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Abstract. We study the relationship between unit-distance represen-
tations and Lovász theta number of graphs, originally established by
Lovász. We derive and prove min-max theorems. This framework allows
us to derive a weighted version of the hypersphere number of a graph and
a related min-max theorem. Then, we connect to sandwich theorems via
graph homomorphisms. We present and study a generalization of the
hypersphere number of a graph and the related optimization problems.
The generalized problem involves finding the smallest ellipsoid of a given
shape which contains a unit-distance representation of the graph. We
prove that arbitrary positive semidefinite forms describing the ellipsoids
yield NP-hard problems.

1. Introduction

Geometric representation of graphs is a beautiful area where combina-
torial optimization, graph theory and semidefinite optimization meet and
connect with many other research areas. In this paper, we start by studying
geometric representations of graphs where each node is mapped to a point
on a hypersphere so that each edge has unit length and the radius of the
hypersphere is minimum. Lovász [15] proved that this graph invariant is
related to the Lovász theta number of the complement of the graph via a
simple but nonlinear equation. We show that this tight relationship leads to
min-max theorems and to a “dictionary” to translate existing results about
the theta function and its variants to the hypersphere representation setting
and vice versa.

Based on our approach, we derive a weighted version of the hypersphere
number of a graph and deduce related min-max theorems. Our viewpoint
allows us to make new connections, strengthen some facts and correct some
inaccuracies in the literature.
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After observing that the hypersphere number of a graph is equal to the
radius of the smallest Euclidean ball containing a unit-distance representa-
tion of the graph, we propose generalizations of the underlying optimization
problems. Given a graph, the generalized optimization problem seeks the
smallest ellipsoid of given shape which contains a unit-distance representa-
tion of the graph. We finally show that at this end of the new spectrum
of unit-distance representations, arbitrary positive semidefinite forms de-
scribing the shapes of the ellipsoids yield NP-hard geometric representation
problems.

2. Preliminaries

We denote the set of symmetric n×n matrices by Sn, the set of symmetric
n× n positive semidefinite matrices by Sn+, and the set of symmetric n× n
positive definite matrices by Sn++. For a finite set V , the set of symmetric

V × V matrices is denoted by SV , and the symbols SV+ and SV++ are defined
analogously. For A,B ∈ Sn, we write A ≽ B meaning (A−B) ∈ Sn+. Define
an inner product on Sn by ⟨A,B⟩ := Tr(AB), where Tr(X) :=

∑n
i=1Xii is

the trace of X ∈ Rn×n. The linear map diag : Sn → Rn extracts the diagonal
of a matrix; its adjoint is denoted by Diag.

The vector of all ones is denoted by ē. We abbreviate [n] := {1, . . . , n}.
The notation ∥·∥ for a norm is the Euclidean norm unless otherwise specified.
For a finite set V , the set of orthogonal V × V matrices is denoted by OV .
The set of nonnegative reals is denoted by R+. The set of positive reals is
denoted by R++. Define the notations Z+ and Z++ analogously for integer
numbers.

For any function f on graphs, we denote by f the function defined by
f(G) := f(G) for every graph G, where G denotes the complement of G.
For a graph G, we denote the clique number of G by ω(G) and the chromatic
number of G by χ(G). The complete graph on [n] is denoted by Kn.

Let G be a graph. Its vertex set is V (G) and its edge set is E(G). For
S ⊆ V (G), the subgraph ofG induced by S, denoted byG[S], is the subgraph
of G on S whose edges are the edges of G that have both ends in S. For
i ∈ V (G), the neighbourhood of i, denoted by N(i), is the set of nodes of G
adjacent to i. A block of G is an inclusionwise maximal induced subgraph
of G with no cut-nodes, where a cut-node of a graph H is a node i ∈ V (H)
such that H[V (H) \ {i}] has more connected components than H.

For a graph G = (V,E), the Laplacian of G is the linear extension
LG : RE → SV of the map e{i,j} 7→ (ei − ej)(ei − ej)

T for every {i, j} ∈ E,
where ei denotes the ith unit vector. Laplacians arise naturally in spectral
graph theory and spectral geometry; see [3].

3. Hypersphere representations and the Lovász theta function

Let G = (V,E) be a graph. A unit-distance representation of G is a
function u : V → Rd for some d ≥ 1 such that ∥u(i) − u(j)∥ = 1 whenever
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{i, j} ∈ E. A hypersphere representation of G is a unit-distance represen-
tation of G that is contained in a hypersphere centered at the origin, and
the hypersphere number of G, denoted by t(G), is the square of the smallest
radius of a hypersphere that contains a unit-distance representation of G.
The theta number of G is defined by

ϑ(G) := max
{
ēTXē : Tr(X) = 1, Xij = 0∀{i, j} ∈ E, X ∈ SV+

}
. (3.1)

This parameter was introduced by Lovász in the seminal paper [14]; see
also [8, 12] for further properties and alternative definitions.

Lovász [15, p. 23] noted the following formula relating t and ϑ:

Theorem 3.1 ([15]). For every graph G, we have

2t(G) + 1/ϑ(G) = 1. (3.2)

We will show how the relation (3.2) can be used to better understand
some of the properties of the theta number and the hypersphere number.
This will allow us to obtain simpler proofs of some facts about the theta
number and new results about hypersphere representations.

3.1. Proof of Theorem 3.1. We include a proof of Theorem 3.1 for the
sake of completeness. We may formulate t(G) as the SDP

t(G) = min
{
t : diag(X) = tē, L∗

G(X) = ē, X ∈ SV+, t ∈ R
}
. (3.3)

Here, L∗
G is the adjoint of the Laplacian LG of G. The dual of (3.3) is

max
{
ēT z : Diag(y) ≽ LG(z), ē

T y = 1, y ∈ RV , z ∈ RE
}
. (3.4)

Both (3.3) and (3.4) have Slater points, so SDP strong duality holds for
this dual pair of SDPs, i.e., their optimal values coincide and both optima are
attained. In particular, t(G) is equal to (3.4). If we write an optimal solution
X∗ of (3.3) as X∗ = UUT , then i 7→ UT ei is a hypersphere representation
of G with squared radius t(G).

Proof of Theorem 3.1. We can rewrite the dual (3.4) as

t(G) = max
{

1
2⟨ēē

T − I, Y ⟩ : ēTY ē = 1, Yij = 0 ∀{i, j} ∈ E(G), Y ∈ SV+
}

by taking Y := Diag(y)−LG(z). The objective value of a feasible solution Y
is 1

2⟨ēē
T − I, Y ⟩ = 1

2(1− Tr(Y )). Thus, t(G) = 1
2(1− t̂(G)), where

t̂(G) := min
{
Tr(Y ) : ēTY ē = 1, Yij = 0 ∀{i, j} ∈ E(G), Y ∈ SV+

}
.

