions.

Chen’s map in [9] maps increasing Schröder trees to forests of increasing trees of height 2. Here we will
view these trees as sets of sets instead since it is more intuitive for the completion of the isomorphism.
The isomorphism is a composition of two bijections. The first, φ, is a variation of Chen’s map that
takes increasing Schröder trees with n nodes and k blocks to sets of k sets that together have n+ k − 1

elements. The second, ψ, is a map that takes these sets of sets to phylogenetic trees with n leaves and
k + 1 internal nodes.

The first bijection, φ, is as follows. Let t be an increasing Schröder tree with n nodes and k blocks. Set
S := ∅ and r := n+ k − 1. First find the maximum labelled node v ∈ V (t) such that all the children of
v are leaves. Let B1, . . . , Bm be the labels of the blocks of v. Add the label of v to B1 and then add B1

to S. For i = 2, . . . ,m, add r to Bi then add Bi to S and set r = r − 1. Remove all the children of v
from t and relabel v with r. Set r := r − 1 and repeat until r = n.

The second bijection, ψ, is as follows. Let S be a set of k sets such that ‖
⋃
s∈S s‖ = n + k − 1. Let f

be a forest whose nodes are the elements of the sets of S. Mark all the elements of sets in S that are

23

1

2

3

4 5

6

78 9

10 11

12

1314

15

16

(a) An increasing Schröder tree

1

2

3

4 5

6

78 9

10 11

12

1314

15

16

(b) Find the node with the greater label whose chil-
dren are leaves

1

2

3

4 5

6

78 9

23 111314 16

{
{10, 12, 15}

}
(c) Extract node and its children{

{10, 12, 15}; {7, 16}; {13, 22, 23}; {4, 6, 14}; {2, 3, 11}; {1, 8, 20}; {5, 9, 18, 21}; {17, 19}
}

(d) Repeat to get a set of sets{
{10, 12, 15}; {7, 16}; {13, 22, 23}; {4, 6, 14}; {2, 3, 11}; {1, 8, 20}; {5, 9, 18, 21}; {17, 19}

}
(e) Mark elements{

{7, 16}; {13, 22, 23}; {4, 6, 14}; {2, 3, 11}; {1, 8, 20}; {5, 9, 18, 21}; {17, 19}
} 23

10 12 15

(f) Connect 10, 12, 15 to 23

1

2 3

4

5

6 7

8

9

10

11

12

13

14 1516

17

18

19

20

21

22 23

(g) Repeat to get a phylogenetic tree

Figure 2.3.7: An example of the isomorphism from increasing Schröder trees to phylogenetic trees. The
increasing Schröder tree used in this example was taken from [9].

greater than n. Let v be the greatest marked element among sets in S and let s be the set in S with no
marked elements and the greatest label for its minimum element. Connect, in f , each element of s to v
so that the elements of s are the children of v. Unmark v, remove s from S and repeat. When there are
no marked elements left connect the trees of f to a single root to get a phylogenetic tree.

See Figure 2.3.7 for an example of the isomorphism.

The inverse isomorphism is also the composition of two bijections. The first, ψ-1, is a map from phyloge-
netic trees with n leaves and k+ 1 internal nodes to sets of k sets that together have n+ k− 1 elements.
The second, φ-1, is a variation of Chen’s map that takes sets of k sets that together have n + k − 1

elements to increasing Schröder trees with n nodes and k blocks.

The first bijection, ψ-1, is as follows. Let t be a phylogenetic tree with n leaves and k+ 1 internal nodes.
Set r := n+ k− 1. Find the unlabelled node, v, whose children are labelled and whose minimum label is
greatest. Label v with r and set r := r − 1. Repeat until every node except the root is labelled. Let cw
be the set of labels of the child of a node w ∈ V (t). Then {cw : w is an internal node of t} is the desired
set of sets.

The second bijection, φ-1, is as follows. Let S be a set of k sets such that ‖
⋃
s∈S s‖ = n+k−1. Convert

24

each set, s ∈ S, into a Schröder tree with the least elements of s as the root and the rest of s as the
children of the root all in one block. Mark every node that is labelled greater than n in each tree. Repeat
the following process until there are no marked nodes. Find the tree, t1, with no marked nodes and the
maximum labelled root and find the tree, t2, with the maximum labelled marked node. If t2 has at least
two marked nodes then exchange the label of the root of t2 with the label of the marked node in t2 which
has the least label. Next replace the marked node which has the largest label in t2 with t1 and remove
t1 from the set of trees (this process is called vertical merge). If t2 has exactly one marked node which
is not the root of t2 then let i be the label of the root of t2. If i is larger than the label of the root of
t1 then vertically merge t1 and t2 and if i is smaller than the label of t1 then then exchange the label
of the root of t2 and the label of the marked node in t2 with the least label. Next connect the children
of the root of t2 to the of the children of the root of t1 preserving blocks and remove t2 from the set of
trees (this process is called horizontal merge). If t2 has exactly one marked node which is the root of t2
then horizontally merge t1 and t2. The resulting tree is an increasing Schröder tree.

See Figure 2.3.8 for an example of the reverse isomorphism.

The Schröder tree of size one and the phylogenetic tree with one leaf cannot be processed by these maps
because they would map to a set of zero sets from ψ and ψ-1. Therefore we extend ψ ◦ φ and φ-1 ◦ ψ-1

such that the objects of size one map to each other.

We will prove that ψ ◦ φ is an isomorphism by showing that φ-1 is the inverse of φ and ψ-1 is the inverse
of ψ.

We will prove that φ-1 is the inverse of φ by induction on k.

For k = 1 we only consider Schröder trees that are a root whose children are in one block. These types
of trees map to sets containing exactly one set and vise versa.

For k > 1 suppose t is an increasing Schröder tree with k blocks. Let v be the vertex with the maximum
label in t such that such that all the children of v are leaves and P be the partition of the children of v.
Let t′ be the increasing Schröder that is t with the children of v removed and v labelled with k+ |t|− |P |.
Then by the definition of φ, φ(t) = {S1, . . . , S|P |} ∪ φ(t′) where S1 is the set containing the labels of the
nodes in P1 and the label of v and for i > 1, Si is the set containing the labels of the nodes in Pi and the
integer k + |t| − i+ 1. Apply the algorithm of φ-1 to φ(t) until you need to process k + |t| − |P |+ 1. At
this point you will have the tree, tv. By the inductive hypothesis φ-1(φ(t′)) = t′. Since when you process
k + |t| − |P | + 1 replace the greatest element in φ(t′) with tv, φ-1(φ(t)) is t′ with the greatest labelled
node replaced with tv. Therefore φ-1(φ(t)) = t.

Let S = {S1, . . . , Sk} be a set of k sets. Assume that S1 contains 1 and S2, . . . , Sk are decreasing
by maximum element. Let Sj be the set in S with the greatest minimum element among subsets of
{1, . . . , n}. Apply the algorithm of φ-1 until you need to do an action other than a horizontal merge.
At this point you will have a tree, t. Let r be the label of the root of t. The children of the root of t
are leaves who are in blocks Sj \ {r} and T1, . . . , Tl for some l and Sj , where Ti is Si with the largest
element removed. Since t is clear (we have only performed horizontal merges), the next action (after

25

1

2 3

4

5

6 7

8

9

10

11

12

13

14 1516

(a) A phylogenetic tree

1

2 3

4

5

6 7

8

9

10

11

12

13

14 1516

17

18

19

20

21

22 23

(b) Label the unlabelled nodes{
{17, 19}; {5, 9, 18, 21}; {2, 3, 11}; {13, 22, 23}; {7, 16}; {10, 12, 15}; {1, 8, 20}; {4, 6, 14}

}
(c) Find the set of sets of siblings

12

3

45

6

7

89

10

11 12

13

141516

17

1819 2021 22 23

(d) Convert sets to trees and mark nodes
12

3

45

6

7

89 1011

12

1314

15

16

17

1819 2021

22

(e) Swap and vertically merge 23
12

3

45

6

7

89 1011

12

1314

15

16

17

1819 2021

(f) Horizontally merge 22
12

3

4

56 78 9

10

11

12

13

14

15

16

17 18

19 20

(g) Swap and vertically merge 21

12

3 4 5

6

78 9

10

11

12

1314

15

16

17 18

19

(h) Vertically merge 20
1

2

3

4 5

6

78 9

1011

12

1314

15

16

17 18

(i) ‘Swap’ and vertically merge 19

1

2

3

4 5

6

78 9

1011

12

1314

15

16

17

(j) Horizontally merge 18
1

2

3

4 5

6

78 9

10 11

12

1314

15

16

(k) Horizontally merge 17

Figure 2.3.8: An example of the inverse isomorphism from phylogenetic trees to increasing Schröder
trees. This example uses the image of the increasing Schröder tree used in Figure 2.3.7.

26

getting t) of the algorithm is a vertical merge with the largest element of S \ {Sj , S1, . . . , Sl} and t.
Let t′ = φ-1 (S \ {Sj , S1, . . . , Sl}) then φ-1(S) is t′ where the node with the greatest label is replaced
with t. Apply the algorithm of φ to φ-1(S) until you add a set containing k + |t| − l. At this point
you will have {S1, . . . , Si, Sj}. By the induction hypothesis φ(t′) = {Sl+1, . . . , Sk} \ {Sj}. Therefore
φφ-1(S) = {S1, . . . , Si, Sj} ∪ {Sl+1, . . . , Sk} \ {Sj} = S.

We will prove that ψ-1 is the inverse of ψ by induction on k.

For k = 1 we only consider S = {s1} and phylogenetic trees whose only internal vertex is the root.
Clearly, ψ({s1}) is the phylogenetic tree that is a root whose children are labelled by s1 and if t is the
phylogenetic tree that is a root with children that are leaves labelled from s1 then ψ-1(t) = {s1}.

For k > 1 let S = {s1, . . . , sk} where s1 contains no elements greater than n and whose minimum
element is greatest among all such sets. Mark elements according to the isomorphism. Applying the first
iteration of the isomorphism, the elements of s1 are attached as children to a node n1 in

⋃k
i=2 si and n1

is unmarked. Let t = ψ(S) and t′ = ψ(S) \ s1. We can see that ψ-1(t′) = S \ {s1} by induction and so
ψ-1(t) = ψ-1(t′) ∪ {s1} = S. Therefore ψ-1 ◦ ψ = id.

Let t be a phylogenetic tree with k + 1 internal nodes. Let s1 be the set of siblings whose minimum is
greatest among all sets of siblings. Label the parent of s1 with n+ k. Then ψ-1(t) = ψ-1(t \ s1) ∪ {s1}.
By induction ψ(ψ-1(t \ s1)) = t \ s1 and so ψ(ψ-1(t)) = ψ-1(t \ s1)∪ {s1} = t. Therefore ψ ◦ψ-1 = id and
ψ-1 is the inverse of ψ.

φ is actually a generalization of the bijection in Example 2.3.2. We can view a plane tree as a Schröder
tree where each internal vertex is in its own block of size 1. The only difference between φ and the
bijection in Example 2.3.2 is that in the bijection Example 2.3.2 you process that smallest marked node
first and in φ-1 you process the largest marked node first. The reason we presented the algorithms in
these different ways is because it is how Chen first presented the algorithms in [9]. �

Now we present three more isomorphisms for a variety of other classes derived from hook length formulae.

Example 2.3.5. Here we will look at a bijective interpretation of Postnikov’s hook length formula
(Equation 1.0.1) found by Seo [48].

Consider the class, B(2), of labelled binary trees where each node is colored white or black, and white
nodes have increasing labels. In other words the label of a white node is less the labels of each of
its descendant The generating function of this class is precisely the hook length series of Postnikov’s
formula [48]. The right-hand side of Equation 1.0.1 counts the number of bicolored unordered forests
with n nodes.

In 2005, Seo [48] found an isomorphism between B(2) and the class of bicolored unordered forests. Let
t ∈ B(2). We say a node, v, is right-minimal if v has a right subtree and the minimum label of the right
subtree of v is less than the minimum label of the left subtree of v or the label of the root. For each
right-minimal vertex, v, of t with a nonincreasing label change the color of v to white and switch the left
and right subtrees of v. Then return the forest, f , created the following way: For each node, v, in t if v

27

1

23

4

5 6

78

9

1011

(a) A labelled bicolored binary trees with white
nodes increasing

1

23

4

5 6

78

9

1011

∗ ∗

∗

(b) Find nonincreasing nodes that are right mini-
mal

1

2 3

4

5 6

7 8

9

10 11

(c) Flip nonincreasing nodes that are right minimal

1

2

3

4

5

6

7

8910

11

(d) Interpret the bicolored binary tree as the child-
sibling tree of a bicolored plane forest

Figure 2.3.9: An example of the isomorphism from labelled bicolored binary trees with one color increas-
ing to labelled bicolored unordered forests.

has a left child, w, then w is a child of v in f and if v has a right child, x, then x is a sibling of v (i.e. if v
is the root of a tree in f then x is the root of another tree and if v is the child of a node y in f then x is
a child of y). t is called the sibling-child tree of f . See Figure 2.3.9 for an example of the isomorphism.

The inverse isomorphism is very similar. Let f be a bicolored unordered forest. Order the children
of each node so that the value of the minimum label of each subtree is increasing from left to right.
Construct the child-sibling binary tree of f . For each nonincreasing white vertex, v, of t change the color
of v to black and switch the left and right subtrees of v. Then t is a labelled bicolored binary tree where
the white nodes are increasing.

�

Example 2.3.6. In a follow up paper to their recurrence for hook length formulae (Theorem 2.2.4),
Kuba and Panholzer gave combinatorial proofs for new hook length formulae they found [34]. For the
hook length formula: ∑

t∈Rn

(2n)!
∏

v∈V (t)

1

2|tv|(2|tv| − 1)
= n!

[
z2n−1

]√
2 tan

(
z√
2

)
,

they gave a bijective proof between the class of twice-labelled increasing unordered trees and increasing
complete unordered binary trees. In their paper they used increasing complete binary trees with a
restricted order for children; we use increasing complete unordered binary trees instead since they are
easier to define.

Let R(2) be the class of rooted unordered trees such that each node has two labels and each label is less

28

1,2

3,9 4,5 6,7

10,13 12,14 8,11

(a) A twice-labelled increasing un-
ordered tree

0,1

2,8 3,4 5,6

9,12 11,13 7,10

(b) Shift the labelling

0,12,8

3,4 5,69,12 11,13

7,10

(c) Split tree

0,21,8

3,4 5,69,12 11,13

7,10

(d) Swap labels

2

34

56

7

8

9

10

11

12

13

(e) Apply the bijection to each tree

1

2

34

56

7

8

9

10

11

12

13

(f) Connect the trees to a root with la-
bel 1

Figure 2.3.10: An example of the bijection from bilabelled increasing unordered trees to increasing
unordered complete binary trees. This example was taken from [34].

than all the labels of the descendants of the label’s node. We will show that there is a bijection between
trees of R(2) with 2n labels and increasing complete unordered binary trees with 2n− 1 nodes.

The bijection is as follows. Let t ∈ R(2). Shift the labels of t by subtracting 1 from each label. If t is
just a root output a tree with label a2 where (a1, a2) is the label of the root of t and a1 < a2. Otherwise,
let t1 be the subtree of t with the least label and whose root is a child of the root of t. Let t2 = t \ t1.
Let (a1, a2) be the label of t1 and (b1, b2) be the label of t2 so that a1 < a2 and b1 < b2. Set the label
of t1 to (b2, a2) and set the label of t2 to (b1, a1). Then apply the isomorphism recursively on t1 and t2
without shifting labels. Connect the image of t1 and t2 as children to a node with label a2.

�

Example 2.3.7. Let Cp be the class of unlabelled cyclic trees where each node has an extra edge that
points from that node to one of its ancestors if the node is not a leaf or itself if the node is a leaf. This class
corresponds to applying the hook length operator given by B1 = 1 and Bk = k−1 for all k > 1 to the class
of unlabelled cyclic trees. We shall see in Example 4.6.3 that the hook length series of labelled cyclic trees
with respect to this hook length operator is the same as the ordinary generating function of connected
permutations, FC,B(z) = 1− 1∑

n≥0 n!zn . A permutation, π, is connected if π({1, . . . , j}) 6= {1, . . . , j} for
all j = 1, . . . , |π| − 1. As in Example 2.3.3 the equality of the hook length formula of the labelled class
leads to an isomorphism for the unlabelled class.

The isomorphism is as follows. First reorder the tree by cycling the children so that the extra edge of
each node is pointed to the rightmost subtree of the node. Label the tree with the integers in left-first
depth-first prefix order. Let π be the empty word. Then do (∗) for the tree.

29

(∗) If the root of the tree is a leaf then concatenate the label of the root to π. If the root of the tree
is not a leaf then concatenate to π the label of the node pointed to by the extra edge of the root.
Relabel the node pointed to by the root with 0. Let L be the set of labels of the tree. Relabel the
tree with L in left-first depth-first prefix order. Do (∗) for each subtree in left-first order.

We shall now show that the resulting permutation is connected. Let π be the image of the pointed
cyclic tree, t. If |π| = 1 then it is connected; otherwise order the nodes of t as in the isomorphism.
Let i be the initial label of the root of the rightmost subtree of the root of t. Since the extra edge of
the root of t points to a node in the rightmost subtree, π(1) ≥ i. Suppose π({1, . . . , j}) = {1, . . . , j}
for some j. Then i ≤ π(1) ≤ j. By the isomorphism π({1, . . . , i − 1}) = {1, . . . , i − 2, π(1)} and thus
π({i, . . . , j}) = {i − 1, . . . , j} \ {π(1)}. By induction the normalization of the rightmost subtree of t is
mapped to a connected permutation by the isomorphism and so j = |π|. Therefore π is connected. See
Figure 2.3.11 for an example of the isomorphism.

The reverse isomorphism is as follows. Let π be a connected permutation. Let the positions of π be the
nodes of a forest t. Then do (∗∗) for i = 1, j = |π|.

(∗∗) Add an extra edge from node i to node π(i)− i+ 1. Let c1, . . . ck be the connected components of
the subword of π from position i+ 1 to position j. For each a = 1, . . . , k let sa (respectively ea) be
the starting (respectively ending) position of ca. Add an edge from i to the start of ea. Arrange
these edges cyclically. Then normalize ca in π and do (∗∗) for i = sa, j = ea.

The result is a cyclic pointed tree.

By the recursive construction of the isomorphism and the reverse isomorphism, it is simple to see that
they are inverses of each other and thus are truly isomorphisms. �

Thus we have seen examples of hook length formulae producing combinatorial bijections. All the bijec-
tions in this section use the recursive decomposition of simple trees. The use of recursion is overt in
the first isomorphism in Example 2.3.1, the second isomorphism in Example 2.3.3 and the isomorphisms
in Examples 2.3.6 and 2.3.7. The other bijections are expressed iteratively, but each can be expressed
recursively. This is most likely due to the recursive nature of the tree classes.

We discussed earlier how specific isomorphisms in Examples 2.3.1 and 2.3.3 are very similar and how
half of the isomorphism in Example 2.3.4 is a generalization of the bijection in Example 2.3.2. However,
most of the bijections are ad hoc and do not generalize.

