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Abstract

We derive explicit expressions for the eigenvalues (spettrof the discontinuous
Galerkin spatial discretization applied to the linear aie® equation. We show that the
eigenvalues are related to the subdiagdpap + 1] Padé approximation of exp(-z) when
p-th degree basis functions are used. We derive an upper bmutite eigenvalue with
the largest magnitude dp+ 1)(p+ 2). We demonstrate that this bound is not tight and
prove that the asymptotic growth rate of the spectral radigsower than quadratic ip.

We also analyze the behavior of the spectrum near the imggéxds to demonstrate that
the spectral curves approach the imaginary axis althougie tare no purely imaginary
eigenvalues.

1 Introduction

In this paper we derive explicit expressions for the eigkres (spectrum) of the semi-
discrete discontinuous Galerkin (DG) method applied toahe-dimensional linear advection
equation. The DG spatial discretization results in a lirsgatem of ODEs

—c=—Lc (2)

for (p+1)N degrees of freedora on anN element uniform mesh witp-th degree approx-
imation in space. Herea is the wave speed anfix is the cell size. We show that for a
discretization with the upwind flux and periodic boundarypditions, the eigenvalues tfare
given by fp 1 () =exp(aLj), j =0,1,...,N —1, wheref,,1(2) is the subdiagondb/p+ 1]
Padé approximant afxp(—z). We also demonstrate that the eigenvectork afe related to
N-th roots of unity.



A direct application of the eigenvalue analysis is to thedinstability of the fully discrete
scheme. Equation (1) is usually integrated in time usingtalsie ODE solver. Thus, the nec-
essary condition for the stability of the method is to regtire time steg@t to be small enough
so that the full spectrum %L fits inside the absolute stability region of the chosen tinte-i
gration scheme. The eigenvalued.ofan be computed using a linear algebra software which
has been done for a variety of combinations of spatial ordatstime integration schemes
[7, 13]. However, the analytical form of the eigenvalues hasbeen previously known. It
is interesting from a purely theoretical point of view anch@so be used to get further in-
sight into the DG method. We use it to improve the CFL numbemiayipulating the scheme
so that the spectrum df is shrunk [4]. This is achieved by constructing a differeatianal
approximant oexp—z) which seeks to preserve the order of accuracy irL.theorm.

A linear stability analysis of (1) arising from a low order Dgpatial discretization and
Runge-Kutta time integration was previously performed@n] and, more recently, in [16]
for two-dimensional problems. It was shown that the DGM wpth- O is not stable with a
fixed CFL number when the forward Euler time integration isdu§5]. This is caused by
the eigenvalues of (1) being located very close to the inagiaxis which is not included
in the stability region of the forward Euler method. It wasyen in [6] that the DG method
with p =1 and the second order Runge-Kutta schenme istable with the CFL number equal
to 1/3. It was further hypothesized there that a coupling gftta degree DG scheme with
a (p+ 1)st order RK scheme is stable under a CFL conditigf2p + 1). In recent years,
the DGM has been used with a variety of explicit time inteigraschemes, such as Adams-
Bashforth [8], strong-stability preserving schemes [8}y Istorage RK schemes [13]. In this
view, the universal CFL number seems to be of less importance

Using the obtained expressions for the eigenvalues, wgznttie asymptotic behavior of
the spectrum as the order of approximatipgoes to infinity. The real eigenvalue, which is
conjectured to be the largest in magnitude, and the real ooem of complex eigenvalues is
shown to be bounded from below by(p+1)(p+ 2) for any p. However, we prove that the
actual growth rate of the size of the largest eigenvalueawesl than quadratic. Numerical
experiments indicate that1.5(p+ 1)17® is an upper bound on the eigenvalues. The least
square fitting gives a growth rate of about(lp+ 1) "8 for p < 100. We also demonstrate that
although the curveldp,1(z)| = 1 move closer to the imaginary axis pncreases there are no
purely imaginary eigenvalues for aipy

A connection between the DG method and the Padé approxérhastbeen observed pre-
viously. In [17], Le Saint and Raviart showed that the absotuability region of the discon-
tinuous Galerkin method used to solve an ODE is giveriRh)| < 1, whereR(z) is the
[p/p+ 1] Padé approximant aéxp(z). In [14], Hu and Atkins studied the dispersion prop-
erties of the DG scheme applied to the scalar advection equat one dimension. They
showed that for the physical mode, the numerical dispenrsitation is accurate t(kAx)2P+2,
wherek is the wavenumber arkiAx is small. Their reasoning was founded on the conjecture
that certain polynomials involved in the analysis are e#ato [p+ 1/p] Padé approxima-
tion of exp(z). An extended analysis of the dispersion and dissipatiaoremwere given by
Ainsworth in [2]. It was demonstrated there that the nunegricave speed satisfies the rela-
tion fpp1(—iAXK) = exp(iAxk). The proof is based on a demonstration that DG solutionsfgati
a certain eigenvalue problem conjectured in [14]. In Theotewe show how this eigenvalue
problem arises from the characteristic polynomial of
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The[p/p+ 1] and[p+ 1/p] Padé approximants @pz) areO(z2P2) accurate for small
z. This explains the excellent dispersion and dissipatiaperties of the DGM which were
called “superconvergent” in [14, 2]. This makes the scheery guitable for wave propaga-
tion problems especially ones requiring long time intagrat However, from our analysis it
follows that the same approximants are involved in definigdpectrum of the semi-discrete
method and, in this sense, are responsible for a severe tapeestriction associated with the
DGM. The small CFL number is frequently quoted as an disatdgnof the DGM. It makes
the method, especially for low and nonlinear problems, more expensive when compared to
schemes that are able to maintain the CFL close to unityfieite volume schemes.

