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A UTILITY THEORY BASED INTERACTIVE APPROACH TO ROBUSTNESS
IN LINEAR OPTIMIZATION

MEHDI KARIMI, SOMAYEH MOAZENI, AND LEVENT TUNCEL

ABSTRACT. We treat uncertain linear programming problems by utilizing the notion of weighted an-
alytic centers and notions from the area of multi-criteria decision making. After introducing our
approach, we develop interactive cutting-plane algorithms for robust optimization, based on concave
and quasi-concave utility functions. In addition to practical advantages, due to the flexibility of our
approach, we are able to prove that under a theoretical framework due to Bertsimas and Sim [I4],
which establishes the existence of certain convex formulation of robust optimization problems, the
robust optimal solutions generated by our algorithms are at least as desirable to the decision maker
as any solution generated by many other robust optimization algorithms in the theoretical framework.
We present some probabilistic bounds for feasibility of robust solutions and evaluate our approach by
means of computational experiments.

1. INTRODUCTION

Optimization problems are widespread in real life decision making situations. However, data per-
turbations as well as uncertainty in at least part of the data are very difficult to avoid in practice.
Therefore, in most cases we have to deal with the reality that some aspects of the data of the optimiza-
tion problem at hand are uncertain. This uncertainty is caused by many sources such as forecasting,
or approximations in the design of mathematical models, or data approximation, or noise in mea-
surements. In order to handle optimization problems under uncertainty, several techniques have been
proposed. The most common, widely-known approaches are

e Sensitivity analysis: typically, the influence of data uncertainty is initially ignored, and then
the obtained solution is justified /analyzed based on the data perturbations [16].

e Chance constrained programming: we use some stochastic models of uncertain data to
replace the deterministic constraints by their probabilistic counterparts [44], G1, 22 B57]. It
is a natural way of converting the uncertain optimization problem into a deterministic one.
However, most of the time the result is a computationally intractable problem [6].
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e Stochastic programming: the goal is to find a solution that is feasible for all (or almost
all) possible instances of the data and to optimize the expectation of some function of the
decisions and the random variables [59].

e Robust optimization: robust optimization is the method that is most closely related to our
approach. Generally speaking, robust optimization can be applied to any optimization prob-
lem where the uncertain data can be separated from the problem’s structure. Having been
heavily studied for convex optimization problems [6l [63] @) 8 10, [7, [14], 151 13} 11l 50], robust
optimization is also applicable to discrete [67), 43} 2T] and more general nonconvex optimization
problems [6I]. Robustness can be achieved by solving the robust counterpart or utilizing other
unconventional methods such as simulated annealing algorithm [55]. Our focus in this paper is
on uncertain linear programming problems. Uncertainty in the data means that the exact val-
ues of the data are not known, at the time when the solution has to be determined. In robust
optimization framework, uncertainty in the data is described through uncertainty sets, which
contain all possible values that may be realized for the uncertain parameters. Generally speak-
ing, the distinction between robust optimization and stochastic programming is that robust
optimization does not require the specification of the exact distribution. Stochastic program-
ming performs well when the distributions of the uncertainties are exactly known, and robust
optimization can be very useful when there is little information about those distributions.

Since the interest in robust formulations was revived in the 1990s, many researchers have introduced
new formulations for robust optimization framework in linear programming and general convex pro-
gramming [63], 9, 8 10, [7, 14], 15, 13| [IT], 50]. Ben-Tal and Nemirovski [9, []] provided some of the first
formulations for robust LP with detailed mathematical analysis. Bertsimas and Sim [14] proposed an
approach that offers control on the degree of conservatism for every constraint as well as the objective
function. Bertsimas et al. [I1] characterize the robust counterpart of an LP problem with uncertainty
set described by an arbitrary norm. By choosing appropriate norms, they recover the formulations
proposed in the above papers [9, [8] [1T].

The goal of classical robust optimization is to find a solution that is capable to cope best of all
with all realizations of the data from a given (usually bounded) uncertainty set [6l [5]. By the classical
definition of robustness [0} 10 13} 24], a robust optimal solution is the solution of the following problem:

(1) max{inf(é,x):AxSB,Vl;EB,V/IGA},
z€R™ | ¢ceC

where C, A, and B are given uncertainty sets for ¢, A, and b, respectively. Throughout this paper, we
refer to the formulation of () as classical robust formulation.