It is easy to check that t̂(G)ϑ(G) = 1. �
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3.2. Hypersphere and orthonormal representations of graphs. Let
G = (V,E) be a graph. An orthonormal representation of G is a function
from V to the unit hypersphere in Rd for some d ≥ 1 that maps non-
adjacent nodes to orthogonal vectors. It is well-known that, if u : V → Rd

is a hypersphere representation of G with squared radius t ≤ 1/2, then the
map

q : i 7→
√
2
[√

1/2− t⊕ u(i)
]
∈ R⊕ Rd (3.5)

is an orthonormal representation of G. Define TH(G) as the set of all x ∈ RV
+

such that
∑

i∈V (c
T p(i))2xi ≤ 1 for every orthonormal representation p : V →

Rd of G and unit vector c ∈ Rd. Then ϑ(G) = max{ ēTx : x ∈ TH(G)}.
The transformation (3.5) allows us to interpret Theorem 3.1 as strong

duality for a nonlinear min-max relation:

Proposition 3.2. Let G be a graph. For every hypersphere representation
of G with squared radius t and every nonzero x ∈ TH(G), we have

2t+ 1/(ēTx) ≥ 1,

with equality if and only if t = t(G) and ēTx = ϑ(G).

Proof. Set V := V (G). Let u : V → Rd be a hypersphere representation
of G with squared radius t. We may assume that t < 1/2. Let x ∈ TH(G).
Define an orthonormal representation q of G from p as in (3.5). Set c :=
1⊕ 0 ∈ R⊕ Rd. Then (1− 2t)ēTx =

∑
i∈V (c

T q(i))2xi ≤ 1.
The equality case now follows from Theorem 3.1. �
Proposition 3.2 shows that ϑ(G) and elements from TH(G) are natural

dual objects for t(G) and hypersphere representations of G. In fact, us-
ing a well-known description of the elements of TH(G), we recover from
Proposition 3.2 the following SDP-free purely geometric min-max relation:

Corollary 3.3. Let G = (V,E) be a graph. For every hypersphere rep-
resentation of G with squared radius t, every orthonormal representation
p : V → Rd of G, and every unit vector c ∈ Rd such that c ̸∈ p(V )⊥, we have

2t+
[∑

i∈V (c
T p(i))2

]−1 ≥ 1,

with equality if and only if t = t(G) and
∑

i∈V (c
T p(i))2 = ϑ(G).

3.3. A Gallai-type identity. The transformation (3.5) may be reversed
as follows. Suppose that q : V → Rd is an orthonormal representation of G
such that, for some positive µ ∈ R and some u : V → Rd−1, we have

q(i) =
√
2
[
(2µ)−1/2 ⊕ u(i)

]
∀i ∈ V. (3.6)

Then u is a hypersphere representation of G with squared radius 1
2(1−1/µ).

We can use (3.5) and (3.6) to obtain an identity involving these objects.

Proposition 3.4. Let G = (V,E) be a graph. Then

2t(G) + max
p,c

min
i∈V

(
cT p(i)

)2
= 1, (3.7)
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where p ranges over all orthonormal representations of G and c over unit
vectors of the appropriate dimension.

Proof. We first prove “≤” in (3.7). Let p : V → Rd be an orthonormal
representation of G and let c ∈ Rd be a unit vector. We will show that

t(G) ≤ 1
2

(
1−mini∈V

(
cT p(i)

)2)
. (3.8)

It is well-known that there exists an orthonormal representation q of G and
a unit vector d such that (dT q(j))2 = β := mini∈V (c

T p(i))2 for all j ∈ V .

If β = 0, then i 7→ 2−1/2ei ∈ RV shows that t(G) ≤ 1/2, so assume that
β > 0. We may assume that d = e1 and dT q(i) ≥ 0 for every i ∈ V . Now
use (3.6) with µ = 1/β to get a hypersphere representation u of G from q
with squared radius 1

2(1− β). This proves (3.8).

Next we prove “≥” in (3.7). Let u : V → Rd be a hypersphere representa-
tion of G with squared radius t(G). Build an orthonormal representation q
of G as in (3.5) and pick c := 1 ⊕ 0 ∈ R ⊕ Rd. Then (cT q(i))2 = 1 − 2t(G)
for every i ∈ V . �
(The reciprocal of the second term of the sum on the LHS of (3.7) was used
as the original definition of ϑ(G) by Lovász [14].)

Note that (3.7) does not provide a good characterization of either t(G) or
the maximization problem on the LHS of (3.7). In this sense, Proposition 3.4
is akin to Gallai’s identities for graphs [16, Lemmas 1.0.1 and 1.0.2].

3.4. Unit-distance representations in hyperspheres and balls. For a
graph G, let tb(G) be the square of the smallest radius of an Euclidean ball
that contains a unit-distance representation of G. This parameter is also
mentioned by Lovász [15, Proposition 4.1].

To formulate tb(G) as an SDP, replace the constraint diag(X) = tē in (3.3)
by diag(X) ≤ tē. The resulting SDP and its dual have Slater points, so SDP
strong duality holds, i.e., both optima are attained and the optimal values
coincide.

Evidently, tb(G) ≤ t(G) for every graph G. In fact, equality holds:

Theorem 3.5. For every graph G, we have tb(G) = t(G).

If we mimic the proof of Theorem 3.1 for tb(G), we find that

2tb(G) + 1/ϑb(G) = 1, (3.9)

where ϑb(G) is defined by adding the constraint Xē ≥ 0 to the SDP (3.1).
Thus, by (3.2) and (3.9), Theorem 3.5 is equivalent to the fact that ϑb(G) =
ϑ(G) for every graph G. This follows from next result [6, Proposition 9] (this
was pointed out to the first author by Fernando Mário de Oliveira Filho):

Proposition 3.6 ([6]). Let K ⊆ Sn be such that Diag(h)X Diag(h) ∈ K
whenever X ∈ K and h ∈ Rn

+. If X̂ is an optimal solution for the optimiza-

tion problem max
{
ēTXē : Tr(X) = 1, X ∈ K ∩ Sn+

}
, then diag(X̂) = µX̂ē

for some positive µ ∈ R.
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Proof of Theorem 3.5. Since ϑ(G) is a relaxation of ϑb(G), we have ϑb(G) ≤
ϑ(G). To prove the reverse inequality, let X̂ be an optimal solution for (3.1).

By Proposition 3.6, we have X̂ē = µ−1 diag(X̂) ≥ 0 for some µ > 0. Hence

X̂ is feasible for the SDP that defines ϑb(G), whence ϑb(G) ≥ ϑ(G). �
3.5. Hypersphere proofs of ϑ facts. The formula (3.2) relating t(G)
and ϑ(G) allows us to infer some basic facts about the theta number from
a geometrically simpler viewpoint.

Theorem 3.7 (The Sandwich Theorem [14]). For any graph G, we have
ω(G) ≤ ϑ(G) ≤ χ(G).

By Theorem 3.1 and the fact that ϑ(Kn) = n for every n ≥ 1, the Sand-
wich Theorem is equivalent to the inequalities t(Kω(G)) ≤ t(G) ≤ t(Kχ(G))
for every graph G. The first inequality is obvious: if H is a subgraph of G,
then t(H) ≤ t(G). The second one is also obvious: if u : [ℓ] → Rd is a hyper-
sphere representation of Kℓ and c : V (G) → [ℓ] is a colouring of G, then u◦c
is a hypersphere representation of G. This hints at a strong connection with
graph homomorphisms, which we will look at more closely in Section 4.

Lovász [15, p. 34] mentions that a graph G is bipartite if and only if
ϑ(G) ≤ 2. The less obvious of the implications may be easily proved by
showing that ϑ(Cn) > 2 for every odd cycle Cn. However, we find that the
following proof using hypersphere representations gives a more enlightening
geometric interpretation. By Theorem 3.1, we must show that t(G) ≤ 1/4
if and only if G is bipartite. If G is bipartite, then G has a hypersphere
representation with radius 1/2 even in R1. Suppose G has a hypersphere
representation with radius ≤ 1/2. The only pairs of points at distance 1 in a
hypersphere of radius 1/2 are the pairs of antipodal points, so G is bipartite.

