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Abstract. In 1976, Coffman and Sethi conjectured that a natural extension of LPT list schedul-

ing to the bicriteria scheduling problem of minimizing makespan over flowtime optimal schedules,

called the LD algorithm, has a simple worst-case performance bound: 5m−2
4m−1

, where m is the num-

ber of machines. We study the structure of potential minimal counterexamples to this conjecture,

provide some new tools and techniques for the analysis of such algorithms, and prove that to

verify the conjecture, it suffices to analyze the following case: for every m ≥ 4, n ∈ {4m, 5m},
where n is the number of jobs.
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1. Introduction

Various performance criteria may be used to schedule n independent jobs on m parallel identi-

cal machines. In applications where work-in-process inventory is very highly valued (resulting in

potentially huge work-in-process inventory costs), or in applications where the total time spent

in the system must be minimized, a fundamental objective function of choice would be the min-

imization of total flow time (or equivalently mean flow time). A schedule that minimizes mean

flow time is termed a flowtime-optimal schedule. The mean flow time for a set of jobs on a set

of parallel identical machines can be readily minimized by using the SPT (Shortest Processing

Time) rule. The SPT rule generates a very large number (at least (m!)bn/mc) of flowtime-optimal

schedules. Another fundamental objective function of choice, as a secondary objective, would be

the minimization of makespan. Minimizing the makespan has been shown to be an NP-hard

problem. Various versions of this problem have been studied by several researchers.

Graham (1966) examines the problem of makespan minimization for a set of jobs with a partial

order (precedence constraints) on a set of parallel identical machines. Graham (1969) as well

as Coffman and Sethi (1976b) develop bounds for solutions obtained by the application of the

LPT (Longest Processing Time) rule to the makespan minimization problem with no precedence

constraints. The bin-packing problem may be regarded as the dual problem to the makespan

minimization problem. In the bin-packing problem, a set of items of—in general—unequal sizes

`(Ti) must be packed into a set of m bins, each of a given capacity C. The objective of the

bin-packing problem is to minimize the number of bins m used for the packing. A very well-

known heuristic for bin-packing problem is the FFD (First Fit Decreasing) algorithm (Johnson

(1973) and Johnson et al. (1974)). Garey and Johnson (1981) and Coffman, Garey and Johnson

(1983) have proposed various alternatives to the FFD algorithm for the bin-packing problem.

Further, Coffman, Garey, and Johnson (1978) propose an algorithm for makespan minimization,

the MultiFit algorithm, that is based on the FFD algorithm for the bin-packing problem, and

obtain a bound for the performance of this algorithm. Recently, the exact performance ratio for

the MultiFit algorithm was established as 24/19 by Hwang and Lim (2014). Moreover, de la

Vega and Lueker (1981) propose a linear-time approximation scheme for the bin packing problem.

Friesen (1984), Yue, Kellerer and Yu(1988), Yue (1990), and Cao (1995) also propose bounds for

the performance of the MultiFit algorithm. Dosa (2000 and 2001) proposes generalized versions

of the LPT and MultiFit methods. Chang and Hwang (1999) extend the MultiFit algorithm to

a situation in which different processors have different starting times. Hochbaum and Shmoys

(1987) propose a PTAS (Polynomial Time Approximation Scheme) for the makespan minimization

problem for parallel identical machines. Ho and Wong (1995) propose an O(2n) algorithm to find

the optimal solution for a two-machine version of this problem.

The problem of selecting the schedule with the smallest makespan among the class of all

flowtime-optimal schedules is known to be NP-hard (Bruno, Coffman and Sethi, 1974). We

term this problem the FM (Flowtime-Makespan) problem. Coffman and Yannakakis (1984) study

a more general version of the FM problem. They study the problem of permuting the elements

within the columns of an m-by-n matrix so as to minimize its maximum row sum. Eck and

Pinedo (1993) propose a new algorithm for the FM problem. Their algorithm, the LPT* algo-

rithm, is a modified version of Graham’s LPT algorithm. LPT* requires the construction of a
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new problem instance by replacing every processing time in a rank by the difference between it

and the smallest processing time in that rank. For the two-machine case, the authors obtain a

worst-case bound of 28/27 on the makespan ratio for the LPT* algorithm. Gupta and Ho (2001)

build on the procedure developed by Ho and Wong (1995) for makespan minimization to develop

three algorithms — an algorithm to find the optimal solution and two heuristic procedures — for

the two-machine FM problem. Lin and Liao (2004) extend the procedures developed by Ho and

Wong (1995) and by Gupta and Ho (2001) to construct a procedure to obtain an optimal solution

to the FM problem in O
(

(m!)n/m
)

time.

Conway, Maxwell and Miller (1967), in their seminal book, develop the notion of ranks for the

FM problem. A schedule is flowtime-optimal if jobs are assigned in decreasing order of ranks, with

the jobs in rank 1 being assigned last. If n is the number of jobs and m is the number of machines,

we may assume that m divides n. (If it does not, we add (dn/me ∗m− n) dummy jobs with zero

processing times.) If we assume that the jobs are numbered in nonincreasing order of processing

times, with job 1 having the largest processing time, the set of jobs belonging to rank r are

the following: (r − 1)m+ 1, (r − 1)m+ 2, · · · , (r − 1)m+m. Coffman and Sethi (1976a) propose

two approximation algorithms for the FM problem. In the LI algorithm, ranks are assigned in

decreasing order, starting with the rank containing the m jobs with the smallest processing times.

In the LD algorithm, ranks are assigned in increasing order, starting with the rank containing

the m jobs with the largest processing times. Jobs with the same rank are assigned largest-first

onto distinct machines as they become available after executing the previous ranks. In the LD

algorithm, the sequence thus obtained must be reversed and all jobs in the last rank must be set

to the same starting time of zero to ensure that the schedule is flowtime-optimal. Coffman and

Sethi show that the LI algorithm has a makespan ratio (ratio of the makespan to the optimal

makespan) with a worst-case bound that is equal to (5m− 4)/(4m− 3).

Coffman and Sethi (1976a) conjecture that the LD algorithm

has a makespan ratio with a worst-case bound equal to

5m− 2

4m− 1
.

(1)

The next family of instances for the FM problem shows that the above conjectured ratio cannot

be improved for any m ≥ 2. For m ≥ 2, let n := 3m and consider

pj :=


0 for j ∈ {1, 2, . . . ,m− 1}
m for j = m

(j − 1) for j ∈ {m+ 1,m+ 2, . . . , 2m}
(j − 2) for j ∈ {2m+ 1, 2m+ 2, . . . , 3m}.

It is easy to verify that the ratio of the objective value of an LD schedule to the optimal objective

value is 5m−2
4m−1 .
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Note that the LD algorithm for the FM problem seems to be inspired by the widely-known LPT

algorithm for the problem Pm / / Cmax. Further note that even though the data set for both

scheduling problems Pm / / Cmax and FM are the same, there are many fundamental distinctions:

1. For the above family of instances, the LPT and the LD schedules are the same. Consider

the cases m = 2 and m = 3. As we prove in this paper, while LD schedules are the worst-possible

for the FM problem (attaining the approximation ratio 5m−2
4m−1), these are not the worst schedules

for LPT for Pm / / Cmax. (As is well-known, the worst-case approximation ratio for LPT for

the problem Pm / / Cmax is 4
3 −

1
3m). Therefore, even when the LD and LPT schedules are

the same for a given instance and the LD schedule exhibits the worst possible performance for

the FM problem, the same instance may not be a worst-case instance for LPT for the problem

Pm / / Cmax.