1.1. Some drawbacks of robust optimization. Classical robust optimization is a powerful method
to deal with optimization problems with uncertain data, however, we can raise some criticisms. One of
the assumptions for robust optimization is that the uncertainty set must be precisely specified before
solving the problem. Even if the uncertainty is only in the right-hand-side, expecting the Decision
Maker (DM) to construct accurately an ellipsoid or even a hypercube for the uncertainty set may
not always be reasonable. Recently, a new approach has been proposed, called distributionally robust
optimization, that tries to cover the gap between robust optimization and stochastic programming
[27, 30, [60). In this approach, one seeks a solution that is feasible for the worst-case probability
distribution in a set of possible distributions. In a recent paper, Shapiro [60] studied distributionally
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robust stochastic programming in a scenario that the uncertainty set of probability measures is “close”
to a reference measure. It is mentioned in [30] and also emphasized in a plenary lecture by Kuhn in
ISMP2015 that, in real life applications, determining uncertainty sets precisely or determining safe
operation probabilities accurately is at least very challenging.

Another main criticism of classical robust optimization is that satisfying all of the constraints, if
not make the problem infeasible, may lead to an objective value very far from the optimal value of the
nominal problem. This issue is more critical for large deviations. As an example, [8, 46] considered
some of the problems in the NETLIB library (under reasonable assumptions on uncertainty of certain
entries) and showed that classical robust counterparts of most of the problems in NETLIB become
infeasible for a small perturbation. Moreover, in many other problems, objective value of the classical
robust optimal solution is very low and may be unsatisfactory for the decision maker.

Several modifications of classical robust optimization have been introduced to deal with this issue.
One, for example, is globalized robust conterparts introduced in Section 3 of [6]. The idea is to consider
some constraints as “soft” whose violation can be tolerated to some degree. In this method, we take
care of what happens when the data leaves the nominal uncertainty set. In other words, we have
“controlled deterioration” of the constraint. These modified approaches have more flexibility than the
classical robust methodology, but we have the problem that the modified robust counterpart of uncer-
tain problems may become computationally intractable. Although the modified robust optimization
framework rectifies this drawback to some extent, it intensifies the first criticism by putting more
pressure on the DM to specify deterministic uncertainty sets before solving the problem.

Another criticism of classical robust optimization is that it gives the same “weight” to all the
constraints. In practice, this is not the case as some constraints may be more important for the DM.
There are some options in classical robust optimization like changing the uncertainty set which again
intensifies the first criticism. We will see that our approach can alleviate these difficulties.

1.2. Contributions and overview of this paper. We present a framework which allows a fine-
tuning of the classical tradeoff between robustness and conservativeness by the DM and engages DM
continuously and in a more effective way throughout the optimization process. Under a suitable
theoretical modeling setup, we prove that the classical robust optimization approach is a special case
of our framework. We demonstrate that it is possible to efficiently perform optimization under this
framework and finally, we illustrate some of our methods in our computational experiments.

One of the main contributions of this paper is the development of cutting-plane algorithms for
robust optimization using the notion of weighted analytic centers in a small dimensional weight-space.
We also design algorithms in the slack variable space as a theoretical stepping stone towards the more
applicable and more efficient weight-space cutting-plane algorithms. Ultimately, we are proposing
that our approach be used in practice with a small number (say somewhere in the order of 1 to 20) of
driving factors that really matter to the DM. These driving factors are independent of the number of
variables and constraints, and determine the dimension of the weight space (for interaction with the
DM). Working in a low dimensional weight-space not only simplifies the interaction for the DM, but
also makes our cutting-plane algorithms more efficient.

The notion of moving across a weight space has been widely used in the area of multi-criteria
decision making: when we have several competing objective functions to optimize, a natural approach
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is to optimize a weighted sum of them [35], [32]. Authors in [35] presented an algorithm for evaluating
and ranking items with multiple attributes. [35] is related to our work as the proposed algorithm
is a cutting-plane one. However, our algorithm uses the concept of weighted analytic center which
is completely different. Authors in [32] proposed a family of models (denoted by McRow) for multi-
expert multi-criteria decision making. Their work is close to ours as they derived compact formulations
of the McRow model by assuming some structure for the weight region, such as polyhedral or conic
descriptions. Our work also has fundamental differences with [32]: cutting-plane algorithms in the
weight-space find a weight vector w in a fixed weight region (the unit simplex) such that the weighted
analytic center of w, say x(w), is the desired solution for the DM. The algorithms we design in this
paper make it possible to implement the ideas we mentioned above to help overcome some of the
difficulties for robust optimization to reach a broader, practicing user base. For some further details
and related discussion, also see Moazeni [46] and Karimi [37].