The rest of this paper is organized as follows. We begin byihey the discontinuous
Galerkin formulation of the model problem with the aim to @bta general form of the re-
sulting systems of ODESs. In Section 3, we derive the equatibat describe the eigenvalues
and eigenvectors of the spatial discretization and provemain result, i.e the relation between
the characteristic polynomial &f and Padé approximants. Section 4 contains an analysis of
the distribution of eigenvalues and the growth speed of itpen@alue of the largest modulus.
Finally, conclusions and discussions are provided in 8e@&i

2 Discontinuous Galerkin discretization

We consider the one-dimensional linear advection equation
U +au =0 (2

subject to appropriate initial and periodic boundary ctiods on interval, a > 0. The domain
is discretized uniformly into mesh elemenis= [xj_1,X;] of sizeAx, j = 1,2,...,N. The dis-
continuous Galerkin spatial discretization on ¢ellith the upwind numerical flux is obtained
by approximatingi by Uj € P, multiplying (2) by a test functiok’ € P, integrating the result
onl; while using integration by parts once

Xi .
9 UV dxtaU; (6 V(X)) —aUs 16 V(61 —a [ UV dx=0, W e By (3)

dt Xj-1 Xj—1

X

P, is a finite dimensional space of polynomials of degree up.tdransformingxj_1,X;| to
the canonical element-1, 1] by a linear mapping

_ Xj-1tX | AX
><(£)—72 + ZE (4)
yields
Axd v dE +aU (DV(L) —aUs _y(1V/(—1 "UVIdE—0, Wer, (5
7&/11 +aj()()—ajl()(—)—a/11 =0, €Pp. (5

We choose the Legendre polynomials as the basis for the &lateent space’,. Recall [1],
that the Legendre polynomiai(§), k=0,1,2,..., form an orthogonal system ¢n 1,1]

1 2
/_1 PP dE = méki, (6)
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wheredy; is the Kroneker delta. With the chosen normalization (6§, ¥hlues of the basis
functions at the end points of the interyall, 1] are [1]

A1) =1,  R(-1)= (-1~ (7)

The numerical solution can be written in terms of the basis as
p

Uj = .;Cjiph (8)

wherec;i is a function of timet. Substituting (8) into (5), choosing= P, k=10,1,...,p, and
using (7) and (6) results in

AX p kp 1 p ,
I S L (=1 g iP|P.d k=0,1,... 9
Sr 1ok a(ig cji — (1) i:§ Cj 17|>+a/_1 (i:z Cji |> 3 1...,p, (9)

where the dot irtjk represents differentiation with respectttoCollecting common terms of
Cji results in

2k+1
AX

C,-k:a

(—1)'<pc-,1i+ : 1P.P’dE—1 ci|, k=0,1,...,p. (10)
i;)J ’ i;) = :

This can be written in a vector form as

2k+1
AX

1 1
tx—a ((-1)"[1, 1. 2c 1+ [/ PoP{dE 1 ...,/1Ppp|gd£ - 1]c,-) NCEN
wherec; = [¢jo, Cj1, - - -,Cjp] | andc;_1 is defined similarly. Combining cell solution-coefficient
vectors into a global vectar= [c],c],...,cp]", equation (11) can be written as

. a
=—Lc. 12
¢=le (12)
With periodic boundary conditiong, is a block matrix of the form

A, 0 O ... 0 O Dy
D O... 0 O o
L= 5” . R (13)

0O 0 O0... 0Dy Ay
whereD,, andA, aren x n matricesh = p+ 1. For approximation of ordqp, there aregp+ 1

basis functions, so the size of each blockpst 1) x (p+1). In the following discussion this
notation ofn is consistent and can always be replaced p4 1. In the matrix.,

1 1
-3 -3
Dn — . . ’ (14)
(-1)™2n-1) ... (~1)"(2n-1)



It PoPhdE — 1 S St PaaPidE -1 ]
3<f_11 PoPidE—1> 3([_11Pn,1pid§—1)
An = : : , (15)
(2n-1) ([ PP 1dE 1) ... (2n—1) (1 Pr-1Py ydE 1)
or ) ]
. 1 /
Ao (aq) = ((@-1( [ Prafl 08 -1). 6)
Noticing that the derivatives of the Legendre polynomialsssy [1]
(2k+1)Rc=PR1— P 1, (17)
we derive
Piir = (2k+ 1P+ (2(k—2) + 1)Rc 2+ (2(k—4) + D)Rca+ ... (18)

We use (18) with the orthogonality property of the Legendrl/ipomials (6) to simplify the
integrals inA,. We obtain

1 0, k<i,
/ PRAE={ 2, k>i, and(k—i)=1(mod 2, (19)
-1 0, k>i,and(k—i)=0(mod 2.
Thus,A, can be simplified as
[ al a1 al cee al a1 i
—ap a ap ap a
as —ag as as az
A =— —ay ay —a4 AR -V} a || (20)
(-1)"2%ap1 (-1)" 31 (-1)" %1 -+ a1 ana
I (_1>n—1an (_1)n—2an (_1)n—3an e —ap an |

whereg; =2 —1,i=12,...,n.