In all of the new isomorphisms in this section, Examples 2.3.3, 2.3.4 and 2.3.7, the hook length series we
obtain represented a combinatorial classes with objects that have more sets of labels than the represented
classes in the isomorphisms We used these ‘unlabelled’ classes because it would be redundant to use the
labelled versions. Suppose we have two combinatorial classes C and l(C) where l(C) is the class of
labellings of objects of C. Unlabelling can be done when the number of labellings of each objects in C
of size n is n!. In this case the ordinary generating function of C is equal to the exponential generating
of l(C). The main reason that the the forests in our examples can be unlabelled is that each of the
classes we considered has a unique plane embedding and for each plane tree, t, there are |t|! labellings of

30

(a) A pointed cyclic tree — we
omit drawing the extra edge on
the leaves to avoid clutter

(b) Reorder tree by cycling chil-
dren

1

2

3

4 5

6 7

8 9

10

11

12 13

(c) Label nodes

8

0

1

2

3 4

5 6

7 9

10

11

12 13

(d) Write the label of the root and
relabel nodes

8
1

2

3 4

5 6

7 9

10

11

12 13

(e) Split into sub trees

8; 2, 4, 1, 3; 5; 13, 6, 9, 7, 12, 10, 11

(f) Apply the isomorphism to each subtree

8 2 4 1 3 5 13 6 9 7 12 10 11

(g) Add an extra edge pointing position 1 to position
π(1)

8 2 4 1 3 5 13 6 9 7 12 10 11

(h) Add edges connecting position 1 to start of con-
nected components

8 2 4 1 3 1 7 1 3 2 6 4 5

(i) Normalize connected components

8 2 3 1 1 1 7 1 2 1 3 1 1

(j) Apply isomorphism to each connected compo-
nent

8

2

3

1 1

1 7

1 2

1

3

1 1

(k) Redraw the tree vertically to
get the original pointed cyclic tree

Figure 2.3.11: An example of the isomorphism from pointed cyclic trees to connected permutations.
(b)–(f) is the isomorphism and (g)–(k) is the inverse isomorphism.

31

t. There are more bijections and isomorphisms involving hook length formulae in the literature. Yang
[56] found an involution on increasing plane trees that helps to calculate the hook length formula with
Bk = (-1)k

k . Gessel and Seo [23] developed a reverse Prüffer algorithm that acts on a variety of tree
classes, particularly r-ary trees, and hook length series of the form [zn]F (z) = c

n!

∏n−1
i=0 (ia+ (n− i)b+ c)

for constants a, b, c.

2.4 Some new hook length formulae

Now we will present six new hook length formulae. These hook length formulae were found using the
Kuba-Panholzer recurrence and could not be proved using the new methods in Chapter IV because their
hook length operators involve factorials or they are hook length formulae of forests.

The first two hook length formulae have hook length series that are z
1−z and z

1−zr . These are generating
functions of classes with at most one element of each size. Thus the hook length operators that result in
these kinds of hook length series weight the trees of the trees class so that tghe add up to 1. Thus the hook
length operator behaves like a probability over the trees of a fixed size. I. Despite this possible application
to probability these hook length series have been largely ignored by the hook length community, only
appearing for four tree and forest classes. This lack of intereest is probably due to the the fact that it is
unknown what these probabilities represent.

The reference to a formula at the top of each example, in this section and in the rest of the thesis, is a
reference to the formula number (the No. column) in the catalog of hook length formulae of Chapter VI
for the hook length formulae featured in the example.

Example 2.4.1 (Formula 6.7.8). Consider T ∼= Z × (1 + T)r, the class of r-ary trees. Let Bk =
(r−1)!(k−1)!

(k+r−2)! and F (z) = z
1−z . Then for k ≥ 1

[zk]F (z)

[zk−1](1 + F (z))r
=

1

[zk−1](1
1−z)r

=
1

(−1)k−1
(−r
k−1

)
=

(r − 1)!(k − 1)!

(k + r − 2)!

= Bk.

Therefore by Corollary 2.2.5 we have that F (z) = FT ,B and so for all n ≥ 1∑
t∈Tn

(r − 1)!
∏

v∈V (t)

1∏r
i=2(|tv|+ r − i)

= 1. (2.4.1)

�

32

Example 2.4.2 (Formula 6.8.1). Consider T ∼= Z × (1 + T r), the class of complete r-ary trees. Let

Bk =

1 if k = 1

(r−1)!rr−1∏r−2
i=0 (k+ir−1)

if k > 1

and F (z) = z
1−zr . For k = 1 we have [z1]F (z)

[z0](1+F (z)r) = 1 = B1 and for k = jr + 1 ≥ 2 we have

[zk]F (z)

[zk−1](1 + F (z)r)
=

1

[zk−1]
(

1 + zr

(1−zr)r

)
=

1

[zjr]
(

1 + zr

(1−zr)r

)
=

1

[zj]
(

1 + z
(1−z)r

)
=

1

(−1)i−2
(−r
j−2

)
=

(r − 1)!∏r−2
i=0 (j + i)!

=
(r − 1)!∏r−2

i=0 (k−1
r + i)!

=
(r − 1)!rr−1∏r−2
i=0 (k − 1 + ir)!

= Bk.

If k 6= jr + 1 for all j ∈ N then [zk]F (z) = [zk]FT ,B(z) = 0. Therefore by Corollary 2.2.5 we have that
F (z) = FT ,B and so for all n = jr + 1 ≥ 1∑

t∈Tn

(r − 1)!rr−1
∏

v∈V (t)\l(t)

1∏r−2
i=0 (|tv|+ ir − 1)

= 1. (2.4.2)

�

Example 2.4.3 (Formula 6.2.17). Consider B ∼= Z×(1+B)2, the class of binary trees. LetBk = ((k−1)!)2

(2k−1)! .
Note that Bk is the Beta function, B(a, b) = Γ(a)Γ(b)

Γ(a+b) , with a = b = k [15]. Let F (z) =
∑∞
n=1

2n

(n+1)!n!z
n.

33

For k = 1 we have [z1]F (z)
[z0](1+F (z))2 = 1 = B1 and for k ≥ 2 we have:

[zk]F (z)

[zk−1](1 + F (z))2
=

[zk]F (z)

[zk−1](F (z)2 + 2F (z))

=

2k

(k+1)!k!∑k−2
i=1

2i

(i+1)!i!
2k−i−1

(k−i)!(k−i−1)! + 2k

k!(k−1)!

=

2
(k+1)!k!∑k−2

i=1
1

(i+1)!i!(k−i)!(k−i−1)! + 2
k!(k−1)!

=

2
(k+1)!k!∑k−1

i=0
1

(i+1)!i!(k−i)!(k−i−1)!

=
2

(k + 1)
∑k−1
i=0

(
k
i+1

)(
k

k−1−i
)

=
2

(k + 1)
(

2k
k−1

)
=

((k − 1)!)2

(2k − 1)!

= Bk.

Therefore by Corollary 2.2.5 we have that F (z) = FB,B and so for all n ≥ 1∑
t∈Bn

(2n)!

2n

∏
v∈V (t)

((|tv| − 1)!)2

(2|tv| − 1)!
=

1

n+ 1

(
2n

n

)
. (2.4.3)

Note that (2n)![zn]F (z) is the number of walks in the quarter plane using the steps {(-1, -1), (-1, 0), (1, 1)}
that end on the vertical axis [4]. �

Example 2.4.4 (Formula 6.11.5). Consider R ∼= Z × SET(R), the class of rooted labelled unordered
trees. Let Bk = 1

k(k+a−2
a−1)

. Let F (z) = a log
(

a
a−z

)
. For k ≥ 1 we have:

[zk]F (z)

[zk−1]eF (z)
=
a[zk] log

(
1

1−z/a

)
[zk−1]

(
1

1−z/a

)a
=

a1−k 1
k

(−a)1−k
(−a
k−1

)
=

1

k
(
k+a−2
a−1

)
= Bk.

Therefore by Corollary 2.2.5 we have that F (z) = FR,B and so for all n ≥ 1∑
t∈Rn

an−1

n!

∏
v∈V (t)

1

|tv|
(|tv|+a−2

a−1

) = (n− 1)!. (2.4.4)

This formula simultaneously generalizes Mazza’s formula with Bk = 1
k2 (Formula 6.11.2) and the classic

σ formula (Formula 6.11.1) for rooted labelled unordered trees. We should also note that this follows

34

from Chen, Gao and Guo’s formula for unordered labelled forest (Formula 6.19.6) since GR∗,B(z) =

exp(FR,B(z)). �

The next two hook length formulae are forest hook length formulae that result in the hook length series
1

1−z .

Example 2.4.5 (Formula 6.18.11). Consider O∗ ∼= SEQ(Z × O∗), the class of plane forests. Suppose
we want to find the hook length operator, B, such that FO∗,B(z) = 1

1−z . By Corollary 2.2.8 we have
that:

Bk =
[zk] (1− 1/FO∗,B(z))

[zk−1]FO∗,B(z)

=
[zk]z

1

=

1 if k = 1

0 if k > 1.

This hook length operator returns 1 if the forest contains only trees that are singletons and 0 otherwise.
The resulting hook length formulae is not surprising or deep since the class of plane forests whose trees
are only singletons is clearly isomorphic to the class of sequences. However it is important to note that
this is the only hook length operator that will give this hook length series for this forest class (as is the
case for any hook length operator and hook length series). �

Example 2.4.6 (Formula 6.20.2). Consider C∗ ∼= 1 + CYC(Z ×C∗), the class of cyclic forests. Suppose
we want to find the hook length operator, B, such that FC∗,B(z) = 1

1−z . By Corollary 2.2.8 we have
that:

Bk =
[zk]

(
1− e1−FC∗,B(z)

)
[zk−1]FC∗,B(z)

=
[zk]

(
1− e-

z
1−z
)

1

=

k∑
i=1

(-1)i−1

i!

(
k − 1

i− 1

)
.

Therefore we have: ∑
f∈C∗n

∏
v∈f

 |fv|∑
i=1

(-1)i−1

i!

(
k − 1

i− 1

) = 1. (2.4.5)

�

2.5 Decorated trees

In this section we will discuss decorated trees. This is the first time hook length has been generalized for
decorated trees. We do so here as it seems a natural progression to extend Han’s recurrence for binary

35

7→
(
,

(
1,

{ }))
; 7→ (, (1, { , })) ;

2

7→ (, (, { })) ;
2
7→
(

,
(
1,
{

2
}))

;

3 7→
(

,
(

2 , ∅
))

Figure 2.5.1: The decorated plane trees of size 3 and their decompositions. The labels to the right of
each node indicates the size of the node. Nodes with no label have size 1.

trees to the Kuba-Panholzer recurrence for simple tree classes and then to a recurrence for decorated
tree classes. Using decorated tree classes will also allow us to easily extend hook length to even more
general tree classes and to expand the types of differential equations we can study in Chapter IV.

A decorated tree is a rooted tree whose nodes have any positive integer size. The size of a decorated tree
is then the sum of the sizes of its nodes. A decorated forest is a multiset of decorated trees. The class of
all decorated forests is denoted F ′.

The name decorated tree comes from quantum field theory where they are defined in more generality (see
[44, §2.5].) We will discuss more about the use of decorated trees in quantum field theory in Section 3.1.

We say a class of decorated trees, T ′, is simple if there exists a bivariate combinatorial operator, Φ, and
an isomorphism γ : T ′ → Z × Φ(Z, T ′) such that if x ∈ Φ(Z, T ′) then x = (•i, {t1, . . . , tj}) for some
i ∈ N and t1, . . . , tj ∈ T ′, and γ(t) = (•, (•i−1, {t1, . . . , tj})) if and only if the root of t has size i and
t1, . . . , tj are the subtrees of t whose roots are the children of the root of t. Here •i refers to the sequence
of i singletons and has size i.

Let O′ be the class of decorated plane trees. A decorated plane tree is a plane tree where each node has
any positive integer size. O′ is a simple decorated tree class with operator Φ(Z, T) ∼= SEQ(Z)×SEQ(T).
See Figure 2.5.1 for the decorated plane trees of size 3 and their decompositions.

We define fv for v ∈ V (f) of a decorated forest, f , the same as for ordinary forests. This gives us the
definition of a hook length operator, B : F ′ → K such that B(f) =

∏
v∈V (f)B|fv|. We also get hook

length series.

Definition 2.5.1. Let φ(z, x) =
∑
i,j≥0 φi,jz

ixj be a bivariate formal power series and B be a hook
length operator then define

Fφ,B(z) =
∑
t∈O′

wφ(t)B(t)z|t|,

where wφ(f) =
∏
v∈V (f) φ|v|−1,deg(v). We call Fφ,B the decorated hook length series of φ with respect to

B.

Like for regular trees we get a recurrence of decorated hook length series. This recurrence is more general
than the KP recurrence (Theorem 2.2.4) since the nodes of the trees can have any size and φ is bivariate.
It is the most general form of the recurrence in this thesis and can be thought of as the main theorem of
the thesis.

Theorem 2.5.2. Let φ(z, x) be a bivariate formal power series and B be a hook length operator then

36

Fφ,B satisfies the recurrence:

Bk =
[zk]Fφ,B(z)

[zk−1]φ(z, Fφ,B(z))
,∀k ≥ 1.

Proof. This proof is similar to Kuba and Panholzer’s proof of Theorem 2.2.4 (Theorem 1 of [35]).

We proceed by induction on k.

For k = 1, [z1]Fφ,B(z) = wφ(•)B(•) = φ0,0B1 = B1[z0]φ(z, Fφ,B(z)).

For k > 1,

[zk]Fφ,B(z) =
∑
t∈O′k

wφ(t)B(t)

=

k∑
i=1

∑
j≥1

φi,jBk
∑

n1+···+nj=k−i−1

n1,...,nj≥1

∑
t1∈O′n1

,...,tj∈O′nj

j∏
l=1

(wφ(tl)B(tl))

= Bk

k∑
i=1

∑
j≥1

φi,j
∑

n1+···+nj=k−i−1

n1,...,nj≥1

j∏
l=1

 ∑
tl∈O′nl

wφ(tl)B(tl)



= Bk

k∑
i=1

∑
j≥1

φi,j
∑

n1+···+nj=k−i−1

n1,...,nj≥1

j∏
l=1

[znl]Fφ,B(z)

= Bk[zk−1]φ(z, Fφ,B(z)).

It is worth mentioning that as with regular trees, the above theorem can be applied to simple decorated
tree classes.

Definition 2.5.3. Let T ′ = Z × Φ(Z, T ′) and define

FT ′,B(z) =
∑
t∈T ′

B(t)z|t|,

to be the hook length series of T ′ with respect to B. Note that FT ′,B = Fφ,B . As a result we get the
following recurrence as a corollary to Theorem 2.5.2.

Corollary 2.5.4. Let T ′ = Z × Φ(Z, T ′) be a simple decorated tree class and B be a hook length then
FT ′,B satisfies the recurrence:

Bk =
[zk]FT ′,B(z)

[zk−1]φ(z, FT ;,B(z))
,∀k ≥ 1.

Now we present an example of a decorated tree formula.

Example 2.5.5. This is a new hook length formula.

37

Consider the set of decorated plane trees, O′. Suppose we want to want to find which hook length
operator gives the hook length series z

1−z . Since φ(z, x) = 1
1−z

1
1−x for O′ by Theorem 2.5.2 we know

that:

Bk =
[zk] z

1−z

[zk−1]
(

1
1−z

1
1− z

1−z

)
=

1

[zk−1] 1
1−2z

= 21−k.

Therefore we have that ∑
t∈O′n

2n
∏

v∈V (t)

1

2|tv|
= 1. (2.5.1)

�

2.6 General hook length operators

We do not have to restrict our definition of hook length operator to depend on only the size of the
subtrees. Here we will generalize the hook weight part, Bn, of the hook length operator definition to
take subtrees (instead of sizes of subtrees) to the ring, K.

We call an operator, B : F → K, a general hook length operator if there exists Bt ∈ K for each tree,
t ∈ F , such that for all forests, f , B(f) =

∏
v∈V (f)Bfv .

However, in order to use a recurrence such as in Theorem 2.2.4, we need Bt to depend on the size of the
tree. To alleviate this, we will consider classes of the form: T ∼= Z ×Φ(Z, T , T (1), . . . , T (l)) and general
hook length operators that behave as an ordinary hook length operator for trees in T . In other words
for all s, t ∈ Tn, Bs = Bt. However Bt may be a value different from g(|t|) for t ∈ T (i). This leads us to
the recurrence in the following corollary.

Corollary 2.6.1. Let T be a class of decorated trees satisfying: T ∼= Z ×Φ(Z, T , T (1), . . . , T (l)), where
each T (i) is a class of decorated trees and let B be a general hook length operator where s, t ∈ Tn implies
Bs = Bt. Define

F (z) =
∑
t∈T

B(t)ζ(|t|),

F (i)(z) =
∑
t∈T (i)

B(t)ζ(|t|)

and φ to be the formal power series of Φ. Then F satisfies

Bk =
[zk]F (z)

[zk−1]φ(z, F (z), F (1)(z), . . . , F (l)(z))
∀k ≥ 1,

where φ is the formal power series of Φ.

38

To see that this follows from Theorem 2.5.2, consider ϕ̃(z, x) = φ(z, x, F (1)(z), . . . , F (l)(z)). Then we
merely need to show that F (z) = FB,ϕ̃(z). Since B is invariant over size of t, define Bn = Bt for any
t ∈ Tn. By computing the power series expansion:

F (z) =
∑
t∈T

B(t)ζ(|t|)

=
∑

i,j,j1,...,jn

φi,j,j1,...,jl
∑

t1,...,tj∈T

l∑
r=1

∑
t
(r)
1 ,...,t

(r)
jr
∈T (r)

B
1+i+

∑j
s=1 |ts|+

∑l
r=1

∑jr
s=1 |t

(r)
s |

j∏
s=1

B(ts)

l∏
r=1

jr∏
s=1

B(t(r)s)z1+i+
∑j
s=1 |ts|+

∑l
r=1

∑jr
s=1 |t

(r)
s |

=
∑

i,j,j1,...,jn

φi,j,j1,...,jl
∑

t1,...,tj∈T

∑
k≥0

B1+i+
∑j
s=1 |ts|+k

j∏
s=1

B(ts)

(
[zk]

l∏
r=1

(F (r)(z))jr

)
z1+i+

∑j
s=1 |ts|+k

=
∑

i,j,j1,...,jn

φi,j,j1,...,jl
∑
k≥0

[zk]

(
l∏

r=1

(F (r)(z))jr

) ∑
t′1,...,t

′
j∈O

B1+i+
∑j
s=1 |t′s|+k

j∏
s=1

(wϕ̃(t′)B(t′s))z
1+i+k+

∑j
s=1 |t

′
s|

=
∑
t′∈O′

wϕ̃(t′)B(t′)z|t
′|

= FB,ϕ̃(z).

In their paper [35] with the recurrence from Theorem 2.2.4, Kuba and Panholzer generalized their
recurrence to more general hook length operators on trees. These included: hook length operators which
depends of the height of the tree and hook length operators that treat the root of a tree differently. All
of these hook length operators are covered by our definition of a general hook length operator and each
of their recurrences follows from Corollary 2.6.1.