Given graphs G = (V,E) and H = (W,F ) with V ∩ W = ∅, the direct
sum of G and H is the graph G + H := (V ∪ W,E ∪ F ). It is proved
in [12] that ϑ(G+H) = max{ϑ(G), ϑ(H)}. By Theorem 3.1, this is equiv-
alent to the geometrically obvious equation t(G + H) = max{t(G), t(H)}.
In particular, t(G) = max{ t(C) : C a component of G}. More generally,
t(G) = max{ t(B) : B a block of G}. This follows from the next result,
where we denoteG1∪G2 := (V1∪V2, E1∪E2) andG1∩G2 := (V1∩V2, E1∩E2)
for graphs G1 = (V1, E1) and G2 = (V2, E2).

Proposition 3.8. Let G = (V,E) be a graph, and suppose G = G1 ∪G2 for
graphs G1 and G2, with G1 ∩G2 a complete graph. Then

t(G) = max{t(G1), t(G2)} and ϑ(G) = max{ϑ(G1), ϑ(G2)}.

Proof. By Theorem 3.1, it suffices to prove that t(G) = max{t(G1), t(G2)}.
Clearly ‘≥’ holds in the desired equation. Assume t(G1) ≥ t(G2). Since the
feasible region of (3.3) is convex and contains (X̄, t̄ ) := 1

2(I, 1), there are
hypersphere representations u and v of G1 and G2, respectively, both with
squared radius t(G1). We may assume that the images of u and v live in
the same Euclidean space. Since G1 ∩ G2 is a complete graph, there is an
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orthogonal matrix Q such that Qv(i) = u(i) for every i ∈ V (G1 ∩ G2). If
we glue the hypersphere representation i 7→ Qv(i) of G2 with u, we get a
hypersphere representation of G with squared radius t(G1). �

This behavior of t and ϑ with respect to clique sums is shared by many
other graph parameters, e.g., ω, χ, the Hadwiger number (the size of the
largest clique minor), and the graph invariant λ introduced in [9].

Proposition 3.8 and Theorem 3.5 imply the following purely geometric
result:

Corollary 3.9. Let G = (V,E) be a graph, and suppose G = G1 ∪ G2 for
graphs G1 and G2, with G1 ∩ G2 a complete graph. For i ∈ {1, 2}, let ui
be a unit-distance representation of Gi contained in an Euclidean ball of
radius ri. Then there is a unit-distance representation of G contained in an
Euclidean ball of radius max{r1, r2}.

The proof contains an algorithm to build the desired unit-distance rep-
resentation of G. However, whereas one would expect such an algorithm to
provide a geometric construction from u1 and u2, the one presented essen-
tially needs to solve an SDP, and it may ignore u1 and u2 altogether.

Using basic properties of Laplacians, we can prove the following behaviour
of t and ϑ with respect to edge contraction:

Proposition 3.10. Let G = (V,E) be a graph and let e = {i, j} ∈ E. If
(ȳ, z̄) is an optimal solution for (3.4), then z̄e ≥ t(G)− t(G/e). If X̄ is an
optimal solution for (3.1) applied to ϑ(G), then ϑ(G) ≤ (2X̄ij + 1)ϑ(G/e).

Proof. See Appendix A. �

Finally, using basic properties about the intersection of two hyperspheres,
we can prove a property of ϑ that is shared by the parameters ω, χ, and the
fractional chromatic number χ∗. The proof is based on [11, Lemma 4.3].

Proposition 3.11. Let G be a graph and i ∈ V (G) with N(i) ̸= ∅. Then

t(G[N(i)]) ≤ 1− 1/[4t(G)] and ϑ(G) ≥ ϑ(G[N(i)]) + 1.

Proof. See Appendix A. �

3.6. A weighted version. For w ∈ RV
+, define ϑ(G,w) by replacing the

objective function in (3.1) by
√
w

T
X
√
w, where (

√
w)i :=

√
wi for every

i ∈ V . It is natural to define a weighted hypersphere number t(G,w) so that
it satisfies a natural generalization of (3.2), namely, 2t(G,w)+1/ϑ(G,w) = 1
whenever w ̸= 0. By using the proof of Theorem 3.1 as a guide, we arrive
at the definition:

t(G,w) = min t
diag(X) = 1

2 ē+ (t− 1
2)w,

L∗
G(X) = ē+ (t− 1

2)L
∗
G(W ),

X ∈ SV+, t ∈ R.

(3.10)
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This SDP and its dual have Slater points, so SDP strong duality holds.
Even though we cannot offer a nice direct interpretation for this definition

of t(G,w), by construction, we can generalize Proposition 3.2:

Theorem 3.12. Let G be a graph and w ∈ RV (G)
+ \ {0}. Then, for every

feasible solution (X, t) of (3.10) and every nonzero x ∈ TH(G), we have

2t+ 1/(wTx) ≥ 1,

with equality if and only if (X, t) is optimal for (3.10) and wTx = ϑ(G,w).

Proof. Set V := V (G). We may assume that t < 1/2. Write X = P TP for
some [d] × V matrix P , and define p : V → Rd by p : i 7→ Pei. The map

q : i 7→
√
2
[√

wi(1/2− t)⊕ p(i)
]
∈ R⊕Rd is an orthonormal representation

of G. Put c := 1⊕ 0 ∈ R⊕ Rd. Then (1− 2t)wTx =
∑

i∈V (c
T q(i))2xi ≤ 1.

The equality case now follows by construction. �

If w ∈ ZV
+, it can be shown that t(G,w) = t(Gw), where Gw is obtained

from G by replacing each node i by a clique Gi on wi nodes; if {i, j} ∈ E(G),
then every node in Gi is adjacent in Gw to every node in Gj .

In fact, every feasible solution (X̄, t̄) of (3.10) encodes a hypersphere
representation of Gw with squared radius t̄. Indeed, write X̄ = P TP for
some [d]×V matrix P , and define p : i 7→ Pei. For i ∈ V , let qi : V (Gi) → Rdi

be a hypersphere representation of Gi with squared radius t(Gi) = 1
2(1 −

1/wi). Define u : V (Gw) → Rd ⊕
(⊕

i∈V Rdi
)
as follows. For k ∈ V (Gi),

set u(k) to be the vector whose block in Rd is w
−1/2
i p(i) and whose block

in Rdi is qi(k); all other blocks of u(k) are zero. Then u is a hypersphere
representation of Gw with squared radius t̄.

4. Graph homomorphisms and sandwich theorems

Let G and H be graphs. A homomorphism from G to H is a function
f : V (G) → V (H) such that {f(i), f(j)} ∈ E(H) whenever {i, j} ∈ E(G).
If there is a homomorphism from G to H, we write G → H.

Note that t(G) ≤ t(H) whenever G → H. Indeed, if f is a homomorphism
from G to H and v is a hypersphere representation of H, then v ◦ f is a
hypersphere representation of G. This combines with the graph-theoretic
observation that Kω(G) → G → Kχ(G) to yield t(Kω(G)) ≤ t(G) ≤ t(Kχ(G)),
which by Theorem 3.1 is equivalent to the Sandwich Theorem 3.7.