We introduce our formulation and the notations we use in the paper in Section 2 In Section [3] we
explain our approach and prove that, under a theoretical framework due to Bertsimas and Sim [14],
our approach is as least as strong as classical robust optimization. In this section, we also introduce the
notion of weighted analytic centers. In Section dl we design the cutting-plane algorithms, and explain
some practical uses of our approach. Some preliminary computational results are presented in Section
Bl In Section [B] we briefly talk about the extension of the approach to semidefinite programming and
quasi-concave utility functions, and then conclude the paper.

2. FORMULATION, NOTATIONS, AND ASSUMPTIONS

Before introducing our approach in the next section, let us first explain some of the assumptions
and notations we are going to use. Much of the prior work on robust linear programming addresses
the uncertainty through the coefficient matrix. Bertsimas and Sim [I5] considered linear programming
problems in which all data except the right-hand-side (RHS) vector is uncertain. In [I0] @, [13], it is
assumed that the uncertainty affects the coefficient matrix and the RHS vector. Some papers deal
with uncertainty only in the coefficient matrix [8, 14} IT]. Optimization problems in which all of the
data in the objective function, RHS vector and the coefficient matrix are subject to uncertainty, have
been considered in [7]. As we explain in Section Bl the nominal data and a rough outer approximation
of the uncertainty set are enough for our approach. However, the structure of uncertainty region is
useful for the probability analysis. In this paper, we deal with the general setup that any part of
the data (A,b,c) may be subject to uncertainty; however, we handle the uncertainty in A and ¢ by
first pushing the objective function into the constraints, then in the new formulation (without an
objective function), by pushing all uncertainty into the RHS. Moreover, in at least some applications,
the amount of uncertainty in A is limited whereas the uncertainty in the RHS and the objective
function vectors may be very significant. Some of the supporting arguments for this viewpoint are:

(1) Instead of specifying uncertainty for each local variable, we can handle the uncertainties by
lumping them into some global variables. These global variables can be, for example, the whole
budget, human resources, availability of certain critical raw materials, government quotas, etc.
It may be easier for the DM to specify the uncertainty set for these global variables. Then,
we can approximate the uncertainty in the coefficient matrix with the uncertainty in the RHS
and the objective function. In other words, we may fix the coefficient matrix on one of the
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samples from the uncertainty set and then handle the uncertainty by introducing uncertainty
to the RHS vector as in [12].

A certain coefficient matrix is typical for many real world problems. In many applications
of planning and network design problems such as scheduling, manufacturing, electric utilities,
telecommunications, inventory management and transportation, uncertainty might only affect
costs (coefficients of the objective function) and demands (the RHS vector)[49], 56, [45]. Trans-
portation systems: in some problems, the nodes and the arcs are fixed. However, the cost
associated to each arc is not known precisely. Traffic assignment problems: in most models,
we may assume that the drivers have perfect information about the arcs and nodes. However,
their route choice behavior makes the travelling time uncertain. Distribution systems: in
some applications, the locations of warehouses and their capacities (in inventory planning and
distribution problems) are well-known and fixed for the DM. However, the size of orders and
the demand rate for an item could translate to an uncertain RHS vector. Holding costs, set up
costs and shortage costs, which affect the optimal inventory cost, are also typically uncertain.
These affect at least the objective function. Medical/health applications: in these appli-
cations (see for instance, [20} [I7] 62, 19]) the DM may be a group of people (including medical
doctors and a patient) who are more comfortable with a few, say 4-20, driving factors which
may be more easily handled by the mathematical model, if these factors could be represented
as uncertain RHS values.

In the aforementioned applications, well-understood existing resources, reliable structures
(well-established street and road networks, warehouses, and machines which are not going to
change), and logical components of the formulation are translated into a certain coefficient
matrix. The data in the objective function and the RHS vector are usually estimated by
statistical techniques by the DM, or affected by uncertain elements such as institutional, social,
or economic market conditions. Therefore, determining these coefficients with precision is often
difficult or practically impossible. Hence, considering uncertainty in the objective function and
the RHS vector seems to be very applicable, and motivates us to consider such formulation in
LP problems separately.