For example let B : F → K be a general hook length operator such that Bt = B
h(t)
|t| where h(t) is the

height of t and let T ∼= Z ×Φ(T) be a simple tree class. Let T (h) be the class of trees in T with height
h. Then T (1) ∼= φ0Z and T (h) ∼= Z × Φ(T (h−1)). By Corollary 2.6.1

FT (1),B(z) = φ0B
(1)
1 z

and

B
(h)
k =

[zk]FT (h),B(z)

[zk−1]φ(FT (h−1),B(z))
.

One could also specify a different Φ in the specification of each T (h).

We shall investigate general hook length operators further in Section 4.5.

39

Chapter III

The Connes-Kreimer Hopf algebra and

hook length

In this chapter we introduce the Connes-Kreimer Hopf algebra of rooted trees. We will also investigate
a universal property of the Hopf algebra and its effect on hook length operators.

3.1 Hopf algebra of rooted trees

This section introduces a Hopf algebra of rooted trees developed by Connes and Kreimer in 1998 [13]. A
Hopf algebra in short is a structure that is an algebra and coalgebra and has a special morphism called
the antipode. The algebra part of the Connes-Kreimer Hopf algebra was first developed by Butcher in
1972 [7] to analyze the Runge-Kutta method. Connes and Kreimer used their Hopf algebra to analyze
renormalization in quantum physics. Connes and Kreimer were unaware that Butcher had developed
their algebra previously; however Brouder showed that the two algebras were the same in 2000 [5].

Here we will define a Hopf algebra and also the Connes-Kreimer Hopf algebra in parallel. We will do
so by following Panzer’s Masters thesis [44, Chapter 2]. We will also present a universal property of
the Connes-Kreimer Hopf algebra that has an interesting relationship with hook length operators. This
relationship will be investigated in the next section.

We can identify any vector space, A, with K⊗A or A⊗K via scalar multiplication. This is assumed for
the definitions of unit and counit. Hom(A,B) will always be used as the set of vector space morphisms
between the vector spaces, A and B. We will frequently use map to mean vector space morphism. We
define End(A) = Hom(A,A) and id ∈ End(A) as the identity map.

Definition 3.1.1. An algebra is a vector space, A, with a map, m ∈ Hom(A⊗A,A), called the product
such that

m ◦ (id⊗m) = m ◦ (m⊗ id). (m is a associative)

40

An algebra is unital if there exists a map, u ∈ Hom(K, A), called the unit such that

m ◦ (u⊗ id) = id = m ◦ (id⊗u).

A morphism of algebras, A and B, is a map, g ∈ Hom(A,B), such that g ◦mA = mB ◦ (g ⊗ g). g is a
morphism of unital algebras as well if A and B are unital and g ◦ uA = uB .

We want to put an algebra structure on the class of rooted trees. LetHR be the set of linear combinations
of unordered rooted forests with coefficients in K. Define m ∈ Hom(HR ⊗ HR, HR) such that for all
f1, f2 ∈ F ,

m(f1, f2) = f1 t f2

and extend linearly. Here t denotes disjoint union. Define u ∈ Hom(K, HR) to be the map that takes
1 ∈ K to 1 ∈ HR. This makes HR a unital algebra.

Definition 3.1.2. A coalgebra is a vector space, A, with a map, ∆ ∈ Hom(A,A⊗A), called the coproduct
such that

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆. (∆ is coassociative)

An algebra is counital if there exists a map ε ∈ Hom(A,K) called the counit such that

(ε⊗ id) ◦∆ = id = (id⊗ε) ◦∆.

A morphism of coalgebras, A and B, is a map g ∈ Hom(A,B) such that ∆B ◦ g = (g ⊗ g) ◦∆A. g is a
morphism of counital coalgebras as well if A and B are counital and εB ◦ g = uA.

We shall now define a coalgebra structure on HR.

Given a forest, f , and a subset of its nodes, W ⊂ V (f), we say W is independent if no two nodes of W
are descendants of each other. We define I(f) as the set of all independent subsets of f . For W ∈ I(f)

we shall define fW = {fv : v ∈W}.

Define ∆ ∈ Hom(HR, HR ⊗HR) such that for f ∈ F we have

∆(f) =
∑

W∈I(f)

fW ⊗ (f \ fW)

and extend linearly. Define ε ∈ Hom(HR,K) to be the map that takes y ∈ HR to be the coefficient of 1

in y. This makes HR a counital coalgebra.

Definition 3.1.3. A vector space, A, that is a algebra under m and a coalgebra under ∆ is called a
bialgebra if

∆ ◦m = (m⊗m) ◦ τ ◦ (∆⊗∆) (m is a morphism of coalgebras) (3.1.1)

where τ(a⊗ b⊗ c⊗ d) = a⊗ c⊗ b⊗ d. If H is unital and counital then we must also have that

∆ ◦ u = u⊗ u (u is a morphism of coalgebras) (3.1.2)

41

To show that m is a morphism of coalgebras it suffices to show that Equation 3.1.1 holds for every forest.
Let f1, f2 ∈ F then:

(∆ ◦m)(f1 ⊗ f2) = ∆(f1 t f2)

=
∑

W∈I(f1∪f2)

(f1 t f2)W ⊗ ((f1 t f2) \ (f1 t f2)W)

=
∑

W1∈I(f1)

∑
W2∈I(f2)

((f1)W1
t (f2)W2

)⊗ ((f1 \ (f1)W1
) t (f2 \ (f2)W2

))

= m

 ∑
W1∈I(f1)

(f1)W1
⊗

∑
W2∈I(f2)

(f2)W2

⊗
m

 ∑
W1∈I(f1)

(f1 \ (f1)W1
)⊗

∑
W2∈I(f2)

(f2 \ (f2)W2
)


= ((m⊗m) ◦ τ) ∑

W1∈I(f1)

(f1)W1
⊗

∑
W1∈I(f1)

(f1 \ (f1)W1
⊗

∑
W2∈I(f2)

(f2)W2
⊗

∑
W2∈I(f2)

(f2 \ (f2)W2
)


= ((m⊗m) ◦ τ ◦ (∆⊗∆))(f1 ⊗ f2).

To show that u is a morphism of coalgebras, we only need to check that Equation 3.1.2 holds for 1 ∈ K:

(∆ ◦ u)(1) = ∆(1) = 1⊗ 1 = u(1)⊗ u(1).

Therefore A is a bialgebra.

Definition 3.1.4. A bialgebra, A, is called a Hopf algebra if there exists S ∈ End(A) such that:

m ◦ (id⊗S) ◦∆ = u ◦ ε = m ◦ (S ⊗ id) ◦∆.

We call S the antipode of A.

To easily show that HR is a Hopf algebra we need a few more definitions.

Definition 3.1.5. A family of subspaces (An)n∈N of a bialgebra, A, with product, m, and coproduct,
∆ is a filtration if:

1. An ⊆ An+1 ∀n ∈ N,

2. A =
∑
n∈NA

n,

3. ∆(An) ⊆
∑n
i=0A

i ⊗An−i ∀n ∈ N and

4. m(An ⊗Am) ⊆ An+m ∀n ∈ N.

42

A bialgebra is said to be connected if there exists a filtration (An)n∈N with A0 = K⊗ 1.

Theorem 3.1.6. Every connected bialgebra is a Hopf algebra.

To prove this theorem we merely need to find S. For this classic result we shall follow Panzer [44, §2.1.2].
He computed S =

∑
n∈N(u◦ ε− id)?n where u?n+1 = m◦ (u?n⊗u)◦∆ for n ≥ 1, u?1 = u and u?0 = u◦ ε.

The filtration of the connected bialgebra turns the infinite sum in the definition of S into a finite sum,
ensuring the existence of S.

We show that HR is a Hopf algebra by showing that it is connected. For n ∈ N let Fn be the set of
forests with n nodes and Hn

R =
∑n
i=0 K ⊗ Fi. Clearly Hn

R ⊆ Hn+1
R and HR =

∑
n∈NA

n. Let f be a
forest with n nodes then

∆(f) =
∑

W∈I(f)

fW ⊗ (f \ fW) ∈
n∑
i=0

Hi
R ⊗Hn−i

R .

If f1 ∈ Fn and f2 ∈ Fm then

f1 ⊗ f2 = f1 t f2 ∈ Fm+n ⊂ Hn+m
R .

Therefore (Hn
R)n∈N is a filtration. Since H0

R = K ⊗ 1, HR is connected and thus a Hopf algebra. This
Hopf algebra is called the Connes-Kreimer Hopf algebra [13, 44].

An important operator on the Connes-Kreimer Hopf algebra is the grafting operator. We define the
grafting operator , B+ : HR → HR, as the algebra morphism such that for a forest t1 · · · tn, B+(t1 · · · tn)

is the tree whose root is attached to t1, . . . , tn.

Any forest, f , can be written as compositions and products of B+ applied to 1 (uniquely up to permuta-
tion). For some examples, see Figure 3.1.1. To prove this simply use induction on the size of the forest.
This decomposition is similar to the decomposition for simple trees discussed in Section 2.1.1. In fact,
B+ equations can be interpreted as simple tree specifications by replacing B+(X) with Z × X. This
provides a link between simple tree classes and combinatorial Dyson-Schwinger equations. For more on
Dyson-Schwinger equations see [57, 44].

Theorem 3.1.7 (Panzer 2011 [44, Theorem 2.4.6]). Let A be a commutative unital algebra and L ∈
End(A). Then there exists a unique morphism of unital algebras, Lρ : HR → A, such that:

Lρ ◦B+ = L ◦ Lρ. (3.1.3)

If A is a bialgebra and ∆A ◦ L = (idA⊗L) ◦ ∆A + L ⊗ 1A then Lρ is a morphism of coalgebras and
bialgebras. If A is also a Hopf algebra then Lρ is a morphism of Hopf algebras.

The Lρ basically replaces B+ with L and 1 with 1A, the multiplicative identity in A, in the decomposition

43

= B+


 =

B+(B+(1)B+(B+(1)B+(B+(1)B+(1))B+(1)))

(a) Decomposition of a tree

= B+ ()B+(1)B+

()
=

B+(B+(1)B+(1))B+(1)B+(B+(1)B+(1)B+(B+(1)))

(b) Decomposition of a forest

a1 + a2 + a31 =

a1B+(B+(1)B+(B+(1)B+(B+(1)B+(1))B+(1))) +
a2B+(B+(1)B+(1))B+(1)B+(B+(1)B+(1)B+(B+(1))) + a31

(c) Decomoposition of a polynomial of trees

Figure 3.1.1: Examples of how to decompose elements of HR into compositions and products of B+

applied to 1.

44

of a forest. For example

Lρ




= L ◦ Lρ


 = L(L(1A)L(L(1A)L(L(1A)L(1A))L(1A))).

In the following section we will investigate a map, L∗B ∈ End(K[z]), which is defined using a hook length
operator, B and the morphism, (L∗B)ρ, resulting from Theorem 3.1.7.

We can also build a Hopf algebra for decorated trees. Panzer mentions this briefly [44, §2.5], though
he considers a more general type of tree. By extending the definitions of product, unit, coproduct and
counit from HR we can derive the Hopf algebra, HR′ , of decorated trees.

Instead of having one grafting function, B+, HR′ has a grafting function for each possible size of the
new root. For a ∈ N+ we denote the grafting function, B(a)

+ : HR′ → HR′ , to be such that B(a)
+ (t1 · · · tn)

is the decorated tree with root of size a attached to the trees t1, . . . , tn.

These grafting functions are used in quantum field theory to express the loop number of the inserted
graph in the associated Feynman diagram [57].

An important property of HR′ is that it also satisfies a universal property similar to the universal
property of HR (Theorem 3.1.7).

Theorem 3.1.8 (Panzer 2011 [44, §2.5]). Let A be a commutative unital algebra and La ∈ End(A) for
a ∈ N. Then there exists a unique morphism of unital algebras, Lρ′ : HR′ → A, such that for all a ∈ N:

Lρ′ ◦B(a)
+ = La ◦ Lρ′ . (3.1.4)

If A is a bialgebra and for a ∈ N, ∆A ◦ La = (idA⊗La) ◦ ∆A + La ⊗ 1A then Lρ′ is a morphism of
coalgebras and bialgebras. If A is also a Hopf algebra then Lρ′ is a morphism of Hopf algebras.

The Lρ and L′ρ maps of this section play the role of Feynman rules. See [44] for more.

3.2 The L∗B operator

In this section we study a family of maps we call L∗B that has not been studied previously though Panzer
studies some particular examples. These maps are useful because each map, L∗B , leads to a specification
of a weighted combinatorial class (T , B), whose generating function is FT ,B . We will give some examples
of L∗B maps and explain how they are related to Feynman rules. We will also explore how the maps
behave under the universal property. This generalizes a result by Panzer [44].

For a hook length operator, B, we define L∗B ∈ End(K[z]) such that L∗B(z 7→ zn) = z 7→ Bn+1z
n+1 for

all n ∈ N. With a general hook length operator we shall write L∗.

45

For the hook length, σ, with σk = 1
k , L

∗
σ =

∫
0
where

∫
0
(z 7→ x(z)) = z 7→

∫ z
0
x(ε)dε. It turns out that∫

0
is a cocycle of the Hopf algebra of polynomials, see [44, Lemma 2.6.2], and (L∗σ)ρ is a renormalized

Feynman rule [44, §3.5].

Because of the nice property that defines L∗B , we can use the map in a specification for hook length
series. We show this in the following theorem. This theorem is a rephrasing of Kuba and Panholzer’s
recurrence (Theorem 2.2.4) in the language of renormalization.

Theorem 3.2.1. Let T = Z×Φ(T) be a simple tree class and φ(x) be the formal power series of Φ then

FT = L∗φ(FT).

Proof. Since for any formal power series X, [z0]L∗(X(z)) = 0 and because [z0]FT (z) = 0, it follows that
[z0]FT = [z0]L∗φ(FT).

By Corollary 2.2.5, for n ≥ 1 we have:

[zn]FT ,B(z) = Bn[zn−1]φ(FT ,B(z)) = [zn]Bnzφ(FT ,B(z)) = [zn]L∗Bφ(FT ,B(z)).

Therefore FT = L∗φ(FT).

Despite giving a specification of (T , B) this theorem does not result in any new applications.

Using Corollary 2.6.1 we can extend the above theorem to our more general setting of Section 2.6.

Corollary 3.2.2. Let T be a class of decorated trees satisfying: T ∼= Z ×Φ(Z, T , T (1), . . . , T (l)), where
each T (i) is a class of decorated trees and let B be a general hook length operator where s, t ∈ Tn implies
Bs = Bt. Define

F (z) =
∑
t∈T

B(t)ζ(|t|),

F (i)(z) =
∑
t∈T (i)

B(t)ζ(|t|)

and φ to be the formal power series of Φ. Then F satisfies

F (z) = L∗Bφ(z, F (z), F (1)(z), . . . , F (l)(z)),

where φ is the formal power series of Φ.

3.2.1 Examples of L∗
B

Here we give some examples of L∗B for different hook lengths.

Let θ be the operator z d
dz . It turns out that p(θ)(zn) = p(n)zn for any polynomial p(θ) ∈ K[θ]. To

show this we just need to compute θk(zn) for k ∈ N+. We have that θ0(zn) = 1 and that θk(zn) = nkzn

implies
θk+1(zn) = θ(θk(z))θ(nkzn) = znknzn−1 = nk+1zn.

Hence the statement is true by induction.

46

Theorem 3.2.3. Let B be a hook length operator with Bk = kq with q ∈ N then

L∗B : [z 7→ x(z)] 7→ [z 7→ z(1 + θ)qx(z)] .

Proof. L∗B given above is linear because it is the composition of linear equations

Let n ∈ N then

L∗B(z 7→ zn) = z 7→ z(1 + θ)qzn

= z 7→ z(1 + n)qzn since (1 + θ)(zn) = (1 + n)zn

= z 7→ Bn+1z
n+1

as desired.

Theorem 3.2.4. Let B be a hook length operator with Bk = k-q with q ∈ N+ then

L∗B : [z 7→ x(z)] 7→
[
z 7→ z

(
z-1
∫

0

)q
x(z)

]
.

Proof. L∗B given above is linear because it is the composition of linear equations

Let n ∈ N then

L∗B(z 7→ zn) = z 7→ z 7→ z

(
z-1
∫

0

)q
zn

= z 7→ z(1 + n)-qzn since z-1
∫

0

zn = (1 + n)-1zn

= z 7→ Bn+1z
n+1

as desired.

By taking sums of the above results we can derive L∗B for any rational Bk = P (k)
Q(k) .

This last example will be used in Section 4.6 for a new method to solve hook length formulae we call the
scaled method.

Theorem 3.2.5. If B and C are hook lengths with Bk = rk−1Ck for all k ∈ N+ then

L∗B(z 7→ x(z)) = L∗C(z 7→ x(rz)).

Proof. We must prove that L∗B given in the theorem satisfies L∗B(z 7→ zn) = z 7→ Bn+1z
n+1 and that

L∗B is linear.

Let x, y : K[z]→ K[z], a, b ∈ K then

L∗B(z 7→ (ax+ by)(z)) = L∗C(z 7→ (ax+ by)(rz))

= aL∗C(z 7→ x(rz)) + bL∗C(z 7→ y(rz)) (because L∗C is linear)

= aL∗B(z 7→ x(z)) + bL∗B(z 7→ y(z)).

47

So L∗B is linear.

Let n be an integer, then

L∗B(z 7→ zn) = L∗C(z 7→ rnzn) = z 7→ rnCn+1z
n+1 = z 7→ Bn+1z

n+1.

3.2.2 The universal property and L∗
B

In this subsection we will investigate how the L∗B acts under the universal property of Theorem 3.1.7.
For convenience we will denote (L∗B)ρ by L∗B,ρ.

The following theorem is a generalization of a result by Panzer [44, Lemma 3.1.1]. Panzer proved it for
the case where B = σ and L∗B =

∫
0
.

Theorem 3.2.6. Let B be a hook length operator. For any forest, f , we have

L∗B,ρ(f) = B(f)z|f |.

Proof. Proof by induction on |f |.

In the base case f = 1 and L∗B,ρ(1) = 1 = B(1)z0.

Suppose that the statement holds for all forests on fewer vertices.

If f is a forest then the statement holds for all t ∈ π0(f) so

L∗B,ρ(f) =
∏

t∈π0(f)

L∗B,ρ(t) =
∏

t∈π0(f)

(
B(t)z|t|

)
=

 ∏
t∈π0(f)

B(t)

 z
∑
t∈π0(f) |t| = B(f)z|f |.

If f is a tree then there exists a forest, f ′, such that B+(f ′) = f . Since |f | = |f ′|+ 1 we have

L∗B,ρ(f) = (L∗B,ρ ◦B+)(f ′) = (L∗B ◦ L∗B,ρ)(f ′) = L∗B(B(f ′)z|f
′|) = B|f ′|+1B(f ′)z|f

′|+1

= B|f |B(f ′)z|f | = B(f)z|f |.

The above theorem implies that for any class of forests, T , FT ,B(z) =
∑
f∈T L

∗
B,ρ(f). L∗B,ρ can also be

seen as the hook length operator, C, with Ck = Bkz.

Because the universal property also applies to the Hopf algebra of decorated trees, we get a similar result
as the previous theorem for HR′ . Define L∗B,ρ′ = Lρ′ where La = L∗B for all a ∈ N.

Theorem 3.2.7. Let B be a hook length operator. For any decorated forest, f , we have

L∗B,ρ′(f) = B(f)z|f |.