3 Characteristic polynomial of L and the Pack approximant

Next, we derive an expression for the eigenvaluds. &f is an eigenvalue df if it satisfies

D 0O.. 0 O O \Y; \Y;
n Aot e R (21)
0 0O 0... 0 Dn An VN VN

wherev™ = [v[,v],....v[] is the corresponding eigenvector and its componentsj =
1,2,...,N, are column vectors of length= p+ 1. Equivalently, we can write equation (21) as

Dnvj—1+Anvj =Avj, j=12...,N, (22)
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with an understanding that = vy. We expres®,, defined by (14) as an outer produi =
rn[1,1,...,1], wherer, = [1,-3,...,(—1)"(2n—1)]". Then (22) can be rewritten as

rn[1,1,...,2vj_1 = (Al — An)v;j. (23)
Introducing a new variabl§; = [1,1,...,1] - vj, we write (23) as
Sj—1rn= (Al = Ap)v;. (24)
Multiplying both sides of (24) by1,1, ..., 1] (Al — Ay) ! yields
Sj=Si-1[1,1,..., J(AM — Ay) "trn. (25)

Let
faA) = [1,1,..., J(Al — Aq) "rn, (26)

Then, (25) results in a recursive formula

Sj = fa(A\)Sj_1. (27)
Expansion of (27) starting with= N gives

Sv=fa NS (28)

Finally, taking into account periodicity of the boundarynditions, we obtairgy = fN(A\)Sy.
This implies
fNO\) =1 (29)

Then, the eigenvalues bfare the roots of the equations
flA) =), wj=eNl j=012. . N-1 (30)

EigenvectorsFor completeness of this discussion, we derive the eigéorsecf matrixL.
SincelL is a block circulant matrix, we look for eigenvecter® the form[¥T, w07 ,..., o ~20T]T.
Substitutingv into (21) gives

@ Dl + @A = Nl¥, 1< <N, (31)

or
(Akl — oxAn — D)V =0, (32)

whereA is one of the roots off,(A) = wx. V can be easily obtained by solving the linear
system (32). The solutions are not particularly illumingtand we do not report them. Figure
1 shows the periodic property of the components of the erenovs. We plot one of the two
eigenvectors correspondingke- 4 (left) andk = 17 (right). In figure 1 each point corresponds
to an entry inv. The entries of the eigenvectors represent sampling oflacgcait circle atN

or, if N/k is an integerN/k points. One of the circles in Figure 1, left and right, cop@sds

to the first entry ofq‘(\”/, j=1,2,...,N—1, and the other to the second entry(djv. The line
connecting two points represents two consecutive entfigsand, thus, the shift in sampling
between the two components of ea.qb”/, k=12,....N—1.
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* ¥ X %
0.2 0.2 . .
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0.1t 1 0.1t
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*
ot * * * 4 O * *
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-0.1¢ -0.1
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—0_2- * ] _0.2' * *
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2

Figure 1: Eigenvectors df with N = 20, p =1, andk = 4 (left) andk = 17 (right). Each point
in plots correspond to an entry in an eigenvector. The twatsaonnected by a line show the
first two entries of.

Pace approximants.In the theorem that follows we will demonstrate that funetia(z)
is the[n—1/n] Padé approximant af *. Recall [1], that the Padé approximant is a rational
approximation to a given function. Let us suppose that weyasen the Taylor expansion of a

functiong(z) = Z)ciz‘. A Padé approximant is a fraction
i_

ao+aiz+--+az

L/M] = 33
/M) bo+biz+- -+ bz’ (33)
that satisfies
< i _ dtazt--+az L+M+1
GZ = +0O(z- M. 34
i;; o+ brz+ -+ b ) (39

Coefficientsag,as, ...,a, andbgp, b1, ..., by are uniquely defined bgg, c1,..., if ag is fixed.
It is a common practice to display the approximants in a tallech is called the Padé table.
A part of the Padé table @f is illustrated in Appendix (Table 2) as an example.

The Padé approximants of the exponential funcéoare shown to be given by the follow-
ing formula for non-negative integepsq [3]

Fi(—p,—p—0,2)
, 35
Fi(—0,—p—0,—2) (59

wherejF; denotes the confluent hypergeometric function defined bge¢hes [1]

[p/q]ex;u) =

aa+17Z aa+la+27
F1(a,b,2) = 1+b tbbtr12l T bbribt23l (36)
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Whena, b are negative integers afd a, 1F1(a, b, z) is a finite sum which is a polynomial of
degreelal. Using the Pochhammer’s symboh)x = a(a+1)---(a+k—1) and(a)o =1, we
can rewrite (36) in a compact form

a)y ¢
PR (37)

1F1abZ ib—

In the following theorem, we state our main result.

Theorem 1. If A, is an nx n matrix given by (20), andnfz) = (1,...,1)(zl — Ay) "rn, where
rm=[L-3,-,(-1)"}2n— 1)]T , then

1F1(—n+ 1,-2n+1, —Z)

fn(Z) - 1F1(_n7_2n+17 Z)

, (38)

which is theln— 1/n] Padé approximant of €.

In order to prove the theorem, we will need to establish tlanedliary results which are
proved in the following three lemmas. We start by introdgaalditional notation.

Definition 1.

e A, a matrix defined ad\,, = zI — A,.

Mni: the (n,i) minor of A, i.e. the determinant of thig — 1) (n 1) matrix obtained
by elimination of the n-th row and i-th column &f, i = 1,2, .

An: the nx n matrix obtained by replacing the j-th column&fwithr,,, j=1,2,....n.
MJ: the determinant oA, j=1,2,....,n

Mrj”: the (n,i) minor of the matrix&,‘}, Lj=212,...,n

We also introduce two sequences of polynomials which arengiss to our proofs

{Qn(z) = (an+2)Qn-1(2) +anRn-1(2),
Ri(z2 = anQn-1(2)+ (an—2)Ra-1(2),

whereQi(z) = a1 +z Ri(z) = a3, anday = 2n—1. As an exampleQn(z) and Ry(z) for
smalln are listed in Table 3 in Appendix. Note that whilg, is a polynomial of degree,
R, is a polynomial of degree@— 1. We will show thatQ, and R, are proportional to the
hypergeometric functions appearing in (38) and give anraté/e expression fof,(z)

Rn(—2)
Qn(2)

Thus, (39) is a recursive formula for generat{pgp + 1] and[p+ 1/p] (sub- and superdiago-
nal) Padé approximants fexp —z). 3

We start with Lemma 1 which relaté3,(z) and R,(z) to the determinant of, and its
minors.