2. Consider now a well-known instance for m = 2. Let the processing times be 3, 3, 2, 2, 2, 0.

This is the worst-case instance for LPT for the problem Pm / / Cmax. For this instance, the LPT

and LD schedules are the same. While the LPT schedule has the worst possible approximation

ratio of 7
6 for the problem Pm / / Cmax, the LD schedule, and hence the LPT schedule, is optimal

for the FM problem for this instance. Indeed, the worst-case instance for LD for the FM problem,

in the two machine case, is given by a different instance, with the processing times 4, 3, 3, 2, 2, 0.

3. Finally, consider the instance with processing times 29, 5, 5, 4, 4, 3, 3, 2, 2, 1 with m = 2. The

LPT schedule leads to a makespan of 29 and is optimal for the problem Pm / / Cmax. However,

this LPT schedule is not flowtime-optimal and hence is not feasible for the FM problem. The LD

schedule (putting jobs J10, J8, J6, J4, J1 on one machine and the jobs J9, J7, J5, J3, J2 on the other

machine) has a makespan of 39 and is optimal for the FM problem.

Our approach in obtaining a proof of Coffman and Sethi’s conjectured bound is to identify

properties of a hypothesized minimal counterexample to the conjecture. We utilize three tech-

niques:

1. We show that there always exists a minimal counterexample with integer processing times

(even if we allow irrational data).

2. Using integrality of the data and the other properties of the minimal counterexamples, we

construct “smaller” problem instances by subtracting nonnegative integers from the number of

machines, the number of jobs, or the integer-valued processing times. For each such problem

instance, we can write a constraint that expresses the fact that the makespan ratio cannot exceed
5m−2
4m−1 . We then prove that minimal counterexamples must have a very small number of ranks.

3.The final stage of the proof is to verify that none of these small instances (with a small num-

ber of ranks) can be counterexamples. To establish this last bit, we introduce another approach

which is to treat processing times of jobs as unknown variables and show how to set up the case

analysis with a set of finitely many LP problems. By solving these finitely many LP problems,

whose optimal objective function values can be certified (and easily verified) using primal and

dual optimal solutions, we verify the conjecture for these small instances. Our approach is based

on general techniques and may be applicable to other combinatorial optimization problems.

The rest of this paper is organized as follows. Section 2 contains a description of the LD

algorithm. In Section 3, the notion of minimality that is used in this paper is defined. In

Section 4, we discuss an LP-based approach that treats problem parameters as variables. We use
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this approach to prove that the Coffman-Sethi conjecture holds for problem instances with two

machines and for problem instances with three machines and three ranks (this latter fact also

becomes a corollary of a theorem in Section 5 and hence has two independent proofs). In Section

5, we derive several properties of a hypothesized minimal counterexample to the Coffman-Sethi

conjecture. These include an upper bound on the number of ranks. Section 6 contains concluding

remarks and outlines possible extensions and directions for future research.

2. LD Algorithm for Problem FM

Let pj denote the processing time of job j, where the jobs are numbered in nonincreasing order

of processing times. Thus, pj ≥ pj+1. The set of jobs belonging to rank r are the following:

(r − 1)m+ 1, (r − 1)m+ 2, · · · , (r − 1)m+m.

A schedule in which all rank (r + 1) jobs are started before all rank r jobs (where r ∈
{1, 2, · · · , (n/m)− 1}) is said to satisfy the rank restriction or rank constraint. A schedule which

satisfies the rank constraint and in which no idle time exists between successive jobs assigned to

the same machine and all rank n/m jobs start at time 0, is termed a flowtime-optimal schedule.

Let λr and µr denote the largest and smallest processing times respectively, in rank r. Note that

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ λk−1 ≥ µk−1 ≥ λk ≥ µk ≥ 0,(2)

where, k := d nme. The profile of a schedule after rank r is defined as the sorted set of completion

times on m machines after rank r. If the jobs in r ranks (out of a total of k) have been assigned

to machines, and if the jobs in the remaining ranks have not yet been assigned to machines, the

profile after rank r is termed the current profile. We let a(r) ∈ Rm : a1(r) ≥ a2(r) ≥ · · · ≥ am(r)

denote the current profile. Note that ai(`) is the ith largest completion time after rank `.

The LD algorithm (Coffman and Sethi, 1976a) starts with rank 1, the rank containing the

m jobs with the largest processing times, and works its way through ranks 1, 2, . . . , k − 1, k.

The sequence of jobs on each machine is then reversed to make it a flowtime-optimal schedule.

The algorithm works as follows: Schedule the ranks in the following order: 1, 2, . . . , k − 1, k. Let

a ∈ Rm: a1 ≥ a2 ≥ · · · ≥ am denote the current profile. Schedule the jobs in the next rank so

that the job with the largest processing time is matched with am, second largest with am−1, etc.,

and the smallest processing time is matched with a1. After all the jobs are scheduled, reverse the

schedule and left-justify it (i.e., start the first job on each machine at time zero).

3. A definition of minimality, and preliminaries

3.1. A definition of minimality. If an instance of the FM problem with m machines and k

ranks has fewer than mk jobs, increasing the number of jobs to mk by including up to m − 1

jobs with zero processing time does not result in any change in the total flowtime or the optimal

makespan or the makespan of an LD schedule, though it may change the set of jobs allocated to

each rank. From this observation, it follows that, for the purpose of proving/disproving conjectures

regarding worst-case makespan ratios for algorithms for the problem FM, only problem instances

with mk jobs need to be considered. Thus, we assume the property

(Property.1) n = mk.
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We define the ordered set of processing times P for a scheduling problem instance with m

machines and k ranks to consist of elements equal to the processing times of these mk jobs

arranged in nonincreasing order. We let P (j) refer to the jth element of P . Thus, P (j) ≥ P (j+1)

for j ∈ {1, . . . ,mk − 1}.
For the problem of characterizing minimal counterexamples to the Coffman-Sethi conjecture,

minimality will be defined based on the following criteria: the number of machines, the number

of ranks, and the set of processing times. A minimal counterexample is defined to be a counterex-

ample with k ranks, m machines, and a set of processing times P1 for which there does not exist

another counterexample with one of the following (in a hierarchical order):

(i) number of ranks fewer than k

(ii) number of ranks equal to k and number of machines fewer than m

(iii) k ranks, m machines, and fewer jobs with nonzero processing times

(iv) k ranks, m machines, the same number of jobs with nonzero processsing times, and a worse

approximation ratio

(v) [only for integer data] k ranks, m machines, the same number of jobs with nonzero processing

times, the same approximation ratio, and a set of processing times P2 satisfying∑n
j=1 P2(j) <

∑n
j=1 P1(j).

In the latter parts of the paper, we will restrict our attention purely to integer data. There,

we will use the minimality criterion (v). Note that due to integrality of the processing times, we

will have a normalization of the data (the smallest nonzero processing time is at least 1).

We may assume that in a minimal counterexample,

(Property.2) µr = λr+1, ∀r ∈ {1, 2, . . . , k − 1} and µk = 0.

If the above property fails, then either µk > 0 (in this case, we subtract µk from the processing

time of every job in rank k, the new instance is also a counterexample to the conjecture with the

same number of machines, ranks and fewer jobs with nonzero processing times, a contradiction to

the minimality of the original instance) or there exists r ∈ {1, 2, . . . , k−1} such that µr > λr+1 (in

this case, we subtract (µr − λr+1) from the processing time of every job in rank r, the new instance

is also a counterexample to the conjecture with the same number of machines, ranks, the number

of jobs with nonzero processing times, and with a worse approximation ratio, a contradiction to

the minimality of the original instance).

