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Abstract

We derive explicit expressions for the eigenvalues (spectrum) of the discontinuous
Galerkin spatial discretization applied to the linear advection equation. We show that the
eigenvalues are related to the subdiagonal[p/p+ 1] Padé approximation of exp(-z) when
p-th degree basis functions are used. We derive an upper boundon the eigenvalue with
the largest magnitude as(p+ 1)(p+ 2). We demonstrate that this bound is not tight and
prove that the asymptotic growth rate of the spectral radiusis slower than quadratic inp.
We also analyze the behavior of the spectrum near the imaginary axis to demonstrate that
the spectral curves approach the imaginary axis although there are no purely imaginary
eigenvalues.

1 Introduction

In this paper we derive explicit expressions for the eigenvalues (spectrum) of the semi-
discrete discontinuous Galerkin (DG) method applied to theone-dimensional linear advection
equation. The DG spatial discretization results in a linearsystem of ODEs

d
dt

c =
a

∆x
Lc (1)

for (p+ 1)N degrees of freedomc on anN element uniform mesh withp-th degree approx-
imation in space. Here,a is the wave speed and∆x is the cell size. We show that for a
discretization with the upwind flux and periodic boundary conditions, the eigenvalues ofL are
given by fp+1(λ) = exp(2πi

N j), j = 0,1, . . . ,N−1, wherefp+1(z) is the subdiagonal[p/p+1]
Padé approximant ofexp(−z). We also demonstrate that the eigenvectors ofL are related to
N-th roots of unity.
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A direct application of the eigenvalue analysis is to the linear stability of the fully discrete
scheme. Equation (1) is usually integrated in time using a suitable ODE solver. Thus, the nec-
essary condition for the stability of the method is to require the time step∆t to be small enough
so that the full spectrum ofa∆t

∆x L fits inside the absolute stability region of the chosen time inte-
gration scheme. The eigenvalues ofL can be computed using a linear algebra software which
has been done for a variety of combinations of spatial ordersand time integration schemes
[7, 13]. However, the analytical form of the eigenvalues hasnot been previously known. It
is interesting from a purely theoretical point of view and can also be used to get further in-
sight into the DG method. We use it to improve the CFL number bymanipulating the scheme
so that the spectrum ofL is shrunk [4]. This is achieved by constructing a different rational
approximant ofexp(−z) which seeks to preserve the order of accuracy in theL2 norm.

A linear stability analysis of (1) arising from a low order DGspatial discretization and
Runge-Kutta time integration was previously performed in [6, 5] and, more recently, in [16]
for two-dimensional problems. It was shown that the DGM withp > 0 is not stable with a
fixed CFL number when the forward Euler time integration is used [5]. This is caused by
the eigenvalues of (1) being located very close to the imaginary axis which is not included
in the stability region of the forward Euler method. It was proven in [6] that the DG method
with p = 1 and the second order Runge-Kutta scheme isL2 stable with the CFL number equal
to 1/3. It was further hypothesized there that a coupling of apth degree DG scheme with
a (p+ 1)st order RK scheme is stable under a CFL condition 1/(2p+ 1). In recent years,
the DGM has been used with a variety of explicit time integration schemes, such as Adams-
Bashforth [8], strong-stability preserving schemes [9], low storage RK schemes [13]. In this
view, the universal CFL number seems to be of less importance.

Using the obtained expressions for the eigenvalues, we analyze the asymptotic behavior of
the spectrum as the order of approximationp goes to infinity. The real eigenvalue, which is
conjectured to be the largest in magnitude, and the real component of complex eigenvalues is
shown to be bounded from below by−(p+1)(p+2) for any p. However, we prove that the
actual growth rate of the size of the largest eigenvalue is slower than quadratic. Numerical
experiments indicate that−1.5(p+ 1)1.75 is an upper bound on the eigenvalues. The least
square fitting gives a growth rate of about 1.4(p+1)1.78 for p < 100. We also demonstrate that
although the curves| fp+1(z)|= 1 move closer to the imaginary axis asp increases there are no
purely imaginary eigenvalues for anyp.

A connection between the DG method and the Padé approximants has been observed pre-
viously. In [17], Le Saint and Raviart showed that the absolute stability region of the discon-
tinuous Galerkin method used to solve an ODE is given by|R(λh)| ≤ 1, whereR(z) is the
[p/p+ 1] Padé approximant ofexp(z). In [14], Hu and Atkins studied the dispersion prop-
erties of the DG scheme applied to the scalar advection equation in one dimension. They
showed that for the physical mode, the numerical dispersionrelation is accurate to(k∆x)2p+2,
wherek is the wavenumber andk∆x is small. Their reasoning was founded on the conjecture
that certain polynomials involved in the analysis are related to [p+ 1/p] Padé approxima-
tion of exp(z). An extended analysis of the dispersion and dissipation errors were given by
Ainsworth in [2]. It was demonstrated there that the numerical wave speed̃k satisfies the rela-
tion fp+1(−i∆xk) = exp(i∆xk̃). The proof is based on a demonstration that DG solutions satisfy
a certain eigenvalue problem conjectured in [14]. In Theorem 1 we show how this eigenvalue
problem arises from the characteristic polynomial ofL.
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The [p/p+1] and[p+1/p] Padé approximants ofexp(z) areO(z2p+2) accurate for small
z. This explains the excellent dispersion and dissipation properties of the DGM which were
called “superconvergent” in [14, 2]. This makes the scheme very suitable for wave propaga-
tion problems especially ones requiring long time integration. However, from our analysis it
follows that the same approximants are involved in defining the spectrum of the semi-discrete
method and, in this sense, are responsible for a severe time step restriction associated with the
DGM. The small CFL number is frequently quoted as an disadvantage of the DGM. It makes
the method, especially for lowp and nonlinear problems, more expensive when compared to
schemes that are able to maintain the CFL close to unity, e.g.finite volume schemes.

The rest of this paper is organized as follows. We begin by deriving the discontinuous
Galerkin formulation of the model problem with the aim to obtain a general form of the re-
sulting systems of ODEs. In Section 3, we derive the equations that describe the eigenvalues
and eigenvectors of the spatial discretization and prove our main result, i.e the relation between
the characteristic polynomial ofL and Padé approximants. Section 4 contains an analysis of
the distribution of eigenvalues and the growth speed of the eigenvalue of the largest modulus.
Finally, conclusions and discussions are provided in Section 5.