(39)

fn(z) =

(40)



Lemma 1. Let Q,(z) and Ry(z) be defined by (39). Then
Qn(2) = det(Ay). (41a)
2= 3 Mnsa, (41b)

Proof. We will use an induction argument to prove (41). By Definitibmand (39),Q1(z) =
a+z= det(,&l), andRy(z) = a; = My 1. This establishes the base of the induction. We assume
that (41) holds foQn(2z), Rn(2), and we will prove that it is valid foQn1(2), Rn+1(2)-

Applying the cofactor expansion along tfre+ 1)-th row of detA,, 1) while noticing that
Mn+1,n+1 = del(An) yields

n

detAn1) = Z(—l)nHian+1(—1)n+1+i|\/|n+17i+(an+1+Z)Mn+1,n+1
i=

= a1 Zan—i-ll + (@ns1+2) det(Ay) 42)

= (8n+1+2)Qn(2) +an+1Rn(2) = Qn11(2).

This proves the recursion (41a) fQr(z).
n+1

Next, we prove (41b) foRy;1(2) ZMMZ' We begin by relatingVin; 2 to Mpy1,

i <n-+1. In (43), we write an explicit expression fit, o, then subtract tha+- 1st column
from thenth column and compute the determinant by a cofactor exparnmsed on theth
column,

a+z a a a+z - 0
—ay a a —ap - 0 a
Mny2i = : : .| = : .. | = 7ZMhag
(=D ant1 -+ @np1+Z G (=D ant1 - Z &
(43)
Similarly, fori = n+ 1, a cofactor expansion based on the last row yields
n . .
Mniont1 = Z (=)™ (=)™ a1 Miyai] + @naMnsanst
= n (44)
= an+1 Zle—l,i +ant1Mny1nst.
i=
Thus,
n+1 n n
Zl Mni2i = Zl(_Z)Mm—l,i + ant1 Zan—i-l,i + an+1Mnt 1+t
i= i= i=
n
= (@ny1— ZMn+1 i +anriMnians (45)
= (an+1—2Rn(2) +an+1Qn(2)
= Ru1(2).
This completes the proof. O



Lemma 2 relate®,(z) andQp(z) to the determinant ok}, and its minors.

Lemma 2. Let Ry(z), Qn(z) be defined by (39). Then,

n .
= z M, (46a)
=1
1
M S m! 1)l-1m! (46b)
Z n+1| n+1j | *
i7]

Proof. The casen= 1 is satisfied trivially by the involved variables given byfidgion 1 and
(39). We assume that (46) is true fgrand we will prove it is also true far+- 1.
Applying cofactor expansion WIHH, j =1,...,nalong the last row gives

n

MrJHl = _Zl[(—l)mrliarwl( 1)n+1+erjm+1| (_1)nan+1(_1>n+1HMrjm+1j (an+1+Z>Mn+1n+1
=
i#] .
- Ml (D) e ML (B + M
an+1zl n+Li an+1Mp 15 1 (@nta n+1,n+1°

iZ]
(47)

Similarly, applying cofactor expansion mg‘ﬁ along the last row gives

n .
MpTT = _Z\(—l)nﬂlanﬂ( 1)n+1+IMQH|+(—1)nan+1Mrr1111n+1
=1 (48)
= an+1_Zerr:ﬁ| + (—1)”an+1Mﬂil N1
i=

SinceM! 1 =M}, we can write

n+1,n+
n+1 n n+1| n e
ZMml = (a1t2) ZMrJl+a”+1 ZM”+1I +(=1" Mrj1+17j
=1 =i (49)
= (anp1+2)Rn(—2) +an1Qn(— )
= Rna(-2).
This proves (46a).

We split the proof of (46b) into 2 partg:=1,2,...,nandj=n+1n+2. Forj=1,...,n,
using an argument similar to one employed in (43), we can/dMiJHz’i = (_Z>Mrj1+1,i7 I =
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1,2,...,n. This with a cofactor expansion on the last roW\m,er ne1 gives

n+1 . n . . .
_ZerJ\+2,i+(_1>j1Mrj1+2,j = _Zerj1+2,i+(—1)j1Mrju+2,j+Mrju+2,n+1
7] 7]
n ) .
= (-2 _Z\M%+1,i+(_1>j_lMé+l7j
2]

n . . .
j—1
+ani1 | Y Mg+ (1) My | FanaMa g
i=
7]

(50)
For j =n+1,n+2, we switch the last two columns Mﬂﬁii to obtain
a+z e a1 a
2
MRJJ:ZJ : : :
-1 nan o A1tz (-1 nan
(=1)"an+1 +1+2 (=1 ans1 51)
ar+z oo a1 a1
(=D"anr1 - (=D)"ani1 @ny1+z

Comparing—M{,‘ﬁ.i with MD2 . reveals that the entries in the determinants are identicai

n+2,i
for the (n+1,n+ 1) element, which igan;1 +2) in —M[T3; anda,1 in MT3,. Expanding

the determinants along the last rows\ft*2. andM"*2. and adding up the results, we have

+2,i n+2,i
MP 2+ M3 = (—2MPfL =120, (52)

A similar observation gives

MRI%,m—l + Mﬂg,mz = (_Z)Mgii,m—l' (53)
Combining (52) and (53) and using a cofactor expansioM{E}jﬁ%nJrl along the last row, we
obtain '

n+2 n

z ZerJH—Z,i + (_1)nMR——:—_%,n+l + Mg—tim—l + (_1)n+1MRI§,n+2
j=n+1i= (54)
n

n

= (-2 ZMRI%,i + (=)@ —2IMA Ty + an+1_Zl MRL;.
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Finally, combining (50) and (54) yields the result

n+2 n+1 . " n+1 n Len]
ZMn+2| J Mn+2] = (an+1_ ZMn+1| ( 1) Mn+1j
=1 =1 |i
i#] i#]

+an+1 z Mn+1 n+1

= (an+1— )Qn( Z) +an; 1R (—2)
= Qn+1( )7
(55)

which completes the proof. O
Lemma 3 relates polynomiad,(z) andR,(z) to the confluent hypergeometric functions.