Uncertainty when restricted to the RHS and the objective function is easier to handle mathe-
matically, in probabilistic analyses as well as in sensitivity analyses.

As explained above, we represent the objective function as a constraint (c,z) > v, where v is a lower
bound specified by the information from the DM. For example, if the DM decides that the objective
value must not be below a certain amount, we can put v equal to that value. Therefore, as the input
for our approach, we need the nominal values of A and ¢ that we denote by A©® and ¢©), largest
realizable values of b;s collected in b(?), and a lower bound v on the objective value. In this paper, we
prefer to work only with the slack variables. For any feasible point x, we define the slack variables
5=00—-A0z and sg = —v+ (9, ). The following LP program extracted from () is the framework
of our algorithms:

2)

max  Sp
st (=9 z) 459 = —v,
Az 45 =0,
5:= (s0,5)" >0.
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Our algorithms are designed for the feasible region of (2]) and we do not need the information about

the uncertainty sets. However, in Appendix [A]l where we show how the uncertainty sets can affect our

solutions, we assume that all the uncertainty has been pushed into the RHS. In view of (2), let us
—c0)

define
—
A0 | 0= [bm)

From now on, we may assume that A € R™*" and b € R™. Here, without loss of generality, we impose
the following restrictions on the problem (for details, see [46]): The matrix A has full column rank,
ie., rank(A4) = n < m. The set {x € R" : Az < b} is bounded and has nonempty interior. In this
paper, vectors and matrices are denoted, respectively, by lower and uppercase letters. The matrices Y
and S represent diagonal matrices, having the components of vectors y and s on their main diagonals,
respectively. The letters e and e; denote a vector of all ones and the ith unit basis vector with the
appropriate dimension, respectively. The rows of a matrix are shown by superscripts of the row, i.e.,
a is the i-th row of the matrix A. The inner product of two vectors a,b € R" is shown both by (a,b)
and a'b. For a matrix A, we show the range of A with R(A) and the null space of A with N'(A).

A=

In the next section, we introduce our utility theory based approach and compare it to classical
robust optimization. In order to use robust optimization efficiently, a tractable robust counterpart is
needed for a problem with uncertainty. We introduce a general framework that covers many interesting
robust counterparts in the literature, and then prove two theorems that show our approach is at least
as general as this framework for classical robust optimization.

3. A UTILITY THEORY BASED INTERACTIVE APPROACH AND WEIGHTED ANALYTIC CENTERS

3.1. A utility theory based interactive approach. Consider A and b defined in Section Bl Let
us define By := {b— Az : Ax < b} as the set of all feasible slack vectors. Then we can write ([2)) as

max U(s)
(3) s.t. s € Bg,

where U(s) := sg. This U(s), which we denote as utility function, is the simplest one that takes into
account only maximizing the objective function. Intuitively, we can cover a huge class of problems
by using more complicated utility functions in problem (B]). In this paper, we try to solve (@] for a
general utility function U : R™ — R that models all the preferences of the DM. We do not have access
to this utility function, however assume that, for a slack vector s, we can ask the DM questions to
extract some information about the function. In many applications, robustness of a solution may be a
monotone function of the slack variables (this typically corresponds to quasi-concave utility function in
our theoretical development); however, this kind of property of the utility function is not as restrictive
in our approach as it may seem since we can also handle quasi-concave utility functions. We can also
use modeling techniques from goal programming (see [34]). Assuming that U(s) is concave or quasi-
concave, we retrieve the supergradient of U(s) at some points through a sequence of simple questions
such as pairwise comparison questions (see for instance [39, [38], 42]).

Table Ml compares our utility theory based interactive approach with classical robust optimization
on the input to the algorithm, interaction with the DM, and handling large scale problems. Note that
our approach is different from the heavily studied Reinforcement Learning [306] [64]. Reinforcement



A UTILITY THEORY BASED APPROACH TO ROBUSTNESS 7

Learning is a method of using statistical techniques and dynamic programming to estimate an explicit
utility function, whereas in our approach, we do not need an explicit formulation or even an estimate.
Our interactive approach has the additional benefit that in case the DM is inconsistent in his/her
answers, since our approach is interactive and operates with very local information, we can provide
the DM with a better chance of correcting mistakes as well as learning throughout the interactive
process, what is possible within the given constraints and preferences.