48

Proof. Proof by induction on |f |.

In the base case f = 1 and L∗B,ρ′(1) = 1 = B(1)z0.

Suppose that the statement holds for all decorated forests on fewer vertices.

If f is a decorated forest then the statement holds for all t ∈ π0(f) so

L∗B,ρ′(f) =
∏

t∈π0(f)

L∗B,ρ′(t) =
∏

t∈π0(f)

(
B(t)z|t|

)
=

 ∏
t∈π0(f)

B(t)

 z
∑
t∈π0(f) |t| = B(f)z|f |.

If f is a decorated tree then there exists a decorated forest, f ′, and positive integer, a, such that
B

(a)
+ (f ′) = f and |f | = |f ′|+ a. Thus we have

L∗B,ρ′(f) = (L∗B,ρ′ ◦B
(a)
+)(f ′) = (L∗B ◦ L∗B,ρ′)(f ′) = L∗B(B(f ′)z|f

′|) = B|f ′|+1B(f ′)z|f
′|+a

= B|f |B(f ′)z|f | = B(f)z|f |.

In Panzer’s thesis [44, Chapter 3], he was interested in Feynman rules. He defined Feynman rules as
morphisms, φ : HR → A, where A is some commutative algebra. In particular he was interested in
Feynman rules, φ, that satisfied the universal property for some morphism, L : A → A. In other words
φ ◦B+ = L ◦ φ and φ = Lρ. In particular Panzer considered L∗σ,ρ =

∫
0
.

He also considered the more complicated Feynman rule, zφs : HR → A, which satisfies

zφs ◦B+ =

∫ ∞
0

g(ε)(sε)-zzφsεdε

for a given g : A → A. zφs is also the hook length operator defined by Bk = s-zG(kz) where G(z) =∫∞
0
g(ε)dε [44, Proposition 3.2.2].

Because of the universal property (Theorem 3.1.7), Panzer’s Feynman rules behave like hook length
operators. From Theorems 3.2.6 and 3.2.7, it follows that hook length operators are Feynman rules.
Since simple tree specifications can be written in terms of B+, these specifications can represent Dyson-
Schwinger equations. See [44, §3.6]. Thus we can find the associated hook length formula for a given
Feynman rule and Dyson-Schwinger equation to give new toy models for quantum physics. Furthermore
if our hook length formulae involve a closed form function then these toy models will have exact solutions.

For combinatorialists the Feynman rule language is useful because of the specification-like form of the
hook length formulae and the ability to add parameters to hook length operators.

49

Chapter IV

Differential equations of hook length

series

This chapter explores how hook length series can be expressed as solutions to particular differential
equations. We will begin with Butcher’s work analyzing Runge-Kutta methods, which led him to solu-
tions that were hook length series with the operator σ. Then we will explore Mazza’s generalization of
Butcher’s solution that can solve more differential equations and encapsulates more hook length series.
We will use Mazza’s differential equation to come up with new hook length formulae. Next we will
generalize Mazza’s equation for decorated trees and the more general tree classes of Section 2.6. We
use our generalization to develop new methods to find hook length formulae, which we use to find some
new formulae. Finally we shall show how to use our generalization to produce combinatorial solutions
of differential equations.

4.1 B-series and Runge-Kutta methods

Consider the dynamical system:

y′(z) = ψ(z, y(z)), y(z0) = y0, (4.1.1)

where ψ : R× R→ R is smooth.

To solve this dynamical system we may use B-series. See [25] for a reference. To define B-series first we
must define the tree diferential. The tree differential of a forest, f , is defined as δf =

∏
v∈V (f)

∂deg(v)

∂zdeg(v)
.

For some examples see Table 4.1.1.

Definition 4.1.1. Let α(f) be the number of increasing labellings of the forest, f . Given a functional

50

t

δt D0D
3
1 D2

0D1D2 D2
0D1D2 D3

0D3

Table 4.1.1: Some examples of tree differentials. Here Dn = dn

dzn .

a : T→ R, we call the formal power series:

Yψ,a(z) = y0 +
∑
t∈T

a(t)α(t)δt(ψ(y0))
(z − z0)|t|

|t|!
(4.1.2)

a B-series.

The term B-series was coined by Hairer and Wanner in 1974 [26]. They are called B-series in honour of
Butcher because of his power series approach to Runge-Kutta method analysis [6, 7].

When ψ(z, y) is independent of z (ψ(z, y) = ψ(y)), the B-series, Y (z), with a(t) = 1 for all t solves the
dynamical system in Equation 4.1.1 exactly [25]. In fact this B-series is related to hook length series by
Y (z) = y0 + Fφ,σ(z − z0) where φ(x) = ψ(x+ y0). See [42] for the details of this result. Mazza proves it
for hook length series in general where the hook length operator B is related to the functional given by
a(t) = B(t)t!.

An interesting property of B-series is how they compose.

Theorem 4.1.2 (Hairer and Wanner [26]). Suppose a, b : T→ R then

Y(Yψ,b),a(z) = Yψ,ab(z),

where (ab)(t) = a(t)b(t).

Since hook length series are B-series, this property also holds for hook length series.

Though B-series give an exact solution to the differential equation, it is not always practical as the
B-series solution is an infinite series solution. A related way to solve this system numerically is to use a
Runge-Kutta method [8, 25].

Choose ai,j , bi, ci ∈ R then the following is an s-stage Runge-Kutta method :

k1 = ψ(z0, y0)

k2 = ψ(z0 + c2h, y0 + a2,1k1h)

· · ·

ks = ψ(z0 + csh, y0 + (as,1k1 + · · ·+ as,s−1ks−1)h)

y(h) = y0 + (b1k1 + · · ·+ bsks)h.

51

Usually the ci satisfy ci =
∑i
j=1 ai,j [25]. Choosing specific coefficients (ai,j , bi, ci) the Runge-Kutta

method gives y(h) as a numerical for differential equations of the form in Equation 4.1.1. Some examples
of Runge-Kutta methods are given in Figure 4.1.1.

When ψ is independent of z, the numerical solution, y(h), of a Runge-Kutta method is in fact a B-series.
Extend aj,k such that aj,k = 0 whenever j > s or k ≥ s. Set the tree function a to be

a(t) =

s∑
j=1

bjΦj(t)

where

Φj(B(t1, . . . , tm) =
∑

1≤k1,...,km<j

m∏
i=1

aj,kiΦki(ti)

and Φj(•) = 1. Then y(h) = Ya,φ(h) because from [25, §II.2] we have:

y(h) = y0 +
∑
t∈T

α(t)δt(ψ(y0))

 s∑
j=1

bjΦj(t)

 h|t|

|t|!
.

4.2 Mazza’s differential equation

In this section we will look at a more general family of differential equations than in the previous section.
We will show that this family of differential equations is equivalent to the Kuba-Panholzer recurrence.

In order to extend the differential equation, first we need a special operator. For a hook length operator,
B, we define the operator, LB(x) =

∑
n≥0 Lnx

n, such that for all k ∈ N+, LB(k) = kBk. Recall that
P (1 + θ)(zn) = P (1 + n)zn and so

LB(1 + θ)(zn) = LB(1 + n)zn = (n+ 1)Bn+1z
n.

The LB operator is closely related to the L∗B operator of Section 3.2. Applying
∫

0
to LB(1 + θ) we get∫

0

LB(1 + θ)(zn) =

∫
0

(n+ 1)Bn+1z
n = Bn+1z

n+1 = L∗B(zn).

Therefore
∫

0
LB(1 + θ) = L∗B .

Using the LB operator we can derive the following differential equation.

Theorem 4.2.1 (Mazza 2004 [42]). Let B be a hook length operator and φ(z) =
∑n
i=1 φnz

n be a formal
power series then the B-series,

Y (z) = YB·!,φ(z) =
∑
t∈T

B(t)t!α(t)δt(φ(0))
z|t|

|t|!
,

satisfies the differential equation:
Y ′ = LB(1 + θ)φ(F). (4.2.1)

52

0

c2 a2,1

c3 a3,1 a3,2

...
...

...
. . .

cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs

(a) The standard representation of a Runge-Kutta method.

0

1/2 1/2

0 1

(b) Runge-Kutta method due to Runge [46].

0

1/3 1/3

2/3 -1/3 1

1 1 -1 1

1/8 3/8 3/8 1/8

(c) Runge-Kutta method due to Kutta [36].

0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 -56/13 32/9

8/9 19372/6561 -25360/2187 64448/6561 -212/729

1 9017/3168 -355/33 46732/5247 49/176 -5103/18656

1 35/384 0 500/1113 125/192 -2187/6784 11/84

5179/57600 0 7571/16695 393/640 -92097/339200 187/2100 1/40

(d) Runge-Kutta method due to Dormand and Prince [17].

Figure 4.1.1: Matrices of coefficients for Runge-Kutta methods. The coefficients are represented as a
matrix in the form of (a). These examples were taken from [25]

. The methods due to Runge and Kutta are among the earliest Runge-Kutta methods and the
Runge-Kutta method due to Dormand and Prince is a more modern method that is more accurate.

53

As we saw in the previous section, the B-series, Y , in the above theorem is equal to the hook length
series Fφ,B . Thus Equation 4.2.1 is a differential equation of hook length series as exhibited in following
corollary.

Corollary 4.2.2. Let B be a hook length operator and T ∼= Z × Φ(T) be a simple tree class. Then
F = FT ,B satisfies the differential equation:

F ′ = LB(1 + θ)φ(F).

From the equality of Y and Fφ,B , Theorem 4.2.1 follows directly from Theorem 2.2.4 since [zn]Y ′(z) =

(n+ 1)[zn+1]Y (z) and [zn]LB(1 + θ)φ(Y (z)) = (n+ 1)Bn+1[zn]φ(Y (z)).

When using the diferential equation to derive hook length formulae we use the initial condition F (0) = 0

since tree classes, in this thesis, do not contain the empty tree.

Though the two relations are equivalent, one advantage of Mazza’s differential equation over the Kuba-
Panholzer recurrence (Theorem 2.2.4) is that it gives a criterion for the existence of a hook length
formula: solvability of the differential equation.

Also, if we are able to solve the differential equation, we can obtain a hook length formulae given a tree
class and a hook length operator. The hook length formula obtained will also generally be in a closed
form. We can use and have used the differential equation to find new novel hook length formulae that
may be difficult to find using the Kuba-Panholzer recurrence.

Finally the differential equation is a simpler method to verify hook length formulae than the Kuba-
Panholzer recurrence, since it requires differentiation instead of coefficient extraction.

Example 4.2.3. In this example we shall verify Postnikov’s formula (Equation 1.0.1) using Mazza’s
differential equation. Let B ∼= Z × (1 + B)2 be the class of binary trees. Let Bk = 1 + 1

k . Postnikov’s
formula implies that

FB,B(z) =
W(2z)

2z
− 1.

Since LB(k) = k + 1, by Corollary 4.2.2 FB,B(z) satisfies the differential equation:

F ′B,B(z) = 2(1 + FB,B(z))2 + 2z(1 + FB,B(z))F ′B,B(z).

Substituting FB,B(z) = W(2z)
2z − 1 and using W′(z) = W(z)

z(1−W(z)) we get:

W(2z)2

2z2(W(2z)− 1)
=

W(2z)2

2z2
+

W(2z)3

2z2(1−W(2z))
.

Bringing the right hand side of the equation under the same denominator, we can see that the equation
is satisfied and Postnikov’s equation holds. �

One apparent problem with Equation 4.2.1 is that it only works if kBk is a polynomial. Otherwise L(k)

is not a well-defined operator. However we can fix this if LB is rational in k.

54

Let LB(k) = g(k)
h(k)

(
Bk = g(k)

kh(k)

)
for polynomials g, h. Then

[zn]h(1 + θ)LB(1 + θ)φ(F) = [zn]LB(1 + θ)φ(F)

= h(n+ 1)
g(n+ 1)

h(n+ 1)
[zn]φ(F)

= g(n+ 1)[zn]φ(F)

= [zn]g(1 + θ)φ(F).

Therefore Y satisfies:
h(1 + θ)Y ′ = g(1 + θ)φ(Y)

by Theorem 4.2.1.

This means that for rational hook lengths, LB behaves as a rational operator. We will see how to handle
more complicated hook length operators in Section 4.6 with our new methods.

As with the Kuba-Panholzer recurrence we can derive a differential equation for forest hook length series.

Corollary 4.2.4. Let B be a hook length operator and φ(z) =
∑
i≥0 φiz

i be a formal power series with
φ0 6= 0. Then Gφ,B = G satisfies the differential equation:

G′(z) = φ′(φ-1(G(z)) · LB(1 + θ)G(z). (4.2.2)

Proof. Let φ and B be as above. Equation 4.2.2 is equivalent to the following differential equation:

(φ-1(G(z)))′ = LB(1 + θ)G(z).

Taking the coefficient extraction of both sides we get:

[zk+1](φ-1(G(z)))′ = [zk+1]LB(1 + θ)G(z)

(k + 1)[zk+1]φ-1(G(z)) = (k + 1)Bk+1[zk]G(z),

which is the recurrence in Theorem 2.2.7.

4.3 Hypergeometric differential equations

The hypergeometric function, 2F1(a, b; c; z) =
∑
n≥0

Γ(n+a)Γ(n+b)Γc
n!Γ(n+c) zn, also called the Gauss function [49,

§1.1], is a classical function in analysis. The hypergeometric function, F (z) = 2F1(a, b; c; z) solves the
differential equation [49, §1.2]:

z(1− z) d
2

dz2
F (z) + (c− (1 + a+ b)z)

d

dz
F (z)− aby = 0. (4.3.1)

This differential equation is called the hypergeometric differential equation.

55

One may notice that Equation 4.3.1 looks similar to the types of equations in Theorem 4.2.1. In fact for
Bk = (k−a)(k−b)

k(k−c) and φ(x) = (1 + x) the differential equation of Theorem 4.2.1 is equivalent to

z(1− z) d
2

dz2
Fφ,B(z) + (c− (1 + a+ b)z)

d

dz
Fφ,B(z)− aby = 1.

Furthermore 2F1(a, b; c; z) = Fφ,B(z) + 1. This shall be confirmed in a more general setting.

Define

rFs(a1, . . . , ar; b1 . . . , bs; z) =
∑
n≥0

∏r
i=1

(
Γ(n+ai)

Γ(ai)

)
n!
∏s
j=1

(
Γ(n+bj)

Γ(bi)

)zn.
This function is called the general hypergeometric function.

Theorem 4.3.1. Given the general hypergeometric function, rFs(a1, . . . , ar; b1 . . . , bs; z), let

G(k) =

r∏
i=1

(k + ai − 1)

and

H(k) =

s∏
i=1

(k + bi − 1).

Then F (z) = rFs(a1, . . . , ar; b1 . . . , bs; z) solves the differential equation

H(1 + θ)(F ′) = G(1 + θ)(F). (4.3.2)

Proof. For this proof we shall denote rFs(a1, . . . , ar; b1 . . . , bs; z) with F (z).

Let L be the class of rooted lines which satisfies L ∼= Z × (1 + L). Let

Bk =

∏r
i=1(k + ai − 1)

k
∏s
i=1(k + bi − 1)

then by the definitions of FL,B and rFs(a1, . . . , ar; b1 . . . , bs; z), FL,B(z) = F (z)− 1. By Corollary 4.2.2,
FL,B solves the differential equation

F ′L,B = LB(1 + θ)(1 + FL,B)

and so F solves the differential equation

(F (z)− 1)′ = LB(1 + θ)(F (z)).

Since LB(k) = G(k)
H(k) we get that F solves

H(1 + θ)(F ′) = G(1 + θ)(F)

as desired.

56

When r = 2, s = 1, Equation 4.3.2 is equivalent to the hypergeometric differential equation (Equa-
tion 4.3.1).

Furthermore, Equation 4.3.2 is equivalent to the general hypergeometric equation,(
z
d

dz
(z
d

dz
+ b1 − 1) · · · (z d

dz
+ bs − 1)− z(z d

dz
+ a1) · · · (z d

dz
+ ar)

)
F (z) = 0,

which appears in [49, §2.1] as the differential equation of the generalized Gauss function.

The results in this sections are not new. However, the proof of Theorem 4.3.1 views the general hypergeo-
metric function as a series of weighted lines, which gives the general hypergeometric differential equation
a slight combinatorial flavour. In Section 4.7 we will turn this idea around and look at combinatorially
solutions to different differential equations.

4.4 New hook length formulae using Mazza’s differential equa-

tion

In this section we will see how we can use Mazza’s differential equation (Equation 4.2.1) to find new
hook length formulae. This section contains five new hook length formulae proved using the differential
equation.

Differential equations have been used in the hook length formula community to find hook length formulae
[48, 23, 54]. The differential equations they used involve solutions that are power series. Differential
equations were also used with increasing tree classes [39, 1]. However none of the combinatorialists inves-
tigating hook length formulae developed the differential equation to the generalization of Equation 4.2.1.

Example 4.4.1 (Formula 6.10.1). Consider T ∼= Z ×SEQ(T)2, the class of fat plane trees. A fat plane
tree is a plane tree in which each node is given a color from 0 to the degree of the node. This class of
trees is not widely used. We consider it here to demonstrate that how our methods can be applied to
any simple tree class class with a computable combinatorial operator. The combinatorial operator for
fat plane trees, SEQ(Z)2, has the generating function 1 + 2z + 3z2 + 4z3 + · · · .

By Corollary 4.2.2 we have that F = FT ,σ satisfies the differential equation:

F ′(z) =
1

(1− F (z))2
.

The solution to this differential equation with F (0) = 0 is

F (z) = 1− (1− 3z)
1/3.

Therefore we have that: ∑
t∈Tn

n!
∏

v∈V (t)

1

|tv|
=

n−1∏
i=1

(3i− 1). (4.4.1)

�

57

Example 4.4.2 (Formula 6.11.6). Consider the class, R, of rooted unordered labelled trees. Let Bk =

1 + 1
k . By Corollary 4.2.2 we have that F = FR,B satisfies the differential equation:

F ′(z) = 2eF (z) + z
d

dz
(eF (z)).

Solving this differential equation using Maple, along with F (0) = 0, we get that:

F (z) = −2 log

(
1

2

(
1 +
√

1− 4z
))

= 2 log

(
1

1− 1−
√

1−4z
2

)
.

So, ∑
t∈Rn

1

2n!

∏
v∈V (t)

(
1 +

1

|tv|

)
=

(
2n+ 1

n+ 1

)
. (4.4.2)

F (z) is also twice the exponential generating function for cycles of labelled Catalan objects and F (z) is
also twice the generating function of planar embedded trees (see [38] or [2, §3.1] for the definition). An
open question is to find a bijection between one of these classes and the the class of bicolored labelled
plane tree with one color increasing that the hook length formula counts. �

Example 4.4.3 (Formula 6.11.7). Consider again R ∼= Z × SET(R), the class of rooted unordered
labelled trees. Let Bk = 2

k − 1. By Corollary 4.2.2 we have that F = FR,B satisfies the differential
equation:

F ′(z) = eF (z) − z d
dz

(eF (z)).

Solving this differential equation using Maple, along with F (0) = 0, we get that:

F (z) = log
(
z +

√
z2 + 1

)
.