Lemma 3. Let Q,(z) and Ry(z) be polynomials defined by (39). Then,
n
Qn(2) = rlaaz"lfl(—n, —2n+1,2), (56a)
n
— _ﬂazn—llFl(—n+ 1,-2n+1,2). (56b)

Proof. Whenn =1, (56) is validated by Definition 1 and (39). Assuming th&)(ts true for
Qn(2),Rn(2), we will show it is also true foQn1+1(2),Ra+1(2). We start with (56a). By the
recurrence relation (39) and the assumption that (56) ésfouQn(z), Rq(z), we have

CQni1(2) = (an+1+Z)Q (2) +an11Ra(2)
= (ant1+2) r!a.zn LF1(—n,—2n+1, z)+an+1|_!a42” LF(—n+1,-2n+1,2)
= rlaiZn_l [(Bnt1+2)1F(—n,—2n+1,2) + an 1k (—n+1,-2n+1,2)]

o N (—n) n-1 n+1) Zk
= igaiZ 1[(an+1+2)z( 2n+ 1k + an+1 z —2n+ 1)kl
(57)

Next, we collect the terms of the same degkan (57) and simplify the obtained coeffi-
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cients. The coefficients in front a\‘, k=23,.

e 1 ﬂl (M1 1
a0t D T 20 1k T (2n+ Dier (k= 1)
_ (—n+Dk 2 1 (cn+Dez 1
= an+1(—n+k—1)Wku = )(—2n+1)k—21(k_1)!
= [ant1(—n+k—1)+(— )(k)]%%
= [2n+1)(—n+k— 1)+ (—n)( )]%;
= (—2n+k—1)(n+1)%kl
(=2n—1)(—2n) (—n—1) 1

= (—2n+k—1)(n+1)

(—n—1) 1
(=2n—1) k"
For the constant ternk,= 0, we have

an+1-1+tani1-1=2ap41-1

= 2an;1

For the term of degree 1,

(—n—1)(—n)(—2n+k—1) (—2n— 1) k!

—n —n+1 —n-1
an+1_2 +1+1+an+1m—2(n+1) 23n+1 1
For the term of degree+ 1
(a1 _ (2n-1)(-20) (-n-Dna 1, (~n—Dnys
(—2n+1)pn! (—n—1)(-n) (—2n—1)ps1n! C2n—1)pg (n+ 1)

Inserting (58)-(61) into (57), we obtain

n+1 n+1 (—n—l)k Zk n+1

M@ = [a2' 3 i

= r!aizanl(—n— 1,-2n—1,2).

(58)

(59)

(60)

(61)

(62)

Statement (56b) can be proven using a similar reasoningvdid aepetition, the proof is

omitted. Thus, we proved that (56) is valid for amyg N.

Now we can complete the proof of Theorem 1.

Proof. Letwp = A 1rp, i.e. Azwn = rp,. Using the Cramer's ruley, = det(A;) 2

Therefore,

1]An

-y 1wp

-—|-—|

fn(2) =

- olet(An 2 M

=1
(—z

~—
—

?

= (Lemma 1 and Lemma)2

8”((>+1 on+1,—2)

i (—n+1,—2n+41,-7

— L
1F1(_n7_2n+172) ( emma3
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4 Spectrum of the DG discretization

In the previous section we showed that the eigenvalues dfisicentinuous Galerkin spatial
discretization matribk are given by

f(\) =), wj=eNl j=01,. N-L1 (63)

Then, using (40) the eigenvalues can be computedrasts of

Ra(—A) — wjQn(A) =0 (64)
foreachO< j < N-—1.
10 ‘
30 ] L ox X X% © o o
x +
20' X o ' *
x O 5’ * *
10} * W0
« + O
o +
0 0
X <> *
+ o
-10} °y
X () <> _5, « *
-20¢ . . N +
-3 X‘ X x x X X o o [

10 ‘ ‘
-0.2 -0.15 -0.1

Figure 2: Eigenvalues df for p=1,2,3,4,5,6 with N = 20. The inner curve corresponds to
p =1 and the outer curve correspondspte- 6. The right figure is a zoom of the left one.

The computed eigenvalues with=1,2,...,6 on a twenty cell mesh are shown in Figure
2, left. We observe that the size of the spectrum grows witli\t the same time the curves
| fp+1(2)| = 1 (of which (63) is a discrete approximation) seem to appr@am flatten near the
imaginary axis (Fig. 2, right) ap increases.

The leftmost eigenvalues are mainly responsible for theedse of the CFL number with
increasing order of approximation and can be used as a pwxhé size of the spectrum.
We investigate the growth rate of the eigenvalue with thgdstr magnitude later in this sec-
tion. Flattening of the spectral curves near the imaginary means that for the fully discrete
method to be stable with a constant (mesh size independEhth@mber, the absolute stability
region of the time integration scheme should include a sefftty large part of the imaginary
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axis. For example, the DG with > 0 is not stable with a fixed CFL number with the forward
Euler time stepping op > 1 and a two stage second order Runge-Kutta schemes [7]. How-
ever, despite approaching the imaginary axis, the eigaasalre never purely imaginary when
the upwind flux is used in the DG discretization. This is prowe the following lemma and
theorem.