Motivated by this, we call a real-valued graph invariant f hom-monotone
if f(G) ≤ f(H) whenever G → H and the following “nondegeneracy”
condition holds: there is a non-decreasing function g : Im(f) → R such
that g(f(Kn)) = n for every integer n ≥ 1. Using these properties for
an arbitrary graph G and the fact that Kω(G) → G → Kχ(G), we get
f(Kω(G)) ≤ f(G) ≤ f(Kχ(G)), and thus

ω(G) ≤ g(f(G)) ≤ χ(G). (4.1)
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(See [2] for a similar use of these ideas.) We point out that hom-monotonicity
cannot recover strong Sandwich Theorems which state that ω(G) ≤ ϑ(G) ≤
χ∗(G) since this inequality fails to hold for the hom-monotone invariant χ.

The function g(x) := 1/(1− 2x) is non-decreasing on [0, 1/2) ⊇ Im(t), so
t is hom-monotone, and we recover from (4.1) the Sandwich Theorem 3.7.

The reason why t satisfies the first condition of hom-monotonicity roughly
comes from the fact that the constraints for the SDP (3.3) of t are “uniform”
for the edges, i.e., all edges are treated in the same way. We are thus led
to define other SDPs of the same type. One such example is the parameter
tb. However, as we have seen in Theorem 3.5, this parameter is equal to t.
Now define

t′(G) := min
{
t : diag(X) = tē, L∗

G(X) ≥ ē, X ∈ SV+, t ∈ R
}
. (4.2)

Clearly, t′(G) ≤ t(G) for every graph G, and it is easy to see that equality
holds if G is node-transitive. In particular, t′(Kn) = t(Kn) for every n.
Thus, the function g(x) := 1/(1− 2x) proves that t′ is hom-monotone.

Using (4.1) and t′(G) ≤ t(G), we obtain ω(G) ≤ g(t′(G)) ≤ g(t(G)) ≤
χ(G) for every graph G. If we mimic the proof of Theorem 3.1 for t′(G),
we find that 2t′(G) + 1/ϑ′(G) = 1, where ϑ′(G) is defined by adding the
constraint X ≥ 0 to (3.1), i.e., g(t′(G)) = ϑ′(G) is the graph parameter
introduced in [17] and [20].

Let dim(G) be the minimum d ≥ 0 such that there is a unit-distance
representation of G in Rd; consider R0 := {0}. As before, G → H implies
dim(G) ≤ dim(H). Since dim(Kn) = n−1, the function g(x) := x+1 shows
that dim is hom-monotone, so ω(G) ≤ dim(G) + 1 ≤ χ(G). However, we
will see later that computing dim(G) is NP-hard. (A similar parameter was
introduced in [4].)

Define dimh(G) similarly as dim(G) but for hypersphere representations
ofG with squared radius≤ 1/2 and dimo(G) for orthonormal representations
of G. Such parameters are also hom-monotone. Clearly dim(G) ≤ dimh(G)
for every graph G, but strict inequality occurs for the Mosers spindle (see
Figure 1 and the proof of Theorem 5.4). Since (3.5) shows that dimo(G) ≤
dimh(G) + 1 and [14] shows that ϑ(G) ≤ dimo(G), these parameters are
related by ω(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ dimo(G) ≤ dimh(G) + 1 ≤ χ(G).
In particular, by (3.2), we find that dimh(G) ≥ 2t(G)/(1 − 2t(G)). Also
dimh(G) ≤ χ(G)− 1 ≤ ∆(G), where ∆(G) is the maximum degree of G. In
fact, by Brooks’ Theorem, dimh(G) ≤ ∆(G) − 1 when G is connected but
not complete nor an odd cycle.

4.1. Hypersphere representations and vector colourings. The fol-
lowing relaxation of graph colouring was introduced in [11]. Let G = (V,E)
be a graph. For a real number k ≥ 1, a vector k-colouring of G is a func-
tion p from V to the unit hypersphere in Rd for some d ≥ 1 such that
⟨p(i), p(j)⟩ ≤ −1/(k − 1) whenever {i, j} ∈ E; we consider the fraction to
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be −∞ if k = 1, so the only graphs that have a vector 1-colouring are the
graphs with no edges.

A vector k-colouring p of G is strict if ⟨p(i), p(j)⟩ = −1/(k− 1) for every
{i, j} ∈ E, and a strict vector k-colouring p of G is strong if ⟨p(i), p(j)⟩ ≥
−1/(k − 1) whenever {i, j} ∈ E(G).

The vector chromatic number of G is the smallest k ≥ 1 for which there
exists a vector k-colouring of G, and the strict vector chromatic number and
strong vector chromatic number are defined analogously.

It is easy to show (see, e.g., [13]) that the vector chromatic number of G is
ϑ′(G), the strict vector chromatic number of G is ϑ(G), and the strong vector

chromatic number of G is ϑ+(G), known as Szegedy’s number [22], where
ϑ+(G) is defined by replacing the constraints Xij = 0 for every {i, j} ∈ E
in (3.1) by Xij ≤ 0 for every {i, j} ∈ E.

Here, we note that a scaling map yields a correspondence between these
variations of vector colourings and unit-distance representations, provided
that the graph G has at least one edge.

Let p be a strict vector k-colouring of G. Then the map i 7→ tp(i), where
t2 = 1

2(1− 1/k), is a hypersphere representation of G with squared radius t.
Conversely, if q is a hypersphere representation of G with squared radius
t < 1/2, then the map i 7→ t−1/2q(i), is a strict vector k-colouring ofG, where
k = 1/(1 − 2t). This correspondence shows that t(G) = 1

2(1 − 1/χv(G)),
where χv(G) denotes the strict vector chromatic number of G.

The same scaling maps as above yield correspondences between vector
k-colourings and the geometric representations arising from the graph in-
variant t′, and also between strong vector k-colourings and geometric repre-
sentations arising from the graph invariant

t+(G) := min t
diag(X) = tē,
Xii − 2Xij +Xjj = 1, ∀{i, j} ∈ E(G),
Xii − 2Xij +Xjj ≤ 1, ∀{i, j} ∈ E(G),
X ∈ SV+, t ∈ R.

(4.3)

Note however, that the parameter t+ does not fit into the framework of hom-
monotone graph invariants since the SDP (4.3) has non-edge constraints.

We point out here that, while these equivalences between variants of vec-
tor chromatic number and variants of theta number are easy to prove, they
are not as widely known as they should be. For instance, in [1] it is shown
that the vector chromatic number χ′

v(G) of G satisfies

χ′
v(G) ≥ max

{
1− λmax(B)

λmin(B)
: B ∈ AG, B ≥ 0

}
, (4.4)

where λmax(·) and λmin(·) denote the largest and smallest eigenvalue, re-
spectively, and AG denotes the set of all weighted adjacency matrices of
G = (V,E), i.e., all symmetric V × V matrices A such that Aij ̸= 0 =⇒
{i, j} ∈ E. However, since χ′

v(G) = ϑ′(G), it is possible to adapt the proof of
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the Hoffman bounds for ϑ(G) (see, e.g., [12, Corollary 33]) to show that (4.4)
actually holds with equality.

Also, in [18, Remark 3.1] it is reported that a certain graph G has vector
chromatic number strictly smaller than its strict vector chromatic number,
and that it was unknown whether some such graph existed. However, this
statement about the vector chromatic numbers is equivalent to ϑ′(G) <
ϑ(G), and the existence of graphs satisfying this strict inequality was already
known as far back as 1979 (see [20]).