2 Discontinuous Galerkin discretization

We consider the one-dimensional linear advection equation

ut +aux = 0 (2)

subject to appropriate initial and periodic boundary conditions on intervalI , a> 0. The domain
is discretized uniformly into mesh elementsI j = [x j−1,x j ] of size∆x, j = 1,2, ...,N. The dis-
continuous Galerkin spatial discretization on cellI j with the upwind numerical flux is obtained
by approximatingu byU j ∈ Pp, multiplying (2) by a test functionV ∈ Pp, integrating the result
on I j while using integration by parts once

d
dt

∫ x j

x j−1

U jV dx+aUj(x j)V(x j)−aUj−1(x j−1)V(x j−1)−a
∫ x j

x j−1

U jV
′dx= 0, ∀V ∈ Pp. (3)

Pp is a finite dimensional space of polynomials of degree up top. Transforming[x j−1,x j ] to
the canonical element[−1,1] by a linear mapping

x(ξ) =
x j−1 +x j

2
+

∆x
2

ξ (4)

yields

∆x
2

d
dt

∫ 1

−1
U jV dξ+aUj(1)V(1)−aUj−1(1)V(−1)−a

∫ 1

−1
U jV

′dξ = 0, ∀V ∈ Pp. (5)

We choose the Legendre polynomials as the basis for the finiteelement spacePp. Recall [1],
that the Legendre polynomialsPk(ξ), k = 0,1,2, . . ., form an orthogonal system on[−1,1]

∫ 1

−1
PkPi dξ =

2
2k+1

δki, (6)
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whereδki is the Kroneker delta. With the chosen normalization (6), the values of the basis
functions at the end points of the interval[−1,1] are [1]

Pk(1) = 1, Pk(−1) = (−1)k. (7)

The numerical solution can be written in terms of the basis as

U j =
p

∑
i=0

c ji Pi , (8)

wherec ji is a function of timet. Substituting (8) into (5), choosingV = Pk, k = 0,1, . . . , p, and
using (7) and (6) results in

∆x
2k+1

ċ jk = −a

(

p

∑
i=0

c ji − (−1)k
p

∑
i=0

c j−1,i

)

+a
∫ 1

−1

(

p

∑
i=0

c ji Pi

)

P′
k dξ, k = 0,1, . . . , p, (9)

where the dot in ˙c jk represents differentiation with respect tot. Collecting common terms of
c ji results in

ċ jk = a
2k+1

∆x

[

(−1)k
p

∑
i=0

c j−1,i +
p

∑
i=0

(

∫ 1

−1
PiP

′
kdξ−1

)

c ji

]

, k = 0,1, . . . , p. (10)

This can be written in a vector form as

ċ jk = a
2k+1

∆x

(

(−1)k[1,1, ...,1]c j−1+[

∫ 1

−1
P0P′

kdξ−1, ...,

∫ 1

−1
PpP′

kdξ−1]c j

)

, (11)

wherec j = [c j0,c j1, . . . ,c jp]
T andc j−1 is defined similarly. Combining cell solution-coefficient

vectors into a global vectorc = [cT
0 ,cT

1 , . . . ,cT
p]T , equation (11) can be written as

ċ =
a

∆x
Lc. (12)

With periodic boundary conditions,L is a block matrix of the form

L =











An 0 0 . . . 0 0 Dn

Dn An 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 Dn An











, (13)

whereDn andAn aren×n matrices,n = p+1. For approximation of orderp, there arep+1
basis functions, so the size of each block is(p+1)× (p+1). In the following discussion this
notation ofn is consistent andn can always be replaced byp+1. In the matrixL,

Dn =











1 . . . 1
−3 . . . −3
...

...
(−1)n−1(2n−1) . . . (−1)n−1(2n−1)











, (14)
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An =















∫ 1
−1P0P′

0dξ−1 . . .
∫ 1
−1Pn−1P′

0dξ−1

3
(

∫ 1
−1P0P′

1dξ−1
)

. . . 3
(

∫ 1
−1Pn−1P′

1dξ−1
)

...
...

(2n−1)
(

∫ 1
−1P0P′

n−1dξ−1
)

. . . (2n−1)
(

∫ 1
−1Pn−1P′

n−1dξ−1
)















, (15)

or

An = (ai j ) =

(

(2i −1)(

∫ 1

−1
Pj−1P′

i−1dξ−1)

)

. (16)

Noticing that the derivatives of the Legendre polynomials satisfy [1]

(2k+1)Pk = P′
k+1−P′

k−1, (17)

we derive

P′
k+1 = (2k+1)Pk +(2(k−2)+1)Pk−2+(2(k−4)+1)Pk−4+ . . . . (18)

We use (18) with the orthogonality property of the Legendre polynomials (6) to simplify the
integrals inAn. We obtain

∫ 1

−1
PiP

′
kdξ =







0, k 6 i,
2, k > i, and(k− i) ≡ 1 (mod 2),
0, k > i, and(k− i) ≡ 0 (mod 2).

(19)

Thus,An can be simplified as

An = −























a1 a1 a1 · · · a1 a1

−a2 a2 a2 · · · a2 a2

a3 −a3 a3 · · · a3 a3

−a4 a4 −a4 · · · a4 a4
...

...
...

...
...

(−1)n−2an−1 (−1)n−3an−1 (−1)n−4an−1 · · · an−1 an−1

(−1)n−1an (−1)n−2an (−1)n−3an · · · −an an























, (20)

whereai = 2i −1, i = 1,2, . . . ,n.

3 Characteristic polynomial of L and the Pad́e approximant

Next, we derive an expression for the eigenvalues ofL. λ is an eigenvalue ofL if it satisfies










An 0 0 . . . 0 0 Dn

Dn An 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 Dn An





















v1

v2
...

vN











= λ











v1

v2
...

vN











, (21)

where vT = [vT
1 ,vT

2 , . . . ,vT
N] is the corresponding eigenvector and its componentsv j , j =

1,2, . . . ,N, are column vectors of lengthn= p+1. Equivalently, we can write equation (21) as

Dnv j−1+Anv j = λv j , j = 1,2, . . . ,N, (22)
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with an understanding thatv0 = vN. We expressDn defined by (14) as an outer productDn =
rn[1,1, ...,1], wherern = [1,−3, . . . ,(−1)n−1(2n−1)]T. Then (22) can be rewritten as

rn[1,1, ...,1]v j−1 = (λI −An)v j . (23)

Introducing a new variableSj = [1,1, ...,1] ·v j, we write (23) as

Sj−1rn = (λI −An)v j . (24)

Multiplying both sides of (24) by[1,1, ...,1](λI−An)
−1 yields

Sj = Sj−1[1,1, ...,1](λI −An)
−1rn. (25)

Let
fn(λ) = [1,1, ...,1](λI −An)

−1rn. (26)

Then, (25) results in a recursive formula

Sj = fn(λ)Sj−1. (27)

Expansion of (27) starting withj = N gives

SN = f N−1
n (λ)S1. (28)

Finally, taking into account periodicity of the boundary conditions, we obtainSN = f N
n (λ)SN.