Lemma 4. Let Q,(z) and Ry(z) be polynomials defined by (39). Then,

Qn(Bi)Qn(—Bi) = Ra(Bi)Ra(—Bi) +B*", BER, n=12,.... (65)

Proof. Whenf3 =0, it follows from (56) and the definition (36) th@,(0) = R,(0). Then, (65)
is trivially true.

Whenf3 # 0, we will use the mathematical induction ario prove (65). Fon =1, from
(39), we obtain

Qu(Bi)Qu(—Bi) = (1+Bi)(1—Bi) = 1+ B* = Ra(Bi)Re(—Bi) + B, (66)

which establishes the basis of induction. We assume (65lig for n, and we will prove it
consequently holds far+ 1. Using (39) yields

Qni1(Bi)Qnsa(—Bi) = [(@ns1+PBi)Qn(Bi) +ant1Ra(Bi)] [(@nr1— Bi)Qn(—Bi) + an+1Rn(—PBi)]
= (aZ,1+B%)Qn(Bi)Qn(—Bi) + a3, 1 Rn(Bi)Ra(—Pi)
+(@3 1+ an11Bi) Qn(Bi)Ra(—Bi) + (85 1 — 1 1Bi) Qn(—Bi)Ra(Bi).
(67)
R+ 1(B)Ras1(—Bi) = [an+1Qn(Bi) + (@ns+1 — Bi)Ra(Bi)][@n+1Qn(—Bi) + (an+1 + Bi)Ra(—Bi)]
= a%+1Qn(Bi)Qn( Bi) + (an+1+82) (Bi)Rn(—Bi)
+(83, 1+ an11B1)Qn(Bi)Ra(—Bi) + (83, 1 — an11B1) Qn(—Bi)Ra(Bi).

(68)
Thus,
Qn+1(Bi)Qns1(—Bi) — Ry 1(Bi)Rnga(—Pi) = B[Q+n1(BI)Qn( Bi) — Rn(Bi)Rn(—Bi)]
= P,
(69)
which completes the proof. O

Theorem 2. Equation (63) has no pure imaginary roots.

Proof. We start by observing that for any polynomizlz) with real coefficients the following
holds

p(Bi) = p(—Pi). (70)

Next, let us assume that= f3i is a pure imaginary root of (63), whefe# 0 is a real number.
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Substitutez = Bi into (40) and take the modulus to obtain

[fa(B)I* = fa(Bi) fa(Bi)
= fn(Bi) fn(—Bi)
Rn(Bi)Rn(—Bi)
Qn(Bi)Qn(—Bi)
; . (71)
_ Ra(Bi)Ra(=Bi)
= Rn(Bi)Rn(—zﬁi)+an (Lemma 4)
_ Ra(Bi)]
~ TRBIEEE
Since|fn(z)| = 1 is a necessary condition fabeing a root of (63)} fn(Bi)| < 1 implies thaf3i
is not a root of (63). O

20

18}

f5(2)] =1

167

141

12}

10 |f5(—2 + 10

-15 -10 -5 0

Figure 3: lllustration off f,(z)| = 1 approaching the imaginary axis. For a randomly chosen
pointZ= —2-+10i, we can find f5(2)| > 1, so|fs(z)| = 1 passes through the right of this point
Z

Padé approximants of the exponential function convergbdaxponent at every point in
the complex plane [11], p.531-536. If we pick an arbitrarynpa = a + Bi, a < 0, from the
left half plane, we have

[ lim fa(2)| = €77 > 1, (72)

i.e. there exists a sufficiently lard¢ such that fn(z)| > 1. In the proof of Theorem 2, we
showed thatfn(Bi)| < 1. Assuming thatfyn(z)| is analytic on the line Im= {3 (since there
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exists only a finite number of poles [fiy(2)| this is not a restrictive assumption), there exists a
pointZ = a’+Bi, wherea < a’ < 0, such thatfn(Z)| = 1. Thisimplies that the curvdn(z)| =
1 goes across the region betweea a + i andpi. Since the pointis randomly chosen from
the left half plane, we can conclude that for any point closeugh to the imaginary axis,
there exists a curve which is even closer to the imaginary. akhus, we demonstrated that
| fn(2)] = 1 approach the imaginary axisagrows. The reasoning is illustrated for a particular
choice of a poinzandn =5 in Figure 3.

Next, we analyze the growth of the eigenvalue largest in usduNe conjecture it to be
the real eigenvalue located on the leftmost part of the splectirves|f,(z)| = 1 in Figure
2. All roots of (63) are located in the left half of the complgbane. This can be seen from
Theorem 4.12 in [10], which states that the culRé€z)| = 1, whereR(z) is the[p/p+ 1] Padé
approximant ofexpz) is located in the right half of the complex plane. Sing€z) is the
same approximant texp(—z), | fn(2)| = 1 is a mirror image ofR(z)| = 1 with respect to the
imaginary axis, and the result follows. Below we make a fewe statements about the roots
of (63).

Proposition 1. Equation (63) always has a zero root.

Proof. ¢ From (56) and (36), the zero order coefficientR(irz) andQ(z) are the same and are
equal tof]_; a2"1. Using (40),fn(0) = R(0)/Q(0) = 1. O

Proposition 2. The real roots of f(z) = wy correspond tawy = +1.

Proof. Considerfy(z) = wx with a realz. Sincefy is a rational function with real coefficients,
the right hand side must be a real number. Heoger +1. O

Depending on the number of mesh céllsand the order of approximatigm there might
be one real root or a couple of complex conjugate numbersetethmost part of the curve.
This is not essential as (63) is a discrete versioffglfz)| = 1. Below we state the conditions
for (63) to have a real negative root which we will denotezbyand without loss of generality
we will assume that the mesh is such that it exists.