TABLE 1. Classical robust optimization versus our utility theory based approach.

Utility Theory Based Interac-

Classical Robust Opt. tive Approach

Nominal values of A, b, and c.

. . Nominal val fA 1
Uncertainty regions for A, b, and onal vaes o and c, a lower

Input . . . o bound on the objective function wv,
¢, e.g., high-dimensional ellipsoids . 0)
. and a suitable [ vector b©).
and /or intervals [1.
Once at the modeling phase in re-
Communication ceiving uncertainty regions. Once at | Interactive throughout the whole
with the DM the end, delivering the robust opti- | optimization process.

mal solution.

Handling large
scale problems

Large scale optimization techniques
can be used for the robust counter-
part.

Specifying the uncertainty region at
one shot becomes even harder as size
grows.

In addition to large scale optimiza-
tion techniques, a driving factor idea
can be used to drastically reduce the
dimension of search space and com-
munication space for the DM.

Connection between this small
problem and the original problem
requires an expert.

In the rest of this subsection, we prove that, under a general theoretical framework, the solutions
generated by our algorithms are at least as desirable to the DM as the solutions generated by many
other robust optimization algorithms. The solution that a robust optimization technique returns is
an optimal solution of a tractable robust counterpart for the LP problem with uncertainty. In the
first theorem, we prove that given any optimal solution x* of a classical robust optimization problem,
there exists a concave utility function U such that the problem

g(z) :=U(b— Ax)
aj x < by, ie€{l,...,m}.

max

(4) s.t.

Iwe quote an axiom for robust optimization from the book [6]: “The decision maker is fully responsible for con-
sequences of the decisions to be made when, and only when, the actual data is within the prespecified uncertainty
set”.

25ee problem () and the explanation before equation ().
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has a unique optimal solution z*. We emphasize again that problem (B]) is not explicitly available.
Next, we prove that a proper utility function always exists.

Many classical robust optimization models and their approximations can be written as follows

(5) max ¢z

st. ajx+ fi(x) <b, ie{l,...,m},

where f;(z), i € {1,...,m}, is a convex function such that f;(x) > 0 for all feasible x. If the convex un-
certainty set A; is known for each i € {1,...,m} and a; € A;, then we have f;(z) := supzc 4, @' — a; .

By changing f;(x), different formulations can be derived. In the following we mention some examples.
Assume that for each entry A;; of matrix A we have A;; € [a;j —a;j, a;j+a;;]. It can easily be seen [14]
that the classical robust optimization problem is equivalent to (5 for fi(z) = &, ||. For the second
example, assume that A € {A : HM(vec(A) — Vec(fl))H < A} for a given A where ||.|| is a general
norm and M is an invertible matrix. vec(A) is a vector in R™*! created by stacking the columns of
A on top of one another. It is proved in [I1] that many approximate robust optimization models can
be formulated by changing the norm. It is also proved in [I1] that this robust optimization model can
be formulated as (@) by fi(x) = A HM_TxZ-H*, where ||.||, is the dual norm and x; € R™"*! is a vector
that contains x in entries (i — 1)n + 1 through in, and zero everywhere else.

Now, utilizing Karush-Kuhn-Tucker (KKT) theorem, we establish the following theorem.

Theorem 3.1. Assume that ([Bl) has Slater points. Then, for every optimal solution x* of (Bl), there
exists a concave function g(x) (or equivalently U(s)) such that x* is the unique solution of (H).

Proof. For the optimality condition of (5) we have: There exists A € R such that

c— > Ailai + Vi) =0

i=1
(6) Nilaj x + fi(x) —b) =0, ie€{l,...,m}.

Since the Slater condition holds for (), optimality conditions (6)) are necessary and sufficient. Let z*
be an optimal solution of (@), and let J C {1,...,m} denote the set of indices for which \; # 0,i € J.
Let us define g(x) as follows:

(7) g(x) =cla+ ZM In(b; +t; — a x — fi(x)),
e
where t; > 0,4 € J, are arbitrary numbers. We claim that g(z) is concave. b; +t; — a] x — fi(z) is a

concave function and In(z) is increasing concave, hence In(b; +t; —a,)  — fi(z)) is a concave function

fori e {1,...,m}. g(x) is the summation of an affine function and some concave functions and so is
concave. The gradient of g(z) is

Hi
8 Vg(z) =c— a; + V fi(x)).