We also mention that one of the characterizations of ϑ′(G) in [7] and [5]
is inaccurate. Define an obtuse representation of a graph G = (V,E) to be
a map p : V → Rd for some d ≥ 1 such that

(i) ∥p(i)∥ = 1 for every i ∈ V , and
(ii) ⟨p(i), p(j)⟩ ≤ 0 for every {i, j} ∈ E(G).

In [7, Theorem 1] and [5, p. 133] it is claimed that

ϑ′(G) = min
p,c

max
i∈V

1(
cT p(i)

)2 , (4.5)

where p ranges over obtuse representations of G and c ranges over unit
vectors of appropriate dimension. Let G be a 2n-partite graph with color
classes C1, . . . , C2n such that ω(G) = 2n. Thus, ϑ′(G) ≥ ω(G) = 2n. Let
p(j) := ei ∈ Rn for every j ∈ Ci and i ∈ [n], and p(j) := −ei ∈ Rn for every

j ∈ Cn+i and i ∈ [n]. Set c := n−1/2ē ∈ Rn. By (4.5), we get ϑ′(G) ≤ n, a
contradiction.

Now we show how to fix the formula (4.5). Given an obtuse representation
p : V → Rd of a graph G = (V,E), we say that a vector c ∈ Rd is consistent
with p if cT p(i) ≥ 0 for every i ∈ V . The next result is a Gallai-type identity
involving t′(G), parallel to Proposition 3.4 for t(G).

Proposition 4.1. Let G = (V,E) be a graph. Then

2t′(G) + max
p,c

min
i∈V

(
cT p(i)

)2
= 1, (4.6)

where p ranges over all obtuse representations of G and c over unit vectors
consistent with p.

Proof. This proof is analogous to the proof of Proposition 3.4, with the fol-
lowing slight adjustments. In the notation of the proof of (3.8), the vector d
may be chosen to be consistent with the obtuse representation q, so we do
not need to replace any of the q(i)’s by their opposites. �

Corollary 4.2. Let G = (V,E) be a graph. Then ϑ′(G) is given by (4.5),
where p ranges over obtuse representations of G and c ranges over unit
vectors consistent with p.

Proof. This follows from Proposition 4.1 together with the formula 2t′(G)+
1/ϑ′(G) = 1. �
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5. Unit-distance representations in ellipsoids

The graph parameter tb encodes the problem of finding the smallest Eu-
clidean ball that contains a unit-distance representation of a given graph. In
this section, we study graph parameters that encode the problem of finding
the smallest ellipsoid of a given shape that contains a unit-distance repre-
sentation of a given graph.

Let G = (V,E) be a graph. In Section 3.4, we defined tb(G) as the
minimum infinity-norm of the vector (uTi ui)i∈V over all unit-distance repre-
sentations u of G, where we are using the notation ui := u(i). It is natural to
replace the vector (uTi ui)i∈V in the objective function of the previous opti-
mization problem with the vector (uTi Aui)i∈V for some fixed A ∈ Sd++. The
resulting optimization problem corresponds to finding the minimum squared
radius t such that the ellipsoid {x ∈ Rd : xTAx ≤ t} contains a unit-distance
representation of G.

We are thus led to define, for every graph G = (V,E), every A ∈ Sd+ for
some d ≥ 1, and every p ∈ [1,∞], the number Ep(G;A) as the infimum of

∥(uTi Aui)i∈V ∥p as u ranges over all unit-distance representations of G in Rd,
or equivalently,

Ep(G;A) := inf
{
∥diag(UAUT )∥p : L∗

G(UUT ) = ē, U ∈ RV×[d]
}
. (5.1)

Note that we allow A to be singular.
Since the feasible region in (5.1) is invariant under right-multiplication

by matrices in Od, we have Ep(G;A) = Ep(G;QAQT ) for every Q ∈ Od. In
particular, Ep(G; ·) is a spectral function.

Let us derive some basic properties of the optimal solutions of Ep(G;A).
First, we prove that if Ep(G;A) is finite then the corresponding optimal
geometric representation exists. The first observation towards this goal is
that, if G is connected, then the maximum distance between any pair of
points in every unit-distance representation is at most (|V (G)| − 1).

Theorem 5.1. Let G = (V,E) be a graph. Let A ∈ Sd+ for some d ≥ 1 and

let p ∈ [1,∞]. If Ep(G;A) < +∞, then there exists U ∈ RV×[d] such that
L∗
G(UUT ) = ē and ∥ diag(UAUT )∥p = Ep(G;A).

Proof. We may assume that G is connected. (If not, it suffices to focus on
the component H of G with Ep(H;A) = Ep(G;A).) We may further assume

A = Diag(a) where a = λ↓(A) ̸= 0, where λ↓(A) denotes the vector of
eigenvalues of A, with multiplicities, arranged in a nonincreasing order. So,
there exists a largest k ∈ [d] so that ak ̸= 0. Let A′ := Diag(a1, . . . , ak).
Throughout this proof, let P : Rd → Rk denote the projection onto the first
k components, i.e., P (x1, . . . , xd)

T = (x1, . . . , xk)
T , and let Q : Rd → Rd−k

denote the projection onto the last d−k components. Note that A = P TA′P
and A′ ≽ akI.

Let M ∈ R such that Ep(G;A) ≤ M . Fix j ∈ V arbitrarily. We claim
that the following constraints may be added to the RHS of (5.1) without
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changing its optimal value:

∥PUT ei∥22 ≤ B := (M + 1)/ak for every i ∈ V, (5.2)

QUT ej = 0. (5.3)

Let us see why this proves the theorem. Let U ∈ RV×[d] be feasible for (5.1)
and satisfy (5.2) and (5.3). Let i ∈ V be arbitrary. Since the columns of UT

form a unit-distance representation of G, the distance in G between i and j
is an upper bound for ∥UT ei −UT ej∥2. Hence, ∥UT ei∥2 ≤ ∥UT ej∥2 + |V | =
∥PUT ej∥2+ |V | ≤ B1/2+ |V |. Thus, the new feasible region is compact and
we will be done.

First, we prove that the constraints (5.2) may be added to (5.1) with-

out changing the optimal value. Suppose U ∈ RV×[d] violates (5.2) for
some i ∈ V . Then ∥diag(UAUT )∥p ≥ eTi UAUT ei = eTi UP TA′PUT ei ≥
eTi UP T (akI)PUT ei = ak∥PUT ei∥22 > M + 1 ≥ Ep(G;A) + 1, so U may be
discarded from the feasible set of (5.2).

Next, we add the constraint (5.3). Let U ∈ RV×[d] be feasible for (5.1) and

satisfy (5.2). Define X ∈ RV×[d] by setting PXT ei := PUT ei for every i ∈ V
and QXT ei := QUT ei−QUT ej for every i ∈ V . Hence, X is feasible for (5.1)
and satisfies (5.2) and (5.3). Moreover, diag(XAXT ) = diag(UAUT ). This
completes the proof. �

A geometrically pleasing, intuitive conjecture is that a suitably defined
notion of a “centre” of an optimal representation of every graph must coin-
cide with the centre of the ellipsoid. The next result takes a step along this
direction by refining the previous theorem.