Proposition 3. For a discretization with an even number of cells N, (63) haseast one
non-zero real root.

Proof. If nis an odd number, we rewritiy(z) = —1 asR(—z) + Q(z) = 0. Since the zero order
coefficient inR(—z) andQ(z) is the same (Proposition 1), zero is not a rooR6f-z) + Q(z) =
0. Sincenis odd, there exists at least one non-zero real root.

If nis an even number, we rewrit(z) = 1 asR(—z) — Q(z) = 0. Since the zero order
coefficient inR(—z) andQ(z) is the sameR(—z) — Q(z) = 0 can be expressed agz) = 0,
wherer(z) is a real polynomial of degree— 1. Consequently, it should have one real root
which cannot be zero because, as shown in (56) and (36), shefiter coefficients dR(—z)
andQ(z) are not the same. O

For an odd number of cell¥, an odd degree approximation (ev@mresults in at least one
nonzero real root. With an even degree of approximation,emgecture that the only real root
is zero. Since the eigenvalues always locatéfa(z)| = 1, which does not depend o we
can assuma@l is even for analyzing the size of the spectrum.
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If the negative real root" exists, it is conjectured to have the largest modulus, arsd th
largest modulus also performs as a bound of all roots whatoes not exist. Next, we will
derive a bound ogz".

Using (38) to write (63) in a polynomial form

p(Z) = 1F1(_n+ 17 —2n+ 17 _Z> - e%lel(_na —2n+ 17 Z)? (73)

and collecting the terms of the same order, we obtain

P(2) = CnZ' +Cno1 2 4+ Crz+ G, (74)
where mi (o)
_ i (=Nn 1
_ A (=Mn-1 1 —N+1)n 1 1
Cn-1 = N D, D T 20t Dt (0D (75)
. 21 ;
co = —eNnJ4+1
Since the sum of all the roots pfz) = 0 satisfies
n Ch— Ti
yz=—01o 2 ne i, (76)
i1 Cn
we obtain that Re- C”Cj) > —n(n+1). Noticing that all the roots have non-positive real parts,

—n(n+1) is a lower bound of the real part of all roots includizigfor all n. We are interested
whether this bound is tight and reasonably well represéetgtowth speed of the largest root.
Table 1 lists the roots of the largest modulus up to order 8d,Figure 4 shows the absolute
value of these roots up to order 100. We see that the bounésiiraates the roots especially
for largen. Next, we show that the asymptotic growth rate is not quadrat particular, the
following theorem proves thatcr? is not a root of (63) for alt > 0.

Theorem 3. Forall ¢ > 0, | fo(—cr?)| O & as n— oo,

Proof. Consider the hypergeometric functigh (a, b, z) defined in (36) and (37). Whemand
b are negative integers, the functigh (a, b, z) is a polynomial of degref|. We factor out the
term of the highest degree pind define the function

(b)ja |a)!
Glab.d = " CiR(ab.), 77)
a
or, in an explicit form,
|l Ck .
G(a7 b, Z) = Z ?7 Ck = C|a|(a_ b+ 1)k7 (78)
k=0

whereC";‘ are binomial coefficients. Substituting (77) into (38) vl

2 Fi(-n+1,-2n+1,-2 (-1)"InG(-n+1,-2n+1,-2)
n = =

Fi(—n-2n+12 z G(—n,—2n+1,2) (79)
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Table 1: Real eigenvalues bfon a two cell grid.

p 1 2 3 4 5 6

—7 6 11.8424 19.1569 27.8419 37.8247 49.0518
(P+1)(P+2) 6 12 20 30 42 56

p 7 8 9 10 11 12

—7 61.4815 75.0797 89.8181 105.6720 122.6204 140.6442
(p+1)(p+2) 72 90 110 132 156 182

p 13 14 15 16 17 18

—Z 159.7268 179.8529 201.0087 223.1817 246.3603 270.5337
(p+1)(p+2) 210 240 272 306 342 380

p 19 20 21 22 23 24

—Z 2956920 321.8258 348.9264 376.9857 405.9960 435.9500
(p+1)(p+2) 420 462 506 552 600 650

12000

10000

8000

6000

4000

2000+

0 20 40 60 80 100

Figure 4: Absolute value of the negative real roots on a tvilggeie, the upper bound(n+ 1)
and the lower bound.&n'-"° as a function oh = p+1.

Next, we will prove that limG(—n, —2n+ 1, —cr?) = e s

n—oo

. Substitutingg = —n,b= —-2n+
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1,z= —cr? into (78) gives

G(—n,—2n+1,—cr?) = ic,'ﬁ (N
k=0

(—cr)k
e (N
B k; kl(n—K)! (—cr?)k
_ i (_1)k[ n! (n)k]
& ck (nk— k)! (n2)k ;
B 1 (-1) 1 2 (k—1)
- 1+k; ckk! (1_?)(1_F>m(1_ n2 )
For simplicity, we call
- (=D B B 0 1 2 (k—1)2 B
dk_Wa 98—1, eﬂ_(l_ﬁ>(1_ﬁ)(l_ﬁ>(l_ n2 )7 k_1727"'7 (80)
and definel as
1, k=0,
n_ ) (=1 0 1 22 (k=12 -
d = R (1= (A=) (A=) (1= o) =dke, k=1...n, (81)
07 k> n.
We also define two partial sums
| [
DI=Sdi, Di=Y di, 1=0.1,.... (82)
K=0 K=0

Then,G(—n, —2n+1, —cr?) = D. Since for a fixedk rI‘im e = 1, we conclude that

lim df = de, Vk=0. (83)
.. . ~ 1
Noticing thatI limD; = e ¢, we have
Ve>0,3Ky>0,stVk>Ky, |y, —e €| <. (84)
And from the definition ofi,
FKy > 0,5t.¥ k> Ky, |dy, 1] < €. (85)
Let K = max(Ky,K2), then
K K . .
lim DR = 3 lim df = ¥ dic= D (86)
Nn—oo k:On—>oo k:O
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The expression above implies that

IN>K >0, st.¥yn>N, |DR —Dk| <& (87)
On the other hand, sindel} have alternating signs whilel| decrease as— oo,

DR — DR < [dR 4| < |dk+1] <& ¥Vn>K (88)
Combining (84), (87) and (88), we obtain

DR —&¢| < DR —DR|+ DR — B |+ Bk —e | <3, n>N,

- lim G(—n, ~2n+1,—cr?) = lim Dj = e+, (89)
Using the same reasoning, we can prove that
lim G(—n+1,-2n+1,cr?) — es. (90)
Combining (89), (90) and (79) yields
e e C L SURC
U

We have proved that regardless of the constah,(cr?)| is small for large enough and
consequently cannot be a root of (63). In other words, angigti@ function will overcome the
curve|z‘(n)| (Fig. 4). If we assume that the real ratitgrows as a power functioncn®, then
for a > 2, by following the steps in the proof of Theorem 2 we can shwat tim G(—n, —2n+

n—oo
1,—cn®) =1 andnirQG(—njt 1,—2n+1,cn®) = 1. So, in this caser{_J!omn(—cn“) =0 also
impliesz* = —cn® is not the proper estimate for the root. We conclude that peetsum ofL
should grow slower thancn®. Numerical experiments reveal thaf.5n-"° is an upper bound
onz* for all n (Fig. 4). Least square fittingcn® for the first one hundred roots gived..4nt-78,
Bounds on the eigenvalues for very lamgare reported in Figure 5. The computations were
performed for a two cell grid using MATLAB. They are believiedbe accurate in the sense of
small error infy(z") — 1.

Remark.We should mention that the Padé approximdntg) are only a good approxima-
tion to €% in regions close to the origin of the complex plane. In Figbinee plot|fy,1(2)|
for real negativez with p=1,2,3. The spike in thep = 2 plot is related to the nearby pole
of f3(z). We note that this behavior, i.e. that the exponential fiencgrows in magnitude
while the Padé approximants decay to zer{zgimicreases, is similar for complebut is more
difficult to illustrate. Comparing Figures 2 and 6 revealsttfor many eigenvalues, | fh(A)|
is far frome~*. Although the region wheré,(z) ~ e Z grows with n, it grows slower than the
eigenvalues. Consequently, the approximigrnghould not be viewed as an approximation of
exp(—z) as far as eigenvalues bfare concerned.
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Figure 5: Absolute value of the negative real roots on a twiogeel and two bounds for large
values ofn.
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Figure 6: Comparison & * with |fy1(2)| for p=1,2,3.

5 Conclusions and future work

We have derived a closed form expressions for the eigenvalitbe DG spatial discretiza-
tion applied to the one-dimensional linear advection equawith periodic boundary condi-
tions and the upwind flux. We have proven that the charatiepslynomial of the spatial
discretization matrit is related to the subdiagonig/p-+ 1] Padé approximant & . Based
on the analytical equation for the eigenvalues, we havegortivat there is no pure imaginary
eigenvalues. We have also shown that- 1)(p+ 2) is a guaranteed bound on the size of the
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eigenvalues which can be used to compute the CFL conditiolafge p. However, we have
also proven that the growth rate of the largest eigenvallessthan p+ 1)2. We conjecture
that a more accurate rate is proportional fo+ 1)1 7. This is in contrast with the currently
assumed quadratic rate for the DGM [13] and various specteshods [12]. A more accurate
analytical estimate would be of interest.

A potential application would be to use this result to img@dhie CFL number of the
DGM and, consequently, its computational efficiency. Wewsl], that the coefficients of
the scheme can be manipulated to decrease the radius ofttewsp, i.e. to increase the CFL
number, while preserving the convergence rate inLtheorm. The improvement depends on
the order of approximation. For example, we can have an ivgment up to a factor of three
for p=1 and up to a factor of 5.5 fqp = 3. We also apply this result to analysis of the spec-
trum on non-uniform grids [15]. In particular, we are inteexl how a global CFL condition
is affected by the composition of the mesh and how a few snedl influence the overall
stability of the method. The improvement is observed in sepexial cases such as Cartesian
grids with embedded geometries.
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Appendices

Table 2: Part of the Padé table&sf[3]

0 1 2 3
0 1 1+z 2+ 27+ 72 6+6z+32+2
1 1 2 6
1 1 24z 6+ 4z+ 22 244182+ 62 +7
1-z 2—7 6—2z 24— 6z
) 2 6+ 2z 12+ 62+ 72 60+ 362+ 922 +7°
2—22+272 6—4z+ 272 12— 6z+ 22 60— 24z+ 372
6 24+ 6z 60+ 24z+ 372 120460z + 122+ 7

6—-6z+322—-28 24—-18+622—-722 60-36z+922—-28 120-60z+1222—73
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Table 3: Polynomial®n(z) andR,(—2z) defined in (39)

Ra(—2) Qn(2)
2 6(1—%Z> 6(1—}-%24—%22)
3 60(1——zjL 22) 60(1+§z+%22+6i023)
> 4
4 84Q1-z+ 22—2—1023) 840(1+—Z+ —22+ 1—()5523*@)24)
5 151201 (24 P - el gd) 1512004 gz P F g A e )
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