3.2. Some preliminary results. Next two results follow from classical work in the area.

Proposition 1. The Coffman-Sethi conjecture holds for every m and n such that n ≤ 2m.

Proposition 1 can be proven using Graham’s (1969) original analysis of LPT list scheduling. A

rectangular optimal schedule is a feasible schedule in which the last job on every machine has the

same completion time
∑n

j=1 pj
m .

Lemma 1. (Coffman and Sethi, 1976a) There always exists a problem instance with a worst-case

tLD/t
∗ ratio and with a rectangular optimal schedule.
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4. A Linear Programming based approach

We present an approach which may be utilized to prove or disprove any conjecture about a

bound on the ratio of the solution generated by an approximation algorithm to the optimal solution

for a maximization problem. In this approach, the parameters of the problem are treated as

variables. The problem of maximizing the ratio is formulated as an LP problem. If bounds can be

obtained on the size of the problem, only a finite number of LPs need to be examined. Indeed, the

optimal objective value of each LP problem can be verified by checking the optimality conditions

for the given pair of optimal solutions to the primal and the dual problem at hand (independent

of the computations that led to these optimal solutions). In this section, this approach is used to

show that the Coffman-Sethi conjecture is valid for the m = 2 and the m = 3, k = 3 cases, where

m denotes the number of machines and k denotes the number of ranks. In subsequent sections,

bounds are obtained on the number of ranks. In principle, this LP-based approach can be used

to obtain a computer-based proof of the conjecture or a minimal counterexample for any finite

number of machines.

Lemma 2. If the Coffman-Sethi conjecture is false for m = 2 then there exists a minimal coun-

terexample with two machines and three ranks.

Proof. Suppose that the Coffman-Sethi conjecture is false. Take a minimal counterexample to

the conjecture. Then, by (Property.2), in rank k, one of the two machines has a processing time

of λk and the other machine has a processing time of 0. Clearly, the makespan is equal to the

completion time after rank k on the machine with a processing time of λk. (If this is not the case,

the last rank could be deleted to obtain a problem instance with the same or larger makespan

ratio, contradicting the minimality of the original instance.) It follows that both completion times

on the two machines after rank (k − 1) in the LD schedule are at least (tLD − λk). This implies

t∗ ≥ tLD − λk + λk/2. In a counterexample, tLD/t
∗ > 8/7. Hence,

t∗ < 7λk/2.(3)

Clearly, µ` ≥ λk for ` ∈ {1, 2, . . . , k − 1}. Thus, t∗ ≥ kλk which together with (3) yields k ≤ 3.

Note that for k = 1 and k = 2, the LD schedule is optimal. Therefore, the claim follows. �

The following approach treats the data of problem FM (job processing times) as variables. For

a given value of the optimal makespan, the problem of determining the values of the processing

times that result in the LD makespan being maximized is set up as a set of LP problems. Each

possible relationship between the processing times (subject to the rank restriction) results in a

different LP. The solution to each LP is checked to determine if it violates the Coffman-Sethi

conjecture. Note that a major advantage of LP formulations is that the optimal objective values

can be verified independent of the original computations, by a much simpler computational step

(to check feasibility of primal and dual solutions and then a comparison of their objective values).

Proposition 2. The Coffman-Sethi conjecture holds for m = 2.

Proof. By Lemma 2, we only need to consider the k = 3 case. For a contradiction, suppose the

conjecture is false. Then, there exists a minimal counterexample to the conjecture. Moreover,



8 PERUVEMBA SUNDARAM RAVI, LEVENT TUNÇEL, MICHAEL HUANG

using (Property.2), we may assume that a minimal counterexample has the processing times:

λ1, λ2, λ2, λ3, λ3, 0. Then, it suffices to consider only two LD schedules:

• LD schedule 1: Jobs with processing times λ1, λ3, 0 on machine 1, jobs with processing

times λ2, λ2, λ3 on machine 2.

• LD schedule 2: Jobs with processing times λ1, λ3, λ3 on machine 1, jobs with processing

times λ2, λ2, 0 on machine 2.

For a makespan ratio > 1, the second and third ranks must not be the same in the LD schedule

and the optimal schedule. There is only one possible optimal schedule: Jobs with processing

times λ1, λ2, 0 on machine 1, jobs with processing times λ2, λ3, λ3 on machine 2. In each of the

following cases, we set the optimal makespan equal to 1. The makespan ratio is then equal to

the LD makespan. We seek to maximize the LD makespan in each case. There are four possible

values for the LD makespan, resulting in the following four cases.

Case 1: tLD = λ1 + λ3. This will be true only if λ1 ≥ 2λ2. So, λ1 ≥ 2λ3, and we deduce

t∗ = λ1 + λ2. This is clearly not possible.

Case 2: tLD = 2λ2 + λ3. This will be true only if λ1 ≤ 2λ2 and λ1 + λ3 ≥ 2λ2.

Case 2A: λ1 ≤ 2λ3. So, t∗ = λ2 + 2λ3. Consider the LP problem

max {2λ2 + λ3 : λ1 ≤ 2λ3, λ2 + 2λ3 = 1, 2λ2 ≤ λ1 + λ3} .

This LP can be simplified as follows:

max {2λ2 + λ3 : 2λ2 ≤ 3λ3, λ2 + 2λ3 = 1} .

An optimal solution is λ2 = 3/7, λ3 = 2/7, with objective function value 8/7 and a dual optimal

solution [3/7, 8/7].

Case 2B: λ1 ≥ 2λ3. Thus, t∗ = λ1 + λ2. Consider the LP problem

max {2λ2 + λ3 : λ1 + λ2 = 1, λ1 ≥ 2λ3, λ1 ≤ 2λ2, 2λ2 ≤ λ1 + λ3} .

This LP can be simplified as follows:

max {2λ2 + λ3 : λ2 ≥ 1/3, λ2 + 2λ3 ≤ 1, 3λ2 ≤ 1 + λ3} .

An optimal solution is λ2 = 3/7, λ3 = 2/7, with the objective function value 8/7 and a dual

optimal solution [5/7, 3/7].

Case 3: tLD = λ1 + 2λ3. This will be true only if λ1 + λ3 ≤ 2λ2 and λ1 + 2λ3 ≥ 2λ2.

Case 3A: λ1 ≤ 2λ3. In this case, we have t∗ = λ2 + 2λ3. Consider the LP problem:

max {λ1 + 2λ3 : λ1 + λ3 ≤ 2λ2, λ1 + 2λ3 ≥ 2λ2, λ2 + 2λ3 = 1, λ1 ≤ 2λ3} .

The constraints of the above LP problem can be replaced by the following equivalent set of

constraints:

λ1 + 5λ3 ≤ 2, λ1 + 6λ3 ≥ 2, λ1 ≤ 2λ3.

An optimal solution is λ1 = 4/7, λ2 = 3/7, λ3 = 2/7, with objective function value 8/7 and a dual

optimal solution [4/7, 3/7].

Case 3B: λ1 ≥ 2λ3. Thus, t∗ = λ1 + λ2. Consider the LP problem

max {λ1 + 2λ3 : λ1 + λ2 = 1, λ1 ≥ 2λ3, λ1 + λ3 ≤ 2λ2, λ1 + 2λ3 ≥ 2λ2} .
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This LP problem can be simplified as follows:

max {λ1 + 2λ3 : λ1 ≥ 2λ3, 3λ1 + λ3 ≤ 2, 3λ1 + 2λ3 ≥ 2} .

An optimal solution is λ1 = 4/7, λ2 = 3/7, λ3 = 2/7, with the objective function value 8/7 and a

dual optimal solution [5/7, 4/7].

