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Abstract

Given a configuration of indistinguishable pebbles on the vertices of a connected
graph G on n vertices, a pebbling move is defined as the removal of two pebbles from
some vertex, and the placement of one pebble on an adjacent vertex. The m-pebbling
number of a graph G, πm(G), is the smallest integer k such that for each vertex v and
each configuration of k pebbles on G there is a sequence of pebbling moves that places
at least m pebbles on v. When m = 1, it is simply called the pebbling number of a
graph.

We prove that if G is a graph of diameter d and k,m ≥ 1 are integers, then
πm(G) ≤ f(k)n + 2k+dm + (2k(2d − 1) − f(k))domk(G), where domk(G) denotes the
size of the smallest distance k dominating set, that is the smallest subset of vertices
such that every vertex is at most distance k from the set, and, f(k) = (2k−1)/k. This
generalizes the work of Chan and Godbole [4] who proved this formula for k = m = 1.
As a corollary, we prove that πm(G) ≤ f(dd/2e)n+O(m+

√
n lnn). Furthermore, we

prove that if d is odd, then πm(G) ≤ f(dd/2e)n + O(m), which in the case of m = 1
answers for odd d, up to a constant additive factor, a question of Bukh [3] about the
best possible bound on the pebbling number of a graph with respect to its diameter.

1 Introduction

A recent development in graph theory, suggested by Lagarias and Saks (via a private com-
munication to Chung), is called pebbling. Pebbling was first introduced into the literature
by Chung who computed the pebbling number of Cartesian products to give a combinatorial
proof of the following number-theoretic statement of Kleitman and Lemke.

Theorem 1. [5][14] Let Zn be the cyclic group on n elements and let |g| denote the order
of a group element g ∈ Zn. For every sequence g1, g2, . . . , gn of (not necessarily distinct)
elements of Zn, there exists a zero-sum subsequence (gk)k∈K , such that

∑
k∈K

1
|gk| ≤ 1.

Chung developed the pebbling game to give a more natural proof of this theorem. The-
orems of this type are an important area of study in number theory as they generalize
zero-sum theorems such as the Erdős–Ginzburg–Ziv [9] theorem. Geroldinger [10] and then
Elledge and Hurlbert [8] generalized Theorem 1 to Abelian groups. The latter work used
graph pebbling to do so and also generalized the goal of zero-sum to a sum living in a given
normal subgroup. Indeed, over the last twenty years, pebbling has developed into its own
subfield [12, 13], with over sixty papers.

A pebbling configuration on a graph is a distribution of indistinguishable objects called
pebbles on vertices of that graph. That is, a pebbling configuration p on a graph G is a
function p : V (G) 7→ N∪{0}, where p(v) is the number of pebbles on v in p. A pebbling move
is defined as the removal of two pebbles from some vertex and the subsequent placement
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of one pebble on an adjacent vertex. Hence, a pebbling move transforms one pebbling
configuration to a different pebbling configuration.

We say the ordered pair (G, r) is a rooted graph if G is a graph and r ∈ V (G). We say
a pebbling configuration p is m-potent for a rooted graph (G, r), if there exists a pebbling
configuration p′ obtained by a sequence of pebbling moves from p such that r has at least
m pebbles in p′. We say a pebbling configuration p is m-impotent if there does not exist
such a pebbling configuration. As in [5], we define the m-pebbling number, πm(G), to be the
least integer k such that, for any choice of root r ∈ V (G) and any initial configuration p of
k pebbles, p is m-potent for (G, r). The pebbling number refers to the 1-pebbling number
of a graph. Notice that a trivial lower bound for π1(G) is |V (G)|: Choose r ∈ V (G) and let
p(r) = 0 and p(v) = 1 for all v 6= r. Then p is 1-impotent for (G, r).

The diameter of a graph can also yield lower bounds on its pebbling number. For
instance, because the pebbling number of a path on d vertices is 2d−1, then the pebbling
number of graphs with diameter d must be a least 2d. It is then a natural question to ask
whether restricting the diameter can give an upper bound on the pebbling number. To that
end, define πm(n, d) to be the maximum m-pebbling number of a diameter d graph on n
vertices.