Now define p;,i € J, as

9) Wi = A [bi +ti—a; ¥ — fz(a;*)] .
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Using (@) and comparing (&) and (@), we conclude that x* is a solution of ({l), as we wanted. Uniqueness
is because g(x) is strictly convex. O

The above argument proves the existence of a suitable utility function. A related, purely theoretical
question is that can we construct such a utility function without having a solution of (@)7 In the
following, we construct a function with objective value arbitrarily close to the objective value of (H).
Assume that strong duality holds for (B). Let us define g(z) := ¢'z+p >, In(b; — a] x — fi(z)) and
assume that Z is the maximizer of g(z). We have

m

(10) Vg(d) =c— M (4 + V(@) =0.
g ; b; — aiTx — fi(z)

This means that & is the maximizer of the Lagrangian of the problem in (H), L(\, z), for
A= p/(b; —a @ — fi(2)),i € {1,...,m}. So by strong duality, we have

m

T, % N Ts o Ta T
c'z* <L(\i) = c $+;bi_ajj_fi(£)(bi—ai:E—fi(x))
(11) = 'z + mp.

() shows that by choosing p small enough, we can construct g(x) such that the optimal objective
value of (4]) is arbitrarily close to the optimal objective value of ({l).

Note that many other approaches to robust optimization and decision making under uncertainty
(including the generalized robust counterpart introduced by Ben-Tal and Nemirovski [6], and the
approach of Tancu and Trichakis [33] using the notion of pareto robust optimization) can be included
as a special case of our framework. A good starting point to prove the existence of a utility function
is to start with indicator functions of sets encoding feasibility conditions. This approach first leads
to utility functions that are not continuous; however, as we showed above, these functions can be
smoothed by use of barriers which then lead to differentiable utility functions with desired properties.

To illustrate the above points, we can prove the stronger version (from the viewpoint of optimal
solution sets) of Theorem B11

Theorem 3.2. Assume that (B has Slater points. Then, there exists a concave function g(x) (or
equivalently U(s)) such that the sets of optimal solutions of @) and [H) are the same.

Proof. Note that because f;(x) >0, ¢ € {1,...,m}, for all feasible points z, the feasible region of ()
is a subset of the feasible region of (]). As the objective function of (fl) is linear, the set of optimal
solutions of (Bl), denoted by X, is a convex set. For an obvious choice, if we define the concave
function

0 x€ Xopt
g(x) = :
—00  o.w.

then (@) has the same set of optimal solutions as (B). To show that there exists a continuous concave
function, let us assume X, is represented by the following system

Xopt:{a:E]R”:flm:E, hi(a:)gO,ie{l,...,q}},
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where Az = b defines an affine subspace, and h;(z), i € {1,...,q}, are continuous convex functions.
Consider the following function:
g(‘r) = min {07 _hl(x)a ) _hq(‘r)v —”ALL’ - Buz} .

This function is concave because it is the minimum of concave functions. The maximum of the
function is 0 and is achieved only on X,,;. Therefore, the sets of optimal solutions of ({#]) and ({) are
the same. O

We can make a connection between the feasible slack vectors of an LP and the notion of weighted-
analytic-centers. There are strong justifications for using weight space (w-space) instead of s-space
that we will see when we design the algorithms. Besides, by using the notion of weighted center, we
benefit from differentiability and smoothness of our functions in our formulations. Weight-space and
weighted-analytic-centers approach embeds a “highly differentiable” structure into the algorithms.
Such tools are extremely useful in both the theory and applications of optimization. In contrast,
classical robust optimization and other competing techniques usually end up delivering a final solution
where differentiability cannot be expected; this happens because their potential optimal solutions
located on the boundary of the domain of some of the structures defining the problem.

3.2. Definition of weighted center. For every i € {1,2,...,m}, let F; be a closed convex subset
of R™ such that F := (%, F; is bounded and has nonempty interior.