Therefore ∑
t∈R2n+1

∏
v∈V (t)

(
2

|tv|
− 1

)
= (−1)n(2n− 1)!!. (4.4.3)

�

Example 4.4.4 (Formula 6.14.2). Consider T ∼= Z×SETeven(T), the class of rooted unordered labelled
trees with only vertices of even degree. Let B = 2

k − 1. By Corollary 4.2.2 we have that F = FT ,B

satisfies the differential equation:

F ′(z) = cosh(F (z))− z d
dz

(cosh(F (z))).

Solving this differential equation using Maple, along with F (0) = 0, we get that:

F (z) = log
(
z +

√
z2 + 1

)
.

Therefore, ∑
t∈T2n+1

∏
v∈V (t)

(
2

|tv|
− 1

)
= (−1)n(2n− 1)!!. (4.4.4)

58

An interesting fact about this hook length formulae is that it is the same as the formula in Example 4.4.3
except with a different tree class. This because the trees of R that have a node with an odd degree have
weights that cancel each other out. �

Example 4.4.5 (Formula 6.17.1). Consider T ∼= Z × SEQ(SET≥1(T)), the class of Schröder trees. By
Corollary 4.2.2 we have that F = FT ,σ satisfies the differential equation:

F ′(z) =
1

2− eF (z)
.

Plugging F (z) = W
(

1
2 exp

(
z−1

2

))
+ z−1

2 into the differential equation we get:

1

2

W
(

1
2 exp

(
z−1

2

))
1−W

(
1
2 exp

(
z−1

2

)) +
1

2
=

1

2− 2W
(

1
2 exp

(
z−1

2

)) ,
which is satisfied. The hook length series, F , is also the generating function for phylogenetic trees. As
we saw in Example 2.3.4 there is a bijection from increasing Schröder trees to phylogenetic trees. �

4.5 The differential equation for decorated trees and general

hook length operators

Now we shall return to decorated trees. Using Theorem 2.5.2 we can see that a hook length series of
decorated trees satisfies a similar differential equation.

Corollary 4.5.1. Let φ(z, x) be a bivariate formal power series and B be a hook length, then Fφ,B

satisfies the differential equation:

F ′φ,B(z) = LB(1 + θ)φ(z, Fφ,B(z)).

Proof. Let n ∈ N. Then [zn]F ′φ,B(z) = (n+ 1)[zn+1]Fφ,B(z) and

[zn]LB(1 + θ)φ(z, Fφ,B(z)) = (n+ 1)Bn+1[zn]φ(z, Fφ,B(z)).

By Theorem 2.5.2, [zn+1]Fφ,B(z) = Bn+1[zn]φ(z, Fφ,B(z)) and therefore Fφ,B satisfies the differential
equation.

Example 4.5.2. This example, found by Leroux and Viennot [40], shows the simplicity of σ when φ

is the product of two univariate functions of different variables. In this case the differential equation is
separable.

Let φ(x) be a formal power series and let φ∗(z, x) = f(z)φ(x). Let F = Fφ,σ and F ∗ = Fφ∗,σ.

From Theorem 4.2.1 we have that F satisfies F ′ = φ(F) and from Corollary 4.5.1 we have that F ∗

satisfies
(F ∗(z))′ = φ∗(z, F ∗(z)) = f(z)φ(F ∗(z)). (4.5.1)

Since d
dzF (

∫
0
f(z)) = F ′(

∫
0
f(z))f(z) = f(z)φ(F (

∫
0
f(z))), F (

∫
0
f(z)) satisfies Equation 4.5.1. Since it

is also the case that F (
∫

0
f(0)) = F (0) = 0 = F ∗(0), we have that F ∗(z) = F (

∫
0
f(z)). �

59

π



1

3 4

6

7

9 10

8 11

2 5

14

12


= 9, 8, 3, 11, 10, 2, 1, 5, 6, 12, 7, 14, 4

Figure 4.5.1: An example of the isomorphism π. The integers adjacent to the edges of the tree are the
labels of the adjacent edges.

Next we have a specific example of a hook length formula of a decorated tree class. Note that the hook
length operator in this example does not factor.

Example 4.5.3. This is a new hook length formula.

Let φ(z, x) = (1 + zx)2. Then F = Fφ,σ satisfies F ′ = (1 + zF)2. Solving this DE we get F (z) =
tanh(z)

1−z tanh(z) . �

(2n − 1)![z2n−1]F (z) in the above example counts the number of binary trees with n nodes where each
node and each edge have a label with an added restriction. The restriction is that the label of each node
is less than the labels of the nodes and edges below it (i.e. the tree is increasing). Note that [z2n]F (z) = 0

so F (z) is the exponential generating function of this tree class.

From the OEIS, F (z) is also the exponential generating function of sequence A113583 [50]. This sequence
counts the number of odd-sized permutations of length n that no local that have no local minimum at
even positions, i.e. permutations π with π2i > π2i−1 or π2i > π2i+1 for all i ≤ n−1

2 [37].

The isomorphism is given by

π(t) = π

 a

b

t1

c

t2

 = π(t1)bacπ(t2)

where t is a binary tree with nodes and edges labelled with any S ⊆ N+ such that the label of each node
is less than the labels below it. The isomorphism gives a permutation with no local minimum at even
positions because the labels of the edges are put in even positions and the label of an edge is always less
than the label of its parent which is either directly before or directly after the label of the edge. For an
example see Figure 4.5.1.

The inverse isomorphism is

t(π) = t(π′bacπ′′) =

a

b

t(π′)

c

t(π′′)

where a is the least element of π′bacπ′′ and π is a word with unique characters in N+ such that π2i > π2i−1

or π2i > π2i+1.

60

This isomorphism is an extension of Donaghey’s isomorphism between binary increasing trees and per-
mutations in Example 2.3.1. The proof that the isomorphism is indeed an isomorphism is similar.

We can also apply Corollary 2.6.1 to get a differential equation for general tree hook length series.

Corollary 4.5.4. Let T be a class of decorated trees satisfying: T ∼= Z ×Φ(Z, T , T (1), . . . , T (l)), where
each T (i) is a class of decorated trees and let B be a general hook length operator where s, t ∈ Tn implies
Bs = Bt. Define

F (z) =
∑
t∈T

B(t)ζ(|t|),

F (i)(z) =
∑
t∈T (i)

B(t)ζ(|t|)

and φ to be the formal power series of Φ. Then F satisfies the differential equation

F ′(z) = LB(1 + θ)φ(z, F (z), F (1)(z), . . . , F (l)(z)),

where φ(z) is the formal power series of Φ(Z).

This differential equation is the foundation for the methods of Section 4.6. But now we shall look at
three examples of new hook length formulae found using this corollary that do not use the new methods
directly.

The hook length operators in the following examples are all general hook length operators as in Sec-
tion 2.6. If a general hook length operator is an ordinary hook length operator — it depends only on
the size of the subtrees — in subclasses of our tree class then we can break up our tree class into these
subclasses. By applying the hook length operator to each subclass we can stay in the diferential equation
framework and we will obtain a system of differential equations after applying Corollary 4.5.4. This is
the main idea of the systems method of Section 4.6.2, which is used for ordinary hook length operators.
Note that this technique was used in the example at the end of Section 2.6. The following examples are
a preview of this method.

Example 4.5.5. This is a new hook length formula.

Let B ∼= Z × (1 + B)2 and Bt = 1
|t| if the root of t has less than two children and Bt = a

|t| if the root of
t has exactly two children. We can split B into two classes: B(1) ∼= Z × (1 + 2B(1) + 2B(2)), trees whose
root has less than two children and B(2) ∼= Z × (B(1) +B(2))2, trees whose root has exactly two children.
Let F1 = FB(1),B and F2 = FB(2),B .

By Corollary 4.5.4, F ′1(z) = 1 + 2F1(z) + 2F2(z) and F ′2(z) = a(F1(z) + F2(z))2. Using Maple’s dsolve
function and simplifying we can see that FB,B(z) = F1(z) + F2(z) = e2αz−1

α+1+(α−1)e2αz , where α =
√

1− a.

In the special case where a = 2 we get: FB,B(z) = tan z
1−tan z . This gives the hook length formula:

∑
t∈B

z|t|
∏

v∈V (t)\l(t)

deg(v)

|tv|
=

tan z

1− tan z
. (4.5.2)

�

61

1

2

84

9

6

10

357

11 12

Figure 4.5.2: An example of a labelled binary tree where the label of each node is greater than the label
of its ancestors of degree 2.

Example 4.5.6. This is a new hook length formula.

LetM∼= Z × (1 +M+M2) and

Bt =

a− a−2
|t| if deg(root(t)) = 1

1
|t| otherwise.

We splitM into two classes: M(1) ∼= Z ×M, the class of trees where the root has exactly one child and
M(2) ∼= Z × (1 +M2), the class of trees where the root has zero or two children. Let F1 = FM(1),B ,
F2 = FM(2),B and F = FM,B .

By Corollary 4.5.4, F ′1(z) = 2F (z) + azF ′(z) and F ′2(z) = 1 + F (z)2. Since F (z) = F1(z) + F2(z),
therefore

F ′(z) = 1 + 2F (z) + F (z)2 + azF ′(z).

Plugging F (z) = a
a+log(1−az) − 1 into the equation we can see that it is satisfied.

Taking a = 2 we can view this hook length as counting the number of labelled binary plane trees where
the label of each node is greater than the label of its ancestors of degree 2. An example of such a tree
is given in Figure 4.5.2. The counting sequence of this class was found by the author and added to the
OEIS [50] as sequence A227917.

�

Example 4.5.7 (Formula 6.5.9). This is a new hook length formula.

Consider the class of Fibonacci trees, T , which satisfies the combinatorial specification: T ∼= Z × (T +

1)×(1+Z). In this specification the last Z term indicates a node and not extra size for a node, therefore
T is not a simple tree class. When dealing with hook length operators where B1 6= 1 we need to take
special consideration of the last Z term. Let T1 be the class that only contains the tree that is just a
leaf. Then T ∼= Z × (T + 1)× (1 + T1). Let Bk be a hook length operator then FT1,B(z) = B1z and so
by Corollary 4.5.4 F = FT ,B satisfies the differential equation:

F ′(z) = LB(1 + θ)((F (z) + 1)(1 +B1z)).

62

Let Bk = 1 + 1
k . Then F = FT ,B satisfies the differential equation:

F ′(z) = 2(F (z) + 1)(1 + 2z) + z
d

dz
((F (z) + 1)(1 + 2z)).

Solving this we get F (z) = 1−2z
((1−2z)2(1+z))4/3

. F (z) counts the number of labelled Fibonacci trees where
each node is colored white or black and white nodes are increasing. �

4.6 New methods of finding hook length formulae

This section discusses new methods, using the differential equation, to find hook length formulae. In
particular we will show how to use the differential equation for hook length operators that are piecewise
using the leafless method (Section 4.6.1) or systems method (Section 4.6.2). By exploiting Theorem 3.2.5
we will also show how to use the differential equation for hook length operators with factors of rk using
the scaled method (Section 4.6.3).

4.6.1 Leafless method

The method of this subsection is called the leafless method and can be used when Bk is of the following
form:

Bk =

a if k = 1

g(k) if k > 1

for some a ∈ K and g : N+ → K with g(1) 6= a if defined. The method is called the leafless method
because we essentially ignore the leaves of the tree when constructing the differential equation.

For a tree class, T ∼= Z × Φ(T), we can split the class into two classes T1, the trees of size 1 and T (2)

the trees with size greater than 1.

Let Ψ be the combinatorial operator such that Ψ(C) = {c ∈ Φ(C) : |c| > 0} then ψ(x) = φ(x)− φ0. Also

T (2) ∼= Z ×Ψ(T),

T1
∼= φ0Z

and
T ∼= T (2) + T1.

Therefore by Corollary 4.5.4, FT ′,B satisfies the differential equation:

F ′T (2),B(z) = LB(1 + θ)ψ(FT ,B).

Since ψ(x) = φ(x)− φ0, FT ,B = FT (2),B + FT1,B and FT1,B = B1φ0z, we have

F ′T ,B(z)−B1φ0 = LB(1 + θ)(φ(FT ,B)− φ0).

The following three examples illustrate how to use the leafless method.

63

Example 4.6.1 (Formula 6.6.4). This is a new hook length formula.

ConsiderM∼= Z × (1 +M+M2), the class of Motzkin trees. Let

Bk =

1 if k = 1

1
k−1 if k > 1.

We need the leafless method in this example because 1
k−1 is undefined for k = 1. Using the leafless

method we get that LB(k) = k
k−1 . Then FM,B satisfies the differential equation:

z
d2

dz2
FM,B(z) = FM,B(z) + FM,B(z)2 + z

d

dz
(FM,B(z) + FM,B(z)2).

Let F (z) = z
1−z . Plugging F = FM,B into the differential equation above we can see that it is satisfied.

Since F (0) = 0 = FM,B(0) and F ′(0) = 1 = F ′M,B(0), F = FM,B . Therefore for all n ≥ 1∑
t∈Mn

∏
v∈V (t)\l(t)

1

|tv| − 1
= 1. (4.6.1)

�

Example 4.6.2 (Formula 6.16.2). This is a new hook length formula.

Consider C = Z × (1 + CYC(C)), the class of cyclic trees. Let

Bk =

1 if k = 1

1
k − 1 if k > 1.

Again we need the leafless method in this example because 1
k − 1 equals 0 when k = 1, but B1 = 1.

Using the leafless method we get that F = FC,B satisfies the differential equation:

d

dz
F (z)− 1 = −z d

dz
(− log(1− F (z))).

Using Maple, with F (0) = 0, we get that F (z) = 1 + z −
√

1 + z2. Therefore∑
t∈C2n

22n−1

n!

∏
v∈V (t)\l(t)

(
1

|tv|
− 1

)
=

(-1)n

n

(
2n

n

)
. (4.6.2)

�

Example 4.6.3 (Formula 6.16.3). This is a new hook length formula.

Again consider the class of cyclic trees, C. Let

Bk =

1 if k = 1

Bk = k − 1 if k > 1.

Then we can show that
FC,B(z) = 1− 1∑

n≥0 n!zn
. (4.6.3)

64

We need the leafless method in this example because k − 1 equals 0 when k = 1, but B1 = 1. Using the
leafless method we get that FC,B satisfies the differential equation

d

dz
FC,B(z)− 1 = z2 d

2

dz2
(− log(1− FC,B(z))) + 2z

d

dz
(− log(1− FC,B(z))).

Since
∑
n≥0 n!zn = 2F0(1, 1; ; z), substituting Equation 4.6.3 into the differential equation we get:

d
dz 2F0(1, 1; ; z)

2F0(1, 1; ; z)2
− 1 = z2 2F0(1, 1; ; z) d

2

dz2 2F0(1, 1; ; z)− (ddz 2F0(1, 1; ; z))2

2F0(1, 1; ; z)2
+ 2z

d
dz 2F0(1, 1; ; z)

2F0(1, 1; ; z)
.

From Theorem 4.3.1 we know that 2F0(1, 1; ; z) satisfies the differential equation
d
dz 2F0(1, 1; ; z) = 2F0(1, 1; ; z) + 3z d

dz 2F0(1, 1; ; z) + z2 d2

dz2 2F0(1, 1; ; z). We can use this to simplify to:

d
dz 2F0(1, 1; ; z)

(
− 1− z2 d

dz 2F0(1, 1; ; z) + (1− z)2F0(1, 1; ; z)
)

2F0(1, 1; ; z)2
= 0.

Since

−1− z2 d

dz
2F0(1, 1; ; z) + (1− z)2F0(1, 1; ; z) = −1− z2 d

dz

∑
n≥0

n!zn + (1− z)
∑
n≥0

n!zn

= −1− z2
∑
n≥1

nn!zn−1 + (1− z)
∑
n≥0

n!zn

= −1−
∑
n≥2

(n− 1)(n− 1)!zn+

∑
n≥0

n!zn −
∑
n≥1

(n− 1)!zn

= −
∑
n≥2

(n− 1)(n− 1)!zn +
∑
n≥2

n!zn −
∑
n≥2

(n− 1)!zn

=
∑
n≥2

(−(n− 1)(n− 1)! + n(n− 1)!− (n− 1)!)zn

= 0

and 2F0(1, 1; ; z) is nonzero, we have that the equation is satisfied. This hook length series is also the
ordinary generating function of connected permutations. The hook length, B, counts the number of trees
where each internal node has an extra edge that points to one of its descendants. See Example 2.3.7 for
the isomorphism between these two classes. �

4.6.2 System method

Suppose Bk is piecewise with P1∪· · ·∪Pm = N+ and Bk = B
(i)
k whenever k ∈ Pi. Furthermore, suppose

that LB(i) 6= LB(j) for all i 6= j. Then we cannot use the differential equation from Corollary 4.2.2 to
find hook length formulae.

However, if the target tree class, T , can easily be seperated into tree classes T (1), . . . , T (m) such that
T (i) ∼= Z×Φi(T (1), . . . , T (m)) and the sizes of trees in each Ti lie in Pi then we can use Corollary 2.6.1 to

65

find the hook length formulae. From the theorem we know that FT (i),B solves the differential equation

F ′T (i),B = L
(i)
B (1 + θ)Φi(FT (1),B , . . . , FT (m),B).

This leaves us with a system of differential equations. If we solve this system we can get FT ,B by adding
the F ′T (i),B

together. We call this method the system method.

Note that the system method is a generalization of the leafless method where P1 = {1}, P2 = N+ \ {1},
T1
∼= φ0Z and T2

∼= Z × (Φ(T)− φ0).

We could not find any new hook length formulae that use the system method without using the scaled
method of the next subsection. The example we provide shows how to use the system to reprove an
old hook length formula. Example 4.6.6 shows how to use the system method in combination with the
scaled method.

Example 4.6.4. The following example was found by Han in 2008 by using a precursor to the Kuba-
Panholzer recurrence [27]. Here we shall use the system method instead.

Consider B ∼= Z × (1 + B)2, the class of binary trees and the hook length operator B given by:

Bk =

1 if k is odd

- 1
k if k is even.

We shall split the class of binary trees into two classes, Bodd and Beven, the classes of odd and even sized
binary trees respectively. It follows that that Bodd satisfies the specification:

Bodd ∼= Z × ((1 + Beven)2 + B2
odd)

and Beven satisfies the specification:

Beven ∼= Z × 2Bodd × (1 + Beven).

From the system method we get that Fo = FBodd,B and Fe = FBeven,B satisfy the differential equations:

F ′o(z) = (1 + Fe(z))
2 + Fo(z)

2 + z
d

dz
((1 + Fe(z))

2 + Fo(z)
2)

and
F ′e(z) = -2Fo(z)(1 + Fe(z)).

Han showed that FB,B(z) = z−z2
1+z2 . By substituting Fo(z) = z

1+z2 and Fe(z) = - z2

1+z2 in the equations we
can see that they are satisfied. �

4.6.3 Scaled method

Suppose we have a hook length operator, B, with Bk = rk−1Ck, where C is also hook length operator.
Then we cannot use Mazza’s differential equation because LB(k) = rk−1LC(k) and

LB(x) =

∞∑
i=0

i∑
j=0

(
m

i

)
(ln r)i

ri!
cm−ix

m

66

which does not give an easily solvable differential equation.