For graphs of diameter two much is known. Pachter, Snevily and Voxman in [15] proved
that π1(n, 2) = n + 1. Clarke, Hochberg and Hurlbert in [6] classified graphs of diameter
two whose pebbling number is n + 1. Curtis, et al. [7] proved that πm(n, 2) ≤ n + 7m − 6
and conjectured that πm(n, 2) ≤ n + 4m − 3, which was recently proved by Herscovici, et
al. [11].

As for graphs of larger diameter, more recent results have provided insight for graphs
of diameter three and four. Bukh [3] proved that π1(n, 3) = 3n/2 + O(1). Postle, Streib
and Yerger [17] proved an exact bound for π1(n, 3), namely that π1(n, 3) = b3n/2c + 2.
They also gave shorter proofs of the aforementioned diameter two results using their new
techniques. Furthermore, they proved that π1(n, 4) = 3n/2 + Θ(1). As for general diameter
results, Bukh proved that π1(n, d) ≤ (2dd/2e−1)n+O(

√
n). The best known lower bound is

πm(n, d) ≥ f(dd/2e)(n− (d+ 1)) + 2dm, which comes from a generalization of the example
in [3].

In section two, we define branches, which were previously introduced in [17], and prove
several fundamental results about them. In section three, we use these results to bound
pebbling numbers in terms of domination numbers.

Let G be a graph. We say that S is a k-dominating set if every vertex in G is either
in S or is at most distance k from some vertex in S. The k-domination number, denoted
by domk(G), is the size of the smallest k-dominating set in G. When k = 1, this is the
domination number.

We prove the following theorem relating pebbling number and k-domination numbers.

Theorem 2. Let G be a graph on n vertices of diameter d. For all k,m ≥ 1, πm(G) ≤
f(k)n+ 2k+d(m− 1) + (2k(2d − 1)− f(k))domk(G), where f(k) = (2k − 1)/k.

This generalizes a result of Chan and Godbole [4] who proved that π1(G) ≤ n+ (2d+1−
3)dom(G).

As a corollary to this theorem, we obtain a bound on πm(n, d).

Corollary 1. If G is a graph on n vertices of diameter d, then πm(G) ≤ f(dd/2e)n +
2d+dd/2e(m− 1) + (2dd/2e(2d − 1)− f(dd/2e))

√
n lnn.

Hence, πm(n, d) ≤ f(d/2)n + O(m +
√
n lnn), which is best possible up to a sublinear

asymptotic factor. It is worth comparing this to the recent work of Herscovici, et al. who
proved that πm(n, d) ≤ f(d)(n− 1) + 2d(m− 1) + 1.

We also prove the following theorem:

Theorem 3. If d is an odd positive integer, then πm(n, d) ≤ f(dd/2e)n+O(m).
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Given the lower bounds mentioned above this proves that

Corollary 2. If d is an odd positive integer, then π1(n, d) = θ(f(dd/2e)n).

2 Branches

Let S be a subset of the vertices. We say that a spanning forest T of G is a breadth-first
search (BFS) spanning forest of G with root set S if, for every vertex v ∈ V (G), the shortest
path from v to S in T is also a shortest path from v to S in G, and every vertex v in S is
contained in a different component of T . We will use the standard notions from BFS trees
of descendant, child, parent, and ancestor for BFS forests as well. We also let d(u, v) denote
the distance between two vertices.

Definition. We say the ordered triple (B, p,w) is a branch if (B,w) is a rooted tree and p
is a pebbling configuration on V (B). Where p and w are understood, we will say that B is
branch. The depth of a branch (B, p,w), to be denoted by d(B), is the maximum distance
in B from a vertex in B to w.

We also define p(B) to be the number of pebbles in the branch, that is,
∑

v∈V (B) p(v).

Definition. Let (B, p,w) be a branch of depth k > 0. We define the truncation of B to be
the branch (B′, p′, w) obtained from B by making pebbling moves to move as many pebbles
as possible from all the vertices of depth k to their parents and then deleting the vertices
of depth k. If i ≤ k, we define the i-truncation of B, to be denoted by B(i), as the branch
obtained from B by successively truncating it i times.

Definition. We define the potency of branch (B, p,w), to be denoted as p(B), as p(B(d(B))).
Similarly we define the capacity, denoted by c(B), as bp(B)/2c.

