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Abstract

Hopf algebras built from combinatorial objects have found application both within com-
binatorics and, following the work of Connes and Kreimer, in quantum field theory. Despite
the apparent gulf between these areas, the types of Hopf algebras that arise are very simi-
lar. We use Hopf algebra techniques to solve two problems, one coming from quantum field
theory and one from algebraic combinatorics.

(1) Dyson–Schwinger equations are a formulation of the equations of motion of quantum
field theory. From a mathematical perspective they are integro-differential equations
which have a recursive, tree-like structure. In some cases, these equations are known
to have solutions which can be written as combinatorial expansions over connected
chord diagrams. We give a new expansion in terms of rooted trees equipped with a
kind of decomposition we call a binary tubing. This is similar to the chord diagram
expansion, but holds in greater generality, including to systems of Dyson–Schwinger
equations and to Dyson–Schwinger equations in which insertion places are distinguished
by different variables in the Mellin transform. Moreover we prove these results as a
direct application of a purely Hopf-algebraic theorem characterizing maps from the
Connes–Kreimer Hopf algebra of rooted trees (and variants thereof) to the Hopf algebra
of univariate polynomials which arise from the universal property of the former.

(2) A pair of skew Ferrers shapes are said to be skew-equivalent if they admit the same
number of semistandard Young tableaux of each weight, or in other words if the skew
Schur functions they define are equal. McNamara and van Willigenburg conjectured
necessary and sufficient combinatorial conditions for this to happen but were unable to
prove either direction in complete generality. Using Hopf-algebraic techniques building
on a partial result of Yeats, we prove sufficiency.
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Chapter 1

Introduction

Hopf algebras are a well-known [10] class of algebraic structures. They first appeared in
topology, taking their name from the work of Hopf [32] on the homology and cohomology
of Lie groups. The cohomology of any manifold has a product (the cup product) making it
into a ring, but Hopf observed that the group structure allows one to also define a so-called
coproduct, and that the existence of this structure could be used to prove results about the
Betti numbers of Lie groups and generalizations thereof. A structure of this nature, with
both a product and a coproduct, is a bialgebra, and with a little bit of extra structure it
is what we now call a Hopf algebra. (These terms will be defined precisely in Chapter 2.)
Since Hopf’s work these structures have extended their tendrils into geometry, representation
theory, and many other branches of mathematics.

In a Hopf algebra H, the product is a map H ⊗ H → H and the coproduct a map
H → H ⊗ H. Joni and Rota [35] observed that these structures appear naturally in com-
binatorics. From a combinatorial perspective we think of multiplication as some way of
joining objects together and comultiplication as splitting objects apart. Operations of this
nature are the essence of combinatorics. It transpires that many examples can be found that
fit together in the right way to form a bialgebra. Most of these bialgebras are in fact Hopf
algebras, as was perhaps first clearly observed by Schmitt [52, 54]. In the decades since this
pioneering work, combinatorial Hopf algebras1 have become a significant area of algebraic
combinatorics, with connections to representation theory [1, 65], category theory [4, 48, 53],
polyhedral combinatorics [2], and many other areas. Perhaps the crown jewel of the field is
the Aguiar–Bergeron–Sottile theorem [3] which shows how many deep and important invari-
ants of combinatorial objects can be made to appear as if by magic from seemingly trivial
Hopf-algebraic structures.

Two strands within the theory of combinatorial Hopf algebras are of particular interest
to us in this thesis. The older of the two is the theory of symmetric functions. Of course,
symmetric functions are a classical subject in mathematics, and have been a central theme
of algebraic combinatorics for as long as such a subject has existed. Geissinger [27] observed
that symmetric functions form a Hopf algebra, and that many of the most important opera-

1We do not use the term “combinatorial Hopf algebra” with any precise technical meaning, although
multiple attempts have been made to give it one (e.g. [3, 39]). For us, both here and in the title of this
thesis, we really mean nothing more or less than simply a Hopf algebra that somehow captures interesting
combinatorial information.
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tions and identities in symmetric function theory are naturally captured by this Hopf algebra
structure. Despite this, the application of Hopf algebra techniques to symmetric function
problems has remained a somewhat minor part of symmetric function theory as a whole, but
we will see that it is capable of pulling its weight on certain problems. In particular, building
on ideas of Yeats [63], we use it to attack a conjecture of McNamara and van Willigenburg
[43] on identities between the skew Schur functions, a family of symmetric functions of deep
importance in combinatorics and representation theory. Skew Schur functions are indexed
by skew Ferrers shapes (these terms are defined in Section 5.1), and the particular problem
we will be interested in is the question of when two two distinct shapes give rise to the same
skew Schur function. McNamara and van Willigenburg conjectured necessary and sufficient
combinatorial conditions for this; we will prove sufficiency (Theorem 5.3.9). While this ought
to be the “easy” direction of the problem, it has remained open with little progress for 15
years.

The other strand of interest is the application of Hopf algebras to renormalization in
quantum field theory, which began with the work of Connes and Kreimer [15, 38]. While
at first blush this may seem rather far afield from combinatorics, it turns out that the Hopf
algebras which appear in this theory are quite combinatorial indeed, being built from objects
like graphs and rooted trees. The idea, roughly, is that the the coproduct on these objects—
that is, the appropriate notion of splitting objects apart—encodes the recursive structures of
the loop integrals that appear in Feynman’s approach [20, 21] to quantum field theory. In
perturbative quantum field theory one needs to renormalize such integrals, i.e. tweak their
values in some hopefully well-defined way, in order to obtain answers that are correct (or
even finite). The central theme of the work of Connes and Kreimer is that this procedure is
naturally expressed as a computation in a Hopf algebra of Feynman diagrams.

A slightly different approach (and the one we will more or less take) is to instead begin
with the equations of motion of the theory, the Dyson–Schwinger equations. These can be
expressed in terms of certain integro-differential operators which, regarded as operating on
polynomials, turn out to behave nicely with respect to the natural Hopf algebra structure:
operators of this form are precisely the 1-cocycles with respect to a certain cohomology theory
for bialgebras. Abstracting away the details of these operators and remembering only this
1-cocycle property leads to considering Hopf algebras of rooted trees (the so-called Connes–
Kreimer Hopf algebras) with the Dyson–Schwinger equations becoming functional equations
for counting classes of trees in the spirit of classical enumerative combinatorics. This is
the idea behind combinatorial Dyson–Schwinger equations, introduced by Bergbauer and
Kreimer [9]. These have been studied extensively from a Hopf algebra perspective, notably
by Foissy [22, 23, 24, 25]. Our goal is slightly different: we wish to use the Hopf algebra
structure to find solutions to the genuine Dyson–Schwinger equations as combinatorial sums
over trees. Our most general result of this nature (Theorem 4.3.2) encompasses some cases
that are were already known to have combinatorial solutions, some cases that weren’t, and
some that had not been seriously studied before at all from this perspective.
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1.1 Summary of this thesis

In Chapter 2 we will cover the relevant background material on Hopf algebras and other
subjects that we need for the rest of the thesis.

1.1.1 Binary tubings and 1-cocycles

In Chapter 3 we will study the 1-cocycle operators we mentioned in passing above. These
originate in a cohomology theory for bicomodules over coalgebras originally introduced by
Doi [16] but we will specialize to the case of a left comodule M over a bialgebra H. (All
of these terms are defined in Chapter 2.) We will define exactly what 1-cocycles are in
Section 3.1, but for now it is enough to say that they are certain linear maps M → H, and
that the primary example is the caseM = H. Despite the abstract nonsense, 1-cocycles have
a natural combinatorial interpretation in terms of trees. Connes and Kreimer [15] showed
that a certain Hopf algebra H of rooted forests (which we will meet in Section 2.3.1) is the
universal commutative bialgebra possessing a 1-cocycle, which is simply the operator B+

that joins together a forest with a new root to form a tree. For any other bialgebra H with
a 1-cocycle Λ there is an induced map φ : H → H satisfying φB+ = Λφ.

In the case H = K[z], a polynomial algebra in one variable with its natural Hopf algebra
structure, 1-cocycles are certain integro-differential operators. In this case, we give a non-
recursive combinatorial formula (Theorem 3.3.1) for the induced map H → K[z]. This result
is due to the author and previously appeared in a joint paper [8] with Balduf, Cantwell,
Ebrahimi-Fard, Nabergall, and Yeats in the context of solving Dyson–Schwinger equations.
However, while this is the motivation, it has nothing intrinsically to do with Dyson–Schwinger
equations and can be simply viewed a result in pure Hopf algebra. The formula is a sum
over certain decompositions of a tree known as binary tubings. These are a special case of
the notion of tubings (also called pipings) of posets which appear in the theory of Galashin’s
poset associahedron [26].

In fact, Theorem 3.3.1 applies more generally to maps that are universal with respect
to a family of 1-cocycles, in which case we must replace H with a similarly defined Hopf
algebra of forests with decorated vertices. We can further generalize to consider 1-cocycles
defined not on the comodule H but on a tensor power H⊗r. In this case it turns out that the
universal object is a Hopf algebra of forests which have decorated edges (and also vertices, if
we want to consider families). This Hopf algebra and its universal property have not to the
author’s knowledge been considered before. After proving the basic properties, we derive a
tubing formula (Theorem 3.5.1) for this context as well.

1.1.2 Dyson–Schwinger equations

In Chapter 4 we study several properties of combinatorial Dyson–Schwinger equations. First,
we give some background (Section 4.1) on the physical significance of the equations, then we
get to work applying the results of Chapter 3 to solve these equations combinatorially. In the
past, solutions to certain Dyson–Schwinger equations have been found as certain generating
functions for rooted connected chord diagrams by Marie and Yeats [41] in a special case and
then Hihn and Yeats [31] in a more general one. The virtue of these expansions is that

3



while the number of chord diagrams of size n (and hence the number of degree n terms in
the expansion) grows superexponentially fast, the contribution of each diagram is relatively
“small” and easy to reason about or compute.

We give an expansion (Theorem 4.2.6) with similar properties to the chord diagram ex-
pansion but using binary tubings of trees instead. The expansion itself offers slightly more
generality than the chord diagram expansion (though it is likely that the chord diagram ex-
pansion could be extended to these cases with some work). More important, however, is that
while conceptual explanations have been lacking for the chord diagram expansion, the tubing
expansion is ultimately derived directly from the universal property of Connes–Kreimer Hopf
algebras. Moreover, the Hopf-algebraic framework lends itself nicely to generalization: with
no extra work, we also get an expansion (Theorem 4.2.10) for systems of Dyson–Schwinger
equations, which did not have a known chord diagram expansion. Both of these results ap-
pear in [8] and are easy corollaries of Theorem 3.3.1, using the fact that the operators which
appear in the Dyson–Schwinger equations are in fact 1-cocycles.

We then move to studying Dyson–Schwinger equations with distinguished insertion places,
a physically natural generalization of the previously considered Dyson–Schwinger equations.
While these have been studied before to some degree, little is known, and we have to develop
the appropriate analogue of the theory of combinatorial Dyson–Schwinger equations for this
case. These turn out to be formulated in terms of 1-cocycles on tensor products, and with
the combinatorial theory in hand we can apply Theorem 3.5.1 to get tubing expansions for
these types of equations as well (Theorem 4.3.2).

One property that ordinary Dyson–Schwinger equations are expected to have, at least
in nicer cases, is that their solutions also satisfy the renormalization group equation. In
Section 4.4 we give a (somewhat) novel interpretation of this equation in terms of the Riordan
group. We then use this to prove that solutions of Dyson–Schwinger equations do indeed
satisfy the equation; for ordinary DSEs this is a known fact (and more or less a dressed up
version of the known proof) but for the equations with distinguished insertion places it is a
new result which was previously conjectured by Nabergall [45].

1.1.3 Skew equivalence

Finally, in Chapter 5 we make a sharp turn away from physics and towards symmetric
functions. As previously mentioned, we are interested in the problem of determining when
two skew shapes define the same skew Schur function; such shapes are said to be skew-
equivalent. Much work has been put into this problem [11, 34, 43, 51, 61, 63] but the general
case is quite difficult. However, McNamara and van Willigenburg [43] gave a conjectural
answer in terms of an operation called WOW composition. While defining this operation
and stating the conjecture are beyond the scope of an introduction, we summarize as follows:
if D and D′ are skew-equivalent, we should be able to build new shapes D ◦W E and D′ ◦W E
in some yet-to-be-specified way such that these shapes too are equivalent, and moreover all
equivalences should arise this way starting from a certain trivial case.

Perhaps surprisingly, even the sufficiency direction of the conjecture is difficult; in fact,
McNamara and van Willigenburg were unable to prove that D◦W E and D′◦W E are actually
equivalent in the full generality that they conjectured they should be (although they obtained
substantial partial results). Our main result (Theorem 5.3.9) is that this is indeed the case.
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Our methods are quite distinct from those used by McNamara and van Willigenburg: while
they mainly use certain determinantal identities, we use Hopf-algebraic methods. The idea,
pioneered by Yeats [63], is to consider a certain Hopf algebra defined directly on skew shapes
and consider the map to the Hopf algebra of symmetric functions that sends a shape to its
skew Schur function. Notably, the Hopf algebra of symmetric functions is cocommutative
while the Hopf algebra of shapes is not, and this can be exploited to prove certain relations
between skew Schur functions. In Section 5.2 we develop a framework based on this idea
which allows Yeats’s combinatorial arguments to be drastically simplified.

Having built our framework, we will spend Section 5.3 fully explaining the definitions
and stating the conjectures. The problem naturally falls into two cases which we call the
edge case and the corner case. McNamara and van Willigenburg already proved the result
in the corner case, so our most important work is done in Section 5.4 where we prove the
edge case. However, in Section 5.5 we also give a novel proof of the corner case using the
same Hopf-algebraic ideas. Finally, in Section 5.6 we prove another of McNamara and van
Willigenburg’s conjectures and in doing so build a bridge between our techniques and theirs.
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Chapter 2

Background

2.1 Polynomials, power series, and exponent vectors

2.1.1 Notation and conventions

We will work throughout over a field K of characteristic 0.1 All vector spaces are over K,
and the symbol ⊗ will always denote the tensor product over K.

Remark 2.1.1. It is not strictly necessary to assume that K is a field: in almost all cases
a commutative Q-algebra will do so long as the term “vector space” is interpreted as “free
K-module”. More generality is possible in many cases but is not required for the intended
combinatorial and physical applications.

As is standard, for an algebra A we write A[[x]] for the algebra of formal power series in
the indeterminate x with coefficients in A, and A[x] for the subalgebra of polynomials. For
a power series A(x) ∈ A[[x]], we write [xn]A(x) for the coefficient of the monomial xn. In
some cases it is more convenient to expand not in terms of monomials but divided powers
xn/n!; we will then use the notation [xn/n!]A(x) = n![xn]A(x).

Let I be any set, finite or infinite. For a vector α ∈ NI , we write

|α| =
∑
i∈I

αi

and say that α is an exponent vector if |α| <∞. Given an exponent vector α and an element
a ∈ AI for some algebra A, we write

aα =
∏
i∈I

aαi
i .

In particular, if x = (xi)i∈I and A is any algebra, we can consider the multivariate polynomial
algebra A[x] and power series algebra A[[x]], which consist respectively of finite and infinite
A-linear combinations of monomials xα.

We will use the underline notation for falling factorial powers

ak =
k−1∏
j=0

(a− j)

1Determining which, if any, of our results hold in characteristic p is left as an exercise to the reader.
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and we will generalize this to exponent vectors in the same way as we do with ordinary
powers:

aα =
∏
i∈I

a
αi

i .

2.1.2 Binomial coefficients

As usual, the binomial coefficients are defined by(
a

k

)
=
ak

k!

where a is an element of some algebra. They satisfy the Pascal recurrence(
a

k

)
=

(
a− 1

k

)
+

(
a− 1

k − 1

)
. (2.1)

Most important is the case where a ∈ N, in which case the Pascal recurrence can be recur-
sively applied to the first term on the right side of (2.1) repeatedly to get the hockey-stick
identity (

n

k

)
=

n∑
j=1

(
j

k − 1

)
. (2.2)

We will also generalize binomial coefficients to vectors; for a ∈ AI and α an exponent
vector write (

a

α

)
=
∏
i∈I

(
ai
αi

)
.

We partially order NI by treating it as a product of copies of N; i.e. α ≥ β if and only if
αi ≥ βi for all i ∈ I. Using this and the vector binomial coefficient notation, we get a kind
of multivariate binomial theorem:

(x+ y)α =
∑
β≤α

(
α

β

)
xβyα−β. (2.3)

2.1.3 Compositions and partitions

An (integer) composition of size n and length k is a finite list α = (α1, . . . , αk) of positive
integers such that α1 + · · ·+ αk = n. While strictly speaking these are a special case of the
integer vectors considered in the previous subsections, we treat them somewhat differently:
when working with integer vectors we fix some indexing set I, whereas we want to think of
compositions of different lengths as being “the same kind of object”. We denote the length
of a composition α by ℓ(α) and the set of all compositions by Comp. We will also write
α ⊨ n to mean α is a composition of size n.

A composition is called an (integer) partition if its entries are weakly decreasing. We
write λ ⊢ n to mean that λ is a partition of size n, and denote the set of all partitions by Par.
Partitions are closely related to exponent vectors: if α is an exponent vector (over any in-
dexing set) there is a unique partition sort(α) consisting of the nonzero entries of α arranged
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in decreasing order. Clearly two exponent vectors α and β are equal up to permuting entries
if and only if sort(α) = sort(β). On the other hand, we also often find it useful to identify
a partition λ = (λ1, . . . , λk) with the N+-indexed exponent vector (λ1, . . . , λk, 0, 0, . . . ) ob-
tained by concatenating an infinite sequence of zeroes to it, and we will silently make this
identification wherever it is convenient. In particular, λi should always be interpreted as zero
when i > ℓ(λ). With this in mind, we partially order partitions by saying λ ≥ µ if λi ≥ µi for
all i ∈ N+; thinking of partitions as exponent vectors this agrees with the ordering defined
in the previous subsection.

2.1.4 Lagrange inversion

The Lagrange inversion formula allows solving for the compositional inverse of a power
series. It will be of mild interest to us.

Theorem 2.1.2 (Lagrange Inversion Theorem [56, Theorem 5.4.2]). Suppose G(x) ∈ K[[x]]
has zero constant term and nonzero linear term. Then there is a unique series R(x) satisfying
G(R(x)) = R(G(x)) = x. Moreover, for any series F (x), we have

[xn]F (R(x)) =
1

n
[xn−1]F ′(x)

(
x

G(x)

)n

.

The Lagrange implicit function theorem is an equivalent formulation that is useful in
enumeration of tree-like structures.

Theorem 2.1.3 (Lagrange Implicit Function Theorem). Let A(x) ∈ K[[x]] be a power series
with nonzero constant term. There exists a unique series R(x) ∈ K[[x]] such that R(x) =
xA(R(x)). For any series F (x),

[xn]F (R(x)) =
1

n
[xn−1]F ′(x)A(x)n

for n > 0.

Proof. Note that R(x) = xA(R(x)) can be rewritten as

R(x)

A(R(x))
= x

i.e. R(x) is the compositional inverse of x/A(x). The result follows from Theorem 2.1.2.

2.2 Hopf algebras

We give a thorough, albeit somewhat terse, overview of the of the relevant parts of the theory
of Hopf algebras. Nearly everything covered in this section is contained in the union of [14,
28, 44], but unfortunately there seems to be no single existing reference that includes all we
need.
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2.2.1 Algebras, coalgebras, and bialgebras

Let A be an algebra. Writing mA : A⊗ A → A for the multiplication map and uA : K → A
for the unique linear map sending 1 to 1, the associativity and unitality conditions can be
rephrased as the statement that the diagrams

A⊗ A⊗ A A⊗ A

A⊗ A A

mA⊗idA

idA⊗mA mA

mA

A A⊗ A

A⊗ A A

uA⊗idA

idA⊗uA
idA mA

mA

commute.
A (counital coassociative) coalgebra is a vector space C equipped with linear maps

∆C : C → C ⊗ C (the coproduct) and εC : C → K (the counit) making the dual diagrams

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆C

∆C idC⊗∆C

∆C⊗idC

C C ⊗ C

C ⊗ C C

∆C

∆C
idC

εC⊗idC

idC⊗εC

commute. We will often drop the subscripts and simply write ∆ and ε when the coalgebra
in question is clear from context.

We can think of coassociativity as saying that for any k there is only one map C → C⊗k

that can be built from tensor products of ∆C and idC . Let us denote this by ∆k
C , again

omitting the subscript when clear.2 Explicitly, it can be recursively defined by

∆k+1
C = (∆k

C ⊗ idC)∆C

with the base case ∆0
C = εC . We may check that by coassociativity we also have ∆k+1

C =
(idC ⊗∆k

C)∆C .
A coalgebra C is cocommutative if T∆C = ∆C , where T : C ⊗ C → C ⊗ C is the twist

map given by swapping tensor factors. (Note that for an algebra, the identity mAT = mA is
easily seen to be equivalent to commutativity.)

Another use of twist maps is in defining the tensor product of algebras or coalgebras.
Suppose A and B are algebras. Recall that the tensor product A⊗B is naturally an algebra
with multiplication

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′

with the identity clearly given by 1⊗ 1. In the linear-map formulation, this says

mA⊗B = (mA ⊗mB)(idA ⊗ T ⊗ idB)

and
uA⊗B = uA ⊗ uB.

2Other notations for this exist: what we call ∆k is written as ∆k in [14], ∆k−1 in [44], and ∆(k−1) in [28].
Our convention has the flaw that we somewhat unnervingly have ∆1 = id and ∆2 = ∆ but we consider this
preferable to having an off-by-one between the notations for the map and its codomain. In any case, while
the iterated coproduct notation will occasionally be convenient, we will not be making heavy use of it.
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Dually, if C and D are coalgebras then C ⊗D is naturally a coalgebra with coproduct

∆C⊗D = (idC ⊗ T ⊗ idD)(∆C ⊗∆D)

and counit
εC⊗D = εC ⊗ εD.

If A and B are algebras, a linear map φ : A → B is an algebra morphism if φ(ab) =
φ(a)φ(b) and φ(1) = 1. This is equivalent to requiring that the diagrams

A⊗ A A

B ⊗B B

mA

φ⊗φ φ

mB

K A

B

uA

uB φ

commute. Dually, if C andD are coalgebras, a linear map φ : C → D is a coalgebra morphism
if

C C ⊗ C

D D ⊗D

φ

∆C

φ⊗φ

∆D

C D

K

φ

εC εD

commute.
A bialgebra is a vector space H equipped with maps mH , uH ,∆H , εH making it into an

algebra and a coalgebra such that the diagrams

H ⊗H H

H ⊗H ⊗H ⊗H

H ⊗H ⊗H ⊗H H ⊗H

mH

∆H⊗∆H

∆H

idH⊗T⊗idH

mH⊗mH

K H

H ⊗H

uH

uH⊗uH
∆H

H ⊗H H

K

mH

εH⊗εH

εH

K H

K

uH

idK εH

commute. Comparing these diagrams to those we used to define morphisms, the first row says
exactly that ∆H is an algebra morphism and the second that εH is an algebra morphism. On
the other hand, the first column says that mH is a coalgebra morphism and the second that
uH is a coalgebra morphism. Thus these conditions are equivalent, and are both equivalent
to being a bialgebra.

Suppose C is a coalgebra and A is an algebra. If φ, ψ : C → A are linear maps, their
convolution is φ ∗ ψ = mA(f ⊗ g)∆C . Convolution is associative, and has an identity given
by uAεC . Thus the space of linear maps C → A is itself an algebra. If C is cocommutative
and A is commutative the convolution product is commutative. In particular, taking A = K,
the dual space C∗ is an algebra with unit εC which is commutative if and only if C is
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cocommutative. (We will discuss the duality between algebras and coalgebras further in the
next subsection.)

If H is a bialgebra, it makes sense to convolve two linear maps H → H. We say H is a
Hopf algebra if idH has a (two-sided) convolution inverse. This inverse is unique if it exists,
and is known as the antipode and denoted SH (as usual, without subscript when clear). The
condition that SH be the convolution inverse of the identity can also be expressed as the
assertion that the diagram

H ⊗H H ⊗H

H K H

H ⊗H H ⊗H

SH⊗idH

mH∆H

∆H

εH uH

idH⊗SH

mH

commutes. Let us now establish some basic properties of the antipode.

Proposition 2.2.1 ([14, Proposition 3.1.1] or [28, Proposition 1.4.10] or [44, Proposition
1.5.10]). Let H be a Hopf algebra.

(i) The antipode reverses multiplication: SH(ab) = SH(b)SH(a).

(ii) The antipode reverses comultiplication: ∆HSH = (SH ⊗ SH)T∆H where T is the twist
map.

In general, if A and A′ are algebras, a map A → A′ which reverses multiplication is
an algebra anti-morphism. Similarly if C and C ′ are coalgebras a map C → C ′ which
reverses comultiplication is a coalgebra anti-morphism. If H and H ′ are bialgebras, we will
a map H → H ′ which reverses both multiplication and comultiplication is a bialgebra anti-
morphism; thus the antipode is the primary example.3 Another important property is the
following.

Proposition 2.2.2 ([14, Lemma 3.1.2] or [28, Corollary 1.4.12] or [44, Corollary 1.5.12]). If
H is either commutative or cocommutative, S2

H = idH .

Let us now, finally, see some actual examples of Hopf algebras.

Example 2.2.3. Let G be a group. The group algebra KG is the free vector space on G
with multiplication given by linearly extending the group operation. We make KG into a
bialgebra by setting ∆g = g ⊗ g and ε(g) = 1 for all g ∈ G. For maps φ, ψ : KG→ A for
any algebra A, the convolution is given by

(φ ∗ ψ) = φ(g)ψ(g) (2.4)

and from this it easily follows that KG is a Hopf algebra with antipode S(g) = g−1.

3In general one might also be interested in maps which preserve multiplication and reverse comultiplication
or vice versa, giving four different variations in total, but since the bialgebras of interest to us will be
commutative or cocommutative there will only be morphisms and anti-morphisms.
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Example 2.2.4. We make the polynomial algebraK[z] into a (graded) bialgebra by taking
the coproduct and counit as the unique algebra morphisms extending ∆z = 1⊗ z + z ⊗ 1
and ε(z) = 0. Explicitly, by the binomial theorem, the coproduct is given on the basis of
monomials by

∆(zn) = (∆z)n =
n∑

k=0

(
n

k

)
zk ⊗ zn−k. (2.5)

and the counit is given (on all polynomials) by ε(f(z)) = f(0). This too is a Hopf algebra,
with antipode S(f(z)) = f(−z). (Indeed, from (2.5) we easily see (id ∗ S)(zn) = (z− z)n,
which agrees with the counit.)

It is often profitable to think of this coproduct in a different way. We can identify
K[x]⊗K[z] with K[z1, z2] (where z

j ⊗zk corresponds to zj1z
k
2 ). The coproduct then simply

corresponds to the map f(z) 7→ f(z1+ z2). We will make extensive use of this perspective
in various parts of this thesis.

Example 2.2.5. One can also construct Hopf algebras of a more combinatorial flavour.
A representative example is the bialgebra G of graphs (sometimes known as the chromatic
Hopf algebra for reasons that will be explained in Example 2.2.25). As a vector space,
G is freely spanned by unlabelled simple graphs. The multiplication is disjoint union.
Equivalently, G is therefore a free commutative algebra generated by the connected graphs.
The coproduct of a graph G is

∆G =
∑

S⊔T=V (G)

G|S ⊗G|T

where G|S denotes the subgraph induced by S. That G is actually a Hopf algebra is not
as clear as the previous examples (though it will follow from Lemma 2.2.11) but Humpert
and Martin [33] gave an explicit and reasonably nice formula for the antipode as a sum
over acyclic orientations.

Examples 2.2.3 and 2.2.4 illustrate two very important special types of elements of bial-
gebras. Given a bialgebra H, a grouplike element is an element g ∈ H such that ∆g = g⊗g.
We denote the set of these by Γ(H). A primitive element is an element p such that
∆p = 1 ⊗ p + p ⊗ 1; we denote the vector space of these by PrimH. Some of the prop-
erties from Examples 2.2.3 and 2.2.4 generalize to such elements in other Hopf algebras.

Proposition 2.2.6 ([14, Lemma 3.4.1]). Let H be a bialgebra. The product of any two
grouplike elements is grouplike, hence Γ(H) forms a monoid under multiplication. Moreover,
if H is Hopf, every grouplike element g is invertible with g−1 = S(g), and thus Γ(H) forms
a group.

Proposition 2.2.7 ([14, Lemma 3.1.1]). The commutator of any two primitive elements is
primitive, and thus PrimH forms a Lie algebra.

Thus from any Hopf algebra we can get a group and a Lie algebra. We have already seen
that, conversely, we can get a Hopf algebra from a group. We can also get a Hopf algebra
from a Lie algebra.
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Example 2.2.8. Let g be any Lie algebra. Recall that the universal enveloping algebra
U(g) satisfies the following universal property: for any algebra A, any linear map φ : g → A
satisfying φ([x, y]) = φ(x)φ(y) − φ(y)φ(x) extends uniquely to an algebra morphism
U(g) → A. With this in mind, we can make U(g) into a bialgebra by defining the coproduct
and the counit to be the unique algebra morphisms extending ∆x = 1 ⊗ x + x ⊗ 1 and
ε(x) = 0 for x ∈ g. This too is a Hopf algebra, with antipode given by S(x) = −x for
x ∈ g. It can be shown4 that PrimU(g) = g.

Example 2.2.8 is in fact more general than it may seem: a large class of Hopf algebras,
which we will now define, are actually of this form. Let us say that a bialgebra H is unipotent
if for every h ∈ H there exists some k > 0 such that (id − ε)∗k(h) = 0. Note that if h is
product of n primitive elements, we can always take k = n + 1, so any bialgebra generated
by primitive elements (such as a universal enveloping algebra) is unipotent.

Theorem 2.2.9 (Takeuchi). Any unipotent bialgebra is a Hopf algebra, with antipode given
by

S =
∑
k≥0

(−1)k(id− ε)∗k.

Proof. The unipotency implies that the infinite sum is well-defined, as for any given element
only finitely many terms are nonzero. But this is just a geometric series for (ε−(id−ε))∗−1 =
id∗−1 so it is indeed an antipode.

A celebrated result of Cartier5 gives a complete structure theorem for cocommutative
unipotent Hopf algebras.

Theorem 2.2.10 ([14, Theorem 4.3.1] or [44, Theorem 5.6.5]). Suppose H is a cocommu-
tative unipotent Hopf algebra. Then H ∼= U(PrimH).

A graded vector space is a vector space V equipped with a direct sum decomposition
V =

⊕
n∈N Vn. The tensor product of two graded vector spaces V and W is also graded,

with the grading given by

(V ⊗W )n =
⊕

0≤k≤n

Vk ⊗Wn−k.

A graded algebra is an algebra A with a grading on its underlying vector space such that
1 ∈ A0 and AmAn ⊆ Am+n; that is, the unit and product maps preserve the grading
(thinking of K as concentrated in degree 0). Dually, a graded coalgebra is a coalgebra C with
a grading such that ∆CCn ⊆ (C ⊗ C)n and εC vanishes on the positive-degree pieces. A
graded bialgebra is a bialgebra with a grading respected by both the algebra and coalgebra
structures. A graded vector space V is connected if dimV0 = 0 and is of finite type (also
called locally finite-dimensional) if all graded pieces are finite-dimensional. Many bialgebras
of interest to us satisfy both of these conditions. Connectedness is an especially important
condition due to the following key lemma.

4For instance using the Poincaré–Birkhoff–Witt theorem.
5Commonly known as the Milnor–Moore theorem.
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Lemma 2.2.11. Every connected graded bialgebra is unipotent, and in particular a Hopf
algebra.

Proof. Suppose H is a connected graded bialgebra. Then H0 is spanned by 1, so id − ε
vanishes on H0. But then if h is any element of degree less than k, every term in an
expansion of ∆kh must have an H0 tensor factor, so (id− ε)∗k(h) = 0.

Remark 2.2.12. Throughout this thesis we will deal with various combinatorially graded
bialgebras. Most of these are connected: if the bialgebra has a basis indexed by some
class of combinatorial objects and is graded by some natural notion of size, connectedness
corresponds to the very reasonable condition of having a unique object of size 0. Thus
by Lemma 2.2.11 these bialgebras are Hopf algebras. However, the role played by the
antipode will in most cases be somewhat small.

2.2.2 Duality

We have already seen that if C is a coalgebra, its dual C∗ forms an algebra with the convolu-
tion product. A different way to think about this is in terms of the map ∆∗

C : (C⊗C)∗ → C∗

adjoint to the coproduct on C. By definition, this sends ρ ∈ (C ⊗ C)∗ to the composition
ρ∆C . Restricted to the subspace C∗ ⊗ C∗, this says

∆∗
C(φ⊗ ψ) = (φ⊗ ψ)∆C = φ ∗ ψ.

Thus mC∗ is exactly the restriction of ∆∗
C . Similarly, using the natural identification of K

with K∗, we also have uC∗ = ε∗C . One virtue of thinking of the dual in this way is that it
makes it immediately clear that if f : C → D is a coalgebra morphism, then f ∗ is an algebra
morphism. As such, duality defines a contravariant functor from the category of coalgebras
to the category of algebras.6

We would like to also be able to dualize algebras to get coalgebras. Indeed, if A is a
finite-dimensional algebra, then (A ⊗ A)∗ = A∗ ⊗ A∗ and we can simply make A∗ into a
coalgebra using m∗

A as the coproduct and u∗A as the counit. Moreover, we clearly have that
A ∼= A∗∗ as coalgebras. When A is infinite-dimensional, however, m∗

A need not take values in
the proper subspace A∗ ⊗A∗, so this construction does not work. To resolve it we introduce
the restricted dual or finite dual A◦, which consists of those elements of A∗ which vanish on
some ideal of finite codimension.7

Theorem 2.2.13 ([14, Theorem 2.12.1] or [44, Proposition 9.1.2]). Let A be an algebra.
Then m∗

AA
◦ ⊆ A◦ ⊗ A◦, and A◦ forms a coalgebra with coproduct m∗

A and counit u∗A.

Suppose f : A → B is an algebra morphism. If φ ∈ B◦ then there is some ideal I of
finite codimension contained in the kernel of φ. Then f−1(I) is an ideal, necessarily of finite
codimension, which is contained in the kernel of f ∗(φ). Thus f ∗(B◦) ⊆ A◦, and restricted
duality defines a contravariant functor from algebras to coalgebras. In particular, if H is a

6The reader may be either relieved or disappointed to learn that the word “functor” does not appear
outside of this section.

7Warning: the notation A◦ is used in [28] for the graded dual, which we denote A∨.
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bialgebra, then ∆∗
H gives a coalgebra morphism (H ⊗H)◦ → H◦. This observation gets us

most of the way to the following result.

Theorem 2.2.14 ([44, Theorem 9.1.3]). Let H be a bialgebra. Then H◦ is a subalgebra of
H∗, and forms a bialgebra with the inherited algebra structure and the coalgebra structure
from Theorem 2.2.13. Moreover, if H is a Hopf algebra then S∗

HH
◦ ⊆ H◦ and H◦ is a Hopf

algebra with antipode S∗
H .

Example 2.2.15. By (2.4), the dual (KG)∗ can be identified with the algebra of func-
tions G → K with pointwise multiplication. The restricted dual (KG)◦ is the subalgebra
spanned by matrix coefficients of finite-dimensional representations of G, with a coproduct
dual to matrix multiplication. See [14, Section 2.7].