Case 4: tLD = 2λ2. This will be true only if 2λ2 ≥ λ1 + 2λ3.

Case 4A: λ1 ≤ 2λ3. Hence, t∗ = λ2 + 2λ3. Consider the LP problem

max {2λ2 : λ1 ≤ 2λ3, λ2 + 2λ3 = 1, 2λ2 ≥ λ1 + 2λ3} .

The constraints of the above LP problem can be replaced by the following equivalent set of

constraints:

λ1 + λ2 ≤ 1, −λ1 + 3λ2 ≥ 1.

An optimal solution is λ1 = 1/2, λ2 = 1/2, λ3 = 1/4, with the objective function value 1 and a

dual optimal solution [1/2,−1/2].

Case 4B: λ1 ≥ 2λ3. Then, t∗ = λ1 + λ2. Consider the LP problem

max {2λ2 : λ1 + λ2 = 1, λ1 ≥ 2λ3, λ1 + 2λ3 ≤ 2λ2} .

This LP problem can be simplified as follows:

max {2λ2 : λ2 ≥ λ3, 2λ3 + λ2 ≤ 1, −2λ3 + 3λ2 ≥ 1} .

An optimal solution is λ1 = 1/2, λ2 = 1/2, λ3 = 1/4, with the objective function value 1 and a

dual optimal solution [1/2,−1/2].

We conclude that, in all cases, the ratio of the makespan of every LD schedule is at most

8/7 times the optimum makespan. This is a contradiction to the existence of a counterexample.

Thus, the Coffman-Sethi conjecture holds for m = 2, and k = 3. Therefore, by Lemma 2, the

Coffman-Sethi conjecture holds for m = 2. �

Using the same technique as in the proof of Proposition 2 we can prove the conjecture for m = 3

and k = 3. A proof of the next proposition is provided in the appendix.

Proposition 3. The Coffman-Sethi conjecture holds for the m = 3, k = 3 case.

5. Properties of minimal counterexamples and their analysis

5.1. Properties of minimal counterexamples. Most scheduling problems are considered in

the context of the Turing machine model of computation and, as a result, the data are assumed to

be drawn from the rationals. In our problem FM, this would mean that pj ∈ Q,∀j ∈ {1, 2, . . . , n}.
Even if irrational data is permitted, a counterexample to a conjectured makespan ratio with irra-

tional processing times could exist only if there existed a counterexample with rational processing

times. For the details and a proof of the following result, see Ravi (2010).

Proposition 4. For the FM problem and the LD algorithm, the following must hold: If there

exists a counterexample E to a conjectured tLD/t
∗ ratio, then there exists a counterexample EI

with integer processing times.
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Moreover, if the conjecture is false, there must exist a counterexample with integer processing

times and a rectangular optimal schedule. Therefore, we define two types of problem instances,

counterexamples and minimal counterexamples to the Coffman-Sethi conjecture:

• A problem instance of Type I is one with integer processing times.

• A problem instance of Type IR is one with integer processing times and a rectangular

optimal schedule.

A counterexample of a particular type (I or IR) is a problem instance of that type that violates

the Coffman-Sethi conjecture. A minimal counterexample of a particular type is a counterexample

of that type for which there does not exist a smaller counterexample (based on the notion of

minimality defined in Section 3.1) of the same type. In the remaining part of this paper, we will

assume that all problem instances and hypothesized counterexamples are of Type I.

The following lemma examines the effect of an increase in processing times in a given rank

subject to the rank constraint. An increase in processing times that is subject to the rank

constraint is an increase that is not large enough to result in a job being reassigned to another

rank. Note that, for the first rank, no increase in processing times can result in a job being

reassigned to another rank.

Lemma 3. An increase in one or more processing times of jobs in rank r for r ∈ {1, 2, . . . , k−1}
with no change in the remaining processing times, and subject to the rank constraint, does not

result in a reduction in any element of the profile b(`) of an LD schedule after rank ` ∈ {r, r +

1, . . . , k}.

Proof. We proceed by induction on `. Let us assume that the lemma holds for `′ ranks, where

`′ ∈ {r, r + 1, . . . , s}. Let τi,h refer to the ith largest processing time in rank h. The induction

hypothesis states that an increase in processing times in rank r does not cause a reduction in

bm−i+1(`′) for i ∈ {1, 2, . . . ,m}. Note that the increase in processing times in rank r leaves τi,`′+1

unchanged for i ∈ {1, 2, . . . ,m}. The profile b(`′ + 1) after rank `′ + 1 consists of the following m

elements: [
bm−i+1(`′) + τi,`′+1

]
for i ∈ {1, 2, . . . ,m}.

It follows that none of the elements of the profile b(`′+ 1) gets reduced as a result of the increase

in processing times in rank r. Thus, the theorem holds for rank `′ + 1, for `′ ∈ {r, r + 1, . . . , s}.
The base case follows from the fact that the result holds trivially for `′ = r. �

For problem instances of Type I, an optimal schedule that is not rectangular can be made

rectangular by increasing the lengths of all jobs in the first rank that are performed on machines

that have a completion time after the last rank that is strictly less than the makespan. For

example, consider a set of 9 jobs assigned to 3 machines. The processing times are as follows:

1, 4, 5, 5, 6, 7, 7, 8, 9. An optimal schedule for this instance of the FM problem is given in Figure

1. The completion times on the three machines are 17, 17, and 18 respectively. Adding 1 unit to

the processing times of the jobs in the first rank of machines 1 and 2 would convert this schedule

to a rectangular schedule with a completion time of 18 on every machine (see Figure 2).

Lemma 4. There always exists a problem instance of Type I with a worst-case tLD/t
∗ ratio and

with a rectangular optimal schedule.
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Machine 1 J1 J6 J9

Machine 2 J2 J4 J8

Machine 3 J3 J5 J7

Figure 1. An optimal schedule

Machine 1 J1 J6 J9

Machine 2 J2 J4 J8

Machine 3 J3 J5 J7

Figure 2. Optimal schedule made rectangular, with the same makespan

Note that Coffman and Sethi (1976a) state this result for problem instances with processing

times that are not required to be integers. Also note that, if the Coffman-Sethi conjecture is false,

a problem instance with a worst-case tLD/t
∗ ratio would be a counterexample to the conjecture.

This leads to the following corollary.

Corollary 1. If the Coffman-Sethi conjecture is false, then there exists a minimal counterexample

to the conjecture of Type IR.

Proof. Follows from Proposition 4 and the proof of Lemma 4. �

5.2. Results based on Type I and Type IR.

Theorem 1. If the Coffman-Sethi conjecture is false, then every minimal counterexample to the

conjecture of Type IR or I satisfies
tLD
t∗

<
k

k − 1
.

Proof. Proof for minimal counterexamples of Type IR:

Suppose that the Coffman-Sethi conjecture is false. Among all counterexamples of Type IR, con-

sider a minimal counterexample P1. Now, we apply the following two-step process:

Step 1: Reduce each nonzero processing time by 1 to construct a new problem instance P2.

Clearly, the assignment of jobs in each rank to machines can be kept unchanged for the new LD

schedule. The schedule that was originally an optimal rectangular schedule for P1 will not be

rectangular, but will be optimal for P2 after the reduction in processing times. In the modified

schedule, there are only (k− 1) jobs assigned to the one or more machines with a zero processing

time job in the last rank. This implies that the new optimal makespan is equal to [t∗ − (k − 1)].