Let F; : int(F;) — R be a self-concordant barrier for F;, i € {1,2,...,m} (For a definition of self-
concordant barrier functions see [53]). For every w € R, , we define the w-center of F as

arg min {Z wFi(z):x € ]:} .
i=1

Consider the special case when each F; is a closed half-space in R™. Then the following result is

well-known (see for example [41], 46} [47, [I]).
Theorem 3.3. Suppose for everyi € {1,2,...,m}, a/? € R"\ {0} and b; € R are given such that:

F = {:17 cR": <a(i),:17> < b;,Vi € {1,2,...,m}},

is bounded and int(F) is nonempty. Also, for everyi € {1,2,...,m} define Fy(z) := —In(b; — (¥, z)).
Then for every w € R, there exists a unique w-center in the interior of F, x(w). Conversely, for
every x € int(F), there exists some weight vector w(x) € RI', such that x is the unique w(x)-center

of F.

Define the following family of convex optimization problems:

min  — >, w;In(s;) min (b,y) — >, w;In(y;)

(12)
s.t. Ax+s=0b s.t. ATy=0

For every weight vector w > 0, the objective functions of the above problems are strictly convex
on their domains. Moreover, the objective function values tend to +oo along any sequence of their
interior points (strictly feasible points), converging to a point on their respective boundary. So, the
above problems have minimizers in the interior of their respective feasible regions. Since the objective
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functions are strictly convex, the minimizers are unique. Therefore, for every given w > 0, the above
problems have unique solutions (z(w), s(w)) and y(w). If we write the optimality conditions for both
problems, there exist § € R™ for the first problem and s € R™,z € R™ for the second problem such
that

Az(w) + s(w) =b Az +5=0b
(13) ATy = ATy(w) =0
S(w)y = w, Sy(w) = w.

By the above uniqueness discussion, we must have § = y(w), § = s(w), and & = z(w), and these
two systems are actually the same. These solutions can be used to define many primal-dual weighted-
central-paths as the solution set {(z(w), y(w), s(w)) : w > 0} of the following system of equations and
strict inequalities:
(14) Az +s=0b, s> 0,

ATy =0,

Sy = w,
When we set w := te, t > 0, we obtain the usual primal-dual central-path. Figure [l illustrates some
weighted central paths.

T T min ¢’ x

J, \L max ¢’ x

FIGURE 1. Primal-dual central paths.

For every given weight vector w, (z(w),y(w),s(w)) is obtained uniquely from ([I4) and z(w) is
called the weighted center of w. We may also refer to (z(w),y(w), s(w)) as the weighted center of w.
For every given z € R™ and y € R™, y > 0, that satisfy the above system, w and s(w) are obtained
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uniquely. However, for a given z € R", there are many weight vectors w that may give x as the w-
center of the corresponding polytope. Without loss of generality, we restrict ourselves to the weights
on the unit simplex, i.e., we consider weighted center (z,y, s) corresponding to weight vectors w such
that " w; = 1. We call this simplex of weight vectors W:

W={weR":w>0, e w=1}.

We will show that weight vectors in W are enough to represent the feasible region (a special case can
be w = %e). We define the following notion for future reference:

Definition 3.1. A vector s € R™ or y € R™ is called centric if there exists x such that (x,y,s)
satisfies ([d) for a weight vector w > 0 where e'w = 1.

Let s and y be centric. First, we note that the simplex of the weight vectors can be divided into
regions of constant y-vector (W, ) and constant s-vector (Wj).

(15) Wy ={weW: yw)=y}, Wg={weW: s(w)=s}
By using Lemma [B2] if (Z,9,8) is the solution of system (I4)) corresponding to the weight vector
w € W, and § > 0 is any centric y-vector, then (%, 7, §) is the solution of system (I4]) corresponding

to the weight vector Y()A/)_lii). This means that for every centric vector § and any centric vector y,
Sy is a weight vector in the simplex.

For every pair of centric vectors s and y, W, and W, are convex. To see this, let (z, 7, s) and (z,y, s)
be the weighted centers of w and w. Then, it is easy to see that for every 5 € [0, 1], (z, By+ (1—5)y, s)
is the weighted center of S+ (1 — S)w. Various properties of W, and W, are studied in Appendix Bl
but the following simple examples make the geometry of W, and W, clearer. We present two examples
with m =3, n=1.

Example 3.1. For the first example, letb:=[100]" and A:=[1 —1 —1]". By using (I4), the set
of centric s-vectors is By = {[(1 —z), =, 2] : 2 € (0,1)}. The set of centric y-vectors is specified by
solving ATy =0 and b"y = 1, while y > 0. We can see that in this example, as shown in Figured, W,
regions are parallel line segments while Wy, regions are line segments which all intersect at [1 0 0]".
For the second example, let A :=[1 —10]T and b:=[1 01]". W, and W, regions are shown in
Figure [3 derived by solving ([[d]). As can be seen, this time W, regions are parallel line segments and
Wy regions are line segments which intersect at the point [0 0 1]T.