The graded dual V ∨ of a graded vector space V is the subspace of V ∗ consisting of linear
forms that vanish on Vn for all but finitely many n. Equivalently,

V ∨ =
⊕
n∈N

V ∗
n

and this decomposition gives a grading on V ∨ as well. Using this grading, we clearly have
V ∨∨ ∼= V when V is of finite type. If C is a graded coalgebra, then the fact that the coproduct
respects the grading implies that C∨ is a subalgebra of C∗, and that the product respects
the grading on C∨. Hence C∨ is a graded algebra. (Note that C∗ is not naturally graded
in general.) On the other hand, if A is a graded algebra of finite type then

⊕
n≥N An is an

ideal of finite codimension for any N , and we similarly get that A∨ is a graded coalgebra.
It follows that if H is a graded bialgebra (resp. Hopf algebra) of finite type then H∨ is a
graded bialgebra (resp. Hopf algebra): the compatibility between the algebra and coalgebra
structures is immediate as they are both inherited from H◦.

Example 2.2.16. An element φ ∈ K[x]∗ is uniquely determined by the sequence
(φ(1), φ(x), φ(x2), . . . ). From (2.5) we see that convolution corresponds to multiplying
the exponential generating functions of these sequences. Thus K[x]∗ can be identified
with K[[x]]. The corresponding pairing ⟨−,−⟩ : K[x]⊗K[[x]] → K is given by

⟨xn, A(x)⟩ = [xn/n!]A(x)

or equivalently
⟨f(x), A(x)⟩ = f(∂/∂x)A(x)|x=0. (2.6)

From this and the fact that ideals in K[x] are principal, one can deduce that the restricted
dual K[x]◦ is isomorphic to the subalgebra of K[[x]] consisting of power series that satisfy
a linear differential equation with constant coefficients. (See [44, Example 9.1.7] for a
proof of this in different language.)

By definition, φ ∈ K[x]∨ if there are only finitely many n such that φ(xn) ̸= 0; in other
words, if its generating function is a polynomial. Thus we have K[x]∨ ∼= K[x] as algebras,
and indeed the coproducts can be seen to match as well, so K[x] is (graded) self-dual.
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2.2.3 Modules and comodules

Let A be an algebra. A left module over A is a vector spaceM with a linear map α : A⊗M →
M (the action) such that the diagrams

A⊗ A⊗M A⊗M

A⊗M M

mA⊗idM

idA⊗α

α

α

M A⊗M

M

uA⊗idM

idM
α

commute. Writing am = α(a ⊗m), these say (ab)m = a(bm) and 1m = m, matching the
more familiar definition of modules. We can similarly define a right module with a map
M ⊗ A → A making the obvious analogous diagrams commute. Basic examples of modules
include A itself, ideals and quotients of A, and direct sums of these. If φ : A → B is a
morphism of algebras and M we can “pull back” B-modules to A-modules: that is, if M
is a left B-module we can make the same vector space M into a left A-module by defining
am = φ(a)m, and similarly for right modules.

If A and A′ are algebras, an (A,A′)-bimodule is a vector space M equipped with action
maps α : A ⊗ M → M and α′ : M ⊗ A′ → M making it into a left A-module and right
A′-module respectively, such that the diagram

A⊗M ⊗ A′ M ⊗ A′

A⊗M M

α⊗idA′

idA⊗α′ α′

α

also commutes. In particular, A is an (A,A)-bimodule (in which case this compatibility is
just associativity) and bimodules pull back to bimodules, so an algebra morphism A → B
makes B into an (A,A)-bimodule.

Let H be a bialgebra. The coalgebra structure on H translates to certain structures
on the category of (left, right) H-modules. Since εH is an algebra morphism, we can pull
back K-modules (i.e. vector spaces) to H-modules using εH . In particular, we can make
K itself into an H-module this way, which we call the trivial module. On the other hand,
since ∆H is also an algebra morphism, we can pull back (H ⊗H)-modules to H-modules as
well. In particular, if M and N are H-modules then M ⊗N is naturally an (H⊗H)-module
so becomes an H-module as well by pulling back using the coproduct. The coassociativity
and counitality properties imply that this tensor product of H-modules is associative up to
natural isomorphism with unit object the trivial module K. These operations also make
sense for (H,H ′)-bimodules when H and H ′ are both bialgebras.

Straight from the definition, we see that grouplike and primitive elements act particularly
nicely on tensor products: grouplikes satisfy

g(a⊗ b) = (ga)⊗ (gb) (2.7)

and primitives satisfy
p(a⊗ b) = a⊗ (pb) + (pa)⊗ b. (2.8)
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Remark 2.2.17. We see that, (2.7) matches the usual definition from group represen-
tation theory of the tensor product of representations, and similarly (2.8) matches the
usual definition from Lie algebra theory. The notion of trivial module for bialgebras also
generalizes the notion of trivial representation for groups and Lie algebras.

The concept of modules can be dualized. Let C be a coalgebra. A left C-comodule is a
vector space M equipped with a map δ : M → C⊗M (the coaction) such that the diagrams

M C ⊗M

C ⊗M C ⊗ C ⊗M

δ

δ idC⊗δ

∆C⊗idM

M C ⊗M

M

δ

idM
εC⊗idM

commute. Analogously, a right C-comodule is a vector space M equipped with a linear map
δ : M →M ⊗C such that the analogous diagrams commute. Comodules over coalgebras are
the dual notion to modules over algebras in the same way that coalgebras are the dual notion
to algebras. Any coalgebra C is both a left and right comodule over itself, in both cases
with δ = ∆. Rather than pulling back, comodules can be pushed forward: if φ : C → C ′ is
a coalgebra morphism, and M is a left C-comodule with coaction δ, we can make M into a
left C ′-comodule the coaction (φ⊗ idM)δ, and similarly with right comodules.

Inevitably, a bicomodule is the dual notion to a bimodule. That is, if C and C ′ are
coalgebras, a (C,C ′)-bicomodule is a vector space M with maps δ : M → C ⊗ M and
δ′ : M → M ⊗ C ′ making it into a left C-comodule and right C ′ comodule, such that the
diagram

M C ⊗M

M ⊗ C ′ C ⊗M ⊗ C ′

δ

δ′ idC⊗δ′

δ⊗idC′

commutes. In particular, C itself is a (C,C)-bicomodule, and any coalgebra map C → D
makes C into a (D,D)-bicomodule by pushing forward.

In the case of a bialgebra H rather than a mere coalgebra, the unit and product give
operations on comodules similar to the operations on modules we previously mentioned. We
will describe these for left comodules, though the same ideas work for right comodules. First,
if V is any vector space, the trivial coaction of H on V is given by δ(v) = 1⊗v. Second, ifM
and N are left H-comodules (with coactions δM and δN respectively) then M ⊗N becomes
a left H-comodule as well, with its coaction given as the composite map

M ⊗N
δM⊗δN−−−−→ H ⊗M ⊗H ⊗N → H ⊗H ⊗M ⊗N

mH⊗idM⊗idN−−−−−−−−→ H ⊗M ⊗N

where the middle arrow switches the two middle tensor factors. This construction is associa-
tive up to natural isomorphism and has a unit object given by K with the trivial coaction.

If M is a left C-comodule with coaction δ and α ∈ C∗, define m↼α = (α ⊗ idM)δ(m).
We can compute

(m↼α)↼β = (β ⊗ idM)δ((α⊗ idM)δ(m))

= (β ⊗ idM)(α⊗ δ)δ(m)
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= (α⊗ β ⊗ idM)(idC ⊗ δ)δ(m)

= (α⊗ β ⊗ idM)(∆C ⊗ idM)δ(m)

= ((α ∗ β)⊗ idM)δ(m)

= m↼ (α ∗ β)

so ↼ makes M into a right module over C∗. Analogously, if M is a right C-comodule then
we define α⇀m = (idM ⊗α)δ(m) and this makesM into a left C∗-module. IfM is a (C,D)-
bicomodule then these operations are compatible and makeM into a (D∗, C∗)-bimodule. As
a particular case, of this, any coalgebra C is naturally a (C∗, C∗)-bimodule.

Remark 2.2.18. If A is a finite-dimensional algebra, one can easily dualize this construc-
tion to turn modules over A into comodules over A∗. When A is infinite-dimensional, it
turns out that not all A-modules can be naturally made into A◦-comodules, but some of
them can. A necessary and sufficient condition is that every element of M is contained in
a finite-dimensional submodule; see [44, Lemma 1.6.4].

Consider a bialgebra H. Then H becomes an (H∗, H∗)-bimodule by the above construc-
tion, and we can restrict these actions to the subalgebra H◦. It turns out that the actions
also play nicely with the coalgebra structure of H◦, more specifically with the tensor product
of H◦-bimodules. The following is an exercise in unravelling definitions.

Proposition 2.2.19. Let H be a bialgebra. Then the multiplication map H ⊗H → H is an
(H◦, H◦)-bimodule morphism.

Example 2.2.20. Continuing from Example 2.2.16 we identify K[z]∗ with K[[z]]. The
action is given by taking the coproduct, which we think of as substituting in a sum of two
variables as in Example 2.2.4, and then applying the pairing (2.6) in one tensor factor i.e.
in one of the two variables:

A(z)⇀ f(z) = A(∂/∂y)f(y + z)|y=0 = A(d/dz)f(z).

2.2.4 Characters

A character of a bialgebra H is an algebra morphism H → K. This can equivalently be
expressed in terms of the operator m∗

H adjoint to multiplication: ζ ∈ H∗ is a character if
and only if

m∗
Hζ = ζmH = ζ ⊗ ζ.

In other words, characters of H are precisely grouplike elements of H◦. (Note that the kernel
of a character is an ideal, necessarily of codimension 1, so they do lie in the restricted dual.)
It follows from Proposition 2.2.6 that characters of H form a monoid Ch(H) = Γ(H◦) under
convolution, with identity element the counit, and that if H is Hopf then Ch(H) is a group
with inverse given by ζ∗−1 = ζS.

An infinitesimal character of a bialgebra H is a map σ : H → K satisfying

σ(ab) = σ(a)ε(b) + ε(a)σ(b),
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or in other words a derivation of H into the trivial H-module K. Infinitesimal characters
are the same as primitive elements of H◦. They form a Lie algebra ch(H) = PrimH◦.

Characters and infinitesimal characters behave nicely with respect to the actions of H∗

on H discussed in the previous section.

Proposition 2.2.21. Suppose H is a bialgebra.

(i) For ζ ∈ Ch(H) and a, b ∈ H we have

ζ ⇀ ab = (ζ ⇀ a)(ζ ⇀ b)

and
ab ↼ ζ = (a↼ ζ)(b ↼ ζ).

In other words, ζ acts on both left and right as an automorphism of H.

(ii) For σ ∈ ch(H) and a, b ∈ H we have

σ ⇀ ab = a(σ ⇀ b) + (σ ⇀ a)b

and
ab ↼ σ = a(b ↼ σ) + (a↼ σ)b.

In other words, σ acts on both left and right as a derivation of H.

Proof. Immediate from Proposition 2.2.19.

As the notation suggests, ch(H) and Ch(H) are, in nice cases, related by an exponential
map. In particular, if H is a unipotent (e.g. connected graded) Hopf algebra and σ is an
infinitesimal character, the infinite sum

exp∗(σ) =
∑
n≥0

σ∗n

n!

is well-defined. Moreover, we can compute

m∗
H exp∗(σ) = exp∗(σ ⊗ ε+ ε⊗ σ)

= exp∗(σ ⊗ ε) exp∗(ε⊗ σ)

= exp∗(σ)⊗ exp∗(σ)

so exp∗(σ) is a character. In fact, it turns out that all characters are obtained this way.

Theorem 2.2.22 ([14, Corollary 3.4.1]). Let H be a unipotent Hopf algebra. The map
exp∗ : ch(H) → Ch(H) is a bijection, with inverse the convolution logarithm

log∗(ζ) =
∑
k≥1

(−1)k

k
(ζ − ε)∗k.
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Characters and infinitesimal characters are intimately related to the polynomial Hopf al-
gebraK[z]. If σ ∈ ch(H), then the same calculation with exponentials shows that exp∗(zσ) : H →
K[z] is an algebra morphism. But we also have

exp∗((z1 + z2)σ) = exp∗(z1σ) ∗ exp∗(z2σ)

which, by the discussion in Example 2.2.4, is equivalent to

∆K[z] exp∗(zσ) = (exp∗(zσ)⊗ exp∗(zσ))∆H

i.e. exp∗(zσ) is also a coalgebra morphism. Again, we have a converse to this. Let lin : K[z] →
K denote the map which extracts the linear coefficient of a polynomial. Note that lin is itself
an infinitesimal character.

Lemma 2.2.23. Let H be a unipotent Hopf algebra and φ : H → K[z] be a bialgebra mor-
phism. Then linφ is an infinitesimal character, and φ = exp∗(z linφ).

Proof. Since φ is a coalgebra morphism, it induces an algebra morphism φ∗ : K[[z]] → H∗

where we have identified K[z]∗ with K[[z]] as in Example 2.2.16. By definition this map
satisfies

φ∗(F (z))(a) = F (d/dz)φ(a)|z=0.

Thus in particular we have
φ∗(zn) = n![zn]φ(a)

but since φ∗ is an algebra morphism, it also satisfies

φ∗(zn) = φ∗(z)∗n = (linφ)∗n.

The result follows.

We can package things up nicely as follows.

Theorem 2.2.24. Let H be a unipotent Hopf algebra and φ : H → K[z] be an algebra
morphism. Then linφ is an infinitesimal character if and only if φ|z=0 = ε. Moreover, the
following are equivalent:

(i) φ is a bialgebra morphism,

(ii) φ = exp∗(z linφ),

(iii) φ|z=0 = ε and d
dz
φ = (linφ) ∗ φ,

(iv) φ|z=0 = ε and d
dz
φ = φ ∗ (linφ).

Proof. Observe that

linφ(ab) = lin(φ(a))φ(b)|z=0 + φ(a)|z=0 lin(φ(b))

so it is immediate that linφ is an infinitesimal character if and only if φ|z=0 = ε.
For the equivalence, note that (i) implies (ii) by Lemma 2.2.23. Conversely, (ii) implies

(i) because if φ = exp∗(z linφ) then φ|z=0 = ε, so linφ is an infinitesimal character and
hence φ is a bialgebra morphism. Finally, that both (iii) and (iv) are equivalent to (ii) is a
routine calculation.
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Combing Theorem 2.2.22 and Theorem 2.2.24, we get a diagram

Ch(H) ch(H) Bialg(H,K[z]).
log∗ σ 7→exp∗(zσ)

exp∗ lin

of bijections and their inverses, where Bialg(H,K[z]) denotes the set of bialgebra morphisms
H → K[z]. By composition we also have bijections Ch(H) ⇄ Bialg(H,K[z]) which are of
interest as well. The bijection Bialg(H,K[z]) → Ch(H) is simply evaluation at z = 1. Its
inverse sends ζ to exp∗(z log ζ) = ζ∗z which we can expand as a binomial series:

ζ∗z =
∑
n≥0

(
z

n

)
(ζ − ε)∗n.

Example 2.2.25. The bijection between Ch(H) and Bialg(H,K[z]) is especially impor-
tant in the applications of Hopf algebras to combinatorics. As an illustrative example,
consider the graph Hopf algebra G (Example 2.2.5) and let ζ be the incredibly dull char-
acter that sends a graph to 0 if it has any edges and 1 if it has none. Then from the
definition of the coproduct we see that ζ∗k(G) counts ways to partition the vertices of G
into k subsets each of which induces a subgraph with no edges, i.e. proper k-colourings of
G. The corresponding morphism G → K[z] thus sends a graph to its chromatic polynomial,
perhaps the most famous polynomial invariant of graphs that there is.

2.3 Partially ordered sets

For a more in-depth overview of posets see Stanley [57, Chapter 3]. We here review some
basic terminology which we will make use of. A subset S of a poset is called a downset if
p ∈ X and q ≤ p implies q ∈ X or an upset if p ∈ X and q ≥ p implies q ∈ X. Note that S is
a downset if and only if P \S is an upset. The set of all downsets of P is denoted J(P ) and
is itself a poset (more specifically a distributive lattice) with the ordering given by inclusion.

A subset S is convex if p, p′ ∈ X and p ≤ q ≤ p′ implies q ∈ X; equivalently a convex
subset is the intersection of an upset and a downset. Given p ≤ q the (closed) interval from
p to q is the set

[p, q] = {x ∈ P : p ≤ x ≤ q}.
Clearly [p, q] is a convex subset.

Suppose p, q ∈ P . We write p⋖ q and say that q covers p if p < q and there is no x ∈ P
such that p < x < q.

Two elements p, q ∈ P are comparable if p ≤ q or q ≤ p. The comparability graph of P
has vertex set P with edges between all pairs of distinct comparable elements. A poset is
connected if its comparability graph is connected.

Let P denote the vector space freely generated by isomorphism classes of finite posets.
We make P into a bialgebra with multiplication given by disjoint union. (Equivalently, P is
the commutative algebra freely generated by isomorphism classes of connected posets.) The
coproduct is given by

∆P =
∑

X∈J(P )

X ⊗ (P \X). (2.9)
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We equip P with a grading such that the degree of a poset is the number of elements. This
makes P into a connected graded bialgebra and hence a Hopf algebra. One can construct
many similar Hopf algebras by considering special classes of posets and/or posets with addi-
tional structure; most of the combinatorial Hopf algebras considered throughout this thesis
are of this type.

Example 2.3.1. As another nice example of the idea considered in Example 2.2.25, con-
sider the character ζ which sends all posets to 1. Then ζ∗k(P ) counts ways to partition
P into disjoint subsets P1, . . . , Pk where P1 is a downset in P , then P2 is a downset in
P \ P1, and so on. These are clearly in bijection with weakly order-preserving maps
P → {1, . . . , k}. Thus the bialgebra map P → K[z] sends a poset to a polynomial Ω(P ; z)
with the property that Ω(P ; k) counts such maps; this is known as the order polynomial.

Remark 2.3.2. Schmitt [54] defined a quite general way to construct a Hopf algebra
from an appropriate family F of posets, the so-called incidence Hopf algebra. These work
somewhat differently from the Hopf algebra P we have defined here. The posets in the
family are required to be intervals. The product in the Hopf algebra is given by the
product of posets, while the coproduct is

∆[a, b] =
∑

a≤p≤b

[a, p]⊗ [p, b]. (2.10)

The intervals are not necessarily considered up to isomorphism; rather one may choose
any equivalence relation satisfying appropriate properties (a so-called Hopf relation).

Despite these differences, our Hopf algebra P is isomorphic to a certain an incidence
Hopf algebra. Namely, consider the family of all finite distributive lattices with the Hopf
relation just being isomorphism. The map P 7→ J(P ) is a bialgebra isomorphism from P
to the incidence Hopf algebra of this family; see [54, Section 16].

2.3.1 Rooted trees and Connes–Kreimer Hopf algebras

A (rooted) forest is a finite poset such that each element is covered by at most one element.
A connected forest is a (rooted) tree.8 A rooted tree can be decomposed as a unique maximal
element, the root, together with a forest. For a rooted tree t we denote by root by rt t. On
the other hand a forest uniquely decomposes as a disjoint union of trees. Thus this notion
of rooted tree is combinatorially equivalent to more common graph-theoretic definitions.

Although we prefer to think of trees as posets, we will sometimes use graph or tree-
specific terminology. In particular, we often refer to elements of trees as vertices and covering
relations as edges. The unique vertex covering a non-root vertex is its parent, vertices covered
by a vertex are its children. We will think of a tree as oriented downwards (opposite the
order) so that the number of children of a vertex is the outdegree and denoted od(v).

Two special classes of trees will be of some significance. The first is the ladder ℓn, which
as a poset is simply a chain (and as a graph is simply a path rooted at one of its ends) but
is conventionally called a ladder in this context. The second is the corolla sn consisting of

8We will not have any need for unrooted trees or forests.
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just a root with n− 1 children.
It is clear that a disjoint union of forests is a forest and that any upset or downset in

a forest is a forest. Thus the subspace of the poset Hopf algebra P spanned by forests
is a Hopf subalgebra, the (undecorated) Connes–Kreimer Hopf algebra, which we denote
H. We can also characterize H in a more algebraic way. Consider the linear operator B+

on P which sends each poset P to the poset obtained by adjoining a new element larger
than all elements of P . Then H is the unique minimal subalgebra of P which is mapped
to itself by B+. From this perspective it is not immediately obvious that H should be a
Hopf subalgebra. We can understand this by considering the relationship between B+ and
the coproduct. Note that the only downset of B+P which contains the new element is the
entirety of B+P . The other downsets coincide with the downsets of P , and if D is such a
downset we have (B+P ) \D ∼= B+(P \D). It follows that

∆B+P = B+P ⊗ 1 +
∑

D∈J(P )

D ⊗B+(P \D)

or in other words
∆B+ = B+ ⊗ 1 + (id⊗B+)∆. (2.11)

An operator satisfying (2.11) is a 1-cocycle. (These form part of a cohomology theory
which will be defined in Section 3.1.) The key significance of the Connes–Kreimer Hopf
algebra is that it possesses a universal property with respect to 1-cocycles.

Theorem 2.3.3 (Connes–Kreimer [15, Theorem 2]). Let A be a commutative algebra and
Λ be a linear operator on A. There exists a unique algebra morphism φ : H → A such
that φB+ = Λφ. Moreover, if A is a bialgebra and Λ is a 1-cocycle then φ is a bialgebra
morphism.

Note that there is nothing mysterious about the map φ guaranteed by Theorem 2.3.3.
Since any tree t can be written uniquely (up to reordering) in the form t = B+(t1 · · · tk) for
some t1, . . . , tk we can and must define φ recursively by

φ(t) = Λ(φ(t1) · · ·φ(tk)). (2.12)

A natural question is whether we can find an explicit, non-recursive formula for φ. Without
knowing anything about A and Λ there is clearly nothing we can do, but in Chapter 3 we
will solve certain cases of this problem.

2.4 Hopf algebras of note

In this section we set up some of the main examples of Hopf algebras which will be of interest
to us in this thesis and collect together some their properties.

2.4.1 Symmetric functions

Surely the most important Hopf algebra in algebraic combinatorics is Sym, the Hopf algebra
of symmetric functions. We can only scratch the surface of this subject; see [56, Chapter
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7] for a full reference or [28, Chapter 2] for a more Hopf-algebraic perspective. Consider
a sequence x = (x1, x2, . . . ) of indeterminates indexed by N+. As an algebra, Sym is the
subalgebra of K[[x]] consisting of those power series which are of finite degree and which are
invariant under all permutations of the variables. Since we take only the bounded-degree
series, Sym is graded by degree, unlike the full power series algebra.

Recalling the notation from Section 2.1.3, for any integer partition λ we define the mono-
mial symmetric function

mλ =
∑

sort(α)=λ

xα.

summing over N+-indexed exponent vectors α. Since two exponent vectors are equal up to
permuting entries if and only if the partitions obtained by sorting them agree, it follows that
the monomial symmetric functions are a basis for Sym. In particular, the dimension of the
graded piece Symn is the number of partitions of size n.

For n ≥ 1, we define the elementary symmetric function

en =
∑

i1<···<in

xi1 · · ·xin ,

the complete symmetric function

hn =
∑

i1≤···≤in

xi1 · · · xin ,

and the power sum

pn =
∑
i

xni .

For a partition λ = (λ1, . . . , λk), we define eλ = eλ1 · · · eλk
, and analogously hλ and pλ.

Theorem 2.4.1 ([56, Theorem 7.4.4, Corollary 7.6.2, Corollary 7.7.2]). All of {en}n∈N+,
{hn}n∈N+, and {pn}n∈N+ are algebraically independent generating sets for Sym. Consequently,
{eλ}λ∈Par, {hλ}λ∈Par, and {pλ}λ∈Par are bases.

The coproduct on Sym can most naturally be described as follows. We identify Sym⊗Sym
with symmetric functions in two separate sets of variables x and y. The coproduct then
corresponds to the map f(x) 7→ f(x,y).

∆en =
n∑

k=0

ek ⊗ en−k, (2.13)

∆hn =
n∑

k=0

hk ⊗ hn−k, (2.14)

and

∆pn = 1⊗ pn + pn ⊗ 1. (2.15)

(Here for convenience we take e0 = h0 = 1.)
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Remark 2.4.2. One might object that our definition of the coproduct doesn’t actually
make any sense. Certainly, for an arbitrary series f(x) ∈ K[[x]] it is completely unclear
what f(x,y) should mean; we seem to be trying to make a substitution for the variables
where the values we are substituting are not indexed by the same set as the variables
themselves! Thus it is essential that our attention is restricted to symmetric functions.
In this case there are (at least) two ways we can sense of what is going on. The first is
to simply interleave the x-variables and y-variables arbitrarily to make a single sequence
of variables; the symmetry ensures that the choice of how this is done does not affect the
answer. The other is to declare that what we really mean is

f(x,y) = lim
k→∞

f(x1, . . . , xk, y1, . . . , yk, 0, 0, . . . ) (2.16)

where (as usual for power series) the notion of convergence here is that the coefficient
of each monomial xα on the RHS eventually stabilizes to the coefficient on the LHS. We
leave it as a straightforward exercise that this limit does in fact exist when f is symmetric.

An alternative, less satisfying, approach is to appeal to Theorem 2.4.1 and simply take
one of (2.13) to (2.15) as the definition of the coproduct. One significant downside of this
approach is that it is far from immediately obvious that the three formulas are actually
equivalent without appealing to an interpretation like ours.

Remark 2.4.3. Since the power sums are primitive and are algebraically independent
generators, we see that Sym is simply isomorphic to a polynomial bialgebra K[p1, p2, . . . ].
(Indeed, Theorem 2.2.10 implies that any commutative and cocommutative unipotent
bialgebra is isomorphic to a polynomial bialgebra, since the Lie algebra structure is trivial.)
Note however that this only works because we assumed K to be a field of characteristic
zero. In Chapter 5 we will be interested in certain identities between symmetric functions
with integer coefficients; even though we use characteristic-zero methods these identities
must hold over any field because they ultimately boil down to some equalities between
integers. This is one reason why we do not want to simply identify symmetric functions
with polynomials like this.

Since Sym is a connected graded bialgebra, it is a Hopf algebra. Indeed, we have already
seen how to generate Sym by primitives, so we can easily write down a formula for the
antipode: S(pn) = −pn, and hence (by Proposition 2.2.1(i)) S(pλ) = (−1)ℓ(λ)pλ. More
interesting, however, is that the antipode relates the elementary and complete bases.

Theorem 2.4.4 ([28, Theorem 2.4.1(ii, iii)]). The antipode of Sym satisfies S(en) = (−1)nhn
and S(hn) = (−1)nen.

In symmetric function theory it is traditional to work not with the antipode but with
the fundamental involution ω, defined by ω(en) = hn. This is essentially equivalent to the
antipode: if f is homogeneous of degree n then ω(f) = (−1)nS(f).

By Remark 2.4.3 it follows (as in Example 2.2.16) that Sym is graded self-dual. To obtain
an isomorphism Sym → Sym∨ we may choose a primitive element ψn ∈ Sym∨

n for each n;
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then the map defined by pn 7→ ψn will do the job. The standard choice is to use

ψn(pλ) =

{
n, λ = (n)

0, otherwise

which has the nice property that it preserves integrality of coefficients. The Hall inner
product9 ⟨−,−⟩ is the bilinear form on Sym corresponding to this map. By definition, we
can see ⟨pn, pn⟩ = n and more generally

⟨pkn, pkn⟩ = ψ∗k
n (pkn) = k!ψn(pn)

k = k!nk.

To write down a general formula in the power sum basis we introduce notation. For a
partition λ we write mj(λ) for the number of i such that λi = j. Then define

zλ =
∏
j

mj(λ)!j
mj(λ). (2.17)

Then we have

⟨pλ, pµ⟩ =

{
zλ, λ = µ

0, otherwise
(2.18)

which can be verified by a similar convolution argument.
We will henceforth identify Sym with Sym∨ using the map we have described. In par-

ticular, this gives left and right actions of Sym on itself as in Section 2.2.3. Since Sym is
cocommutative these actions are the same. Most often these actions are described in terms
of perp operators,

f⊥g = f ⇀ g = g ↼ f,

where an alternative definition is that f⊥ is the operator adjoint to multiplication by f with
respect to the Hall inner product.

Remark 2.4.5. Those who are familiar with symmetric functions will surely notice that
there is one more commonly studied basis which we have not yet mentioned, the Schur
functions. Schur functions and their cousins the skew Schur functions will be the main
subject of Chapter 5, but we defer their definition until then.

2.4.2 Quasisymmetric functions

While our main interest will be in symmetric functions, we would be remiss not to make a
brief mention of their cousins the quasisymmetric functions. Let us return our attention to
the map f(x) 7→ f(x,y) that we used to describe the coproduct of Sym. We may heuristically
think of quasisymmetric functions as being precisely the class of (bounded-degree) series on
which this defines a coproduct.

9Strictly speaking, this is only an “inner product” in the usual sense when K is a subfield of R; otherwise
it is merely a nondegenerate symmetric bilinear form. This (ab)use of terminology is nonetheless standard.
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To give a proper definition, let us again consider indeterminates x = (x1, x2, . . . ). A
series f(x) ∈ K[[x]] is a quasisymmetric function if it has bounded degree and for all indices
i,

f(x) = f(x1, . . . , xi−1, 0, xi, xi+1, . . . ).

Quasisymmetric functions form an algebra QSym. Clearly, by repeating this rule we may
insert any finite number of zeroes in whichever positions we like. This ensures that the
limit on the right side of (2.16) exists, and we define a coproduct ∆ as the map QSym →
QSym⊗ QSym corresponding to f(x) 7→ f(x,y) as we did with symmetric functions.

Quasisymmetric functions are related to compositions similarly to how symmetric func-
tions are related to partitions. For an exponent vector α ∈ NN+ , define pack(α) to be
the composition consisting of the nonzero entries of α in their original order. An alter-
native definition of quasisymmetry is that f is quasisymmetric if [xα]f = [xβ]f whenever
pack(α) = pack(β). With this in mind, for a composition α we define the monomial qua-
sisymmetric function

Mα =
∑

pack(α′)=α

xα′
.

These form a basis for QSym. Note that the monomial symmetric functions can be expanded
in terms of these as

mλ =
∑

α∈Comp
sort(α)=λ

Mα.

In the monomial basis the coproduct is given by

∆Mα =
∑
β·γ=α

Mβ ⊗Mγ

where · denotes concatenation of compositions. Note that this formula makes it clear that
∆ is in fact coassociative, which is not entirely obvious from the way we defined it. This
formula also makes it clear that QSym is not cocommutative as Sym is. Indeed, this is in a
sense the main difference between them, as we will see shortly.

From the perspective of combinatorial Hopf algebras, the most important result about
quasisymmetric functions is the Aguiar–Bergeron–Sottile theorem, which states that QSym
has a certain universal property. We need some notation. For a character ζ of some graded
Hopf algebra H, write ζn for the linear map that equals ζ on Hn and is zero on all other
graded pieces. For a composition α = (α1, . . . , αk) write

ζα = ζα1 ∗ · · · ∗ ζαk
.

Let η be the character of QSym given by mapping x1 to 1 and xi to 0 for all other i. Explicitly,
on the monomial basis this is

η(Mα) =

{
1 ℓ(α) ≤ 1

0 otherwise.
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Theorem 2.4.6 (Aguiar–Bergeron–Sottile [3, Theorems 4.1 and 4.3]). Let H be a connected
graded Hopf algebra and ζ ∈ Ch(H). There exists a unique graded bialgebra morphism
φ : H → QSym such that ηφ = ζ. This map has the explicit formula

φ(h) =
∑

α∈Comp

ζα(h)Mα.

Moreover, if H is cocommutative then φ takes values in Sym.

Of course, one can conversely define a character ζ = ηφ given a graded bialgebra mor-
phism φ, so this gives a bijection between Ch(H) and the set of graded bialgebra morphisms
H → QSym. Recall from Section 2.2.4 that Ch(H) is also in bijection with the set of (not
necessarily graded) bialgebra morphisms H → K[z] under the more general hypothesis that
H is unipotent. Thus we should see quasisymmetric functions as playing a role analogous to
polynomials in a world where we insist on strictly preserving degree.

Example 2.4.7. In the same spirit as Example 2.2.25, we may use the Aguiar–Bergeron–
Sottile theorem to obtain interesting symmetric and quasisymmetric invariants of com-
binatorial objects from seemingly uninteresting characters of associated Hopf algebras.
For instance, letting ζ be the same character of G as in that example, the induced map
G → Sym sends a graph to its chromatic symmetric function, an invariant introduced by
Stanley [58] that has become a significant topic of study in algebraic combinatorics.

2.4.3 Faà di Bruno

Let D̃ ⊂ K[[x]] be the set of all series with zero constant term and nonzero linear term. These
are also known as formal diffeomorphisms and form a group with respect to composition of
series. Let D be the subgroup consisting of series with linear term x; these are sometimes
known as δ-series. It turns out that D is essentially isomorphic to the character group of a
graded Hopf algebra, the Faà di Bruno Hopf algebra FdB.

As an algebra, FdB should be thought of as the algebra of polynomial functions on D.
Explicitly, it is the polynomial algebra K[π1, π2, . . . ] in an N+-indexed set of variables. We
organize these variables into a power series

Π(x) = x+
∑
n≥1

πnx
n+1.

Then the map Ch(FdB) → D given by ζ 7→ ζ(Π(x)) is clearly a bijection. (Note that here
and throughout the thesis, notation like ζ(Π(x)) implicitly means applying ζ coefficientwise.)
We define a coproduct

∆πn =
n∑

k=0

[xn+1]Π(x)k+1 ⊗ πk. (2.19)

(where π0 = 1). Observe that this makes FdB into a connected graded bialgebra if we define
πn to have degree n; this is the reason for the off-by-one in the definition. The following
proposition is essentially immediate from (2.19).
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Proposition 2.4.8. Let A be a commutative algebra and φ, ψ : FdB → A be algebra mor-
phisms. Let Φ(x) = φ(Π(x)) and Ψ(x) = ψ(Π(x)). Then (φ ∗ ψ)(Π(x)) = Ψ(Φ(x)).

In particular, this actually implies that the map Ch(FdB) → D described above is an
anti -isomorphism of groups. Clearly we could have defined the coproduct with the tensor
factors flipped in order to make it an isomorphism, but the way we have defined it is both
traditional and will turn out to be convenient for our purposes.

Remark 2.4.9. The Faà di Bruno Hopf algebra is isomorphic to the incidence Hopf
algebra (see Remark 2.3.2) of finite partition lattices. Indeed, this is essentially the way it
was originally defined by Doubilet [17] though this precedes the general theory of incidence
Hopf algebras. The isomorphism between the two comes by expressing the power series
coefficients that appear in (2.19) as sums over set partitions. This is a combinatorial
formulation of Faà di Bruno’s formula, whence F is named.

We can also use Proposition 2.4.8 to get a formula for the antipode of FdB. Indeed,
Proposition 2.4.8 implies that S(Π(x)) is the compositional inverse of Π(x), so by Lagrange
inversion,

S(πn) = [xn+1]S(Π(x)) =
1

n+ 1
[xn]

(
x

Π(x)

)n+1

. (2.20)

Remark 2.4.10. Haiman and Schmitt [29] were able to derive (2.20) directly from
Takeuchi’s formula (Theorem 2.2.9) using a combinatorial argument, thus giving a Hopf-
algebraic proof of Lagrange inversion.

We can also work out what the actions of FdB∗ described in Section 2.2.3 look like.
By Proposition 2.2.19 it is sufficient to understand how an element of FdB∗ acts on the
generators, or equivalently on the series Π(x) itself. The following result follows more or less
immediately from (2.19).