Theorem 5.2. Let G = (V,E) be a graph. Let A ∈ Sd+ for some d ≥
1 and let p ∈ [1,∞]. If Ep(G;A) < +∞, then there is a unit-distance

representation u : V → Rd of G such that ∥(uTi Aui)i∈V ∥p = Ep(G;A) and
0 ∈ conv(u(V )).

Proof. We use the same assumptions and notation defined in the first para-
graph of the proof of Theorem 5.1. Let u : V → Rd be a feasible solution
for Ep(G;A). Let U be the set of all unit-distance representations of G of

the form i ∈ V 7→ ui + r for some vector r ∈ Rd such that Pr = 0. Note
that if k = d, then U is a singleton. Clearly, every element of U has the
same objective value as u. We will show that if there does not exist some
element v ∈ U such that 0 ∈ conv(v(V )), then Ep(G;A) < ∥(uTi Aui)i∈V ∥p.
Then this theorem will follow from Theorem 5.1.

So, assume that 0 ̸∈ M :=
∪

v∈U conv(v(V )). Since M = conv(u(V )) +

Null(P ) is a polyhedron and 0 ̸∈ M , there exists h ∈ Rd and α > 0 such
that hT vi ≥ α for every v ∈ U and i ∈ V . Note that Qh = 0 since for
each j ∈ {k + 1, . . . , d} the linear function hTui + thj = hT (ui + tej) of t is
bounded below by α. Thus,

hTui ≥ α > 0, ∀i ∈ V and h ∈ Im(A). (5.4)
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Let x ∈ Rd such that Ax = h and let s := εx, where ε > 0 will be chosen
later. Define v : V → Rd by vi := ui− s. Let i ∈ V . Then vTi Avi = uTi Aui−
2εhTui + ε2xTAx. Hence vTi Avi < uTi Aui if and only if 2εhTui > ε2xTAx.
Thus, we will be done if we can find ε > 0 such that 2hTui > εxTAx. Since
hTui ≥ α > 0, such ε exists. This shows that, for some choice of ε > 0, we
have vTi Avi < uTi Aui for every i ∈ V , whence Ep(G;A) ≤ ∥(vTi Avi)i∈V ∥p <
∥(uTi Aui)i∈V ∥p. �

The next result shows that it is not very interesting to use arbitrarily
large prescribed embedding dimension d:

Theorem 5.3. Let G = (V,E) be a graph. Let A ∈ Sd+ for some d ≥ 1
and let p ∈ [1,∞]. If k ∈ [d] is such that Ep(G;A) has an optimal solution

u : V → Rd with dim(span(u(V ))) ≤ k, then

Ep(G;A) = Ep(G;Bk) (5.5)

where Bk := Diag(λ↑
1(A), . . . , λ

↑
k(A)). In particular, Ep(G;A) = Ep(G;Bn−1)

if d ≥ n− 1.

Proof. We may assume that A = Diag(a) where a = λ↑(A) (here, λ↑(A)
denotes the vector of eigenvalues of A, with multiplicities, arranged in a
nondecreasing order). Note that B := Bk = Diag(a1, . . . , ak). The proof
of ‘≤’ in (5.5) is immediate by appending extra zero coordinates to an op-
timal solution of Ep(G;B).

To prove ‘≥,’ let u : V → Rd be an optimal solution for Ep(G;A) such that

dim(span(u(V ))) = k. Then, there exists Q ∈ Od such that, for each i ∈ V ,
the final d−k coordinates of Qui are zero. Let vi ∈ Rk be obtained from Qui
by dropping the final d − k (zero) coordinates. If C ∈ Sk+ is the principal

submatrix of QAQT indexed by [k], then (vTi Cvi)i∈V = (uTi Aui)i∈V . Hence,
Ep(G;A) = ∥(uTi Aui)i∈V ∥p = ∥(vTi Cvi)i∈V ∥p ≥ Ep(G;C). By interlacing of

eigenvalues, λ↑(C) ≥ λ↑(B). Hence, Ep(G;A) ≥ Ep(G;C) ≥ Ep(G;B).
It follows from Theorem 5.2 that Ep(G;A) = Ep(G;Bn−1) if d ≥ n−1. �

It is clear that Ep(G;A) = 0 if and only if dim(G) ≤ dim(Null(A)). So
deciding whether dim(G) ≤ k for any fixed k reduces to computing Ep(G;A)
for any p ∈ [1,∞] where A is a matrix of nullity k. It is easy to see that the
former decision problem is NP-hard (see [10, Theorem 4]). We give below a
shorter proof.

Theorem 5.4 ([10]). The problem of deciding whether dim(G) ≤ 2 for a
given input graph G is NP-hard.

Proof. Let k be a fixed positive integer. Saxe [19] showed that the following
problem is NP-hard: given an input graph G = (V,E) and ℓ : E → R+,
decide whether there exists u : V → Rk such that ∥u(i) − u(j)∥ = ℓ{i,j} for
every {i, j} ∈ E. Saxe showed that the problem remains NP-hard even if
we require ℓ(E) ⊆ {1, 2}.
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g

Figure 1. The Mosers spindle; see [21].

i j

Figure 2. The gadget graph H.

We will show a polynomial-time reduction from the above problem with
k = 2 and ℓ(E) ⊆ {1, 2} to the problem of deciding whether dim(G) ≤ 2.
It suffices to show how we can replace any edge of the input graph G which
is required to be embedded as a line segment of length 2 by some gadget
graph H so that every unit-distance representation of H in R2 maps two
specified nodes of H to points at distance 2.

Consider the graph M known as the Mosers spindle shown in Figure 1.
The subgraph of M induced by {a, b, c, d} has exactly two unit-distance
representations in R2 modulo rigid motions: one of them as displayed in
Figure 1, and the other one maps nodes a and b to the same point. We
claim that, in any unit-distance representation u of M in R2, the nodes a
and b are not mapped to the same point. Suppose otherwise. Since the
points u(e), u(f), u(g) are at distance 1 from u(a) = u(b) and from each
other, u shows that dim(K4) ≤ 2, whereas clearly dim(K4) ≥ 3.

Let H be the gadget shown in Figure 2, which consists of two copies
of M sharing a triangle (some edges of M are drawn in dots for the sake of
ease of visualization). Then, every unit-distance representation of H in R2

maps the nodes i and j to points at distance 2. Thus, if we replace the
corresponding edges {i, j} of the input graph G by H, we obtain a graph G′

such that dim(G′) ≤ 2 if and only if G can be embedded in R2 with the
prescribed edge lengths. �

It follows from Theorem 5.4 that, for any fixed p ∈ [1,∞], the problem of

computing Ep(G;A) for an input graph G and A ∈ SV (G)
+ is NP-hard. Hence

the graph parameter tb = t is in a sense on the borderline of tractability.
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5.1. The extreme cases p ∈ {1,∞}. For every matrix U ∈ RV×V , if we
set X := UUT , then there exists an orthogonal V × V matrix Q such that
UT = QX1/2. Hence, if A ∈ SV+, then

Ep(G;A) = inf ∥diag(X1/2QTAQX1/2)∥p
L∗
G(X) = ē

X ∈ SV+, Q ∈ OV .
(5.6)

When p = 1, the objective function in (5.6) is Tr(QTAQX) = ⟨QTAQ,X⟩
so we can write

E1(G;A) = inf
Q∈OV

tQTAQ(G) (5.7)

where tW (G) is defined for any W ∈ SV as the SDP

tW (G) := inf
{
⟨W,X⟩ : L∗

G(X) = ē, X ∈ SV+
}
. (5.8)

Proposition 5.5. Let G = (V,E) be a connected graph and let W ∈ SV .
Then tW (G) is finite if and only if ēTWē > 0 or Wē = 0. Moreover,
whenever tW (G) is finite, both (5.8) and its dual SDP have optimal solutions
and their optimal values coincide.