This implies
f N
n (λ) = 1. (29)

Then, the eigenvalues ofL are the roots of the equations

fn(λ) = ω j , ω j = e
2πi
N j , j = 0,1,2, . . . ,N−1. (30)

Eigenvectors.For completeness of this discussion, we derive the eigenvectors of matrixL.
SinceL is a block circulant matrix, we look for eigenvectorsv in the form[ṽT ,ωkṽT , . . . ,ωN−1

k ṽT ]T .
Substitutingv into (21) gives

ω j−1
k Dnṽ+ω j

kAnṽ = λkω j
kṽ, 1 6 j 6 N, (31)

or
(ωkλkI −ωkAn−Dn)ṽ = 0, (32)

whereλk is one of the roots offn(λ) = ωk. ṽ can be easily obtained by solving the linear
system (32). The solutions are not particularly illuminating and we do not report them. Figure
1 shows the periodic property of the components of the eigenvectors. We plot one of the two
eigenvectors corresponding tok= 4 (left) andk= 17 (right). In figure 1 each point corresponds
to an entry inv. The entries of the eigenvectors represent sampling of a scaled unit circle atN
or, if N/k is an integer,N/k points. One of the circles in Figure 1, left and right, corresponds
to the first entry ofω j

kṽ, j = 1,2, . . . ,N−1, and the other to the second entry ofω j
kṽ. The line

connecting two points represents two consecutive entries of ṽ and, thus, the shift in sampling
between the two components of eachω j

kṽ, k = 1,2, . . . ,N−1,.
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Figure 1: Eigenvectors ofL with N = 20, p = 1, andk = 4 (left) andk = 17 (right). Each point
in plots correspond to an entry in an eigenvector. The two points connected by a line show the
first two entries of̃v.

Pad́e approximants.In the theorem that follows we will demonstrate that function fn(z)
is the [n−1/n] Padé approximant ofe−z. Recall [1], that the Padé approximant is a rational
approximation to a given function. Let us suppose that we aregiven the Taylor expansion of a

functiong(z) =
∞

∑
i=0

ciz
i . A Padé approximant is a fraction

[L/M] =
a0+a1z+ · · ·+aLzL

b0 +b1z+ · · ·+bMzM , (33)

that satisfies
∞

∑
i=0

ciz
i =

a0+a1z+ · · ·+aLzL

b0+b1z+ · · ·+bMzM +O(zL+M+1). (34)

Coefficientsa0,a1, . . . ,aL, andb0,b1, . . . ,bM are uniquely defined byc0,c1, . . . , if a0 is fixed.
It is a common practice to display the approximants in a table, which is called the Padé table.
A part of the Padé table ofez is illustrated in Appendix (Table 2) as an example.

The Padé approximants of the exponential functionez are shown to be given by the follow-
ing formula for non-negative integersp,q [3]

[p/q]exp(z) =
1F1(−p,−p−q,z)

1F1(−q,−p−q,−z)
, (35)

where1F1 denotes the confluent hypergeometric function defined by theseries [1]

1F1(a,b,z) = 1+
a
b

z+
a
b

a+1
b+1

z2

2!
+

a
b

a+1
b+1

a+2
b+2

z3

3!
+ · · · . (36)
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Whena,b are negative integers andb 6 a, 1F1(a,b,z) is a finite sum which is a polynomial of
degree|a|. Using the Pochhammer’s symbol,(a)k = a(a+1) · · ·(a+k−1) and(a)0 = 1, we
can rewrite (36) in a compact form

1F1(a,b,z) =
∞

∑
k=0

(a)k

(b)k

zk

k!
. (37)

In the following theorem, we state our main result.

Theorem 1. If An is an n×n matrix given by (20), and fn(z) = (1, ...,1)(zI−An)
−1rn, where

rn =
[

1,−3, · · · ,(−1)n−1(2n−1)
]T

, then

fn(z) =
1F1(−n+1,−2n+1,−z)

1F1(−n,−2n+1,z)
, (38)

which is the[n−1/n] Pad́e approximant of e−z.

In order to prove the theorem, we will need to establish threeauxiliary results which are
proved in the following three lemmas. We start by introducing additional notation.

Definition 1.

• Ãn: a matrix defined as̃An = zI−An.

• Mn,i : the (n, i) minor ofÃn, i.e. the determinant of the(n−1)× (n−1) matrix obtained
by elimination of the n-th row and i-th column ofÃn, i = 1,2, . . . ,n.

• Ã j
n: the n×n matrix obtained by replacing the j-th column ofÃn with rn, j = 1,2, ...,n.

• M j
n: the determinant of̃A j

n, j = 1,2, . . . ,n.

• M j
n,i : the (n, i) minor of the matrixÃ j

n, i, j = 1,2, . . . ,n.

We also introduce two sequences of polynomials which are essential to our proofs
{

Qn(z) = (an+z)Qn−1(z)+anRn−1(z),
Rn(z) = anQn−1(z)+(an−z)Rn−1(z),

(39)

whereQ1(z) = a1 + z, R1(z) = a1, and an = 2n− 1. As an example,Qn(z) and Rn(z) for
small n are listed in Table 3 in Appendix. Note that whileQn is a polynomial of degreen,
Rn is a polynomial of degreen− 1. We will show thatQn and Rn are proportional to the
hypergeometric functions appearing in (38) and give an alternative expression forfn(z)

fn(z) =
Rn(−z)
Qn(z)

. (40)

Thus, (39) is a recursive formula for generating[p/p+1] and[p+1/p] (sub- and superdiago-
nal) Padé approximants forexp(−z).

We start with Lemma 1 which relatesQn(z) andRn(z) to the determinant of̃An and its
minors.
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Lemma 1. Let Qn(z) and Rn(z) be defined by (39). Then

Qn(z) = det(Ãn), (41a)

Rn(z) =
n

∑
i=1

Mn+1,i . (41b)

Proof. We will use an induction argument to prove (41). By Definition1 and (39),Q1(z) =
a1+z= det(Ã1), andR1(z) = a1 = M2,1. This establishes the base of the induction. We assume
that (41) holds forQn(z),Rn(z), and we will prove that it is valid forQn+1(z),Rn+1(z).

Applying the cofactor expansion along the(n+1)-th row of det(Ãn+1) while noticing that
Mn+1,n+1 = det(Ãn) yields

det(Ãn+1) =
n

∑
i=1

(−1)n+1−ian+1(−1)n+1+iMn+1,i +(an+1 +z)Mn+1,n+1

= an+1

n

∑
i=1

Mn+1,i +(an+1+z)det(Ãn)

= (an+1+z)Qn(z)+an+1Rn(z) = Qn+1(z).