If u is a vertex in a branch B we will let B[u] denote the subbranch (Bu, p, u) of B,
where Bu is the subtree of B induced by u and all of its descendants. A branch (B, p, w)
is irreducible if for all vertices v ∈ B, where v 6= w, B[v] has nonzero capacity. If B is not
irreducible, we will say that B is reducible. If B is reducible and u ∈ V (B) such that u 6= w
and B[u] has zero capacity, then B may be decomposed into two branches B \ B[u] and
B[u]. Continuing this process, we may decompose B into irreducible branches; moreover
this decomposition is unique as the roots of these branches must exactly correspond to the
vertices u ∈ V (B) such that u = w or B[u] has zero capacity. We refer to this decomposition
as the irreducible decomposition of B.

Definition. We define the function F (k) to be the supremum of p(B)
|V (B)| over all branches

(B, p, w) of zero capacity and depth at most k − 1. For all k ≥ 1, we define the k-excess of
a branch B, denoted Xk(B), to be p(B)− F (k)|V (B)|.

Proposition 1. There are only finitely many irreducible branches of depth at most d and
potency l.

Proof. We proceed by induction on d. If d = 0, then such a branch is simply a vertex
and the number of pebbles on that vertex is l. So we may assume that d ≥ 1. Now in
an irreducible branch of potency l, the root w0 has at most l children. The subbranches
induced by the children of w0 have depth at most d − 1. As the number of possible such
subbranches is finite by induction and the range of possible values for p(w0) is also finite,
there are at most a finite number of possible branches of depth at most d and potency l.

Lemma 1. F (k) is equal to the maximum of p(B)
|V (B)| over all irreducible branches of zero

capacity and depth at most k − 1.
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Proof. By Proposition 1, the supremum over irreducible branches is indeed a maximum.
Let (B, p,w) be a branch of zero capacity and depth at most k−1. Consider the irreducible
decomposition of B into irreducible branches B1, . . . , Bt, which have zero capacity and

depth at most k − 1. As p(B) =
∑t

i=1 p(Bi),
p(B)
|V (B)| =

∑t
i=1

p(Bi)
|V (Bi)|

|V (Bi)|
|V (B)| . If we let c

denote the maximum of p(B)
|V (B)| over irreducible branches of zero capacity and depth at most

k − 1, then this is at most c
∑t

i=1
|V (Bi)|
|V (B)| . Since |V (B)| =

∑t
i=1 |V (Bi)|, this is at most c

as desired.

Lemma 2. For all d ≤ k, the supremum of Xk(B) over all branches of depth at most d
and potency l is equal to the maximum of Xk(B) over all irreducible branches of depth at
most d and potency l.

Proof. Let c be the maximum of Xk(B) over all irreducible branches of depth at most d and
potency l. Such a maximum exists by Proposition 1. It suffices to prove that if (B, p,w0)
is a branch of depth at most d and potency l, then Xk(B) ≤ c. We proceed by induction
on d and then induction on |V (B)|. If B is irreducible, this follows from the definition of c.
If d = 0, then B is simply a vertex and so irreducible and the lemma follows.

So we may assume that d ≥ 1 and B is not irreducible. Then there exists u ∈ V (B)\{w0}
such that B[u] has capacity zero. Yet, B′ = B \ B[u] is a branch with depth at most d,
potency l, and a smaller number of vertices. In addition, Xk(B′) = Xk(B) − Xk(B[u]).
Since B[u] has depth at most d− 1 which is at most k − 1, Xk(B[u]) ≤ 0 by the definition
of F (k). Hence, Xk(B) ≤ Xk(B′) ≤ c as desired.

Lemma 3. Let d, l be non-negative integers and let k be an integer such that k ≥ d. Suppose
that (B, p, w0) is an irreducible branch of depth at most d and potency l such that B has
maximum k-excess and, subject to that condition, has a minimum number of vertices. It
follows that B = w0w1 . . . wd(B) is a path such that p(wi) = 0 for all i, 0 ≤ i < d(B).

Proof. We claim that if u ∈ V (B) is not a leaf, then p(u) = 0. Suppose not. Define a new
pebbling configuration p′ on V (B) as follows. Let v be a child of u. Let p′(u) = p(u) − 1,
p′(v) = p(v) + 2 and p′(z) = p(z) for all other vertices z 6= u, v. The branch (B, p′, w0) has
depth at most d and potency l. However, p′(B) > p(B) and thus (B, p′, w0) has a larger
k-excess, a contradiction.