The parameter tW (G) thus underlies the parameters E1(G;A) as well as
the hypersphere number t(G), since (3.4) shows that

t(G) = min{ tDiag(y)(G) : ēT y = 1, y ∈ RV }.

If X is feasible in (5.8) for G = Kn, then X is completely determined
by its diagonal entries. Using this fact, it is easy to prove that the feasible
region of (5.8) for G = Kn is

{X ∈ Sn+ : L∗
Kn

(X) = ē}
= { (yēT + ēyT + 2I)/4 : ∥ē∥∥y∥ ≤ ēT y + 2, y ∈ Rn}. (5.9)

Using a second-order cone programming formulation, we can show that

2tW (Kn) =


Tr(W )− ∥Wē∥2

ēTWē
if ēTWē > 0

Tr(W ) if Wē = 0

−∞ otherwise.

(5.10)

Let us use (5.7) and (5.10) to compute E1(G;A). Let A ∈ Sn+ be nonzero.
Since Qē ̸∈ Null(A) for some Q ∈ On, it follows from (5.7) and (5.10) that

2E1(Kn;A) = Tr(A)− sup
{ ∥QTAQē∥2

ēTQTAQē
: Qē ̸∈ Null(A), Q ∈ On

}
.

The supremum may be replaced by sup{ (hTA2h)/(hTAh) : h ∈ Null(A)⊥},
which is easily seen to be λmax(A). This implies with Theorem 5.3 that

E1(Kn;A) =

{
1
2

∑n−1
i=1 λ↑

i (A) if A ∈ Sd+ with d ≥ n− 1

+∞ otherwise.
(5.11)
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For the other extreme p = ∞, the first property of hom-monotonicity
holds. More precisely, let (an)n∈Z++ be a nondecreasing sequence of positive
reals. Define An := Diag(a1, . . . , an) for every n ∈ Z++. Then,

G → H =⇒ E∞(G;An) ≤ E∞(H;An). (5.12)

We do not know whether the invariant E∞ satisfies the second property
of hom-monotonicity. In fact, we do not know an analytical formula to
compute E∞(Kn;A) in terms of A. However, we have such a formula for
an infinite family of complete graphs, as we now describe. Let H be an
n × n Hadamard matrix, i.e., H is {±1}-valued and HTH = nI. We may
assume that H has the form HT =

[
ē LT

]
. Then LTL = nI − ēēT , so

1
2nL

∗
Kn

(LTL) = ē, i.e., the map i 7→ (2n)−1/2Lei is a unit-distance represen-
tation of Kn. This map is called a Hadamard representation of Kn .

Theorem 5.6. Let n ∈ Z++ such that there exists an n × n Hadamard
matrix. Then, for any p ∈ [1,∞] and diagonal A ∈ Sn−1

+ , every Hadamard
representation of Kn is an optimal solution for Ep(Kn;A).

Proof. The objective value of the Hadamard representation L̄ of Kn in

the optimization problem Ep(Kn;A) is
[Tr(A)

2n

]
∥ē∥p. Thus, L̄ is optimal

for p = 1 by (5.11). From the inequality ∥x∥1 ≤ n∥x∥∞ we get E∞(Kn;A) ≥
1
nE1(Kn;A), which shows that L̄ is optimal for p = ∞. Therefore, L̄ is op-
timal for every p ∈ [1,∞]. �

It is natural to lift a Hadamard representation h of Kn to obtain a frugal
feasible solution for E(Kn+1;A). The image of h is an (n − 1)-dimensional
simplex ∆. If v is a vertex of an n-dimensional simplex whose opposite
facet is ∆, then the line segment L joining v to the barycenter of ∆ is the
shortest line segment joining v to ∆. It makes sense to align L with the most
expensive axis, i.e., the one corresponding to λmax(A). Suppose A = Diag(a)
and ∥a∥∞ = an. We thus obtain a unit-distance representation u of Kn+1

in Rn of the form

u(i) :=

{
h(i)⊕ α, if i ∈ [n]

0⊕
[
α+

(
n+1
2n

)1/2]
, if i = n+ 1.

By optimizing the shift parameter α, we obtain the following upper bound:

Proposition 5.7. Let n ∈ Z++ such that there exists an n × n Hadamard
matrix. If A ∈ Sn+, then

E∞(Kn+1;A) ≤
Tr(A)

2(n+ 1)
+

(
Tr(A)− nλmax(A)

)2
8n(n+ 1)λmax(A)

. (5.13)

Equality holds for n = 2 if A ≻ 0.

The proof of equality for n = 2 involves the obvious parametrization of O2

and basic trigonometry.
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Appendix A. Proofs of Propositions 3.10 and 3.11 and
Equations (5.9) and (5.10)

Proof of Proposition 3.10. Let (ȳ, z̄) be an optimal solution for (3.4). We
will construct a feasible solution for (3.4) applied to G/e with objective
value t(G) − z̄e. Assume e = {a, b} and V ′ := V (G/e) = V \ {b}, so we
are denoting the contracted node of G/e by a. Let P be the V ′ × V matrix
defined by P := eae

T
b +

∑
i∈V ′ eie

T
i . Then PLG(z̄)P

T = LG/e(ẑ), where

ẑ ∈ RE(G/e) is obtained from z̄ as follows. In taking the contraction G/e
from G, immediately after we identify the ends of e, but before we remove
resulting parallel edges, there are at most two edges between each pair of
nodes of G/e, as we assume that G is simple. If there is exactly one edge
between nodes i and j, we just set ẑ{i,j} := z̄{i,j}. If there are two edges
joining nodes i and j, say f and f ′, we put ẑ{i,j} := z̄f + z̄f ′ .

Similarly, if we define ŷ : V ′ → R by putting ŷi := ȳi for i ∈ V ′ \ {a} and

ŷa := ȳa + ȳb, then P Diag(ȳ)P T = Diag(ŷ). Since P SV+ P T ⊆ SV ′
+ , we see

that (ŷ, ẑ) is a feasible solution for (3.4) applied to G/e, and its objective
value is ẑ(E(G/e)) = z̄(E)− z̄e.