(42)

This proves the recursion (41a) forQn(z).

Next, we prove (41b) forRn+1(z) =
n+1

∑
i=1

Mn+2,i . We begin by relatingMn+2,i to Mn+1,i ,

i < n+1. In (43), we write an explicit expression forMn+2,i , then subtract then+1st column
from thenth column and compute the determinant by a cofactor expansion based on thenth
column,

Mn+2,i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1+z · · · a1 a1

−a2 · · · a2 a2
...

...
...

(−1)nan+1 · · · an+1+z an+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1+z · · · 0 a1

−a2 · · · 0 a2
...

...
...

(−1)nan+1 · · · z an+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −zMn+1,i .

(43)
Similarly, for i = n+1, a cofactor expansion based on the last row yields

Mn+2,n+1 =
n

∑
i=1

[

(−1)n+1−i(−1)n+1+ian+1Mn+1,i
]

+an+1Mn+1,n+1

= an+1

n

∑
i=1

Mn+1,i +an+1Mn+1,n+1.
(44)

Thus,
n+1

∑
i=1

Mn+2,i =
n

∑
i=1

(−z)Mn+1,i +an+1

n

∑
i=1

Mn+1,i +an+1Mn+1,n+1

= (an+1−z)
n

∑
i=1

Mn+1,i +an+1Mn+1,n+1

= (an+1−z)Rn(z)+an+1Qn(z)
= Rn+1(z).

(45)

This completes the proof.
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Lemma 2 relatesRn(z) andQn(z) to the determinant of̃A j
n and its minors.

Lemma 2. Let Rn(z), Qn(z) be defined by (39). Then,

Rn(−z) =
n

∑
j=1

M j
n, (46a)

Qn(−z) =
n+1

∑
j=1







n

∑
i=1
i 6= j

M j
n+1,i +(−1) j−1M j

n+1, j






. (46b)

Proof. The casen = 1 is satisfied trivially by the involved variables given by Definition 1 and
(39). We assume that (46) is true forn, and we will prove it is also true forn+1.

Applying cofactor expansion toM j
n+1, j = 1, . . . ,n along the last row gives

M j
n+1 =

n

∑
i=1
i 6= j

[

(−1)n+1−ian+1(−1)n+1+iM j
n+1,i

]

+(−1)nan+1(−1)n+1+ jM j
n+1, j +(an+1 +z)M j

n+1,n+1

= an+1

n

∑
i=1
i 6= j

M j
n+1,i +(−1) j−1an+1M j

n+1, j +(an+1 +z)M j
n+1,n+1.

(47)
Similarly, applying cofactor expansion toMn+1

n+1 along the last row gives

Mn+1
n+1 =

n

∑
i=1

(−1)n+1−ian+1(−1)n+1+iMn+1
n+1,i +(−1)nan+1Mn+1

n+1,n+1

= an+1

n

∑
i=1

Mn+1
n+1,i +(−1)nan+1Mn+1

n+1,n+1.
(48)

SinceM j
n+1,n+1 = M j

n, we can write

n+1

∑
j=1

M j
n+1 = (an+1+z)

n

∑
j=1

M j
n +an+1

n+1

∑
j=1







n

∑
i=1
i 6= j

M j
n+1,i +(−1) j−1M j

n+1, j







= (an+1+z)Rn(−z)+an+1Qn(−z)
= Rn+1(−z).

(49)

This proves (46a).
We split the proof of (46b) into 2 parts:j = 1,2, . . . ,n and j = n+1,n+2. For j = 1, . . . ,n,

using an argument similar to one employed in (43), we can derive M j
n+2,i = (−z)M j

n+1,i , i =
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1,2, ...,n. This with a cofactor expansion on the last row ofM j
n+2,n+1 gives

n+1

∑
i=1
i 6= j

M j
n+2,i +(−1) j−1M j

n+2, j =
n

∑
i=1
i 6= j

M j
n+2,i +(−1) j−1M j

n+2, j +M j
n+2,n+1

= (−z)







n

∑
i=1
i 6= j

M j
n+1,i +(−1) j−1M j

n+1, j







+an+1







n

∑
i=1
i 6= j

M j
n+1,i +(−1) j−1M j

n+1, j






+an+1M j

n+1,n+1.

(50)
For j = n+1,n+2, we switch the last two columns ofMn+2

n+2,i to obtain

Mn+2
n+2,i =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 +z · · · a1 a1

−a2 · · · a2 −a2
...

...
...

(−1)nan+1 · · · an+1 +z (−1)nan+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1+z · · · a1 a1

−a2 · · · −a2 a2
...

...
...

(−1)nan+1 · · · (−1)nan+1 an+1+z

∣

∣

∣

∣

∣

∣

∣

∣

∣

(51)

Comparing−Mn+2
n+2,i with Mn+1

n+2,i reveals that the entries in the determinants are identical except

for the(n+1,n+1) element, which is(an+1 +z) in −Mn+2
n+2,i andan+1 in Mn+1

n+2,i . Expanding

the determinants along the last rows ofMn+1
n+2,i andMn+2

n+2,i and adding up the results, we have

Mn+1
n+2,i +Mn+2

n+2,i = (−z)Mn+1
n+1,i , i = 1,2, ...,n. (52)

A similar observation gives

Mn+1
n+2,n+1 +Mn+2

n+2,n+2 = (−z)Mn+1
n+1,n+1. (53)

Combining (52) and (53) and using a cofactor expansion onMn+2
n+2,n+1 along the last row, we

obtain

n+2

∑
j=n+1

n

∑
i=1

M j
n+2,i +(−1)nMn+1

n+2,n+1 +Mn+2
n+2,n+1 +(−1)n+1Mn+2

n+2,n+2

= (−z)
n

∑
i=1

Mn+1
n+1,i +(−1)n(an+1−z)Mn+1

n+1,n+1 +an+1

n

∑
i=1

Mn+1
n+1,i .

(54)

11



Finally, combining (50) and (54) yields the result

n+2

∑
j=1







n+1

∑
i=1
i 6= j

M j
n+2,i +(−1) j−1M j

n+2, j






= (an+1−z)

n+1

∑
j=1







n

∑
i=1
i 6= j

M j
n+1,i +(−1) j−1M j

n+1, j







+an+1

n

∑
j=1

M j
n+1,n+1

= (an+1−z)Qn(−z)+an+1Rn(−z)
= Qn+1(−z),

(55)
which completes the proof.

Lemma 3 relates polynomialsQn(z) andRn(z) to the confluent hypergeometric functions.

Lemma 3. Let Qn(z) and Rn(z) be polynomials defined by (39). Then,

Qn(z) =
n

∏
i=1

ai2
n−1

1F1(−n,−2n+1,z), (56a)

Rn(z) =
n

∏
i=1

ai2
n−1

1F1(−n+1,−2n+1,z). (56b)

Proof. Whenn = 1, (56) is validated by Definition 1 and (39). Assuming that (56) is true for
Qn(z),Rn(z), we will show it is also true forQn+1(z),Rn+1(z). We start with (56a). By the
recurrence relation (39) and the assumption that (56) is true forQn(z),Rn(z), we have

Qn+1(z) = (an+1+z)Qn(z)+an+1Rn(z)

= (an+1+z)
n

∏
i=1

ai2
n−1

1F1(−n,−2n+1,z)+an+1

n

∏
i=1

ai2
n−1

1F1(−n+1,−2n+1,z)

=
n

∏
i=1

ai2
n−1 [(an+1+z)1F1(−n,−2n+1,z)+an+11F1(−n+1,−2n+1,z)]

=
n

∏
i=1

ai2
n−1

[

(an+1+z)
n

∑
k=0

(−n)k

(−2n+1)k

zk

k!
+an+1

n−1

∑
k=0

(−n+1)k

(−2n+1)k

zk

k!

]

.

(57)
Next, we collect the terms of the same degreek in (57) and simplify the obtained coeffi-
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cients. The coefficients in front ofzk, k = 2,3, ...,n,

an+1
(−n)k

(−2n+1)k

1
k!

+an+1
(−n+1)k

(−2n+1)k

1
k!

+
(−n)k−1

(−2n+1)k−1

1
(k−1)!

= an+1(−n+k−1)
(−n+1)k−2

(−2n+1)k−1

1
k!

+(−n)
(−n+1)k−2

(−2n+1)k−1

1
(k−1)!

= [an+1(−n+k−1)+(−n)(k)]
(−n+1)k−2

(−2n+1)k−1

1
k!

= [(2n+1)(−n+k−1)+(−n)(k)]
(−n+1)k−2

(−2n+1)k−1

1
k!

= (−2n+k−1)(n+1)
(−n+1)k−2

(−2n+1)k−1

1
k!

= (−2n+k−1)(n+1)
(−2n−1)(−2n)

(−n−1)(−n)(−2n+k−1)

(−n−1)k

(−2n−1)k

1
k!

= 2an+1
(−n−1)k

(−2n−1)k

1
k!

.

(58)

For the constant term,k = 0, we have

an+1 ·1+an+1 ·1 = 2an+1 ·1. (59)

For the term of degree 1,

an+1
−n

−2n+1
+1+an+1

−n+1
−2n+1

= 2(n+1) = 2an+1
−n−1
−2n−1

. (60)

For the term of degreen+1

(−n)n

(−2n+1)n

1
n!

=
(−2n−1)(−2n)

(−n−1)(−n)

(−n−1)n+1

(−2n−1)n+1

1
n!

= 2an+1
(−n−1)n+1

(−2n−1)n+1

1
(n+1)!

. (61)

Inserting (58)-(61) into (57), we obtain

Qn+1(z) =
n+1

∏
i=1

ai2
n

n+1

∑
k=0

(−n−1)k

(−2n−1)k

zk

k!
=

n+1

∏
i=1

ai2
n
1F1(−n−1,−2n−1,z). (62)

Statement (56b) can be proven using a similar reasoning. To avoid repetition, the proof is
omitted. Thus, we proved that (56) is valid for anyn∈ N.

Now we can complete the proof of Theorem 1.

Proof. Letwn = Ã−1
n rn, i.e. Ãnwn = rn. Using the Cramer’s rule,wn = det(Ãn)

−1[M1
n,M

2
n, ...,M

n
n]

T .
Therefore,

fn(z) = [1,1, ...,1]Ã−1
n rn

= [1,1, ...,1]wn

=
1

det(Ãn)

n

∑
j=1

M j
n

=
Rn(−z)
Qn(z)

(Lemma 1 and Lemma 2)

=
1F1(−n+1,−2n+1,−z)

1F1(−n,−2n+1,z)
(Lemma 3)
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4 Spectrum of the DG discretization

In the previous section we showed that the eigenvalues of thediscontinuous Galerkin spatial
discretization matrixL are given by

fn(λ) = ω j , ω j = e
2πi
N j , j = 0,1, . . . ,N−1. (63)

Then, using (40) the eigenvalues can be computed asn roots of

Rn(−λ)−ω jQn(λ) = 0 (64)

for each 0≤ j ≤ N−1.

−50 −40 −30 −20 −10 0
−30

−20

−10

0

10

20

30

−0.2 −0.15 −0.1 −0.05 0
−10

−5

0

5

10

Figure 2: Eigenvalues ofL for p = 1,2,3,4,5,6 with N = 20. The inner curve corresponds to
p = 1 and the outer curve corresponds top = 6. The right figure is a zoom of the left one.

The computed eigenvalues withp = 1,2, . . . ,6 on a twenty cell mesh are shown in Figure
2, left. We observe that the size of the spectrum grows withp. At the same time the curves
| fp+1(z)|= 1 (of which (63) is a discrete approximation) seem to approach and flatten near the
imaginary axis (Fig. 2, right) asp increases.

The leftmost eigenvalues are mainly responsible for the decrease of the CFL number with
increasing order of approximation and can be used as a proxy for the size of the spectrum.
We investigate the growth rate of the eigenvalue with the largest magnitude later in this sec-
tion. Flattening of the spectral curves near the imaginary axis means that for the fully discrete
method to be stable with a constant (mesh size independent) CFL number, the absolute stability
region of the time integration scheme should include a sufficiently large part of the imaginary
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axis. For example, the DG withp > 0 is not stable with a fixed CFL number with the forward
Euler time stepping orp > 1 and a two stage second order Runge-Kutta schemes [7]. How-
ever, despite approaching the imaginary axis, the eigenvalues are never purely imaginary when
the upwind flux is used in the DG discretization. This is proven in the following lemma and
theorem.

Lemma 4. Let Qn(z) and Rn(z) be polynomials defined by (39). Then,

Qn(βi)Qn(−βi) = Rn(βi)Rn(−βi)+β2n, β ∈ R, n = 1,2, . . . . (65)

Proof. Whenβ = 0, it follows from (56) and the definition (36) thatQn(0) = Rn(0). Then, (65)
is trivially true.

Whenβ 6= 0, we will use the mathematical induction onn to prove (65). Forn = 1, from
(39), we obtain

Q1(βi)Q1(−βi) = (1+βi)(1−βi) = 1+β2 = R1(βi)R1(−βi)+β2, (66)

which establishes the basis of induction. We assume (65) is valid for n, and we will prove it
consequently holds forn+1. Using (39) yields

Qn+1(βi)Qn+1(−βi) = [(an+1+βi)Qn(βi)+an+1Rn(βi)] [(an+1−βi)Qn(−βi)+an+1Rn(−βi)]

= (a2
n+1 +β2)Qn(βi)Qn(−βi)+a2

n+1Rn(βi)Rn(−βi)

+(a2
n+1 +an+1βi)Qn(βi)Rn(−βi)+(a2

n+1−an+1βi)Qn(−βi)Rn(βi).
(67)

Rn+1(βi)Rn+1(−βi) = [an+1Qn(βi)+(an+1−βi)Rn(βi)][an+1Qn(−βi)+(an+1+βi)Rn(−βi)]

= a2
n+1Qn(βi)Qn(−βi)+(a2

n+1+β2)Rn(βi)Rn(−βi)

+(a2
n+1 +an+1βi)Qn(βi)Rn(−βi)+(a2

n+1−an+1βi)Qn(−βi)Rn(βi).
(68)

Thus,

Qn+1(βi)Qn+1(−βi)−Rn+1(βi)Rn+1(−βi) = β2[Qn(βi)Qn(−βi)−Rn(βi)Rn(−βi)]
= β2(n+1),

(69)
which completes the proof.

Theorem 2. Equation (63) has no pure imaginary roots.

Proof. We start by observing that for any polynomialp(z) with real coefficients the following
holds

p(βi) = p(−βi). (70)

Next, let us assume thatz= βi is a pure imaginary root of (63), whereβ 6= 0 is a real number.
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Substitutez= βi into (40) and take the modulus to obtain

| fn(βi)|2 = fn(βi) fn(βi)

= fn(βi) fn(−βi)

=
Rn(βi)Rn(−βi)
Qn(βi)Qn(−βi)

=
Rn(βi)Rn(−βi)

Rn(βi)Rn(−βi)+β2n (Lemma 4)

=
|Rn(βi)|2

|Rn(βi)|2+β2n < 1.

(71)

Since| fn(z)|= 1 is a necessary condition forzbeing a root of (63),| fn(βi)|< 1 implies thatβi
is not a root of (63).

−15 −10 −5 0
0

2

4

6

8

10

12

14

16

18

20

|f5(−2 + 10i)| ≈ 1.74

|f5(z)| = 1

|f4(z)| = 1

Figure 3: Illustration of| fn(z)| = 1 approaching the imaginary axis. For a randomly chosen
point ẑ=−2+10i, we can find| f5(ẑ)|> 1, so| f5(z)|= 1 passes through the right of this point
ẑ.

Padé approximants of the exponential function converge tothe exponent at every point in
the complex plane [11], p.531-536. If we pick an arbitrary point z= α +βi, α < 0, from the
left half plane, we have

| lim
n→∞

fn(z)| = |e−z| > 1, (72)

i.e. there exists a sufficiently largeN such that| fN(z)| > 1. In the proof of Theorem 2, we
showed that| fN(βi)| < 1. Assuming that| fN(z)| is analytic on the line Imz= β (since there
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exists only a finite number of poles of| fN(z)| this is not a restrictive assumption), there exists a
pointz′ = α′+βi, whereα < α′ < 0, such that| fN(z′)|= 1. This implies that the curve| fN(z)|=
1 goes across the region betweenz= α+βi andβi. Since the pointz is randomly chosen from
the left half plane, we can conclude that for any point close enough to the imaginary axis,
there exists a curve which is even closer to the imaginary axis. Thus, we demonstrated that
| fn(z)|= 1 approach the imaginary axis asn grows. The reasoning is illustrated for a particular
choice of a pointzandn = 5 in Figure 3.

Next, we analyze the growth of the eigenvalue largest in modulus. We conjecture it to be
the real eigenvalue located on the leftmost part of the spectral curves| fn(z)| = 1 in Figure
2. All roots of (63) are located in the left half of the complexplane. This can be seen from
Theorem 4.12 in [10], which states that the curve|R(z)| = 1, whereR(z) is the[p/p+1] Padé
approximant ofexp(z) is located in the right half of the complex plane. Sincefn(z) is the
same approximant toexp(−z), | fn(z)| = 1 is a mirror image of|R(z)| = 1 with respect to the
imaginary axis, and the result follows. Below we make a few simple statements about the roots
of (63).

Proposition 1. Equation (63) always has a zero root.

Proof. ¿From (56) and (36), the zero order coefficients inR(−z) andQ(z) are the same and are
equal to∏n

i=1ai2n−1. Using (40),fn(0) = R(0)/Q(0) = 1.

Proposition 2. The real roots of fn(z) = ωk correspond toωk = ±1.

Proof. Considerfn(z) = ωk with a realz. Since fn is a rational function with real coefficients,
the right hand side must be a real number. Hence,ωk = ±1.

Depending on the number of mesh cellsN and the order of approximationp, there might
be one real root or a couple of complex conjugate numbers on the left most part of the curve.
This is not essential as (63) is a discrete version of| fn(z)| = 1. Below we state the conditions
for (63) to have a real negative root which we will denote byz∗ and without loss of generality
we will assume that the mesh is such that it exists.

Proposition 3. For a discretization with an even number of cells N, (63) has at least one
non-zero real root.

Proof. If n is an odd number, we rewritefn(z) =−1 asR(−z)+Q(z) = 0. Since the zero order
coefficient inR(−z) andQ(z) is the same (Proposition 1), zero is not a root ofR(−z)+Q(z) =
0. Sincen is odd, there exists at least one non-zero real root.

If n is an even number, we rewritefn(z) = 1 asR(−z)−Q(z) = 0. Since the zero order
coefficient inR(−z) andQ(z) is the same,R(−z)−Q(z) = 0 can be expressed aszr(z) = 0,
wherer(z) is a real polynomial of degreen−1. Consequently, it should have one real root
which cannot be zero because, as shown in (56) and (36), the first order coefficients ofR(−z)
andQ(z) are not the same.

For an odd number of cellsN, an odd degree approximation (evenn) results in at least one
nonzero real root. With an even degree of approximation, we conjecture that the only real root
is zero. Since the eigenvalues always locate on| fn(z)| = 1, which does not depend onN, we
can assumeN is even for analyzing the size of the spectrum.
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If the negative real rootz∗ exists, it is conjectured to have the largest modulus, and this
largest modulus also performs as a bound of all roots whenz∗ does not exist. Next, we will
derive a bound onz∗.

Using (38) to write (63) in a polynomial form

p(z) = 1F1(−n+1,−2n+1,−z)−e
2πi
N j

1F1(−n,−2n+1,z), (73)

and collecting the terms of the same order, we obtain

p(z) = cnzn+cn−1zn−1+ · · ·+c1z+c0, (74)

where
cn = −e

2πi
N j (−n)n

(−2n+1)n

1
n!

cn−1 = −e
2πi
N j (−n)n−1

(−2n+1)n−1

1
(n−1)! +

(−n+1)n−1
(−2n+1)n−1

1
(n−1)!

...

c0 = −e
2πi
N j +1.

(75)

Since the sum of all the roots ofp(z) = 0 satisfies

n

∑
i=1

zi = −
cn−1

cn
= −n2−ne−

2πi
N j , (76)

we obtain that Re(−cn−1
cn

) > −n(n+1). Noticing that all the roots have non-positive real parts,
−n(n+1) is a lower bound of the real part of all roots includingz∗ for all n. We are interested
whether this bound is tight and reasonably well represents the growth speed of the largest root.
Table 1 lists the roots of the largest modulus up to order 24, and Figure 4 shows the absolute
value of these roots up to order 100. We see that the bound overestimates the roots especially
for largen. Next, we show that the asymptotic growth rate is not quadratic. In particular, the
following theorem proves that−cn2 is not a root of (63) for allc > 0.

Theorem 3. For all c > 0, | fn(−cn2)| ∝ 1
n as n→ ∞.

Proof. Consider the hypergeometric function1F1(a,b,z) defined in (36) and (37). Whena and
b are negative integers, the function1F1(a,b,z) is a polynomial of degree|a|. We factor out the
term of the highest degree ofzand define the function

G(a,b,z) =
(b)|a|

(a)|a|

|a|!

z|a|
1F1(a,b,z), (77)

or, in an explicit form,

G(a,b,z) =
|a|

∑
k=0

ck

zk , ck = Ck
|a|(a−b+1)k, (78)

whereCk
|a| are binomial coefficients. Substituting (77) into (38) yields

fn(z) =
1F1(−n+1,−2n+1,−z)

1F1(−n,−2n+1,z)
=

(−1)n−1n
z

G(−n+1,−2n+1,−z)
G(−n,−2n+1,z)

. (79)
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Table 1: Real eigenvalues ofL on a two cell grid.

p 1 2 3 4 5 6
−z∗ 6 11.8424 19.1569 27.8419 37.8247 49.0518

(p+1)(p+2) 6 12 20 30 42 56

p 7 8 9 10 11 12
−z∗ 61.4815 75.0797 89.8181 105.6720 122.6204 140.6442

(p+1)(p+2) 72 90 110 132 156 182

p 13 14 15 16 17 18
−z∗ 159.7268 179.8529 201.0087 223.1817 246.3603 270.5337

(p+1)(p+2) 210 240 272 306 342 380

p 19 20 21 22 23 24
−z∗ 295.6920 321.8258 348.9264 376.9857 405.9960 435.9500

(p+1)(p+2) 420 462 506 552 600 650

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

n

|z∗|

1.5n1.75

n(n + 1)

Figure 4: Absolute value of the negative real roots on a two cell grid, the upper boundn(n+1)
and the lower bound 1.5n1.75 as a function ofn = p+1.

Next, we will prove that lim
n→∞

G(−n,−2n+ 1,−cn2) = e−
1
c . Substitutinga = −n,b = −2n+
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1,z= −cn2 into (78) gives

G(−n,−2n+1,−cn2) =
n

∑
k=0

Ck
n

(n)k

(−cn2)k

=
n

∑
k=0

n!
k!(n−k)!

(n)k

(−cn2)k

=
n

∑
k=0

(−1)k

ckk!
[

n!
(n−k)!

(n)k

(n2)k ]

= 1+
n

∑
k=1

(−1)k

ckk!
(1−

1
n2)(1−

22

n2) · · ·(1−
(k−1)2

n2 ).

For simplicity, we call

d̃k =
(−1)k

ckk!
, en

0 = 1, en
k = (1−

0
n2)(1−

1
n2)(1−

22

n2) · · ·(1−
(k−1)2

n2 ), k= 1,2, ..., (80)

and definedn
k as

dn
k =















1, k = 0,
(−1)k

ckk!
(1−

0
n2)(1−

1
n2)(1−

22

n2) · · ·(1−
(k−1)2

n2 ) = d̃ke
n
k, k = 1, ...,n,

0, k > n.

(81)

We also define two partial sums

Dn
l =

l

∑
k=0

dn
k , D̃l =

l

∑
k=0

d̃k, l = 0,1, .... (82)

Then,G(−n,−2n+1,−cn2) = Dn
n. Since for a fixedk lim

n→∞
en

k = 1, we conclude that

lim
n→∞

dn
k = d̃k, ∀k > 0. (83)

Noticing that lim
l→∞

D̃l = e−
1
c , we have

∀ ε > 0,∃ K1 > 0,s.t.∀ k > K1,
∣

∣

∣
D̃K1 −e−

1
c

∣

∣

∣
< ε. (84)

And from the definition ofd̃k,

∃ K2 > 0,s.t.∀ k > K2, |d̃K2+1| < ε. (85)

Let K = max(K1,K2), then

lim
n→∞

Dn
K =

K

∑
k=0

lim
n→∞

dn
k =

K

∑
k=0

d̃k = D̃K. (86)
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The expression above implies that

∃N > K > 0, s.t.∀ n > N, |Dn
K − D̃K| < ε. (87)

On the other hand, since{dn
k} have alternating signs while|dn

k | decrease ask→ ∞,

|Dn
K −Dn

n| < |dn
K+1| < |d̃K+1| < ε. ∀ n > K (88)

Combining (84), (87) and (88), we obtain

|Dn
n−e−

1
c | 6 |Dn

n−Dn
K|+ |Dn

K − D̃K |+ |D̃K −e−
1
c | < 3ε, n > N,

i.e.
lim
n→∞

G(−n,−2n+1,−cn2) = lim
n→∞

Dn
n = e−

1
c . (89)

Using the same reasoning, we can prove that

lim
n→∞

G(−n+1,−2n+1,cn2) = e
1
c . (90)

Combining (89), (90) and (79) yields

lim
n→∞

| fn(−cn2)| = lim
n→∞

∣

∣

∣

∣

G(−n+1,−2n+1,cn2)

G(−n,−2n+1,−cn2)

∣

∣

∣

∣

n
cn2 = lim

n→∞
e

2
c

1
cn

= 0. (91)

We have proved that regardless of the constantc, | fn(cn2)| is small for large enoughn and
consequently cannot be a root of (63). In other words, any quadratic function will overcome the
curve|z∗(n)| (Fig. 4). If we assume that the real rootz∗ grows as a power function−cnα, then
for α > 2, by following the steps in the proof of Theorem 2 we can show that lim

n→∞
G(−n,−2n+

1,−cnα) = 1 and lim
n→∞

G(−n+ 1,−2n+ 1,cnα) = 1. So, in this case, lim
n→∞

fn(−cnα) = 0 also

impliesz∗ = −cnα is not the proper estimate for the root. We conclude that the spectrum ofL
should grow slower than−cnα. Numerical experiments reveal that−1.5n1.75 is an upper bound
onz∗ for all n (Fig. 4). Least square fitting−cnα for the first one hundred roots gives−1.4n1.78.
Bounds on the eigenvalues for very largen are reported in Figure 5. The computations were
performed for a two cell grid using MATLAB. They are believedto be accurate in the sense of
small error infn(z∗)−1.

Remark.We should mention that the Padé approximantsfn(z) are only a good approxima-
tion to e−z in regions close to the origin of the complex plane. In Figure6 we plot| fp+1(z)|
for real negativez with p = 1,2,3. The spike in thep = 2 plot is related to the nearby pole
of f3(z). We note that this behavior, i.e. that the exponential function grows in magnitude
while the Padé approximants decay to zero as|z| increases, is similar for complexzbut is more
difficult to illustrate. Comparing Figures 2 and 6 reveals that for many eigenvaluesλ, | fn(λ)|
is far frome−λ. Although the region wherefn(z) ≈ e−z grows with n, it grows slower than the
eigenvalues. Consequently, the approximantfn should not be viewed as an approximation of
exp(−z) as far as eigenvalues ofL are concerned.
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Figure 5: Absolute value of the negative real roots on a two cell grid and two bounds for large
values ofn.
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Figure 6: Comparison ofe−z with | fp+1(z)| for p = 1,2,3.

5 Conclusions and future work

We have derived a closed form expressions for the eigenvalues of the DG spatial discretiza-
tion applied to the one-dimensional linear advection equation with periodic boundary condi-
tions and the upwind flux. We have proven that the characteristic polynomial of the spatial
discretization matrixL is related to the subdiagonal[p/p+1] Padé approximant ofe−z. Based
on the analytical equation for the eigenvalues, we have proven that there is no pure imaginary
eigenvalues. We have also shown that(p+1)(p+2) is a guaranteed bound on the size of the
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eigenvalues which can be used to compute the CFL condition for largep. However, we have
also proven that the growth rate of the largest eigenvalue isless than(p+1)2. We conjecture
that a more accurate rate is proportional to(p+ 1)1.75. This is in contrast with the currently
assumed quadratic rate for the DGM [13] and various spectralmethods [12]. A more accurate
analytical estimate would be of interest.

A potential application would be to use this result to improve the CFL number of the
DGM and, consequently, its computational efficiency. We show [4], that the coefficients of
the scheme can be manipulated to decrease the radius of the spectrum, i.e. to increase the CFL
number, while preserving the convergence rate in theL2 norm. The improvement depends on
the order of approximation. For example, we can have an improvement up to a factor of three
for p = 1 and up to a factor of 5.5 forp = 3. We also apply this result to analysis of the spec-
trum on non-uniform grids [15]. In particular, we are interested how a global CFL condition
is affected by the composition of the mesh and how a few small cells influence the overall
stability of the method. The improvement is observed in somespecial cases such as Cartesian
grids with embedded geometries.
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Appendices

Table 2: Part of the Padé table ofez [3]

0 1 2 3

0
1
1

1+z
1

2+2z+z2

2
6+6z+3z2+z3

6

1
1

1−z
2+z
2−z

6+4z+z2

6−2z
24+18z+6z2+z3

24−6z

2
2

2−2z+z2

6+2z
6−4z+z2

12+6z+z2

12−6z+z2

60+36z+9z2+z3

60−24z+3z2

3
6

6−6z+3z2−z3

24+6z
24−18z+6z2−z3

60+24z+3z2

60−36z+9z2−z3

120+60z+12z2+z3

120−60z+12z2−z3
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Table 3: PolynomialsQn(z) andRn(−z) defined in (39)

n Rn(−z) Qn(z)

2 6(1−
1
3

z) 6(1+
2
3

z+
1
6

z2)

3 60(1−
2
5

z+
1
20

z2) 60(1+
3
5

z+
3
20

z2+
1
60

z3)

4 840(1−
3
7

z+
1
14

z2−
1

210
z3) 840(1+

4
7

z+
1
7

z2+
2

105
z3+

1
840

z4)

5 15120(1−
4
9

z+
1
12

z2−
1

126
z3+

1
3024

z4) 15120(1+
5
9

z+
5
36

z2+
5

252
z3+

5
3024

z4+
1

15120
z5)

.
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[8] N. Gödel, S. Schomann, T. Warburton, and M. Clemens. GPUaccelerated Adams-
Bashforth multirate discontinuous Galerkin simulation ofhigh frequency electromagnetic
fields. IEEE Transactions on magnetics, 48(8):2735–2738, 2010.

[9] S. Gottlieb, D. Ketcheson, and C.-W. Shu. High-order stability preserving time discretiza-
tions. Journal of Scientific Computing, 38(3):251, 2009.

24



[10] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and
differential-algebraic problems. Springer, Berlin, second edition, 2002.

[11] P. Henrici. Applied and Computational Complex Analysis. Special functions-integral
transforms-asymptotics-continued fractions, volume 2. John Wiley & Sons, 1977.

[12] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb.Spectral Methods for time dependent prob-
lems. Cambridge University Press, Cambridge, 2007.

[13] J. S. Hesthaven and T. Warburton.Nodal Discontinuous Galerkin Methods. Algorithms,
Analysis, and Applications. Springer, 2007.

[14] F. Q. Hu and H. L. Atkins. Eigensolution analysis of the discontinuous Galerkin method
with nonuniform grids.Journal of Computational Physics, 182:516–545, 2002.

[15] L. Krivodonova and R. Qin. Linear stability analysis ofthe discontinuous Galerkin
method on non-uniform grids. In preparation.

[16] E. J. Kubatko, C. Dawson, and J. J. Westerink. Time step restrictions for Runge-Kutta
discontinuous Galerkin methods on triangular grids.Journal of Computational Physics,
227:9697–9710, 2008.

[17] P. Le Saint and P. Raviart. On a finite element method for solving the neutron trans-
port equation. In C. de Boor, editor,Mathematical Aspects of Finite Elements in Partial
Differential Equations, pages 89–145, New York, 1974. Academic Press.

25