Step 2: For every job in rank 1 of the optimal schedule for P2 that is processed on a machine

with a completion time after rank k that is less than the makespan, increase the processing time
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so that the completion time after rank k becomes equal to the makespan. This produces a prob-

lem instance P2R of Type IR. P2R will have an optimal makespan that is equal to the optimal

makespan of P2. Utilizing Lemma 3, it follows that the LD makespan of P2R cannot be less than

the LD makespan of P2.

The optimal makespan of P2R is equal to [t∗ − (k − 1)]. For the LD schedule for P2R, there are

two possibilities: (i) tLD gets reduced to a value that is greater than or equal to [tLD − (k − 1)].

This results in a new problem instance of Type IR, with a makespan ratio that is at least

[tLD − (k − 1)] / [t∗ − (k − 1)] . This new ratio is larger than tLD/t
∗, thus contradicting the as-

sumption that the original problem instance was a minimal counterexample of Type IR. (ii) tLD

gets reduced to (tLD − k). This results in a new problem instance with a makespan ratio at least

[tLD − k] / [t∗ − (k − 1)] . The original problem instance P1 was a minimal counterexample of Type

IR. This implies that (tLD − k)/(t∗ − (k− 1)) is less than tLD/t
∗. Therefore, tLD/t

∗ < k/(k− 1).

Proof for minimal counterexamples of Type I:

Consider a minimal counterexample P1′ of Type I. Now reduce each nonzero processing time by

1 to construct a new problem instance P2′. The assignment of jobs in each rank to machines

can be kept unchanged for the new LD schedule and the new optimal schedule. The new optimal

makespan is less than or equal to t∗−(k−1). For the new LD schedule, there are two possibilities:

(i) tLD gets reduced to [tLD − (k − 1)]. This results in a new problem instance with a makespan

ratio that is at least [tLD − (k − 1)] / [t∗ − (k − 1)]. This new ratio is larger than tLD/t
∗, thus

contradicting the assumption that the original problem instance was a minimal counterexample

of Type I.

(ii) tLD gets reduced to tLD − k. This results in a new problem instance with a makespan ratio

that is at least [tLD − k] / [t∗ − (k − 1)]. The original problem instance P1′ was a minimal coun-

terexample of Type I. This implies that (tLD − k)/ [t∗ − (k − 1)] is less than tLD/t
∗. Therefore,

tLD/t
∗ < (k/(k − 1)). This completes the proof for minimal counterexamples of Type I. �

The next result follows directly from the above theorem and from Propositions 1, 2 and 3.

Corollary 2. The Coffman-Sethi conjecture is true, iff it is true for k ∈ {3, 4, 5, 6}. In particular,

• for m ≥ 4, settling the cases k ∈ {3, 4, 5} suffices;

• for m = 3, settling the cases k ∈ {4, 5, 6} suffices.

We define a minimal counterexample of Type IR1 as follows. If the Coffman-Sethi conjecture

is false, a minimal counterexample of Type IR1 is a minimal counterexample of Type IR that has

an LD schedule with the following property: Every machine with a completion time after rank k

equal to the makespan has a job with processing time equal to λk in rank k, where k denotes the

number of ranks.

Lemma 5. If the Coffman-Sethi conjecture is false, then there exists a minimal counterexam-

ple to the conjecture of Type IR1, and every minimal counterexample of Type IR is a minimal

counterexample of Type IR1.

Proof. Suppose the Coffman-Sethi conjecture is false. Then, by Corollary 1, a counterexample of

Type IR exists. Suppose, for a contradiction, that there exists a minimal counterexample P1 of

Type IR that is not Type IR1. Now, apply the following two-step process.
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Step 1: Construct a new problem instance P2 as follows. Subtract 1 time unit from the processing

time of every job in rank (k − 1). Also subtract 1 time unit from the processing time of every

job in rank k that has a processing time of λk. Note that, for a minimal counterexample, all

processing times in rank k are not equal, therefore there exist processing times in rank k that

are less than λk. Leave these processing times unchanged. Note that the assignment of jobs in

each rank to machines in an LD schedule remains unchanged. Thus, P2 has an LD schedule with

objective value (tLD−1), where tLD is the objective value of the LD schedule for P1. Let t∗ denote

the optimal makespan of problem instance P1. Problem instance P1 had an optimal rectangular

schedule. Reducing the processing time of every job in rank (k − 1) by 1 leaves the rectangular

property unchanged and results in a reduction of 1 in the optimal makespan. A further reduction

of 1 in one or more, but not all, jobs in rank k results in no further reduction in the optimal

makespan. Thus, problem P2 has an optimal makespan that is equal to (t∗ − 1).

Step 2: For every job in rank 1 of the optimal schedule for P2 that is processed on a machine

with a completion time after rank k that is less than the makespan, increase the processing time

so that the completion time after rank k becomes equal to the makespan.

This produces a problem instance P2R of Type IR. By Lemma 3, the LD makespan of P2R

cannot be less than the LD makespan of P2. So, it is at least (tLD − 1). By construction, the

optimal makespan for P2R is equal to the optimal makespan of P2, (t∗ − 1). Thus, P2R gives a

strictly worse approximation ratio than P1, a contradiction to the minimality of P1. Therefore,

P1 (as well as any other minimal counterexample of Type IR) is a minimal counterexample of

Type IR1. �

5.3. Properties of Type I1 and Type I2 counterexamples. We define a problem instance,

a counterexample and a minimal counterexample of Type I1 as follows. A problem instance of

Type I1 is a problem instance of Type I that has an LD schedule with the following properties:

(i) It has only one machine i′ with a completion time after rank k equal to the makespan.

(ii) Machine i′ has a processing time equal to λk−1 in rank (k − 1) and λk in rank k.

We summarize the relationships among various types of counterexamples in Figure 3 (the arrows

in the figure indicate for instance that Type I1 is a further refinement of Type I) and Table 1.

Lemma 6. If the Coffman-Sethi conjecture is false, then there exists a minimal counterexample

to the conjecture of Type I1.

Proof. Suppose the Coffman-Sethi conjecture is false. Then, by Lemma 5, there exists a minimal

counterexample of Type IR1. Call this instance P1. Now, construct a new problem instance P2

as follows. Subtract 1 time unit from the processing time of every job in rank (k − 2). Also

subtract 1 time unit from the processing time of every job in rank (k − 1) that has a processing

time of λk−1. Note that, for a minimal counterexample, all processing times in rank (k − 1) are

not equal, therefore there exist processing times in rank (k − 1) that are less than λk−1. Leave

these processing times unchanged. Note that the assignment of jobs in each rank to machines

in the LD schedule remains unchanged, except possibly in rank k. Problem instance P1 had an

optimal rectangular schedule. Reducing the processing time of every job in rank (k−2) by 1 leaves

the rectangular property unchanged and results in a reduction of 1 in the optimal makespan. A

further reduction of 1 in one or more, but not all, jobs in rank (k−1) results in no further reduction
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Minimal counterexamples

Type I

Type IR Type I1

Type IR1 Type I2

Figure 3. Refinement relationships among the minimal counterexamples in terms

of required properties (note that by Lemma 5, the refinement relation between IR

and IR1 is symmetric)

in the optimal makespan. Thus, problem P2 has an optimal makespan equal to (t∗ − 1). The

new LD objective value is either (tLD−1) (if there is at least one machine whose completion time

originally equaled tLD and after the modification of the processing times, now equals (tLD − 1)

since in rank (k − 1) it had a job with processing time less than λk−1) or (tLD − 2) (if every

machine, with completion time equal to tLD for P1, had a job in rank (k − 1) with processing

time λk−1). We will show below that the former case cannot happen.