However we know from Theorem 3.2.5 that L∗B(x(z)) = L∗C(x(rz)). Thus∫
0

LB(1 + θ)(x(z)) = L∗B(x(z)) = L∗C(x(rz)) =

∫
0

LC(1 + θ)(x(rz))

and so
LB(1 + θ)(x(z)) = LC(1 + θ)(x(rz)).

Therefore we know that for a power series, φ, Fφ,B = F solves the differential equation

F ′(z) = LB(1 + θ)(φ(F (z))) = LC(1 + θ)(φ(F (rz))).

We call this method the scaled method since we scale the hook length series to r.

The following four examples show how to use the scaled method. They all use either the leafless method
or system method in combination with the scaled method.

Example 4.6.5 (Formula 6.9.4). This is a new hook length formula.

Let

Bk =

1 if k = 1

22−k if k > 1.

Then r = 1
2 and

Ck =

1 if k = 1

2 if k > 1.

Then by the leafless method FO,C satisfies the differential equation:

F ′O,C(z)− 1 = 2

(
FO,C(z)

1− FO,C(z)
+ z

d

dz

(
FO,C(z)

1− FO,C(z)

))
.

By the scaled method we have that F = FO,B satisfies the differential equation:

F ′(z)− 1 = 2

(
F (z/2)

1− F (z/2)
+ z

d

dz

(
F (z/2)

1− F (z/2)

))
.

Plugging in F (z) = z
1−z we get:

1

(1− z)2
− 1 = 2

 z/2
1−z/2

1− z/2
1−z/2

+
z

2(1− z/2)2(1− z/2
1−z/2)2

 .

Simplifying we see that the differential equation is satisfied and F = FO,B . Therefore∑
t∈On

4n
∏

v∈V (t)\l(t)

1

2|tv|
= 1 (4.6.4)

�

67

Example 4.6.6 (Formula 6.9.4). This is a new hook length formula.

Consider the class of plane trees, O ∼= Z × SEQ(O). Let

Bk =


1 if k ≤ 2

1
2 if k ≡ 1, 2 mod 4, k > 2

- 1
2 if k ≡ 0, 3 mod 4.

We can rewrite this hook length as:

Bk =



1 if k = 1

1 if k = 2

1
2 ι
k−1 if k > 2 is odd

1
2ι ι

k−1 if k > 2 is even

where ι =
√
-1 is the imaginary number. We can split the class of plane trees into three classes O2,

the class of trees of size 2, Oo the class of odd sized trees and Oe, the class of even sized trees of
size greater than 2. Then O2

∼= Z2, Oo ∼= Z × SEQeven(SEQ(Oe + O2) × Oo) × SEQ(Oe + O2) and
Oe ∼= Z×SEQodd(SEQ(Oe+O2)×Oo)×SEQ(Oe+O2). We can see that Oo(z) = z 1−Oe(z)−Oe(z)

(1−Oe(z)−O2(z))2−Oo(z)2

and Oe(z) = z Oo(z)
(1−Oe(z)−O2(z))−Oo(z)2 , where Oo, Oe and O2 are the generating functions of Oo, Oe and

O2 respectively. Let F2 = FO2,B , Fo = FOo,B and Fe(Oe, B).

Using the system method together together with the scaled method and the leafless method on Oo, we
get the following differential equations:

F2(z) = z2,

F ′o(z)− 1 =
1

2

(
1− Fe(ιz)− F2(ιz)

(1− Fe(ιz)− F2(ιz))2 − Fo(ιz)2
+ z

d

dz

(
1− Fe(ιz)− F2(ιz)

(1− Fe(ιz)− F2(ιz))2 − Fo(ιz)2

))
and

F ′e(z) =
1

2ι

(
Fo(ιz)

(1− Fe(ιz)− F2(ιz))2 − Fo(ιz)2
+ z

d

dz

(
Fo(ιz)

(1− Fe(ιz)− F2(ιz))2 − Fo(Iz)2

))
.

Substituting Fo(z) = z
1+z2 and Fe(z) = - z4

1+z2 we can see that the equations are satisfied. Since F2(z) +

Fo(z) + Fe(z) = z2 + z
1+z2 −

z4

1+z2 = z+z2

1+z2 , we get that FO,B(z) = z+z2

1+z2 .

In this example it is actually simpler to prove the formula using the Kuba-Panholzer recurrence Now we
shall illustrate this. Let F (z) = z+z2

1+z2 then

[zk]F (z) =

1 if k ≡ 1, 2 mod 4

-1 if k ≡ 0, 3 mod 4

and

[zk−1]
1

1− F (z)
= [zk−1]

1

1− z+z2

1+z2

= [zk−1]
1 + z2

1− z
=

1 if k ≤ 2

2 if k > 2.

So [zk]F (z)

[zk−1] 1
1−F (z)

= Bk and by Theorem 2.2.4, we have that F (z) = FO,B(z). �

68

Example 4.6.7 (Formula 6.10.2). This is a new hook length formula.

Consider T ∼= Z × SEQ(T)2 , the class of fat plane trees and let

Bk =

1 if k = 1

1
2k−3(k+2)

if k > 1

Then r = 1
2 and

Ck =

1 if k = 1

4
k+2 if k > 1

By the scaled and leafless methods we have that F = FT ,B satisfies the differential equation:

zF ′′(z) + 3F ′(z)− 3 = 4

(
1

(1− F (z/2))2
− 1 + z

d

dz

(
1

(1− F (z/2))2
− 1

))
.

Plugging in F (z) = z
1−z we get:

2z

(1− z)3
+

3

(1− z)2
− 3 = 4

 1(
1− z/2

1−z/2

)2 − 1 +
z

(1− z/2)2
(

1− z/2
1−z/2

)3

 .

Simplifying we see that the differential equation is satisfied and F = FT ,B . Therefore∑
t∈Tn

8n
∏

v∈V (t)\l(v)

1

2|tv|(|tv|+ 2)
= 1. (4.6.5)

�

Example 4.6.8 (Formula 6.16.4). This is a new hook length formula.

Consider C ∼= Z × (1 + CYC(C)), the class of cyclic trees and

Bk =

1 if k = 1

k−1
2k−1−1

if k > 1
.

This example is more complicated than the previous examples because 2k−1 is not a factor of Bk, but is
instead inside a factor.

However we can write LB(k) as LB(k) = k(k−1)
LC(k)−1 , where Ck = 2k−1.

By the leafless F = FC,B satisfies the differential equation:

LC(1 + θ)F ′(z)− F ′(z) = −2z
d

dz
log(1− F (z))− z2 d

2

dz2
log(1− F (z)).

Since LC(1 + θ)g(z) = g(2z) we get that F satisfies the differential equation:

F ′(2z)− F ′(z) = −2z
d

dz
log(1− F (z))− z2 d

2

dz2
log(1− F (z)).

69

Plugging in F (z) = z
1−z we get:

1

1− 2z
− 1

1− z
=

2z

(1− z)(1− 2z)
+

z2(3− 4z)

(1− z)2(1− 2z)2
.

Simplifying we see that the differential equation is satisfied and F = FC,B . Therefore∑
t∈Cn

∏
v∈V (t)

|tv| − 1

2|tv|−1 − 1
= n!. (4.6.6)

�

4.7 Representing differential equations combinatorially

In this section we use Mazza’s differential equation and Corollary 4.5.4 to represent some differential
equation solutions as hook length series. This can be considered solving the differential equations com-
binatorially.

Finding combinatorial solutions to differential equations was indirectly done by Butcher when he was
developing his analysis of the Runge-Kutta methods [6, 7]. Leroux and Viennot [39] independently set
out to find combinatorial solutions for the same differential equation as Butcher,

y′(z) = H(z, y(z)).

They discovered that when H only depends on y(z), the solution for y is the class of increasing labellings
of the class T ∼= Z×H(T). In this section we will extend their findings for all of the differential equations
that Corollary 4.5.4 covers.

Leroux and Viennot also found combinatorial interpretations of systems of differential equations. They
interpreted higher-order differential equation by reducing them to systems of differential equation in the
form of Section 4.7. This is different from how we will handle higher-order differential equations since
higher derivatives can be generated by the LB operator. We will not be discussing systems of differential
equations.

4.7.1 More on the theta operator

Before we solve differential equations combinatorially, first we need to investigate the theta operator,
θ = z d

dz . Our goal is to be able to convert differential equations without θ into equations with θ so we
can use Corollary 4.5.4. The following propositions will lead us to this goal.

Proposition 4.7.1. For n ∈ N:

θn =

n∑
i=0

{
n

i

}
zi
di

dzi
(4.7.1)

(1 + θ)n =

n∑
i=0

{
n+ 1

i+ 1

}
zi
di

dzi
(4.7.2)

70

where
{
a
b

}
are the Stirling numbers of the second kind.

Proof. Both equations follow from the recurrence
{
a+1
b

}
= b
{
a
b

}
+
{
a
b−1

}
for all a, b ≥ 1.

For Equation 4.7.1, we can see that: θ0 = 1 =
{

0
0

}
z0 d0

dz0 .

Assume that the result holds for n. Then,

θn+1 = z
d

dz

n∑
i=0

{
n

i

}
zi
di

dzi

=

n∑
i=0

(
i

{
n

i

}
zi
di

dzi
+

{
n

i

}
zi+1 d

i+1

dzi+1

)

=

n∑
i=0

(
i

{
n

i

}
+

{
n

i− 1

})
zi
di

dzi
+

{
n

n

}
zn

dn

dzn

=

n∑
i=0

{
n+ 1

i

}
zi
di

dzi
+

{
n+ 1

n+ 1

}
zn

dn

dzn

=

n+1∑
i=0

{
n+ 1

i

}
zi
di

dzi
.

Similarly for Equation 4.7.2, we get: (θ + 1)0 = 1 =
{

1
1

}
z0 d0

dz0 .

Assume that the result holds for n. Then,

(1 + θ)n+1 =

(
1 + z

d

dz

) n∑
i=0

{
n+ 1

i+ 1

}
zi
di

dzi

=

n∑
i=0

({
n+ 1

i+ 1

}
zi
di

dzi
+ i

{
n

i+ 1

}
zi
di

dzi
+

{
n+ 1

i+ 1

}
zi+1 d

i+1

dzi+1

)

=

n∑
i=0

(
(i+ 1)

{
n+ 1

i+ 1

}
+

{
n+ 1

i

})
zi
di

dzi
+

{
n+ 1

n+ 1

}
zn

dn

dzn

=

n∑
i=0

{
n+ 2

i+ 1

}
zi
di

dzi
+

{
n+ 2

n+ 2

}
zn

dn

dzn

=

n+1∑
i=0

{
n+ 2

i+ 1

}
zi
di

dzi
.

We use the previous proposition to obtain the following identity.

Proposition 4.7.2. For n ∈ N:

zn
dn

dzn
=

n∑
i=0

s(n+ 1, i+ 1)(1 + θ)i (4.7.3)

71

where s(a, b) are the signed Stirling numbers of the first kind.

Proof. Proof by induction on n.

For n = 0, z0 d0

dz0 = 1 = s(1, 1)(1 + θ)0.

For n ≥ 1,

zn
dn

dzn
= (1 + θ)n −

n−1∑
i=0

{
n+ 1

i+ 1

}
zi
di

dzi
by Equation 4.7.2

= (1 + θ)n −
n−1∑
i=0

{
n+ 1

i+ 1

} i∑
j=0

s(i+ 1, j + 1)(1 + θ)j by induction

= s(n+ 1, n+ 1)(1 + θ)n −
n−1∑
j=0

n−1∑
i=j

s(i+ 1, j + 1)

{
n+ 1

i+ 1

} (1 + θ)j

= s(n+ 1, n+ 1)(1 + θ)n +

n−1∑
j=0

s(n+ 1, j + 1)(1 + θ)j

Proposition 4.7.3. For n ∈ N and f : K→ K, n-times differentiable,

znf(z)
dn

dzn
=

n∑
i=0

zi
di

dzi
gi(z) (4.7.4)

for some gi(z) : K→ K, i-times differentiable.

Before we prove this proposition we shall prove the following lemma:

Lemma 4.7.4. For n ∈ N and f : K→ K, n-times differentiable,

f(z)
dn

dzn
=

n∑
i=0

di

dzi
gi(z) (4.7.5)

for some gi(z) : K→ K, i-times differentiable.

Proof. The proof is by induction on n.

If n = 0 then f(z) d
0

dz0 = f(z) = d0

dz0 f(z).

If n ≥ 1 then

f(z)
dn

dzn
=

d

dz
f(z)

dn−1

dn−1
+ f ′(z)

dn−1

dn−1
by product rule

=
d

dz

n−1∑
i=0

di

dzi
gi(z) +

n−1∑
i=0

di

dzi
hi(z) by the induction hypothesis

=
d0

dz0
h0(z) +

n−1∑
i=1

di

dzi
(fi−1(z) + hi(z)) +

dn

dzn
gn−1(z).

72

By

proof of Proposition 4.7.3. The proof is by induction on n.

If n = 0 then z0f(z) d
0

dz0 = f(z) = z0 d0

dz0 f(z).

If n ≥ 1 then

znf(z)
dn

dzn
= zn

d

dz
f(z)

dn−1

dn−1
+ znf ′(z)

dn−1

dn−1
by product rule

= zn
d

dz

n−1∑
i=0

di

dzi
ki(z) + znf ′(z)

dn−1

dn−1
by Lemma 4.7.4

= zn
dn

dzn
kn−1(z) +

n−2∑
i=0

zn
di+1

dzi+1
ki(z) + znf ′(z)

dn−1

dn−1

= zn
dn

dzn
kn−1(z) +

n−1∑
i=1

i∑
j=0

zj
dj

dzj
hi,j(z) + znf ′(z)

dn−1

dn−1
by the induction hypothesis

= zn
dn

dzn
kn−1(z) +

n−1∑
i=1

i∑
j=0

zj
dj

dzj
hi,j(z) +

n−1∑
i=0

zi
di

dzi
pi(z) by the induction hypothesis

=

n−1∑
i=0

zi
di

dzi

pi(z) +

n−1∑
j=i

hj,i(z)

+ zn
dn

dzn
kn−1(z).

Setting gi = pi(z) +
∑n−1
j=i hj,i(z) for i = 1, . . . , n− 1 and gn(z) = kn−1(z), we are done.

4.7.2 Combinatorial solutions to differential equations

From the propositions in the preceding subsection we get the following result.

Theorem 4.7.5. Let

e(F, z) =

N∑
i=0

zifi(z)
di

dzi
φi(z, F (z))

with fi(z) ∈ K→ K, φi : K×K→ K, both i-times differentiable. Then

e(F, z) =

N∑
i=0

(1 + θ)iψi(z, F (z)),

for some ψi : K×K→ K, i-times differentiable with respect to z.

Proof. This follows by applying Proposition 4.7.3 to each summand and then applying Proposition 4.7.2
to each of the resulting summands.

73

Let us see how we can view the latter differential equation combinatorially under some mild hypotheses.
If e(F, z) =

∑M
j=0 aj(1 + θ)jF ′(z) for some M and ai then we have the equation:

M∑
j=0

aj(1 + θ)jF ′(z) =

N∑
i=0

(1 + θ)iψi(z, F (z)). (4.7.6)

Consider the system of tree classes:

T (i) ∼= Z × ψi(Z, T)∀i = 1, . . . , N

T =

N⋃
i=0

T (i).

Let A(k) =
∑M
j=0 ajk

j+1. If A(k) 6= 0 for all k ∈ N+ then set B(i)
k = ki

A(k) and Bt = B
(i)
k for all t ∈ T (i).

If A(k) has a zero in the natural numbers we cannot proceed. Also the system of tree classes should be
solvable. This requires that ψi(z, 0) is non zero for some i.

By Corollary 4.5.4 it follows that for each i, FT (i),B satisfies the differential equation.

M∑
j=0

aj(1 + θ)jF ′T (i),B(z) = (1 + θ)iψi(z, FT ,B(z)).

Since FT ,B =
∑N
i=0 FT (i),B , we have that FT ,B solves Equation 4.7.6.

Now we shall look at a few examples that highlight how Theorem 4.7.5 can be used to represent differential
equations with combinatorics.

Example 4.7.6. First we have linear differential equations. Consider the differential equation:

N∑
i=0

fi(z)F
(i)(z) = f-1(z), (4.7.7)

where fi are 2i times differentiable functions and have a zero at the origin of order at least i−1 for i ≥ 1.

We shall proceed to rewrite the above differentiable equation in the end form of Theorem 4.7.5. For
i ≥ 1, we know that fi(z) = aiz

i−1 + zigi(z) for some ai ∈ K and gi, i times differentiable function. If
we let g0 = f0 then we can rewrite Equation 4.7.7 as such:

N∑
i=1

aiz
i−1F (i)(z) = −

N∑
i=0

zigi(z)F
(i)(z) + f-1(z).

From Proposition 4.7.3 we know that there exist h0, . . . , hN such that Equation 4.7.7 is equivalent to:

N∑
i=1

aiz
i−1F (i)(z) =

N∑
i=0

zi
di

dzi
(hi(z)F (z)) + f-1(z).

Also from Proposition 4.7.2 if we let bi =
∑N
j=i s(i, j)aj and φi(z) =

∑N
j=i s(i + 1, j + 1)hj(z) we get

that Equation 4.7.7 is equivalent to:

N∑
i=1

bi(1 + θ)i−1F ′(z) =

N∑
i=0

(1 + θ)i(φi(z)F (z)) + f-1(z), (4.7.8)

74

which is the desired form.

Now we define our tree classes. Let T , T (-1), T (0), . . . be tree classes satisfying:

T (-1) ∼= Z × SEQ(Z),

T (m) ∼= Z × Zm × T ∀m ≥ 0,

T =
⋃
m≥-1

T (m).

Let b(k) =
∑N
i=1 bik

i and φ∗m(k) =
∑N
i=0[zm]φi(z)k

i. Assuming that b(k) is nonzero for all positive
integers k, we also define hook length operators:

B
(-1)
k =

[zk−1]f-1(z)

b(k)
,

B
(m)
k =

φ∗m(k)

b(k)
∀m ≥ 0,

Bt = B
(m)
|t| , t ∈ T

(m).

By Corollary 4.5.4 F = FT ,B solves Equation 4.7.8 and therefore solves Equation 4.7.7. We can write
FT ,B explicitly as a sum of compositions as follows:

FT ,B(z) =
∑

(a1,...,an)∈P

([xa1−1]f-1(x))
∏n
i=2 φ

∗
ai−1(A(i))∏n

i=1 b(A(i))
zA(n),

where A(i) =
∑i
j=1 aj and P is the class of compositions. �

We are not restricted to having the fi have a zero at the origin of order at least i− 1 as can we simply
multiply both sides of the equation by z until that is the case. The following example illustrates this.

Example 4.7.7. Consider the differential equation:

F (n)(z) = 1. (4.7.9)

From antidifferential calculus we know that solution to Equation 4.7.9 have the form F (z) = zn

n! +∑n−1
i=0 Ciz

i.

Multiplying both sides of the equation by zn−1 to get:

zn−1F (n)(z) = zn−1.

By Proposition 4.7.2 we know that this is equivalent to:
n−1∑
i=0

s(n, i+ 1)(1 + θ)iF ′(z) = zn−1. (4.7.10)

Let T ∼= Zn and Bn = 1∑n
i=1 s(n,i)k

i . By Corollary 4.5.4 FT ,B = F solves Equation 4.7.10 and thus solves
Equation 4.7.9. Note that

FT ,B = B(•n)zn =
1∑n

i=1 s(n, i)n
i
zn =

1

n!
zn,

75

which is the solution where Ci = 0 for all i = 0, . . . , n− 1. �

Now we shall investigate a more interesting class of differential equations that lead to classes of trees
that are more than just lines.