Finally we claim that all vertices in B have at most one child. Suppose not. Let v be a
vertex with at least two children but such that every descendant of v has at most one child.
Let u1, u2 be two children of v. Let t1 be the descendant of u1 that is a leaf and t2 be the
descendant of u2 that is a leaf. We may assume without loss of generality that d(v, t1) ≥
d(v, t2). Define a new pebbling configuration p′ on V (B) as follows. Let q be the largest
integer such that p(t2) ≥ q2d(v,t2). Let p′(t2) = p(t2)−q2d(v,t2), p′(t1) = p(t1)+q2d(v,t1) and
p′(z) = p(z) for all other vertices z 6= t1, t2. The branch (B, p′, w0) has depth at most d and
potency l. Moreover, p′(B) ≥ p(B) and thus must also have maximum excess. However,
the induced subbranch B[u2] of (B, p′, w0) has capacity zero since p′(t2) ≤ 2d(v,t2) − 1 and
p′(x) = 0 for all other x ∈ B[u2]. Hence (B, p′, w0) is not irreducible, a contradiction.

Corollary 3. For all k ≥ 1, F (k) = f(k).

Proof. By Lemma 1, the maximum k-excess among branches of depth at most k−1 and zero
capacity is attained at some irreducible branch (B, p,w0). By Lemma 3, we may assume
that B is a path w0w1 . . . wd(B) and p(wi) = 0 for all i, 0 ≤ i < d(B). Now p is 2-impotent

for (B,w0) if and only if p(wd(B)) ≤ 2d(B)+1− 1. The maximum k-excess given depth d(B)

would thus be obtained when p(wk−1) = 2d(B) − 1 and Xk(B) = p(B) − F (k)|V (B)| =
2d(B) − 1 − F (k)(d(B) + 1). However as B has maximum k-excess, Xk(B) = 0. Thus,

F (k) = 2d(B)+1−1
d(B)+1 . Certainly this is maximized when d(B) is maximized, that is when

d(B) = k − 1. Thus F (k) = 2k−1
k = f(k) as desired.
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Corollary 4. The maximum k-excess over branches of depth at most k and potency l is
2kl − f(k). Hence, if B is branch of depth at most k, then Xk(B) ≤ 2kp(B)− f(k).

Proof. By Lemma 1, the maximum k-excess among branches of depth at most k − 1 and
potency l is attained at some irreducible branch (B, p,w0). By Lemma 3, we may assume
that B is a path w0w1 . . . wd(B) and p(wi) = 0 for all i, 0 ≤ i < d(B). As B has potency l,

p(wd(B)) ≤ 2d(B)(l+1)−1. The maximum k-excess for a branch of depth d(B) would thus be

obtained when p(wk−1) = 2d(B)(l+ 1)− 1. Hence, Xk(B) = p(B)− f(k)|V (B)| = 2d(B)(l+

1)−1− (2k−1)
k (d(B)+1). It is not hard to see that the maximum k-excess is obtained when

the depth is maximized, that is when d(B) = k − 1 and hence Xk(B) = 2k(l + 1)− F (k)k.

Hence, Xk(B) = 2k(l + 1)− 1− (2k−1)
k (k + 1) = 2kl − f(k) as desired.

If B is a branch of depth at most k, its potency is p(B). Thus, XkB is a most the
maximum k-excess over branches of depth at most k and potency p(B) which is 2kp(B)−
f(k).

3 Dominating Sets

The following theorem was proved by Arnautov and independently by Payan.

Theorem 4. [2][16] If G is a graph with minimum degree δ(G), then dom(G) ≤ n(1 +
ln(δ(G) + 1))/(δ(G) + 1).

The following are two useful corollaries of this theorem. The first was proved asymptot-
ically by Al-Yakoob and Tuza [1] with a slightly better bound.

Corollary 5. If G is a graph of diameter at most two on n ≥ 3 vertices, then dom(G) ≤√
n lnn.

Proof. Let v ∈ V (G). Notice that N(v) is a dominating set in G as G is diameter two.
Hence, dom(G) ≤ δ(G). Thus if δ(G) ≤

√
n lnn, Corollary 5 holds. So suppose δ(G) ≥√

n lnn. By Theorem 4, dom(G) ≤ n(1 + ln(δ(G) + 1))/(δ(G) + 1) ≤ n(1 + ln(n)/2 +
ln ln(n)/2)/

√
n lnn. However this is at most n ln(n)/

√
n lnn =

√
n lnn since n ≥ 3, and

Corollary 5 holds.