To prove the inequality involving ϑ(G), use (3.2) together with its proof to
see that X̄ corresponds to an optimal solution (ȳ, z̄) for (3.4) with X̄/ϑ(G) =
Diag(ȳ)− LG(z̄), so ȳe = X̄ij/ϑ(G). �
Proof of Proposition 3.11. By Theorem 3.1, it suffices to show t(G[N(i)]) ≤
1 − 1/[4t(G)]. Let p : V → Rd be a hypersphere representation of G with

squared radius t := t(G). We may assume that p(i) = t1/2e1. For every
j ∈ N(i), we have 1 = ∥p(i)−p(j)∥2 = ∥p(i)∥2+∥p(j)∥2−2⟨p(i), p(j)⟩ = 2t−
2t1/2[p(j)]1. Hence, [p(j)]1 = (2t−1)/(2t1/2) =: β for every j ∈ N(i). Define
the following hypersphere representation of G[N(i)]: for each j ∈ N(i), let
q(j) be obtained from p(j) by dropping the first coordinate. The squared
radius of the resulting hypersphere representation is t−β2 = 1−1/(4t). �
Proof of (5.9). Let X ∈ SV . Then L∗

Kn
(X) = ē if and only if 4X = yēT +

ēyT + 2I for some y ∈ RV ; for the ‘only if’ part, use y := 2 diag(X)− ē.
Let y ∈ RV . The smallest eigenvalue of yēT + ēyT is ēT y−∥ē∥∥y∥. Thus,

yēT + ēyT + 2I ≽ 0 if and only if ∥ē∥∥y∥ ≤ ēT y + 2. �
Proof of (5.10). Assume first that W = Diag(w) for some w ∈ Rn. By
Proposition 5.5, finiteness of tW (Kn) implies ēTw > 0 or w = 0. Assume
the former. By (5.9),

2tW (Kn) = ēTw +min{wT y : ∥ē∥y0 − ēT y = 2, y0 ⊕ y ∈ SOCn}, (A.1)

where SOCn := { y0 ⊕ y ∈ R⊕ Rn : ∥y∥ ≤ y0}. The second-order cone pro-
gram on the RHS of (A.1) has ȳ0 ⊕ ȳ := (2 + ∥ē∥2)/∥ē∥ ⊕ ē as a Slater
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point, and its dual is max{ 2µ : −µ∥ē∥ ⊕ (w + µē) ∈ SOCn, µ ∈ R}. Since
µ∗ := −∥w∥2/(2ēTw) is optimal for the dual, it follows that

2tDiag(w)(Kn) =


ēTw − ∥w∥2/(ēTw) if ēTw > 0

0 if w = 0

−∞ otherwise.

(A.2)

Now we drop the diagonal assumption, so let W ∈ Sn such that ēTWē > 0
or Wē = 0. For y ∈ Rn, we can write ⟨W,yēT + ēyT ⟩ = ⟨Wē, 2y⟩ =
⟨Diag(Wē), yēT + ēyT ⟩, so ⟨W,yēT + ēyT + 2I⟩ = ⟨Diag(Wē), yēT + ēyT +
2I⟩ − 2ēTWē+ 2Tr(W ), i.e.,

4tW (Kn) = 4tDiag(Wē)(Kn)− 2ēTWē+ 2Tr(W )

by (5.9). Hence, (5.10) follows from (A.2). �

Appendix B. Proofs for the sake of completeness

Proof of Proposition 3.6. If X̂ii = 0 for some i ∈ V , then X̂ei = 0 and we
are done by induction on n. So we may assume that diag(X̂) > 0. Define

x ∈ Rn by xi := X̂
1/2
ii and let X̄ := Diag(x)−1X̂ Diag(x)−1. Note that

X̄ ∈ K ∩ Sn+ and diag(X̄) = ē.
For every h ∈ Rn

+ with ∥h∥ = 1, the matrix Diag(h)X̄ Diag(h) is fea-

sible in the optimization problem with objective value hT X̄h. Since X̂ =
Diag(x)X̄ Diag(x) is an optimal solution, we see that h = x attains the
maximum of hT X̄h over all h ∈ Rn

+ with ∥h∥ = 1. Since x > 0, then

h = x attains the maximum of hT X̄h also over all h ∈ Rn with ∥h∥ = 1.

Thus, for λ := λmax(X̄), we have X̄x = λx, so X̂ē = Diag(x)X̄ Diag(x)ē =

Diag(x)X̄x = λDiag(x)x = λdiag(X̂). �

Proof of (5.6). If (X,Q) is a feasible solution for the RHS of (5.6), then

UT := QX1/2 is feasible in (5.1) and has objective value ∥diag(UAUT )∥p =
∥ diag(X1/2QTAQX1/2)∥p, which is the objective value of (X,Q) in the RHS
of (5.6).

Let U be a feasible solution for (5.1). Let X := UUT . Then X1/2 = QUT

for some Q ∈ OV . The objective value of (X,QT ) in the RHS of (5.6) is

∥ diag(X1/2QAQTX1/2)∥p = ∥ diag(UAUT )∥p, which is the objective value
of U in (5.1). �

B.1. Proof of Proposition 5.5.

Proposition B.1. Let G = (V,E) be a connected graph and let W ∈ SV .
Then there exists z ∈ RE such that LG(z) ≺ W if and only if ēTWē > 0.

Proof. If W ≻ LG(z) for some z ∈ RE , then ēTWē = ēT (W − LG(z))ē > 0.
Suppose that ēTWē > 0. Let L := LG(ē) and assume V = [n]. Let

Q ∈ On such that Qe1 = n−1/2ē. Then QTLQ = 0⊕L′ for some L′ ∈ Sn−1
++ ,
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since G. Let A ∈ Sn−1, b ∈ Rn−1 and γ ∈ R such that

QTWQ =

[
γ bT

b A

]
.

Note that γ = eT1 Q
TWQe1 = n−1ēTWē > 0. Thus, for every λ ∈ R, we

have QT (W − λL)Q ≻ 0 if and only if A− λL′ − γ−1bbT ≻ 0. Since L′ ≻ 0,
we know that for λ negative and with sufficiently large magnitude, we have
QT (W − λL)Q ≻ 0, and hence W ≻ LG(λē). �

Proposition B.2. Let G be a graph and let W ∈ SV (G) such that ēTWē = 0.
If tW (G) > −∞, then ē ∈ Null(W ).

Proof. Assume tW (G) > −∞. Since (5.8) has 1
2I as a Slater point, the dual

sup
{
ēT z : W ≽ LG(z), z ∈ RE

}
. (B.1)

of (5.8) has an optimal solution z. Assume V = [n] and let Q ∈ On such that

Qe1 = n−1/2ē. Then QT (W − LG(z))Q ≽ 0 and eT1 Q
T (W − LG(z))Qe1 =

n−1ēT (W − LG(z))ē = 0 imply that

eTkQ
TWē = eTkQ

T (W − LG(z))ē = n1/2eTkQ
T (W − LG(z))Qe1 = 0

for every k ∈ [n]. Thus, Wē ∈ {Qe2, . . . , Qen}⊥ = {ē}⊥⊥, which together
with ēTWē = 0 implies Wē = 0. �
Proposition B.3. Let G be a connected graph and let W ∈ SV (G) such
that Wē = 0. Then (5.8) and (B.1) have optimal solutions and the optimal
values coincide.

Proof. Since Wē = 0, it is easy to check that the constraint ēTXē = 0
may be added to (5.8) without changing the optimal value. The dual of
this augmented SDP is sup

{
ēT z : W − µēēT ≽ LG(z), z ∈ RE , µ ∈ R

}
. By

Proposition B.1, this dual has a Slater point (z, µ) with µ = 1, so (5.8) has
an optimal solution. Since (5.8) has a Slater point and is bounded below,
its dual (B.1) has an optimal solution and the optimal values coincide. �
Proof of Proposition 5.5. If ēTWē > 0, then (5.8) and its dual (B.1) have
Slater points by Proposition B.1. If ēTWē < 0, then Xt :=

1
2I + tēēT with

t → ∞ shows that tW (G) = −∞. Assume now that ēTWē = 0. If Wē ̸= 0,
then tW (G) = −∞. Otherwise, apply Proposition B.3. �


