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Abstract

Vanishing and Non-Vanishing Criteria for Branching Schubert Calculus

by

Kevin Purbhoo

Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Allen Knutson, Chair

We investigate several related vanishing problems in Schubert calculus. First

we consider the multiplication problem. For any complex reductive Lie group G,

many of the structure constants of the ordinary cohomology ring H∗(G/B; Z) van-

ish in the Schubert basis, and the rest are strictly positive. More generally, one

can look at vanishing of Schubert intersection numbers, which generalise the mul-

tiplication problem to looking at products of more than two classes. We present a

combinatorial game, the “root game”, which provides some criteria for determin-

ing which of the Schubert intersection numbers vanish. The definition of the root

game is manifestly invariant under automorphisms of G, and under permutations

of the classes intersected. Although the criteria given by the root game are not

proven to cover all cases, in practice they work very well, giving a complete answer

to the question for G = GL(n,C), n ≤ 7.

The root game can be used to study the vanishing problem for multiplication

on H∗(G/P ) (where P ⊂ G is a parabolic subgroup) by pulling back the (G/P )-

Schubert classes to H∗(G/B). In the case where G/P is a Grassmannian, the

Schubert structure constants are Littlewood-Richardson numbers. We show that

the root game gives a necessary and sufficient rule for non-vanishing of Schubert

calculus on Grassmannians. A Littlewood-Richardson number is non-zero if and

only if it is possible to win the corresponding root game. More generally, the rule
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can be used to determine whether or not a product of several Schubert classes

on Grl(n,C) is non-zero in a manifestly symmetric way. We give a geometric

interpretation of root games for Grassmannian Schubert problems.

Finally, and most generally we look at the vanishing problem for branching

Schubert calculus. If K ′ →֒ K is an inclusion of compact connected Lie groups,

there is an induced map H∗(K/T ) → H∗(K ′/T ′) on the cohomology of the homo-

geneous spaces. The image of a Schubert class under this map is a positive sum of

Schubert classes on K ′/T ′. We investigate the problem of determining which Schu-

bert classes appear with non-zero coefficient. This problem plays an important role

in representation theory and symplectic geometry, as shown in [Berenstein-Sjamaar

2000]. The vanishing problems for multiplication of Schubert calculus can be seen

as special cases of the branching problem. We develop root games for branching

Schubert calculus, which give a vanishing criterion, and a non-vanishing criterion,

for this problem. Again, these two criteria are not enough to give a complete an-

swer to the problem; however they are applicable to a large number of cases. We

include a number of examples of root games to illustrate both their simplicity and

applicability.

Professor Allen Knutson
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Schubert calculus

The subject of Schubert calculus primarily deals with the cohomology of complex

projective homogeneous spaces. In the most general setting we begin with a com-

plex reductive Lie group G, and a parabolic subgroup P ⊂ G. The space G/P has

a transitive G-action; moreover it is a projective variety. Such a space is sometimes

called a generalised flag manifold.

The main examples motivating this study are the full and partial flag manifolds.

The (full) flag manifold is the space of all full flags on Cn

F =
(
{0} = F0 ( F1 ( F2 ( · · · ( Fn−1 ( Fn = Cn

)
,

where Fi is a vector subspace of dimension i. The group GL(n) acts transitively

on the flag manifold, and the stabiliser of the standard flag

{0} ( 〈x1〉 ( 〈x1, x2〉 ( · · · ( 〈x1, . . . , xn−1〉 ( Cn

is the standard Borel subgroup B ⊂ GL(n) (the invertible upper triangular matri-

ces). Thus we identify the flag manifold with the quotient space G/B.

Let 0 < d1 < · · · < dr < n be non-negative integers. The partial flag

manifold of type (d1, . . . , dr) is the space of flags

F =
(
{0} = F0 ( F1 ( F2 ( · · · ( Fr ( Fr+1 = Cn

)
,



Chapter 1. Introduction 2

where dimFi = di. GL(n) acts transitively on each partial flag manifold, with

parabolic stabiliser, so each partial flag manifold is also of the form G/P . In

the special case where r = 1, the partial flag manifold is just the Grassmannian

Grd1
(Cn).

There is a natural map from the full flag manifold to each partial flag manifold,

obtained by forgetting the subspaces of the wrong dimensions, i.e. the map takes

a full flag F to the subflag

{0} ( Fd1
( Fd2

( · · · ( Fdr ( Cn.

It is well known that the induced map on cohomology is an inclusion, whose im-

age is well understood. Thus to understand the cohomology of any partial flag

manifold, it is sufficient to understand the cohomology of the full flag manifold.

More generally, it is possible to understand the ring structure of H∗(G/P ) for a

parabolic subgroup P , in terms of the ring structure of H∗(G/B), where B is a

Borel subgroup. For this reason, our attention will be primarily devoted to the

study of the spaces G/B.

The most basic problem in Schubert calculus is to effectively compute the

structure constants of the cohomology ring. There is a natural basis for H∗(G/B)

given by the cohomology classes of the finitely many B-orbits on G/B. Each B-

orbit always contains a unique fixed point of the maximal torus T ⊂ B. On the full

flag manifold, these torus fixed points are represented by permutation matrices,

and so the B-orbits are indexed by the B-orbits of {1, . . . , n}. These orbits give an

purely even dimensional cellular decomposition of G/B; thus each orbit represents

a cohomology class, and set of these classes

{ωπ | π ∈ Sn}

is Z-basis for H∗(G/B). Thus we can write a product of two classes as a Z-linear

combination of the others,

ωπ · ωρ =
∑

σ∈Sn

cσπρωσ.
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It is known, in principle, how to compute these integers cσπρ. The algebra is

relatively straightforward and can be easily carried out by a computer, or a highly

disciplined undergraduate. There is a well known presentation for the cohomology

ring of GL(n)/B in terms of generators and relations:

H∗(GL(n)/B) = Z[x1, . . . , xn]/〈e1, . . . , en〉

where ei is the ith elementary symmetric polynomial in x1, . . . , xn. This is known

as the Borel presentation, and it generalises naturally to other groups G (at least

over Q).

Bernstein-Gel′fand-Gel′fand [BGG73] and Demazure [Dem73] identified the

natural Schubert basis in the context of this presentation. Perhaps the simplest

description is via divided difference operators. The divided difference operator

di := Z[x1, . . . , xn] → Z[x1, . . . , xn] is defined by

di(f) =
f(x1, . . . xi, xi+1, . . . , xn) − f(x1, . . . xi+1, xi, . . . , xn)

xi − xi+1
.

Note that if f is a polynomial, then so is di(f). Now write a permutation π ∈ Sn

as

π = ri1 · · · rikw0

where ri is the transposition (i↔ i+ 1), and

w0 =

(
1 2 3 . . . n − 2 n − 1 n

n n− 1 n− 2 . . . 3 2 1

)
.

Divided difference operators give an inductive way to compute representatives of

the Schubert classes in the Borel presentation, starting from the class of a point.

Lascoux and Schützenberger [LS82] found a “best” representative for the class of

a point: ωw0
=
∏n

j=1 x
n−j
j . A representative of the Schubert basis element ωπ, is

then simply computed by

sπ(x1, . . . , xn) = di1 ◦ · · · ◦ dik

(
n∏

j=1

xn−j
j

)
.
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These polynomials sπ are called the Schubert polynomials. (We refer to [BH95]

for a discussion of Schubert polynomials for the other classical Lie groups.)

It is therefore a simple matter of polynomial and linear algebra to compute the

structure constants of the cohomology ring. However, there are two very serious

reasons why this is not a satisfactory answer by modern standards. Both problems

are concerned with positivity properties of Schubert polynomials which are not

reflected in this picture.

The first such positivity fact is that the coefficients of the Schubert polynomials

are all positive. From both the Bernstein-Gel′fand-Gel′fand and Demazure con-

structions it is difficult to see this. Thankfully, this problem has been solved: there

are purely combinatorial descriptions of the Schubert polynomials [BJS93, FS94]

from which one can easily see the positivity of the coefficients, and a connection

with the geometry of Schubert varieties [KM01].

The second is the well known fact that all the structure constants cσπρ are non-

negative. This is a consequence of the fact that G/B is a complex variety with a

transitive action of a reductive Lie group. By the Kleiman-Bertini theorem [Kle74],

general translates of Schubert varieties intersect transversely; these are complex

varieties, so the points of intersection are oriented positively. However, the fact

that cσπρ ≥ 0 is not apparent from the algebra, and it remains an unsolved problem

to see this simple geometric fact reflected in the algebra. A formula which involves

only a sum of positive terms is said to be manifestly positive. None of the known

formulae for the integers cσπρ are manifestly positive: they all involve alternating

sums. Although this may seem inconsequential at first glance, the implication

is that although cσπρ are non-negative integers associated to some combinatorial

objects (permutations π, ρ, σ), we do not have a combinatorial interpretation for

these integers.

In order to fully appreciate this, we should contrast with what is known about

the cohomology of Grassmannians. In this case the state of affairs is significantly

better. The Schubert cells on a Grassmannian are indexed by partitions (λ, µ, ν),

rather than by permutations (π, ρ, σ). There are a number of different descrip-
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tions of combinatorial sets Cν
λµ, such that cνλµ = #Cν

λµ. These include the set of

Littlewood-Richardson tableaux (a thorough treatment of these can be found in

[Ful97, FG93]), Littelmann paths [Lit95], and Knutson-Tao puzzles [KT99]. More-

over, there is an explicit description of how puzzles are related to the geometry of

the Grassmannian [Vak03]. Thus one can see a pleasant connection between the

algebra, combinatorics, and geometry of Grassmannians. This is the state of affairs

one would like to see for the full flag manifold, and this is generally considered to

be a difficult problem.

1.2 Outline of results

One consequence of the lack of manifestly positive formula for cσπρ is that it is non-

trivial to determine whether cσπρ = 0 for any given π, ρ, and σ. A simpler problem

therefore is to find a combinatorial rule for answering this question. Even this

problem is open, and there are no reasonable conjectures as to what the correct

answer might be. However, we will investigate some approaches in this thesis, in

order to give some partial answers.

Our principal results are a vanishing criterion, and a non-vanishing criterion.

A vanishing criterion is a rule of the form “if condition X holds then cσπρ = 0.” A

non-vanishing criterion is a rule of the form “if condition Y holds then cσπρ ≥ 1.”

There are a number of examples of these, scattered throughout the literature.

Among the simplest is the Bruhat order condition. The Bruhat order is the partial

order of Sn governing which Schubert cells are contained in the closure of other

cells. (It can be also described in a purely combinatorial way.) It is an easy fact

that ωπ · ωρ = 0 ∈ H∗(G/B) if and only if π ≤ w0ρ in the Bruhat order. In

particular, if this relation does not hold, then cσπρ = 0 for all σ. Using Poincaré

duality we get two similar inequalities: π ≤ σ, and ρ ≤ σ which are necessary for

non-vanishing. Another very simple vanishing condition is Knutson’s DC-triviality

condition [Knu01]. This states that if that if π(i) < π(i+ 1), ρ(i) < ρ(i+ 1) and

σ(i) > σ(i+ 1) for some i, then cσπρ = 0. Perhaps the most celebrated vanishing



Chapter 1. Introduction 6

conditions are the Horn inequalities, which are discussed in the next section.

To state our criteria, we will present the root game. The rules of the root game,

though not entirely unwieldy, are too lengthy to state completely here. In short,

a root game begins with a set of tokens placed on the positive roots of the Lie

algebra of G. The player then tries to move these tokens around according to

certain rules, in the hopes that a winning position can be reached. Condition Y

will then be the condition that it is possible to win the root game corresponding

to (π, ρ, σ). Condition X pertains to some, but not all, of the root games which

are impossible to win. Unfortunately there will be examples of (π, ρ, σ) which will

satisfy neither conditions X nor Y, which makes this an incomplete answer. Still,

the criteria are applicable in an enormous number of cases, and in a great deal of

generality beyond the full flag manifold. Moreover, they are extremely practical

for doing computations by hand.

Based on current experimental evidence, one could conjecture that for the full

flag manifold, it is possible to win the root game if and only if cσπρ ≥ 1. There is

some weak evidence in support of this conjecture. We checked by computer that it

is true for flags in Cn, for n ≤ 7. This is the largest case which is computationally

feasible (we estimate that a complete check of n = 8 could take several years of

computing time with our current methods). Moreover, we show that it is true

for classes pulled back in a certain way from a Grassmannian. However, there is

also some evidence against the conjecture; namely it fails for the generalised flag

manifold SO(8,C)/B. We would prefer to avoid speculating on the reasonableness

of such a conjecture, and instead present a number of interesting examples.

In this spirit, Chapter 2 will be devoted to presenting the root game for the

full flag manifold, and more generally for G/B, and to proving the vanishing and

non-vanishing criteria. We give a number of examples to illustrate the root game

in practice, and some of the strengths and weaknesses of the vanishing and non-

vanishing criteria. We will see that the vanishing criterion described by the root

game generalises DC-triviality, whereas the non-vanishing criterion can be thought

of as generalising the Bruhat order criterion. We also compare a few variations on
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the root game, and briefly discuss some experimental results.

In Chapter 3, we discuss the Grassmannian case. We describe how to obtain

a root game from a Grassmannian Schubert problem. We then show that the

non-vanishing criterion is actually a necessary and sufficient condition for these

Grassmannian root games. The proof makes use of Zelevinsky pictures [Zel81],

which are a useful formulation of the Littlewood-Richardson rule. We show that

each Zelevinsky picture provides an algorithm for winning the associated root

game. Finally we relate the combinatorics to geometry, to show that the non-

zero terms appearing in the Schubert expansion of the product ωλ · ωµ correspond

exactly to B-fixed points on a certain variety.

Since root games on Grassmannians only answer the vanishing problem, they

are not as powerful as the Littlewood-Richardson rule; nevertheless, they have one

superior feature. The Littlewood-Richardson intersection numbers cλµν are equal to

certain Littlewood-Richardson coefficients: cλµν = cν̄λµ, where ν̄ is the complemen-

tary partition to ν (we define this precisely in Section 3.3.1). This quantity repre-

sents the number of intersection points of three Schubert varieties (corresponding

to λ, µ, and ν) translated into general position. The Littlewood-Richardson inter-

section numbers are invariant under permutations of the intersected classes (e.g.

cλµν = cµνλ, etc.), and also under duality: the operation of taking each partition to

its dual. One advantage of root games is that they are also manifestly symmetric

under these operations. Other rules, such as the classical Littlewood-Richardson

rule and puzzles, do not readily exhibit all of these symmetries.

In Chapter 4, we present the root game in its currently most general context.

This is the branching problem for Schubert calculus. In short, we consider an

inclusion of generalised flag manifolds i : X →֒ Y , and study the induced map on

cohomology i∗ : H∗(Y ) → H∗(X). Again, there is a positivity theorem for this

map: i∗(ωπ) =
∑

σ c
σ
πωσ is always a non-negative Z-linear combination of Schubert

classes on X, i.e. cσπ ≥ 0. One can then ask the question: for which π and σ is

cσπ = 0? In other words, we would like to find a combinatorial rule for determining

which classes appear. This is a simpler version of a more general problem, which
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is to find a combinatorial description of cσπ. Again, the algebra is well understood

here, but does not reflect the positivity. In fact, the multiplication problem can

be seen as special case of the branching problem, so all remarks pertaining to that

case apply here as well. We generalise the root game, and hence the vanishing and

non-vanishing criteria to give results for the branching problem. We illustrate this

with a number of new examples.

1.3 Applications of vanishing criteria

Although the vanishing problem does not yield the actual structure constants,

there are nevertheless situations where simply knowing which structure constants

vanish is enough information. Perhaps the most famous of these is Horn’s problem

[Hor62]. For more detailed discussion of the history of this problem, we refer to

[Ful00].

Horn’s problem concerns the spectra of triples of Hermitian matrices whose

sum is zero. Let H denote the space of n× n Hermitian matrices. Given A ∈ H,

its eigenvalues (considered with multiplicities)

Spec(A) = λ = {λ1 ≥ · · · ≥ λn}

are always real. Suppose now that A,B,C ∈ H satisfy A + B + C = 0. Let

λ = Spec(A), µ = Spec(B), µ = Spec(C). Horn’s problem is to determine the

possible triples (λ, µ, ν) which can arise in this way.

At first glance, it is perhaps somewhat surprising that this question has any-

thing to do with Schubert calculus; nevertheless the vanishing problem for multi-

plication plays a central role.

One obvious restriction is that the sum of largest eigenvalues of A and B cannot

be less than the largest eigenvalue of −C . That is λ1 +µ1 ≥ −νn. To see this, if P

is any rank one orthogonal projection, then PAP ≤ λ1 and PBP ≤ µ1. However

if P is the projection onto the smallest eigenspace of C , we have PCP = νn.

Thus λ1 + µ1 ≥ PAP + PBP = −PCP = −νn. Of course, since the problem is
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symmetrical in A,B,C , we also have λ1 + ν1 ≥ −µn, and µ1 + ν1 ≥ −λn. These

inequalities are therefore necessary, but in general not sufficient, to give a solution

to the problem.

Nevertheless the solution is given by a system of linear inequalities on (λ, µ, ν).

These inequalities naturally arise from the non-vanishing of Schubert calculus. It

was shown by Helmke-Rosenthal, Klyachko, and Totaro [HR95, Kly97, Tot94] that

there is a necessary inequality corresponding to each non-zero Schubert structure

constant for the cohomology rings H∗(Grr(Cn)), for 1 ≤ r ≤ n − 1. Klyachko

[Kly97] showed also that these inequalities give a sufficient set. Belkale [Bel01]

reduced this to a shorter list of necessary and sufficient inequalities, showing that

one needs only those inequalities given by the Schubert structure constants which

are equal to 1. Recently, Knutson, Tao, and Woodward, [KTW04] have shown

that this is reduced list is in fact a minimal set of inequalities.

Earlier, Horn [Hor62] conjectured a recursive method for computing these in-

equalities, which was proved by Knutson and Tao [KT99] using the combinatorics

of hives and honeycombs. We will not discuss this in any great detail here. How-

ever, rephrased in the language of Schubert calculus, Horn’s conjecture allows one

to determine which Schubert structure constants are non-zero in H∗(Grr(Cn)),

by knowing non-zero structure constants of H∗(Grd(Cr)). Thus the vanishing of

Schubert calculus in small Grassmannians is relevant to the vanishing problem on

larger Grassmannians. An independent geometric proof of Horn’s conjecture has

been given by Belkale [Bel02], using techniques which are somewhat similar to

those which appear here.

The vanishing problem for branching Schubert calculus has applications to

symplectic geometry and representation theory. We let i : K ′ →֒ K be an inclusion

of compact Lie groups. This induces a surjection i∗ : k∗ → (k′)∗ on the duals of the

Lie algebras. Consider a coadjoint orbit of K, say K ·λ, for λ in the Weyl chamber

of K. We consider its image under i∗, in (k′)∗. This is a K ′-invariant space, and

thus is a union of coadjoint orbits
⋃

µ∈Z K
′ · µ, for some subset Z of the K ′-Weyl

chamber. The problem is to determine Z, i.e. which K ′-coadjoint orbits are in the
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image.

Standard results in symplectic geometry (Kirwan’s convexity theorem) tell us

that the set Z is a convex polytope inside the Weyl chamber of K ′. Berenstein and

Sjamaar [BS00] show that there is a necessary and sufficient set of inequalities for

this polytope corresponding to the non-vanishing Schubert branching coefficients.

Thus the vanishing problem for branching Schubert calculus plays a fundamental

role in this problem.

On the representation theory side, the calculation of this polytope can be seen

to give an asymptotic solution to the following problem [Hec82, GS82]: given an

irreducible K-module V, which irreducible representations of K ′ appear when V is

decomposed as a K ′-module? More precisely, let λ and µ denote integral points in

the Weyl chambers of K and K ′ respectively. Then K ′ · µ ⊂ i∗(K · λ) if and only

there is some integer N > 0 such that the irreducible representation VNλ has an

isotypic component of type VNµ, when decomposed as a K ′-module. In the case

where K = U(n)×U(n), and K ′ = U(n) included diagonally, it turns out one can

take N = 1. This is the saturation conjecture, which was shown by Fulton [Ful98]

and Zelevinsky [Zel99] to imply Horn’s conjecture, and proved by Knutson and

Tao [KT99]. So, in fact, there is a deep relationship between Klyachko’s solution

to Horn’s problem and this branching picture.

Finally, we note that even vanishing criteria which are not necessary but merely

sufficient can be seen to be relevant when computational limitations are taken into

consideration. Consider the simplest, most näıve method of determining these

inequalities. First, we calculate a complete list of all the Schubert branching

coefficients. For each of these, if the coefficient is positive, we include the requisite

inequality. Unfortunately, this is somewhat impractical from a computational point

of view, as a complete list of all the different Schubert branching problems is quite

large, even for relatively low dimensional Lie groups K and K ′. It would therefore

be useful to know a priori that a large subset of the Schubert branching coefficients

are zero. Practically, therefore, vanishing criteria can be used to cut down the

space of problems one has to consider in calculating this polytope, or in any other
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situation where one might want a complete table of Schubert branching coefficients

or multiplication structure constants.
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Chapter 2

Vanishing of Schubert calculus

on G/B

2.1 Preliminaries

2.1.1 General approach

In this chapter, our main objective is to provide some criteria for vanishing of

intersection numbers of Schubert varieties on a generalised flag manifold G/B. To

understand the cohomology ring H∗(G/B), it is sufficient to count the intersection

points of k ≥ 3 Schubert varieties in general position. Our approach is essentially

to fix an intersection point, and determine if the Schubert varieties can be made

to intersect transversely. This leads to a linear algebraic criterion (Lemma 2.2.1)

which is necessary and sufficient for vanishing of Schubert Calculus.

In Section 2.3, we introduce the root game which can sometimes give infor-

mation about the Schubert intersection number. In some circumstances the root

game will tell us that the intersection number is 0 (Theorem 2.1); in other circum-

stances, the game will tell us that the intersection number is at least 1 (Theorems

2.2 and 2.4). Although these two criteria do not cover all cases, we have confirmed

by computer for G = GL(n), n ≤ 7 that all the remaining cases have intersection

number 0. The rules of the game are manifestly symmetric under permutations
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of the classes intersected, as well as under automorphisms of G. Furthermore,

the game is highly amenable to computations by hand and does not involve any

Schubert polynomials.

For ease of notation, our presentation will be in terms of intersections of three

Schubert varieties; however all theorems and proofs work with any number.

2.1.2 Conventions

Throughout this chapter, let G be a complex connected reductive Lie group. Fix

T a maximal torus, B a Borel subgroup, and B− its opposite, so T = B ∩ B−.

Let N and N− denote the corresponding unipotent groups. The Lie algebras of

these groups will be denoted g, b, etc. Most of our examples use G = GL(n), in

which case B and B− are invertible upper triangular and lower triangular matrices

respectively, and T consists of the diagonal matrices in GL(n).

Let ∆ denote the root system of G, with ∆+ and ∆− the sets of positive and

negative roots respectively. For each root α ∈ ∆+, we fix a basis vector eα for the

corresponding root space in g.

Let W denote the Weyl group of G. For π ∈ W , let π̃ denote some lifting

of π ∈ W = N(T )/T to an element of N(T ) ⊂ G, and let [π] = π̃B denote the

corresponding T -fixed point on G/B.

To each π ∈W we associate the Schubert variety Xπ = B− · [π], the closure of

the B−-orbit through [π] in G/B. Recall that the length of π ∈ W (as a word in

the simple reflections) is the codimension of Xπ. We denote the the cohomology

class Poincaré dual to the cycle Xπ by ωπ.

Let w0 denote the long element in W . For x0, x ∈ G/B we say that x is π-

related to x0 if there is a g ∈ G such that gx0 = w0 and gx ∈ Xπ. Let Xπ,x0
denote

the Schubert variety associated to π based at x0, that is

Xπ,x0
= {x ∈ G/B | x is πi−related to x0}

so Xπ = Xπ,[w0].
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Let π1, π2, π3 ∈W whose lengths total dimG/B. Consider the space

E =
{
(x0, x1, x2, x3) ⊂ (G/B)4

∣∣ x0 ∈ Xπ,xi
, i = 1, 2, 3

}

In other words, x0 is a point of intersection of the the Schubert varieties Xπi,xi
.

If the flags xi, i = 1, 2, 3 are sufficiently generic that the three Schubert varieties

intersect in isolated points, then we say that x0 is a solution to the Schubert

problem (π1, π2, π3). Note that the three conditions defining E are transverse, so

dimE = dim(G/B)3.

There are two forgetful maps from E. We have p0 : E → G/B given by

p0(x0, x1, x2, x3) = x0, and p123 : E → (G/B)3 given by p123(x0, x1, x2, x3) =

(x1, x2, x3). Since E is invariant under the diagonal subgroup G∆ →֒ G4, with

g · p−1
0 (x0) = p−1

0 (gx0), the map p0 is a fibration. Let U ⊂ (G/B)3 denote the

points where p123 is finite-to-one, and let E ′ = p−1
123(U).

Let cπ1π2π3
be the degree of the covering p123|E′. Then cπ1π2π3

is equal to the

number of intersection points x0 of the three Schubert varieties based at a generic

triple (x1, x2, x3). (Here we implicitly use the Kleiman-Bertini theorem [Kle74].)

Cohomologically,

cπ1π2π3
=

∫

G/B

ωπ1
· ωπ2

· ωπ3
.

Note that U (and hence E ′) may be empty: in fact these sets are empty if and

only if the corresponding Schubert problem has no solutions, i.e. if and only if

cπ1π2π3
= 0.

Finally, let us recall that the Schubert intersection numbers cπ1π2π3
determine

the Schubert structure constants of the cohomology ring H∗(G/B). Indeed, if we

write

ωπ1
· ωπ2

=
∑

ρ∈W

cρπ1π2
ωρ
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then

cπ1π2π3
=

∫

G/B

ωπ1
· ωπ2

· ωπ3

=

∫

G/B

∑

ρ∈W

cρπ1π2
ωρ · ωπ3

= cw0π3

π1π2
.

2.2 A lemma on vanishing

Our first lemma gives a linear algebraic condition for vanishing of Schubert calcu-

lus, and is our main technical tool. Although this result is known (Belkale [Bel02]

lists this as a standard result, without reference), we are not aware of any proof in

the literature.

Let n denote the Lie algebra of N . Let Pk be the subspace of n generated by

the eα such that α ∈ ∆+ and π−1
k · α ∈ ∆−. Equivalently,

Pk = n ∩ (πk · b−).

For a ∈ N , let a· : n → n denote the adjoint action of N on its Lie algebra.

Lemma 2.2.1. For a1, a2, a3 ∈ N generic, a1 ·P1 + a2 ·P2 + a3 ·P3 = n if and only

if cπ1π2π3
= 0.

Proof. We’ll use the Cartan involution to identify n with n−, denoted a 7→ aT , and

the Killing form to identify n∗ with g/b. (For G = GL(n), aT is the transpose of a,

and the identification map n → g/b is just a 7→ aT/b.) Under these identifications

(P⊥
k )T = ((πk · b−)/b)T = (πk · b)/b−
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(here P⊥ ⊂ V ∗ is the annihilator of P ⊂ V ). So

a1 · P1 + a2 · P2 + a3 · P3 = n ⇐⇒
⋂

k

ak · P
⊥
k = {0}

⇐⇒
⋂

k

aT
k · (P⊥

k )T = {0}

⇐⇒
⋂

k

aT
k · (πk · b)/b− = {0}

Now

cπ1π2π3
= 0 ⇐⇒ E ′ = ∅

⇐⇒ p−1
0 (x0) ∩E

′ = ∅ ∀x0 ∈ G/B

⇐⇒ p123(p
−1(x0)) ∩ U = ∅ ∀x0 ∈ G/B

⇐⇒
⋃

x0∈G/B

p123(p
−1
0 (x0)) ⊂ (G/B)3 − U.

But
⋃

x0∈G/B p123(p
−1
0 (x0)) = G · p123(p

−1
0 (x0)) for any x0 ∈ G/B, in particular

for x0 = [w0]. Thus the Schubert problem has intersection number 0 if and only if

G · p123(p
−1
0 ([w0])) ⊂ (G/B)3 − U.

Since U is a Zariski open dense subset of (G/B)3, this will happen only if dim(G ·

p123(p
−1
0 ([w0]))) < dim(G/B)3. Conversely if this inequality holds, then p123 is not

onto, and cπ1π2π3
= 0.

For a point x = (x1, x2, x3) ∈ p123(p
−1
0 ([w0])), let

S(x) =
{
g ∈ G

∣∣ g · x ∈ p123(p
−1
0 ([w0]))

}
.

Now p123(p
−1
0 ([w0])) = Xπ1

× Xπ2
× Xπ3

, which is B−-invariant and codimension

dimG− dimB in (G/B)3. Hence B− ⊂ S(x), and

codim
(
G · p123(p

−1
0 (x0))

)
= dimS(x)− dimB−,

for x generic in p123(p
−1
0 ([w0])).
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Let us therefore compute the dimension of S(x) at a generic point

x = ([aT
1 π̃1], [a

T
2 π̃2], [a

T
3 π̃3]) ∈ p123(p

−1
0 ([w0])).

We have

g ∈ S(x) ⇐⇒ g · aT
k π̃kB ∈ B−a

T
k π̃kB, ∀k = 1, 2, 3

⇐⇒ g ∈
⋂

k

B− a
T
k π̃kB π̃−1

k (aT
k )−1.

On the Lie algebra level

T1(S(x)) =
⋂

k

aT
k π̃k b π̃−1

k (aT
k )−1 + b−.

Thus

T1(S(x))/b− =
⋂

k

aT
k · (πk · b)/b−.

If this intersection is 0 then S(x) = B−. We now argue that if this last intersec-

tion is non-zero then dimS(x) > dimB−. Suppose that on the Lie algebra level,

this last intersection is non-zero dimensional. Since, the point is ([w0], x) is generic

in p−1
0 ([w0]), we can locally find a smooth, non-vanishing vector field on p−1

0 ([w0]),

generated by some element of g − b at each point. Flowing along this vector field

from ([w0], x) for some time t, lands us at a point ([w0], x(t)) ∈ p−1
0 ([w0]), which

is also in the G-orbit through ([w0], x). Thus there is some g(t) ∈ G such that

g(t) · ([w0], x) = ([w0], x(t)). Thus g(t) ∈ S(x). Moreover by continuity, for t

sufficiently small (non-zero), g(t) is not in B−.

Thus dimS(x) = dimB− if and only if this last intersection is 0, hence if and

only if a1 · P1 + a2 · P2 + a3 · P3 = n.

Remark 2.2.1. One undesirable feature of this proof is that it uses the flow along

a vector field, which is not an algebraic operation. Thus although the proof is valid

over C, it is not valid over an arbitrary algebraically closed field of characteristic

zero. In Chapter 4, we give a generalisation of Lemma 2.2.1, and give a proof

which is valid for an arbitrary algebraically closed field of characteristic zero.
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2.3 Root games

2.3.1 Weak version of the root game for G = GL(n)

Before delving into the root game in its full splendour, we shall first describe a

toned down version, and restrict to the case of G = GL(n).

We begin with a set of
(

n
2

)
squares Sij, indexed by 1 ≤ i < j ≤ n. We visualise

these as the squares above the diagonal inside an n× n array of squares. In each

of the squares we allow tokens to appear. Each token has a label, either 1, 2, or 3,

and each kind of token may appear at most once in any particular square. Thus

the entries in a square are essentially subsets of {1, 2, 3}. We’ll call a token labeled

k a k-token, and write k ∈ Sij if a k-token appears in square Sij.

Since the Weyl group is Sn we consider the πk as permutations of the numbers

1, . . . , n. The initial configuration of the game is determined by the permutations:

for i < j if πk(i) > πk(j) the square Sij includes a k-token in the initial configu-

ration. Otherwise it does not. An example of the initial configuration is shown in

Figure 2.1.

3

3

3

2

2

22

1

1
3

Figure 2.1: Initial position of the game for permutations 21435, 32154, 24153.

From the initial position, the player makes a sequence of moves. A move is

specified by a pair [k, Sij], where k ∈ {1, 2, 3} is a token label, and Sij is a square

in the array. For every l with j < l ≤ n, if a k-token appears in Sjl but not in Sil,
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we move it from Sjl to Sil. Also for each l with 1 ≤ l < i, if a k-token appears in

Sli but not in Slj, we move it from Sli to Slj. (In Figure 2.2 the dotted lines are

drawn so that they intersect in the square Sij and pass through all the tokens and

squares involved in the move.)

Definition 2.3.1. The game is won if at any point there is exactly one token in

each square.

1

2
3

3 3
1

2

3

3

3

1 1

2

22
3

3

33 33

3

3
22

22

2

2

1

3

2
3

2

2

2

1

2

1

1

Figure 2.2: Moves [2, S34] and [1, S25] are applied to the initial position in Figure
2.1.
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Example 2.3.2. Figure 2.2 shows a sequence of two moves in the game for the

permutations 21435, 32154, 24153, resulting in a win.

Observe that any token can only ever move upward and to the right. So, for

example, if there are two tokens in the upper right corner square, there is no

point in proceeding further. More generally, if at some point in the game there

is a subset A of the squares, closed under moving upward and to the right (i.e.

(i, j) ∈ A =⇒ (i, j′) ∈ A, ∀j′ > j and (i′, j) ∈ A, ∀i′ < i), such that the total

number of tokens in all the squares in A is strictly greater than |A|, we declare the

game to be a loss.
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Figure 2.3: The initial position for permutations 23154, 41235, 13542.

Example 2.3.3. Figure 2.3 shows the initial position of the game for the permu-

tations 23154, 41235, 13542. Since there are 7 tokens in the 6 shaded squares, the

game is lost, even before any moves are made.

In general losing the game does not provide any information—it may simply

be the result of bad play. However the case above is exceptional since the game is

a loss before any moves are made.

Definition 2.3.4. If the game is lost before the first move is made, we say the

game is doomed.
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Theorem 2.1. If the game is doomed, then cπ1π2π3
= 0.

But even greater enjoyment can be gained from winning.

Theorem 2.2. If the game can be won, then cπ1π2π3
≥ 1.

We defer the proofs until we have presented the root game in its most general

context.

2.3.2 Weak version of the root game for general G

Little modification is required for a general group G, although the pictures do

sometimes become harder to draw.

The game is played on a set of squares Sα indexed by the positive roots of G.

(For G = GL(n), every positive root can be written in the form αij = ti − tj for

some i < j; the new indexing can be identified with the old via Sij ↔ Sαij
.) As

before, in each of these squares we allow any combination of the 1,2 or 3-tokens

with no label repeated, including the empty combination.

Our initial configuration is such that we have a k-token in square Sα iff π−1
k ·α ∈

∆−.

The moves are specified by a pair [k, β], where k = 1, 2 or 3 is a choice of token

label, and β ∈ ∆+. The actual move is made by the following rule. For each pair

of positive roots α, α′ such that α′ − α = β, if a k-token occurs in the square Sα

but not in Sα′, move it from the first square to the second square.

There is one small caveat: for G = GL(n) it does not make any difference in

which order we move these tokens, however for other groups it might. (Figure 2.5

includes an example of this behaviour.) To resolve this ambiguity, we order the

relevant α by height and stipulate that we must always move tokens in the highest

root squares first.

As before, the game is won if there is exactly one token in each square. For the

losing condition, we need the following definition.

Definition 2.3.5. Let A = {Sα | α ∈ I} be a subset of the squares. Call A an

ideal subset if I is closed under raising operations, i.e. If α ∈ I, then α′ ∈ I,
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whenever α′, and α′ − α are both positive roots. (Equivalently, A is a an ideal

subset if and only if {eα|α ∈ I} span an ideal in the Lie algebra n.)

The game is lost if there is an ideal subset A such that the the total number of

tokens in A is more than |A|. Again, the game is doomed if this losing condition

holds before the first move is made.

Theorems 2.1 and 2.2 hold in this more general setting as well.

2.3.3 An example for SO(7,C)

(0,−1,1)

(−1,0,1)(−1,1,0)

(0,0,1)(1,0,0)

(1,1,0)

(0,1,1)

(−1,0,0)

(0,1,0)

(0,0,0)

(1,0,0)

(0,1,0)

(0,0,1)(1,0,0)

(0,−1,0)

(1,0,1)

(0,1,0)

Figure 2.4: A set of squares indexed by the nine positive roots of SO(7,C). Each
root is expressed as a sum of a vectors in the left column and a vector top row.

If G = SO(7,C), the root system is B3 ⊂ R3. We’ll choose the positive system

for which (0,−1, 1), (−1, 1, 0), (1, 0, 0) are the simple roots. To draw pictures of

the root games, we must arrange squares in the plane corresponding to the positive

roots. There are a number of possible ways to do this, however one which scales

easily to the other groups SO(2n + 1,C) is the one shown in Figure 2.4. (This

type of arrangement can also be used for SO(2n,C), where the Weyl group is Dn,

by deleting the middle row of squares.)

Let {x1, x2, x3} denote the standard basis for R3. An element of Weyl group

W = S3 ⋊ C3
2 can be represented by a permutation a1a2a3 of 123, where each
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symbol is either decorated with a bar or not. This permutation acts on R3 by the

matrix whose ith row is xai
if i is unbarred, and −xai

if i is barred.

Figure 2.5 gives an example of a game for SO(7,C). Arrows in Figure 2.5 are

included not only for all tokens that move, but for all pairs of roots α, α′, whose

difference is β. Since the game can be won using the moves shown, for π1 = 1̄32,

π2 = 231, π3 = 1̄2̄3 we have cπ1π2π3
≥ 1.

2.3.4 Proof of the vanishing criterion

Proof of Theorem 2.1. At the outset, the set of eα such that a k-token occurs in

square Sα forms a basis for the space Pk. If the the game is doomed because of an

ideal subset A, then A’s root spaces generate an N -invariant subspace V of n such

that
3∑

k=1

dim(Pk ∩ V ) > dimV.

Thus for any ak ∈ N , we have

dim(a1 · P1 + a2 · P2 + a3 · P3)/V = dim(a1 · P1/V + a2 · P2/V + a3 · P3/V )

≤
3∑

k=1

dimPk/V

=
3∑

k=1

dimPk − dim(Pk ∩ V )

< dim n − dimV

= dim n/V.

Thus we certainly cannot have a1 ·P1 +a2 ·P2 +a3 ·P3 = n, hence by Lemma 2.2.1,

the intersection number is 0.

In the case where the game is doomed as a result of an ideal subset A which is

maximal (i.e. A consists of all squares except for a single Sα, where α is a simple

root), this vanishing condition reduces to the DC-triviality vanishing condition in

[Knu01].
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Figure 2.5: A simple game for SO(7,C). In this example, π1 = 1̄32, π2 = 231,
π3 = 1̄2̄3. The root β which is used in each move is the crossing point of the dotted
lines.
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2.3.5 Relationship with the Bruhat order

We now consider the root game for products of only two Schubert classes. We

will show that the root game winning condition is both necessary and sufficient

for non-vanishing of products of two Schubert classes. Theorem 2.2 already tells

us that winning the root game is sufficient for non-vanishing; thus here we shall

only establish necessity. That is, if ωπ1
·ωπ2

6= 0, then it is possible to win the root

game corresponding to (π1, π2).

When we are considering the product of only two Schubert classes, the non-

vanishing of the product is determined precisely by the Bruhat order. More pre-

cisely ωπ1
·ωπ2

6= 0 if and only if π1 ≤ w0π2 in the Bruhat order. In the case where

the product is top dimensional, i.e. l(π1) + l(π2) = dimG/B, the fact that we can

win the root game is a triviality: we have π1 ≤ w0π2 if and only if π1 = w0π2 in

which case the set of squares containing a 1-token is the complement of the set of

squares containing a 2-token. Thus the initial position of the game is already a

winning position.

Less trivial is the case when π1 < w0π2. Notice that here, the total number

of tokens will be less than the number of squares. Thus, according to our current

definition of winning, it is impossible to win the root game. To accommodate this,

we relax the winning condition slightly. We say that the game is won if there is

at most one token in each square. It is straightforward to see that a version of

Theorem 2.2 still holds with this revised winning condition (see remarks in Section

2.4.2). Moreover, we have the following theorem.

Theorem 2.3. ωπ1
· ωπ2

6= 0 if and only if it is possible to win the root game

corresponding to (π1, π2).

In fact, we will show that it is possible to do this moving only 1-tokens. We

therefore assume in what follows that all moves are moves of 1-tokens; hence we

shall specify a move solely by the root β. The following result allows us to argue

by induction.
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Proposition 2.3.1. Consider two root games. Let T1 denote the set of squares

containing 1-tokens in the first game, and let T2 denote set of squares containing

1-tokens in the second game. We perform the same sequence of moves β1, . . . , βm

to each game. If T1 ⊂ T2 before the sequence of moves is performed, then T1 ⊂ T2

after the moves are performed. Thus if it is possible to win the second game, it is

possible to win the first game.

Proof. This is true for a single move; thus it is true for any sequence. If at the

end of this sequence of moves the second game has at at most one token in each

square, then the same will be true of the second game.

If π1 < w0π2, there is a maximal chain in the Bruhat order π1 = ρ0 < ρ1 <

· · · < ρm = w0π2. Consider the initial position of the game for (ρi, π2). We let Ti

denote the set of squares containing 1-tokens in this position. We will show that

from the initial position of (ρi, π2), we can perform a sequence of moves so the

squares containing 1-tokens are a subset of Ti+1.

Let rβ ∈ W denote the reflection in the root β. Since ρi+1 covers ρi in the

Bruhat order, we can write a reduced expression for ρi+1 = rα1
· · · rαl

, such that

ρi = rα1
· · · r̂αs · · · rαl

(here αj is a simple root). Put σ = rαs+1
· · · rαl

, σ′ = rα1
· · · rαs−1

, and γ = αs.

Thus ρi = σ′σ, and ρi+1 = σ′rγσ. Let β = σ−1γ so that rβ = σ−1rγσ. Note that

ρi+1 = ρirβ .

Proposition 2.3.2. With β as above, we have β ∈ ∆+, ρi(β) ∈ ∆+, and ρi+1(β) ∈

∆−.

Proof. Consider the list of roots

β, rαl
(β), rαl−1

rαl
(β), . . . , rα2

· · · rαl
(β), ρi+1(β).

Since rα1
· · · rαl

is a reduced expression for ρi+1, the roots in this list can switch

sign (i.e. from positive to negative, or vice versa) at most once. A subset of this

list is

β, σ(β) = γ, rγσ(β) = −γ, ρi+1(β).
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We know that γ ∈ ∆+, and −γ ∈ ∆−. So we have located the point where the

sign changes. Thus β ∈ ∆+ and ρi+1(β) ∈ ∆−. Furthermore, since ρi+1(β) =

σ′rγσ(β) = −σ′(γ), and ρi(β) = σ′σ(β) = σ′(γ), we have ρi(β) ∈ ∆+.

Proposition 2.3.3. Let α ∈ ∆+, α 6= β. If Sα ∈ Ti, then for every root of the

form α−Nβ, with N a positive integer, we have ρi(α−Nβ) ∈ ∆−. In particular,

if α −Nβ ∈ ∆+, then Sα−Nβ ∈ Ti.

Proof. Sα ∈ Ti if and only if ρi(α) ∈ ∆−. Thus ρi(α − Nβ) = ρi(α) − Nρi(β) ∈

∆−.

Proposition 2.3.4. If we repeatedly apply the move β to the initial position of

the game for (ρi, π2), we obtain a position such that the set of squares containing

1-tokens is a subset of Ti+1.

Proof. Suppose α−Nβ < · · · < α− β < α are roots, but α+ β and α− (N + 1)β

are not. We assume α 6= ±β. Some of the roots in this sequence are positive, and

hence correspond to squares, while others do not. On the other hand some of these

roots are inversions for ρ, while others are not. We represent this information in a

diagram as follows.

• • • •
α−6β α−5β Sα−4β Sα−3β Sα−2β Sα−β Sα

The dots (•) correspond to the inversions, while the squares correspond to the

positive roots. We can think of the dots which are in squares as tokens. The

squares are right justified, whereas from Proposition 2.3.3, the inversions are left

justified. (Note: this picture is somewhat unrealistic, since we can never actually

have N > 3. N = 3 occurs for G2, and N = 2 occurs in all other non-simply laced

types. Otherwise N = 0 or 1 are the only possibilities.)

The move β corresponds to shifting each token to the right. If the tokens are

already right justified, the move β does nothing. Thus applying β a sufficiently

large number of times right justifies all the tokens.

• • • •
α−6β α−5β Sα−4β Sα−3β Sα−2β Sα−β Sα
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On the other hand, we have

Sα−Mβ ∈ Ti+1

⇐⇒ ρi+1(α −Mβ) ∈ ∆−

⇐⇒ ρirβ(α−Mβ) ∈ ∆−

⇐⇒ ρi(α − (N + 1 −M)β) ∈ ∆−.

Thus the squares of Ti+1 are found by right justifying all the dots (including those

which are not tokens).

• • • •
α−6β α−5β Sα−4β Sα−3β Sα−2β Sα−β Sα

Thus after the move β is applied several times, the squares containing tokens will

be a subset of Ti+1. Since every root not equal to ±β is part of such a maximal

chain, this completes the proof. (We do not need to concern ourselves with β,

since Sβ ∈ Ti+1.)

Proof of Theorem 2.3. Sufficiency follows from Theorem 2.2. For necessity, we

argue by induction. It is certainly possible to win the game for (ρm, π2). Suppose

it is possible to win the game for (ρi+1, π2), for some i < m. By Proposition 2.3.4

we can apply a sequence of moves to the initial position for (ρi, π2) so that the

set of squares containing 1-tokens are a subset of Ti+1. Therefore by Proposition

2.3.1, it is possible to win the game for (ρi, π2). By induction, it is possible to win

the game for (π1, π2).

2.3.6 Converses and counterexamples

The converse of Theorem 2.1 is certainly not true. The first counterexamples in

GL(n) occur for n = 4. See Figure 2.6.

There are also counterexamples to the converse of Theorem 2.2. The first

examples of this in GL(n) occur for n = 5.

Example 2.3.6. The initial position of the game for the permutations 23145,

14253, 41523 shown in Figure 2.7 has only one square with 2 tokens, and one
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3
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11
2

Figure 2.6: The permutations π1 = 1432, π2 = 2314, π3 = 2134 are a counterexam-
ple to the converse of Theorem 2.1. The game is not doomed, though cπ1π2π3

= 0.
All other GL(4) counterexamples are similar to this one.

empty square. Any effort to rectify this imbalance winds up moving more than just

one token, and so the game cannot be won. However the Schubert intersection

number for this triple of permutations is 1.

1
33

333

2

1

1

1

2

22

33

333

2

2

Figure 2.7: The permutations 23145, 14253, 41523 give a counterexample to the
converse of Theorem 2.2.

We shall therefore make some refinements to the game which eliminate this last

counterexample, as well as many others.
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2.3.7 The general game

The general root game is set up identically: we have squares Sα indexed by the

positive roots, each can contain any combination of the 1,2, or 3-tokens (with no

label repeated), and the initial configuration is the same. Again, we note that

the limit to 3 classes is arbitrary: all results naturally generalise to products of

arbitrarily many classes.

The difference is that before each and every move, the set of squares is par-

titioned into “regions”. Initially the squares are all in one region. Suppose A is

an ideal subset of the squares, with the property that the total number of tokens

in the squares of A is exactly equal to |A|. For every A with these properties,

we subdivide each region R into two regions R ∩ A and R ∩ Ac. (Empty regions

produced in this way can be ignored.) Each region will always have the property

that the number of tokens in the region is equal to the number of squares in the

region.

The moves are more or less as before, except that any move only involves a single

region, and no token may cross from one region to another. A move is specified by

a triple [k, β, R], where k = 1, 2 or 3 is a choice of token label, β ∈ ∆+, and R is

a choice of region. Find all pairs of squares Sα, S
′
α ∈ R such that α′ − α = β, and

proceeding in order of decreasing height of α, if a k-token occurs in the square Sα

but not in Sα′, move it from the first square to the second square.

As before, to win the game we want exactly one token in each square. An

example appears in Figure 2.8. We in invite the reader to replay and win the

example from Figure 2.7 under these modified rules.

2.3.8 Proof of the non-vanishing criterion

Theorem 2.4. If the revised game can be won, then cπ1π2π3
≥ 1.

The following proves both Theorem 2.4 (directly), and also Theorem 2.2 by

ignoring part 3 of the claim within.
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Figure 2.8: The general game, played out for permutations 13425, 41325, 14352.
The moves, shown in the centre column, are: [1, α12, R], [2, α45, R

′], and finally
[3, α35, R

′′]. The left column shows the state before the move, in which the set
of squares is maximally divided into regions. The right column shows the state
immediately after the move, before further subdividing.
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Proof. For V a finite dimensional representation of B, letGr(V ) denote the disjoint

union of all Grassmannians Grl(V ). Since V has a B-action, so does Gr(V ).

Let U = (U1, U2, U3) ∈ Gr(V )3. We will call the pair (V, U) “good” if dim(U1)+

dim(U2)+dim(U3) = dimV , and there is a point (U ′
1, U

′
2, U

′
3) in the B3-orbit closure

through U such that U ′
1 + U ′

2 + U ′
3 = V .

For U ∈ Gr(V )3, define

g(U) = {(U1, U2, U3) ∈ B3 · U | U1 + U2 + U3 = V } ⊂ Gr(V )3.

Note that the set of (U1, U2, U3) ∈ Gr(V )3 with U1 + U2 + U3 = V is Zariski open

in Gr(V )3. Thus (V, U) is good ⇐⇒ g(U) is an open dense subset of B3 · U

⇐⇒ g(U) 6= ∅.

At any point in the game, we have the following data:

1. A set of regions, each of which is the difference of two ideal subsets. Hence

the corresponding root spaces can be thought of as spanning a subquotient

representation V of the B-representation n.

2. Any subset of {1, 2, 3} on each root. For any region corresponding to the

subquotient representation V = V1/V2, these give rise to subspaces Uk =

span{ēα | k ∈ Sα} (where ēα := eα+V2 is the image of eα under quotienting by

V2). Thus the arrangement of tokens in squares in the region corresponding

to V , describes a T -fixed point U ∈ Gr(V ).

Thus a state of the game can be represented by a set of pairs {(Vm, Um)} where

Vm is a B-representation, and Um ∈ Gr(Vm)3 is a T -fixed point.

We claim the following:

1. The initial state of the game is given by (n, P ), where P = (P1, P2, P3).

2. The Schubert intersection number cπ1π2π3
is non-zero if and only if (n, P ) is

good.

3. Suppose that {(Vm, Um)} is the state of the game before subdividing into

regions, and {(V ′
n, U

′
n)} is the state after. If (V ′

n, U
′
n) is good for all n, then

each (Vm, Um) was good for all m.
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4. Suppose that {(Vm, Um)} is the state of the game before a move is made, and

{(Vm, U
′
m)} is the state after. If (Vm, U

′
m) is good then (Vm, Um) was good.

5. If {(Vm, Um)} is the state of the game when the game is won, then each

(Vm, Um) is good.

Proof of claims.

1. This is clear from this definition of Pk.

2. Lemma 2.2.1 then says that cπ1π2π3
is non-zero if and only if for a generic point

(P ′
1, P

′
2, P

′
3) in theN3-orbit (=B3-orbit) through (P1, P2, P3), P

′
1+P

′
2+P

′
3 = n,

in other words if and only if g((P1, P2, P3)) is non-empty, or equivalently

⇐⇒ (n, P ) is good.

3. Suppose V is a B-invariant subspace of some B-representation V ′. Define

maps σV : Gr(V ′) → Gr(V ′/V ), given by σV (U) = U/V , and τV : Gr(V ′) →

Gr(V ) given by τ (U) = U ∩ V . Also let ΣV = σ × σ × σ : Gr(V ′)3 →

Gr(V ′/V )3, and TV = τ × τ × τ : Gr(V ′) → Gr(V )3. Note σV and τV are

not everywhere continuous, but they are B-equivariant, and continuous on

B-orbits.

Suppose Uk are subspaces of V ′ with dim(U1)+dim(U2)+dim(U3) = dimV ′.

By elementary linear algebra, if σV (U1) + σV (U2) + σV (U3) = V ′/V , and

τV (U1) + τV (U2) + τV (U3) = V , then U1 + U2 + U3 = V ′.

Suppose (V ′/V,ΣV (U)) and (V, TV (U)) are both good. Then T−1
V (g(TV (U))

and Σ−1
V (g(ΣU )) are both open dense subsets of B3 · U . Since g(U) contains

the intersection of these, (V ′, U) must be good.

Let V be the B-invariant subspace of n corresponding to a ideal subset.

Then the new position of the game after splitting along V is just {(Vm ∩

V̄ , TV̄ (Um))} ∪ {(Vm/V̄ ,ΣV̄ (Um))} (where V̄ is the image under the appro-

priate quotient map). But if (Vm∩V̄ , TV̄ (Um)) and (Vm/V̄ ,ΣV̄ (Um)) are both

good, then (Vm, Um) is good.
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4. Suppose the move is given by the root α, token label k, and the region

corresponding to Vm. We consider the 1-dimensional subgroup of B3 given

by Nα →֒ B →֒ B3, where Nα
∼= (C,+) is the exponential of the α root

space, and the last inclusion is b → (b, 1, 1), (1, b, 1) or (1, 1, b) depending on

k.

Let θα,k : Nα → B3 denote this composition. We now calculate

lim
t→∞

θα,k(t) · Um.

Without loss of generality suppose that k = 1. Let Um = (U1, U2, U3) and

U ′
m = (U ′

1, U2, U3). We can represent U1 as [ēα1
∧ . . . ∧ ēαl

], and U ′
1 as

[ēα′

1
∧ . . . ∧ ēα′

l
], via the Plücker embedding Gr(Vm) →֒ P (

∧∗ Vm). Now

θα,1(t) · Um = θα,1(t) ·
(
[ ēα1

∧ . . . ∧ ēαl
], U2, U3

)

=
([

(ēα1
+ t(α · ēα1

)) ∧ . . . ∧ (ēαl
+ t(α · ēαl

))
]
, U2, U3

)
,

where α · ēαi
= ēαi+α, if αi + α is a root belonging the region corresponding

to Vm, and 0 otherwise. In the limit as t→ ∞, the only term which survives

is the one with the highest power of t, which is precisely

(
[±t#tokens that moveēα′

1
∧ . . . ∧ ēα′

l
], U2, U3

)
.

Thus

U ′
m = lim

t→∞
θα,k(t) · Um,

is another point in B3 · Um. Thus if (Vm, U
′
m) is good, so is (Vm, Um).

5. In the winning position the point (Vm, (Um1, Um2, Um3)) has
∑3

k=1 dimUmk =

dimVm and Um1 + Um2 + Um3 = Vm and thus is good.

Thus if the game can be won, all states of the game en route to a winning

configuration must be good. This includes the initial state, and hence the Schubert

intersection number cπ1π2π3
is non-zero.
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2.4 Remarks and variations

2.4.1 Splitting

Let A be an ideal subset. In the rules of the root game, there is a condition

for splitting regions along A, namely, that we split along A if and only if the

the number of tokens in A equals |A|. The astute observer will notice that this

condition is never used in the proof. Essentially this means the proof is valid for

a variation of the game in which the player has the option to split regions along

any ideal subset A between moves. That said, we will show now that it is never

advantageous to the player to exercise such an option, unless |A| equals the number

of tokens in A.

Suppose the rules say not to split along A. If we do split along A there will be

too many tokens in one region. Since regions can never be rejoined once they are

split, the game cannot be won.

Moreover, suppose the rules say to split along A, and the player chooses not to.

Of any move that is made subsequently, one of the following two things must be

true: either (1) the same arrangement of tokens could have been reached (possibly

using multiple moves) if we had split along A, or (2) the move causes the game to

be lost.

In particular, the revised game always performs at least as well as, and some-

times better than the weak version of the game.

2.4.2 Products which are not top degree

It is worth noting that the root game can be used to (sometimes) determine whether

three (or more) Schubert varieties in general position intersect non-trivially, even

when the sum of their codimensions does not equal dimG/B. On the cohomology

level, this means we can use the game to study whether a product of Schubert

classes is non-zero, whether or not the product is of top degree. There are two

minor modifications to the rules required. One is to change the winning condition
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to read “at most one token in each square”, rather than “exactly one token in each

square”. (The losing and doomed conditions remain as stated previously.) The

other is that it is no longer a priori clear exactly when splitting will be strictly

advantageous. Therefore, we must remove the rule telling when to split, and

instead, allow the option of splitting along any ideal subsets between moves. Under

these modifications, if the revised game can be won, the Schubert varieties in

question have at least one point of intersection. If the game is doomed, they do

not intersect.

The simplest way to see that this is true is to note that ωπ1
· ωπ2

· ωπ3
6= 0 if

and only if we can multiply this product by a product of divisor classes (classes

ωrα, where rα is a reflection in a simple root α) to obtain

ωπ1
· ωπ2

· ωπ3
· ωrα1

· · ·ωrαl
≥ 1 ∈ Htop(G/B).

On the root game level, each of these divisor classes produces a single token with its

own label sitting on a simple root. If we consider all possible choices for α1, . . . , αl,

then after some moves, these new ‘divisor tokens’ can be made to lie in any squares.

Assume that it is possible to win the root game for (π1, π2, π3) according to

the more general definition. In the winning position, there will be some empty

squares. In the root game corresponding to (π1, π2, π3, rα1
, . . . , rαl

), we first move

the divisor tokens to the empty squares, then move the remaining tokens to the

winning configuration. This will yield exactly one token in each square. Thus

ωπ1
· ωπ2

· ωπ3
· ωrα1

· · · ωrαl
≥ 1, and hence ωπ1

· ωπ2
· ωπ3

6= 0. A similar type of

argument shows that a doomed game implies ωπ1
· ωπ2

· ωπ3
= 0.

2.4.3 Converses and computations

It would be quite surprising and remarkable if the converse of Theorem 2.4 were

true in any generality. So far, for GL(n), the converse has deftly eluded any

counterexamples. In fact the converse of Theorem 2.4 has been affirmed by an

exhaustive computer search for GL(n) for n ≤ 7.
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To test the converse, we calculated Schubert intersection numbers using the

following recurrence [Knu03]. Let r = rα ∈W be a simple reflection (in the simple

root α) such that π1r > π1. Such an r always exists if π1 6= w0. Then,

cπ1π2π3
=






0, if π2r > π2 and π2r > π3

cπ1r,π2r,π3
, if π2r < π2 and π3r > π3

cπ1r,π2,π3r, if π2r > π2 and π3r < π3

or if π2r < π2 and π3r < π3, we use

cπ1π2π3
= cπ1r,π2r,π3

+ cπ1r,π2,π3r +
∑

ρ≻π1, ρ6=π1r,
ρ=π1rβ

(
α− rβα

β

)
cρ,π2r,π3

.

(Here ≻ denotes the Bruhat covering relation, i.e. ρ ≻ π ⇐⇒ ρ > π and

l(ρ) = l(π) + 1.) Each application of this recurrence increases the length of π1,

so eventually it reduces the calculation of any Schubert intersection number to

cw0,1,1 = 1.

If the Bruhat covering relation is calculated in advance, this is a remarkably

quick way of calculating Schubert intersection numbers. It is significantly faster

than doing the corresponding calculations with Schubert polynomials. The speed

here is important, because the number of Schubert problems to check gets rapidly

large with increasing n. To cut this quantity down from the obvious |W |3-many

problems, we first sort the Weyl group elements by their length so that we never

need to consider a problem for which l(π1)+l(π2)+l(π3) 6= dim(G/B). Furthermore,

the S3 symmetry of the Schubert intersection numbers allows us to cut this down

further by a factor of 3!.

For each positive Schubert intersection number, we performed a exhaustive

search through all possible root games. In each case, the search revealed that it

was possible to win the corresponding root game. For GL(4), this calculation takes

only seconds. GL(5), runs in about one minute, and GL(6) takes an hour. The

same calculation for GL(7) took a total of 76 days computing time on a network

of Sun Sparc Ultra 5 machines.
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The converse of Theorem 2.4 has also been verified for the exceptional group

G2, as well as for SO(5) and SO(7). (The next smallest exceptional group, F4, is

unfortunately beyond our computational abilities at the moment.)

For the groups SO(n), n ≥ 8, the converse of Theorem 2.4 is in fact false. For

SO(8), we represent an element of the Weyl group W = S4 ⋊C3
2 by a permutation

a1a2a3a4 of 0123, where each symbol, except 0, is either decorated with a bar or

not (0 is always unbarred). This permutation acts on R4 by the matrix whose ith

row is xai
if i is unbarred, and −xai

if i is barred. The two counterexamples to the

converse of Theorem 2.4 for SO(8) are listed below.

π1 π2 π3

01̄32 02̄31 032̄1
031̄2 02̄31 02̄31

The problem that arises in these examples is that although there exists a T -fixed

point (U1, U2, U3) on the appropriate B3-orbit closure inside Gr(V ) with U1 +U2 +

U3 = V , the moves of the game fail to find it. We are not aware of any examples

in which cπ1π2π3
≥ 1 but where there are no suitable T -fixed points on any of the

relevant varieties. It therefore seems it would be desirable to be able to describe

a larger set of moves—moves which, starting from a T -fixed point on Gr(V ) can

reach all the other T -fixed points in its B3-orbit closure.

One special case where the converse of Theorem 2.4 is true is when the classes

ωπi
are pulled back from a Grassmannian in an appropriate way. We prove this

result in a Chapter 3. Another special case is Theorem 2.3, which tells us that the

converse is true for products of only two Schubert classes.

Another modification one might wish to make to the root game is to allow

only moves involving tokens labeled 1 and 2. This version looks nicer when view-

ing Schubert calculus as taking products in cohomology (rather than intersection

numbers). Under this weakening, Theorem 2.4 remains true (obviously), but the

converse is already false for GL(n). There are no examples of this for n ≤ 5;

however, for n = 6 there are a total of four such examples:
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π1 π2 π3

145326 321564 315264
154326 312564 315264
514326 152364 135264
154236 312654 315264

It is possible, with still further modifications to the game to dispose of these GL(6)

counterexamples. One such modification is to introduce a new kind of move. For

this new move, one selects a region R, and a pair of token labels: k1 6= k2. The

region R must have the property that there is no square in R which contains both a

k1-token and a k2-token. In this case we may replace every k2-token with a k1-token

in the same square. In the notation of the proof of Theorem 2.4, if k1 = 1, k2 = 2,

this has the effect of replacing ((U1, U2, U3), V ) with ((U1 +U2, 0, U3), V ), provided

U1 ∩ U2 = 0; if the latter is good, so is the former, and the proof of Theorem 2.4

will still hold.

2.4.4 Other cohomology theories

The study of Schubert calculus is not limited to the ordinary cohomology of spaces

G/B or G/P . One could also apply other cohomology theories to these spaces.

Some well known examples include T -equivariant cohomology, K-theory, and quan-

tum cohomology. It is unlikely that the techniques here could apply to either

T -equivariant cohomology or K-theory. However, the vanishing of quantum coho-

mology of homogeneous spaces can be studied using tangent space methods (see

[Bel03]), and certainly merits further investigation. We discuss this further in

Chapter 5.
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Chapter 3

Root games on Grassmannians

3.1 Review of the root game for GL(n)

In Chapter 2 we introduced the root game, a combinatorial game which often

identifies vanishing and non-vanishing structure constants in Schubert calculus on

a generalized flag manifold G/B. In this chapter, our goal is to strengthen those

results by giving a partial converse to our non-vanishing criterion. We show that

a converse of Theorem 2.2 holds when the group G is GL(n,C), and the Schubert

classes are pulled back from a Grassmannian. We begin by recalling the relevant

material from Chapter 2.

Let G = GL(n). Let B and B− denote the subgroups of upper and lower

triangular matrices respectively, and T = B ∩ B− the standard maximal torus

(diagonal matrices). Recall that to each element of the symmetric group π ∈ Sn,

there is a corresponding T -fixed point π on the flag manifold F l(n) = G/B, and

an associated Schubert variety Xπ = B− · π. We denote its cohomology class by

ωπ.

Given π1, . . . , πs ∈ Sn, the root game attempts to give some information about

the Schubert intersection number
∫

Fl(n)
ωπ1

· · ·ωπs , as follows.

We have a set of squares Sij, indexed by 1 ≤ i < j ≤ n. In each square we

allow tokens to appear. Each token has a label k ∈ 1, . . . , s, and no square may
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ever contain two tokens with the same label. We’ll call a token labeled k a k-token,

and write k ∈ Sij if a k-token appears in square Sij.

The initial configuration of tokens is as follows: for i < j square Sij includes a

k-token in the initial configuration if and only if πk(i) > πk(j).

From the initial position we move the tokens around according to certain rules

with the objective of getting exactly one token in each square. However, before

each move we have the option of splitting the game into multiple regions. A

region is just a set of squares. Initially there is a single region which contains all

the squares. We define an ideal subset of the squares to be a set of squares A such

that if Sij ∈ A then so are all Si′j′ with i ≤ i′ and j ≤ j′. Given an ideal subset of

the squares we can break up a region R into R∩A and R \A. We may repeat this

splitting process as many times as desired. It turns out to be advantageous to split

if and only if the total number of tokens in all squares in A equals |A|. We’ll call

the process of finding all such A and splitting along them splitting maximally.

A move is specified by a region R, a token label k ∈ {1, . . . , s} and a square

Sij (which is not necessarily in R). For every l with j < l ≤ n, if Sjl and Sil are

both in R and a k-token appears in Sjl but not in Sil, we move it from Sjl to Sil.

Also for each l with 1 ≤ l < i, if Sli and Slj are both in R and a k-token appears

in Sli but not in Slj, we move it from Sli to Slj.

The game is won when there is exactly one token in each square. The main

result from Chapter 2 that we shall need is Theorem 2.4.

Theorem 2.4 (for GL(n)). If the game can be won, then

∫

Fl(n)

ωπ1
· · ·ωπs ≥ 1.

In general, we can also use the game to study the cohomology rings of partial

flag manifolds by pulling back cohomology classes to the full flag manifold. We

shall now investigate this in some detail in the case of the Grassmannian. In

particular we prove a version of the converse of Theorem 2.4 for Grassmannian

Schubert calculus.
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3.2 Associating a game to a Grassmannian

Schubert Calculus problem

A Schubert cell relative to some base flag x0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn in the

Grassmannian Grl(n) is specified by a string σ = σ1 . . . σn of l ‘1’s and n − l

‘0’s. The Schubert cell Yσ,x0
can be described as the subspaces y of Cn such that

dim y ∩ Vr = σ1 + · · · + σr. We denote the cohomology class of its closure by Ωσ.

Given a list of s+2 01-strings σ1, . . . , σs, µ, ν, we will wish to study the integrals

∫
Ωσ1

· · ·Ωσs · Ωµ · Ων

We do so by investigating an equivalent problem on a full flag manifold.

Let N ≥ 0 be an integer. Let i1 < · · · < in−l denote the positions of the ‘0’s,

and j1 < · · · < jl denote the positions of the ‘1’s. We define three ways to associate

a permutation to a 01-string σ:

π(σ,N) = i1 . . . in−lj1 . . . jl(n + 1)(n+ 2) . . . (n+N)

π′(σ,N) = (i1 +N) . . . (in−l +N)12 . . . N(j1 +N) . . . (jl +N)

π′′(σ,N) = in−l . . . i1(N + n) . . . (n+ 1)jl . . . j1

We produce a list of permutations, π1, . . . , πs+2 ∈ Sn+N :

π1 = π(σ1, N)

...

πs = π(σs, N)

πs+1 = π′(µ,N)

πs+2 = π′′(ν,N)



Chapter 3. Root games on Grassmannians 43

Proposition 3.2.1.

∫

Grl(n)

Ωσ1
· · ·Ωσs · Ωµ · Ων =

∫

Fl(n+N)

ωπ1
· · · ωπs+2

Proof. If h ∈ H∗(X) is a Schubert class on X (some partial flag variety), let h∨

denote the opposite Schubert class. If h1, . . . hr are Schubert classes then to say

that ∫
h1 · · ·hr = c (3.1)

is equivalent to saying that

h1 · · · ĥi · · · hr = c h∨i + · · · (3.2)

in the Schubert basis. We’ll call Equation (3.2) the hi-special version of Equation

(3.1).

For a 01-string σ, let σ+ denote the string σ followed by N ones, and let +σ

denote the string σ preceded by N ones.

Consider the equation in H∗(GrN+l(n+N)):

∫

GrN+l(n+N)

[Yσi+
] · · · [Yσi+

][Y
+µ][Yν+

] = c. (3.3)

If we take the [Y
+µ]-special version of Equation (3.3) and pull it back to Grl(n),

we get the [Yµ]-special version of

∫

Grl(n)

[Yσ1
] · · · [Yσs][Yµ][Yν] = c

On the other hand, if we take the [Yν+]-special version of Equation (3.3) and

pull it back to F l(n+N) we get the [Xπs+2
]-special version of

∫

Fl(n+n)

[Xπ1
] · · · [Xπs+2

] = c.
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3.3 Converses for Grassmannians

3.3.1 The Grassmannian root game algorithm

Recall the correspondence between 01-strings and Young diagrams. Our Young

diagrams will be in the French convention (the rows are left justified and increase

in length as we move down). If σ is a 01-string σ, let ri(σ) denote the number of

1s before the ith 0. We associate to σ the Young diagram λ(σ) whose ith row is

ri(σ). We are allowing the possibility that some rows may have length 0.

If λ is a Young diagram, let N + λ denote the Young diagram obtained by

adding N squares to each row of λ including all rows which contain 0 squares.

Take σ1, . . . , σs, µ, ν to be 01-strings representing Schubert classes in Grl(n)

(if s = 1, we’ll write σ instead of σ1), and associate permutations π1, . . . , πs+2 as

before.

Theorem 3.1. Take N suitably large (N ≥ n − l will always suffice). The root

game corresponding to (π1, . . . , πs+2) can be won if and only if
∫

Grl(n)

Ωσ1
· · ·Ωσs · Ωµ ·Ων ≥ 1

Moreover, only moves involving tokens labelled 1, . . . , s are required.

Proof. ⇒ This follows from Proposition 3.2.1 and Theorem 2.4.

⇐ We shall first address the case where s = 1.

The initial positions of the 1-tokens are in the shape of the Young diagram

λ1 = λ(σ). The initial positions of the 2-tokens are in the shape of a Young

diagram λ2 = N + λ(µ). The squares that do not contain a 3-token are also in the

shape of a Young diagram, which we’ll denote λ̄3. See Figure 3.1.

If λ2 * λ̄3, then it is a basic fact that Ωµ · Ων = 0 ∈ H∗(Grl(n)). So we may

assume that no square contains both a 2-token and a 3-token. The squares which

contain neither a 2-token nor a 3-token are empty squares (since N is suitably

large), and are in the shape of a skew-diagram λ̄3/λ2.