Now, construct a problem instance P2R of Type IR by adding 1 unit to the processing time

of every job in rank 1 that is performed on a machine with completion time after rank k in the

optimal schedule that is less than the makespan. The optimal makespan of P2R is equal to the

optimal makespan of P2, (t∗−1). Since P1 is a minimal counterexample of Type IR, using Lemma

3 and the above argument, we deduce that the makespan of the LD schedule for problem instance

P2R is (tLD − 2). Thus, in the LD schedule for P1, every machine with completion time equal

to tLD had a job in rank (k − 1) with processing time λk−1. By Lemma 5, every machine with

completion time equal to tLD has jobs with processing times λk−1 and λk in ranks (k − 1) and k

respectively. Pick one of these machines, call it i′.

Construct a new counterexample P3 as follows. In the LD schedule for P1, for every machine

i 6= i′ with a completion time after rank k equal to the makespan, delete the job in rank k. The

makespan and the set of jobs assigned to i′ in the LD schedule for P3 are the same as those in

the LD schedule for P1. The makespan of the optimal schedule for P3 is less than or equal to

the makespan of the optimal schedule for P1. However, the optimal schedule for P3 may not be

rectangular. P3 is clearly a counterexample to the conjecture of Type I1. It follows that there

exists a minimal counterexample to the conjecture of Type I1. �
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Type I: Integer data

IR: I + rectangular optimal schedule I1: I + LD schedule with

unique critical m/c i′ having

λk−1, λk in the last two ranks

IR1: IR + LD schedule with I2: I1 + m/c i′ having

all critical m/c’s having λ2, λ3, . . . , λk−1, λk

λk in the last rank in the last (k − 1) ranks

Table 1. Brief descriptions of various types of counterexamples

We define a problem instance, a counterexample and a minimal counterexample of Type I2

as follows. A problem instance of Type I2 is a problem instance of Type I1 with the following

property in an LD schedule: The machine i′ with a completion time equal to the makespan has

a processing time equal to λr in rank r for every r ∈ {2, 3, . . . , k}.

Lemma 7. If the Coffman-Sethi conjecture is false, then there exists a minimal counterexample

to the conjecture of Type I2.

Proof. Suppose that the Coffman-Sethi conjecture is false. We proceed by induction on the

number of ranks for which the claim holds. The base case is given by Lemma 6. The induction

hypothesis is that there exists a minimal counterexample P1 of Type I1 that has an LD schedule

with a machine i′ which has a processing time equal to λr in rank r for every r ∈ {h, h+1, . . . , k},
where h ≥ 3. If machine i′ has a job in rank (h− 1) with processing time λh−1 then we are done;

otherwise, construct P2 from P1 by subtracting 1 time unit from the processing time of every job

in rank (h− 2), and subtracting 1 time unit from the processing time of every job in rank (h− 1)

that has a processing time of λh−1. Leave the remaining processing times unchanged. Note that

either a new LD schedule assigns the same jobs to machine i′, or another machine i′′ which had

the same completion time as machine i′ after rank (h − 1) and a job with processing time λh−1

now has a completion time one less and has the jobs originally scheduled on machine i′ for ranks

r ∈ {h, h+ 1, . . . , k}. In the former case, P2 has a strictly worse approximation ratio than P1, a

contradiction. Therefore, we must be in the latter case. In the latter case, go back to instance

P1. After rank (h − 1), both machines i′ and i′′ have the same completion time. For the ranks

h, h+ 1, . . . , k, swap all jobs on the machines i′ and i′′. We still have an LD schedule for P1 with

makespan tLD; moreover, machine i′′ is the unique machine with completion time equal to the

makespan. Finally, the processing times on machine i′′ are λh−1, λh, λh+1, . . . , λk as desired. It

follows that there exists a minimal counterexample to the conjecture of Type I2. �

Lemma 8. If the Coffman-Sethi conjecture is false, in a minimal counterexample of Type I2, the

sole machine i′ with a completion time after rank k equal to the makespan in the LD schedule has

a processing time equal to µ1 in rank 1.

Proof. Suppose the Coffman-Sethi conjecture is false. Then, by the previous lemma, there exists

a minimal counterexample to the conjecture of Type I2, call it P1. If, in the LD schedule for P1,

there exists only one machine with a processing time equal to λr in rank r for r ∈ {2, 3, . . . , k}, the

lemma clearly holds. Assume that there exists a set of two or more machines with a processing time
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equal to λr in rank r ∈ {2, 3, . . . , k}. We may assume that machine i′ has a job with processing

time strictly greater than µ1 in rank 1. Then, there exists machine i′′ which has processing time

µ1 in rank one, then by the definition of the LD algorithm, machine i′′ must have the processing

times: µ1, λ2, λ3, . . . , λk respectively. We delete all the jobs on machine i′′ and delete the machine

i′′ to generate a new instance P2.

Note that the LD schedule for P2 is unchanged on machine i′ and all the other machines except

i′′. Therefore, tLD is unchanged. Next, we prove that the optimal makespan for P2 is no larger

than that for P1. Consider an optimal schedule for P1. A machine i1 has the jobs with processing

times µ1, q2, q3, . . . , qk respectively. Clearly, qr ≤ λr, for every r ∈ {2, 3, . . . , k}. If the equality

holds throughout, then we are done. Otherwise, for each r that the inequality is strict, we find

the job with processing time λr in rank r and swap it with qr. These operations may increase the

completion time on machine i1; however, they will not increase it on any other machine. At the

end, we delete machine i1 (now, with the processing times µ1, λ2, λ3, . . . , λk). What remains is a

feasible schedule for instance P2 whose makespan is at most the optimal makespan for P1.

We repeat the above procedure, until there exists only one machine in the LD schedule with a

processing time equal to λr in rank r ∈ {2, 3, . . . , k}. From the mechanics of the LD algorithm,

it follows that no other machine has a smaller processing time in rank 1. This completes the

proof. �

Lemma 9. If the Coffman-Sethi conjecture is false, then in the LD schedule for a minimal

counterexample of Type I2, the smallest completion time after rank k on any machine is at least

tLD − max
r∈{2,3,...,k}

{λr − µr}.

Proof. Suppose the Coffman-Sethi conjecture is false. Then, by Lemma 7, there exists a minimal

counterexample of Type I2. By Lemma 8, in a minimal counterexample of Type I2, the sole

machine i′ with a completion time after rank k equal to the makespan has a processing time equal

to µ1 in rank 1. For i ∈ {1, 2, . . . ,m}, i 6= i′, let ri denote the smallest value of r ∈ {1, 2, . . . , k},
for which the completion time after rank ri on machine i is less than the completion time after

rank ri on machine i′. By Lemma 7, it follows that there exists a value ri ≤ k for all i 6= i′.

Lemma 8 implies that ri ≥ 2. There are two possible cases:

(a) ri = k. In this case, the completion time after rank k on machine i is greater than or equal

to tLD − λk.
(b) ri < k. In this case, from the mechanics of the LD algorithm, it is evident that the processing

time of the job on machine i in rank (ri + 1) and all of the following ranks must be equal

to λr. Therefore, the completion time after rank k on machine i is greater than or equal to

tLD − (λri − µri).
This completes the proof of the lemma. �

Lemma 10. If the Coffman-Sethi conjecture is false, then in the LD schedule for any minimal

counterexample of Type I2, there exists at least one value of i′′ that satisfies i′′ 6= i′, for which the

completion time after rank (k − 1) on machine i′′ is greater than or equal to the completion time

after rank (k − 1) on machine i′, where i′ denotes the sole machine with a completion time after

rank k equal to the makespan.
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Proof. Assume that the claim of the lemma does not hold (we are seeking a contradiction).