Corollary 6. If G is a graph of diameter d on n ≥ 3 vertices, then domdd/2e(G) ≤
√
n lnn.

Proof. Apply Corollary 5 to the graph G′ where V (G′) = V (G) and there is an edge between
two vertices x and y if and only if d(x, y) ≤ dd/2e.

Now we are prepared to prove the main theorem.

Proof of Theorem 2. Let r ∈ V (G) and let p be a pebbling configuration that is m-impotent
for (G, r). Let S be a smallest k-dominating set in G. Let T be a BFS spanning forest with
root set S ∪ r. For every s ∈ S ∪ r, let Cs denote the component of T containing s. Notice
that (Cs, p, s) is a branch of depth at most k.

Note that
∑

v∈V (G) p(v) =
∑

s∈S∪r p(Cs) = f(k)n +
∑

s∈S∪rXk(Cs). Moreover, if

p(Cs) ≥ q2d then Cs can send q pebbles to r using only the pebbles in Cs. For all s ∈ S,
let qs be the largest integer such that p(Cs) ≥ qs2

d. Let qr = pCr. Since p is m-impotent,
it follows that

∑
s∈S qs + qr ≤ m− 1. Thus,

∑
s∈S∪r p(Cs) ≤

∑
s∈S(2dqs + 2d − 1) + qr ≤

2d(m−1)+(2d−1)(domk(G)−qr). By Corollary 4, Xk(Cs) ≤ 2kp(Cs)−f(k) for all s ∈ S∪r.
Hence,

∑
v∈V (G) p(v) ≤ f(k)n+2k+d(m−1)+(2k(2d−1)−f(k))domk(G)−2k(2d−1)qr−f(k).

As f(k) ≥ 1 since k ≥ 1 and qr ≥ 0, this at most one less than the formula desired in
Theorem 2. Since πm(G) − 1 is equal to the maximum number of pebbles over all m-
impotent configurations, Theorem 2 holds.
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Proof of Corollary 1. Apply Theorem 2 with k = dd/2e. By Corollary 6, domdd/2e(G) ≤√
n lnn.

Finally, we improve on our bound for odd d to obtain a bound that is best possible up
to a constant additive factor.

Theorem 5. If G is a graph on n vertices of odd diameter d, then πm(G) ≤ f(dd/2e)n+
2d2dd/2e(m− 1) + 8d+4/3.

Proof. If d = 1, then dom(G) = 1 and Theorem 5 follows by Theorem 2 with k = 1. So
suppose d ≥ 3. Consider Gbd/2c, the graph with vertex set V (G) where for all x, y ∈ V (G),
x is adjacent to y if and only if d(x, y) ≤ bd/2c. Let α = δ(Gbd/2c) + 1. Note that
the bd/2c-neighborhood of any vertex is a dd/2e-dominating set in G. In other words,
domdd/2e(G) ≤ α − 1. Yet we also know that any dominating set in Gbd/2c is a bd/2c-
dominating set in G. Hence by Theorem 4, dombd/2c(G) ≤ n ln(α)/α.

Now we condition on α. If α ≤ 16(2d2bd/2c), apply Theorem 2 with k = dd/2e. We
obtain the following bound as desired: πm(G) ≤ f(dd/2e)n+ 2d2dd/2e(m− 1) + 8d+4/3.

If α ≥ 16(2d2bd/2c), apply Theorem 2 with k = bd/2c. We obtain the following
bound: πm(G) ≤ f(bd/2c)n + 2d2bd/2c(m − 1 + n ln(α)/α). Under these assumptions,
2d2bd/2c ln(α)/α ≤ (ln(16) + 3 ln(2)d/2)/16 = ln(2)(8 + 3d)/32. Note that for all d ≥ 3
the difference between f(dd/2e) and f(bd/2c) is at least d/6. Since d/6 > ln(2)(8 + 3d)/32
for all d ≥ 3, we can merge the two linear terms into one to obtain the following bound:
πm(G) ≤ f(dd/2e) + 2d2bd/2c(m− 1).
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