At the outset of the game, some immediate splitting occurs. Each square con-

taining a 3-token becomes a one-square region of its own. The remaining squares
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are those of λ̄3, which also form an unsplittable region. In what follows there will

always be at most one unsolved region, which we shall refer to as the “big region”.

1=  λ 

2λ  /λ  =3

λ(µ) =

λ(ν) = 3λ  =

2λ  =

λ(σ) =
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Figure 3.1: Initial position of the game for σ = 010110, µ = 010101, ν = 001101,
with N = 2

Definition 3.3.1 (Zelevinsky [Zel81]). A picture between two (French) skew

diagrams is a bijection between their boxes with the property that if box A is weakly

above and weakly right of box B in one diagram, then the corresponding boxes A′

and B ′ are in lexicographic order (Sij precedes Si′j′ if i < i′ or i = i′ and j < j′)

in the other diagram.

Now
∫

Grl(n)
Ωσ ·Ωµ ·Ων is given by the Littlewood-Richardson coefficient cλ̄3

λ1λ2
,

which can be described [RW84, Zel81] as the number of pictures between λ1 and

λ̄3/λ2. In particular, if this number is non-zero, there exists such a picture. We

pick one, and denote by f the map it defines from the squares of σ to the squares

of λ̄3/λ2. Each of these squares in question is in fact also some square Sij in the

big region of the game.

We now use f to construct a root game which transports each 1-token to a

square of λ̄3/λ2.
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At each point in the game there will be a number associated to each unplaced

1-token (i.e. one which has not already reached its final destination) and each

square of λ̄3/λ2. Let t be a 1-token, whose initial square is S in σ, and whose

current square is Sij. Let Si′j′ = f(S). We associate to both t and to the square

Si′j′ the number i− i′.

The essential properties of this numbering scheme are the following:

Claim Initially, the numbers on the unplaced 1-tokens are are

a) weakly increasing in each row, and

b) weakly decreasing in each column

In λ̄3/λ2 the numbers are

c) weakly decreasing in each row, and

d) weakly decreasing in each column.

The proof is by a straightforward induction, proceeding right to left along each

row of λ̄3/λ2, beginning with the bottom row, and proceeding upward.

Note that since the number associated to the lower-leftmost token is at least 0

the number associated to each token/square is non-negative. Call an empty square

of λ̄3/λ2, or 1-token in a square of λ2, ready if it has the number 0 associated to

it.

It will be evident that the algorithm below will preserve the properties in the

claim.

The Grassmannian root game algorithm (GRGA)

1. If any of the 1-tokens are ready, go to step 2. Otherwise, perform a sequence

of moves to shift all unplaced 1-tokens up one square. (Choosing N suffi-

ciently large ensures it is possible to do this.) This will decrease the number

associated to each 1-token by 1. Repeat this step until some 1-token is ready.
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2. Scan through the columns of λ̄3/λ2, beginning with the rightmost column

and proceeding to the left. Within each column locate the topmost square

which does not already contain a 1-token. Let S be the first ready square

which we encounter in this way.

3. Find a ready token t in the same row as the square S. Make the unique move

which causes t to move into S. This may cause other tokens to move as well.

4. Repeat steps 1 through 3 until every square of λ̄3/λ2 contains a 1-token.

For s = 1 the game will be won at this point. However in order to make use of

this algorithm effectively in the case where s > 1, we will require the following

additional step.

5. Split in a minimal way so that every 1-token is in a one-square region of its

own.

A small example of the GRGA and all of its the moves from beginning to end

is illustrated in Example 3.3.2, at the end of this proof.

We now show that the algorithm will win the game.

• A move from step 3 causes only ready tokens to move. Because S is the top

square in its column, no tokens above t move. Because of part (b) in the

claim, all tokens below t are ready.

• Only ready squares are filled. The algorithm attempts to fill the rightmost

squares first. If there is a ready square in the some column, the topmost

empty square without a token in that column will also be ready (by part (d)

of the claim), and thus the algorithm will never fill a square left of it first.

However, by part (c) of the claim the ready squares are rightmost in their

row. Thus the only way a non-ready square could be filled is if there were

more ready tokens than ready squares in some row. But this is impossible.

• The move from step 3 is always possible. An empty square S is ready if and

only if the 1-token which began in the square f−1(S) is in the same row as
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S. Since only ready squares are filled by ready tokens, the number of ready

squares and ready tokens in any given row is always equal. So if there is a

ready square S in some row, there is also a ready token t in that row, and t

is left of S.

• Every ready square eventually gets filled (by a ready token). First every ready

square in the rightmost column is filled; then the next rightmost column, and

so on.

Now because step 1 decreases the number associated to each square by 1, every

square of λ̄3/λ2 is ready at some point; thus the algorithm puts a 1-token in each

square of λ̄3/λ2, at which point the game is won.

For s > 1, we proceed by induction. Suppose
∫
ωπ1

· · ·ωπs+2
6= 0. Then we can

write

ωπ2
· · · ωπs+1

= cωρ + · · · (3.4)

in the Schubert basis such that c > 0 and

∫
ωπ1

· ωρ · ωπs+2
6= 0.

By the s = 1 argument we can win the game corresponding to (π1, ρ, πs+2), only

moving 1-tokens. It is easy to see that exactly the same sequence of moves and

splittings (in step 5), can be made in the game for (π1, π2, . . . , πs+1, πs+2), and

that it causes the 1-tokens to end up in exactly the same final destinations. This

sequence of moves no longer wins the game; however, suppose we now replace each

1-token by an (s + 2)-token. This has no effect whatsoever on the game, because

after step 5 every 1-token is in its own one-square region. But now we have precisely

reached the initial position of the game corresponding to π2, . . . , πs+1, w0ρ. This

is again a game associated to a Grassmannian problem, and by Equation 3.4 the

Schubert intersection number is non-zero. By induction, there is a sequence of

moves to win this new game. Thus by concatenating the two sequences of moves,

one can win the original game.
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3.3.2 An example

Example 3.3.2. Figures 3.2 and 3.3 illustrate the GRGA in action. This example

is on Gr4(7), with σ = 1010101, µ = 1001011, ν = 0100111, and N = 3. Only

the 1-tokens are shown in this diagram (the number is the number associated to

that token, not the “token label”). Each 1-token is given a shading and the cor-

responding square under f in λ̄3/λ2 is shaded similarly. Only the squares in the

upper right 3 × 7 rectangle are shown here, as these are the only ones relevant to

the movement of the 1-tokens. Each unshaded square actually contains a 2-token.

The two darkly shaded squares in the upper right corner contain 3-tokens, as do

each of the squares not shown in this diagram, but these squares are not part of

the big region.

3.3.3 Remarks

In step 3 of the GRGA, there is a somewhat canonical choice for the token t,

namely the leftmost ready token in its row. If we use this choice of t, one can

verify that the game actually transports the 1-token which is initially in square S

to the square f(S).

In the GRGA, we do not split maximally before every move. It can never be

harmful to split maximally between moves, however in this case, very little changes

if one does. In particular, note that in the s = 1 case it is possible to win the game

without any further splitting beyond that which occurs at the outset. In Section

3.4 we will make use of this fact.

The root game can be used to determine whether or not Ωσ1
· · ·Ωσs ·Ωµ ·Ων = 0,

even if the cohomological degree of the product is not dimRGrl(n). To do this, we

modify the game by changing the winning condition to read “at most one token

in each square”, rather than “exactly one token in each square”. Once we do this,

the above product will be non-zero if and only if the modified game can be won

(see Section 2.4.2). However, under these more general circumstances, there is

no longer an easy necessary and sufficient condition indicating when splitting is
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Figure 3.2: The Grassmannian root game algorithm. Here σ = 1010101, µ =
1001011, ν = 0100111, and N = 3.
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Figure 3.3: Continuation of Figure 3.2
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advantageous.

One of the unfortunate features of this presentation is the asymmetry in the

way the permutations π1, . . . , πs+2 are defined. However, as the proof is valid

for arbitrary s, we can produce a symmetrical game by taking σ1, . . . , σs to be

arbitrary, and ν = µ = 0 . . . 01 . . . 1, so that Ων = Ωµ = 1 ∈ H∗(Grl(n)). Compare

Figures 3.1 and 3.4.
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Figure 3.4: Initial position of the game for σ1 = 010110, σ2 = 010101, σ3 = 001101,
µ = ν = 000111, with N = 2. Squares are shaded if they contain a 4-token or a
5-token. Contrast with Figure 3.1.

The result would be nicer if we could take N = 0 in the theorem. Although

we are not aware of any example which prove that this is not the case, the GRGA

simply falls apart if N is too small. There are several problems which occur with

trying to follow a similar approach. The most serious of these is that a token

may be to the right of the square for which it is destined (according to the chosen

Zelevinsky picture). We instead prove a geometrical analogue of Theorem 3.1 for

all N , which we describe in the next section.
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3.4 The geometry of root games on

Grassmannians

3.4.1 T -fixed points on B-orbit closures

For simplicity of argument we shall once again assume s = 1. Let B denote the

standard Borel subgroup of GL(n + N) (upper triangular matrices), and let B−

denote its opposite (lower triangular matrices). For any B-module V let Gr(V )

be the disjoint union of all Grassmannians Grk(V ), 0 ≤ k ≤ dimV .

In Chapter 2, Section 2.3.8, we show that the position of tokens in a single

region of the game corresponds to a pair (U, V ) where V is a B-module, and

U = (U1, U2, U3) is a T -fixed point on Gr(V )3 (or equivalently the Uk are T -

invariant subspaces of V ).

A move in the game (or a sequence of moves without splitting regions) takes

the pair (U, V ) to the pair (U ′, V ) where U ′ is in the B3-orbit closure through U .

If it happens that dimU ′
1 + dimU ′

2 + dimU ′
3 = dimV and U ′

1 + U ′
2 + U ′

3 = V then

that region is won. If U ′ satisfies these properties we’ll call it transverse. Thus

solving a region provides a road map to locating a transverse point U ′ ∈ B3 · U .

Most importantly,

Fact 3.4.1. For each region of the game consider the associated pair (U, V ). If for

each region in the game there exists T -fixed point U ′ ∈ B3 · U which is transverse,

then ∫

Fl(n)

ωπ1
· ωπ2

· ωπ3
≥ 1

This is true at any stage in the game. However from here on in we shall restrict

our attention to the state of the game before the first move is made, but after

splitting. In which case, Fact 3.4.1 is just one direction of the following result.

Fact 3.4.2. Consider the regions which occur at the outset of the game, and the

associated pairs (U, V ). Then
∫

Fl(n)

ωπ1
· ωπ2

· ωπ3
≥ 1
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if and only if for each region of the game there exists a transverse point U ′ ∈ B3 · U .

The details of both of these facts are spelled out in the proof of Theorem 2.4

including how the pair (U, V ) is associated to an arrangement of tokens in a region.

The primary question concerning the game is therefore how specialised can we

make the point U ′, and still have Fact 3.4.2 be true. There are three levels of

specialisation that we could request of this transverse point U ′.

1. U ′ is any transverse point in B3 · U .

2. U ′ is a T -fixed transverse point in B3 · U .

3. U ′ is a (T -fixed) transverse point in B3 · U , where (U ′, V ) comes from a

position in the game for (π1, π2, π3).

Level 1 is always possible, if
∫

Grl(n)
Ωσ ·Ωµ ·Ων ≥ 1. This is the content of Fact

3.4.2.

For Grassmannian Schubert calculus, and N sufficiently large, we can actually

demand any of these levels of specialisation. Level 3, which is the most specialised,

is equivalent to asking for the game to be won without splitting any regions (after

the initial splitting). By Theorem 3.1, we know this is possible if
∫

Grl(n)
Ωσ·Ωµ·Ων ≥

1.

Level 2 is equivalent to asking for a converse to Fact 3.4.1. Since Level 2 is

less specialised than Level 3, this converse is also true for Grassmannian Schubert

problems if N is sufficiently large. Our goal in this section is to show the that the

converse of Fact 3.4.1 is true in the case of Grassmannian Schubert problems even

for N = 0. This is the content of Theorem 3.2.

To make this more concrete, we now explicitly describe the initial pair (U, V ),

for a game associated to σ, µ, ν. (Since there is only one unsolved region R in the

initial configuration of tokens, we only need one pair to describe the state.) Let

Mn+N be the space of (n+N)×(n+N) matrices, having basis eij, on which B acts

by conjugation. Let Ri,j denote the B-submodule of Mn+N generated by the entries

in the upper right i×j rectangle. Let Q be the B-submodule of Rl,n+N−l generated
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by eij such that Sij contains a 3-token. Then V is the quotient Rl,n+N−l/Q. Note

V has a basis {ẽij := eij + Q|Sij ∈ R}. The point U ∈ Gr(V )3 is described as

follows: Uk is the span of those ẽij such that Sij initially contains a k-token. Note

that U3 = {0}, so we may ignore U3 altogether.

Theorem 3.2. For every N ≥ 0,
∫

Grl(n)

Ωσ ·Ωµ · Ων ≥ 1

if and only if with (U, V ) as above, there is a transverse T -fixed point U ′ in B3 · U .

Moreover U ′ exists such that U ′
2 = U2.

Proof. ⇐ This follows from Proposition 3.2.1 and Fact 3.4.1.

⇒ We know the result is true for N sufficiently large, as this is the geometrical

analogue of Theorem 3.1. We use this fact deduce the result for other values of N .

Assume ∫

Grl(n)

Ωσ · Ωµ · Ων ≥ 1.

For any two choices of N , say N1 and N2, there is a linear map φN1,N2
between

V (N=N1) and V (N=N2), given by φN1,N2
: ẽij 7→ ẽij′ where j′ = j + N2 − N1 (or 0

if Sij′ /∈ R). Note that d = dimU1 is independent of N . Thus φN1,N2
induces a

map φ∗ from
{
X ∈ Grd(V

(N=N1))|X ∩ kerφN1,N2
= {0}

}
(a dense open subset of

Grd(V
(N=N1))) to Grd(V

(N=N2)), given by

φ∗(X) = Image φN1,N2
|X.

Moreover if U ′(N=N1) =
(
U ′

1
(N=N1), U

(N=N1)
2 , {0}

)
is transverse then so is the point

(
φ∗(U

′
1
(N=N1)), U

(N=N2)
2 , {0}

)
∈ Gr(V (N=N2))3.

If the result holds for N = N1 and this latter point lies in the B3-orbit closure

through U (N=N2), then the result will be true for N = N2 as well.

It suffices to show the result for N = 0. This is because for φ0,N2
the map φ∗ is

an inclusion of the B-orbit closure through U
(N=0)
1 into the B-orbit closure though

U
(N=N2)
1 .
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The result holds for N sufficiently large. Thus there exists a transverse U ′(N=N1)

for some N1. We now consider the map φN1,0. Note that U ′
1
(N=N1) is in the domain

of the induced map φ∗. We show that φ∗ takes a dense subset of B · U
(N=N1)
1 to a

dense subset of B · U (N=0)
1 .

To see this we consider the B-orbit not on U1 ∈ Gr(V ), but lifted to a point

Ũ1 ∈ Gr(Rl,n+N−l). (Ũ1 is defined in the same way as U1: as the span of eij such

that Sij initially contains a 1-token.) It suffices to show that φ∗ takes a dense

subset of B · Ũ (N=N1)
1 to a dense subset of B · Ũ (N=0)

1 .

Let L ∼= GL(l)×GL(N+n−l) be the subgroup of GL(n+N) of block diagonal

matrices of type (l, n + N − l). Now L also acts on Rl,n+N−l, and Ũ1 is fixed by

B− ∩ L. Since (B ∩ L) · (B− ∩ L) is dense in L, it follows that the orbit B · Ũ1 is

dense in L · Ũ1.

Thus in fact it suffices to show that φ∗ takes a dense subset of L(N=N1) · Ũ (N=N1)
1

to a dense subset of L(N=0) · Ũ
(N=0)
1 . But this is true, as

φ∗

(



Al×l 0 0

0 Bn×N1 Cn×n

0 DN1×N1 EN1×n


 Ũ

(N=N1)
1

)
=

[
Al×l 0

0 Cn×n

]
Ũ

(N=0)
1 .

Thus U ′
1
(N=0) = φ∗(U

′
1
(N=N1)) lies in B · U

(N=0)
1 , as required.

An immediate consequence of this theorem is the following.

Corollary 3.4.3. Fix σ and ν, and write

Ωσ · Ων =
∑

µ

cσνµΩ∨
µ .

The non-zero structure constants cσνµ correspond precisely to the B-fixed points on

B · U1 ⊂ Gr(V ).

Proof. The B-fixed points on Gr(V ) are the T fixed points which are complemen-

tary to U2 for some choice of µ. By Theorem 3.2 such a point exists for a given µ

if and only if

cσµν =

∫

Grl(n)

Ωσ ·Ωµ · Ων 6= 0.
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3.4.2 The moment polytope

Recall that the action of a Lie group K on a symplectic manifold (M,ω) is Hamil-

tonian if there is there is a map w : M → k∗ satisfying

ω−1(ξ#) = d〈w(m), ξ〉

(here ξ# represents the vector field on M generated by ξ ∈ k). The map w is called

the moment map for the K-action. If M is compact, and K is a real torus, the

image of the moment map w(M) is a polytope called the moment polytope of

M . It is well known that the moment polytope is equal to the convex hull of the

w-images of K-fixed points on M (Atiyah/Guillemin-Sternberg [Ati82, GS82]).

Put u = dimU1. Let Zν
σ denote the B-orbit closure B · U1 ⊂ Gru(V ). This

depends on both σ and ν (as V is defined in terms of ν and U1 is defined in terms

of σ), but not on µ.

Let now TR denote the real maximal torus inside B ⊂ GL(n) which acts on V .

Recall that the Plücker embedding of

Gru(V ) →֒ P(dim V
u )−1

induces a canonical symplectic form on Gru(V ), by pulling back the Fubini-Study

form. The action of TR on Gru(V ) is Hamiltonian, and preserves Zν
σ ; let w denote

the moment map for this action. Thus we may consider the restriction of w to Zν
σ ,

and so Zν
σ has a moment polytope, which we denote ∆ν

σ.

The B-fixed points on Zν
σ correspond to non-vanishing Littlewood-Richardson

numbers. However, they are special for another reason as well. We will show

that they are all extremal points (vertices) of ∆ν
σ. Moreover, it is easy to identify

which vertices of the moment polytope are the images of B-fixed points. Thus, we

do not need a complete description of Zν
σ to determine non-vanishing Littlewood-

Richardson numbers in this way: we only need the moment polytope ∆ν
σ.

Let us begin by identifying the image of a TR-fixed point (equivalently a T -

fixed point) under w. The Fubini-Study symplectic form has the property that the

image of a T -fixed point on l ∈ PN is the T -weight of the line l. It follows from
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basic properties of moment maps and of the Plücker embedding that the image

of a T -fixed point P ∈ Gru(V ), is the sum of the T -weights of P . That is if we

decompose

P ∼=
⊕

α∈T ∗

(Cα)nα

as a T -representation (where Cα denotes the T -irrep of weight α), then

w(P ) =
∑

α∈T ∗

nαα.

Let x1, . . . , xn denote the standard basis for Rn. We identify t∗R with the sub-

space of Rn, {(a1, . . . , ar) |
∑n

i=1 ai = 0}. For a T -fixed point P , let P̂ denote the

set of (i, j) such that ẽij ∈ P . Thus

P = span{ẽij | (i, j) ∈ P̂}.

We therefore have

w(P ) =
∑

(i,j)∈P̂

xi − xj.

Whenever P is a T -fixed point, we will also define a complementary function

w̄(P ) =
∑

(i,j)∈V̂ \P̂

xi − xj.

In terms of the familiar root game diagrams, we can view P as an arrangement

of tokens inside the region R. We place a token in the square Sij iff (i, j) ∈ P̂ .

Then

w(P )k =





# of tokens in row k, if k ≤ n− l

−(# of tokens in column k), if k > n− l

whereas w̄(P ) counts the number of empty squares in the rows and columns re-

spectively. The B-fixed points are those T -fixed points for which all the tokens are

justified upward and to the right.

Theorem 3.3. Let P0 be a T -fixed point of Zν
σ , and put

w̄(P0) = (p1, . . . , pn−l,−qn−l+1, . . . ,−qn).
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1. If P0 is a B-fixed point then w(P0) is a vertex of ∆ν
σ.

2. If w(P0) is a vertex of ∆ν
σ, the P0 is a B-fixed point if and only if p1 ≤ · · · ≤

pn−l, qn−l+1 ≥ · · · ≥ qn, and these are dual partitions.

Proof. We will show that these statements are true for the moment polytope of

Gru(V ), and therefore also for ∆ν
σ.

First suppose P0 is a B-fixed point. We would like to show that w(P0) is a

vertex. To this end, we must find a linear functional ξ : t∗
R
→ R, such that ξ(w(·))

attains its maximum only at P . Given a candidate ξ, we know a priori that ξ

attains its maximum on a TR-invariant subset of Gru(V ); thus it is sufficient to

show that ξ(w(P0)) > ξ(w(P )) for all other TR-fixed points P .

Let ρ = (n
2
, n

2
−1, . . . , 1− n

2
,−n

2
) (this is the Weyl vector for GL(n)). We claim

that the linear functional ξ(a) = a · (ρ− w̄(P0)) is maximised only at P0. We have

ξ(w(P0)) − ξ(w(P )) =
∑

(i,j)∈P̂0

ξ(xi − xj) −
∑

(i,j)∈P̂

ξ(xi − xj)

=
∑

(i,j)∈P̂0\P̂

ξ(xi − xj) +
∑

(i,j)∈P̂\P̂0

−ξ(xi − xj).

Now,

ξ(xi − xj) = (xi − xj) · (ρ− w̄(P0))

= ρi − ρj − w̄(P0)i + w̄(P0)j

= (j − i) − (pi + qj).

It is easy to interpret this quantity combinatorially in terms of the tokens for P0.

Consider a walk from the lower left square of R to the square Sij, always moving

upward or to the right. Such a walk passes through j − i squares. On the other

hand since P0 is a B-fixed point, the tokens are justified upward and to the right,

so consider the empty squares encountered on such a walk. If Sij contains a token,

there are at least pi + qj empty squares encountered, and at most j − i − 1, so

pi + qj ≤ j − i − 1. On the other hand if Sij does not contain a token, then

all squares are empty on this walk, and their number is at least pi + qj − 1, so
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pi + qj − 1 ≥ j − i. Thus we have ξ(xi − xj) = (j − i)− (pi + qj) > 0 if (i, j) ∈ P̂0,

and ξ(xi − xj) < 0 otherwise.

From here we easily see that ξ(w(P0)) − ξ(w(P )) > 0 if P 6= P0, thus proving

that w(P0) is a vertex.

For the second statement, the ⇒ direction is clear. On the other hand, for every

dual pair of partitions, p1 ≤ · · · ≤ pn−l, qn−l+1 ≥ · · · ≥ qn with
∑
pi = dimV − u,

there is a B-fixed point P ∈ Gru(V ) with w̄(P ) = (p1, . . . , pn−l,−qn−l+1, . . . ,−qn).

But we have just shown that there is a linear functional ξ such that ξ(w(·)) is

maximised uniquely at P . So if w̄(P0) = (p1, . . . , pn−l,−qn−l+1, . . . ,−qn), then

P = P0, so P0 is a B-fixed point.

Corollary 3.4.4. Let (t1, . . . , tn) =
∑

(i,j)∈V̂ xi − xj. For fixed σ and ν, the set

of µ such that cσνµ ≥ 1 is in bijective correspondence with the set of vertices

(x1, . . . , xn) ∈ ∆ν
σ which satisfy the following conditions:

1. t1 − x1 ≤ · · · ≤ tn−l − xn−l.

2. xn−l+1 − tn−l+1 ≥ · · · ≥ xn − tn.

3. The partitions λ(x) = (t1 − x1, . . . , tn−l − xn−l) and λ∨(x) = (xn−l+1 −

tn−l+1, . . . , xn − tn) are dual.

Moreover, λ(x) is the partition associated to µ under the bijective correspondence.

Proof. If P is a B-fixed point in Zν
σ , then w̄(P ) = (t1, . . . , tn)−w(P ). Thus if x is

a vertex of ∆ν
σ, then w−1(x) is B-fixed point if and only if conditions 1–3 hold. If

µ is such that cσνµ ≥ 1, then µ↔ x if and only if we have w−1(x)+U2 = V . From

this, it is straightforward to check that λ(x) is indeed the partition associated to

µ.
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Chapter 4

The vanishing problem for

branching Schubert calculus

4.1 Preliminaries

4.1.1 Branching Schubert calculus

Our objective in this chapter is to show that all of the results of Chapter 2 hold

in an even more general setting, which we call branching Schubert calculus. Let

i : K ′ →֒ K be an inclusion of compact connected Lie groups. Let T ′ be a maximal

torus of K ′, and let T extend the image i(T ′) to a maximal torus of K. Then we

obtain an inclusion i : K ′/T ′ →֒ K/T (which we also denote by i, in a mild abuse

of notation). Hence there is a map on cohomology i∗ : H∗(K/T ) → H∗(K ′/T ′).

The problem of branching Schubert calculus is to determine the map i∗ in the

Schubert basis, i.e. given a Schubert class ω ∈ H∗(K/T ) we would like to express

i∗(ω) ∈ H∗(K ′/T ′) in the Schubert basis of the later.

The coefficients which appear in such an expression are always non-negative

integers. Although there are formulae for these integers, it is not known how to

determine them combinatorially, or even how to determine which terms appear.

Our goal in this paper is simply to investigate the latter problem, and to obtain

some widely applicable criteria for determining which terms appear.
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Our motivation for this work comes from a paper of Berenstein and Sjamaar

[BS00], in which they use the vanishing problem for branching Schubert calculus

to calculate the K ′ moment polytope of a K coadjoint orbit. They show that

each non-vanishing branching coefficient gives rise to an inequality satisfied by

the moment polytope. Moreover, all together, the complete list of non-vanishing

branching coefficients gives a sufficient set of inequalities to determine this poly-

tope.

This turns out to be equivalent to an asymptotic representation theory question

[Hec82, GS82] (for more of this picture see also [GLS96]). Let λ and µ be dominant

weights for K and K ′ respectively. Let Vλ denote the irreducible K-representation

with highest weight λ; similarly let V ′
µ denote the irreducible K ′-representation

with highest weight µ. When Vλ is decomposed as a K ′-module, we would like

to know whether a component of type V ′
µ appears. The asymptotic version of

this problem is the following: does there exists a positive integer N , such that

the K-module VNλ has a component of type V ′
Nµ, when decomposed as a K ′-

module? This latter problem is equivalent to determining whether the point µ lies

in the K ′-moment polytope for the K-coadjoint orbit through λ. Thus the non-

vanishing branching coefficients give an answer to this asymptotic representation

theory question as well.

There are a few important things to note about the vanishing problem for

branching Schubert calculus. The first is that this situation actually generalises

the vanishing problem for multiplication in Schubert calculus. Indeed if i : K ′ →֒

K = K ′ ×K ′ is the diagonal inclusion, then the map i∗ is just the cup product in

cohomology. Moreover, this can be used to give multiplication of more than two

terms by considering K ′ →֒ K ′ × · · · ×K ′.

The second is that it suffices to solve the following apparently simpler problem:

determine which Schubert classes are in the kernel of i∗. In the case of vanishing for

multiplication of Schubert classes, this is a familiar fact: we can determine which

structure constants of the cohomology ring are zero, based on the which triple

products vanish. More generally, suppose we wish to know whether the Schubert
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class σ ∈ H∗(K ′/T ′) appears in the expansion of i∗(ω), for some Schubert class

ω ∈ H∗(K/T ). To do this we find the dual Schubert class σ∨ under the Poincaré

pairing and consider the integral

∫

K′/T ′

σ∨ · i∗(ω).

If this integral is non-zero (and therefore positive), then σ appears in the expansion

of i∗(ω) (with coefficient equal to
∫

K′/T ′
σ∨ · i∗(ω)) otherwise it does not. Now

consider the inclusion j = id× i : K ′ →֒ K ′ ×K. We have the Schubert class

(σ∨, ω) ∈ H∗(K ′/T ′) ×H∗(K/T ) = H∗(K ′ ×K/TK×K′).

But now σ∨ · i∗(ω) = j∗(σ∨, ω) so

∫

K′/T ′

σ∨ · i∗(ω) =

∫

K′/T ′

j∗(σ∨, ω).

Thus it is sufficient to know whether j∗(σ∨, ω) = 0, for any given pair (σ∨, ω)

(together with deg σ∨ + degω = dimK/T + dimK ′/T ′, this is a necessary and

sufficient condition).

We will find it more convenient to formulate our problem in this latter way:

given i : K ′ →֒ K as before, determine which Schubert classes on K/T are in the

kernel of i∗.

4.1.2 Conventions

In order to study Schubert classes on K/T and K ′/T ′, it is convenient to pass to

a complex picture.

Let G and H be complex connected reductive Lie groups which are the com-

plexifications of K and K ′ respectively. The inclusion K ′ →֒ K induces a natural

inclusion H →֒ G.

Choose a Borel subgroup B0 ⊂ G, and consider the H-orbits on G/B0 of

minimal dimension. Each such orbit is closed, therefore, compact, and so is H/P

for some parabolic subgroup P ⊂ H. Choose a point x0 on such an orbit. The
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stabiliser of x0 inside H, Hx0
, is conjugate to P , whereas the stabiliser of x0 inside

G, Gx0
, is conjugate to B0. Thus Hx0

⊂ Gx0
is solvable, but H/Hx0

is compact,

hence Hx0
is a Borel subgroup of H.

Let B = Gx0
and B ′ = Hx0

. We can now identify T with Kx0
(the stabiliser of

x0 inside K), and T ′ with K ′
x0

. Moreover, we have G/B naturally isomorphic to

K/T , and H/B ′ naturally isomorphic to K ′/T ′. Thus we have naturally extended

T ′ →֒ T to an inclusion of Borel subgroups B ′ →֒ B.

To complete this picture, we will also wish to consider the complex tori T ′
C

and

TC, which will denote the complexifications of T ′ and T respectively. Also let N ′

and N denote the corresponding unipotent subgroups of B ′ and B. Of course,

T ′ →֒ T , and N ′ →֒ N .

Let ∆ denote the root system of G, and ∆′ the root system of H. The positive

and negative roots of ∆ (with respect to the choice of B) are denoted ∆+ and ∆−

respectively. For each root α ∈ ∆, we fix a basis vector eα for the corresponding

root space in g. Likewise, for each root β ∈ ∆′, we fix a basis vector e′β for the

corresponding root space in h.

We will denote the Lie algebras of these groups by the corresponding fraktur

letters, e.g. Lie(B) = b, Lie(N ′) = n′, etc.

Consider the tangent spaces to x0 in G/B and H/B ′. These are g/b and h/b′

respectively. Thus we have a natural inclusion h/b′ →֒ g/b. We use the Cartan

involution to identify n with n−, denoted a 7→ aT , and the Killing form to identify

n with (g/b)∗. Similarly, we identify the dual of h/b′ with n′. Thus we obtain a

linear map

φ : n → n′

which is adjoint to the inclusion of tangent spaces. Essentially φ encodes all the

information about the inclusion K ′ →֒ K.

Note that since x0 is a T ′-fixed point, the map φ is T ′-equivariant. Thus, it

takes the T -weight spaces to T ′-weight spaces, and induces a map

φ̂ : ∆ → ∆′ ∪ {0}
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defined by the condition that

φ̂(α) =





0, if φ(eα) = 0

β, where 0 6= φ(eα) is in the β-weight space

We will be interested in subsets of T ⊂ ∆ with the following properties.

Definition 4.1.1. Suppose T ⊂ ∆ satisfies

1. 0 /∈ φ(T ), and
2. φ̂|T is injective.

We call such a subset T injective. Equivalently T ⊂ ∆ is injective if φ|〈eα |α∈T 〉

is an injective linear map.

4.1.3 Schubert varieties

Let W = N(T )/T denote the Weyl group of G. For π ∈ W , let [π] denote the

corresponding T -fixed point on G/B, and let π̃ denote some lifting of π ∈ W to

an element of N(T ) ⊂ G.

Let w0 denote the long element inW . For π ∈W , let π′ = w0π. To each π ∈W

we associate the Schubert variety Xπ = B · [π′], the closure of the B-orbit through

[π′] in G/B. This is the Schubert variety based at the point x0 = [1]. (We are

defining our Schubert varieties to be B-orbits rather than B−-orbits. This is why

our orbit is through [π′] rather than [π]. Since Xπ = w̃0 · B−[π], the cohomology

class of the B-orbit through [π′] is the same as the class of the B−-orbit through

[π]. This change of notation from Chapter 2 makes our lives easier, since Schubert

varieties of G/B and H/B ′ now have the same base point.) The length of π ∈W

is the complex codimension of Xπ.

More generally, for y, y0 ∈ G/B we say that y is π-related to z if there is a

g ∈ G such that g · y0 = x0 and g · y ∈ Xπ. Let Xπ,y0
denote the Schubert variety

associated to π based at y0, that is

Xπ,y0
= {y ∈ G/B | y is π-related to y0.}
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so Xπ = Xπ,x0
.

Let ωπ denote the cohomology class of the Schubert cell Xπ. In this paper,

we shall be investigating the question of whether i∗(ωπ) = 0, for π ∈ W . We will

assume that π ∈ W is an element whose length l(π) ≤ dimH/B ′ (all dimensions

are over C unless otherwise specified). If l(π) > dimH/B ′ then i∗(ωπ) = 0 for di-

mensional reasons. We are primarily interested in the case where l(π) = dimH/B ′,

however almost everything in this paper holds for all π ∈W .

4.1.4 An example of the branching root game

In Section 4.2 we will give the complete rules of the root game, and a number

of examples. Here, we will simply describe a few of the salient features, and

give a simple example. As before, the root game is played on a set of squares

corresponding to the positive roots of G. Each square can be empty or contain

a token (of which there is now only one type), and there can never be more than

one token in any square; thus the arrangement of the tokens T can be viewed as a

subset of ∆+. We then perform a sequence of moves. Possible moves are specified

by an element β ∈ ∆+. A move causes some subset of the tokens to be relocated

to different squares.

The object of the game is to perform a sequence of moves such that the eventual

arrangement of tokens T is injective (Definition 4.1.1). Thus in order to play

the root game in practice, we shall need to compute the map φ̂ in a number of

examples. If we can reach such a position we say that the game can be won. Our

non-vanishing criterion (Theorem 4.2) states that if the game can be won, then

i∗(ωπ) 6= 0.

Example 4.1.2. We consider the example of i : SO(5,C) →֒ SL(5). In this case,

the squares correspond to (A4)+ = {xj − xi | 1 ≤ i < j ≤ 5}, which we arrange in

a staircase shape (see Example 4.2.1). The map φ̂ corresponds to folding along the

antidiagonal (see Example 4.2.7), as shown below.
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SL(5)
A B C 0 SO(5)

D 0 C C
D B −→ D B

A A

The squares on the antidiagonal map to 0 under φ̂.

If π = 31254, then the initial arrangement of tokens is

♠ ♣

•

This is not a winning position, since the upper left corner square and lower right

corner square map both contain tokens, and to the same element under φ̂. However,

from here we can move to a winning position. The move corresponding to the root

x4 − x3 will cause two of the tokens to move (as we shall see in Section 4.2). The

•-token will move up one square, and ♣-token will move right one square.

♠ ♣

•

We see now that this arrangement of tokens is injective, since there are no tokens

on the antidiagonal, and after folding along the antidiagonal, there is at most one

token in each square.

×
× ♣

•
♠

(The ‘×’s denote the antidiagonal whose image is {0} under φ̂.)

We conclude that i∗(ω31254) 6= 0.

4.2 Root games for branching Schubert calculus

4.2.1 The roots of G and H

The position in a root game consists of the following data:
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• A partition of the set of positive roots, i.e. R = {R1, . . . , Rs}, such that

∆+ =
∐s

i=1Ri. Each Ri is called a region.

• A subset T of the positive roots, which we call the arrangement of tokens.

We visualise this information as follows. To each positive root α ∈ ∆+, we assign

a square Sα. If α ∈ T , we place a token in that square, otherwise the square is

empty. We view the tokens as physical objects which can be picked up from one

square, and placed in another.

The regions are just sets of the squares. As such, if R is a region, we will

sometimes write Sα ∈ R rather than α ∈ R.

In the abstract, these squares serve no real purpose. However, in practice they

provide a concrete way of visualising the positive roots of G. We now give a

few examples, illustrating how this can be accomplished in types A, B, and D.

The rationale for the arrangements in Examples 4.2.2 and 4.2.3 comes from the

calculations in Examples 4.2.6 and 4.2.7.

In the following examples x1, . . . , xn is an orthonormal basis for Rn.

Example 4.2.1. If G = SL(n), The root system ∆ = An−1 is {αij = xj −

xi | i 6= j}. The positive roots are those for which i < j. We can view our

squares corresponding to the positive roots as being arranged inside an n×n array

of squares. Let ASij denote the square in position (i.j). The relevant squares are

squares ASij (the square in position (i, j)), where 1 ≤ i < j ≤ n. Thus the positive

root αij, with i < j is assigned to the square ASij.

∆(SL(6))+ = (A5)+ =

α12 α13 α14 α15 α16

α23 α24 α25 α26

α34 α35 α36

α45 α46

α56

Example 4.2.2. If G = SO(2n), the root system ∆ = Dn is

{(−1)εxi + (−1)δxj | i 6= j}.
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The positive roots are of two types:

{βij = xj − xi | i < j} ∪ {β ′
ij = xj + xi | i < j}

We view the squares as two copies of the SL(n) picture: one copy for the βij, and

the second copy for the β ′
ij. We arrange these two copies inside a 2n× n array of

squares (denoted DSij) as follows: the root βij corresponds to the square DSn+i,j .

The root β ′
ij corresponds to the square DSn+1−i,j .

∆(SO(10))+ = (D5)+ =

β ′
45

β ′
34 β ′

35

β ′
23 β ′

24 β ′
25

β ′
12 β ′

13 β ′
14 β ′

15

β12 β13 β14 β15

β23 β24 β25

β34 β35

β45

Example 4.2.3. If G = SO(2n + 1), the root system ∆ = Bn is

{(−1)εxi + (−1)δxj | i 6= j} ∪ {±xi}.

The positive roots are of three types:

∆+ = {γij = xj − xi | i < j} ∪ {γ′ij = xj + xi | i < j} ∪ {γ◦j = xj}.

We arrange the squares inside a (2n + 1) × n array of squares (denoted BSij) as

follows: the root γij corresponds to the square BSn+1+i,j . The root γ′ij corresponds

to the square BSn+1−i,j. The root γ◦j corresponds to the square BSn+1,j.

∆(SO(9))+ = (B4)+ =

γ′34

γ′23 γ′24

γ′12 γ′13 γ′14

γ◦1 γ◦2 γ◦3 γ◦4
γ12 γ13 γ14

γ23 γ24

γ34

The rules of the game heavily involve the map φ̂. Thus before proceeding

further, we compute this map in a number of important examples.
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Example 4.2.4. If H →֒ G1, . . . , H →֒ Gs, then H →֒ G = G1 × · · · ×Gs via the

diagonal map. Let φ̂i : ∆(Gi)+ → ∆′ ∪ {0} denote the map on root systems for

H →֒ Gi. The positive roots of G are ∆+ = ∆(G1)+ ⊔ · · · ⊔ ∆(Gs)+, and

φ̂ : ∆+ → ∆′
+ ∪ {0}

is simply given by φ̂(α) = φi(α) if α ∈ ∆(Gi)+.

In particular, if H = G1 = · · ·Gs, then each φ̂i is just the identity map. Thus

this example allows us to deal with the vanishing problem for multiplication of

Schubert calculus.

Example 4.2.5. If H = SL(k) →֒ G = SL(n) is the inclusion

A 7→

(
A 0

0 In−k

)

then

φ̂(αij) =





αij ∈ ∆′, if j ≤ k

0, otherwise

We now consider the inclusion of SO(n,C) →֒ G = SL(n). We begin with the

case where n is even. Let R denote the n/2×n/2 matrix with 1 on the antidiagonal,

and 0 everywhere else. We take as our maximal torus of SO(n,R) the subgroup

T ′ =
{
(

A BR

−RB RAR

)
∈ GL(n,R)

∣∣ A, B are diagonal}.

The complexification of T ′ is a complex maximal torus in SO(n,C).

The difficulty here is that the standard maximal torus of SO(n) is not a sub-

group of the standard torus of SL(n). To handle this, we instead use a conjugate

subgroup of SO(n). Let

U =

(
I iR

iR I

)
.
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Example 4.2.6. Let H = U SO(n)U−1 →֒ G = SL(n), where n = 2m. One can

easily verify that a maximal torus of H, is the set of invertible diagonal matrices

U T ′
C U

−1 =
{
λ =




λm

. . .

λ1

λ−1
1

. . .

λ−1
m




∈ SL(n)
}
.

The Lie algebra h = {(aij) ∈ sl(n) | aij = −an+1−i j}, is the set of n× n matrices

which are skew symmetric about the antidiagonal. And n′ is simply the set of upper

triangular matrices in h.

Let Eij denote the matrix with a 1 in the i, j position, and 0 everywhere else.

We see that for i < j,

λEijλ
−1 =






λm+1−iλj−mEij, if i+ j > n + 1, i ≤ m

λm+1−iλj−mEij, if i+ j ≤ n, j > m

λm+1−iλ
−1
m+1−jEij, if j ≤ m

λ−1
i−mλj−mEij, if i > m

0, if i+ j = n + 1

Thus φ̂ is given by

φ̂(αij) =






β ′
m+1−i,j−m if i+ j > n+ 1, i ≤ m

β ′
j−m,m+1−i if i+ j ≤ n, j > m

βm+1−j,m+1−i, if j ≤ m

βi−m,j−m, if i > m

0, if i+ j = n+ 1

In terms of the arrangement of squares (described in Examples 4.2.1 and 4.2.2),

the map φ̂ is symmetrical about the antidiagonal, with the antidiagonal itself map-
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β34 β24 β14 β ′
14 β ′

24 β ′
34

β23 β13 β ′
13 β ′

23 β ′
34

β12 β ′
12 β ′

23 β ′
24

β ′
12 β ′

13 β ′
14

β12 β13 β14

β23 β24

β34

Figure 4.1: The map φ̂ : ∆(SL(8))+ → ∆(SO(8))+∪{0}. The root φ̂(α) is written
in the square corresponding to α. Empty squares are mapped to 0.

ping to 0. Moreover, below the antidiagonal (i.e. for i + j > n + 1), we simply

have φ̂(ASij) = DSi−m,j . See Figure 4.1.

The analysis for n odd is very similar, changing T ′ and U to

T ′ =
{




0

A
... BR

0

0 · · · 0 1 0 · · · 0

0

−RB
... RAR

0




∈ GL(n,R)
∣∣ A, B are diagonal

}
,

U =




0

I
... iR

0

0 · · · 0 1 0 · · · 0

0

iR
... I

0




.
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Example 4.2.7. Let H = U SO(n)U−1 →֒ G = SL(n), where n = 2m− 1 is odd.

U T ′
C
U−1 =

{
λ =




λm−1

. . .

λ1

1

λ−1
1

. . .

λ−1
m−1




∈ SL(n)
}
.

As in the case where n is even, h = {(aij) ∈ sl(n) | aij = −an+1−i,j, is the set of

n × n matrices which are skew symmetric about the antidiagonal, and n′ = b ∩ h.

The map φ̂ is given by

φ̂(αij) =






γ◦i if j = m

γ◦j if i = m

γ′m−i,j−m if i+ j > n + 1, i < m

γ′j−m,m−i if i+ j ≤ n, j > m

γm−j,m−i, if j < m

γi−m,j−m, if i > m

0, if i+ j = n + 1

More simply, in terms of the arrangement of squares (see Examples 4.2.1 and

4.2.3), we have that φ̂ is symmetrical about the antidiagonal, and identically zero

on the antidiagonal. Below the antidiagonal φ̂(ASij) = BSi,j−m. See Figure 4.2.

Example 4.2.8. Let G be the complex form of G2, and H = SL(3). The map

i : H →֒ G is defined on the level of roots: A2 includes into G2 as the long roots.

Since SL(3) is simply connected, this defines a homomorphism on the Lie groups

(and this map is an inclusion). The map φ̂ : (G2)+ → (A2)+ ∪ {0} is therefore

φ̂(α) =





0, if α is a short root of G2

α, if α is a long root of G2.
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γ23 γ13 γ◦3 γ′13 γ′23

γ12 γ◦2 γ′12 γ′23

γ◦2 γ′12 γ′13

γ◦1 γ◦2 γ◦3
γ12 γ13

γ23

Figure 4.2: The map φ̂ : ∆(SL(7))+ → ∆(SO(7))+∪{0}. The root φ̂(α) is written
in the square corresponding to α. Empty squares are mapped to 0.

We arrange the squares of G in a linear fashion, with the short simple root at the

bottom, and the long simple root on the left. The map φ̂ and the arrangement of

squares for G2 are both illustrated in Figure 4.3.

A

CE

A

CE

A B

C

D E

F

A

E

C

BF

D

φ

Figure 4.3: The map φ̂ : (G2)+ → (A2)+∪{0}, and the corresponding arrangement
of squares.
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4.2.2 Initial configuration, moving and splitting

The game always begins with a single region R1 = ∆+, which contains all the

squares. The initial arrangement of tokens is the inversion set of π, i.e.

T = {α ∈ ∆+ | π · α ∈ ∆−}.

Example 4.2.9. If G = SL(5)× SO(5), π = (23154, rγ◦

1
) where rγ◦

1
) is the reflec-

tion in the simple root γ◦1. Then the initial position is as shown below:

SL(5)
• SO(5)
•

•
•

From here we perform a sequence of splittings and moves. A splitting is an

operation which refines the partition R = {R1, . . . , Rs} as follows: given a set of

squares A ⊂ ∆+ (with certain additional properties), we subdivide each region

according to its intersection with A. More precisely, we produce

R′ = {R1 ∩A,R1 ∩A
c, R2 ∩A,R2 ∩A

c, . . . , Rs ∩ A,Rs ∩A
c}.

(Empty regions have no effect on the game, thus we may discard any copies of the

empty set produced in this way.) This operation is called splitting along A. The

subsets A ⊂ ∆ which can be legally used for splitting are called splitting subsets. A

move is an operation which changes the arrangement of tokens. Each move applies

only to tokens in one region Ri. The move causes some of the tokens in the region

Ri to relocate to new squares in within the region Ri. Moves and splittings may

be performed in any order.

To specify these more precisely, we need the following definitions:

Definition 4.2.10. Let I ⊂ ∆+ be a subset of the positive roots of G. Call I an

ideal subset if it is closed under raising operations, i.e. if α ∈ I, then α′ ∈ I,

whenever α′, and α′−α are both positive roots. (Equivalently, I is a an ideal subset

if and only if {eα|α ∈ I} span an ideal in the Lie algebra n.)
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Definition 4.2.11. Let A ⊂ ∆+ be a subset of the positive roots of G. We call A

a splitting subset if A is an ideal subset, and φ̂(Ac) ∩ φ̂(A) ⊂ {0}.

Example 4.2.12. For SO(n) →֒ SL(n), a set A ⊂ ∆+ is an ideal subset if

whenever it contains a square S, it contains all squares above and to the right of

S. A is a splitting subset if it is an ideal subset which is symmetrical about the

antidiagonal.

Splitting along A (as described above) is permissible whenever A is a splitting

set. However, when l(π) = dimH/B ′, one can determine a priori whether splitting

will help us win the root game. It turns out that if l(π) = dimH/B ′, the splitting

is advantageous if and only if |T ∩A| = |φ̂(A) \ {0}|.

A move is specified by a pair [β,R], where β ∈ ∆+, and R is a choice of region.

To execute the move, we find all pairs of squares Sα, S
′
α ∈ R such that α′ −α = β.

We then order the relevant Sα according to the height of the root α. Proceeding in

order of decreasing height of α, we move the tokens as follows: if a token appears

in the square Sα but not in Sα′, move the token up from the first square to the

second square.

4.2.3 Vanishing and non-vanishing criteria

To make this game worthwhile, it must be possible to win. Recall the definition

of an injective subset of ∆ (Definition 4.1.1).

Definition 4.2.13. The game is won if the arrangement of tokens T is injective.

Though there is no shame in losing, it is worth noting that from certain po-

sitions it may be impossible for victory to be attained. In particular, we observe

that if A is an ideal subset, then any token which begins its move in A must remain

in A. Thus |T ∩ A| can increase, but never decrease from a sequence of moves.

Suppose then, at some position in the game, there is an ideal subset A such that

|T ∩ A| > |φ̂(A) \ {0}|. Then T is not injective, and will never be injective, i.e.

the game cannot be won. In such a position, we declare the game to be lost.
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There is one special case of this which is particularly important: that is the

situation when the game is lost before any moves are made.

Definition 4.2.14. The game is doomed if it is lost in the initial token arrange-

ment.

The losing condition in general does not provide any information. However, for

those special times when the game is doomed, we have the following result.

Theorem 4.1. If the game is doomed, then i∗(ωπ) = 0.

Example 4.2.15. Let G = SL(n) and H = SO(n). Let π : {1, . . . , n} →

{1, . . . , n} ∈ Sn. If π(n) < π(1) then i∗(ωπ) = 0.

To see this, observe that A = {α1n} is a splitting subset, whose image under φ̂

is {0}. Thus |φ̂(A) \ {0}| = 0. If πn < π1, then α1n ∈ T , so |T ∩ A| = 1 and the

game is doomed.

Likewise, we also gain information if it is possible to win the game.

Theorem 4.2. If the game can be won, then i∗(ωπ) 6= 0.

Example 4.2.16. If h a is T -invariant subspace of g, and φ̂−1({0}) is an ideal

subset, then the initial position is a winning position if and only if the game is

not doomed, giving a simple necessary and sufficient condition for i∗(ωπ) = 0.

Unfortunately this only occurs when the Dynkin diagram of H is obtained by delet-

ing some of the vertices of G’s Dynkin diagram. Some common examples include

SL(k) →֒ SL(n), SO(2k + 1) →֒ SO(2n + 1) and SO(2k) →֒ SO(2n), for k < n.

Example 4.2.17. Let G = SL(5) × SO(5), π = (23154, rγ◦

1
). The initial position

is shown in Example 4.2.9. We can win the game with one move, and no splittings.

The move corresponds to the root γ◦2 ∈ (B2)+. This causes the token on the SO(5)

part to move from γ◦1 to γ′12.

SL(5)
• SO(5)
• •

•
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To see that this is a winning position, we fold the SL(5) picture along the antidi-

agonal (this is φ̂ : (A4)+ → (B2)+).

SL(5) folded
× SO(5)

× •
• •

•

(The ‘×’s denote the diagonal of the folding map.) We then superimpose the two

(B2)+ pictures which this folding produces (this is φ̂ : (B2)+ × (B2)+ → (B2)+).

Since no tokens overlap in this process, or appear on the diagonal of the folding

map (= φ̂−1({0})), this is a winning position.

Example 4.2.18. Let G = SL(7) × SO(7), H = SO(7), π = (1425736, 2̄31̄),

where 2̄31̄ is the SO(7) Weyl group element represented by the matrix




0 −1 0

0 0 1

−1 0 0


 .

Figure 4.4 shows a sequence of splittings and moves lead to a winning position.

Squares belonging to the same region are similarly shaded. For each move, the

relevant region is outlined, and the relevant root is indicated by an asterisk in the

corresponding square.

Remark 4.2.19. Although Theorems 4.1 and 4.2 are applicable for a large number

of π ∈ W , they do not cover all cases. In particular the converses are not true in

general. For examples of the failure of the converses for the multiplicative problem,

see Chapter 2.

Example 4.2.20. Let G = G2 × SL(3), and H = SL(3) including diagonally,

where SL(3) →֒ G2 is as described in Example 4.2.8. We consider all possible

π ∈ W , with l(π) = 3 = dimH/B ′. There are such 11 such π in total. Of

these, 3 associated games are doomed. These are π = (r1, 231), π = (r2r1, 132),
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Figure 4.4: A sequence of moves in the root game for SO(7) →֒ SL(7) × SO(7),
π = (1425736, 2̄31̄). The bold outline indicates which region is being used in each
move, and the ∗ indicates which root is being used.
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231 132 123
r1 r1r2 r1r2r1

Figure 4.5: The 3 games which are doomed for SL(3) →֒ G2 ×SL(3). The shaded
squares indicate a minimal ideal subset A for which |T ∩A| > |φ̂(A) \ {0}|.

213
1r

312
r2

231

r2
123

2

r2
312

r2 r1 r
132

2r1r

321

213
2r

r1

1r

Figure 4.6: The 8 games which are not doomed for SL(3) →֒ G2 ×SL(3). Each of
these games can be won.
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and π = (r1r2r1, 123), where r1 and r2 represent reflections in the short and long

simple roots respectively. These are shown in Figure 4.5. The remaining 8 games

are shown in Figure 4.6. One can check that each of these can be won. Figure 4.7

shows a sequence of moves from the initial position of these games, π = (r1r2, 213),

to a winning position. Thus the root game gives a complete answer to the vanishing

problem for branching SL(3) →֒ G2.
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Splitting regions

Move #1

Move #2 Move #3

Initial position

Winning position

Figure 4.7: A sequence of moves in the root game for SL(3) →֒ G2 × SL(3),
π = (r1r2, 213). After the first move, we split into three regions, indicated by the
different shading of squares. The bold outline indicates which region is being used
in each move, and the ∗ indicates which root is being used.

4.3 A vanishing lemma for branching

Consider the space

E =
{
(y, z) ∈ G/B ×H/B ′

∣∣ y ∈ Xπ,z

}
⊂ G/B ×H/B ′

Note that because of the length condition on π, dimE ≥ dimG/B.

There are two projection maps from E. We have pH : E → H/B ′ given by

p0(y, z) = z, and pG : E → G/B given by pG(y, z) = y. The map pH is a fibration,

and moreover is H-equivariant.
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We claim that i∗(ωπ) is given by the class of the generic fibre of pG. (When

l(π) = dimH/B ′,
∫

(H/B′)
i∗(ωπ) is the number of points of the generic fibre of

pG.) This is because of the Kleiman-Bertini theorem [Kle74], which says that

(in characteristic zero) a Schubert variety Xπ,y0
for a generic y0 intersects H/B

transversely. The class of the intersection is therefore equal to i∗(ωπ). But this

intersection is just pH(p−1
G (y0)).

Thus we see that i∗(ωπ) = 0 if and only if the generic fibre of pG is empty.

Equivalently, let U ⊂ G/B denote the points over which pG is finite-to-one, and

let E ′ = p−1
G (U). Then i∗(ωπ) = 0 if and only if U , and hence E ′, are empty.

In studying the vanishing problem for multiplication in Schubert calculus, our

approach was to fix a point of intersection of three (or more) Schubert varieties,

and determine whether the tangent spaces can be made to intersect transversely

(Lemma 2.2.1). Our next lemma generalises this idea to the branching problem. It

is the main technical tool for developing vanishing and non-vanishing conditions.

Let Q ⊂ n be the subspace generated by the eα such that α ∈ ∆+ and π−1 ·α ∈

∆−. Equivalently,

Q = n ∩ (π · b−).

For a ∈ N , let a· : n → n denote the adjoint action of N on its Lie algebra.

Lemma 4.3.1. The following are equivalent:

1. i∗(ωπ) = 0.

2. φ|a·Q is injective for some a ∈ N .

3. φ|a·Q is injective for generic a ∈ N .

Proof. The equivalence of conditions 2 and 3 is clear, as the maps φ|A are injective

for a Zariski open set of subspaces A. We now show the equivalence of 1 and 3.
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i∗(ωπ) = 0 ⇐⇒ E ′ = ∅

⇐⇒ p−1
H (z) ∩ E ′ = ∅ ∀z ∈ H/B ′

⇐⇒ pG(p−1
H (z)) ∩ U = ∅ ∀z ∈ H/B ′

⇐⇒
⋃

z∈H/B′

pH(p−1
G (z)) ⊂ (G/B) \ U.

But
⋃

z∈H/B′ pG(p−1
H (z)) = H · pG(p−1

H (z)) for any z ∈ H/B ′, in particular for

z = x0, in which case we have pG(p−1
H (x0)) = Xπ. Thus i∗(ωπ) = 0 if and only if

H ·Xπ ⊂ (G/B) \ U.

Since U is a Zariski open dense subset of G/B, this will happen only if dim(H ·

Xπ) < dimG/B. Conversely, if this inequality holds, then pG is not onto, and

i∗(ωπ) = 0.

For a point y ∈ Xπ, let

S(y) =
{
h ∈ H

∣∣ h · y ∈ pG(p−1
H (x0))

}
.

Now Xπ is B-invariant, hence B ′-invariant; thus B ′ ⊂ S(y) for all y. Given this,

the expected dimension of S(y) is dimH/B ′− l(π)−dimB ′. This is the dimension

S(y) would be if H ·Xπ were dense. In general, we have

codim
(
H ·Xpi

)
= dimS(y)− expected dim S(y),

for y generic in Xπ.

Let us therefore compute the actual dimension of S(y) at a generic point y =

a[π′] ∈ Xπ. We have

h ∈ S(y) ⇐⇒ h · aπ̃′B ∈ Baπ̃′B

⇐⇒ h ∈ B aπ̃′B (aπ̃′)−1 ∩H.
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We now pass to the Lie algebra level, by considering the tangent space to S(y)

at the identity element of H.

T1(S(y)) =
(
aπ̃′ b (π̃′)−1a−1 + b

)
∩ h

=
(
a · (π′ · b) + b

)
∩ h

=
(
a · (π′ · b) + b

)
∩ h

Thus

T1(S(x))/b′ =
(
a · (π′ · b)

)
/b ∩ h/b′

= (a ·Q)⊥ ∩ h/b′

This intersection is of the expected dimension (i.e. transverse) if and only if φ|a·Q

is injective.

To complete the proof, we must argue that S(y) is of the expected dimension

if and only if this is true on the lie algebra level of the expected dimension. One

direction is clear: if T1(S(y))/b′ is of the expected dimension, then so is S(y). The

reverse direction is true by Kleiman-Bertini, which tells that if g ·H and Xπ have

a point of intersection for generic g ∈ G they intersect transversely at that point.

If y is such a point of intersection then S(y) will be of the expected dimension, as

will T1(S(y))/b′.

Thus we have established the equivalence of 1 and 3.

4.4 Proofs

4.4.1 Proof of the vanishing criterion

The vanishing criterion (Theorem 4.1) is an easy consequence of Lemma 4.3.1.

Proof. (Theorem 4.1) At the outset, {eα | α ∈ T } is a basis for the space Q. If

the game is doomed then there is an ideal subset A such that

|T ∩ A| > |φ̂(A) \ {0}|.
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Let S ⊂ n be the ideal generated by {eα | α ∈ A}. Then dim(Q ∩ S) = |T ∩ A|,

and dimφ(S) = |φ̂(A) \ {0}|. Moreover, as S is N -invariant, we have that

dim(a ·Q ∩ S) = dim(Q ∩ S) > dimφ(S)

for all a ∈ N . It follows that φ|(a·Q∩S) is not injective, and thus φ|a·Q is not

injective. Therefore, by Lemma 4.3.1, i∗(ωπ) = 0.

4.4.2 Proof of the non-vanishing criterion

The proof of the non-vanishing criterion (Theorem 4.2) is more involved. It requires

us to translate the combinatorics of the root game into a geometrical framework.

Proof. (Theorem 4.2) We are interested in the following general setup. Let V be

a finite dimensional representation of B, and V ′ be a finite dimensional represen-

tation of B ′. Suppose we have a B ′-equivariant map ψ : V → V ′.

Let Gr(V ) denote the disjoint union of all Grassmannians

Gr(V ) =
dimV∐

l=0

Grl(V ).

Since V has a B-action, so does Gr(V ).

Let U ∈ Gr(V ) be a subspace of V . We call the quadruple (U, V, V ′, ψ) good

if there is a point Ũ in the B-orbit closure through U such that ψ|U : U → V ′ is

an injective linear map. We define

g(U) = {Ũ ∈ B · U | ψ|Ũ is injective} ⊂ Gr(V ).

Note that the set of U ∈ Gr(V ) with φ|U injective is Zariski open in Gr(V )3.

Thus (U, V, V ′, ψ) is good ⇐⇒ g(U) is an open dense subset of B · U , i.e.

⇐⇒ g(U) 6= ∅.

Each position in the game consists of a set of regions R, and an arrangement

of tokens T . The data of a single region, together with the set of tokens contained

in that regions give will give rise to a quadruple (U, V, V ′, ψ). The region itself will
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determine V , V ′ and ψ. The subspace U will be determined by the arrangement

of tokens.

We note that each region R is in fact a difference of two ideal subsets R =

A1 \ A2. Now the root spaces of A1 and A2 span ideals S1 and S2 of n. Thus

the corresponding root spaces of R can be thought of as spanning the subquotient

representation S1/S2 of n. Thus we take V = S1/S2, and note that it has a basis

ēα corresponding to α ∈ R.

We let V ′ = φ(S1)/φ(S2). Note that since S1 and S2 are B-modules, they are

also also B ′-modules, and since φ is B ′-equivariant, V ′ is a B ′-module. We note

that V ′ has a basis corresponding to φ̂(R). Moreover, A1 and A2 are more than

ideal subsets: they are splitting subsets, and thus two distinct regions R1 and R2

actually give rise to disjoint V ′.

The map ψ : V → V ′ descends from φ : n → n′. Finally we take

U = span{ēα | α ∈ T ∩R} ⊂ V.

Since each we get one such quadruple for each region, the entire state of the

game is in fact given by a list of quadruples, one for each region in R:

{(U1, V1, V
′
1 , ψ), . . . , (Us, Vs, V

′
s , ψs)}.

We abbreviate this as {(Um, Vm, V
′
m, ψm)}, where the subscript (in this case m) is

understood to index the regions Rm ∈ R.

We claim the following:

1. i∗(ωπ) is non-zero if and only if the initial state of the game is good.

2. Suppose that {(Um, Vm, V
′
m, ψm)} is the state of the game before a splitting,

and and {(Ũn, Ṽn, Ṽ
′
n, ψ̃n)} is the state after. If (Ũn, Ṽn, Ṽ

′
n, ψ̃n) is good for all

n, then (Um, Vm, V
′
m, ψm) is good for all m.

3. Suppose that {(Um, Vm, V
′
m, ψm)} is the state of the game before a move is

made, and {(Ũm, Vm, V
′
m, ψm)} is the state after. If (Ũm, Vm, V

′
m, ψm) is good

for all m, then (Um, Vm, V
′
m, ψm) is good for all m.
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4. If {(Um, Vm, V
′
m, ψm)} is the state of the game when the game is won, then

each (Um, Vm, V
′
m, ψm) is good.

Proof. (of claims)

1. From the definition of the initial position, we see that this the initial state of

the game is given by (Q, n, n′, φ). The claim is therefore simply a restatement

of Lemma 4.3.1.

2. Let V = S1/S2 correspond to the region R ∈ R, where S1 ⊃ S2 are ideals of

the B-module n generated by splitting subsets A1 and A2. Let A be an third

splitting subset which generates an ideal S. We assume that A1 ⊃ A ⊃ A2,

and thus S1 ⊃ S ⊃ S2. (If this is not the case, we should replace A with

A1 = (A ∩ S1) ∪ S2. A1 is also a splitting set, and R ∩ A1 = R ∩ A, so

splitting R along A is the same as splitting R along A1.) Let S̃ = S/S2.

Thus V/S̃ = S1/S is quotient of V (as a B-module), and S̃ is a submodule.

We also obtain sub- and quotient representations of V ′ = ψ(V ); namely,

ψ(S̃) is a B ′-submodule of V ′ and V ′/ψ(S̃) is a quotient module. Moreover,

there is are natural induced maps from ψ:

ψσ : V/S̃ → V ′/ψ(S̃)

and

ψτ : S̃ → ψ(S̃).

If the triple (V, V ′, ψ) represents the region R, then the two regions obtained

by splitting R along A are represented by the two triples (V/S̃, V ′/ψ(S̃), ψσ)

and (S̃, ψ(S̃), ψτ).

Define functions σ : Gr(V ) → Gr(V/S̃), given by σ(U) = U/S̃, and τ :

Gr(V ) → Gr(S̃) given by τ (U) = U ∩ S̃. Note σV and τV are not everywhere

continuous, but they are B-equivariant, and hence continuous on B-orbits.

Suppose U ∈ Gr(V ). By elementary linear algebra, if

ψσ|σ(U ) : σ(U) → V ′/ψ(S̃)
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is injective, and

ψτ |τ (U ) : τ (U) → ψ(S̃)

is injective, then ψ|U : U → V ′ is injective.

Suppose (σ(U), V/S̃, V ′/ψ(S̃), ψσ) and (τ (U), S̃, ψ(S̃), ψτ) are both good.

Then τ−1(g(τ (U)) and σ−1(g(σ(U))) are both open dense subsets of B · U .

Since g(U) contains the intersection of these, (Um, Vm, V
′
m, ψm) must be good.

Thus we have shown that if the position after splitting is good, then so was

the position before splitting, as required.

3. Suppose the move is given by the root α, and the region R corresponding to

(V, V ′, ψ). Let U ⊂ V correspond to the arrangement of tokens before the

move, and Ũ ⊂ V correspond to the arrangement of tokens after.

We consider the 1-dimensional subgroup of B given by θα : Nα →֒ B, where

Nα
∼= (C,+) is the exponential of the α root space.

We now calculate

lim
t→∞

θα(t) · U.

We can represent U as [ēα1
∧ . . . ∧ ēαl

], and Ũ as [ēα′

1
∧ . . . ∧ ēα′

l
], via the

Plücker embedding Gr(V ) →֒ P (
∧∗ V ). Now

θα(t) · U = θα(t) · [ēα1
∧ . . . ∧ ēαl

],

= [ēα1
+ t(α · ēα1

) ∧ . . . ∧ ēαl
+ t(α · ēαl

)]

where α · ēαi
= ēαi+α, if αi + α is a root belonging the region corresponding

to Vm, and 0 otherwise. In the limit as t→ ∞, the only term which survives

is the one with the highest power of t, which is precisely

[±t#tokens that moveēα′

1
∧ . . . ∧ ēα′

l
].

Thus

Ũ = lim
t→∞

θα(t) · U.
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But this is just another point in B · U . Thus if (Ũ , V, V ′, ψ) is good, so is

(U, V, V ′, ψ).

4. In a winning position the set T is injective. It follows that within each region

Rm, ψ|U : U → V ′ is injective, where U is the span of the root spaces of T ∩R.

In particular each (Um, Vm, V
′

m, ψm) is good.

The result now follows easily from the four claims. If a game can be won, the

winning position is good (claim part 4). Thus all positions (whether attained by

moves or splittings) leading up to the winning position are good (claim parts 2

and 3). In particular, the initial position is good, which implies that i∗(ωπ) = 0

(claim part 1).
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Chapter 5

Future directions

Obviously the big outstanding problem in this work is to determine in which

cases the non-vanishing criterion is necessary as well as sufficient. We have already

shown that it is necessary and sufficient in two special cases. The first case is

for products of two Schubert classes, in which the root game can be seen to be

equivalent to the Bruhat order. The second case, discussed in Chapter 3, is when

the classes are pulled back from a Grassmannian. Here we will briefly discuss a

few special cases where we might hope to be able to obtain further results of this

sort.

5.1 Quantum Schubert calculus

One natural next step in continuing this work would be to study vanishing criteria

for quantum Schubert calculus of the Grassmannian. This is determined by the

cohomology of two-step flag manifolds [BKT03], and the root game provides a con-

jectural rule for determining the answer. Root games pulled back from two-step

flag manifolds bear a strong resemblance to those pulled back from a Grassman-

nian: the root games can be thought of as three Grassmannian problems which

might interact in interesting ways. It may be possible to gain a complete under-

standing of these, particularly when the dimension of one of the subspaces of the
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two step flag manifold is small.

The quantum cohomology of Grassmannians is of particular interest, since there

is already a conjectural combinatorial rule for the structure constants of the co-

homology of two-step flag manifolds. The rule is known as Knutson’s 012-puzzle

conjecture, and it has been verified by Anders Buch for two-step flag manifolds in

Cn for all n ≤ 16. As well, Belkale has proved the quantum analogue of the Horn

conjecture [Bel03], which would provide a natural place with which to compare the

result.

5.2 Minuscule flag manifolds

Minuscule flag manifolds are those generalised flag varieties G/P for which the

representation of the Levi subgroup L ⊂ P on the exterior algebra of the tangent

space
∧∗(g/p) is multiplicity free. (There are many other equivalent definitions.)

The most familiar example is the Grassmannian Grl(n), in which case the Levi

subgroup is GL(l) × GL(n − l) acting on g/p ∼= Hom(Cl,Cn−l) in the usual way.

However, minuscule flag manifolds exist for all the classical Lie groups, as well as

the exceptional groups E6 and E7. For example, the Lagrangian Grassmannian

is a minuscule flag manifold for G = Sp(2n). These should be the simplest cases

in which to study types B,C and D-Schubert calculus. A positive rule for the

cohomology of Lagrangian Grassmannian is known [Ste89].

Kostant’s work on Lie algebra cohomology [Kos63], and Stembridge’s results

on minuscule representations [Ste03] suggest that it should be possible to gain

a complete understanding of the cohomology of minuscule flag manifolds. Root

games appear to fit very naturally into this context. This would therefore be a

natural place to try to gain a fuller understanding of the non-vanishing condition

given by root games.
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5.3 Horn inequalities and B-varieties

Using techniques in the tangent space, some of which are similar to those in this

thesis, Belkale has given a geometric proof Horn’s conjecture [Bel02]. Horn’s con-

jecture, as we recall from Chapter 1 gives a recursive method for finding the set

of inequalities which determine the non-vanishing Schubert structure constants in

the cohomology of a Grassmannian.

In Chapter 3, we showed that the non-vanishing Schubert structure constants

in the product Ωπ · Ωρ =
∑

σ c
σ
πρΩσ correspond to B-fixed points on a certain B-

variety Zρ∨

π , depending on π and ρ. In fact, we showed that it is possible to identify

the non-vanishing coefficients simply from the T -moment polytope of this variety.

Thus we have two quite different classes of polytopes from which one can de-

termine non-vanishing of Schubert calculus, both arising from the geometry of the

tangent spaces of Schubert varieties. It is therefore natural to wonder whether the

inequalities defining the moment polytope are connected to Horn’s inequalities.

At the moment, it is unclear what the precise connection could be. It appears

to be more natural to view Horn’s inequalities in terms of the vanishing criterion

in the root game, rather than the non-vanishing criterion. A connection between

these two should therefore go a long way towards a deeper understanding of the

vanishing of Schubert calculus.
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