Therefore, there exists a minimal counterexample of Type I2 for which every machine i 6= i′ has

a completion time after rank (k − 1) that is less than the completion time after rank (k − 1) on

machine i′. From the mechanics of the LD algorithm, it is evident that every machine i 6= i′ has a

processing time in rank k that is greater than or equal to the processing time of the job assigned

to machine i′ in rank k. Hence every machine has a job with processing time λk assigned to it in

rank k. Therefore, all jobs in rank k can be removed from the counterexample to obtain a smaller

counterexample of Type I2 with a larger tLD/t
∗ ratio. This contradicts the assumption that the

original counterexample was a minimal counterexample of Type I2. �

Lemma 11. If the Coffman-Sethi conjecture is false, then in the LD schedule for any minimal

counterexample of Type I2, there exists at least one value of i′′ that satisfies i′′ 6= i′, for which the

completion time after rank k on machine i′′ is less than the completion time after rank (k − 1)

on machine i′, where i′ denotes the sole machine with a completion time after rank k equal to the

makespan.

Proof. Assume that the claim of the lemma does not hold (we are seeking a contradiction) and

there exists a minimal counterexample of Type I2 for which every machine i 6= i′ has a completion

time after rank k that is greater than or equal to the completion time after rank (k−1) on machine

i′. A minimal counterexample must have at least 3 ranks. We first prove the lemma for the k ≥ 4

case and then prove the lemma for the k = 3 case. We have t∗ ≥ tLD − λk + λk
m . Supposing that

we have a counterexample, we deduce

t∗ >

(
5m− 2

4m− 1

)
t∗ −

(
m− 1

m

)
λk

t∗ <

(
4− 1

m

)
λk.(4)

For k ≥ 4, t∗ > 4λk, we reached a contradiction. This completes the proof of the lemma for k ≥ 4.

For k = 3, there exists at least one machine in the optimal schedule with a job with processing

time of λ3 in the third rank. Therefore,

t∗ ≥ µ1 + µ2 + λ3.

From the preceding lemmas, it follows that tLD = 2λ2 + λ3. For a counterexample, we must have

tLD
t∗

>
5m− 2

4m− 1
.

Therefore, using (Property.2), we have

2λ2 + λ3

λ2 + 2λ3
>

5m− 2

4m− 1
.

It follows that

λ2 >

(
2− 1

m

)
λ3.(5)

Utilizing the inequality t∗ ≥ tLD − λk + λk
m , and the fact tLD = 2λ2 + λ3, we deduce

t∗ ≥ (2λ2 + λ3)− λ3 +
λ3

m
.(6)
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From inequalities (5) and (6), it follows that

t∗ >

(
4− 1

m

)
λ3.(7)

From inequalities (4) and (7), we have a contradiction for k = 3. This completes the proof of the

lemma. �

5.4. Proofs for three ranks and three machines.

Theorem 2. The Coffman-Sethi conjecture holds for k equal to 3.

Proof. Suppose the statement of the theorem is false. Consider a minimal counterexample of

Type I2 with k = 3. Consider the LD schedule for this minimal counterexample. Let i′ denote

the sole machine with a completion time after rank k equal to the makespan. In the LD schedule,

let M1 denote the set of m1 machines with a completion time after rank (k − 1) that is greater

than or equal to the completion time after rank (k− 1) on machine i′. Note that set M1 includes

machine i′ and that machine i′ is the only machine in M1 with a processing time of λ3 in the

third rank. The remaining (m1 − 1) machines have no job assigned to them in the third rank.

From Lemma 10, it is evident that m1 ≥ 2. Let M2 denote the set of m2 := m−m1 machines

with a completion time after rank (k− 1) that is less than the completion time after rank (k− 1)

on machine i′. Every machine in M2 has a processing time of λ3 in the third rank. The total

number of machines with λ3 in the third rank is (m−m1 + 1).

From Lemma 11, it is evident that m2 ≥ 1. Select a machine i2 in the set M2 with a completion

time after rank k that is less than the completion time after rank (k − 1) on machine i′. Let α1

denote the processing time in rank 1 of machine i2 and let α2 denote the processing time in rank

2 of machine i2.

For any machine i1 in the set M1: Let β1 denote the processing time in rank 1 of machine i1 and

let β2 denote the processing time in rank 2 of machine i1. Note that β1 +β2 ≥ 2λ2 > α1 +α2 +λ3.

Two possible cases need to be considered.

Case 1: β1 ≤ α1. In this case, β2 ≥ 2λ2 − β1 > α1 + α2 + λ3 − β1. Hence,

β2 > α2 + λ3 ≥ µ2 + λ3. Therefore, β2 > 2λ3.

Case 2: β1 > α1. From the dynamics of the LD algorithm, β2 ≤ α2. In this case,

β1 ≥ 2λ2 − β2 > α1 + α2 + λ3 − β2, whence β1 > α1 + λ3 ≥ µ1 + λ3. Therefore, β1 > λ2 + λ3.

Now, it is evident that, in any schedule (including the optimal schedule), one of the following

must be true (recall that the total number of jobs with processing time λ3 in rank 3 is (m−m1+1)):

Case A: There exists a machine with a processing time of λ3 in rank 3 and a processing time greater

than 2λ3 in rank 2.

Case B: There exists a machine with a processing time of λ3 in rank 3 and a processing time

greater than (λ2 + λ3) in rank 1.

Case C: There exists a machine with a processing time greater than 2λ3 in rank 2 and a processing

time greater than (λ2 + λ3) in rank 1.

In Case A, the makespan must be greater than λ3 + 2λ3 + µ1.

In Case B, the makespan must be greater than [λ3 + µ2 + (λ2 + λ3)].

In Case C, the makespan must be greater than [2λ3 + (λ2 + λ3)].
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Thus, in all three cases, the makespan must be greater than (λ2+3λ3). Therefore, t∗ > λ2+3λ3.

By Lemma 8, tLD = 2λ2 + λ3. Thus, we have

5m− 2

4m− 1
<
tLD
t∗

<
2λ2 + λ3

λ2 + 3λ3
.

In a minimal counterexample of Type I2, m ≥ 3. We have

13

11
<

2λ2 + λ3

λ2 + 3λ3
.

Therefore,

λ2

λ3
>

28

9
.(8)

Also, note that, since t∗ > µ1 + λ2 + µ3, we have

13

11
<
tLD
t∗

<
2λ2 + λ3

µ1 + λ2 + µ3
.

Therefore,

λ2

λ3
<

11

4
.(9)

From inequalities (8) and (9), we obtain a contradiction. This completes the proof of the theorem.

�

Theorem 3. The Coffman-Sethi conjecture holds for m = 3.

Proof. Consider a minimal counterexample of Type I2 with m equal to 3. From Lemmas 10 and

11, it follows that, for this counterexample, the following statements hold for an LD schedule. (i)

There is one machine i′ with a completion time after rank k that is equal the makespan. (ii)There

is one machine i′′ with a completion time after rank k that is less than the makespan and a

completion time after rank (k− 1) that is greater than or equal to the completion time after rank

(k − 1) on machine i′. (iii) There is one machine i′′′ with a completion time after rank k that is

less than the completion time after rank (k − 1) on machine i′.

From the above given statements and from Lemma 9, it follows that

3t∗ ≥ tLD + (tLD − λk) +

(
tLD − max

r∈{2,3,...,k}
{λr − µr}

)
.(10)

Considering machine i′′′ , and Lemma 9, it is clear that

max
r∈{2,3,...,k}

{λr − µr} > λk.

Therefore,

max
r∈{2,3,...,k}

{λr − µr} = max
r∈{2,3,...,k−1}

{λr − µr} .