Proposition 2.4.11. Suppose φ ∈ FdB∗ and let Φ(x) = φ(Π(x)). Then:

(i) φ⇀ Π(x) = Φ(Π(x)).

(ii) If φ ∈ Ch(FdB) then Π(x)↼φ = Π(Φ(x)).

(iii) If φ ∈ ch(FdB) then Π(x)↼φ = Φ(x)Π′(x).

As a particular consequence of Proposition 2.4.11(iii), we get a nice description of the
Lie algebra ch(FdB): the map φ 7→ φ(Π(x)) d

dx
gives a faithful representation by differential

operators on K[[x]]. We can also combine this with Theorem 2.2.24 to characterize bialgebra
morphisms FdB → K[z].

Theorem 2.4.12. Let φ : FdB → K[z] be an algebra morphism and let Φ(x, z) = φ(Π(x)).
Let β(x) be the linear term in z of Φ(x, z). Then φ is a bialgebra morphism if and only if
Φ(x, 0) = x and

∂Φ(x, z)

∂z
= β(x)

∂Φ(x, z)

∂x
. (2.21)
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Proof. By Theorem 2.2.24, φ is a bialgebra morphism if and only if φ|z=0 = ε and d
dz
φ =

(linφ) ∗ φ. Since φ is an algebra morphism, its behaviour is determined by what it does to
the generators, so these are respectively equivalent to Φ(x, 0) = ε(Π(x)) = x and

∂Φ(x, z)

∂z
= ((linφ) ∗ φ)(Π(x)) = φ(Π(x)↼ lin(φ)).

Since linφ is an infinitesimal character, by Proposition 2.4.11(iii) the right-hand side is

β(x)∂Φ(x,z)
∂x

as wanted.

In Chapter 4 we will return to these ideas and explore their applications in quantum field
theory.
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Chapter 3

Binary Tubings and 1-Cocycles

In this chapter we return to the Connes–Kreimer Hopf algebra and its universal property
(Theorem 2.3.3). The main problem we will be interested in will be to find explicit formulas
for the bialgebra morphisms which come from this property as well as some generalizations
thereof.

3.1 Cohomology of comodules

In Section 2.3.1 we briefly discussed a class of operators we mysteriously referred to as
“1-cocycles”. Let us now put this into its correct context. Let H be a bialgebra and M
a left comodule over H, with coaction δ. For k ≥ 0, a k-cochain on M is a linear map
M → H⊗k. Denote the vector space of k-cochains by Ck(H,M). The coboundary map
dk : C

k(H,M) → Ck+1(H,M) is defined by

dkΛ = (idH ⊗ Λ)δ +
k∑

j=1

(−1)j(id
⊗(j−1)
H ⊗∆⊗ id

⊗(k−j)
H )Λ + (−1)kΛ⊗ 1. (3.1)

The kernel and image of this map are the spaces of k-cocycles and (k + 1)-coboundaries
respectively. The space of k-cocycles is denoted Zk(H,M). A tedious but routine calcula-
tion shows that dk+1dk = 0, so every coboundary is a cocycle. The quotient Hk(H,M) =
Zk(H,M)/dk−1C

k−1(H,M) is the kth cohomology of the comoduleM . Most often considered
is the case M = H, in which case we simply write Zk(H) and Hk(H).

Remark 3.1.1. For the reader familiar with homological algebra, we mention that
Hk(H,M) is nothing more than ExtkH(M,H) in the category of comodules overH, with the
above definition amounting to a computation of this Ext-group with an explicit injective
resolution of H as a comodule over itself. In particular, this implies that the cohomology
groups depend only on the coalgebra structure of H and not on its multiplication, even
though the definition makes use of the multiplicative unit. However, this fact will be of
no real use to us as we are more interested in the cocycles than the cohomology.

Remark 3.1.2. More generally, we could consider a bicomodule M with left coaction δ
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and right coaction δ′, and define the coboundary to be

dkΛ = (idH ⊗ Λ)δ +
k∑

j=1

(−1)j(id
⊗(j−1)
H ⊗∆⊗ id

⊗(k−j)
H )Λ + (−1)k(Λ⊗ idH)δ

′.

This is the original notion of cohomology for coalgebras introduced by Doi [16]. The
version we are considering is simply the special case where the right coaction is trivial.

We will only be interested in the case k = 1. Moreover, for the remainder of this section
we will focus on the case M = H. (We will consider some other comodules in Section 3.4.)
In this case the cocycle condition d1Λ = 0 can be written

∆Λ = Λ⊗ 1 + (idH ⊗ Λ)∆ (3.2)

which is the form we saw in Section 2.3.1 with a combinatorial interpretation. There are
also some very natural examples of a more algebraic flavour.

Example 3.1.3. Let I be the integration operator on K[z]:

If(z) =
∫ z

0

f(u) du.

Recall (from Example 2.2.4) that the coproduct on K[z] can be interpreted as substituting
a sum z1 + z2 in place of the variable z. That I is a 1-cocycle then boils down to some
familiar properties of integrals:∫ z1+z2

0

f(u) du =

∫ z1

0

f(u) du+

∫ z1+z2

z1

f(u) du

=

∫ z1

0

f(u) du+

∫ z2

0

f(z1 + u) du.

By Theorem 2.3.3, I defines a morphism φ : H → K[z]. An easy induction with the
recurrence (2.12) gives

φ(t) =
z|t|∏
v∈t |tv|

where tv denotes the subtree (principal downset) rooted at v. The denominator is also
known as the tree factorial. A formula of Knuth [36, Section 5.1, Exercise 20] gives the
number of linear extensions of a tree as

e(t) =
|t|!∏
v∈t |tv|

and hence we can alternatively write

φ(t) =
e(t)z|t|

|t|!
.

This latter formula is the simplest special case of the formula we will derive for arbitrary
1-cocycles on K[z] as Theorem 3.3.1.
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Example 3.1.4. Another natural example of a 1-cocycle on K[z] is the “discrete integral”
operator S (not to be confused with the antipode S) which is uniquely defined by the
property that for n ∈ N,

Sf(z)
∣∣∣
z=n

=
n∑

k=1

f(k). (3.3)

We can explicitly define such an S on the basis of binomial coefficients by

S
(
z

r

)
=

(
z + 1

r + 1

)
which satisfies (3.3) by the hockey-stick identity (2.2). Uniqueness follows from the fact
that two polynomials which agree at infinitely many elements of K are equal in K[z].
Using this fact again, we can show that S is a cocycle by exactly the same calculation as
in Example 3.1.3 but with a sum instead of an integral:

n1+n2∑
k=1

f(k) =

n1∑
k=1

f(k) +

n1+n2∑
k=n1+1

f(k)

=

n1∑
k=1

f(k) +

n2∑
k=1

f(n1 + k).

The map H → K[z] induced by this cocycle is the restriction to H of the map from
Example 2.3.1 sending a poset to its order polynomial. The recurrence

Ω(B+f ;n) =
n∑

k=1

Ω(f ; k)

comes from summing over the different values that such a map may send the root to. It
is known (see e.g. [57, Section 3.12]) that for any poset P , the leading term of Ω(P ; z) is
e(P )z|P |/|P |!, so the leading term of this map is the same as the map from Example 3.1.3.
As we will soon see, this is no coincidence.

We begin with some basic properties of 1-cocycles. For stating these it is convenient to
generalize the notion of convolution to maps defined on comodules: for an algebra A and
maps α : H → A and β : M → A, write

α ∗δ β = mA(α⊗ β)δ

where mA is the multiplication map on A.

Lemma 3.1.5. Let M be a comodule over H and Λ ∈ Z1(H,M). Then:

(i) If α, β : H → A for some algebra A then (α ∗ β)Λ = β(1)αΛ + α ∗δ βΛ.

(ii) εΛ = 0.

(iii) If φ : N →M is a homomorphism of comodules then Λφ ∈ Z1(H,N).
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Proof. (i) Immediate from the definition of 1-cocycles and convolution.

(ii) Follows from (i) since ε is the identity for convolution.

(iii) Write δ and δ′ for the coactions on M and N respectively. We have

∆Λφ = (Λ⊗ 1)φ+ (id⊗ Λ)δφ = Λφ⊗ 1 + (id⊗ Λφ)δ′.

Note in particular that if β(1) = 0 (e.g. if β is an infinitesimal character) then (i) just
says (α ∗ β)Λ = α ∗ βΛ.

Suppose Λ ∈ Z1(H). We can use Λ to build new cocycles on various comodules. Given a
left comodule M with coaction δ and a linear map ψ : M → K, we define Λ⊛ψ = (Λ⊗ψ)δ.

Lemma 3.1.6. Subject to the above assumptions, Λ⊛ ψ ∈ Z1(H,M).

Proof. We compute

∆(Λ⊛ ψ) = (∆Λ⊗ ψ)δ

= (Λ⊗ ψ)δ ⊗ 1 + ((id⊗ Λ)∆⊗ ψ)δ

= (Λ⊛ ψ)⊗ 1 + (id⊗ Λ⊗ ψ)(∆⊗ id)δ

= (Λ⊛ ψ)⊗ 1 + (id⊗ Λ⊗ ψ)(id⊗ δ)δ

= (Λ⊛ ψ)⊗ 1 + (id⊗ (Λ⊛ ψ))δ.

As a special case of this, note that dε⊛ψ = dψ. When M = H we can write Λ⊛ψ using
the left action of H∗ on H described in Section 2.2.3:

(Λ⊛ ψ)h = Λ(ψ ⇀ h).

Using this operation and the integral cocycle from Example 3.1.3, we can describe all 1-
cocycles on K[z].

Theorem 3.1.7 (Panzer [47, Theorem 2.6.4]). For any series A(z) ∈ K[[z]], the operator

f(z) 7→
∫ z

0

A(d/du)f(u) du (3.4)

is a 1-cocycle on K[z]. Moreover, all 1-cocycles on K[z] are of this form.

Proof sketch. That this is a cocycle follows from Lemma 3.1.6, identifying K[z]∗ with K[[z]]
as discussed in Example 2.2.16. The other direction is a calculation; see the proof in [47].
(We will also prove a more general result later as Theorem 3.4.1.)

Corollary 3.1.8. The cohomology H1(K[z]) is 1-dimensional and generated by the class of
the integral cocycle I.

Proof. Note I(1) = z, so I is not a coboundary. Now suppose Λ is a 1-cocycle given by
(3.4). Write A(z) = a0 + zB(z) for some series B(z). Then we have

Λf(z) =

∫ z

0

A(d/du)f(u) du
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= a0

∫ z

0

f(u) du+

∫ z

0

d

du
B(d/du)f(u) du

= a0If(z) +B(d/dz)f(z)−B(d/dz)f(z)
∣∣
z=0

hence Λ = a0I + dβ where β is the linear form zn 7→ [zn]B(z).

Example 3.1.9. To put the discrete integral cocycle (Example 3.1.4) in the form (3.4), we
take A(z) = zez/(ez − 1), the exponential generating function for the Bernoulli numbers1.
The identity

f(1) + · · ·+ f(n) =

∫ n

0

A(d/du)f(u) du

is the Euler–Maclaurin formula; see for instance [50, Section 7].2

Remark 3.1.10. We can also write 1-cocycles on K[z] in a different form, namely

f(z) 7→ f(∂/∂ρ)
ezρ − 1

ρ
A(ρ)

∣∣
ρ=0

.

Checking on the basis of monomials quickly reveals that this is equivalent to the 1-cocycle
that appears in the statement of Theorem 3.1.7. Operators of this form appear in the
theory of Dyson–Schwinger equations, as we will discuss further in Section 4.1.

We will take Theorem 3.1.7 as the starting point for the first part of our quest. Given a
1-cocycle Λ expressed in the form (3.4) we will be interested in the problem of determining
an explicit formula for the map H → K[z] induced by Λ, in terms of the coefficients of
the series A(z). As a first step, we can easily compute the leading term, generalizing our
observation from Example 3.1.4.

Proposition 3.1.11. Let Λ be given by (3.4) and let φ : H → K[z] satisfy φB+ = Λφ. Let
a0 be the constant term of A(z). Then for any forest t,

φ(t) =
e(t)(a0z)

|t|

|t|!
+ (lower-order terms).

Proof. Write t = B+f . Then from the form of (3.4) it is clear that the leading term of φ(t)
is simply a0 times the integral of the leading term of φ(f), which in turn is the product of
the leading terms of the components of f . Thus inductively assuming the result holds for
smaller trees, the leading term is e(f)(a0z)

|t|/|t|! where clearly e(t) = e(f).

In the next section, we will introduce a generalization of linear extensions that will allow
us to give an analogous interpretation to the lower-order terms. In fact, we will be able to
do this in a more general setting where we have an arbitrary family of 1-cocycles indexed

1There are two conventions for Bernoulli numbers. The “other” Bernoulli numbers, with exponential
generating function z/(ez − 1), would appear if we defined our discrete integral as a sum from 0 to n − 1
rather than 1 to n.

2Most often the Euler–Maclaurin formula is stated as an asymptotic expansion for the sum of a smooth
function f of a real variable, but it holds exactly – and makes sense over any field – when f is a polynomial.
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by some set I. The universal object here is the decorated Connes–Kreimer Hopf algebra HI ,
which we now define. By an I-tree (resp. I-forest) we mean a tree (resp. forest) with each
vertex decorated by an element of I. We will write T (I) for the set of I-trees and F(I)
for the set of I-forests. Then HI is the free vector space on F(I), made into a bialgebra
with disjoint union as multiplication and the same coproduct as in H but preserving the
decorations on all vertices. As usual, we can grade by the number of vertices and find that
HI is a connected graded bialgebra and hence a Hopf algebra.

Remark 3.1.12. We could instead choose some weight function w : I → N and grade
HI by total weight. If w takes only positive values then this grading will also make HI

connected. In the application to Dyson–Schwinger equations we will have such a weight
function already and so it is natural to grade the algebra this way, but it won’t really
matter for anything we do.

For each i ∈ I, we have an operator B
(i)
+ on HI that sends an I-forest to the I-tree

obtained by adding a root with decoration i. For the same combinatorial reasons as the
usual B+ operator on H, all of these are 1-cocycles. Theorem 2.3.3 generalizes easily to this
setting.

Theorem 3.1.13 ([25, Proposition 2 and 3]). Let A be a commutative algebra and {Λi}i∈I
be a family of linear operators on A. There exists a unique algebra morphism φ : HI → A
such that φB

(i)
+ = Λiφ. Moreover, if A is a bialgebra and Λi is a 1-cocycle for each i then φ

is a bialgebra morphism.

3.2 Binary tubings

We now introduce the combinatorial objects that we will use to understand 1-cocycles. We
will only be interested in trees, but the basic definitions can be given in the context of an
arbitrary finite poset P . A tube is a connected convex subset of P .3 For tubes X, Y write
X → Y if X ∩ Y = ∅ and there exist x ∈ X and y ∈ Y such that x < y. A collection τ of
tubes is called a tubing if it satisfies the following conditions:

• (Laminarity) If X, Y ∈ τ then either X ∩ Y = ∅, X ⊆ Y , or X ⊇ Y .

• (Acyclicity) There do not exist tubes X1, . . . , Xk ∈ τ with X1 → X2 → · · · → Xk →
X1.

Tubings of posets (also called pipings) were introduced by Galashin [26] to index the
vertices of a certain polytope associated to P , the P -associahedron. They were rediscovered
(in the case of trees) by the authors of [8] in the present context. Note that for trees the
acyclicity condition is trivial.

Remark 3.2.1. Galashin defines a proper tube to be one which is neither a singleton nor
the entirety of P , and a proper tubing to be one consisting only of proper tubes. Only the
proper tubes and tubings play a role in the definition of the poset associahedron, but for

3Note that being both connected and convex is equivalent to inducing a connected subgraph of the Hasse
diagram of P .
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us it will be sensible to include the improper ones. Note that if one restricts attention to
maximal tubings (which we largely will do) then this makes no combinatorial difference,
as a maximal tubing contains all of the improper tubes and removing them maps the set
of maximal tubings bijectively to the set of maximal proper tubings.

Remark 3.2.2. Tubings of posets are only loosely related to the better-known notion of
tubings of graphs introduced by Carr and Devadoss [13]. For graphs, a tube is defined to
be a set of vertices which induces a connected subgraph and a tubing is a set of tubes
satisfying the laminarity condition along with a certain non-adjacency condition which is
entirely different from the acyclicity condition for poset tubings. Thus the notions should
not be confused. However, in the case of trees there is a close connection: tubings of a
rooted tree (as a poset) are in bijection with tubings of the line graph of the tree. (This is
essentially a special case of a result of Ward [60, Lemma 3.17] which is stated in terms of
related objects called nestings. See [8, Section 6] for a discussion of this in our language.)

Remark 3.2.3. A subset of a rooted tree is convex and connected (in the order-theoretic
sense) if and only if it is connected in the graph-theoretic sense. Thus the set of tubings of
a rooted tree is really an invariant of the underlying unrooted tree. However, the statistics
on tubings in which we will be interested do depend on the root and are best thought of
in terms of the partial ordering.

The laminarity condition implies that if τ is a tubing of P , the poset of tubes ordered by
inclusion is a forest. In the case of a maximal tubing of a connected poset, there is a unique
maximal tube (namely P itself) and each non-singleton tube has exactly two maximal tubes
properly contained within it. Relative to X, one of these tubes is a downset and one is an
upset. Taking the downset as the left child and the upset as the right child, the tubes of a
maximal tubing thus have the structure of a binary plane tree. For this reason (and to avoid
confusion with graph tubings), maximal tubings of rooted trees were referred to as binary
tubings in [8] and we will also use this language.

Henceforth we shall restrict our attention exclusively to binary tubings of rooted trees.
We will write Tub(t) for the set of binary tubings of t. We will call a tube a lower tube (resp.
upper tube) if it is a downset (resp. upset) in its parent in the tree of tubes. We will also
consider t itself to be a lower tube; this ensures that each vertex is the root of exactly one
lower tube. Given a vertex v, define the rank rk(τ, v) of v in τ to be the number of upper
tubes rooted at v.4 We will write b(τ) for the number of tubes of τ containing the root of t;
note that we clearly have b(τ) = rk(τ, rt t) + 1.

Remark 3.2.4. Our definition of the rank refers only to the upper tubes, but it can be
equivalently defined in terms of lower tubes only: for each upper tube rooted at v there
is a corresponding lower tube, with the property that there is no lower tube of τ lying
strictly between it and the unique lower tube rooted at v. Conversely any such lower tube
corresponds to an upper tube rooted at v. In other words, considering the lower tubes
of τ as a poset ordered by containment, rk(τ, v) is the number of lower tubes that are
covered by the unique lower tube rooted at v.

4In [8] the equivalent statistic b(τ, v) = rk(τ, v) + 1 counting the total number of tubes rooted at v was
used instead. It has since become clear that the rank is really the fundamental quantity.
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(a) All binary tubings of a small tree. (b) A binary tubing of a larger
tree.

Figure 3.1. Examples of binary tubings. Upper and lower tubes highlighted in different colours.

Binary tubings of rooted trees have a recursive structure which we will make essential
use of.

Proposition 3.2.5. Let t be a rooted tree with |t| > 1. There is a bijection between binary
tubings of t and triples (t′, τ ′, τ ′′) where t′ is a proper subtree (principal downset) of t, τ ′ ∈
Tub(t′), and τ ′′ ∈ Tub(t \ t′). Moreover this bijection satisfies

rk(τ, v) =


rk(τ ′, v) v ∈ t′

rk(τ ′′, v) + 1 v = rt t

rk(τ ′′, v) otherwise

(3.5)

and b(τ) = b(τ ′′) + 1.

Proof. By the discussion above there are two maximal tubes t′, t′′ properly contained in the
largest tube t, where t′ is a downset and t′′ = t \ t′ is an upset and both are connected. A
connected downset in a rooted tree is a subtree; since the complement is nonempty it must
be that t′ is a proper subtree. Let

τ ′ = {u ∈ τ : u ⊆ t′}

and

τ ′′ = {u ∈ τ : u ∩ t′ = ∅}.

By the laminarity condition, we have τ = {t} ∪ τ ′ ∪ τ ′′. Since each tube in τ ′ and τ ′′ still
contains two maximal tubes within it, these are still maximal tubings of t′ and t′′ respectively,
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i.e. τ ′ ∈ Tub(t′) and τ ′′ ∈ Tub(t \ t′). Note that the upper tubes of τ ′ and τ ′′ are also upper
tubes of τ , whereas t′′ is a lower tube in τ ′′ and an upper tube in τ . Thus the statement about
ranks follows. Since b(τ) = rk(τ, rt t) + 1 and rt t ∈ t′′ the statement about the b-statistic
also follows.

Remark 3.2.6. Observe that in a binary tubing we split the tree into an upper and lower
part just as in the definition of the coproduct, but with the key difference that they are
both required to be trees. To make this more algebraic, let Plin : H → H be the projection
onto the subspace spanned by trees. Then the linearized coproduct is ∆lin = (Plin⊗Plin)∆.
In effect, ∆lin looks the same as the usual coproduct but only includes terms where both
tensor factors are trees rather than arbitrary forests. Unlike the coproduct, the linearized
coproduct fails to be coassociative: there are multiple different mapsH → H⊗k that can be
built by iterating it. For instance in the case k = 3 there are distinct maps (∆lin ⊗ id)∆lin

and (id⊗∆lin)∆lin. It is not hard to see that if we iterate all the way to k = |t|, the terms
that we can get from all of these maps taken collectively correspond exactly to the binary
tubings.

3.2.1 Enumeration of binary tubings

While not strictly relevant to our application, it is also interesting to consider the purely
combinatorial question of counting binary tubings of a tree. Write N(t) for the number of
binary tubings of t. As an immediate consequence of Proposition 3.2.5 we get a recursive
formula for N(t).

Corollary 3.2.7 ([8, Lemma 2.8]). Let t be a rooted tree with |t| > 1. Then

N(t) =
∑
t′

N(t′)N(t \ t′) (3.6)

summing over proper subtrees t′.

Using Corollary 3.2.7 we are able to easily enumerate binary tubings for corollas and
ladders. (See Section 2.3.1 for definitions and notation.)

Proposition 3.2.8. We have N(sn) = (n−1)! and N(ℓn) = cat(n−1), the (n−1)st Catalan
number.

Proof. The recurrence gives
N(sn) = (n− 1)N(sn−1)

and

N(ℓn) =
n−1∑
k=1

N(ℓk)N(ℓn−k)

with the base case N(s1) = N(ℓ1) = 1. The result follows.
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Corollas and ladders turn out to be the extreme cases. We can easily observe that the
number of tubings of a tree is bounded above by (n− 1)! simply because for a subtree t′ of
size k < n, we have

N(t′)N(t \ t′) ≤ (k − 1)!(n− k − 1)! ≤ (n− 2)!

and hence each term on the RHS of (3.6) is at most (n− 2)! so the sum is at most (n− 1)!
as desired. More generally we have the following result.5

Theorem 3.2.9 ([8, Lemma 3.7]). For any tree t with n vertices, cat(n−1) ≤ N(t) ≤ (n−1)!.

The following common generalization of the two formulas of Proposition 3.2.8 was sug-
gested to the author by Alejandro Morales. It has been independently proved by Nguyen
and Sack [46].

Theorem 3.2.10. Let tr,s = B+(ℓ
r
1ℓs). Then

N(tr,s) =
(r + 1)!

r + s+ 1

(
r + 2s

s

)
.

Proof. We have N(tr,0) = r! and N(t0,s) = cat(s), which match the formula.
From Corollary 3.2.7, for r > 0 and s > 0, we have

N(tr,s) = rN(tr−1,s) +
s∑

k=1

cat(k − 1)N(tr,s−k). (3.7)

Consider the generating function

A(x, y) =
∑
r≥0

∑
s≥0

N(tr,s)x
rys

r!
.

In terms of this series, (3.7) says that for r > 0 and s > 0, we have

[xrys]A(x, y) = [xrys](x+ yC(y))A(x, y) (3.8)

where C(y) is the generating function for the Catalan numbers, which satisfies

C(y) =
1

1− yC(y)
.

Explicitly solving (3.8) using the known base cases we get

A(x, y) =
1

1− x− yC(y)

to which we apply the Lagrange implicit function theorem (Theorem 2.1.3) with F (u) =
1

1−x−u
and G(u) = 1

1−u
:

N(tr,s) = r![xrys]A(x, y)

5The proof for the lower bound is far less pleasant.
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=
r!

s
[xrus−1]

1

(1− x− u)2(1− u)s

=
(r + 1)!

s
[us−1]

1

(1− u)r+s+2

=
(r + 1)!

s

(
r + 2s

s− 1

)
=

(r + 1)!

r + s+ 1

(
r + 2s

s

)
.

3.3 The tubing expansion (part 1)

We are now ready to give the promised formula for maps HI → K[z] induced by the universal
property Theorem 3.1.13. Let us fix a set I of decorations and a family of 1-cocycles

Λif(z) =

∫ z

0

Ai(d/du)f(u) du

where
Ai(z) =

∑
n≥0

ai,nz
n.

Given an I-tree t, let us write d(t) for the decoration of the root vertex, and d(v) for the
decoration of a vertex v. For a tubing τ of t, we define the Mellin monomial6

mel(τ) =
∏
v∈t

v ̸=rt t

ad(v),rk(τ,v). (3.9)

With these definitions in hand, we can state the formula.

Theorem 3.3.1 ([8, Theorem 4.2]). With the above setup, the unique map φ : HI → K[z]

satisfying φB
(i)
+ = Λiφ is given on trees by the formula

φ(t) =
∑

τ∈Tub(t)

mel(τ)

b(τ)∑
k=1

ad(t),b(τ)−k
zk

k!
. (3.10)

The proof of this result will make up the remainder of this section.

Example 3.3.2. Let t be the tree that appears in Figure 3.1a. Computing the contribu-
tions of the five tubings and summing them up, we get

φ(t) = c30

(
c3z + c2

z2

2!
+ c1

z3

3!
+ c0

z4

4!

)
+ 2c20c1

(
c2z + c1

z2

2!
+ c0

z3

3!

)
+ 2c30

(
c2z + c1

z2

2!
+ c0

z3

3!

)
6The name is inspired by the physics application, where the series A(z) is, modulo some minor details,

the Mellin transform of a primitive Feynman diagram. See Section 4.1.
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where the second and third tubing in the figure give the same contribution, as do the
fourth and fifth. These coincidences can be explained combinatorially by the fact that in
both cases the offending pair of tubings differ in the upper tubes but have the exact same
set of lower tubes, which in light of Remark 3.2.4 is sufficient to determine the Mellin
monomial and b-statistic.

Remark 3.3.3. The leading term of (3.10) counts binary tubings τ with b(τ) = |t|, i.e.
where every upper tube contains the root. Since a lower tube of size greater than 1 must
contain an upper tube which cannot contain the root, this implies that every lower tube
except the outermost tube is a singleton. Such tubings were called leaf tubings in [8]. If
we think of tubings as iteratively pulling off subtrees, leaf tubings are the case where we
just pull off single leaves, and are completely determined by the order in which we do so.
Since we must pull off each vertex before its parent, this must be a linear extension of the
tree, and this gives a bijection between leaf tubings and linear extensions. Each non-root
vertex in a leaf tubing has rank 0, so the leading coefficient of φ(t) is

e(t)

|t|!
∏
v∈t

ad(v),0

which in the case of a single 1-cocycle matches what we computed in Proposition 3.1.11.

Remark 3.3.4. By Example 3.1.4 and Example 3.1.9, we can use Theorem 3.3.1 we can
get a formula for the order polynomial of a tree as a sum over binary tubings of some
terms involving products of Bernoulli numbers.

For the moment, let ψ denote the algebra map defined by the right side of (3.10). Let σ
be the linear term of ψ. Explicitly we have

σ(t) =
∑

τ∈Tub(t)

ad(t),b(τ)−1mel(τ) (3.11)

and σ vanishes on disconnected forests (including the empty forest). Since the constant term
of ψ is zero on all trees (agreeing with the counit), by Theorem 2.2.24, σ is an infinitesimal
character.

Lemma 3.3.5 ([8, Lemma 4.3]). For any tree t and k ≥ 1,

σ∗k(t) =
∑

τ∈Tub(t)
b(τ)≥k

ad(t),b(τ)−k mel(τ).

Note that for k > 1, σ∗k is not an infinitesimal character and does not vanish on all
disconnected forests, though it trivially must vanish on the empty forest. However, it will
be sufficient for our purposes to understand its value on trees.

Proof. By induction on k. Since b(τ) ≥ 1 for all tubings τ , the base case is exactly (3.11).
Then by (2.9) we have

σ∗k+1(t) = (σ ∗ σ∗k)(t) =
∑
f

σ(f)σ∗k(t \ f)
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as f ranges over subforests (i.e. downsets). However, since σ vanishes on disconnected forests
only terms where f is a tree contribute, and since σ∗k vanishes on the empty forest we may
further restrict to proper subtrees t′ ⊂ t. Thus, using the induction hypothesis we have

σ∗k+1(t) =
∑
t′

σ(t′)σ∗k(t \ t′)

=
∑
t′

∑
τ ′∈Tub(t′)

∑
τ ′′∈Tub(t\t′)

b(τ ′′)≥k

ad(t′),b(τ ′)−1mel(τ ′)ad(t),b(τ ′′)−k mel(τ ′′).

Now by the recursive construction of tubings (Proposition 3.2.5), the pair (τ ′, τ ′′) uniquely
determines a tubing τ of t, and

b(τ) = b(τ ′′) + 1.

It follows from (3.5) that the Mellin monomials satisfy

mel(τ) = ad(t′),b(τ ′)−1mel(τ ′)mel(τ ′′)

as we get a factor for each non-root vertex of t′ and t′′ as well as for the root of t′ which does
not contribute to mel(τ ′). Hence we can rewrite the above triple sum as

σ∗k+1(t) =
∑

τ∈Tub(t)
b(τ)≥k+1

ad(t),b(τ)−k−1mel(τ)

as wanted.

Remark 3.3.6. With the exception of the unique tubing of the one-vertex tree, every
binary tubing τ satisfies b(τ) ≥ 2. Thus for trees on more than one vertex, σ and σ∗2

count the same set with slightly different weights. In particular, consider the case that
all of the coefficients equal 1, so σ(t) is just the number of binary tubings of t. By
Lemma 3.3.5, this σ agrees with σ∗2 on such trees. This recovers Corollary 3.2.7.

Lemma 3.3.7 ([8, Lemma 4.4]). ψ = exp∗(zσ).

(By Theorem 2.2.24, this is equivalent to ψ being a Hopf algebra morphism.)

Proof. Both sides are algebra morphisms, so we only need to show they agree on trees. We
compute

ψ(t) =
∑

τ∈Tub(t)

mel(τ)

b(τ)∑
k=1

ad(t),b(τ)−k
zk

k!

=
∑
k≥1

zk

k!

∑
τ∈Tub(t)
b(τ)≥k

ad(t),b(τ)−k mel(τ)

=
∑
k≥1

zk

k!
σ∗k(t)

= exp∗(zσ)(t).
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We can now examine how σ interacts with the B+ operators.

Lemma 3.3.8. For each i ∈ I,

σB
(i)
+ =

∑
k≥0

ai,kσ
∗k.

Proof. For k ≥ 1 and i ∈ I define an infinitesimal character σi,k by

σi,k(t) =
∑

τ∈Tub(t)
b(τ)=k

c(τ)

when t is a tree with root decorated by i and otherwise zero. Clearly, we then have

σ =
∑
i∈I

∑
k≥1

ai,k−1σi,k.

By construction we have σi,kB
(j)
+ = 0 for j ̸= i. Thus the result follows if we can show that

σi,kB
(i)
+ = σ∗k−1. We do this by induction on i. For the base case, note that the only tubing

τ satisfying b(τ) = 1 is the unique tubing of the one-vertex tree, which also has mel(τ) = 1.

Thus σi,1 sends the one-vertex tree with decoration i to 1 and all other trees to 0, so σi,1B
(i)
+

sends the empty forest to 1 and all other forests to 0, i.e. σi,1B
(i)
+ = ε = σ∗0.

Now suppose k ≥ 1 and consider σi,k+1. This vanishes on one-vertex trees. For t a tree
with more than one vertex and d(t) = i we have (where the sums over t′ are summing over
proper subtrees)

σi,k+1(t) =
∑

τ∈Tub(t)
b(τ)=k+1

mel(τ)

=
∑
t′

 ∑
τ ′∈Tub(t′)

ai,b(τ ′)−1mel(τ ′)


 ∑

τ ′′∈Tub(t\t′)
b(τ ′′)=k

mel(τ ′′)


=
∑
t′

σ(t′)σi,k(t \ t′)

= (σ ∗ σi,k)(t).

and thus while σi,k+1 ̸= σ ∗ σi,k the two do agree on the image of B
(i)
+ .

Thus

σi,k+1B
(i)
+ = (σ ∗ σi,k)B(i)

+

= σ ∗ σi,kB(i)
+ by Lemma 3.1.5(i)

= σ ∗ σ∗k−1 by the induction hypothesis

= σ∗k

as wanted.
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Finally, we are ready to prove our formula.

Proof of Theorem 3.3.1. To show φ = ψ, by uniqueness we need only show that ψ satisfies
the required formula ψB

(i)
+ = Λ(i)ψ. Note that both of these have zero constant term, so it

is sufficient to show that they agree after differentiating with respect to z. By construction,
we have

d

dz
Λ(i) = Ai(d/dz).

On the other hand, since ψ = exp∗(zσ), we have

d

dz
ψ = ψ ∗ σ.

Now using our lemmas we can compute

d

dz
ψB

(i)
+ = (ψ ∗ σ)B(i)

+

= ψ ∗ σB(i)
+ by Lemma 3.1.5(i)

=
∑
k≥0

ai,kψ ∗ σ∗k by Lemma 3.3.8

=
∑
k≥0

ai,k
dk

dzk
ψ by Lemma 3.3.8

=
d

dz
Λ(i)ψ.

The result follows.

3.4 1-cocycles on tensor powers

We now return to 1-cocycles. In Section 3.1 we defined 1-cocycles for arbitrary comodules
over a bialgebra H but focused mainly on the case where the comodule is H itself. In this
section, we will consider the case where the comodule is a tensor power of H. (Recall the
tensor product of comodules from Section 2.2.3.) This theory is not as well developed, and
the results of this section have not previously appeared.

Note that there is a canonical comodule homomorphism µ : H⊗r → H, namely the mul-
tiplication map µ(h1 · · ·hr) = h1 · · ·hr. By Lemma 3.1.5(iii) we can build various 1-cocycles
Λµ ∈ Z1(H,H⊗r) for various Λ ∈ Z1(H). We will call such cocycles boring ; as we will see,
they are generally the trivial case for our results.

As in Section 3.1 we focus on the case of H = K[z]. Similarly to Example 2.2.4 we
identify K[z]⊗r with K[z1, . . . , zr] made into a comodule with coaction

δzα =
∑
β≤α

(
α

β

)
z|α|−|β| ⊗ zβ. (3.12)

We now give a generalization of Theorem 3.1.7 to tensor powers.
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Theorem 3.4.1. For any series A(z) ∈ K[[z1, . . . , zr]], the map K[z1, . . . , zr] → K[z] given
by

f(z) 7→
∫ z

0

A(∂/∂u1, . . . , ∂/∂ur)f(u1, . . . , ur)
∣∣
u1=···=ur=u

du (3.13)

is a 1-cocycle. Moreover, all 1-cocycles K[z1, . . . , zr] → K[z] are of this form.

Proof. Let ψ : K[z1, . . . , zr] → K be given by

ψ(zα) = [zα]A(z).