Example 4.7.8. Consider the differential equation:

F ′(z) =

N∑
i=0

zi
di

dzi
(Pi(F (z)), (4.7.11)

where the Pi are i times differentiable functions.

From Proposition 4.7.2 if we letQi(x) =
∑N
j=i s(i+1, j+1)Qj(x) we get that Equation 4.7.11 is equivalent

to:

F ′(z) =

N∑
i=0

(1 + θ)i(Qi(F (z))), (4.7.12)

which is the desired form.

Now we define our tree classes. Let T , T (-0), T (-1), . . . be tree classes satisfying:

T (m) ∼= Z × T m ∀m ≥ 0,

T =
⋃
m≥0

T (m).

Let Q∗m(k) =
∑N
i=0[zm]Qi(z)k

i.

B
(m)
k =

Q∗m(k)

k
∀m ≥ 0,

Bt = B
(m)
|t| , t ∈ T

(m).

By Corollary 4.5.4 F = FT ,B solves Equation 4.7.12 and therefore solves Equation 4.7.11. �

We have seen how some differential equations can be represented combinatorially. We can broaden
the types of differential equations we can combinatorially resolve by applying the differential equation
in Corollary 4.2.4 thereby including forests. We can also resolve systems of differential equations like
Leroux and Viennot [39, 40].

76

Chapter V

Conclusion

The main purpose of this thesis is to unify the idea of the tree factorial and its generalizations amongst
three communities. These communities are the tree hook length formula community, the B-series com-
munity and the quantum field theory community. The ideas of the three communities can be collected
together in the following theorem.

Theorem 5.0.9. Let T be a class of decorated trees satisfying: T ∼= Z × Φ(Z, T , T (1), . . . , T (l)), where
each T (i) is a class of decorated trees and let B be a general hook length operator where s, t ∈ Tn implies
Bs = Bt. Define

F (z) =
∑
t∈T

B(t)ζ(|t|),

F (i)(z) =
∑
t∈T (i)

B(t)ζ(|t|)

and φ to be the formal power series of Φ. Then

1. [z0]F (z) = 0 and

Bk =
[zk]F (z)

[zk−1]φ(z, F (z), F (1)(z), . . . , F (l)(z))
,∀k ≥ 1

2. F satisfies
F (z) = L∗Bφ(z, F (z), F (1)(z), . . . , F (l)(z)),

and

3. F satisfies the dynamical system

F ′(z) = LB(1 + θ)φ(z, F (z), F (1)(z), . . . , F (l)(z)), F (0) = 0.

Here L∗B and LB are as defined in Sections 3.2 and 4.2 respectively.

The above theorem is a combination of Corollary 2.6.1, Corollary 3.2.2 and Corollary 4.5.4.

77

1900

1950

1960

1970

1980

1990

2000

2010

Runge-Kutta methods (1895–
1901) [46, 29, 36]

B-series for Runge-Kutta meth-
ods (1972) [7]

Binary hook length formula
(1973) [21]

DE for increasing trees (1986)
[39]

More general DE of B-series
(2004) [42]Postnikov’s formula (2004) [45]

Recurrence of hook length series
(2013) [35] B-series are hook length series

and generalization to decorated
trees (2014)

Renormalization (1949) [19]

Connes-Kreimer Hopf algebra
(1998) [13]

B-series for renormalization
(2000) [5]

Universal property of Connes-
Kreimer Hopf algebra (2011)
[44]

Recurrence of binary hook
length series (2008) [27]

Figure 5.0.1: The history of hook length formulae, B-series and Feynman rules. The edges represent
knowledge of previous work.

78

The hook length formula community was able to find the recurrence for simple trees in 2013 and also
recurrences for a few more general classes (see [35]). The B-series community was able to find the
differential equation for simple trees in 2004 [42]. The quantum field theory community was able to
define hook length-like Feynman rules for decorated trees in 2011 [44] and use B-series for toy Feynman
examples in 2000 [5]. Figure 5.0.1 illustrates the history of the three communities as we best understand
it in a graphical manner.

From the unification of hook length formulae and B-series we were able to develop new methods using
the differential equation to find hook length formulae. We were also able to extend the work of Butcher,
Leroux, Viennot and Mazza of finding combinatorial solutions to differential equations.

This thesis investigated two frameworks for finding or proving hook length formulae. One was through
a recurrence (Theorem 2.2.4) and the other was through a differential equation (Theorem 4.2.1). The
advantage of the recurrence is that it is easier to compute the hook length operator needed to obtain
a given hook length series. The advantages of the differential equation are that it was easier to obtain
the hook length series from a given hook length operator and that the differential equation can give
closed form solutions. We also extended these frameworks to decorated trees and some non-simple tree
classes. Finally given that the differential equation framework is simpler to use than the recurrence,
we developed methods to still use the differential equation if the hook length operator did not fit into
Mazza’s specification.

We saw in Section 2.3 that some hook length formulae imply isomorphisms among certain combinatorial
classes. For some of the new hook length formulae such isomorphisms have been found: Formulae 6.16.3
and 6.17.1. However, a couple of new hook length formulae imply the existence of isomorphisms that
remain to be found. One is Formula 6.11.6 which implies that there is a bijection between bicolored
labelled unordered rooted trees with with one color increasing and n nodes and planar embedded trees
with n+ 1 nodes. Another is Formula 6.6.4, which implies that there is a isomorphism between a class
of labelled Motzkin trees and the class of permutations. All of the isomorphisms in Section 2.3 use the
recurrence construction of the tree class considered. However it is unknown whether there is a universal
form for the isomorphisms arising from hook length formula. The new isomorphisms all use unlabelling
which may be useful to find other isomorphisms from hook length formulae.

We also saw how Feynman rules in quantum physics can be related to hook length operators. This leads
to new toy models in quantum physics that have combinatorial properties. This connection gave us a
combinatorial specification for hook length series.

One open problem is to further explain why the hook length series of Formulae 6.11.7 and 6.14.2 are
equal. Specifically, it would be nice to have a partition of the set of trees of size n that have an odd-
degree node where each part of the partition add up to zero after applying the hook length operator.
Another topic that is open for study is the general hook length operators of Section 2.6. While there are
examples of more general hook length operators (like Kuba and Panholzer’s hook length operators that
depend on height [35]), there is no mention of hook length formulae of general hook length operators in
the combinatorial community, except in this thesis.

79

We can also study hook length operators of other combinatorial objects. Hook length operators of
partitions are very classical (see [51]) and a similar recurrence to Theorem 2.2.4 was found by Han
[27]. Another object that hook length operators have been studied with is lattices. The hook length
operator for lattices actually generalizes the hook length of partitions and trees [52, 3]. The existence of
a recurrence for lattices akin to the recurrences for trees and partitions is open.

The final chapter of this thesis is a catalogue of known hook length formulae. As mentioned in the
introduction, a catalogue of this extent has not been complied anywhere prior to this work. There
are nineteen new hook length formulae found by the author. Of these new hook length formulae,
Formulae 6.6.4, 6.7.8, 6.8.1, 6.9.4, 6.10.2, 6.16.4, 6.18.11 and 6.20.2 all have a hook length series that
is one of z

1−z ,
z

1−zr or 1
1−z and Formulae 6.5.9 and 6.11.6 both use Postnikov’s hook length operator,

Bk = 1 + 1
k .

80

Chapter VI

Catalogue of hook length formulae

This catalogue contains tables of known hook length formulae. Each table contains the known hook
length formulae for a specific class of trees or forests and is headed by the combinatorial specification for
that class. The tables are also sometimes followed by notes about specific formulae in that table.

Each table has four columns. The first column,No., is a number to identify the formula in this catalogue.
The second column, Bk, is the hook length operator for the formula. For the hook length operator k
denotes the variable and other letters, if present, are arbitrary constants. The third column, F, is the
hook length series or the coefficient of zn of the hook length series. If the entry is F (z) = f(z) then
f(z) is the hook length series and if the entry is Fn = an or n!Fn = n!an then an is the coefficient of
zn of the hook length series. Fn is used for unlabelled classes and n!Fn is used for labelled classes. The
last column, source, is the earliest source where the hook length formula was found. This will either
be an external citation or a reference to a theorem or example in this thesis. If the latter then it is a
new hook length formula. Some of external sources did not express the hook length series as a function,
but instead just gave the series expansion. We express the hook length as a function whenever possible,
even if no other source gave the formula with a function.

For the last table, Section 6.21, the third column, B(f), is B when applied to a single forest, f .

6.1 Lines

T ∼= Z × (1 + T)

No. Bk F Source

6.1.1 Bk =
∏r
i=1(ai+k−1)

k
∏s
i=1(bi+k−1) F (z) = rFs(a1, . . . , ar; b1, . . . , bs; z)− 1 Theorem 4.3.1

6.1.2 Bk = (a+k−1)(b+k−1)
k(c+k−1) F (z) = 2F1(a, b; c; z)− 1 Theorem 4.3.1

81

6.2 Binary trees

T ∼= Z × (1 + T)2

No. Bk F Source

6.2.1 Bk = 1
k F (z) = z

1−z [21]

6.2.2 Bk = 1 + 1
k F (z) = W(2z)

2z − 1 [45]

6.2.3 Bk = (k+1)a+1−k
2k Fn = 1

n+1

(
(n+1)a
n

)
[18]

6.2.4 Bk = 1
k2k−1 F (z) = ez − 1 [27]

6.2.5 Bk = (a+k)k−1

k(2a+k−1)k−2 F (z) =
(

W(2z)
2z

)a
− 1

∗
[27]

6.2.6 Bk = 6
k(k+2) F (z) = 1

(1−z)2 − 1 [27]

6.2.7 Bk =

a if k = 1∏k−1
i=1 (a+i)

2k
∏k−2
i=1 (2a+i)

if k ≥ 2
F (z) = 1

(1−z)a − 1 [27]

6.2.8 Bk = k+3
2k F (z) =

(
1−
√

1−4z
2z

)2

− 1 [27]

6.2.9 Bk =

a if k = 1∏k−1
i=1 (a+2k−i)

2k
∏k−2
i=1 (2a+2k−2−i)

if k ≥ 2
F (z) =

(
1−
√

1−4z
2z

)a
− 1 [27]

6.2.10 Bk =

a(b+ 1) if k = 1∏k−1
i=1 αi(k,a,b)

2k
∏k−2
i=1 αi(k−1,2a,b)

if k ≥ 2
Fn = a(b+1)

n!

∏n−1
i=1 αi(n, a, b)

†
[27]

6.2.11 Bk =

1 if k = 1

1
2k if k > 1

F (z) = tan z + sec z − 1 [27]

6.2.12 Bk =


a if k = 1

1
2ak if k is even

a
k(1+a2) if k ≥ 3 is odd

F (z) = a tan z + sec z − 1 [27]

6.2.13 Bk =

1 if k is odd

- 1
k if k is even

F (z) = z−z2
1+z2 [27]

6.2.14 Bk =


1
m if k = 3m− 2

0 if k = 3m− 1

- 1
m if k = 3m

F (z) = z−z3
1+z3 [27]

6.2.15 Bk =

1 if k = 1

2 if k ≥ 2
F (z) =

1−4z−
√

1−8z(1−z)
4z [27]

6.2.16 Bk = 1
(2k+1)22k−1 F (z) =

(
sinh(

√
z)/
√
z
)
− 1 [28]

6.2.17 Bk = ((k−1)!)2

(2k−1)! Fn = 2n

(n+1)!n! Example 2.4.3

82

∗ The series expansion of this function is Fn = a(a+n)n−1

n! 2n.

† αi(n, a, b) = ab+ a+ (2n− i)b+ i.

6.3 Complete binary trees

T ∼= Z × (1 + T 2)

No. Bk F Source

6.3.1 Bk = 1
k F (z) = tan z [21]

6.3.2 Bk =

a if k = 1

1
ak if k ≥ 2

F (z) = a tan z [27]
∗

6.3.3 Bk =

1 if k = 1

2
k−1 if k ≥ 2

F (z) = z
1−z2 [27]

∗

6.3.4 Bk =

1 if k = 1

1
k2k−2 if k ≥ 2

F (z) = sinh(z) [27]
∗

6.3.5 Bk =

a if k = 1

1
a k ≥ 2

F (z) = a 1−
√

1−4z2

2z [27]
∗

6.3.6 Bk =

1 if k = 1

2
1−k k ≥ 2

F (z) = z
1+z2 [27]

∗

∗ The odd-sized semicomplete binary trees of the next section are precisely the complete binary trees.
The formulae in this table whose source is [27] were derived by the author of this thesis from the
formulae for semicomplete binary trees.

83

6.4 Semicomplete binary trees

T ∼= Z × (1 + Todd × (1 + T))

No. Bk F Source

6.4.1 Bk = 1
k F (z) = tan z + sec z − 1 [55]

6.4.2 Bk =

a if k = 1

1
ak if ≥ 2

F (z) = a tan z + sec z − 1 [27]

6.4.3 Bk =

1 if k = 1

1
k2k−2 if ≥ 2

F (z) = ez − 1 [27]

6.4.4 Bk =

1 if k = 1

1

b k2 c
k ≥ 2

F (z) = z
1−z [27]

6.4.5 Bk =

a if k = 1

1
a k ≥ 2

F (z) = 1−
√

1−4z2

2z2 (1 + az)− 1 [27]

6.4.6 Bk =

1 if k = 1

- 1

b k2 c
k ≥ 2

F (z) = z−z2
1+z2 [27]

6.4.7 Bk =



1 if k = 1

0 if k = 3m− 1

- 1
m if k = 6m− 3

1
m if k = 6m− 2

- 1
m if k = 6m

1
m if k = 6m+ 1

F (z) = z−z3
1+z3 [27]

84

6.5 Fibonacci trees

T ∼= Z × (1 + T)× (1 + Z)

No. Bk F Source

6.5.1 Bk = 1
k F (z) = ez+z

2/2 − 1 [52]

6.5.2 Bk = 1
k2 F (z) = ez − 1 [52]

6.5.3 Bk =

1 if k = 1

1
2 if k ≥ 2

F (z) = z
1−z [27]

6.5.4 Bk = (k+a−1)(k+a−2)
k((a+1)k−2) F (z) = 1

(1−z)a − 1 [27]

6.5.5 Bk =

1 if k = 1

4(2k−1)(2k−3)
(k+1)(5k−6) if k ≥ 2

F (z) = 1−
√

1−4z
2z − 1 [27]

6.5.6 Bk = (a+2k−4)(a+2k−3)(a+2k−2)(a+2k−1)
k(a+k−2)(a+k)((a+4)k−6) F (z) =

(
1−
√

1−4z
2z

)a
− 1 [27]

6.5.7 Bk =


a if k = 1

2m−1
(m+1)a if k = 2m

2a(2m−1)
a2(m+1)+2(2m−1) if k = 2m+ 1

F (z) = 1−
√

1−4z2

2z2 (1 + az)− 1 [27]

6.5.8 Bk =


-1 if k ≡ 0 mod 3

1 if k ≡ 1 mod 3

0 if k ≡ 2 mod 3

F (z) = z−z3
1+z3 [27]

6.5.9 Bk = 1 + 1
k F (z) = 1−2z

((1−2z)2(z+1))
4/3
− 1 Example 4.5.7

6.6 Motzkin trees

T ∼= Z × (1 + T + T 2)

No. Bk F Source

6.6.1 Bk = 1
k F (z) =

√
3

2 tan
(√

3
2 z + π

6

)
− 1

2 [1]

6.6.2 Bk =

1 if k = 1

2
(
1 + 1

k

)
if k > 1

F (z) = 1
2

(
W(2z)

2z − 1
)

[35]

6.6.3 Bk =

 1
2 if k = 1

1
k2k−2 if k > 1

F (z) = 1
2 (ez − 1) [35]

6.6.4 Bk =

1 if k = 1

1
k−1 if k > 1

F (z) = z
1−z Example 4.6.1

85

6.7 r-ary trees

T ∼= Z × (1 + T)r

No. Bk F Source

6.7.1 Bk = 1
k F (z) = −1 + (1− (r − 1)z)

1/1−r [52]

6.7.2 Bk = ((r−1)k+1)a+1−k
rk Fn = 1

(r−1)n+1

(
((r−1)n+1)a

n

)
[18]

6.7.3 Bk = a+ 1
k Fn = a+1

n!

∏n−1
i=1 βi(n, r, a)

∗
[18]

6.7.4 Bk = r − 1 + 1
k Fn = rn((r−1)n+1)n−1

n! [18]

6.7.5 Bk = 1 + a
k Fn = a+1

n!

∏n−1
i=1 γi(n, r, a)

†
[48]

6.7.6 Bk = 1
krk−1 F (z) = ez − 1 [56]

6.7.7 Bk =

ab if k = 1∏k−1
i=1 δi(n, r, a, b) if k ≥ 2

‡
Fn = ab

n!

∏n−1
i=1 εi(n, r, a, b)

§
[10]

6.7.8 Bk = 1/(k+r−2
r−1) F (z) = z

1−z Example 2.4.1

∗ βi(n, r, a) = ((r − 1)n+ i+ 1)a+ (r − 1)(n− i) + 1.

† γi(n, r, a) = (ri− i+ 1)(a+ 1) + r(n− i).

‡ δi(k, r, a, b) =


ab+(b−1)rk−i(b−r)

abr+r(b−1)(k−1)−i(b−r) if i < k − 1

ab+(b−1)rk−(k−1)(b−r)
rk if i = k − 1

.

§ εi(n, r, a, b) = ab+ (b− 1)rn− i(b− r).

6.8 Complete r-ary trees

T ∼= Z × (1 + T r)

No. Bk F Source

6.8.1 Bk =

1 if k = 1

(r−1)!rr−1∏r−2
i=0 (k+ir−1)

if k > 1
F (z) = z

1−zr Example 2.4.2

86

6.9 Plane trees

T ∼= Z × SEQ(T)

No. Bk F Source

6.9.1 Bk = 1
k F (z) = 1−

√
1− 2z [39]

6.9.2 Bk = (-1)k

k F (z) = 1− ez [56]

6.9.3 Bk =
(
1− 1

k

)k−1
F (z) = 1− e−W (z) ∗ [10]

6.9.4 Bk =

1 if k = 1

22−k if k > 1
F (z) = z

1−z Example 4.6.5

6.9.5 Bk =


1 if k ≤ 2

1
2 if k ≡ 1, 2 mod 4, k > 2

- 1
2 if k ≡ 0, 3 mod 4

F (z) = z+z2

1+z2 Example 4.6.6

∗ The series expansion of this function is Fn = (n−1)(n−1)

n! .

6.10 Fat plane trees

T ∼= Z × SEQ(T)2

No. Bk F Source

6.10.1 Bk = 1
k F (z) = 1− (1− 3z)1/3 Example 4.4.1

6.10.2 Bk =

1 if k = 1

1
2k−3(k+2)

if k > 1
F (z) = z

1−z Example 4.6.7

87

6.11 Labelled unordered trees

T ∼= Z × SET(T)

No. Bk F Source

6.11.1 Bk = 1
k F (z) = log(1

1−z) [43]

6.11.2 Bk = 1
k2 F (z) = 2 log

(
2

2−z

)
[42]

6.11.3 Bk = 1
kBk−1

∗
F (z) = ez − 1 [10]

6.11.4 Bk = 1
k(2k−1)

†
F (z) = 2 log (sec (

√
z)) [34]

6.11.5 Bk = 1

k(k+a−2
a−1)

F (z) = a log
(

a
a−z

)
Example 2.4.4

6.11.6 Bk = 1 + 1
k F (z) = 2 log

(
1

1− 1−
√

1−4z
2

)
Example 4.4.2

6.11.7 Bk = 2
k − 1 F (z) = log

(
z +
√
z2 + 1

)
Example 4.4.3

∗ Bn is the nth Bell number. See [20, §II.3]

† Hook length operator was 1
2k(2k−1) in [34].

6.12 Labelled unordered binary trees

T ∼= Z × SET≤2(T)

No. Bk F Source

6.12.1 Bk = 1
k F (z) = tan(z) + sec(z)− 1 [1]

6.13 Labelled unordered complete binary trees

T ∼= Z × (1 + SET2(T))

No. Bk F Source

6.13.1 Bk = 1
k F (z) =

√
2 tan

(
z√
2

)
[1]

88

6.14 Labelled unordered even trees

T ∼= Z × SETeven(T)

No. Bk F Source

6.14.1 Bk = 1
k F (z) = log (tan(z) + sec(z)) [1]

6.14.2 Bk = 2
k − 1 F (z) = log

(
z +
√
z2 + 1

) ∗
Example 4.4.4

∗ This formula has the same hook length operator and hook length series as Formula 6.11.7.

6.15 Labelled unordered odd trees

T ∼= Z × (1 + SETodd(T))

No. Bk F Source

6.15.1 Bk = 1
k F (z) = 2 arctanh

(
1−
√

2 tanh
(

arccoth
(√

2
)
− z√

2

))
[1]

6.16 Cyclic trees

T ∼= Z × (1 + CYC(T))

No. Bk F Source

6.16.1 Bk =

1 if k = 1

1− 1
k if k > 1

F (z) = 1− e-W(z) [35]

6.16.2 Bk =

1 if k = 1

1
k − 1 if k > 1

F (z) = 1 + z −
√
z2 + 1 Example 4.6.2

6.16.3 Bk =

1 if k = 1

k − 1 if k > 1
F (z) = 1− 1/

∑
n≥0 n!zn Example 4.6.3

6.16.4 Bk =

1 if k = 1

k−1
2k−1−1

if k > 1
F (z) = z

1−z Example 4.6.8

6.17 Schröder trees

T ∼= SEQ(SET≥1(T))

No. Bk F Source

6.17.1
∗

Bk = 1
k F (z) = W

(
1
2 exp

(
z−1

2

))
+ z−1

2 Example 4.4.5

89

∗ This formula was implied, but not proven, in [9].

6.18 Plane forests

T ∼= SEQ(Z × T)

No. Bk F Source

6.18.1 Bk = 1 + a
k Fn = a+1

n!

∏n−1
i=1 ((2i+ 1)(a+ 1) + (n− i)) [48]

6.18.2 Bk = a+ 1
k Fn = a+1

n!

∏n−1
i=1 ((2n+ 1)(a+ 1)− (a+ 2)i) [18]

6.18.3 Bk = 1
k F (z) = 1√

1−2z
[18]

6.18.4 Bk = (-1)k

k F (z) = e−z [10]

6.18.5 Bk = Bk
∗

F (z) = 1−e−z
z [10]

6.18.6 Bk =
∏k−1
i=1 ζi(k, a, b)

†
Fn = ab

n!

∏n−1
i=1 ((2n+ a)b− (b+ 1)i) [10]

6.18.7 Bk =
∏k−1
i=1 (2k−a−2i)

k
∏k−1
i=2 (2k+a−2i)

Fn = a
n!

∏n−1
i=1 (2n+ a− 2i) [10]

6.18.8 Bk = (2k−a)k−1

k(2k−2+a)k−2 Fn = a
n! (2n+ a)n−1 [10]

6.18.9 Bk =
(
1− 1

k

)k−1
F (z) = W(z)

z [10]

6.18.10 Bk = (2k−a−1)!(k+a−1)!
k(k−a)!(2k+a−3)! Fn = a

n+a

(
2n+a
n

)
[10]

6.18.11 Bk =

1 if k = 1

0 if k > 1
F (z) = 1

1−z Example 2.4.5

∗ Bn is the nth Bernoulli number. See [20, §IV.6].

† ζi(k, a, b) =


(2k−a)b−(b+1)i

(2k−2+a)b−(b+1)i if i < k − 1

(2k−a)b−(b+1)(k−1)
k if i = k − 1.

90

6.19 Labelled unordered forests

T ∼= SET(Z × T)

No. Bk F Source

6.19.1 Bk = 1 + a
k n!Fn = (a+ 1)

∏n−1
i=1 ((i+ 1)(a+ 1) + (n− i)) [48]

6.19.2 Bk = 1 + 1
k F (z) = 1−2z−

√
1−4z

2z2 [48]

6.19.3 Bk = 2(2k−2)!!
k(2k−3)!! F (z) = 1√

1−4z
[10]

6.19.4 Bk =
∏k−1
i=1 (bk−(b−1)i)

k
∏n−2
i=1 (k−1+a)b−(b−1)i)

n!Fn = ab
∏n−1
i=1 ((n+ a)b− (b− 1)i) [10]

6.19.5 Bk =
(

k
k+a−1

)k−2

F (z) = (W(a)/z)
a [10]

6.19.6 Bk = 1

k(k+a−2
a−1)

F (z) = 1
(1−z/a)a [10]

6.19.7 Bk = 1
k F (z) = 1

1−z [10]

6.19.8 Bk = 1
k2 F (z) = 4

(2−z)2 [10]

6.19.9 Bk = 1
k(2k−1)

∗
F (z) = 1 + (tan (

√
z))

2 [34]

∗ Hook length operator was 1
2k(2k−1) in [34].

6.20 Cyclic forests

T ∼= 1 + CYC(Z × T)

No. Bk F Source

6.20.1 Bk =

1 if n = 1

1− 1
k if n > 1

F (z) = W(z) + 1 [35]

6.20.2 Bk =
∑k
i=1

(-1)i−1

i!

(
k−1
i−1

)
F (z) = 1

1−z Example 2.4.6

91

6.21 Single forest

f ∈ F

No. Bk B(f) Source

6.21.1 Bk = 1 B(f) = 1 Folklore

6.21.2 Bk = a B(f) = a|f | Folklore

6.21.3 Bk = CkDk B(f) = C(f)D(f) Folklore

6.21.4 Bk =

a if k = 1

1 if k > 1
B(f) = a‖l(f)‖ Folklore

6.21.5 Bk = 1
k B(f) = inc(f)

|f |!
∗

[31]

6.21.6 Bk = [k]a
k

†
B(f) = 1

|f |!
∑
f ′∈lp(f) a

inv(f ′) ‡ [3]

6.21.7 Bk = [k]a
k

†
B(f) = 1

|f |!
∑
f ′∈lp(f) a

maj(f ′) ‡,§ [3]

6.21.8 Bk = 1
k B(f) = 1

|f |
∑
v∈l(f) σ(t \ v) [33]

6.21.9 Bk = 1 + a
k B(f) = 1

|f |!
∑
f ′∈lp(f)(1 + a)inv(f ′) ‡ [23]

6.21.10 Bk = [2k]a
k

†
B(f) = 1

|f |!
∑
f ′∈l−(f) a

inv(f ′)+n1(f ′)+n2(f ′) § [11]

6.21.11 Bk = (1+qk−1)[k]a
k

†
B(f) = 2

|f |!
∑
f ′∈le(f) a

inve(f
′)+n2(f ′) ¶,‖ [11]

6.21.12 Bk = (1+bak)[k]a
k

†
B(f) = 1

|f |!
∑
f ′∈l−(f) b

n1(f ′)ainv(f ′)+n1(f ′)+n2(f ′) ¶ [11]

∗ inc(f) is the number of increasing labellings of a plane embedding of f .

† [n]q = (1 + q + · · · qn−1).

‡ lp(f) is the set of labellings of a plane embedding of f and
inv(f) = ‖ {(u, v) : u, v ∈ V (f), u is a descendant of v, u is labelled with a greater label than v} ‖.

§ D(f) = {v ∈ V (f) : v is labelled with a greater label than its parent} and maj(f) =
∑
v∈D(f) |fv|.

¶ A signed labelling of a combinatorial object, c, is a labelling from a set S ⊂ {−|c|, . . . , |c|} such that
‖S‖ = |c| and {|s| : s ∈ S} = {1, . . . , |c|}, l−(f) is the set of signed labellings of a plane embedding
of f , n1 = ‖ {v ∈ V (f) : the label of v is negative} ‖ and
n2 = ‖ {(u, v) : u, v ∈ V (f), u is a descendant of v, the sum of the labels of u and v is negative} ‖.

‖ le(f) is the set of signed labellings of a plane embedding of f where each labelling has an even number
of negative labels.

92

Bibliography

[1] F. Bergeron, P. Flajolet and B. Salvo. Varieties of increasing trees. Lecture Notes in Computer
Science 581, 24–48, 1992.

[2] F. Bergeron, G. Labelle and P. Leroux. Combinatorial Species and Tree-like Structures. Cambridge
University Press, 1998.

[3] A. Bjorner and M. L. Wachs. q-hook length formulas for forests. Journal of Combinatorial Theory
52(2), 165–187, 1989.

[4] M. Bousquet-Mélou and M. Mishna. Walks with small steps in the quarter plane. M. E. Lladser,
R. S. Maier, M. Mishna and A. Rechnitzer (Editors), Algorithmic Probability and Combinatorics,
Contemporary Mathematics, volume 520, pages 1–39. American Mathematics Society, 2010.

[5] C. Brouder. Runge-Kutta methods and renormalization. The European Physics Journal C 12,
521–534, 2000.

[6] J. Butcher. Coefficients for the study of Runge-Kutta integration processes. J. Austral. Math. Soc.
3, 185–201, 1963.

[7] J. Butcher. An algebraic theory of integration methods. Mathematics of Computation 26, 79–106,
1972.

[8] J. Butcher. The Numerical Analysis of Ordinary Differential Equations. Wiley, 1987.

[9] W. Y. C. Chen. A general bijective algorithm for increasing trees. Systems Science and Mathematical
Sciences 12(3), 193–203, 1999.

[10] W. Y. C. Chen, O. X. Q. Gao and P. L. Guo. Hook length formulas for trees by Han’s expansion.
Electronic Journal of Combinatorics 16, 2009. R62.

[11] W. Y. C. Chen, O. X. Q. Gao and P. L. Guo. q-hook length formulas for signed labeled forests.
Advances in Applied Mathematics 51(5), 563–582, 2013.

[12] W. Y. C. Chen and L. Yang. On Postnikov’s hook length formula for binary trees. European Journal
of Combinatorics 29, 1563–1565, 2008.

93

[13] A. Connes and D. Kreimer. Hopf algebras, renormalization and noncommutative geometry. Comm.
Math. Phys. 199, 203–242, 1998.

[14] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth. On the Lambert W
function. Advances in Computational Mathematics 5, 329–359, 1996.

[15] P. J. Davis. 6. Gamma function and related functions. M. Abtamowitz and I. A. Stegun (Editors),
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Pub-
lications, 1965.

[16] R. Donaghey. Alternating permutations and binary increasing trees. Journal of Combinatorial
Theory, Series A 18, 141–148, 1975.

[17] J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. J. Compt. Appl.
Math. 6, 19–26, 1980.

[18] R. Du and F. Liu. (k,m)-Catalan numbers and hook length polynomials for plane trees. European
Journal of Combinatorics 28(4), 1312–1321, 2007.

[19] F. J. Dyson. The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736–1755, 1949.

[20] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

[21] D. Foata and M. P. Schützenberger. Nombres d’Euler et permutations alternantes. J. N. Srivastava,
F. Harar, C. R. Rao, G. C. Rota and S. S. Shrikhande (Editors), A Survey of Combinatorial Theory,
pages 173–187. 1973.

[22] J. Frame, G. Robinson and R. Thrall. The hook graphs of the symmetric group. Canad. J. Math.
6, 316–325, 1954.

[23] I. Gessel and S. Seo. A refinement of Cayley’s formula for trees. Electronic Journal of Combinatorics
11(2), R27, 2006.

[24] R. L. Graham, D. E. Knuth and O. Patashnik. Concrete Matematics: A Foundation for Computer
Science. Addison-Wesley, 1989.

[25] E. Hairer, S. P. Nørsett and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Prob-
lems. Springer-Verlag, 1993.

[26] E. Hairer and G. Wanner. On the Butcher group and general multi-value methods. Computing
13(1), 1–15, 1974.

[27] G. Han. Discovering hook length formulas by an expansion technique. Electronic Journal of Com-
binatorics 15(1), R133, 2008.

[28] G. Han. New hook length formulas for binary trees. Combinatorica 30(2), 253–256, 2010.

[29] K. Heun. Neue Methoden zur approximativen Integration der Differentialgleichungen einer unab-
hängigen Veränderlichen. Z. Math. Phys. 45, 23–48, 1900.

94

[30] C. Itzykson and J. Zuber. Quantum Field Theory. Dover, 2005.

[31] D. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, 1973.

[32] D. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, 1997.

[33] D. Kreimer. Chen’s iterated integral represents the operator product expansion. Advances in
Theoretical and Mathematical Physics 3(3), 1999.

[34] M. Kuba and A. Panholzer. Bilabelled increasing trees and hook-length formulas. European Journal
of Combinatorics 33(2), 248–258, 2012.

[35] M. Kuba and A. Panholzer. A unifying approach for proving hook-length formulas for weighted tree
families. Graphs and Combinatorics 29(6), 1839–1865, 2013.

[36] W. Kutta. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys
46, 435–453, 1901.

[37] M. La Croix. A combinatorial proof of a result of Gessel and Greene. Discrete Mathematics 18,
2251–2256, 2006.

[38] P. Leroux and B. Miloudi. Généralisations de la formule d’Otter. Annales des Sciences Mathéma-
tiques du Québec 16(1), 53–80, 1992.

[39] P. Leroux and G. X. Viennot. Combinatorial resolution of systems of differential equations I:
Ordinary differential equations. Lecture Notes in Mathematics 1234, 210–245, 1986.

[40] P. Leroux and G. X. Viennot. Combinatorial resolution of systems of differential equations IV:
Separation of variables. Discrete Mathematics 72, 237–250, 1988.

[41] Maplesoft. Maple 18. http://www.maplesoft.com/products/maple/.

[42] C. Mazza. Simply generated trees, B-series and Wigner processess. Random Structures and Algo-
rithms 25(3), 293–310, 2004.

[43] A. Meir and J. W. Moon. On the altitude of nodes in random trees. Canadian Journal of Mathe-
matics 30, 997–1015, 1978.

[44] E. Panzer. Hopf-algebraic renormalization of Kreimer’s toy model. Master’s thesis, Humboldt-
Universität Zu Berlin, 2011.

[45] A. Postnikov. Permutohedra, associahedra, and beyond. International Mathematics Research No-
tices 6, 1026–1106, 2009.

[46] C. Runge. Über die numerishe Auflösung von Differentialgleichungen. Math. Ann. 46, 167–178,
1895.

[47] B. Sagan. Probabilistic proofs of hook length formulas for complete m-ary trees. Séminaire
Lotharingien Mathematics 309(8), 2584–2588, 2001.

95

[48] S. Seo. A combinatotial proof of Postnikov’s identity and a generalized enumeration of labeled trees.
Electronic Journal of Combinatorics 11, N3, 2005.

[49] L. J. Slater. Generalized Hypergeometic Functions. Cambridge University Press, 1966.

[50] N. Sloane. The On-Line Encyclopedia of Integer Sequences. http://oeis.org.

[51] R. P. Stanley. Ordered structures and partitions. Memoirs of the Amer. Math. Society 1972.

[52] R. P. Stanley. The Fibonacci lattice. Fibonacci Quart. 13, 215–232, 1975.

[53] R. P. Stanley. Enumerative Combinatorics, volume 2. Cambridge, 1999.

[54] Y. Sun and H. Zhang. Two kinds of hook length formulas for complete m-ary trees. Discrete
Mathematics 309(28), 2584–2588, 2009.

[55] G. Viennot. Interprétations combinatoires des nombres d’Euler et de Genocchi. Séminaire de
Théorie des Nombres. 1981.

[56] L. L. M. Yang. Generalizations of Han’s hook length identities, 2008. arXiv:math.CO/0805.0109.

[57] K. Yeats. Growth estimates for Dyson-Schwinger equations. Ph.D. thesis, Boston University, 2008.

96

Definitions

B+, 43
FT ′,B , 37
FT ,B , 14
Fφ,B , 14, 36
Gφ,B , 15
LB , 52
L∗B , 45
Lρ, 43
L∗B,ρ, 48
Yψ,a(z), 51
[f]T , 10
B, 11
C, 12
C∗, 12
F , 10
F ′, 36
HR′ , 45
HR, 41
K, 12
L, 56
M, 11
O, 11
O′, 36
O∗, 12
R, 12
R∗, 12
α(f), 50
δf , 50
1, 9, 10
l(f), 10
σ(f), 13
F, 10
T, 10

•, 9
θ, 46
f !, 13
fv, 10
wφ(f), 14, 36

algebra, 40
product, 40
unit, 41
unital, 41

B-series, 51
bialgebra, 41

connected, 43
filtration of, 42

coalgebra, 41
coproduct, 41
counit, 41
counital, 41

combinatorial class, 6
generating function of, 7

exponential, 7
ordinary, 6

isomorphic, 6
isomorphism of, 6
labelled, 7
specification of, 9
unlabelled, 7
weighted, 9

combinatorial object, 6
labelled, 7

combinatorial operator, 7

Feynman rules, 49

97

forest, 10
decorated, 36
independent nodes, 41

forest class
cyclic forests, 12
plane forests, 12
rooted labelled forests, 12
simple, 12

hook length
formula, 14
operator, 12

general, 38
series

decorated, 36
decorated class, 37
forest, 15
tree, 14
tree class, 14

Hopf algebra, 42
antipode of, 42
grafting operator, 43

hypergeometric equation
general, 56

hypergeometric function, 55
differential equation of, 55
general

differential equation of, 57

matching, 18

partition
blocks of, 22

Runge-Kutta method, 51

tree, 10
decorated, 36
differential of, 50
factorial of, 13
increasing, 10
leaf of, 10

node
right-minimal, 27

node of, 10
ancestor of, 10
child of, 10
descendant of, 10
increasing, 10
parent of, 10

root of, 10
shape of, 10

tree class
binary trees, 11
complete binary trees, 16
complete r-ary trees, 12
cyclic trees, 12
decorated

plane trees, 36
simple, 36

fat plane trees, 57
Fibonacci trees, 17
Motzkin tress, 11
phylogenetic trees, 23
plane trees, 11
r-ary trees, 12
rooted labelled trees, 12
rooted lines, 56
Schröder trees, 23
semicomplete binary trees, 17
simple, 11

decomposition of, 11

98