It follows that

max
r∈{2,3,...,k−1}

{λr − µr} ≤ λ2 − µk−1 = λ2 − λk.(11)

From (10) and (11), it follows that

3t∗ ≥ tLD + (tLD − λk) + [tLD − (λ2 − λk)] .(12)
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Therefore,

t∗ ≥ tLD −
λ2

3
.(13)

For a counterexample to the Coffman-Sethi conjecture with m equal to 3, we must have

tLD
t∗

>
13

11
.(14)

From inequalities (13) and (14), it follows that

t∗ <
11

6
λ2.(15)

For two or more ranks, t∗ must be at least equal to µ1 + λ2 or 2λ2. Therefore, inequality (15)

cannot hold and we have a contradiction. This completes the proof. �

Theorems 2 and 3 allow us to strengthen the previous corollary.

Corollary 3. The Coffman-Sethi conjecture is true, iff it is true for m ≥ 4 and for k ∈ {4, 5}.

6. Conclusion and Future Research

We studied the structure of potential minimal counterexamples to the Coffman-Sethi (1976)

conjecture and proved that to establish the correctness of the conjecture, it suffices to prove the

conjecture for m ≥ 4 and k ∈ {4, 5}. Moreover, for each m ≥ 4, these remaining cases k ∈ {4, 5}
can be verified by employing our approach from Section 4 and the Appendix, via solving a finite

number of LP problems.

As a by-product of our approach, we introduced various techniques to analyze worst-case per-

formance ratios. These techniques may be useful in analyzing the performance of approximation

algorithms for other scheduling problems, or in general, other combinatorial optimization prob-

lems of a similar nature.
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7. Appendix

7.1. Three-Machine Case. For r ∈ {1, 2, 3}, let λr, αr and µr denote the processing times in

rank r, where λr ≥ αr ≥ µr. Clearly, µ1 = λ2 and µ2 = λ3 and µ3 = 0 and either α3 = λ3 or

α3 = µ3 = 0.

The first two ranks of the LD schedule will look like λ1 λ3

α1 α2

λ2 λ2

 .
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The third rank will fit depending on the length of processing times on the first two ranks. We

will use case analysis to cover all possible LD schedules.

For all cases we will have λ1 ≥ α1 ≥ λ2 ≥ α2 ≥ λ3 > 0. This results in the following 5

constraints.
−λ1 +α1 ≤ 0 (1)

λ2 −α1 ≤ 0 (2)

−λ2 +α2 ≤ 0 (3)

λ3 −α2 ≤ 0 (4)

−λ3 ≤ 0 (5)

We begin by looking at the cases when α3 = λ3.

Consider the case λ1 + λ3 ≥ α1 + α2 ≥ 2λ2, then we have the constraints

−λ1 −λ3 +α1 +α2 ≤ 0 (6)

2λ2 −α1 −α2 ≤ 0 (7)

Further, the LD schedule will look like λ1 λ3 0

α1 α2 λ3

λ2 λ2 λ3


tLD = max(λ1 +λ3, α1 +α2 +λ3). If t∗ = λ1 +λ3, then t∗ is equal to a lower bound and tLD

t∗ = 1.

So, we may assume t∗ = α1 +α2 +λ3. Consider an optimal configuration for this problem. For the

third job, the machine with λ1 in the first rank must have a job in the third rank with processing

time 0, otherwise that machine will have processing time at least λ1 + 2λ3 ≥ α1 +α2 + λ3 = tLD.

Since the machine with λ1 in the frst rank has a job with processing time 0 in the last rank, the

machine with α1 in the first rank has a job with processing time λ3 in the third rank. In order

for t∗ to be less than tLD, the machine with α1 in the first rank must have a job with processing

time λ3 in the second rank as well. Thus, the optimal configuration must be either λ1 α2 0

α1 λ3 λ3

λ2 λ2 λ3

 or

 λ1 λ2 0

α1 λ3 λ3

λ2 α2 λ3

 .

We consider the case where the former is the optimal configuration. Suppose t∗ = λ1 + α2.

Then, we have λ1 + α2 ≥ α1 + 2λ3 and λ1 + α2 ≥ 2λ2 + λ3. This leads to two more constraints

−λ1 +2λ3 +α1 −α2 ≤ 0, (8)

−λ1 +2λ2 +λ3 −α2 ≤ 0. (9)

Since the processing times of the jobs can be scaled by any positive number (here, we are no

longer requiring integer or even rational processing times in the input data), we let t∗ = 1. We

add the constraint

λ1 + α2 ≤ 1. (10)

We now consider the linear program

max tLD = α1 + α2 + λ3

subject to: (1), (2), · · · , (10).
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The optimal objective value will give the worst-case ratio of tLD
t∗ for this particular case. Solving

the LP yields the optimal objective value 9
8 when [λ1, λ2, λ3, α1, α2] = 1

8 [5, 3, 2, 4, 3], with dual

optimal solution 1
8 [0, 0, 2, 0, 0, 3, 0, 5, 1, 9].

We now suppose t∗ = α1 + 2λ3. Constraints (8)–(10) are now replaced with

λ1 −2λ3 −α1 +α2 ≤ 0 (8′)

2λ2 −λ3 −α1 ≤ 0 (9′)

2λ3 +α1 ≤ 1. (10′)

This new LP also yields the optimal objective value 9
8 when [λ1, λ2, λ3, α1, α2] = 1

8 [5, 3, 2, 4, 3],

with dual optimal solution 1
8 [0, 0, 2, 0, 0, 3, 0, 3, 1, 9].

We now suppose t∗ = 2λ2 + λ3. Constraints (8)–(10) are replaced with

λ1 −2λ2 −λ3 +α2 ≤ 0 (8′′)

−2λ2 +λ3 +α1 ≤ 0 (9′′)

2λ2 +λ3 ≤ 1. (10′′)

Again the new LP yields the optimal objective value 9
8 when [λ1, λ2, λ3, α1, α2] = 1

8 [5, 3, 2, 4, 3],

with dual optimal solution 1
8 [0, 0, 2, 0, 0, 3, 0, 3, 5, 9].

We now consider the other possible configuration as the optimal configuration. We consider

each possibility for t∗ by modifying the constraints (8)–(10) to accommodate each t∗. For example,

when t∗ = λ1 + λ2, constraints (8) - (10) are replaced with

−λ1 −λ2 +2λ3 +α1 ≤ 0 (8′′′)

−λ1 +λ3 +α2 ≤ 0 (9′′′)

λ1 +λ2 ≤ 1. (10′′′)

For all three LPs for this configuration, the optimal objective value is 9
8 which is attained when

[λ1, λ2, λ3, α1, α2] = 1
8 [5, 3, 2, 4, 3], with dual optimal solution 1

8 [0, 0, 4, 0, 0, 3, 0, 5, 1, 9].

We have exhausted this case and now move to the case where λ1 + λ3 ≥ 2λ2 ≥ α1 + α2. We

modify the constraints (6) and (7) to reflect the inequalities related to this case. We continue in

this manner and set up and solve LP problems for every possible case for the 3-machine, 3-rank

problem. In every case, the makespan ratio is less than or equal to 13/11. This shows that the

Coffman-Sethi conjecture holds for the 3-machine, 3-rank problem. Further, an LD makespan of

13/11 is actually attained in some cases, thus showing, one more time, that the Coffman-Sethi

conjecture provides a tight bound for the 3-machine, 3-rank problem. If the size of a hypothesised

minimal counterexample to the Coffman-Sethi conjecture can be shown to satisfy m ≤ 3 and

k ≤ 3, then the above analysis would imply that the Coffman-Sethi conjecture holds for all

problem instances.