Then the operator defined by (3.13) is simply I ⊛ ψ where I is the usual integral cocy-
cle on K[z] (see Example 3.1.3) and the ⊛ notation was defined in Section 3.1. Thus by
Lemma 3.1.5(iii) and Lemma 3.1.6, this operator is indeed a 1-cocycle.

Conversely, suppose Λ is a 1-cocycle. We wish to find a series A(z) such that Λ has the
form (3.13). For α ∈ Nr take aα = linΛ(zα) and let A(z) be the exponential generating
function for these:

A(z) =
∑
α∈Nr

aαz
α

α1! · · ·αr!
.

Now observe that for a polynomial f(z) we have df(z)
dz

= lin⇀f(z). (This is a special case of
Example 2.2.16.) With this in mind,

dΛ(zα)

dz
= lin⇀Λ(zα)

= (id⊗ lin)(Λ⊗ 1 + (id⊗ Λ)δ)zα

= (id⊗ lin Λ)δzα

=
∑
β≤α

(
α

β

)
aβz

|α|−|β|

=
∑
β≤α

aβ
β1! · · · βr!

r∏
i=1

dβizαi

dzβi

=
∑
β≤α

aβ
β1! · · · βr!

∂|β|uα

∂uβ1

1 · · · ∂uβr
r

∣∣∣∣
u1=···=ur=z

= A

(
∂

∂u1
, . . . ,

∂

∂ur

)
uα

∣∣∣∣
u1=···=ur=z

and hence by linearity, for any polynomial f(z) we have

dΛf(z)

dz
= A

(
∂

∂u1
, . . . ,

∂

∂ur

)
f(u)

∣∣∣∣
u1=···=ur=z

which is also the derivative of the right-hand side of (3.13). But since Λf(z) must have zero
constant term by Lemma 3.1.5(ii), it is exactly given by (3.13), as wanted.
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Remark 3.4.2. The multiplication map K[z]⊗r → K[z] corresponds to the map K[z] →
K[z] that substitutes z for all of the variables. The adjoint map K[[z]] → K[[z]] is the
substitution z 7→ z1+· · ·+zr. Thus the boring 1-cocycles correspond to series that expand
in powers of the sum z1 + · · ·+ zr.

Next we construct the analogue in this setting of the Connes–Kreimer Hopf algebra. Let
T̃r be the set of unlabelled rooted trees with edges decorated by elements of {1, . . . , r} and

F̃r the corresponding set of forests. Define H̃r to be the free vector space on F̃r, made into
an algebra with disjoint union as multiplication and an upset-downset coproduct exactly as
in H but preserving the decorations on the (remaining) edges. Now define B̃+ : H̃⊗r

r → H̃r

as follows: for f1, . . . , fr ∈ F̃r, B̃+(f1 ⊗ · · · ⊗ fr) is the tree obtained from the forest f1 · · · fr
by adding a new root with an edge to the root of each component, where the edges to fi
have decoration i. Note that clearly H̃1

∼= H and in this case B̃+ is just the usual B+.

Proposition 3.4.3. B̃+ ∈ Z1(H̃r, H̃⊗r
r ).

Proof. Let t = B̃+(f1 ⊗ · · · ⊗ fr). The only downset in t that contains the root is all of t,
and each other downset is the union of a downset in fi for each i. In the complementary
upset, all edges on the root have the same decoration as they do in t, so

∆t =
∑

f∈J(t)

f ⊗ (t \ f)

= 1⊗ t+
∑

f ′
1∈J(f1)

· · ·
∑

f ′
r∈J(fr)

f ′
1 · · · f ′

r ⊗ B̃+((f1 \ f ′
1)⊗ · · · ⊗ (fr \ f ′

r)).

On the other hand, the left coaction δ of H̃r on H̃⊗r
r is, by definition,

δ(f1 ⊗ · · · ⊗ fr) =
∑

f ′
r∈J(fr)

f ′
1 · · · f ′

r ⊗ (f1 \ f ′
1)⊗ · · · ⊗ (fr \ f ′

r).

Comparing these, we see that indeed

∆B̃+ = 1⊗ B̃+ + (id⊗ B̃+)δ.

The universal property of H naturally extends to H̃r. The proof is essentially the same
as the original Connes–Kreimer result (Theorem 2.3.3).

Theorem 3.4.4. Let A be a commutative algebra and Λ: A⊗r → A a linear map. There
exists a unique map φ : H̃r → A such that φB̃+ = Λφ⊗r. Moreover, if A is a bialgebra and
Λ is a 1-cocycle then φ is a bialgebra morphism.

Proof. Suppose t ∈ T̃r. We can uniquely write t in the form t = B̃+(f1 ⊗ · · · ⊗ fr). Then we
can recursively set

φ(t) = Λ(φ(f1)⊗ · · · ⊗ φ(fr))

where for a forest, φ(f) is the product over the components. Clearly this is a well-defined
algebra map and the unique one satisfying the desired identity.
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If A is a bialgebra and Λ is a 1-cocycle, we compute

∆φ(t) = ∆Λ(φ(f1)⊗ · · · ⊗ φ(fr))

= φ(t)⊗ 1 + (id⊗ Λ)δ(φ(f1)⊗ · · · ⊗ φ(fr))

where δ is the coaction of A on A⊗r. Now suppose that φ preserves coproducts for each of
the forests, i.e.

∆φ(fi) =
∑

f ′
i∈J(fi)

φ(f ′
i)⊗ φ(fi \ f ′

i).

Then

δ(φ(f1)⊗ · · · ⊗ φ(fr)) =
∑

f ′
1∈J(f1)

· · ·
∑

f ′
r∈J(fr)

φ(f ′
1 · · · f ′

r)⊗ φ(f1 \ f ′
1)⊗ · · · ⊗ φ(fr \ f ′

r)

and hence

∆φ(t) = φ(t)⊗ 1 +
∑

f ′
1∈J(f1)

· · ·
∑

f ′
r∈J(fr)

φ(f ′
1 · · · f ′

r)⊗ Λ(φ(f1 \ f ′
1)⊗ · · · ⊗ φ(fr \ f ′

r))

= φ(t)⊗ 1 +
∑

f ′
1∈J(f1)

· · ·
∑

f ′
r∈J(fr)

φ(f ′
1 · · · f ′

r)⊗ φ(B̃+((f1 \ f ′
1)⊗ · · · ⊗ (fr \ f ′

r))

= φ(t)⊗ 1 +
∑

f∈J(t)

φ(f)⊗ φ(t \ f)

= (φ⊗ φ)(∆t)

as desired.

Example 3.4.5. Consider the (boring) 1-cocycle B+µ ∈ Z1(H,H⊗r). By Theorem 3.4.4,

there is a unique β : H̃r → H such that βB̃+ = B+µβ
⊗r = B+βµ. It is easily seen that

such a map is given by simply forgetting the edge decorations. More generally, consider
any boring 1-cocycle Λµ on any bialgebra H. Let ψ : H → H be the unique map such
that ψB+ = Λψ and let β : H̃r → H continue to denote the edge-undecorating map. Now
we observe that

ψβB̃+ = ψB+µβ
⊗r = Λψ⊗rµβ⊗r = Λµ(ψβ)⊗r

so the universal map is simply φ = ψβ and the boring case is indeed boring.

In the next section we will generalize the tubing expansion to the map from Theo-
rem 3.4.4. As before, we will want a more general version including several 1-cocycles at
once. For this it is convenient to allow tensor products indexed by arbitrary finite sets
rather than just ordinals. Note that everything we did with K[z] still works here: we can
identify K[z]⊗E with K[ze : e ∈ E], and all 1-cocycles are integro-differential operators as in
Theorem 3.4.1 but slightly more notationally challenging.

Let I be a set and E = {Ei}i∈I be a family of finite sets. Define a (I, E)-tree to be a rooted
tree where each vertex is decorated by an element of I and each edge from a parent of type i
is decorated by an element of Ei. Denote the set of (I, E)-trees by T̃ (I, E). Analogously we

have (I, E)-forests and we denote the set of these by F̃(I, E). Let H̃I,E denote the free vector
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space on F̃(I, E). As usual, we make this into a bialgebra with disjoint union as the product
and an upset-downset coproduct preserving the decorations on the vertices and (remaining)

edges. For i ∈ I, let B̃
(i)
+ : H̃⊗Ei

I,E → H̃I,E be the operator that adds a new root joined to each
component with the appropriate decoration. These are 1-cocycles by the same argument as
in Proposition 3.4.3.

Theorem 3.4.6. Let A be a commutative algebra and {Λi}i∈I a family of linear maps,

Λi : A
⊗Ei → A. There exists a unique algebra morphism φ : H̃I,E → A such that φB

(i)
+ =

Λiφ
⊗Ei. Moreover, if Λi is a 1-cocycle for each i then φ is a bialgebra morphism.

Proof. Analogous to Theorem 3.4.4.

Remark 3.4.7. Analogously to Example 3.4.5, if all of the 1-cocycles are boring there
will be a factorization of φ through the map H̃I,E → HI that forgets edge decorations.
However, we can make a more refined statement: if Λi is boring, then φ is independent of
the edge decorations for vertices of type i. Proving this is left as an exercise (though in
the case that the target algebra is K[z] it will follow from the results of the next section).

3.5 The tubing expansion (part 2)

Fix a family E = {Ei}i∈I of finite sets. For each i, introduce indeterminates zi = (ze : e ∈ Ei)
and choose a 1-cocycle Λi ∈ Z1(K[z],K[zi]). Let Ai(zi) be the corresponding power series
given by Theorem 3.4.1. We will choose to expand the series using multinomial coefficients:

Ai(zi) =
∑

α∈NEi

ai,α

(
|α|
α

)
zαi .

This curious-looking convention can be justified by the observation that if Λi is boring then,
by Remark 3.4.2, we can write

Ai(zi) = B

(∑
e∈Ei

ze

)
for some series B(z). Our convention is such that in this case we have ai,α = [z|α|]B(z). In
particular, this will make our expansion manifestly identical to Theorem 3.3.1 in the case
that all of the cocycles are boring, and more generally make it obviously independent of the
edge decorations for those vertex types with boring 1-cocycles as suggested by Remark 3.4.7.

To generalize the tubing expansion to this case, we need the appropriate generalizations
of the statistics that appear in Theorem 3.3.1. Let t be an (I, E)-tree and τ be a binary
tubing of t. Suppose t′ ∈ τ is an upper tube and t′′ the corresponding lower tube (i.e. the
unique lower tube such that t′ ∪ t′′ ∈ τ). We define the type of t′ to be the decoration of the
first edge on the unique path from rt t′ to rt t′′. By construction, the type is an element of
Ei where i = d(t′) is the decoration of the root vertex of t′. Note we only assign types to
upper tubes, not lower tubes. For each vertex v ∈ t and edge type e ∈ Ed(v) define the e-rank
rke(τ, v) to be the number of upper tubes of type e rooted at v. Collect these together to get
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Figure 3.2. An upper tube and its corresponding lower tube. The type of the upper tube is the
decoration of the highlighted edge.

the rank vector rk(τ, v) ∈ NEd(v) . Clearly | rk(τ, v)| = rk(τ, v). Then we define the Mellin
monomial of τ to be

mel(τ) =
∏
v∈t

v ̸=rt t

ad(v),rk(τ,v).

The analogue of the b-statistic is slightly more complicated. For 1 ≤ k ≤ b(τ) write
βk
i (τ) the number of upper tubes of type i containing (hence rooted at) rt t, excluding the

outermost k − 1 upper tubes. Collect these into a vector βk(τ) (which for lack of a better
name we simply term the kth β-vector of τ). Thus β1(τ) = rk(τ, rt t) and |βk(τ)| = b(τ)−k.
We are now ready to state our expansion.

Theorem 3.5.1. With the above setup, the unique map φ : H̃I,E → K[z] satisfying φB̃
(i)
+ =

Λiφ is given on trees by the formula

φ(t) =
∑

τ∈Tub(t)

mel(τ)

b(τ)∑
k=1

ad(t),βk(τ)

zk

k!
. (3.14)

To prove this, we essentially follow the same argument as in Section 3.3, with some added
complexity. As we did then, we will temporarily write ψ for the right side of (3.14). Let σ
be the linear term of ψ, i.e.

σ(t) =
∑

τ∈Tub(t)

ad(t),β1(τ) mel(τ).

and σ vanishes on disconnected forests.

Lemma 3.5.2. For any tree t and k ≥ 1,

σ∗k(t) =
∑

τ∈Tub(t)
b(τ)≥k

ad(t),βk(τ) mel(τ).
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(As in Lemma 3.3.5, σ∗k can be nonzero on disconnected forests, but we are claiming this
equality only for trees.)

Proof. By induction on k. The base case is true by definition. Then

σ∗k+1(t) =
∑

f∈J(t)

σ(f)σ∗k(t \ f)

but σ is an infinitesimal character so σ(f) ̸= 0 only if f is actually a tree. Moreover, clearly
σ∗k(1) = 0, so we can restrict the sum to proper subtrees t′. Then inductively we have

σ∗k+1(t) =
∑
t′

σ(t′)σ∗k(t \ t′)

=
∑
t′

∑
τ ′∈Tub(t′)

∑
τ ′′∈Tub(t\t′)

b(τ ′′)≥k

ad(t′),β1(τ ′)mel(τ ′)ad(t),βk(τ ′′) mel(τ ′′).

By the recursive construction of tubings (Proposition 3.2.5), τ ′ and τ ′′ uniquely determine a
tubing τ ∈ Tub(t). Note that for any vertex v ∈ t′, the upper tubes of τ rooted at v are the
same as those of τ ′, so rk(τ, v) = rk(τ ′, v). The same is true for vertices of τ ′′ other than
rt t. Thus we have have

mel(τ) = mel(τ ′)ad(t′),rk(τ,rt t′) mel(τ ′′) = mel(τ ′)ad(t′),β1(τ ′) mel(τ ′′).

Moreover, since βk ignores outermost the k− 1 upper tubes containing rt t by definition, we
have βk+1(τ) = βk(τ ′′). Finally, there is one additional tube in τ containing the root, so
b(τ) = b(τ ′′) + 1. Hence the triple sum simplifies to

σ∗k+1(t) =
∑

τ∈Tub(t)
b(τ)≥k+1

ad(t),βk+1(τ) mel(τ)

as wanted.

For notational convenience, for α ∈ NEi let us write σ[α] for the linear form on H⊗Id
D,I given

by

σ[α] =
⊗
e∈Ed

σ∗αe .

Note that the coalgebra structure on H⊗Ei
I,E gives a convolution product on linear forms; one

easily checks that σ[α+β] = σ[α] ∗ σ[β].

Lemma 3.5.3. For i ∈ I,

σB̃
(i)
+ =

∑
α∈NEi

(
|α|
α

)
ai,ασ

[α].
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Proof. For each i ∈ I and α ∈ NEi let σi,α be the infinitesimal character defined by

σi,α(t) =

{∑
τ∈Tub(t),β1(τ)=α mel(τ) d(t) = i

0 otherwise

so that we have
σ =

∑
i∈I

∑
α∈NEi

ai,ασi,α.

Note that we have σi,αB̃
(j)
+ = 0 when i ̸= j, so to get the desired formula it suffices to show

that σi,αB̃
(i)
+ =

(|α|
α

)
σ[α] for i ∈ I and α ∈ NEi . We do this by induction on m = |α|.

Now, for α = 0 we have that σi,α(t) = 1 if t is the one-vertex tree with decoration i and
0 otherwise. Of course σ[0] is 1 when each forest is empty and 0 otherwise, so we do indeed
see that σi,0B̃

(i)
+ = σ[0] as wanted.

Suppose now that m > 0 and that the desired identity holds for smaller values. Then
σi,α vanishes on one-vertex trees, so all tubings of interest have at least one upper tube. For
e ∈ Ei, let σ

e
i,α(t) be the sum only for those tubings where the outermost upper tube has

type e. Thus

σi,α =
∑
e∈Ei

σe
i,α.

Note σe
i,α = 0 when αe = 0, as in this case there must be no tube of type i containing

the root. Suppose now that αe ̸= 0 and t = B̃
(i)
+

(⊗
e′∈Ei

fe′
)
. Let τ be a binary tubing

of t which recursively corresponds to (τ ′, τ ′′). Then the outermost upper tube of τ is type
e precisely when the lower subtree t′ is contained in fe. Moreover in this case we have
β1(τ) = β1(τ ′′) + 1e, where 1e is the indicator vector for e. Then we have

σe
i,α(t) =

∑
t′⊆fi
subtree

σ(t′)σi,α−1i(t \ t′).

Now t \ t′ = B̃
(i)
+ (
⊗

e′ f
′
e′) where f

′
e = fe \ t′ and f ′

e′ = fe′ for e ̸= e′. It follows that

σe
i,αB

(i)
+ = σ[1e] ∗ σi,α−1eB̃

(i)
+

= σ[1e] ∗
(
m− 1

α− 1e

)
σ[α−1e]

=

(
m− 1

α− 1e

)
σ[α].

Finally, by summing over the values of e we get

σi,αB̃
(i)
+ =

∑
e∈Ei

(
m− 1

α− 1e

)
σ[α] =

(
m

α

)
σ[α]

by the multinomial analogue of the Pascal recurrence.
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Proof of Theorem 3.5.1. Let Ψi : H̃⊗Ei
I,E → K[zi] be given by

Ψi

(⊗
e∈Ei

fe

)
=
∏
e∈Ei

(
ψ(fe)

∣∣
z=ze

)
.

This is simply the map ψ⊗Ei carried through the identification of K[z]⊗Ei with K[zi]. Thus,

our goal is to show ψB̃
(i)
+ = ΛiΨi; by uniqueness this shows φ = ψ. Note that since ψ is an

algebra morphism, we have

Ψi

(⊗
e∈Ei

fe

)∣∣∣∣
ze=z ∀e∈Ei

=
∏
e∈Ei

ψ(fe) = ψ

(∏
e∈Ei

fe

)
.

By Lemma 3.5.2 we have ψ = exp∗(zσ). Thus

d

dz
ψB̃

(i)
+ = (ψ ∗ σ)B̃(i)

+ = ψ ∗δ σB̃(i)
+

where δ is the coaction and the second equality is by Lemma 3.1.5(i). But observe that

(
ψ ∗δ σB̃(i)

+

)(⊗
e∈Ei

fe

)
=

∑
f ′
e∈J(fe)
∀e∈Ei

ψ

(∏
e∈Ei

f ′
e

)
σ

(
B̃

(i)
+

(⊗
e∈ei

(fe \ f ′
e)

))

=
∑

f ′
e∈J(fe)
∀e∈Ei

Ψi

(⊗
e∈Ei

f ′
e

)
σ

(
B̃

(i)
+

(⊗
e∈ei

(fe \ f ′
e)

))∣∣∣∣
ze=z ∀e∈Ei

=
(
Ψi ∗ σB̃(i)

+

)(⊗
e∈Ei

fe

)∣∣∣∣
ze=z ∀e∈Ei

.

Thus we have

d

dz
ψB̃

(i)
+ = Ψi ∗ σB̃(i)

+

∣∣
ze=z ∀e∈Ei

=

Ψi ∗
∑

α∈NEi

(
|α|
α

)
ai,ασ

[α]

∣∣∣∣
ze=z ∀e∈Ei

by Lemma 3.5.3

= Ai(∂/∂ze : e ∈ Ei)Ψ
∣∣
ze=z ∀e∈Ei

=
d

dz
ΛiΨ.

Since we also have
ψ(B̃

(i)
+ 1) = ai,0 = Λi(1)

this implies ψB̃
(i)
+ = ΛiΨi, as wanted.
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Chapter 4

Dyson–Schwinger Equations

4.1 Dyson–Schwinger equations in physics

In the introduction, we claimed that the Dyson–Schwinger equations are “quantum equations
of motion”. In this section we will attempt to elaborate on that remark and to explain what
these equations actually are. This section serves primarily as motivation for the remainder
of the chapter and can be safely skipped by the physics-averse.

Let us begin by wondering aloud what a quantum equation of motion should be. Sup-
pose our universe consists of a single lonely particle drifting endlessly through a featureless
vacuum. Classical equations of motion can tell us, for instance, where the particle will be
tomorrow, assuming we know where it is today. In a quantum universe, however, things
are rarely so certain. An electron, for instance, may spontaneously emit a photon and lose
energy, leaving the universe slightly less lonely but making a deterministic answer to the
question of where the electron may be found in the future impossible. Moreover, electrons
are indistinguishable, so even the question is somewhat suspicious: asking whether the elec-
tron we observed today is the same one we saw yesterday is meaningless.

We are thus reduced to asking questions like: given that we detected a particle at a certain
point in spacetime, what is the probability (or rather amplitude) that we will also find a
particle of the same type at some other point in spacetime? This type of question is answered
in quantum field theory by a (two-point) correlation function. Equations of motion in this
context should then be equations satisfied by the correlation functions that are sufficient to
determine them completely. The Dyson–Schwinger equations are one formulation of such
equations.

Before we think about what these equations might look like, we should answer a more
basic question: what exactly is the correlation function a function of? Näıvely, the answer
should be (in our example) a pair of spacetime positions. We will assume that the laws
of physics in our lonely particle’s universe are translation invariant, so that the amplitude
really depends only on the (spacetime) displacement rather than the specific positions. For
reasons we refuse to delve into, we will take a Fourier transform and write our correlation
function in momentum space, as a function of the (four-)momentum.

In Feynman’s approach to quantum theory [20, 21], the amplitude we are interested
in is a sum or integral over the possible paths that the particle may take. These may be
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represented graphically using Feynman diagrams. These are essentially just graphs, with each
edge representing a particle travelling at constant momentum and each vertex an interaction
between particles. If there are several types of particles in our theory, the edges will be
decorated with these types. The vertices will be constrained by what types of interactions
between particles exist in the theory we are considering. The diagrams that contribute to
the two-point function have two “external edges”, both of the type corresponding to the
particle we are looking at. The correlation function G is then a combinatorial sum over
these diagrams:

G(p) =
∑
γ

φ(γ).

Here φ, the Feynman rules, assigns each graph its contribution, which is an integral over the
space of all possible processes of that “shape”. These are given by assigning a momentum
to each edge, satisfying momentum conservation; in graph-theoretic language they are R4-
valued flows on the graph.

We can simplify this picture by doing some combinatorics. First, observe that if the
graph has a bridge (cut edge) then the momentum through that edge must equal the overall
momentum p. Thus the graph can be thought of as a concatenation of two (or more)
bridgeless1 pieces, and we get a geometric series expansion

G(p) =
1

1−
∑

γ bridgeless φ(γ)
. (4.1)

We denote the denominator by G(p); it will be more convenient to formulate the DSEs in
terms of this function.

Bridgeless diagrams still have recursive structure. Given any edge of a Feynman diagram,
we may make a more complicated diagram by replacing that edge with another Feynman
diagram with two external edges; this is called inserting into the edge. Bridgeless diagrams
which cannot be built by insertions are called primitive.2 Thus we can decompose

G(p) = 1−
∑

γ primitive

Gγ(p) (4.2)

where Gγ(p) is the sum over diagrams obtained by (perhaps repeatedly) inserting arbitrary
diagrams into γ. In the case of only one type of edge, such diagrams are in bijection with
families of diagrams indexed by the internal edges of γ. Such families are more directly
enumerated by a power G(p)|E(γ)|. If our Feynman rules behave nicely, we can rearrange the
sum making up Gγ(p) to actually express it in terms of this power, leaving us with

Gγ(p) = Lγ(G(p)
|E(γ)|). (4.3)

for some integral operator Lγ. Combining (4.1), (4.2), and (4.3) gives us the Dyson–
Schwinger equation for the two-point function in a theory with only one type of particle:

G(p) = 1−
∑

γ primitive

Lγ(G(p)
−|E(γ)|). (4.4)

1Physicists would call these one-particle irreducible or 1PI for short.
2Primitive diagrams are in fact primitive elements in a certain Hopf algebra of Feynman diagrams; see

[62, Chapter 5].
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Figure 4.1. A primitive diagram in Yukawa theory.

More generally, we may have several types of particles each with its own two-point function,
in which case we will have a system of equations.

We now give an explicit example of what these equations look like. This example comes
from a quantum field theory called (massless) Yukawa theory. This theory has two types of
particles and many primitive diagrams, but can be approximated by considering only those
diagrams built by inserting the single primitive diagram shown in Section 4.1 into itself
repeatedly. This will give us a single equation with a single integral operator:

G(p) = 1− x

∫
R4

⟨p,k⟩ d4k
∥p∥2∥k∥2∥p+ k∥2G(k)

. (4.5)

Unfortunately, as is often the case in quantum field theory, we are now forced to admit that
what we have written is nonsense: the integrand has obvious singularities at k = 0 and
k = −p and there is no possible way that this integral can yield a finite answer. To make
sense of it requires renormalization. For fear of awakening shadow and flame we choose
not to delve too deep into this subject and only note that there are many different ways
to renormalize but the simplest for our purposes is kinematic renormalization which can be
done at the level of the Dyson–Schwinger equation itself.3 Here we choose a reference scale
µ and replace our equation with

Gren(p) = 1− x

∫
R4

(
⟨p,k⟩ d4k

∥p∥2∥k∥2∥p+ k∥2Gren(k)
− ⟨p0,k0⟩ d4k0

∥p0∥2∥k0∥2∥p0 + k0∥2Gren(k0)

)
. (4.6)

where p0 is a vector of norm µ parallel to p (i.e. p0 = µp/∥p∥), and k0 = µk/∥p∥.
Observe that this cancels out the singularities in the integrand. There are still some analytic
difficulties here but this equation can at least be solved for a formal power series in x. The
coefficients in the series are functions of p, but note that due to the rotation invariance of
the integrand they actually depend only on the norm ∥p∥. More specifically we will expand
them in the variable L = log(∥p∥2/µ2) and rename Gren(p) to G(x, L).

Substituting p = eL/2p0 and k = eL/2k0 into (4.6) gives us

G(x, L) = 1− x

µ2

∫
R4

(
1

G(x, L+ log(∥k0∥2/µ2))
− 1

G(x, log(∥k0∥2/µ2))

)
⟨p0,k0⟩ d4k0

∥k0∥2∥p0 + k0∥2
.

We can put this in a more convenient form by the following trick: for a polynomial or
convergent power series f and a positive real number ξ, we have f(log ξ) = f(∂/∂ρ)ξρ|ρ=0.
Thus

1

G(x, L+ log(∥k0∥2/µ2))
− 1

G(x, log(∥k0∥2/µ2))
= G(x, ∂/∂ρ)−1(eLρ − 1)(∥k0∥2/µ2)ρ

∣∣∣∣
ρ=0

3For more details and a comparison of different renormalization schemes in the context of DSEs, see [7].
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and we can then pull all of the G’s and L’s out of the integral:

G(x, L) = 1− xG(x, ∂/∂ρ)−1(eLρ − 1)F (ρ)
∣∣
ρ=0

(4.7)

where

F (ρ) =
1

µ2+2ρ

∫
R4

⟨p0,k0⟩ d4k0

∥k0∥2−2ρ∥p0 + k0∥2

is the Mellin transform of the primitive diagram, which is meromorphic with a simple pole
at 0. (Note that this implies that the right-hand side is well-defined as a nonzero formal
power series, since (eLρ − 1)F (ρ) is analytic at zero.)

Clearly, (4.7) can be solved uniquely as it is easily seen that the coefficient of xn is
recursively determined by the earlier coefficients. These coefficients will be polynomials in
L, so the solution lies in K[L][[x]]. Moreover, the operator on polynomials that implicitly
appears in the equation is one we have seen before in Remark 3.1.10, taking A(z) = −zF (z).
In particular it is a 1-cocycle, so we can use our work in Chapter 3 to study this equation.

4.2 Solving Dyson–Schwinger equations

4.2.1 Setup

We begin by laying out an algebraic framework for Dyson–Schwinger equations. Let P be
a set (finite or infinite) and assign each p ∈ P a weight wp ∈ N+, such that there are only
finitely many elements of each weight, and an insertion exponent µp ∈ K. In the physical
application P is the set of primitive Feynman diagrams, wp is the dimension of the cycle space
of p, and µp is – at least in examples like the one in the previous section – the negative of
the number of edges of p.4 To each p ∈ P we also associate a 1-cocycle Λp on the polynomial
Hopf algebra K[L]. The Dyson–Schwinger equation (DSE) defined by these data is

G(x, L) = 1 +
∑
p∈P

xwpΛp(G(x, L)
µp). (4.8)

(Note that here and throughout the chapter, expressions such as Λp(G(x, L)
µp) are to be

interpreted as meaning that we expand the argument as a series in x and apply the operator
coefficientwise.) By Theorem 3.1.7 we can write

Λpf(L) =

∫ L

0

Ap(d/du)f(u) du (4.9)

for some series Ap(z) ∈ K[[z]] which physically is more or less the Mellin transform of p.
A particularly nice case, which covers most of the physically reasonable examples, is when

there is a linear relationship between the weights and the insertion exponents: µp = 1+ swp

4Note however that we are not even requiring it to be an integer! Non-integer insertion exponents do
not seem to fit into the story we told in Section 4.1 and may or may not have any physical relevance, but
this generality will come for free from our approach, in which we essentially treat the insertion exponents as
indeterminates.
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Figure 4.2. A connected chord diagram represented linearly.

for some s ∈ K. In this case we can combine terms to get

G(x, L) = 1 +
∑
k≥1

xkΛk(G(x, L)
1+sk). (4.10)

Previous work on combinatorial solutions to Dyson–Schwinger equations has focused on this
case, and indeed equations of this form have some special properties which we discuss in
Section 4.5. However, our main results apply in the more general form (4.8).

Remark 4.2.1. Marie and Yeats [41] gave a combinatorial solution to (4.10) in the case
s = −1 and only one cocycle Λ1; this was extended by Hihn and Yeats [31] to solve (4.10)
in general for s a negative integer. We give a brief summary of the former result, which
is representative of the general flavour.

First we introduce the combinatorial objects involved. (These will not appear in our
results.) A (rooted) chord diagram of size n, for our purposes, is a partition of {1, . . . , 2n}
into n sets of size 2 which we call chords. The terminology suggests that the ground set
should be thought of as points on a circle, but we will prefer to think of them as linearly
ordered, as in Figure 4.2. The root chord is the one that contains 1. Two chords {i < j}
and {i′ < j′} cross if i < i′ < j < j′ or i′ < i < j′ < j. The intersection graph of a
chord diagram is the graph with the chords as vertices and edges between pairs of chords
that cross. We may orient the graph so that the edge goes from {i, j} to {i′, j′} when
i < i′; this defines the directed intersection graph. A chord diagram is connected if its
intersection graph is connected.

The Marie–Yeats expansion for the solution of the Dyson–Schwinger equation is a sum
over connected chord diagrams involving some slightly unusual statistics. The intersection
order for the chords of a connected chord diagram C is defined as follows: the root comes
first. Delete the root to obtain a (possibly disconnected) chord diagram of size 1 less, order
its connected components according to their starting positions from left to right, and then
within each component order the chords recursively using the insertion order. Say that a
chord is terminal if it has outdegree 0 in the directed intersection graph; explicitly this
means that it does not cross any chord that starts to the right. (Note that the rightmost
chord is always terminal, so there is at least one.)

Let C be a connected chord diagram with k terminal chords and let t1 < · · · < tk be
their positions in the intersection order. Then define the Mellin monomial of C as

mel(C) = a
|C|−k
0

k−1∏
i=1

atk+1−tk

in terms of the coefficients of the power series corresponding to the 1-cocycle by (4.9).
Also write b(C) = t1. Then the solution to the Dyson–Schwinger equation

G(x, L) = 1 + xΛ(G(x, L)−1)
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is given by

G(x, L) = 1 +
∑
C

mel(C)

b(C)∑
k=1

ab(C)−k
x|C|Lk

k!
.

One may immediately see a resemblance to the formulas we saw in Chapter 3; indeed, the
original motivation for the work on tubings in [8] was precisely to try and connect this
chord diagram expansion to Connes–Kreimer tree combinatorics. In the next section we
will prove expansions for various Dyson–Schwinger equations in terms of tubings using the
results of Chapter 3. These expansions resemble the chord diagram expansions but have
fewer terms, apply in greater generality, and have simpler and more conceptual proofs.
In [8, Section 5] a bijection is given between tubings of plane trees and connected chord
diagrams which preserves the relevant statistics, allowing the chord diagram expansions
to be derived from the tubing expansion (or vice versa, in the cases where the former
exists).

As alluded to in the previous section, we are interested not only in single equations but
also systems. The setup here is the same, but we partition our indexing set P into {Pi}i∈I for
some finite set I which will index the equations in the system. Each p ∈ P is still assigned
a simple weight wp ∈ N+ but the insertion exponent is now an insertion exponent vector
µp ∈ KI . We are now solving for a vector of series G(x, L) = (Gi(x, L))i∈I . The system of
equations we consider is

Gi(x, L) = 1 +
∑
p∈Pi

xwpΛp(G(x, L)µp). (4.11)

The analogue of the special case (4.10) is the existence of a so-called invariant charge for
the system. This will be further discussed in Section 4.5.

Remark 4.2.2. There is no known generalization of the chord diagram expansion to
systems, though one could possibly be derived from our results. The tubing expansions
we will prove are the first combinatorial solutions of this type for systems.

4.2.2 Single equations

We will take a two-step approach to solving Dyson–Schwinger equations. First, we will solve
the so-called combinatorial Dyson–Schwinger equation, in which each 1-cocycle Λp is replaced

by B
(p)
+ . This gives a series in T (x) ∈ HP [[x]] which encodes the recursive structure of the

DSE. We then apply the unique map φ : HP → K[L] satisfying φB
(p)
+ = Λpφ which exists by

Theorem 3.1.13 to get G(x, L) = φ(T (x)) which will solve the Dyson–Schwinger equation.
Since we already have a combinatorial expansion for φ (Theorem 3.3.1) this will give us a
combinatorial expansion for the solution of the DSE.

The combinatorial version of (4.8) is the equation

T (x) = 1 +
∑
p∈P

xwpB
(p)
+ (T (x)µp). (4.12)
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The solution to the equation is essentially due to Bergbauer and Kreimer [9] although our
statement is somewhat more general. To state it we need some more notation. For a vertex
v with decoration p, we will write w(v) = wp and µ(v) = µp. We will write

w(t) =
∑
v∈t

w(v).

Finally, by an automorphism of a decorated tree we mean an automorphism of the underlying
tree (as a poset) which preserves the decorations, and as one would expect we denote the
automorphism group of t by Aut(t).

Proposition 4.2.3 ([9, Lemma 4]). The unique solution to (4.12) is

T (x) = 1 +
∑

t∈T (P )

(∏
v∈t

µ(v)od(v)

)
txw(t)

|Aut(t)|
. (4.13)

(Recall from Section 2.1 that the underline notation denotes a falling factorial.)

Proof. Let T (x) be given by (4.13); we will show that T (x) satisfies (4.12).
We introduce some notation. For a forest f ∈ F(P ) write κ(f) for the number of

connected components. Write Fk(P ) for the set of forests f ∈ F(P ) with κ(f) = k. Write
T̃ (x) = T (x) − 1, so T̃ (x) is a kind of exponential generating function for P -trees. By the
compositional formula (see e.g. [56, Theorem 5.5.4]), divided powers count forests:

T̃ (x)k

k!
=

∑
f∈Fk(P )

(∏
v∈f

µ(v)od(v)

)
fxw(f)

|Aut(f)|
.

Then by the binomial series expansion, for any u ∈ K we have

T (x)u = (1 + T̃ (x))u

=
∑
k≥0

(
u

k

)
T̃ (x)k

=
∑

f∈F(P )

uκ(f)

(∏
v∈f

µ(v)od(v)

)
fxw(f)

|Aut(f)|
.

Now, any tree t ∈ T (P ) can be uniquely written as t = B
(p)
+ f for some p ∈ P and f ∈ F(P ).

In this case, we have w(t) = w(f) +wp. We have Aut(t) ∼= Aut(f) and the outdegrees of all
non-root vertices are the same in t as in f . The outdegree of the root is κ(f). Using this
bijection we get

T (x) = 1 +
∑
p∈P

∑
f∈F(P )

µ
κ(f)
p

(∏
v∈f

µ(v)od(v)

)
(B

(p)
+ f)xw(f)+wp

|Aut(f)|

= 1 +
∑
p∈P

xwpB
(p)
+ (T (x)µp)

as desired.

60



Example 4.2.4. Suppose we have just a single cocycle (so we are essentially in the un-
decorated Connes–Kreimer Hopf algebra H) and a nonnegative integer insertion exponent
k, so (4.13) becomes

T (x) = 1 + xB+(T (x)
k).

If we ignore the B+, this would simply give the ordinary generating function for k-ary trees
(in the computer scientists’ sense, where the children of each vertex are totally ordered
including the “missing” ones). With the B+ included, it should still be generating function
for k-ary trees but now each tree contributes its underlying ordinary rooted tree. It is not

too hard to show that
(∏

v∈t k
od(v)

)
/|Aut(t)| counts the number of ways to make a tree t

into a k-ary tree, so this agrees with (4.13).
Of particular note is the case k = 1, the linear Dyson–Schwinger equation, which

produces 1-ary trees i.e. ladders.

Example 4.2.5. Again consider a single cocycle, but now with insertion exponent −1.
The equation

T (x) = 1 + xB+(T (x)
−1)

can be rewritten in terms of T̃ (x) = T (x)− 1 as

T̃ (x) = xB+

(
1

1 + T̃ (x)

)
.

If the plus sign were replaced by a minus this would give a generating function for plane
trees. With the plus, it gives plane trees with a sign corresponding to the number of
edges. On the other hand, noting that (−1)d = (−1)dd!, we have that the contribution of
t to the right side of (4.13) is (−1)|t|−1

(∏
v∈t od(v)!

)
/|Aut(t)| which up to the sign is the

number of ways to make t into a plane tree, so this also matches the formula.

Combining Proposition 4.2.3 with our work on binary tubings gives the desired combi-
natorial expansion for the solution of the Dyson–Schwinger equation (4.8). Note that in [8]
only equations of the form (4.10) are explicitly addressed, but on inspection the same proof
works for the more general setup. To state the expansion, we use the notation of Chapter 3;
in particular, we have

ap,n = [zn]Ap(z)

and for a binary tubing τ of a tree t ∈ T (P ) the Mellin monomial mel(τ) is defined by (3.9).

Theorem 4.2.6 ([8, Theorem 2.12]). The unique solution to (4.8) is

G(x, L) = 1 +
∑

t∈T (P )

(∏
v∈t

µ(v)od(v)

) ∑
τ∈Tub(t)

mel(τ)

b(τ)∑
k=1

ad(t),b(τ)−k
xw(t)Lk

|Aut(t)|k!
.

In particular, the solution to the special case (4.10) is

G(x, L) = 1 +
∑

t∈T (N+)

(∏
v∈t

(1 + sw(v))od(v)

) ∑
τ∈Tub(t)

mel(τ)

b(τ)∑
k=1

aw(rt t),b(τ)−k
xw(t)Lk

|Aut(t)|k!
.
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Proof. Immediate from Proposition 4.2.3 and Theorem 3.3.1.

Remark 4.2.7. In Section 4.1 our derivation of the Dyson–Schwinger using Feynman dia-
grams was already essentially combinatorial in nature, but here we seem to have discarded
the Feynman diagram combinatorics and replaced it with trees. The two interpretations
can be reconciled by thinking of the trees that appear in these expansions as insertion trees
which encode the way a Feynman diagram is built from primitive diagrams. One can in
principle recover the contribution of an individual Feynman diagram by an appropriately
weighted sum over (tubings of) insertion trees for that diagram. (See for instance [37].)

Remark 4.2.8. Recall from Section 3.2 that corollas have factorially many binary tubings.
Thus, for generic choices of Mellin coefficients where we do not have cancellation, the
coefficients of G(x, L) grow factorially fast regardless of L and the series will have zero
radius of convergence. Indeed, a well-known heuristic argument of Dyson [19] suggests
that this is exactly what we should expect: if the radius of convergence were nonzero it
would imply that the correlation function could be analytically continued to (sufficiently
small) negative values of the coupling parameter x, but on physical grounds there simply
should not be a well-defined correlation function in that regime. Nonetheless, despite
being divergent, these series can (at least in some cases) carry nontrivial information
about the actual correlation function which can be extracted via techniques such as Borel
summation. (See [40] for this approach in a setup close to ours.)

4.2.3 Systems

The combinatorial version of the system (4.11) is

Ti(x) = 1 +
∑
p∈Pi

xwpB
(p)
+ (T(x)µp). (4.14)

As with the single-equation case, we first need to solve this combinatorial system. Unlike
the single-equation case, this is due to the author and first appears in [8], though it is a
straightforward generalization of Proposition 4.2.3. Again, [8] only considers a special case
but the proof works in our more general setup.5 We need some additional notation: let us
write Ti(P ) for the subset of T (P ) for which the root has a decoration in Pi; clearly these are
the trees that can contribute to Ti(x). For a vertex v let odi(v) be the number of children
which have their decoration in Pi; we collect all of these together to form the outdegree vector
od(v) ∈ NI .

Theorem 4.2.9 ([8, Theorem 4.7]). The unique solution to the system (4.14) is

Ti(x) = 1 +
∑

t∈Ti(P )

(∏
v∈t

µ(v)od(v)

)
txw(t)

|Aut(t)|
.

Proof. Analogous to Proposition 4.2.3.

5Indeed, allowing the insertion exponents to be arbitrary as we do allows the formula to be much cleaner.
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Again, applying Theorem 3.3.1 immediately gives us a solution to the original system.

Theorem 4.2.10 ([8, Theorem 4.8]). The unique solution to the system (4.11) is

Gi(x, L) = 1 +
∑

t∈Ti(P )

(∏
v∈t

µ(v)od(v)

) ∑
τ∈Tub(t)

mel(τ)

b(τ)∑
k=1

ad(t),b(τ)−k
xw(t)Lk

|Aut(t)|
.

4.3 Distinguishing insertion places

In this section we will introduce a generalization of the Dyson–Schwinger framework of the
previous section. To motivate this, let us briefly recall one of the more poorly motivated parts
of Section 4.1, namely the equation (4.3). This was justified by the idea that a Feynman
diagram can be recursively built starting with a primitive diagram and repeatedly inserting
into edges. However, there is an implicit assumption that the Feynman rules do not depend
in a serious way on which edge one inserts into. This is not completely unreasonable (see
[64, Section 2.3.3]) but is still a deficiency in the framework. To remedy this, we would like
to allow equations like

G(x, L) = 1 + xG(x, ∂/∂ρ1)
−1 · · ·G(x, ∂/∂ρm)−1(eL(ρ1+···+ρm) − 1)F (ρ1, . . . , ρm)

∣∣
ρ=0

(4.15)

where each edge has its own variable in the Mellin transform. Such equations have been
considered by Yeats [64] and Nabergall [45, Section 4.2] but significantly less is known about
them than the equations we have looked at thus far. None of the results of this section have
previously appeared.

The approach we will take to studying this generalization should be no surprise: this is
the purpose for which our results in Chapter 3 about 1-cocycles on tensor products were
brought into the world.

4.3.1 Setup

Our setup is similar to the one in Section 4.2.1 with some extra details similar to what we
saw in Section 3.4. We again have a set P which will index our cocycles, but to each p ∈ P
we associate a finite set Ep of insertion places. Each insertion place e has its own insertion
exponent µe; sometimes it will still be convenient to refer to the overall insertion exponent

µp =
∑
e∈Ep

µe.

Finally, to each p we associate a vector of indeterminates Lp = (Le)e∈Ep and a 1-cocycle
Λp ∈ Z1(K[Lp],K[L]). The Dyson–Schwinger associated to these data is

G(x, L) = 1 +
∑
p∈P

xwpΛp

∏
e∈Ep

G(x, Le)
µe

. (4.16)

63



We will also consider systems. As in Section 4.2.1 we partition our index set P into
{Pi}i∈I and replace the insertion exponents with insertion exponent vectors. Our system is
then

Gi(x, L) = 1 +
∑
p∈Pi

xwpΛp

∏
e∈Ep

G(x, Le)
µe

. (4.17)

4.3.2 Combinatorial version and tubing expansion

We follow the same strategy as in Section 4.2, first lifting (4.16) and (4.17) to combinatorial

versions on the Hopf algebra H̃P,E we introduced in Section 3.4, and then applying The-
orem 3.5.1 to get a solution to the original equations. This time we will work in the full
generality of systems from the start. The combinatorial version of the system (4.17) is

Ti(x) = 1 +
∑
p∈Pi

xwpB̃
(p)
+

⊗
e∈Ep

T(x)µe

. (4.18)

We are slightly abusing notation here by neglecting to notate the obvious (but non-injective!)

map H̃P,E [[x]]
⊗Ep → H̃⊗Ep

P,E [[x]]. In effect we want to treat x as though it were a scalar, in line
with our policy of always applying operators coefficientwise. With this pedantry out of the
way we move on to solving the system. The formula generalizes that of Theorem 4.2.9. Each
vertex will now have several outdegree vectors, one for each edge type: we write odi(v, e)
for the number of children of v which have decorations lying in Pi and such that the edge
connecting them has decoration e. These are collected together into the outdegree vector
od(v, e) ∈ NI .

Theorem 4.3.1. The unique solution to (4.18) is

Ti(x) = 1 +
∑

t∈T (Pi)

∏
v∈t

∏
e∈Ed(v)

µ
od(v,e)
e

 txw(t)

|Aut(t)|
.

Proof. Analogous to Proposition 4.2.3.

As before, we can get a combinatorial expansion for the solution of the Dyson–Schwinger
equation by applying our results on 1-cocycles.

Theorem 4.3.2. The unique solution to (4.17) is

Gi(x, L) = 1 +
∑

t∈T (Pi)

∏
v∈t

∏
e∈Ed(v)

µ
od(v,e)
e

 ∑
τ∈Tub(t)

mel(τ)

b(τ)∑
k=1

ad(t),βk(τ)

xw(t)Lk

|Aut(t)|k!
.

Proof. Immediate from Theorem 4.3.1 and Theorem 3.5.1.

While Theorem 4.3.2 is really the main result of this chapter, we are also interested
in other properties of Dyson–Schwinger equations with distinguished insertion places. For
ordinary Dyson–Schwinger equations it is known that in nice cases the solutions also satisfy
a renormalization group equation. We will generalize this to Dyson–Schwinger equations
with distinguished insertion places, but first we will explain what these equations are and
their significance from a Hopf-algebraic perspective.
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4.4 Interlude: The renormalization group equation and

the Riordan group

Let β(x) and γ(x) be formal power series, with β(0) = 0. The renormalization group equation
(or Callan–Symanzik equation) is(

∂

∂L
− β(x)

∂

∂x
− γ(x)

)
G(x, L) = 0. (4.19)

As suggested by the notation, we will ultimately want to think of this G(x, L) as the same
one which appears in the Dyson–Schwinger equation, but for the purposes of this section we
can consider it to be simply notation for the (potential) solution to this PDE. The goal of
this section is to explain how (4.19) is intimately related to a certain Hopf algebra. As a
starting point, notice that if γ(x) = 0 we have already seen this equation: by Theorem 2.4.12
it describes a bialgebra morphism FdB → K[L]. We will show that something similar is true
for (4.19). Let us make clear at the outset that more or less everything in this section is
already known in one form or another, but perhaps not as well-known as it should be.

Recall from Section 2.4.3 that D̃ denotes the group of formal power series with zero
constant term and nonzero linear term under composition and D the subgroup of δ-series,
and that Dop is isomorphic to the character group of FdB. Now observe that for Φ(x) ∈ D̃
the map F (x) 7→ F (Φ(x)) is a ring automorphism of K[[x]]. Moreover, composing these

automorphisms corresponds to composing the series in reverse, so D̃op (and hence also Dop)
acts by automorphisms on K[[x]]. Consequently they also act on K[[x]]×, the multiplicative
group of power series with nonzero constant term. Let K[[x]]×1 be the subgroup of K[[x]]×

consisting of those series with constant term 1. The Riordan group is the semidirect product
R = K[[x]]×1 ⋊D. Explicitly, the elements consist of pairs (F (x),Φ(x)) of series with F (x) ∈
K[[x]]×1 and Φ(x) ∈ D, with the operation

(F (x),Φ(x)) ∗ (G(x),Ψ(x)) = (F (x)G(Φ(x)),Ψ(Φ(x))).

Remark 4.4.1. The Riordan group was first introduced—at least under that name—by
Shapiro, Getu, Woan, and Woodson [55]. It is usually thought of as a group of infinite
matrices, via the correspondence

(F (x),Φ(x)) 7→
[
[xi]F (x)G(x)j

]
i,j∈N

sending a pair of series to their Riordan matrix. (This is simply a matrix representation
of the natural action of R on K[[x]].) Conventions vary on whether or not to include the
restrictions on coefficients; our choice matches the original definition in [55] as well as
being convenient for relating R to a Hopf algebra.

We now wish to define a Hopf algebra with R as its character group, similar to the Faà
di Bruno Hopf algebra. We will call it the Riordan Hopf algebra and denote it by Rio. As
an algebra, Rio is a free commutative algebra in two sets of generators {π1, π2, . . . } and
{y1, y2, . . . }. The π’s will generate a copy of FdB; in particular, their coproduct is still given
by (2.19). (This inclusion FdB → Rio is dual to the quotient map R → Dop coming from the
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semidirect product.) We assemble the y’s into a power series as well, this time in the more
obvious way:

Y (x) = 1 +
∑
n≥1

ynx
n.

Then the coproduct is given by

∆yn =
n∑

j=0

[xn]Y (x)Π(x)j ⊗ yj. (4.20)

Analogously to Proposition 2.4.8, we easily get the following result.

Proposition 4.4.2. Let A be a commutative algebra and φ, ψ : Rio → A be algebra mor-
phisms. Let F (x) = φ(Y (x)), Φ(x) = φ(Π(x)), G(x) = ψ(Y (x)), and Ψ(x) = ψ(Π(x)).
Then

(φ ∗ ψ)(Y (x)) = F (x)G(Φ(x))

and
(φ ∗ ψ)(Π(x)) = Ψ(Φ(x)).

Consequently, Ch(Rio) ∼= R.

We also have an analogue of Proposition 2.4.11. Note that since the π’s generate a copy
of FdB we can simply apply Proposition 2.4.11 itself to see how elements of the dual act on
them. Thus we only need the actions on Y (x).

Proposition 4.4.3. Suppose φ ∈ Rio∗ and let F (x) = φ(Y (x)) and Φ(x) = φ(Π(x)). Then

(i) φ⇀ Y (x) = F (Π(x))Y (x).

(ii) If φ ∈ Ch(FdB) then Y (x)↼φ = F (x)Y (Φ(x)).

(iii) If φ ∈ ch(FdB) then Π(x)↼φ = Φ(x)Y ′(x) + F (x)Y (x).

Finally we reach the main result of this section.

Theorem 4.4.4. Let φ : Rio → K[z] be an algebra morphism and let F (x, z) = φ(Y (x)) and
Φ(x, z) = φ(Π(x)). Let β(x) be the linear term in z of Φ(x, z) and γ(x) the linear term in z
of F (x, z). Suppose φ is a bialgebra morphism when restricted to the subalgebra FdB. Then
φ is a bialgebra morphism on all of Rio if and only if F (x, z) satisfies the renormalization
group equation (

∂

∂z
− β(x)

∂

∂x
− γ(x)

)
F (x, z) = 0. (4.21)

Proof. By the same argument as Theorem 2.4.12 it is necessary and sufficient to have d
dz
φ =

(linφ) ∗ φ. Applying Proposition 4.4.3(iii) gives the result.

Obviously, if we assume that φ is merely an algebra map Rio → K[z] then it is a bialgebra
morphism if and only if it satisfies the conditions of both Theorem 2.4.12 and Theorem 4.4.4.
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Remark 4.4.5. A result equivalent to Theorem 4.4.4 was proved by Bacher [6, Proposition
7.1]. He does not take a Hopf algebra perspective but instead essentially works with the Lie
algebra ch(Rio) in a matrix representation and for an element σ ∈ ch(Rio) corresponding
to the pair (γ(x), β(x)) characterizes exp∗(zσ) as (the Riordan matrix of) the solution to
(4.21) and (2.21), which is equivalent to our result by Theorem 2.2.24. That the PDE in
question is in fact the renormalization group equation seems not to have been noticed.

4.5 The invariant charge

Now we relate the previous section to Dyson–Schwinger equations. As alluded to, it is known
that the solution to a genuine physical Dyson–Schwinger equation or system should satisfy a
renormalization group equation. This is not true in the complete generality of the framework
we have set up but is known to be true for ordinary Dyson–Schwinger equations under the
additional hypothesis of the existence of a so-called invariant charge. In this section we
will define what this means and give a proof using the ideas of the previous section, then
generalize to the case of distinguished insertion places.

We will begin with the simplest case (4.8). By Theorem 4.4.4, we see that G(x, L)
satisfies a renormalization group equation if there exists a bialgebra morphism Rio → K[[L]]
that sends Y (x) to G(x, L). It is natural to lift to the combinatorial equation (4.12) and
ask instead for a bialgebra morphism Rio → HP that sends Y (x) to T (x). The question
then is where Π(x) should be mapped. We wish to construct from T (x) an auxiliary series
Q(x) ∈ HP [[x]]—the invariant charge—such that the map sending Π(x) to Q(x) and Y (x)
to T (x) is a bialgebra morphism. Note that this is unique if it exists since the coproduct
formula (4.20) allows us to recover it from the coproducts of coefficients of T (x). It turns
out that the case in which we can ensure this exists is exactly the special case (4.10).6

Proposition 4.5.1. Let T (x) ∈ HN+ [[x]] be the solution of the combinatorial Dyson–Schwinger
equation

T (x) = 1 +
∑
k≥1

xkB
(k)
+ (T (x)1+sk).

Then the algebra morphism φ : Rio → HN+ defined by φ(Y (x)) = T (x) and φ(Π(x)) = xT (x)s

is a bialgebra morphism. As a consequence, the solution G(x, L) to the corresponding Dyson–
Schwinger equation (4.10) satisfies the renormalization group equation(

∂

∂L
− sxγ(x)

∂

∂x
− γ(x)

)
G(x, L) = 0

where γ(x) is the linear term in L of G(x, L).

Remark 4.5.2. While the phrasing of Proposition 4.5.1 seems to be new, its content is
not: the coproduct formula for T (x) implied by combining this result with (4.20) is well-
known. (See [64, Lemma 4.6] for exactly this formula and for instance [12, Theorem 1],

6We will only show sufficiency; for necessity see [23, Proposition 10] although note that the setup there
is somewhat different from ours.

67



[49, Proposition 4.2], and [59, Proposition 7] for essentially equivalent formulas appearing
in slightly different contexts.) Our proof will also be isomorphic to the proof in [64], but
presented in what we hope is a more conceptually clear way. The genuinely new result of
this section is the generalization to distinguished insertion places.

We now work towards proving Proposition 4.5.1. As in Section 4.3.2 we will find it
convenient to abuse notation by writing tensor products of power series when we really
mean power series with tensor coefficients. With this in mind, we can rewrite (2.19) and
(4.20) simply as

∆Π(x) =
∑
j≥0

Π(x)j+1 ⊗ πj

and
∆Y (x) =

∑
j≥0

Y (x)Π(x)j ⊗ yj.

Our first lemma is a common generalization of both formulas.

Lemma 4.5.3. For any s ∈ K and k ∈ N,

∆
(
Y (x)sΠ(x)k

)
=
∑
j≥0

Y (x)sΠ(x)j ⊗ [xj]Y (x)sΠ(x)k.

(Note that since Π(x) has zero constant term, we can only raise it to natural powers if
we want to stay in the realm of power series.)

Proof. Both sides are power series with coefficients that are polynomials in s, so it is sufficient
to prove the case s ∈ N. Then by the coproduct formulas we can write

∆
(
Y (x)sΠ(x)k

)
=

∑
i1,...,is,j1,...,jk

Y (x)sΠ(x)i1+···+is+j1+···+jk+k ⊗ yi1 · · · yisπj1 · · · πjk

=
∑
j≥0

Y (x)sΠ(x)j ⊗
∑

i1+···+is+j1+···+jk+k=j

yi1 · · · yisπj1 · · · πjk

=
∑
j≥0

Y (x)sΠ(x)j ⊗ [xj]Y (x)sΠ(x)k

as desired.

For n ≥ 0, let FdB(n) denote the subalgebra of FdB generated by π1, . . . , πn−1 (this
should not be confused with the graded piece FdBn) and let Rio(n) denote the subalgebra of
Rio generated by π1, . . . , πn−1 and y1, . . . , yn. From the coproduct formulas it is clear that
are in fact sub-bialgebras. The following result is new as stated but encapsulates the main
calculation used in standard proofs of Proposition 4.5.1.

Lemma 4.5.4. Suppose H is a bialgebra, φ : Rio → H is an algebra morphism, and {Λk}k∈N+

is a family of 1-cocycles on H. Let Φ(x) = φ(Π(x)) and suppose φ(Y (x)) = F (x) where
F (x) is the unique solution to

F (x) = 1 +
∑
k≥1

Λk(F (x)Φ(x)
k). (4.22)
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Then for n ≥ 0, if φ is a bialgebra morphism when restricted to FdB(n), it is also a bialgebra
morphism when restricted to Rio(n).

Recall that by definition Π(x) and hence also Φ(x) has zero constant term, so only the
terms with k ≤ n on the right side of (4.22) can contribute to the coefficient of xn. Thus the
equation really does have a unique solution.

Proof. Since we are given that φ is an algebra morphism we must only prove it preserves
the coproducts of the generators. We prove this by induction on n. In the base case,
FdB(0) = Rio(0) = K so there is nothing to prove. Now suppose that n > 0 and that φ
is a bialgebra morphism when restricted to Rio(n−1) and also preserves the coproduct of
πn−1. Then we must show it preserves the coproduct of yn. Note that when k > 1, the
coefficient [xn]Y (x)Π(x)k does not contain yn, so its coproduct agrees with the formula from
Lemma 4.5.3. Thus

∆φ(yn) = ∆([xn]F (x))

= ∆

(∑
k≥1

Λk

(
[xn]F (x)Φ(x)k

))

= (Λk ⊗ 1 + (id⊗ Λk)∆)

(∑
k≥1

[xn]F (x)Φ(x)k

)

= [xn]F (x)⊗ 1 +
∑
k≥1

n−k∑
j=0

[xn]F (x)Φ(x)j ⊗ [xj]Λk(F (x)Φ(x)
k)

= [xn]F (x)⊗ 1 +
n−1∑
j=0

[xn]F (x)Φ(x)j ⊗ [xj]

(∑
k≥1

Λk(F (x)Φ(x)
k)

)

=
n∑

j=0

[xn]F (x)Φ(x)j ⊗ [xj]F (x)

= (φ⊗ φ)(∆yn).

Remark 4.5.5. An obvious consequence of Lemma 4.5.4 is that if φ is already known to be
a bialgebra morphism when restricted to FdB then it is a bialgebra morphism on all of Rio.
This is not quite the right version of the statement for the application to Dyson–Schwinger
equations, but it does give some interesting examples of series satisfying renormalization
group equations. For instance, consider the map FdB → H given by πn 7→ ℓn1 . (Recall
that ℓn is the n-vertex ladder so in particular ℓ1 is the unique one-vertex tree.) It is a
straightforward exercise to show that this is in fact a bialgebra morphism. Thus we can
extend this map to Rio by sending Y (x) to the series T (x) defined by

T (x) = 1 + xB+

(
T (x)

1− ℓ1x

)
,

an example due to Dugan [18] of a series not coming from a Dyson–Schwinger equation
which nonetheless satisfies a renormalization group equation after applying a bialgebra
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morphism H → K[L]. In the spirit of Examples 4.2.4 and 4.2.5, we can think of T (x)
as a generating function for plane trees with the property that one obtains a ladder after
deleting all leaves.

We can now prove Proposition 4.5.1.

Proof of Proposition 4.5.1. We prove by induction on n that φ is a bialgebra morphism on
Rio(n). For n = 0 this is trivial. Now suppose n > 0 and that φ is a bialgebra morphism on
Rio(n−1). In particular, φ is a bialgebra morphism on FdB(n−1), and we observe that since
[xn−1]T (x)s ∈ φ(Rio(n−1)), by Lemma 4.5.3 we have

∆φ(πn−1) = ∆([xn−1]T (x)s)

=
∑
j≥0

[xn−1]T (x)s(xT (x)s)j ⊗ [xj]T (x)s

=
∑
j≥0

[xn−1](xT (x)s)j+1 ⊗ [xj]T (x)s

=
∑
j≥0

[xn−1]φ(Π(x))j+1 ⊗ φ(πj)

= (φ⊗ φ)(∆πn−1)

so φ is a bialgebra morphism on FdB(n). By Lemma 4.5.4, φ is thus a bialgebra morphism on
Rio(n) as wanted. The renormalization group equation then follows from Theorem 4.4.4.

Now we consider systems. The idea is the same, that we would like to write each equation
of the system in a form that looks like (4.22). In general this will only work if we have the
same invariant charge for each equation. In terms of the setup in Section 4.2.1, for p ∈ Pi

we want a linear relation
µp = 1i + wps

for some s = (si)i∈I ∈ KI . As in the single-equation case, we may as well combine terms
together to write the system in the form

Gi(x, L) = 1 +
∑
k≥1

xkΛi,k

(
Gi(x, L)

∏
j

Gj(x, L)
sjk

)
. (4.23)

The corresponding combinatorial system then looks like

Ti(x) = 1 +
∑
k≥1

B
(i,k)
+ (Ti(x)Q(x)

k) (4.24)

where
Q(x) = x

∏
i∈I

Ti(x)
si . (4.25)

We then have the following generalization of Proposition 4.5.1. (Note that most of the papers
referenced in Remark 4.5.2 are actually for this version already.)
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Theorem 4.5.6. Let T(x) ∈ HI×N+ [[x]]
I be the solution to the combinatorial Dyson–

Schwinger system (4.24). Then for any i ∈ I, the map φi : Rio → HI×N+ defined by
φi(Y (x)) = Ti(x) and φi(Π(x)) = Q(x) is a bialgebra morphism. As a consequence, the
solution G(x, L) to the corresponding Dyson–Schwinger system (4.23) satisfies the renor-
malization group equations(

∂

∂L
− β(x)

∂

∂x
− γi(x)

)
Gi(x, L) = 0

where γi(x) is the linear term in L of Gi(x, L) and

β(x) =
∑
i∈I

sixγ(x).

Proof. We prove by induction on n that φi is a bialgebra morphism on Rio(n) for all i. Suppos-
ing they are all bialgebra morphisms on Rio(n−1). Then, as in the proof of Proposition 4.5.1,
we have

∆φi(πn−1) = ∆([xn−1]Q(x))

= [xn−1]
∏
i∈I

∆(Ti(x)
si)

= [xn−1]
∑
α∈NI

∏
i∈I

(Ti(x)
siQ(x)αi ⊗ [xαi ]Ti(x)

si)

=
∑
α∈NI

[xn]Q(x)|α|+1 ⊗
∏
i∈I

[xαi ]Ti(x)
si

=
∑
j≥0

[xn]Q(x)j+1 ⊗ [xj+1]Q(x)

= (φ⊗ φ)(∆πn−1)

and thus φi is a bialgebra morphism on FdB(n) and hence on Rio(n) by Lemma 4.5.4. The
renormalization group equation then follows from Theorem 4.4.4.

We can similarly generalize to the case of distinguished insertion places, i.e. systems of
the form (4.18). Naturally, this will come from a generalization of Lemma 4.5.4 to allow
cocycles on tensor powers of the target bialgebra H. In this case the statement gets more
complicated but the proof is much the same. First we need a generalization of Lemma 4.5.3.

Lemma 4.5.7. Let δ be the left coaction of Rio on Rio⊗E for E a finite set. Then for any
u ∈ Kr and any exponent vector α ∈ NE,

δ

(⊗
e∈E

Y (x)ueΠ(x)αe

)
=
∑
j≥0

Y (x)|u|Π(x)j ⊗ [xj]
⊗
e∈E

Y (x)ueΠ(x)αe .

Proof. Immediate from Lemma 4.5.3 by the definition of the coaction.

With this we can prove the following.
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Lemma 4.5.8. Let H be a bialgebra P be a set, and {Ep}p∈P a family of finite sets. For
p ∈ P let Λp : H

⊗Ep → H be a 1-cocycle, let up = (ue)e∈Ep be a vector with |u| = 1, and let
wp = (we)e∈Ep be a nonzero exponent vector. Suppose φ : Rio → H is an algebra morphism.
Let Φ(x) = φ(Π(x)) and suppose φ(Y (x)) = F (x) where F (x) is the unique solution to

F (x) = 1 +
∑
p∈P

Λp

⊗
e∈Ep

F (x)ueΦ(x)αe

.
Then for n ≥ 0, if φ is a bialgebra morphism when restricted to FdB(n), it is also a bialgebra
morphism when restricted to Rio(n).

Proof. The setup for our induction argument is identical to that in the proof of Lemma 4.5.4.
Thus, supposing that φ is a bialgebra morphism on Rio(n−1) for some n ≥ 1, we set out to show
that φ preserves the coproduct of yn. Note that we have no yn in [xn]

⊗
e∈Ep

Y (x)ueΠ(x)we

since |wp| > 0. Thus by Lemma 4.5.7 we have

∆φ(yn) = ∆([xn]F (x))

= [xn]F (x)⊗ 1 +
∑
p∈P

(id⊗ Λp)[x
n]δ

⊗
e∈Ep

F (x)ueΦ(x)we


= [xn]F (x)⊗ 1 +

∑
p∈P

∑
j≥0

[xn]F (x)Φ(x)j ⊗ Λp

[xj]
⊗
e∈Ep

F (x)ueΦ(x)we


=
∑
j≥0

[xn]F (x)Φ(x)j ⊗ [xj]F (x)

as desired.

With Lemma 4.5.8 in mind we can formulate an appropriate notion of invariant charge
for Dyson–Schwinger equations with distinguished insertion places. We want a series Q(x)
to play the role of Φ(x) in the statement of the lemma. In the case of a single equation
(4.16) we see that the condition we want is that for some s ∈ K, the insertion exponents can
be written in the form

µe = ue + swe (4.26)

where ue ∈ K and αe ∈ N are such that ∑
e∈Ep

ue = 1 (4.27)

and ∑
e∈Ep

we = wp (4.28)

for each p. In this case we take Q(x) = xT (x)s as in the case of a single ordinary DSE. We
can then write our (combinatorial) equation as

T (x) =
∑
p∈P

B̃+

⊗
e∈Ep

T (x)ueQ(x)αe

. (4.29)
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Remark 4.5.9. The choice of exactly how to write the insertion exponents in the form
(4.26) is not unique in general. However the value of s and hence of Q(x) does not depend
on this choice, because the overall insertion exponents satisfy µp = 1 + swp regardless.

Recall our original motivating example was equation (4.15) which has m edge types
and all insertion exponents equal to −1. Thus we here have s = −(1 +m). We can write
it in the form (4.26) by choosing one edge type e0 to have ue0 = m and we0 = 1, and
all others to have ue = −1 and we = 0. Thus while writing this equations in the form
(4.29) is convenient for our purposes in this section, it does involve arbitrarily breaking
the symmetry of the original equation.

For systems the situation is similar. For e ∈ Ep where p ∈ Pi, we want the insertion
exponent vector to satisfy a relation

µe = ue1i + αes (4.30)

where ue and αe still satisfy (4.27) and (4.28). Thus the form of our system is

Ti(x) =
∑
p∈Pi

B̃
(p)
+

⊗
e∈Ep

Ti(x)
ueQ(x)αe

. (4.31)

where as before
Q(x) = x

∏
i∈I

Ti(x)
si .

With the setup done, we can state the main result of this section. This proves a conjecture of
Nabergall [45, Conjecture 4.2.3] which corresponds to the case all insertion exponents equal
−1.

Theorem 4.5.10. Let T(x) ∈ H̃P,E [[x]]
I be the solution to the combinatorial Dyson–Schwinger

system (4.31). Then for any i ∈ I, the map φi : Rio → H̃P,E defined by φi(Y (x)) = Ti(x)
and φi(Π(x)) = Q(x) is a bialgebra morphism. As a consequence, the solution G(x, L) to
the corresponding Dyson–Schwinger system satisfies the renormalization group equations(

∂

∂L
− β(x)

∂

∂x
− γi(x)

)
Gi(x, L) = 0

where γi(x) is the linear term in L of Gi(x, L) and

β(x) =
∑
i∈I

sixγ(x).

Proof. This follows by an identical proof to Theorem 4.5.6 but using Lemma 4.5.8 in place
of Lemma 4.5.4.

This completes for now our exploration of Dyson–Schwinger equations. In the next
chapter we will shift gears entirely and enter the world of symmetric functions.
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Chapter 5

Skew Equivalence

5.1 Shapes

In this section we review the necessary facts about skew shapes and skew Schur functions.
While there are no new results, the presentation is somewhat nonstandard and not all of
the material is well-known, so the author humbly suggests that even those readers who are
experts on symmetric functions may not wish to skip it entirely.

5.1.1 Skew shapes and the shape Hopf algebra

For our purposes, a Ferrers shape is a finite downset in N+ × N+. Ordered by inclusion,
these form a distributive lattice Y, known as Young’s lattice. Ferrers shapes are in bijection
with integer partitions, with the correspondence given by

λ↔ {(i, j) ∈ N+ × N+ : j ≤ λi}.

Moreover this bijection is easily seen to be order-preserving with respect to the componen-
twise ordering on partitions (that is, the ordering induced by the inclusion Par → NN+ ; see
Section 2.4.1). As is conventional, we will notationally identify partitions with their corre-
sponding shapes. We will draw shapes as Young diagrams in English notation, with elements
represented by boxes placed in the plane with the first coordinate increasing from north to
south and the second coordinate increasing from west to east. (See Figure 5.1 for examples.)
In light of this we will typically call the elements of a Ferrers shapes boxes. (Others may
prefer the term cells.)

A skew shape, or simply shape, is a finite convex1 subset of N+ ×N+. Given partitions λ
and µ with λ ≥ µ, the skew shape λ/µ is defined to be the difference of their Ferrers shapes;
explicitly

λ/µ = {(i, j) ∈ N+ × N+ : µi < j ≤ λi}.

It is clear that every skew shape arises this way. Note however that the shape λ/µ does
not uniquely determine the partitions λ and µ; for instance, λ/λ = ∅ regardless of λ. A
subshape of a skew shape is a subset which is itself a skew shape, i.e. is convex. A skew

1In the order-theoretic sense, as in Section 2.3.
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∅

Figure 5.1. Shapes of size at most 4 in Y.

(a) (b) (c) (d)

Figure 5.2. Some skew shapes.

shape is connected if it is connected as a poset. We can rephrase this as follows: two boxes
are adjacent if they share an edge, and the shape is connected if the graph defined by this
adjacency relation is connected. Note in particular that “adjacency” here is horizontal or
vertical, never diagonal. For instance, in Figure 5.2, shape (a) is connected while the rest
are disconnected.

Remark 5.1.1. Note that if we are identifying partitions with their shapes, λ/µ could
also be written as λ \µ using the usual notation for set difference. Since the notation λ/µ
is traditional, we retain it for this special case of a pair of partitions with λ ≥ µ but will
use the ordinary set-difference notation for other cases of deleting a subshape (which need
not be a downset) from a skew shape.

By a row of D we mean a nonempty subshape of D which is the intersection with a
horizontal line {i} × N+, and similarly a column is a nonempty intersection with a vertical
line N+ × {j}. We denote the number of rows and columns of D by row(D) and col(D)
respectively. In the case D = λ is a partition the rows simply correspond to the parts, so
row(λ) = ℓ(λ).

The content of a box (i, j) ∈ N+×N+ is c(i, j) = j− i. The set of all boxes with content
k is a northwest-southeast diagonal in the plane; we will always mean one of these when we
say diagonal. Write dia(D) for the number of diagonals which have nonempty intersection
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with a shape D; we will also say that such diagonals are occupied by D. Equivalently, dia(D)
is the number of distinct values which appear as contents of boxes in D. In the case of a
connected shape, dia(D) = row(D) + col(D) − 1. Since all three statistics clearly add over
connected components we obtain the following.

Lemma 5.1.2. For any shape D, the number of connected components of D is dia(D) −
row(D)− col(D).

For skew shapes D and E we will write D ≤ E if D is a downset of E; note this is
stronger than being a subshape. Equivalently, D ≤ λ/µ if and only if D = ρ/µ for some
partition ρ with µ ≤ ρ ≤ λ. In particular, for ordinary Ferrers shapes this agrees with the
ordering on Y. If D ≤ E then E \ D is also a skew shape; we say that D is removable on
the left and E \D is removable on the right from E.

If D and D′ are connected skew shapes, we write D ≈ D′ and say that D and D′ are
congruent if D′ is a translation of D. We extend this to disconnected shapes by allowing each
connected component to be translated separately. (For instance, in Figure 5.2, shapes (b),
(c), and (d) are all congruent.) In general everything we do with skew shapes will respect
congruence, and we will often identify congruent shapes when it is not confusing to do so.
In particular, many of the operations on skew shapes that we consider will not come with
a canonical way to view the constructed shapes as subsets of N+ × N+ or as intervals in Y,
so they are better thought of as operations on congruence classes of shapes. The first and
simplest of these is the edge-disjoint union D ⊔ E, consisting of copies of D and E placed
so that no box of D is adjacent to any box of E.

Let S be the free vector space on congruence classes of shapes. We will write [D] for
the congruence class of D thought of as an element of S. We make S into an algebra with
product given by [D][E] = [D ⊔ E] and coproduct

∆[D] =
∑
X≤D

[X]⊗ [D \X]. (5.1)

These are easily seen to make S into a connected graded bialgebra and hence a Hopf algebra,
which we call the shape Hopf algebra. This Hopf algebra seems to have first been explicitly
considered by Yeats [63]. Note that the definition of congruence for disconnected shapes is
exactly what it needs to be in order to ensure that, as an algebra, S is a free commutative
algebra on congruence classes of connected shapes.

Remark 5.1.3. Note that the coproduct in S is an upset-downset coproduct just like that
in the poset Hopf algebra P considered in Section 2.3. Thus we have a natural bialgebra
morphism S → P sending a skew shape to its underlying poset. However, this map is not
injective, as non-congruent shapes can be isomorphic as posets.

Remark 5.1.4. We can lift the notion of congruence from skew shapes to intervals in Y
by declaring that [µ, λ] ≈ [µ′, λ′] if and only if λ/µ ≈ λ′/µ′. This is an example of a Hopf
relation and S is the associated incidence Hopf algebra. (See Remark 2.3.2.)

We mention two other operations on skew shapes which play nicely with the Hopf algebra
structure of S. Let D be a skew shape. The transpose of D is

DT = {(j, i) : (i, j) ∈ D}
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(a) D (b) DT (c) D∗

Figure 5.3. Transpose and antipodal rotation of a shape D.

which is clearly also a skew shape. (In the case of partitions, the transpose is commonly
called the conjugate.) The antipodal rotation D∗ of D is obtained by rotating D by 180◦.
Note that the antipodal rotation is only defined up to translation as we have not indicated
what point in the plane we are rotating about, nor can we choose a single point that ensures
we stay in the positive quadrant for all skew shapes. As usual, we are really interested in
operations on congruence classes so this is not an issue. To be explicit, however, we may
choose any m and n such that D ⊆ [m]× [n]; then

D∗ ≈ {(m− j, n− i) : (i, j) ∈ D}.

See Figure 5.3 for examples of these operations. It is easy to verify the following result.
(Recall that an anti-automorphism of a bialgebra is an invertible linear map that reverses
the order of multiplication and comultiplication. Of course, since we are in the commutative
setting, only the latter is relevant.)

Proposition 5.1.5. The maps D 7→ DT and D 7→ D∗ respectively extend to an automor-
phism and an anti-automorphism of S.

5.1.2 Skew Schur functions

Let D be a skew shape. A weak tableau (or reverse plane partition) of shape D is a weakly
increasing map T : D → N+. These are typically illustrated by filling each box b ∈ D with
the value T (b). For i ∈ N+ we will write Ti for the subshape consisting of boxes filled with
i. The condition that T is weakly increasing equivalently says that

T1 ≤ T1 ∪ T2 ≤ T1 ∪ T2 ∪ T3 ≤ · · ·

and indeed a weak tableau is really just a convenient way to encode a chain of skew shapes.
With (5.1) in mind, iterated coproducts in S can be written as sums over weak tableaux:

∆kD =
∑
T

T1 ⊗ · · · ⊗ Tk (5.2)

where the sum is over weak tableaux of shape D with values in {1, . . . , k}.
The weight of a weak tableau T is the vector wtT = (|T1|, |T2|, . . . ). A semistandard

Young tableau is a weak tableau which is strictly increasing down columns. The set of
semistandard Young tableaux of shape D is denoted SSYT(D). The skew Schur function
associated to D is

sD =
∑

T∈SSYT(D)

xwtT (5.3)
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(see Section 2.1 for notation). While not completely obvious, it well-known these are sym-
metric functions. When D = λ is a partition, the skew Schur function sλ is a Schur function.

2

(Since we will generally be interested in skew Schur functions, we will sometimes say ordinary
Schur function for emphasis when dealing with the non-skew case.)

Theorem 5.1.6 ([56, Corollary 7.12.2]). The Schur functions {sλ}λ∈Par form a basis for
Sym. Moreover, they are orthonormal with respect to the Hall inner product.

The map schur : S → Sym sending D to sD is in fact a bialgebra morphism. This fact
can be seen by a direct calculation, but it is perhaps more pleasant to derive it from the
Aguiar–Bergeron–Sottile theorem (Theorem 2.4.6). Define a vertical strip to a be a skew
shape with no more than one box in each column. The condition that a weak tableau T
be semistandard is equivalent to requiring that the subshapes Ti are vertical strips. Let
ζ ∈ Ch(S) be given by

ζ([D]) =

{
1, D is a horizontal strip

0, otherwise.

Then, in terms of the notation defined before Theorem 2.4.6, for any composition α =
(α1, . . . , αk) we have

ζα([D]) =
∑
T

ζα1(T1) · · · ζαk
(Tk)

by (5.2). In other words, ζα([D]) counts semistandard tableaux of weight α. Comparing
(5.3) to the explicit formula of Theorem 2.4.6 we see that the Aguiar–Bergeron–Sottile map
induced by ζ is none other than schur.

Remark 5.1.7. The Aguiar–Bergeron–Sottile theorem guarantees that the induced map
takes values in Sym when the source Hopf algebra is cocommutative. However, in this
case we see that schur takes values in Sym even though S is not cocommutative. This
slightly mysterious fact is key to everything we do in this chapter.

Since schur is a bialgebra morphism, skew Schur functions satisfy the coproduct formula

∆sD =
∑
X≤D

sX ⊗ sD\X . (5.4)

Note that if D = λ is a partition, then a shape removable on the left from D is also a
partition. Thus by orthogonality, we have

s⊥µ sλ =
∑
ν≤λ

⟨sµ, sν⟩sλ/ν =

{
sλ/µ, λ ≥ µ

0, otherwise.
(5.5)

Consider expanding a product of two Schur functions in the Schur basis. We can write

sµsν =
∑

λ⊢|µ|+|ν|

cλµ,νsλ (5.6)

2Restricted to n variables, these are Schur polynomials, the irreducible characters of GLn(C).
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for some coefficients cλµ,ν .
3 Note that by commutativity, cλµ,ν = cλν,µ. Now, since s⊥µ is by

definition the operator adjoint to multiplication by sµ, the matrix representing it is just the
transpose. This means that these same coefficients appear in the expansion of a skew Schur
function in the Schur basis:

sλ/µ = s⊥µ sλ =
∑

ν⊢|λ|−|µ|

cλµ,νsν . (5.7)

The transpose and antipodal rotation operations also behave nicely on Schur functions.
(Recall the fundamental involution ω from Section 2.4.1.)

Proposition 5.1.8 ([56, Theorem 7.15.6]). For any skew shape D, ω(sD) = sDT .

Proposition 5.1.9 ([56, Exercise 7.56(a)]). For any skew shape D, sD = sD∗.

Proposition 5.1.9 is our first example of a situation in which two distinct skew shapes have
equal skew Schur functions. Our primary goal in this chapter will be to understand when
this can happen. It is useful to introduce some terminology and notation: two skew shapes
D,D′ are said to be skew-equivalent, written D ∼ D′, if sD = sD′ . Thus by Proposition 5.1.9,
we have D ∼ D∗ for all shapes D. Van Willigenburg proved a partial converse.

Theorem 5.1.10 (Van Willigenburg [61, Theorem 2.2]). Suppose λ is a partition. If D is
a skew shape such that D ∼ λ then D ≈ λ or D ≈ λ∗.

However, the situation becomes far more complicated when we leave behind the com-
fortable world of partitions and venture into the wilderness of arbitrary skew shapes. The
study of skew equivalence for more general shapes was initiated by Billera, Thomas, and
van Willigenburg [11] who gave a complete characterization in the case of so-called ribbon
shapes; we will explain this in the next subsection. Building on this work, Reiner, Shaw,
and van Willigenburg [51] gave some necessary and some sufficient conditions for various
classes of shapes. Finally, McNamara and van Willigenburg [43] gave conditions that they
conjectured to be both necessary and sufficient for the general case but were unable to prove
either direction in complete generality. Our main result is that these conditions are indeed
sufficient. Merely stating the conjecture requires a considerable amount of setup; we will
devote much of Section 5.3 to this. For now, let us simply mention some basic facts about
skew equivalence.

Lemma 5.1.11. Suppose D ∼ D′. Then D and D′ have the same number of boxes, connected
components, rows, columns, and diagonals.

Proof. Each of these can be read off of the skew Schur function sD = sD′ :

• The number of boxes is simply the degree of sD.

• A result of Reiner, Shaw, and van Willigenburg [51, Corollary 6.3] says that skew Schur
functions corresponding to connected shapes are irreducible elements of the ring Sym.
Since Sym is isomorphic to a polynomial algebra over a field it is a unique factorization
domain. Thus the number of connected components of D is the number of factors in
an irreducible factorization of sD

3These are the Littlewood–Richardson coefficients, for which various combinatorial rules are known. (See
[56, Section A1.3].) We will never need to make explicit use of these.
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• Only the northernmost entry of each column can be filled with a 1 in a semistandard
Young tableau; conversely it is clearly possible to find such a tableau in which each
column has its northernmost entry filled with 1. Thus the number of columns is the
maximum power of x1 that appears in any monomial in sD.

• The number of rows of D is the number of columns of DT , hence is the maximum
power of x1 that appears in any monomial in ω(sD).

• By Lemma 5.1.2 the number of diagonals can be derived from the numbers of connected
components, rows, and columns.

Remark 5.1.12. Reiner, Shaw, and van Willigenburg introduced more refined invariants,
the row overlap partitions, from which all of the data mentioned in Lemma 5.1.11 can be
derived. They show [51, Corollary 8.11] that these too are preserved by skew equiva-
lence. McNamara [42] showed that these agree under the weaker hypothesis that the two
skew Schur functions have the same support when expanded in terms of fundamental
quasisymmetric functions, and conjectured that the converse also holds.

5.1.3 Ribbons

A ribbon (also called a border strip, rim hook, or skew hook) is a connected skew shape
containing no 2 × 2 square. Equivalently, a connected shape D is a ribbon if and only if
|D| = dia(D); that is, there are no two boxes with the same content. In particular, the boxes
are totally ordered by content and we will always think of boxes of ribbons in terms of this
ordering. (Note that while content is not translation-invariant, the difference between the
contents of two cells is. Thus it makes sense to talk about this ordering even when we are
considering shapes up to congruence.)

For any connected skew shape D, the set of boxes of D with no box to the northwest is
a ribbon, the northwest border which we denote NW(D). Similarly, the set of boxes with
no box to the southeast is the southeast border SE(D). These notions also make sense for
D disconnected, in which case NW(D) and SE(D) are not ribbons but are disjoint unions
of ribbons. Regardless of whether or not D is connected, both borders contain exactly one
box from each diagonal occupied by D and so we have |NW(D)| = |SE(D)| = dia(D).

The height of a ribbon is its number of rows minus 1. Equivalently, it is the vertical
distance between the first and last cell viewed as elements of N+ × N+. This statistic
plays a key role in perhaps the most important result relating to ribbons, the Murnaghan–
Nakayama rule, which we will summarize now. For a shape D and a composition α ⊨ |D|,
a ribbon tableau of shape D and weight α is a weak tableau of weight α such that the
shapes T1, . . . , Tℓ(α) are ribbons. Denote the set of these by RT(D,α). Define the height
htT of a ribbon tableau T to be the sum of the heights of the ribbons comprising it. The
Murnaghan–Nakayama coefficients are defined by

χ(D,α) =
∑

T∈RT(D,α)

(−1)htT .
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The best known version of the Murnaghan–Nakayama rule concerns the multiplication of
a Schur function with power sums. (This can be found in standard references on symmetric
functions, e.g. Stanley’s book [56, Section 7.17].)

Theorem 5.1.13 (Murnaghan–Nakayama Rule I). For µ ⊢ m and α ⊨ n,

sµpα =
∑

λ⊢m+n

χ(λ/µ, α)sλ. (5.8)

We can make some observations from this. First, since pα = pβ when α is a rearrangement
of β, it is immediate from (5.8) that χ(D,α) = χ(D, β) in this case as well. Thus we can
safely restrict attention to the case of α a partition. Secondly, taking µ = ∅ we get the
expansion of power sums in terms of Schur functions: for ν ⊢ n,

pν =
∑
λ⊢n

χ(λ, ν)sλ. (5.9)

The version of the Murnaghan–Nakayama rule we will find most useful is not Theo-
rem 5.1.13 but an equivalent statement in terms of inner products.

Theorem 5.1.14 (Murnaghan–Nakayama Rule II). For any skew shape D and ν ⊢ |D|,
⟨pν , sD⟩ = χ(D, ν).

Proof. Writing D = λ/µ we have ⟨pν , sλ/µ⟩ = ⟨sµpν , sλ⟩ and the result follows immediately
from Theorem 5.1.13 by orthonormality of Schur functions.

Corollary 5.1.15. For any skew shape D and natural number m,

⟨pm, sD⟩ =

{
(−1)htD D is a ribbon of size m

0 otherwise.

Note that Theorem 5.1.14 implies that Murnaghan–Nakayama coefficients respect skew
equivalence: χ(D, ν) = χ(D′, ν) whenever D ∼ D′. Using Theorem 5.1.14 and the orthogo-
nality of power sums, we can also derive the expansion of skew Schur functions in the power
sum basis:

sD =
∑
ν⊢|D|

χ(D, ν)

zν
pν . (5.10)

We remarked in the previous section that skew equivalences involving ribbons are com-
pletely characterized; we will now discuss this. The key idea is the operation of composition
of ribbons introduced by Billera, Thomas, and van Willigenburg [11]. This is defined in
terms of two simpler operations, horizontal and vertical attachment, which make sense for
non-ribbon shapes as well. Given two skew shapesD and E, the horizontal attachment D⊙E
is the shape obtained by placing E in the plane with its southwesternmost box immediately
east of the northeasternmost box of D. The vertical attachment D ·E is similar, but instead
the southwesternmost box of E is placed immediately north of the northeasternmost box of
D.
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(a) A (b) B (c) A ◦B

Figure 5.4. Ribbon composition. In (c) the copies of B are highlighted in alternating colours.

For A and B, the composition A ◦ B is defined to be a ribbon consisting of a copy of
B for each box of A. Copies corresponding to adjacent vertices are attached using ⊙ when
the boxes are horizontally adjacent and · when vertically adjacent. Composition of ribbons
is algebraically nice: it is associative [11, Proposition 3.3] and satisfies a certain unique
factorization property [11, Theorem 3.6]. Combining this operation with antipodal rotation
produces all skew-equivalences between ribbon shapes.

Theorem 5.1.16 (Billera–Thomas–van Willigenburg [11, Theorem 4.1]). Suppose A and A′

are ribbons. Then A ∼ A′ if and only if there exist factorizations

A = B1 ◦ · · · ◦Bk

and
A′ = B′

1 ◦ · · · ◦B′
k

where for each i, either B′
i = Bi or B

′
i = B∗

i .

(Note also that Corollary 5.1.15 immediately implies that a non-ribbon cannot be equiv-
alent to a ribbon.)

Implicit in the statement of Theorem 5.1.16 is the fact that ribbon composition respects
skew equivalence: if A ∼ A′ and B ∼ B′ then A◦B ∼ A′ ◦B′. To generalize Theorem 5.1.17,
one can define D ◦ B for an arbitrary skew shape D in exactly the same way as we did in
the case D is a ribbon.4 This was considered by Reiner, Shaw, and van Willigenburg [51]
who showed that it still respects skew equivalence.

Theorem 5.1.17 (Reiner–Shaw–vanWilligenburg [51, Theorem 7.6]). Suppose D and D′ are
skew shapes and B and B′ are ribbons such that D ∼ D′ and B ∼ B′. Then D ◦B ∼ D′ ◦B′.

Unfortunately, Theorem 5.1.17 is far from a complete characterization of skew equiva-
lence among general shapes. Indeed, [51] introduces several other constructions that produce
equivalent shapes. Moreover, [51, Section 9] gives examples of skew equivalences that do not
follow from any of these results. All of these are unified in the theory of WOW composi-
tion, the subject of Section 5.3. Before doing so, in the next section we will introduce our
Hopf-algebraic framework for skew equivalence problems and use it to give a new proof of
Theorem 5.1.17.

4One must check that this is well-defined; in [51] this was left as an exercise to the reader, and we choose
to continue the tradition.
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5.2 Actions of symmetric functions on shapes

We return to the story of the shape Hopf algebra S and the map schur : S → Sym discussed
in Section 5.1.2. Since schur is a coalgebra morphism, it induces a (Sym, Sym)-bicomodule
structure on S. Then by self-duality, this in turn induces commuting left and right actions
of Sym on S as in Section 2.2.3. Explicitly these are given by

f ⇀ [D] =
∑
X≤D

⟨f, sD\X⟩X (5.11)

and
[D]↼ f =

∑
X≤D

⟨f, sX⟩(D \X). (5.12)

We will make use of these actions repeatedly, so let us establish now some basic facts
about them.

Proposition 5.2.1. The left and right actions of Sym on S satisfy the following properties:

(i) For any f ∈ Sym and h ∈ S, we have schur(f ⇀ h) = schur(h↼ f) = f⊥schur(h).

(ii) For any f, g ∈ Sym and h ∈ S, we have (f ⇀ h↼ g)T = ω(f)⇀hT ↼ω(g).

(iii) For any f, g ∈ Sym and h ∈ S, we have (f ⇀ h↼ g)∗ = g ⇀ h∗ ↼ f .

(iv) For partitions λ ≥ µ, we have [λ/µ] = [λ]↼ sµ and [λ/µ]∗ = sµ ⇀ [λ]∗.

(v) For partitions ρ ≥ λ ≥ µ with ρ a rectangle, we have [λ/µ] = sρ/λ ⇀ [ρ]↼ sµ.

Proof. (i) It is immediate from the definition that schur(f ⇀ h) = f ⇀ schur(h) and
schur(h ↼ f) = schur(h) ↼ f . By cocommutativity these agree, and f⊥schur(h) is
simply alternative notation.

(ii) For this one and the next it is convenient to express the actions in terms of the map
schur∨ : Sym → S∨ adjoint to schur. Note that f ⇀ h ↼ g is just the action of the
operator schur∨(g)∗ id∗ schur∨(f) on the element h. Let us temporarily denote h 7→ hT

by φ. Then Proposition 5.1.8 gives ω ◦ schur = schur ◦ φ. Taking adjoints gives

schur∨(ω(f)) = φ∨schur∨(f) = schur∨(f)φ

and so since φ is an involution and an automorphism

φ(schur∨(g) ∗ id ∗ schur∨(f)) = (schur∨(g)⊗ φ⊗ schur∨(f))∆3

= (schur∨(g)φ⊗ id⊗ schur∨(f)φ)(φ⊗ φ⊗ φ)∆3

= (schur∨(ω(g))⊗ id⊗ schur∨(ω(f)))∆3φ

= (schur∨(ω(g)) ∗ id ∗ schur∨(ω(f)))φ

as desired.
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(iii) Let us temporarily denote h 7→ hD by ψ. Then Proposition 5.1.9 gives schur = schur◦ψ.
Taking adjoints gives

schur∨(f) = ψ∨schur∨(f) = schur∨(f)ψ

and so since ψ is an involution and an anti-automorphism

ψ(schur∨(g) ∗ id ∗ schur∨(f)) = (schur∨(g)⊗ ψ ⊗ schur∨(f))∆3

= (schur∨(g)ψ ⊗ id⊗ schur∨(f)ψ)(ψ ⊗ ψ ⊗ ψ)∆3

= (schur∨(f)⊗ id⊗ schur∨(g))∆3ψ

= (schur∨(f) ∗ id ∗ schur∨(g))ψ

as desired.

(iv) By orthonormality of Schur functions,

[λ]↼ sµ =
∑
ν≤λ

⟨sµ, sν⟩[λ/ν] = [λ/µ].

By (ii), applying antipodal rotation to both sides produces the other formula.

(v) By (iv) we have
[λ] = [ρ/ν]∗ = sρ/λ ⇀ [ρ]

Applying (iv) a second time gives the desired formula.

A consequence of Proposition 5.2.1(iv) is that S is generated as a right Sym-module
by partitions and as a left Sym-module by antipodal rotations of partitions. Since every
partition fits into some rectangle, Proposition 5.2.1(v) gives that the rectangles generate S
as a (Sym, Sym)-bimodule.

It is natural to extend the notion of skew equivalence from shapes to arbitrary elements
of the shape Hopf algebra: that is, for h, h′ ∈ S we write h ∼ h′ if schur(h) = schur(h′). This
is, of course, simply the congruence induced by the kernel of schur. Thus Proposition 5.2.1(i)
says f ⇀ h ∼ h ↼ f . Our first new result of the chapter shows that in fact this is the root
of all skew equivalence.

Theorem 5.2.2. The kernel of schur is spanned by elements of the form f ⇀h− h↼ f for
f ∈ Sym and h ∈ S.

Proof. The images of partitions, the ordinary Schur functions, are a basis. Thus by (5.7),
the kernel is spanned by elements of the form

[λ/µ]−
∑
ν

cλµ,ν [ν]

so it is sufficient to show that these elements are of the desired form. We have already seen
that [λ/µ] = [λ]↼ sµ. On the other hand,

sµ ⇀ [λ] =
∑
ν

⟨sµ, sλ/ν⟩[ν]
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=
∑
ν

cλµ,ν [ν].

The result follows.

Remark 5.2.3. The Hopf-algebraic approach to skew equivalence was pioneered by
Yeats [63], who used the cocommutativity of Sym to derive a partial result towards the
McNamara–van Willigenburg conjecture. She did not phrase her results in terms of the
actions of Sym on S, but one can re-frame her argument in this way as we explain in
Section 5.3.3. The author’s work on the subject began with a modest attempt to gener-
alize Yeats’s methods. We may view Theorem 5.2.2 as the ultimate vindication of this
approach, showing that every skew equivalence can be derived this way. (Indeed, by the
end of this chapter, we will have done so for all known constructions of equivalent shapes
as well as some previously conjectural ones.)

5.2.1 Ribbon composition revisited

We now use Theorem 5.2.2, along with the Murnaghan–Nakayama rule, to give a new proof
of Theorem 5.1.17, and along the way prove some lemmas which we will be of use later in
proving new results. Let us linearly extend the map [D] 7→ [D ◦ B] to a map (indeed an
algebra morphism) S → S, which we also denote by h 7→ h◦B. What we will actually prove
is the following strengthening of Theorem 5.1.17.

Proposition 5.2.4. Let h, h′ ∈ S be arbitrary and B be a ribbon. If h ∼ h′ then h◦B ∼ h′◦B.

Remark 5.2.5. While Proposition 5.2.4 is stronger than Theorem 5.1.17 as stated, it can
still be proved by the methods of [51]. In particular, [51, Proposition 7.5] states that there
exists a well-defined algebra morphism Sym → Sym that sends sD to sD◦B, from which
Proposition 5.2.4 easily follows. However, our proof is somewhat different and acts as a
pleasant warmup to the proofs of our main results.

Of course, one cannot prove a result such as this by general abstract nonsense. Having
constructed the required algebraic abstractions, we have finally arrived at the point where
we need to do some combinatorics. The key idea is to understand which ribbons can be
removed on the left and/or right from shapes of the form D◦B; this will be a running theme
through all of our main results in this chapter.

Lemma 5.2.6. Let B be a ribbon of size k. Then:

• The only ribbon of size k that is removable on the left from B ⊙ B is the first copy of
B.

• The only ribbon of size k that is removable on the right from B⊙B is the second copy
of B.

• The only ribbon of size k that is removable on the left from B ·B is the second copy of
B.
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• The only ribbon of size k that is removable on the right from B ·B is the first copy of
B.

Proof. It is clear that the claimed ribbons are removable; we will show no other ribbon of
size k is removable on either side. Let B1 and B2 denote the two copies of B in either B⊙B
or B ·B. Suppose A is a ribbon of size k which is removable on the left and which is not equal
to B1 or B2. Let a and a′ be the boxes of A of minimum and maximum content respectively.
Clearly A is not contained in B1 or B2, so a ∈ B1 and a′ ∈ B2. Since A is removable on the
left, a does not have a box to its west; thus it has a box a′′ to its south. But then a′′ is at
a distance of k from a′, so it is the box corresponding to a′ in B1. Since a

′′ has a box to its
north, so does a′, contradicting the assumption that A is removable on the left. A similar
argument shows that A cannot be removable on the right either.

Lemma 5.2.7. Let D be any skew shape and B be a ribbon of size k. The only ribbons of
size k which are removable on the left (resp. right) from D ◦ B are the copies of B coming
from boxes of D which are removable on the left (resp. right).

Proof. A ribbon removable on the left from D ◦B is contained in NW(D ◦B) = NW(D)◦B.
If the ribbon has size k, it overlaps at most two copies of B, which are attached using · or ⊙.
By Lemma 5.2.6, if it does overlap two copies, it is not removable. So any removable ribbon
of size k is a copy of B. Moreover, it is removable only if the copy before it (if present) is
attached using · and the one after (if present) is attached using ⊙. Thus the corresponding
box in NW(D) does not have a box to its right or above it; this is precisely the criterion for
a box to be removable. The argument for ribbons removable on the right is analogous.

Note that for any subshape X of D, there is a corresponding subshape X ◦ B of D ◦ B.
Moreover, if X is removable (on the left or right) then so is X ◦B, and (D ◦B) \ (X ◦B) =
(D \X) ◦ B. Using these, we can extend Lemma 5.2.7 from ribbons of size k to ribbons of
size divisible by k.

Lemma 5.2.8. Let D be any skew shape and B be a ribbon of size k. The only ribbons of
size divisible by k which are removable on the left (resp. right) from D ◦B are shapes of the
form A ◦B where A is a ribbon removable on the left (resp. right) from D.

Proof. Suppose C is a ribbon of size jk removable on the left. We can write C = C ′⊙C ′′ or
C = C ′ · C ′′ where |C ′| = k and |C ′′| = (j − 1)k. In the former case, C ′ is removable on the
left as well, so by Lemma 5.2.7 is a copy of B coming from a removable box b of D. Then
C ′′ is removable from (D \ b) ◦B so inductively is of the form A′ ◦B for some A′ removable
on the left from D \ b. Since C ′ is attached horizontally to C ′′, the box b is to the west of
the first box of A′ and C = A ◦ B where A = b⊙ A′. In the latter case, C ′′ is removable on
the left so similarly we have C ′′ = A′ ◦ B where now A′ is removable from D and the box b
is to the south of the first box of A′ (as it must be removable from D \A). Thus C ′ = A ◦B
where A = b · A′. The argument for ribbons removable on the right is again analogous.

The key idea of our techniques is to use the Murnaghan–Nakayama rule to relate these
combinatorial results about ribbons to the actions of Sym on S. First we need the following
straightforward result.
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Lemma 5.2.9. Let A and B be ribbons. Then:

(i) ht(A ·B) = htA+ htB + 1

(ii) ht(A⊙B) = htA+ htB

(iii) ht(A ◦B) = |A| htB + htA.

Proof. Immediately from the definitions we have

ht(A ·B) = row(A ·B)− 1 = row(A) + row(B)− 1 = htA+ htB + 1

and
ht(A⊙B) = row(A⊙B)− 1 = row(A) + row(B)− 2 = htA+ htB.

Then by definition we have

A ◦B = B △1 B △2 · · · △|A|−1 B

where △i is ⊙ if the ith and (i + 1)st boxes of A are horizontally adjacent and · if they are
vertically adjacent. The latter happens precisely when i is the last box of its row, so the
number of such i is the number of rows excluding the last one, i.e. htA. Then the third
formula follows from the first two.

With this we can apply the Murnaghan–Nakayama rule to ribbon composition.

Lemma 5.2.10. Let D be any skew shape D and B be a ribbon of size k. For any m we
have

pkm ⇀ [D ◦B] = (−1)mhtB(pm ⇀ [D]) ◦B

and
[D ◦B]↼ pkm = (−1)m htB([D]↼ pm) ◦B.

Proof. By definition, we have

[D ◦B]↼ pkm =
∑

Y≤D◦B

⟨pkm, sY ⟩[(D ◦B) \ Y ].

By Corollary 5.1.15, the only terms that contribute are those for which Y is a ribbon of size
km. By Lemma 5.2.8, these are of the form A ◦B for A a ribbon of size m removable on the
left from D. By Lemma 5.2.9 we have ht(A ◦B) = (−1)htA+|A| htB = (−1)|A| htB⟨pm, sA⟩ and
thus

[D ◦B]↼ pkm = (−1)m htB
∑
A≤D

⟨pm, sA⟩[(D ◦B) \ (A ◦B)]

= (−1)m htB
∑
A≤D

⟨pm, sA⟩[D \ A] ◦B

= (−1)m htB([D]↼ pm) ◦B.

The argument for the right action is analogous.
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Since the power sums are an algebraically independent generating set for Sym (Theo-
rem 2.4.1), there is a unique morphism Sym → Sym that sends pm to pkm for all m. Denote
this by f 7→ f [pk].

5 Then Lemma 5.2.10 can be extended to a more general result.

Proposition 5.2.11. Let f be a symmetric function which is homogeneous of degree m. For
any h ∈ S,

f [pk]⇀ (h ◦B) = (−1)m htB(f ⇀ h) ◦B

and
(h ◦B)↼ f [pk] = (−1)m htB(h↼ f) ◦B.

Proof. By linearity it is sufficient to prove this when f = pν for some ν ⊢ m and h = [D] for
some shape D. This then follows by an easy induction from Lemma 5.2.10.

We now have all we need to prove the desired result.

Proof of Proposition 5.2.4. By Theorem 5.2.2, it is sufficient to prove (f⇀h)◦B ∼ (h↼f)◦B
for any f ∈ Sym and h ∈ S. But this is immediate from Proposition 5.2.11.

5.3 WOW shapes

The notions of WOW shape and WOW composition were introduced by McNamara and
van Willigenburg [43] in order to generalize Theorem 5.1.16 to all shapes. In this section
we review their work as well as the contributions of Yeats [63]. Let W and O be connected
skew shapes. A WOW shape6 is a connected skew shape E with the following properties:

1. E contains two copies of W , one of which contains the southwesternmost box and one
of which contains the northeasternmost box. (These are clearly unique once they exist;
we will refer to them as Wsw and Wne.)

2. W is maximal among shapes for which the first property holds and which occupy the
same diagonals as W .

3. There exists at least one diagonal which lies strictly between Wsw and Wne. (This in
particular means that the two copies are disjoint.)

4. The complement in E of the two copies of W is a copy of O.

The third and fourth properties together have some important consequences for the
structure of E. Let b be the northeasternmost box of Wsw. Since E is connected, there
is some box of E adjacent to b. More specifically, by properties 1 and 3, b cannot be the

5It is a special case of the more general operation of plethysm, but we do not need this.
6Here we are following the terminology used by Yeats. McNamara and van Willigenburg do not use the

term “WOW shape” but rather write E = WOW to mean that E satisfies the first of our four properties,
with O denoting the complement of the copies of W whether or not it is connected or even a valid skew
shape. They refer to our second and third property as Hypotheses I and II, and the assumption that O
is actually a connected skew shape as Hypothesis III. Since all of their results, and ours, assume (at least)
these hypotheses we prefer to absorb them into the definition.
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(a) E1 (b) E2 (c) E3 (d) E4

Figure 5.5. Some WOW shapes (for varying W and O) with the W subshapes highlighted.

northeasternmost box of E, so it has a box to its east and/or north. Moreover, by property
3 this cannot be a box of Wne so by property 4 it is in O. But since O is itself a skew shape,
it is not possible that there are boxes of O to both the east and the north of b. Thus exactly
one of the two possibilities hold: we say that Wsw is attached horizontally to O if b has a box
of O to its east, and attached vertically if it has a box of O to its north. Analogously, the
southwesternmost box of Wne has either a box to its west or its south and we respectively
say that Wne is attached vertically or horizontally. We say that E is a W → O → W ,
W → O ↑ W , W ↑ O → W , or W ↑ O ↑ W shape where the first arrow is horizontal or
vertical depending on how Wsw is attached and the second for Wne. Figure 5.5 shows one
shape of each type.

It is easy to see that if E is a WOW shape then ET is a W TOTW T shape and E∗

is a W ∗O∗W ∗ shape. In both cases, the two copies of W are swapped. In the case of
the transpose, horizontal adjacency in E becomes vertical adjacency in ET and vice versa,
whereas in the case of the antipodal rotation these are preserved. As such, we see that
transpose exchanges the →→ and ↑↑ cases while preserving the other two, whereas antipodal
rotation exchanges the →↑ and ↑→ cases while preserving the other two.7 (For instance, in
Figure 5.5 we see that E1 and E4 are transposes of one another while E2 and E3 are antipodal
rotations of one another.) It will transpire that everything we do transforms sensibly under
these involutions, so this often allows us to reduce from four cases to just two. Let us call
the shapes where both sides are attached the same way (W → O → W and W ↑ O ↑ W )
edge shapes and those where they are attached differently (W → O ↑ W and W ↑ O → W )
corner shapes.8 Each of these classes of shapes is closed under both involutions. Thus by
using the properties of the two involutions one can simplify the work of dealing with shapes
of one class or another, but the two classes will generally have to be dealt with separately.

While we do not consider the empty shape to be connected, it turns out to be convenient
to also allow the caseW = ∅. We will simply say that any connected shape O is an ∅O∅ shape
(the only one), and following [43] we will consider it more specifically to be ∅ → O → ∅.9

7This observation is used in [43] but is not explicitly stated as a result there.
8This terminology does not appear in [43] or [63]; only the present author can be blamed for it.
9Note that this is not completely arbitrary: this case does behave like an edge shape. However, the choice

to think of it as W → O → W rather than W ↑ O ↑ W is purely a matter of convention. The definitions
we make in the next section are chosen such that it does behave like a W → O → W shape with regards to
composition but they could have been swapped.
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5.3.1 Composition of shapes

We now begin the process of building up the McNamara–van Willigenburg composition
operation on shapes. Like composition with ribbons, this will be built up from two binary
operations. The simpler of these is the amalgamation E ⊔W E ′ where E is WOW and E ′ is
WO′W . This is obtained from E and E ′ by identifyingWne in E withWsw in E ′. (Note that
the second property in the definition of WOW shapes ensures that the overlap between the
two copies consists only of the identified copies of W .) If W = ∅, since we are thinking of
E as the horizontal type of edge shape, this should be interpreted as meaning that we place
the northeasternmost box of E one unit west of the southwesternmost box of E ′.

The near-amalgamation E ·W E of a shape E with itself is defined differently in the four
cases. Like the amalgamation, it will contain two copies of E which we will call E1 and E2

to state the definition. In all cases, the overlap of the two will occupy the same diagonals as
Wne in E1 and Wsw in E2:

• IfW = ∅, place the northeasternmost box of E1 one unit south of the southwesternmost
box of E2.

• Otherwise, if E is W → O → W , Wne in E1 is one unit southeast of Wsw in E2.

• If E is W ↑ O ↑ W , Wne in E1 is one unit northwest of Wsw in E2.

• If E isW → O ↑ W , overlap the twoW ’s as in the amalgamation but add an additional
copy of W offset by one unit southeast.

• If E isW ↑ O → W , overlap the twoW ’s as in the amalgamation but add an additional
copy of W offset by one unit northwest.

Note that no permutation of these possibilities will produce skew shapes in general.

Remark 5.3.1. Notice that the definition is such that (E ·W E)T = ET ·WT ET . Thus,
despite the notation, this is not analogous to the usual vertical and horizontal attachment
operations which instead have (E · E)T = ET ⊙ ET and (E ⊙ E)T = ET · ET . We will
see that the operation ·W on W → O → W shapes is closely related to the operation · on
ribbons, as the notation suggests. However, on W ↑ O ↑ W shapes it is instead related to
the ⊙ operation and on corner shapes both WOW operations will relate to both ribbon
operations.

If D is a ribbon and E is a WOW shape, the composition D ◦W E has one copy of E
for each box of D, joined using ⊔W when the boxes are horizontally adjacent and ·W when
they are vertically adjacent. In the edge case, this still makes sense for any skew shape D
and is the definition of the composition in general.10 In the corner case, however, this fails
to be a sensible definition: attempting to apply it to a box with neighbours both the north
and east, the copies of E corresponding to those boxes should by the definitions of ⊔W and
·W overlap completely, and so one of the copies of E is redundant. To define it correctly for
corner shapes, we make use of certain decompositions of the shape D into ribbons which we
will now define.

10Once again we defer to tradition and omit a proof of well-definedness.
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(a) E1 ⊔W1
E1 (b) E1 ·W1

E1

(c) E2 ⊔W2
E2 (d) E2 ·W2

E2

Figure 5.6. Amalgamations and near-amalgamations of some of the shapes from Figure 5.5. The
two copies of E and the overlap between them are highlighted in different colours, while boxes
which come from neither copy are in white.

(a) D ◦W1
E1 (b) D ◦W2

E2

Figure 5.7. Compositions of a 2 × 2 square D with some of the shapes from Figure 5.5. Copies
of W are highlighted.
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Recall that NW(D) denotes the northwest border of D. For k ≥ 1, we recursively define
the shapes NWk(D) by

NWk(D) = NW(D \ (NW1(D) ∪ · · · ∪ NWk−1(D))).

Clearly these shapes are disjoint and partition the boxes of D. Each connected component
of NWk(D) is a ribbon; the multiset of ribbons which occur as connected components of
these shapes is the northwest decomposition of D, which we denote NW(D). Analogously,
we define the southeast decomposition SE(D).

If E is a W → O ↑ W shape, we now define D ◦W E as follows: for each ribbon
A ∈ NW(D), form the shape A ◦W E. Since every box of D appears in exactly one of these
ribbons we have within these shapes a copy Eb of E for each b ∈ D. We construct D ◦W E
by placing the shapes such that if b′ is immediately to the southeast of b, then Eb′ appears
offset by one unit to the southeast of Eb, overlapping in all but NW(Eb)∪SE(Eb′). (We note
that the connected components of NW(D) are in bijection with the connected components
of D. Thus we can place the shapes coming from these components first, disjointly, and for
the remaining copies of E we always have a box to the northwest telling where us to place
it.) If E is a W ↑ O → W shape, we define D ◦W E in exactly the same way but with SE(D)
in place of NW(D).

Remark 5.3.2. We could have defined the composition for edge shapes similarly to how
we did for corner shapes. Indeed, suppose b′ is one unit southeast of b in D, and let c be
the box south of b and hence west of b′. Then by definition, within D ◦W E, the relevant
copies of E appear as Ec ·W Eb and Ec⊔W Eb′ . If E isW → O → W , this means that Eb′ is
one unit southwest of Eb, so this construction applied to any ribbon decomposition would
produce D ◦W E. For W ↑ O ↑ W shapes we would need a slightly modified construction
that places Eb′ one unit northwest of Eb when b

′ is one unit southeast of b but could again
use any ribbon decomposition. On the other hand, McNamara and van Willigenburg show
[43, Lemma 3.18] that this modified construction also works for corner shapes if one swaps
the roles of NW(D) and SE(D).

Remark 5.3.3. Our definition of composition differs from that of McNamara and van
Willigenburg in the case D = ∅. We do not treat this case specially: following directions
as written, we find ∅ ◦W E = ∅ regardless of E. McNamara and van Willigenburg instead
define ∅ ◦W E = W . This convention is required to make one of their key lemmas [43,
Lemma 3.25], relating composition of shapes to a certain operation on symmetric functions
they introduce, true as stated. We nonetheless argue that our convention is superior for
three reasons. Firstly, it makes (D ⊔D′) ◦W E ≈ (D ◦W E) ⊔ (D′ ◦W E) true in all cases
rather than requiring an exception in the case that D or D′ is empty. This property
means that D 7→ D ◦W E extends to an algebra morphism S → S which is clearly
desirable from the perspective we are taking. Secondly, we will show in Section 5.6 that
the definition of the symmetric function operation can be slightly modified in such a way
that the resulting operation is better behaved in general and does not need this strange
convention regarding the empty shape. Finally, one of McNamara and van Willigenburg’s
main results is a formula [43, Theorem 3.28] which appears to the author to be false as
stated according to their convention for the empty shape (reading sW = 1 in this case)
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(a) (b)

Figure 5.8. The two copies of O and the subshape W within E1 ⊔W1 E1 and E2 ⊔W2 E2.

but correct with ours.

The basic properties of WOW composition used by McNamara and van Willigenburg
are summarized in the following lemma.

Lemma 5.3.4 (McNamara–van Willigenburg [43, Lemma 3.19]). Let D be any shape and
E be a WOW shape. Then:

(i) D ◦W E is a well-defined skew shape.

(ii) (D ◦W E)∗ ≈ D∗ ◦W ∗ E∗

(iii) If W ̸= ∅, (D ◦W E)T ≈ D∗ ◦WT ET .

Remark 5.3.5. Most of Lemma 5.3.4 follows more or less immediately from the defini-
tions. The exception is Lemma 5.3.4(iii) in the corner case, which requires the alternative
construction of D ◦W E using the southeast rather than northwest decomposition previ-
ously mentioned in Remark 5.3.2. We will not make any explicit use of this construction
but in this way we do implicitly depend upon it.

This composition operation is the desired generalization of the ribbon composition, but
the näıve extension of Theorem 5.1.17 turns out to be false in general: one more technical
assumption will be needed in order to make the composition well-behaved. From a WOW
shape E, we consider two additional shapes W and O. The latter is more straightforward:
O consists of all boxes of O with another box of O to the southeast; in other words this is
the shape obtained from O by deleting the southeast border. (Note that we get the same
shape by deleting the northwest border instead; we will call this copy O.)

Consider the amalgamation E⊔W E, and let Wmid be the “middle” copy of W , where the
two copies of E overlap. Then W is the shape consisting of all those boxes of Wmid which
have a box of E ⊔W E to the southeast, together with those boxes of E ⊔W E which have a
box ofWmid to the southeast. (Again, we get another copyW of the same shape by replacing
the word “southeast” with “northwest”.) We say that E is proper if W is not adjacent to
either copy of O in E ⊔ E, or equivalently, W is not adjacent to either copy of O.
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Remark 5.3.6. The properness condition is what McNamara and van Willigenburg call
Hypothesis IV, but their definition is slightly different. Rather than looking at E ⊔W E
they consider an infinite shape E⊔W∞, and define both W and the properness condition
relative to this shape rather than E⊔W E. However, it is clear from the third condition in
the definition of WOW shapes that a given copy of W can only share diagonals with the
two adjacent copies of O and no other part of E⊔W∞ and that the corresponding copy of
W can only possibly be adjacent to the copies of O in those adjacent copies of O. Thus
our definitions are equivalent.

Remark 5.3.7. It is clear from the definitions that O and O are subshapes of O, whereas
W and W need not be subshapes of W . However, as mentioned in the previous remark,
the third condition in the definition of WOW shapes shows that W is contained within
the union of Wmid and the two copies of O in E ⊔W E. Let us write the first and second
copy of E as E1 and E2 respectively, and similarly their copies of O as O1 and O2. Observe
that if Wsw is attached horizontally in E, then no box of O can have a box of Wsw to its
southeast, and so no box of O2 can be in W . Thus W is contained in E1 in this case.
On the other hand, if Wne is attached vertically, then W is contained in E2 by a similar
argument. Similarly, if Wsw is attached vertically then W is contained in E1 and if Wne is
attached horizontally then W is contained in E2. Putting this together, we see that:

• If E is W → O ↑ W then W is contained in E1 ∩ E2 = Wmid and W may intersect
both copies of O.

• If E is W ↑ O → W then W is contained in Wmid and W may intersect both copies
of O.

• If E is W → O → W then W is contained in E1 and W is contained in E2.

• If E is W ↑ O ↑ W then W is contained in E1 and W is contained in E2.

5.3.2 The McNamara–van Willigenburg conjecture

We are finally ready to state the main conjecture of McNamara and van Willigenburg gener-
alizing Theorem 5.1.16 to all shapes. To avoid drowning the quagmire of parentheses found
in the statement of the conjecture in [43] we will take the convention thatWOW composition
always associates to the left, i.e. D ◦W1 E1 ◦W2 E2 will be interpreted as (D ◦W1 E1) ◦W2 E2.

Conjecture 5.3.8 (McNamara–van Willigenburg [43, Conjecture 5.7]). Suppose D and D′

are skew shapes. Then D ∼ D′ if and only if there exist factorizations

D = E0 ◦W1 E1 ◦W2 · · · ◦Wk
Ek

and
D′ = E ′

0 ◦W ′
1
E ′

1 ◦W ′
2
· · · ◦W ′

k
E ′

k

where E0 is any shape and Ei is a proper WiOiWi shape for 1 ≤ i ≤ k, and for each i either
E ′

i = Ei or E
′
i = E∗

i .
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Showing that such factorizations are necessary seems extremely difficult, but even showing
that they are sufficient in all cases has remained open since the publication of [43]. Our main
result is the following, which implies inductively that the sufficiency direction is true.

Theorem 5.3.9. If D ∼ D′ and E is a proper WOW shape, then D ◦W E ∼ D′ ◦W E.

We will spend much of the remainder of the chapter proving this, but let us first show
that it does indeed imply sufficiency. (Note that the observation that Theorem 5.3.9 would
imply this direction does essentially appear in [43] but not as an explicit result.)

Theorem 5.3.10. Suppose E0 is any shape and Ei is a proper WiOiWi shape for 1 ≤ i ≤ k,
and for each i either E ′

i = Ei or E
′
i = E∗

i . Then

E0 ◦W1 E1 ◦W2 · · · ◦Wk
Ek ∼ E ′

0 ◦W ′
1
E ′

1 ◦W ′
2
· · · ◦W ′

k
E ′

k

Proof. Inductively suppose the result has already been proven for shorter factorizations, so
we have

E0 ◦W1 E1 ◦W2 · · · ◦Wk−1
Ek−1 ∼ E ′

0 ◦W ′
1
E ′

1 ◦W ′
2
· · · ◦W ′

k−1
E ′

k−1

If E ′
k = Ek we are immediately done by applying Theorem 5.3.9. Suppose E ′

k = E∗
k . Then

E0 ◦W1 E1 ◦W2 · · · ◦Wk
Ek ∼ (E0 ◦W1 E1 ◦W2 · · · ◦Wk

Ek)
∗

= (E0 ◦W1 E1 ◦W2 · · · ◦Wk−1
Ek−1)

∗ ◦W ∗
k
E∗

k

∼ E0 ◦W1 E1 ◦W2 · · · ◦Wk−1
Ek−1 ◦W ∗

k
E∗

k

∼ E ′
0 ◦W ′

1
E ′

1 ◦W ′
2
· · · ◦W ′

k−1
E ′

k−1 ◦Wk∗ E
∗
k

where the steps are respectively by Proposition 5.1.9, Lemma 5.3.4(ii), and then two appli-
cations of Theorem 5.3.9 (using the equivalences from Proposition 5.1.9 and the induction
hypothesis respectively).

While McNamara and van Willigenburg were unable to prove their conjecture in general,
they did have strong partial results towards it. In particular they say that a WOW shape E
satisfies Hypothesis V if either E is a corner shape or E is an edge shape such that at least
one of Wne and Wsw is only adjacent to O in a single box.

Theorem 5.3.11 (McNamara–van Willigenburg [43, Theorem 3.31]). If D ∼ D′ and E is
a proper WOW shape satisfying Hypothesis V, then D ◦W E ∼ D′ ◦W E.

Thus our contribution is only removing Hypothesis V. However, our techniques are quite
different. McNamara and van Willigenburg derive Theorem 5.3.11 from another result [43,
Theorem 3.28] which relates the WOW composition to a certain algebraic operation on
symmetric functions. They prove the relation using the Hamel–Goulden identity, a certain
determinantal identity related to ribbon decompositions of skew shapes. Our approach
instead uses the ideas from Section 5.2 as well as the combinatorics of Yeats’s key ribbons

We will discuss key ribbons and Yeats’s results in the next subsection, and then we will
get down to the business of proving Theorem 5.3.9. In Section 5.4 we will prove it for the
edge case; since McNamara and van Willigenburg already proved the corner case this is all
that is strictly required to complete the proof. However, our techniques can also be used to
give a novel proof of the corner case, which we do in Section 5.5.

95



(a) top key ribbon (b) bottom key ribbon

Figure 5.9. The key ribbons of the shape E1 from Figure 5.5.

5.3.3 Key ribbons

We are not the first to show that Hypothesis V can be removed in some cases. Yeats [63]
was able to prove some very special cases of Theorem 5.3.9 in the edge case without it. As
previously mentioned in Remark 5.2.3 her results were Hopf-algebraic in nature and were
the inspiration for our approach. The essential combinatorial idea used in her results, as
well as ours (at least in the edge case) is that of the key ribbons of an edge shape.

Let E be a W → O → W shape. Thinking of E as the middle copy in E ⊔W E ⊔W E,
each of the two copies of W in E has a corresponding W and W . By Remark 5.3.7, W sw

is contained in E (as this would be Wmid when considering just the first and second copies
of E), and similarly (considering the second and third copies) W ne is also contained in E,
whereas the other two copies need not be. The subshapes Wsw, O, and W ne are disjoint and
cover most of the boxes of E. Consider the subshape consisting of those boxes which are
not in any of these. By the definitions of O and W this shape consists of precisely those
boxes of O and Wne that lie in the southeast border of E⊔W E. In particular, this shape is a
segment of the southeast border of E itself, starting at the first box of SE(O) and ending at
the box in Wne corresponding to the box to the west of where it started. This is the bottom
key ribbon introduced by Yeats [63]. We denote it by K↓(E).

Analogously, the top key ribbon K↑(E) consists of those boxes not contained in any of
the disjoint subshapes W sw, O, or Wne. This is the segment of NW(E) which ends at the
last box of NW(O) and starts at the box of Wsw corresponding to the box of Wne to the east
of where it ends. We also define the key ribbons for W ↑ O ↑ W shapes by the relations
K↓(E

T ) = K↓(E)
T and K↑(E

T ) = K↑(E)
T . (Clearly, these could also be defined explicitly

in a similar way to the W → O → W case.)

Remark 5.3.12. Yeats did not define the key ribbons in terms of W and O but only
by the explicit definitions as segments of NW(E) and SE(E). Our reformulation of the
definition, while straightforward, is our first step in synthesizing Yeats’s approach with
that of McNamara and van Willigenburg.

The two key ribbons are distinct but share many of their properties.

Lemma 5.3.13 (Yeats [63, Lemma 3]). The top and bottom key ribbon have the same size,
number of rows, and number of columns.

Let us write k(E) for the common size of the top and bottom key ribbons and h(E) for
their height.
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(a) W ’s highlighted (b) top key ribbon (c) loose end

Figure 5.10. A W → O → W shape with a loose end ribbon.

Remark 5.3.14. From the construction of either key ribbon we see that k(E) is simply
the “Manhattan distance” (the sum of the vertical and horizontal distances) from a certain
box in Wsw to the corresponding box in Wne. Since everything is connected, it is therefore
also equal to the distance from any box in Wsw to the corresponding box in Wne.

It is clear that the top key ribbon is removable on the left and the bottom key ribbon
is removable on the right. The parameter k(E) will play the role in the edge case that the
size of the ribbon B played in Section 5.2.1. Thus we will be interested in which ribbons of
size k(E) are removable from various shapes D ◦W B. Of course the simplest case is taking
D to be a single box, i.e. looking at which ribbons are removable from E itself. In general
there may be others besides the key ribbons. For W → O → W shapes, Yeats defined a
loose end ribbon to be a ribbon of size k(E) which is either removable on the left and starts
before the top key ribbon, or removable on the right and starts after the top key ribbon. (For
W ↑ O ↑ W shapes we must swap “before” and “after”.) Yeats showed that the presence of
such ribbons is essentially the only thing that can go wrong.

Lemma 5.3.15 (Yeats [63, Lemma 8]). Suppose λ is a partition and E is a W → O → W
or W ↑ O ↑ W shape with no loose end ribbons. Then:

(i) The only ribbon of size k(E) which is removable on the left from λ ◦W E is the copy of
K↑(E) in the copy of E corresponding to the northwesternmost box of λ.

(ii) The only ribbon of size k(E) which is removable on the right from λ∗ ◦W E is the copy
of K↓(E) in the copy of E corresponding to the southeasternmost box of λ∗.

Remark 5.3.16. Of course, taking λ to be a single box, this also implies that there can
be no ribbons of size k(E) removable from E itself other than key ribbons and loose ends.
Indeed, this follows from Remark 5.3.14: a segment of NW(E) that starts in Wsw after
the start of K↑(E) will end in Wne at a box adjacent to the one corresponding to the one
where it started, and thus cannot be removable by a similar argument to the one used to
prove Lemma 5.2.6. On the other hand, there can be no segment of length k(E) starting
in O; it would simply run off the edge. Clearly the same ideas apply to ribbons removable
on the right.

Using Lemma 5.3.15 and cocommutativity, Yeats showed the following result.

Theorem 5.3.17 (Yeats [63, Theorem 13]). Let D be the shape obtained by deleting the
northwest or southeast corner of a rectangle and let E be a W → O → W or W ↑ O ↑ W
shape with no loose end ribbons. Then D ◦W E ∼ D∗ ◦W E.
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Remark 5.3.18. The proof of Theorem 5.3.17 in [63] makes use of some rather compli-
cated combinatorial contortions, but the framework we developed in Section 5.2 allows it
to be summarized surprisingly succinctly: let ρ be a rectangle and b its northwesternmost
box. Observe that deleting the copy of K↑(E) in ρ ◦W E corresponding to b actually
leaves behind (ρ \ b) ◦W E and similarly deleting the K↓(E) from the other corner gives
(ρ \ b)∗ ◦W E. Thus, by Lemma 5.3.15 and the Murnaghan–Nakayama rule,

pk(E) ⇀ [ρ ◦W E] = (−1)h(E)[(ρ \ b)∗ ◦W E]

and
[ρ ◦W E]↼ pk(E) = (−1)h(E)[(ρ \ b) ◦W E]

and the result follows by Proposition 5.2.1(i).

While the hypothesis on D is clearly extremely restrictive, Theorem 5.3.17 nonetheless
implies some equivalences that don’t follow from Theorem 5.3.11. (An example is given in [63,
Section 5].) On the other hand, it is not immediately obvious how to relate Theorem 5.3.17
to Theorem 5.3.9. Note that we have not required properness, but in exchange we have
the no-loose-ends condition. Addressing this discrepancy will be our first task of the next
section.

5.4 The edge case

At last, our preparations are complete and we may begin proving things for the edge case.
Note that using the identity (D ◦W E)T = D∗ ◦WT ET , we can swap between the two
different types of edge shapes easily, so for the combinatorial part of this section we will
restrict attention to W → O → W shapes. As promised, we start by tying up loose ends
and resolving the discrepancy between the hypotheses of Theorem 5.3.17 and Theorem 5.3.9.
We are able to do this in the best way possible: it turns out there is no discrepancy at all.

Theorem 5.4.1. An edge shape is proper if and only if it has no loose end ribbons.

Proof. Suppose E is a W → O → W shape with a loose end ribbon. We will show that
E is not proper. Since properness is preserved by antipodal rotation, we may assume that
E has a loose end ribbon A which is removable on the left. This ribbon starts at some
box a ∈ Wsw. Let a′ be the box in Wne corresponding to a. By Remark 5.3.14, A ends on
the diagonal before the one containing a′, at some box b ∈ O. Note that b cannot be the
northeasternmost box of E (since E is W → O → W ) and cannot have a box to its north
(since A is removable) so it has a box to its west. Since A is removable it must be that a
has no box to its west, and hence also no box to its northwest. Thus a′ does not have a box
of Wne to its west or northwest. But a /∈ K↑(E), so a ∈ W sw; thus it must be that a′ has a
box of O to its northwest and hence also one to its west. The latter is on the same diagonal
as b, and cannot be equal to b as it has a box to its north. Thus b ∈ O, but the box to the
west of b is on the same diagonal as a′ and hence is in W ne, contradicting properness.

For the converse, suppose E is improper. Again, rotating if necessary, we assume O and
W ne contain adjacent boxes. Clearly no box of O can be adjacent to a box of Wne in a
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W → O → W shape, so any box of W ne which is adjacent to a box of O is in SE(O). Let b
be the northeasternmost box of O and c be the box to its east, which is in NW(O)∩ SE(O).
Now, since W is connected, if any box that comes before c in SE(O) has a box of W on the
same diagonal then so does c. On the other hand, any box that comes after c is not adjacent
to anything on O. Since we have assumed there is some adjacency between W ne and O, it
must be the case that c ∈ W ne. Thus c has a box a′ ∈ Wne to its southeast. Note that to
the west of a′ is the box southeast of b, which is in O since b ∈ O. Let a be the box of Wsw

corresponding to a′ and let A the segment of NW(E) from a to b. Since a′ is on the diagonal
after the one containing b, A has size k(E). But a′ has a box of O to its west so a has no
box to its west, and by construction b has no box to its north, so A is removable.

We now begin our quest to prove Theorem 5.3.9. We will adapt the strategy we used to
prove Proposition 5.2.4. To do this we will need to prove analogues for edge shapes of the
various lemmas from Section 5.2.1. We start with an analogue of Lemma 5.2.7. We have
already seen a partial result of this nature in Lemma 5.3.15; with Theorem 5.4.1 in hand
we can even apply it with the desired hypothesis of properness. However, we need a slightly
stronger version.

Lemma 5.4.2. Let D be a skew shape and E be a proper W → O → W shape. The only
ribbons of size k(E) removable on the left (resp. right) from D ◦W E are the copies of K↑(E)
(resp. K↓(E)) coming from boxes of D which are removable on the left (resp. right).

Proof. Any ribbon removable on the left is contained in NW(D ◦W E), so consider what
NW(D ◦W E) looks like: it consists of NW(D) ◦K↑(E) with extra bits at the beginning and
end. Any ribbon of size k(E) that starts within the extra bit at the start must end before
the corresponding key ribbon and hence is contained within one copy of E, and analogously
for ribbons that end within the extra bit at the end. Thus by Theorem 5.4.1 no such
ribbon can be removable. Therefore any ribbon of size k(E) removable from NW(D ◦W E)
is contained in NW(D) ◦K↑(E). But by Lemma 5.2.7 these are exactly the copies of K↑(E)
coming from removable boxes as wanted. The argument for removing ribbons on the right
is analogous.

In the ribbon case, if b is a removable box of D and Bb is the corresponding copy of B in
D ◦B then (D ◦B) \Bb = (D \ b) ◦B. In the WOW case the behaviour is more subtle, but
what we find is that deleting the copy of K↑(E) or K↓(E) corresponding to B will produce
(D \ b) ◦W E plus some manageable extra junk. Indeed we see this already when D is just a
single box: deleting either key ribbon from E produces W ⊔O ⊔W as already established.

Lemma 5.4.3. Let D be a shape and b be a box which is removable on the left (resp. right).
Let E be a proper W → O → W shape, and let S be the shape obtained from D ◦W E by
deleting the copy of K↑(E) (resp. K↓(E)) corresponding to b. Then S is the edge-disjoint
union of:

• A copy of (D \ b) ◦W E.

• A copy of O, if b does not have a box to its southeast (resp. northwest).

• A copy of W , if b does not have a box to its south (resp. north).
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• A copy of W , if b does not have a box to its east (resp. west).

Proof. It is clearly sufficient to prove the version for b removable on the left, as the other
version follows by applying the result to D∗ and E∗.

First suppose b has a box to its southeast i.e. b is the top left corner of a 2 × 2 square.
Then, in the decomposition E = W sw ∪ O ∪Wne ∪ K↑(E), we see that Wne overlaps with
the copy of E corresponding to the box east of b while W sw and O overlap with the copy
corresponding to the box southeast of b. Thus K↑(E) is the only part that does not overlap
any other copy of E, and deleting it gives (D \ b) ◦W E as wanted.

On the other hand, if b has no box to its southeast, then the corresponding copy of E can
overlap only with the copies of E coming from the boxes immediately south and east of b (if
these exist). Thus O overlaps with no other copy of E, whereas W sw and Wne overlap with
the copies coming from the boxes south and east respectively if these exist, and otherwise
with nothing. Thus S is the union of the specified pieces. Since E is proper, deleting K↑(E)
disconnects W sw, O, and Wne, so the union is edge-disjoint as wanted.

To apply Lemma 5.4.2 inductively we also need to know that there are no “unexpected”
ribbons of size k(E) created when we delete a key ribbon. The next lemma shows this is the
case.

Lemma 5.4.4. Let E be a proper W → O → W shape. Then W , W , and O have no
removable ribbons of size divisible by k(E).

Proof. We show there are no removable ribbons of size jk(E) by induction on j. For j = 1,
since K↓(E) is removable on the right from E, its complement W sw ⊔O ⊔Wne is removable
on the left. Thus for any ribbon removable on the left from W , W , or O there is a copy of
that ribbon removable on the left from E. Since K↑(E) cannot be contained in any of these
pieces, any such ribbon of length k(E) would be a loose end.

For j > 1, suppose there is a ribbon C of size jk(E) which is removable on the left. Then
we can write C = C ′ ⊙ C ′′ or C = C ′ · C ′′ where |C ′| = k(E) and |C ′′| = (j − 1)k(E). In
the former case C ′ is removable and in the latter case C ′′ is removable; either way this is a
contradiction.

We can now prove the analogue of Lemma 5.2.8.

Lemma 5.4.5. Let D be a skew shape and E be a proper W → O → W shape. Then:

(1) The only ribbons of size divisible by k(E) removable on the left from D ◦W E are the
ribbons A ◦K↑(E) where A is a ribbon removable on the left from D.

(2) The only ribbons of size divisible by k(E) removable on the right from D ◦W E are the
ribbons A ◦K↓(E) where A is a ribbon removable on the right from D.

Proof. We prove (1); the proof of (2) is analogous. As in the proof of Lemma 5.2.8, suppose
C is a ribbon of size jk(E) removable on the left. Write C = C ′ ⊙ C ′′ or C = C ′ · C ′′ where
|C ′| = k(E) and |C ′′| = (j − 1)k(E). First suppose C = C ′ ⊙ C ′′. Then C ′ is removable
on the left from D ◦W E and C ′′ is removable from (D ◦W E) \ C ′. By Lemma 5.4.2, C ′ is
a copy of K↑(E) coming from a removable box b of D and by Lemma 5.4.3, (D ◦W E) \ C ′
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is an edge-disjoint union of (D \ b) ◦W E with possibly a copy of W , W , and/or O. But
by Lemma 5.4.4, the latter shapes do not have ribbons of size divisible by k(E) that are
removable on the left, so C ′′ must be removable on the left from (D \ b) ◦W E. Inductively,
C ′′ = A′ ◦ K↑(E) for some A′ removable on the left from D \ b and hence C = A ◦ K↑(E)
where A = b⊙ C ′′.

Similarly, if C = C ′ ·C ′′ then C ′′ is removable, so inductively C ′′ = A′ ◦K↑(E) where A
′ is

removable from D. Then C ′ is removable from (D ◦W E)\C ′′ which consists of (D \A′)◦W E
together with some copies of W , W , and O. Again by Lemma 5.4.4 none of the latter can
have ribbons of size k(E), so C ′ is removable from (D\A′)◦W E. Thus C ′ is a copy of K↑(E)
corresponding to a removable box b from D \ A′, and C = A ◦K↑(E) where A = b · A′.

We can use Lemma 5.4.3 and Lemma 5.4.5 to compute the action of certain power sums
on [D ◦W B], similarly to Lemma 5.2.10.

Lemma 5.4.6. Let D be a shape and E be a proper W → O → W shape. For any m,

[D ◦W E]↼ pmk(E) = (−1)mh(E)
∑
A

(−1)htA[W ]row(D)−row(D\A)[W ]col(D)−col(D\A)

× [O]dia(D)−dia(D\A)[(D \ A) ◦W E]

where A ranges over ribbons removable from D on the left, and pmk(E) ⇀ [D ◦W E] is given
by an identical formula with A ranging over ribbons removable on the right instead.

Proof. By (5.12) and the Murnaghan–Nakayama rule (in the form of Theorem 5.1.14),

[D ◦W E]↼ pmk(E) =
∑

Y≤D◦WE

χ(Y,mk(E))[(D ◦W E) \ Y ]

By Corollary 5.1.15, χ(Y,mk(E)) = 0 unless Y is a ribbon of size mk(E). By Lemma 5.4.5,
such a ribbon is of the form X ◦K↑(E) for some ribbon X of size m removable on the left
from D. In this case we have

χ(Y,mk(E)) = (−1)ht(X◦K↑(E)) = (−1)mh(E)+htX = (−1)mh(E)χ(X,m)

and again by the Murnaghan–Nakayama rule, χ(X,m) is zero for all other X ≤ D. Thus
we have (using Lemma 5.2.9)

[D ◦W E]↼ pmk(E) = (−1)mh(E)
∑

X≤D◦WE

χ(X, k(E))[(D ◦W E) \ (X ◦K↑(E))].

Now, note that row(D)− row(D \X) is the number of rows of D completely contained in X,
i.e. the number of boxes of X with no box of D to the east. Similarly, col(D)− col(D \X)
is the number of boxes of X with no box of D to the south and dia(D) − dia(D \ X) the
number with no box of D to the southeast. Thus by Lemma 5.4.3, we have

[(D◦WE)\(X◦K↑(E))] = [W ]row(D)−row(D\X)[W ]col(D)−col(D\X)[O]dia(D)−dia(D\X)[(D\X)◦WE]

as desired. The proof for the left action is analogous.
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While this is in some sense an analogue of Lemma 5.2.10, we must acknowledge that the
statement of Lemma 5.4.6 is quite hideous. Beyond aesthetic concerns, there is the more
serious problem that we cannot trivially generalize the statement from shapes to arbitrary
elements of S, as the right side does not appear to be linear in [D]. To address these
problems, we introduce an operation we call modified composition:

[D]□W E = [W ]|D|−row(D)[W ]|D|−col(D)[O]|D|−dia(D)[D ◦W E] (5.13)

which we extend linearly to S. This operation will absorb the extra fudge factors that
appear on the right-hand side of the formulas in Lemma 5.4.6. Note that (5.13) will be our
definition of modified composition for both W → O → W and W ↑ O ↑ W shapes E. (In
the next section we will introduce a slightly different variation for the corner case.) We can
now restate Lemma 5.4.6 in a far more pleasing way.

Lemma 5.4.7. Let D be a shape and E be a proper W → O → W shape. For any m we
have

pmk(E) ⇀ ([D]□W E) = ((−1)h(E)[W ][W ][O])m((pm ⇀ [D])□W E)

and
([D]□W E)↼ pmk(E) = ((−1)h(E)[W ][W ][O])m(([D]↼ pm)□W E).

Proof. As usual, the proofs of the two are analogous so we only prove the right action. First
suppose E isW → O → W . By Lemma 5.4.4, pmk⇀ [W ] = 0 = [W ]↼pmk, and similarly for
W and O. Since pmk(E) is primitive, by it acts as a derivation by Proposition 2.2.21. Thus

([D]□W E)↼ pmk(E) = [W ]|D|−row(D)[W ]|D|−col(D)[O]|D|−dia(D)([D ◦W E]↼ pmk(E)).

If we expand this using Lemma 5.4.6, the right-hand side becomes

(−1)mh(E)
∑
A

(−1)htA[W ]|D|−row(D\A)[W ]|D|−col(D\A)[O]|D|−dia(D\A)[(D \ A) ◦W E]

= (−1)mh(E)
∑
A

(−1)htA[W ]|D|−|D\A|[W ]|D|−|D\A|[O]|D|−|D\A|([D \ A]□W E)

= ((−1)h(E)[W ][W ][O])m
∑
A

(−1)htA([D \ A]□W E)

= ((−1)h(E)[W ][W ][O])m(([D]↼ pm)□W E)

as wanted.

With this formulation in hand we can prove the analogue of Proposition 5.2.11.

Theorem 5.4.8. Let f be a symmetric function which is homogeneous of degree m and E
be a proper W → O → W shape. For any h ∈ S,

f [pk(E)]⇀ (h□W E) = ((−1)h(E)[W ][W ][O])m((f ⇀ h)□W E)

and
(h□W E)↼ f [pk(E)] = ((−1)h(E)[W ][W ][O])m((h↼ f)□W E).
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Proof. By linearity it is sufficient to prove it for f = pν for ν ⊢ m and h = [D] for some
shape D. This follows by an easy induction from Lemma 5.4.7, again using the fact that
prk(E) acts as a derivation which annihilates [W ], [W ], and [O].

We will also need a W ↑ O ↑ W version. It turns out that in this case the two actions
are swapped and twisted by the fundamental involution.

Theorem 5.4.9. Let f be a symmetric function which is homogeneous of degree m and E
be a proper W ↑ O ↑ W shape. For any h ∈ S,

f [pk(E)]⇀ (h□W E) = ((−1)h(E)[W ][W ][O])m((h↼ ω(f))□W E)

and
(h□W E)↼ f [pk(E)] = ((−1)h(E)[W ][W ][O])m((ω(f)⇀h)□W E).

Proof. Note that ET is a proper W T → OT → W T shape with k(ET ) = k(E) and h(ET ) =
k(E)−h(E)−1. Moreover, by Lemma 5.3.4(iii) and the fact that antipodal rotation preserves
the number of rows, columns, and diagonals of a shape, we have ([D]□WE)

T = ([D∗]□WTET )
and by linearity this also holds for an arbitrary element of S.

We make use of the identity ω(f [pk(E)]) = (−1)m(k(E)−1)ω(f)[pk(E)]. (This is due to
Alexandersson and Uhlin [5, Lemma 2.13] but can easily be seen by checking it on the power
sum basis.) Thus by Proposition 5.2.1(ii) we have

(h□W E)↼ f [pk(E)] = (h∗ □WT ET )T ↼ f [pk(E)]

=
(
(h∗ □WT ET )↼ω(f [pk(E)])

)T
= (−1)m(k(E)−1)

(
(h∗ □WT ET )↼ω(f)[pk(E)]

)T
=
(
(−1)k(E)−h(ET )−1

)m(
([W T ][W

T
][O

T
])m((h∗ ↼ω(f))□WT ET )

)T
= ((−1)h(E)[W ][W ][O])m((h∗ ↼ω(f))∗ □W E)

= ((−1)h(E)[W ][W ][O])m((ω(f)⇀h)□W E).

The proof for the left action is analogous.

We can now prove our main result, the analogue of Proposition 5.2.4.

Theorem 5.4.10. Let h, h′ ∈ S be arbitrary and E be a properW → O → W orW ↑ O ↑ W
shape. If h ∼ h′ then h□W E ∼ h′ □W E.

Proof. By Theorem 5.2.2, it is sufficient to prove (f ⇀ h) □W E ∼ (h ↼ f) □W E for any
f ∈ Sym and h ∈ S. But this is immediate from Theorem 5.4.9 and Theorem 5.4.8.

Corollary 5.4.11. Let D and D′ be skew shapes and E be a proper W → O → W or
W ↑ O ↑ W shape. If D ∼ D′ then D ◦W E ∼ D′ ◦W E.

Proof. By Theorem 5.4.10, if D ∼ D′ then [D]□W E ∼ [D′]□W E. Since equivalent shapes
have the same number of rows, columns, and diagonals it follows that sD◦WE and sD′◦WE are
equal up to (the same) powers of sW , sW , and sO. Since multiplication in Sym is cancellative,
this implies that sD◦WE = sD′◦WE.
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Combining this with Theorem 5.3.11 completes the proof of Theorem 5.3.9.

Remark 5.4.12. Note that Theorem 5.4.10 does not hold if □W is replaced by ◦W , or in
other words Corollary 5.4.11 does not hold for arbitrary elements of S. This is because
while equivalent shapes must have the same number of rows, columns, and diagonals, it
is not the case these must agree for all terms in equivalent sums of shapes. For instance,
there is an equivalence

[(2, 1)] ∼ [(2)][(1)]− [(3)].

Theorem 5.4.10 thus gives

[W ][W ][(2, 1) ◦W E] ∼ [W ][E ⊔W E][E]− [W ]2[E ⊔W E ⊔W E]

and hence
[W ][(2, 1) ◦W E] ∼ [E ⊔W E][E]− [W ][E ⊔W E ⊔W E]

but we cannot eliminate these remaining factors of [W ] and [W ].

5.5 The corner case

As previously remarked, while proving the edge case is sufficient to complete the proof of
Theorem 5.3.9, we are also able to give a novel proof for the corner case using the same
method. To do this we need to generalize the ideas of the previous section. Our first step, as
in the edge case, is to identify some special ribbons within E. Let E be aW → O ↑ W shape;
we will be able to use Lemma 5.3.4(ii) to reduce to this case. Recall from Remark 5.3.7 that
we have W ≤ W in this case. Let KW = W \W . There are two copies (KW )sw and (KW )ne
within E. Analogously, let KO = O \ O = SE(O). Then within E, the special ribbons
appear in the form (KW )sw ⊙KO · (KW )ne. The two ribbons KW ⊙KO and KO ·KW will be
our analogues of the key ribbons; however, we will also find that the ribbons KW ·KO and
KO ⊙ KW make appearances. We will call both KW · KO and KW ⊙ KO top key ribbons,
and both KO · KW and KO ⊙ KW bottom key ribbons. All of these have the same size
k(E) = |KW |+ |KO|. (Note that, as in the edge case, k(E) is the Manhattan distance from
any box of Wsw to the corresponding box in Wne.)

Unlike in the edge case, the two key ribbons that appear in E in height by 1 and both
are removable on the right rather than one on each side. This will clearly complicate any
attempt to find an analogue of Lemma 5.4.7, but we press on nonetheless. We first show
that, like in the edge case, proper corner shapes have “no loose ends”.

Remark 5.5.1. Consider the shape E ⊔W E and the middle copy Wmid of W . Then, by
its very definition, Wmid consists of those boxes of Wmid with noting to the southeast;
in other words, (KW )mid is exactly the portion of SE(E ⊔W E) that comes from Wmid.
Moreover, if we add another copy of W translated one unit southeast to form E ·W E, the
“extra” boxes that are added form another copy of KW one unit southeast of (KW )mid.

Lemma 5.5.2. Let E be any W → O ↑ W shape. There are no ribbons of size k(E)
removable on the left from E.
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Figure 5.11. The special ribbons in the W → O ↑ W shape E2 from Figure 5.5.

Proof. Since the shape is W → O ↑ W , on any diagonal containing a box of either copy of
W , the northwesternmost box is in that copy of W . Now, suppose A is a ribbon of size k(E)
starting at a box a ∈ Wsw and continuing along the northwest border. Let a′ be the box
corresponding to a in Wne. Then A ends on the diagonal immediately before the diagonal
containing a′; since A runs along the northwest border it ends at a box b to the south or west
of a′. In order for the ribbon to be removable, b must be to the west of a′, but there must be
no box to the west of a. Thus b ∈ O, but this contradicts the shape being W → O ↑ W .

Lemma 5.5.3. Let E be a proper W → O ↑ W shape. The only ribbons of size k(E)
removable on the right from E are KWsw ⊙KO and KO ·KWne.

Proof. Suppose A is such a ribbon. Since k(E) > |KO| = dia(O), A cannot be contained
entirely in O, so it intersects (at least) one copy of W . Replacing E with ET if necessary,
we may assume without loss of generality that A starts in Wsw, say at some box a. Now the
two suggested ribbons are the only ones of this size removable from KW ⊙KO ·KW , so we
must have a ∈ W sw. Let a

′ be the box corresponding to a in W ne. Then A must end on the
diagonal before the one containing a′, at some box b ∈ O. Now, a is the start of a ribbon
removable on the right, so a cannot have a box to its south, and hence also cannot have one
to the southeast. Thus a′ does not have a box of Wne to its south or southeast. But since
a′ ∈ W ne and a does not have a box of O to its southeast, it must be that a′ has a box of
O to its southeast and hence also one to its south. The latter is on the same diagonal as b,
so is either in O or is equal to b. By properness, it must be the latter, so b is immediately
south of a′, but since a′ has a box to its southeast this contradicts the removability of A.

Next, as in the edge case, we wish to look at ribbons of size divisible by k(E) that appear
in compositions D ◦W E, as well as what remains when we remove them. First, we will look
at the structure of the northwest and southeast border ribbons of these shapes. In the edge
case, we essentially had NW(D) ◦ K↑(E) and SE(D) ◦ K↓(E), plus some extra bits at the
beginning and the end. In the corner case this is subtler: the two ribbons are quite different
and neither one is exactly built by ribbon composition.

Lemma 5.5.4. Suppose D is a connected shape and E is a W → O ↑ W shape. Then

NW(D ◦W E) ≈ NW(E) ⊔NW(W ) · · · ⊔NW(W ) NW(E)︸ ︷︷ ︸
dia(D) copies

.

Proof. Immediate from the definition.

The southeast ribbon is far more complicated.
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Lemma 5.5.5. Suppose D is a connected shape and E is a W → O ↑ W shape. Let
SE(E) = A⊙KWsw ⊙KO ·KWne ·B. Then

SE(D ◦W E) ≈ A⊙KW △0 KO ▲1 KW △1 KO ▲2 · · · △d−1 KO ▲d KW ·B

where d = dia(D) and

• △i is ⊙ if i = 0 or if the ith and (i + 1)st boxes of SE(D) are horizontally adjacent, ·
if they are vertically adjacent

• ▲i is · if i = d or if the ith and (i+ 1)st boxes of NW(D) are horizontally adjacent, ⊙
if they are vertically adjacent.

Proof. Let b1, . . . , bd be the boxes of SE(D) in order. As usual write Eb for the copy of E in
D ◦W E corresponding to a box b ∈ D, and similarly for any subshape of E. The ribbons
(KO)bi clearly each form a segment of SE(D). The segment preceding (KO)b1 comes entirely
from Eb1 so looks like A⊙KW and is attached horizontally as in E. Similarly, the segment
following (KO)bd comes entirely from Ebd so looks like KW · B and is attached vertically.
Thus what remains to show is that, for 1 ≤ i ≤ d − 1, the segment in between (KO)bi and
(KO)bi+1

is always a copy of KW and that it is attached to the two copies of KO in the
claimed manner. There are four cases to consider:

• If the ith steps of the northwest and southeast border walks are both horizontal, then
bi and bi+1 are horizontally adjacent and are in the same ribbon of the northwest
decomposition of D. Thus Ebi and Ebi+1

appear in the form Ebi ⊔W Ebi+1
, and hence by

Remark 5.5.1 they are joined by a copy of KW , namely the one from the overlapping
copy ofW . This corresponds to (KW )ne in Ebi and to (KW )sw in Ebi+1

, so it is attached
vertically to (KO)bi and horizontally to (KO)bi+1

. Thus this segment looks like KO ·
KW ⊙KO.

• If the ith steps of the northwest and southeast border walks are both vertical, then bi
and bi+1 are vertically adjacent and are in the same ribbon of the northwest decompo-
sition of D. Thus Ei and Ei+1 appear in the form Ebi ·W Ebi+1

. Again by Remark 5.5.1,
they are joined by a copy of KW , this time the one consisting of the extra boxes.
Since this copy is one unit southeast of the copy in the overlapping W , it is instead
attached horizontally to (KO)bi and vertically to (KO)bi+1

. Thus this segment looks
like KO ⊙KW ·KO.

• If the ith step of the northwest border walk is horizontal but the ith step of the
southeast border walk is vertical, then bi and bi+1 are vertically adjacent but are not in
the same ribbon of the northwest decomposition. Clearly this implies that bi /∈ NW(D),
so let c be the box immediately northwest of bi. Then c is on the same diagonal as the
ith box of NW(D) and bi+1 is immediately to its east, so c precedes bi+1 in a ribbon
of the northwest decomposition. Thus Ec and Ebi+1

appear in the form Ec ⊔W Ebi+1

and Ebi appears one unit southwest of Ec. Since there is no box to the east of bi,
the copy of KW in (Wne)bi is part of the southeast border and is attached to (KO)bi
the same way as in E, i.e. vertically. On the other hand, the copy of KW in (Wne)c
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is attached horizontally to (KO)bi+1
. Since Ebi is one unit southeast of Ec, the copy

of KW in (Wne)bi is instead attached vertically to (KO)bi+1
, so this segment looks like

KO ·KW ·KO.

• If the ith step of the northwest border walk is horizontal but the ith step of the
southeast border walk is vertical, then bi and bi+1 are horizontally adjacent but are
not in the same ribbon of the northwest decomposition. Clearly this implies that
bi+1 /∈ NW(D), so let c be the box immediately northwest of bi+1. Then c is on the
same diagonal as the (i+ 1)st box of NW(D) and bi is immediately to its south, so bi
precedes c in the a ribbon of the northwest decomposition. Thus Ebi and Ec appear in
the form Ebi ·W Ec and Ebi+1

appears one unit southwest of Ec. Since there is no box
to the south of bi+1, the copy of KW in (Wsw)bi+1

is part of the southeast border and is
attached to (KO)bi+1

the same way as in E, i.e. horizontally. On the other hand, the
copy of KW in (Wne)c is attached vertically to (KO)bi . Since Ebi+1

is one unit southeast
of Ec, the copy of KW in (Wne)bi is instead attached horizontally to (KO)bi+1

, so this
segment looks like KO ⊙KW ⊙KO.

We see that all four cases match the formula.

We are now nearly ready to establish the analogue of Lemma 5.4.2. We first introduce
some terminology that will make life easier when applying Lemma 5.5.5. Let us say that
a box b ∈ D is eastbound (resp. northbound) if it has a box to its east (resp. north) in
the same ribbon of the northwest decomposition. Let us also say that the final box of each
ribbon of the northwest decomposition is eastbound. Note that if a box is northbound or
eastbound then so are all boxes on the same diagonal. (For boxes that are not the final
box of their ribbon this basically follows immediately from the definition of the northwest
decomposition, whereas for those that are it follows from the fact that every ribbon of the
northwest decomposition ends on the eastern border.)

Dually, we will say that a box is westbound (resp. southbound) if it has a box to its west
(resp. south) in same ribbon of the southeast decomposition, and we will also consider the
first box in each ribbon of the southeast decomposition to be westbound. This terminology
implies that a box is westbound (resp. southbound) in D if and only if it is eastbound (resp.
northbound) in D∗.

Remark 5.5.6. The concepts of northbound, eastbound, southbound, and westbound
boxes originate in the theory of outside decompositions introduced by Hamel and Goulden
[30]. The Hamel–Goulden results can be stated in terms of one of the two pairs of notions
or the other: Hamel and Golden originally used the terms “approached from below” and
“approached from the left” for what we call southbound and westbound boxes, whereas
when McNamara and van Willigenburg apply their work in [43] they instead use the other
pair, saying that boxes “go north” or “go east” matching our northbound/eastbound
terminology. For us it is useful to have names for all four concepts despite the slight
terminological awkwardness it leads to.

Lemma 5.5.7. Let D be any shape and E be a proper W → O ↑ W shape. Then:
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(i) For each box b removable from D on the right, there is a bottom key ribbon removable
on the right from D ◦W E. This key ribbon is congruent to KO ·KW if b is eastbound
and KO ⊙ KW if b is northbound, where the copy of KO is the one in the copy of E
corresponding to b.

(ii) For each box b removable from D on the left, there is a top key ribbon removable on
the right from D ◦W E. This key ribbon is congruent to KW · KO if b is southbound
and KW ⊙ KO if b is westbound, where the copy of KO is the one in the copy of E
corresponding to the box of SE(D) on the same diagonal as b.

(iii) There are no other ribbons of size k(E) removable from D ◦W E. (In particular, there
are none at all removable on the left.)

Proof. Clearly it is sufficient to prove these in the case that D is connected; the result
follows for disconnected shapes by applying it to each component separately. Thus we may
use Lemma 5.5.4 and Lemma 5.5.5.

(i) Suppose b is the ith box of SE(D). Then since b is removable on the right, the (i−1)st
box of SE(D) is to its west (or i = 1) and the (i+ 1)st is to its north (or i = dia(D)).
Thus, by Lemma 5.5.5, KO▲iKW is removable on the right, where ▲i is · if i = dia(D)
or if the ith and (i + 1)st boxes of NW(D) are horizontally adjacent—in other words
if b is eastbound—and ⊙ otherwise.

(ii) Suppose b is the ith box of NW(D). Then since b is removable on the right, the (i−1)st
box of SE(D) is to its south (or i = 1) and the (i+ 1)st is to its east (or i = dia(D)).
Thus, by Lemma 5.5.5, KW △i−1KO is removable on the right, where △i−1 is · if i = 1
or if the ith and (i− 1)st boxes of SE(D) are horizontally adjacent—in other words if
b is westbound—and ⊙ otherwise.

(iii) By Lemma 5.5.4, a segment of NW(D ◦W E) of size k(E) is contained within a single
copy of E, so cannot be removable by Lemma 5.5.2. Thus there are no ribbons of size
k(E) removable on the left.

By Lemma 5.5.5, the ribbons KW △iKO or KO ▲iKW are not removable when the ith
box of the relevant border ribbon of D is not removable. Any segment of SE(D ◦W E)
of size k(E) that starts strictly within a copy of KO cannot be removable, as it would
end at the box in the next copy of KO corresponding to the box preceding it, and
similarly for a ribbon that starts strictly within one of the copies of KW . This only
leaves ribbons that are entirely contained within the first or last copy of E, but these
are not removable by Lemma 5.5.3.

Next we establish the analogue of Lemma 5.4.3.

Lemma 5.5.8. Let D be a shape and b be a box which is removable on the left (resp. right)
from D. Let E be a proper W → O ↑ W shape, and let S be the shape obtained from D ◦W E
by deleting the key ribbon corresponding to b via Lemma 5.5.7. Then S is the edge-disjoint
union of:

• A copy of (D \ b) ◦W E.
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• A copy of O, if b does not have a box to its southeast (resp. northwest).

• A copy of W , if b does not have a box to its south (resp. north).

• A copy of W , if b does not have a box to its east (resp. west).

Proof. First suppose b is removable on the right. Deleting b does not change the northwest
decomposition of D other than by removing b from its ribbon (which may split it into two
ribbons) so (D \ b)◦W E just looks like D ◦W E but without including Eb in the construction.
Now, the key ribbon consists of the copy of KO in Eb followed by a copy of KW . Since b has
no box to its southeast, this KO does not overlap with anything. As for the KW there are
two possibilities:

• If b is northbound, it must have a box bn to the north. In this case the relevant copy of
KW the extra KW that comes from the fact that the corresponding copies of E appear
as Eb ·W Ebn . This clearly does not overlap with any other part of the shape.

• If b is eastbound, the relevant KW is the copy of (KW )ne in Eb. This cannot overlap
with the copy of E coming from a box to the north on a different ribbon, and b cannot
have a box to the west, so again this copy of KW does not overlap with any other part
of the shape.

Thus deleting the key ribbon leaves all the boxes of the subshape (D \ b) ◦W E intact. It
remains to understand what else is left behind. Note that since b is removable on the right,
there cannot be a box to the south of b, so there cannot be any extra boxes coming from
the ·W operation in the southwestern part of the shape. On the other hand, any extra boxes
coming from the ·W operation in the northeastern part of the shape are part of the key
ribbon as we have already touched on. Thus any other remaining boxes must actually come
from Eb. Note KO is always part of the key ribbon so we must only divine the fates of O
and the two copies of W . We may observe that:

• If b has a box bnw to its northwest, then O in Eb completely overlaps with Ebnw (and
hence with (D \ b) ◦W E). If b does not have a box to the northwest then O in Eb

cannot overlap with anything so appears in S disjointly from (D \ b) ◦W E.

• If b is northbound, then it has a box bn to its north and Wne in Eb completely overlaps
with Ebn .

• If b is eastbound then (KW )ne is part of the key ribbon so does not appear in S. If b
has a box bn to its north then W ne in Eb completely overlaps with Ebn while if b does
not have a box to its north then W ne does not overlap with anything and appears in
S disjointly from (D \ b) ◦W E.

• If b has an eastbound box bw to its west then Wsw in Eb overlaps completely with Ebw .

• If b has a northbound box bw to its west then b also has a box bnw to its northwest.
Then W sw in Eb overlaps completely with Enw while (KW )sw overlaps with the extra
KW coming from Ew ·W Enw.
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• If b has no box to its west then Wsw in Eb does not overlap with anything and so
appears in S disjointly from (D \ b) ◦W E.

Thus the shape does indeed consist of the disjoint pieces listed in the statement. The union
is edge-disjoint by properness. The result for boxes removable on the left follows from
Lemma 5.3.4(iii), by applying the result for boxes removable on the right to D∗ ◦WT ET and
taking the transpose. (Note that here we are really harnessing the nontriviality of this result
for corner shapes to save work!)

We also need an analogue of Lemma 5.4.4. In fact, we can show something far stronger.

Lemma 5.5.9. If E is a W → O ↑ W shape then k(E) > max(dia(W ), dia(O)). In
particular, none of W , W , O, or O can contain any ribbon of size k(E) or greater, removable
or otherwise.

Proof. By construction, k(E) > |KO| = dia(O). For W , consider any ribbon A in E of size
k(E) starting at some box a ∈ Wsw. Then A ends one diagonal before the one containing
the box of Wne corresponding to a. Since there must be a diagonal strictly between the two
copies of W , it follows that A cannot end in Wsw. Since W ⊆ W and O ⊆ O the result
follows for them as well.

Before we can state the analogue of Lemma 5.4.5, we will need a small result relating the
left and right aspects of Lemma 5.5.7. Denote by ξ(D) the number of northbound boxes of
D. Clearly ξ(D∗) is the number of southbound boxes.

Lemma 5.5.10. For any shape D, we have ξ(D) = ξ(D∗).

Proof. Within a given ribbon of the northwest decomposition, the northbound boxes are
precisely the last box of each row other than the top row. Thus

ξ(D) =
∑

A∈NW(D)

htA

and
ξ(D∗) =

∑
A∈SE(D)

htA.

Now we show by induction that these are equal. It is sufficient to show this in the case
of connected shapes (since both clearly sum over components) so NW(D) and SE(D) are
ribbons. Thus we can write

ξ(D) = htNW(D) + ξ(D \ NW(D))

and
ξ(D∗) = ht SE(D) + ξ((D \ SE(D))∗).

But note that NW(D) and SE(D) are ribbons which start and end at the same boxes, so
they have the same height. On the other hand D \NW(D) ≈ D \ SE(D), so inductively we
may assume ξ(D \ NW(D)) = ξ((D \ SE(D))∗) and the result follows.
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With this new statistic in hand we can state the result. As expected, the ribbons of
size divisible by k(E) removable from D ◦W E are determined by ribbons removable from
D. However, the correspondence is once again not exactly ribbon composition. As a con-
sequence, the heights of the corresponding ribbons—which we must understand in order to
relate this to the action of power sums—are more subtle in this case but can be expressed
using the ξ statistic. For convenience of notation let us write h(E) = htKW + htKO + 1;
this is of course the height of the key ribbons KW ⊙KO and KO ⊙KW , but the other two
types have height h(E)− 1 instead.

Lemma 5.5.11. Let D be a shape and E a proper W → O ↑ W shape. Then:

(i) For each ribbon A removable from D on the right, there is a ribbon Ã of size |A|k(E)
removable on the right from D ◦W E, consisting of the union of the key ribbons corre-
sponding to the boxes of A by Lemma 5.5.7(i). Moreover,

ht Ã = |A|h(E) + htA− ξ(D) + ξ(D \ A).

(ii) For each ribbon A removable from D on the left, there is a ribbon Ã of size |A|k(E)
removable on the right from D ◦W E, consisting of the union of the key ribbons corre-
sponding to the boxes of A by Lemma 5.5.7(ii). Moreover,

ht Ã = |A|h(E)− htA+ ξ(D)− ξ(D \ A)− 1.

(iii) There are no other ribbons of size divisible by k(E) removable from D ◦W E. (In
particular, there are none at all removable on the left.)

Proof. (i) It is clear from Lemma 5.5.7 that the described ribbon is removable. Suppose
A consists of boxes bp, . . . , bq where b1, . . . , bdia(D) are the boxes of SE(D). Then in the
notation of Lemma 5.5.5,

Ã ≈ KO ▲p KW △p · · · △q−1 KO ▲q KW .

Here ▲i is · if bi is eastbound and ⊙ if bi is northbound (in D), while △i is ⊙ if boxes
bi and bi+1 are horizontally adjacent and · if bi and bi+1 are vertically adjacent. By
Lemma 5.2.9, the height of Ã is |A|(htKO + htKW ) plus the number of · operations
that appear. The number of i such that bi and bi+1 are vertically adjacent is htA
(see the proof of Lemma 5.2.9). The number of boxes of A which are northbound in
D is ξ(D) − ξ(D \ A) as deleting boxes on the right does not change whether other
boxes are northbound or eastbound. Thus the number of boxes which are eastbound
is |A| − ξ(D) + ξ(D \ A). Thus

ht Ã = |A|(htKO + htKW ) + htA+ |A| − ξ(D) + ξ(D \ A)
= |A|(htKO + htKW + 1) + htA− ξ(D) + ξ(D \ A)
= |A|h(E) + htA− ξ(D) + ξ(D \ A).
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(ii) Again it is clear that the ribbon is removable. Suppose A consists of b′p, . . . , b
′
q where

b′1, . . . , b
′
dia(D) are the boxes of NW(D) in order. In this case we have

Ã ≈ KW △p−1 KO ▲p · · · ▲q−1 KW △q−1 KO

where △i−1 is ⊙ if b′i is westbound and · if b′i is southbound (in D), while ▲i is · if b′i
and b′i+1 are horizontally adjacent and ⊙ if they are vertically adjacent. The number of
i for which b′i and b

′
i+1 are vertically adjacent is htA, so the number for which they are

horizontally adjacent is |A|−1−htA. The number of boxes of A which are northbound
in D is ξ(D)− ξ(D \A) since deleting boxes on the left does not change whether other
boxes are westbound or southbound. Thus

ht Ã = |A|(htKW + htKO) + |A| − 1− htA+ ξ(D)− ξ(D \ A)
= |A|(htKW + htKO + 1)− htA+ ξ(D)− ξ(D \ A)− 1

= |A|h(E)− htA+ ξ(D)− ξ(D \ A)− 1.

(iii) Follows inductively from Lemma 5.5.7(iii) and Lemma 5.5.9 analogously to the proof
of Lemma 5.4.5.

It is now time to relate the combinatorics we have worked out to the actions of symmetric
functions on shapes. Rather than first prove an ugly result as we did in the edge case
with Lemma 5.4.6, we will skip ahead to defining the appropriate variation of modified
composition. Up to a sign, this will be the same as in the edge case:

[D]□W E = (−1)ξ(D)[W ]|D|−row(D)[W ]|D|−col(D)[O]|D|−dia(D)[D ◦W E] (5.14)

and we again extend this linearly to S. (Note that unlike the edge case, the presence of this
sign factor makes it really matter that we are defining this as an operation on the shape
Hopf algebra rather than simply on shapes!) We are now ready to state the analogue of
Lemma 5.4.7.

Lemma 5.5.12. Let D be a shape and E be a proper W → O ↑ W shape. For any m we
have

pmk(E) ⇀ ([D]□W E) = ((−1)h(E)[W ][W ][O])m((pm ⇀ [D]− [D]↼ pm)□W E)

and
([D]□W E)↼ pmk(E) = 0.

Proof. Since pmk(E) acts as a derivation (by Proposition 2.2.21) and annihilates [W ], [W ],
and [O] (by Lemma 5.5.9) we have

pmk(E) ⇀ ([D]□W E) = (−1)ξ(D)[W ]|D|−row(D)[W ]|D|−col(D)[O]|D|−dia(D)(pmk(E) ⇀ [D ◦W E])

and similarly for the right action. In the case of the right action this immediately gives that
([D] □W E)↼ pmk(E) = 0 since D ◦W E has no ribbons of size divisible by k(E) removable
on the left. On the other hand,

pmk(E) ⇀ ([D] ◦W E) =
∑
Ã

(−1)ht Ã[(D ◦W E) \ Ã]
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summing over ribbons Ã of sizemk(E) removable on the right fromD◦WE. By Lemma 5.5.11
these are in bijection to ribbons A of size m removable on the left or right from D. By
Lemma 5.5.8, we have

[(D ◦W E) \ Ã] = [W ]row(D)−row(D\A)[W ]col(D)−col(D\A)[O]dia(D)−dia(D\A)[(D \ A) ◦W E]

(where the exponents come from counting boxes as in the proof of Lemma 5.4.6). Thus the
overall contribution of A to pmk(E) ⇀ ([D]□W E) is

(−1)ξ(D)+ht Ã[W ]|D|−row(D)[W ]|D|−col(D)[O]|D|−dia(D)[(D ◦W E) \ Ã]

= (−1)ξ(D)+ht Ã[W ]|D|−row(D\A)[W ]|D|−col(D\A)[O]|D|−dia(D\A)[(D \ A) ◦W E]

= (−1)ξ(D)−ξ(D\A)+ht Ã([W ][W ][O])m([D \ A]□W E).

Using the formulas for ht Ã from Lemma 5.5.11, this becomes

±(−1)mh(E)+htA([W ][W ][O])m([D \ A]□W E)

where ± is a plus for A removable on the right and a minus for A removable on the left.
Thus the sum over A removable on the right gives ((−1)h(E)[W ][W ][O])m(pm ⇀ [D]) □W E
and the sum over A removable on the left gives −((−1)h(E)[W ][W ][O])m([D]↼ pm) □W E.
The result follows.

Unlike the edge case, we cannot extrapolate to a version of Theorem 5.4.8 here. Nonethe-
less, this will be enough to prove the main result. In particular, note that since the left sides of
the two formulas are equivalent, looking at the right sides gives (pm⇀[D]−[D]↼pm)□WE ∼
0, i.e. (pm ⇀ [D]) □W E ∼ ([D]↼ pm) □W E. We will also need the W ↑ O → W version.
When E is W ↑ O → W let us define k(E) = k(E∗) and h(E) = h(E∗).

Lemma 5.5.13. Let D be a shape and E be a proper W ↑ O → W shape. For any m we
have

pmk(E) ⇀ ([D]□W E) = 0

and

([D]□W E)↼ pmk(E) = ((−1)h(E)[W ][W ][O])m(([D]↼ pm − pm ⇀ [D])□W E).

Proof. Note that E∗ is a properW ∗ → O∗ ↑ W ∗ shape. By Lemma 5.3.4(ii) and Lemma 5.5.10,
along with the fact that antipodal rotation preserves the numbers of rows, columns, and di-
agonals we have ([D]□W E)∗ = [D∗]□W ∗ E∗. Thus

pmk(E) ⇀ ([D]□W E) = pmk(E) ⇀ ([D∗]□W ∗ E∗)∗ by Proposition 5.2.1(iii)

= (([D∗]□W ∗ E∗)↼ pmk(E))
∗

= 0 by Lemma 5.5.12

and similarly

([D]□W E)↼ pmk(E) = ([D∗]□W ∗ E∗)∗ ↼ pmk(E)
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= (pmk(E) ⇀ ([D∗]□W ∗ E∗))∗

=
(
((−1)h(E)[W ∗][W

∗
][O

∗
])m((pm ⇀ [D∗]− [D∗]↼ pm)□W ∗ E∗)

)∗
= ((−1)h(E)[W ][W ][O])m((pm ⇀ [D∗]− [D∗]↼ pm)

∗ □W E)

= ((−1)h(E)[W ][W ][O])m(([D]↼ pm − pm ⇀ [D])□W E).

We now arrive at the main result, the corner analogue of Theorem 5.4.10.

Theorem 5.5.14. Let h, h′ ∈ S be arbitrary and E be a properW → O ↑ W orW ↑ O → W
shape. If h ∼ h′ then h□W E ∼ h′ □W E.

Proof. By Theorem 5.2.2 it is sufficient to prove (f ⇀ h) □W E ∼ (h ↼ f) □W E for all
f ∈ Sym and h ∈ S. By linearity it is sufficient to prove this when f = pν for some partition
ν. It follows from Lemma 5.5.12 and Lemma 5.5.13 that (pm⇀h)□W E ∼ (h↼pm)□W E.
We prove it for general partitions ν by induction on the length of ν. Let ν ′ = (ν2, . . . , νℓ(ν))
and suppose we have already established that (pν′⇀h)□W E ∼ (h↼pν′)□W E for all h ∈ S.
Then for any h ∈ S we have

pν ⇀h = pν1 ⇀ (pν′ ⇀h)

∼ pν′ ⇀h↼ pν1
∼ (h↼ pν1)↼ pν′

= h↼ pν

as desired.

This implies the corner case of Theorem 5.3.9, thus completing our proof.

5.6 Algebraic composition

Our final task is to relate our work to McNamara and van Willigenburg’s original approach to
their conjecture. Firstly, let us observe that the following result is an immediate consequence
of of Theorem 5.4.10 and Theorem 5.5.14.

Theorem 5.6.1. Let E be a proper WOW shape. There exists a unique algebra morphism
Sym → Sym such that sD 7→ schur([D]□W E) for all skew shapes D.

We will denote this map by f 7→ f□W sE. On the other hand, in [43], McNamara and van
Willigenburg consider a certain nonlinear map Sym → Sym which they denote f 7→ f ◦W sE
and which plays a central role in their approach to the skew equivalence problem. The
purpose of this section is to show that these operations are essentially equivalent.

First we give the definition of their operation. Given a symmetric function f , we write it
as a polynomial in the complete symmetric functions. We then minimally homogenize this
polynomial by adding “h0” factors to each term to match the maximum number of factors
that appear in any term. (This is the nonlinear part.) Finally, we map hn 7→ s(n)◦WE for
n > 0 and h0 7→ sW .11 Their main result (rewritten in our notation and terminology) is the
following.

11We note that while the latter is consistent with the convention ∅◦W E = W , this construction still sends
s∅ = 1 to 1, which is not. This is the source of the error mentioned in Remark 5.3.3.
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Theorem 5.6.2 (McNamara–van Willigenburg [43, Theorem 3.28]). Let D be a shape and
E a be a proper WOW shape satisfying Hypothesis V. Then

sD ◦W sE = ±s|D|−col(D)

W
s
|D|−dia(D)

O
sD◦WE

where the sign is a plus in the edge case and depends only on D in the corner case.

It was using Theorem 5.6.2 that McNamara and van Willigenburg proved Theorem 5.3.11,
and they conjectured [43, Conjecture 3.26] that Hypothesis V can be removed, implying
Theorem 5.3.9. Though we have already proved the latter by other means, it turns out that
we can also prove this conjecture. Indeed, it follows easily from Theorem 5.6.1. First, we
show how the two operations are related in general.

Proposition 5.6.3. Let f be a symmetric function of degree n and let r be the maximum
number of factors that appears in any term of the expansion of f in complete symmetric
functions. Then for any proper WOW shape E,

f □W sE = sn−r
W (f ◦W sE).

Proof. Note that

hn □W sE = schur((n)□W sE) = sn−1
W s(n)◦WE = sn−1

W (hn ◦W sE).

Thus, since both operations are multiplicative on complete symmetric functions, if we write

f =
∑
λ

aλhλ

then
f □W sE =

∑
λ

aλs
n−ℓ(λ)
W (hλ ◦W sE)

whereas by definition

f ◦W sE =
∑
λ

aλs
r−ℓ(λ)
W (hλ ◦W sE).

The result follows.

Note that it follows from the Jacobi–Trudi formula [56, Theorem 7.16.1] that the max-
imum number of factors that appear in a term of the h-expansion of sD is row(D). Thus
comparing Proposition 5.6.3 with (5.13) and (5.14) gives the following result.

Theorem 5.6.4. Let D be a shape and E be a proper WOW shape. Then

sD ◦W sE = ±s|D|−col(D)

W
s
|D|−dia(D)

O
sD◦WE

where the sign is a plus in the edge case and equals (−1)ξ(D) in the corner case.

Note that in addition to removing Hypothesis V, our result also comes with the slight
improvement over Theorem 5.6.2 of giving a reasonably natural interpretation of the sign
that appears in the corner case.
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