These examples show that the affine hulls of W1 and W,2 might not intersect for two centric
y-vectors y' and y?. This is also true for the affine hulls of W, and W, for two centric s-vectors s!

and s2.

Example 3.2. For the second example, let A:=[3 —3 —2]" andb:=[110]". W, and W, regions
are shown in Figure[], derived by solving ([Id)). In this example, none of Wy regions, W regions, or
their affine hulls intersect in a single point.

4. ALGORITHMS

In this section, we develop some cutting-plane algorithms which find an optimal solution for the
DM, using the facts we established in the previous sections. As we mentioned in Section [3 we assume
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FIGURE 2. W, and W, regions for the first example in Example [3.11

w,

FIGURE 3. W, and W, regions for the second example in Example B.I1

that the DM’s preferences, knowledge, wisdom, expertise, etc. can be modeled in principle by a
utility function (as a function of the slack variables s), i.e., U(s), and our problem is to maximize this
utility function over the set of centric (Definition Bl) s-vectors Bs. (Of course, we do not assume to
have access to this function U, except through our limited interactions with the DM.) Therefore, our
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w A

FIGURE 4. W, and W), regions for Example

problem becomes
max U(s)
(16) s.t. s € Bs.

In the following, we denote an optimal solution of () with s°!. In many applications, it is possible
to capture choices with concave, quasi-concave, or nondecreasing utility functions. We are going to
start with the assumption of concave U(s). We will see in Subsection [6.2] that the algorithm can easily
be refined to be used for quasi-concave functions.

Suppose we start the algorithm from a point w® € R™ with the corresponding s-vector s’ € R™.
Using the idea of supergradient, we can introduce cuts in the s-space or w-space to shrink the set
of s-vectors or w-vectors, such that the shrunken space contains an optimal point. In the following
subsections, we discuss these algorithms in the s-space and in the w-space. Our main algorithm is the
one in the w-space, however, the s-space algorithm helps us understand the other better.

Our algorithms are based on the notion of supergradient of a concave function. Therefore, before
stating the algorithms, we express a summary of the results we want to use. These properties are
typically proven for convex functions in the literature [58| [I§], however we can translate all of them to
concave functions. It is a well-known fact that for a concave function f : R” — R, any local maximizer
is also a global maximizer. If a strictly concave function attains its global maximizer, it is unique.
The following theorem is fundamental for developing our cutting-plane algorithms.

Theorem 4.1. Assume that f : R™ — R is a concave function and let 2° € relint(domf). Then there
exists g € R™ such that

(17) f@) < f@®) +¢"(x -2, VeeR™
If f is differentiable at 2°, then g is unique, and g = V f(zV).
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The vector g that satisfies (I7) is called the supergradient of f at 2°. The set of all supergradients
of f at xq is called the superdifferential of f at z°, and is denoted df(2°). By Theorem BT}, if f is
differentiable at 2°, then df(2°) = {Vf(z")}. The following lemma about supergradient, which is a
simple application of the chain rule, is also useful.

Lemma 4.1. Let f : R™ — R be a concave function, and D € R™*™ and b € R™ be arbitrary
matrices. Then, g(x) := f(Dx +b) is a concave function and we have:

dg(x) = DTOf(Dz +b).

4.1. Cutting-plane algorithm in the s-space. Assume that we have a starting point s and we
can obtain a supergradient ¢ of U at s° from the DM. By using (7)), for every s,

(18) Us)—U$Y) >0 = (¢ (s—5% >0.

This means that all optimal points are in the half-space (gO)T(s —5%) > 0. So, by adding this cut, we
can shrink the s-space and guarantee that there exists an optimal solution in the shrunken part. We
can translate this cut to a cut in the x-space by using (I4]):

(6°) " (s = ") = (¢")T (b — Ax — b+ A2®) = (") TA(” — ).

Using this equation, we consider the cut as a new constraint of the original problem;

(99T Az < (¢°)T Az, Let us define a1 = (¢°)7 A and b, 11 = (9°) " A2z°. We redefine F by adding
this new constraint and find the weighted center for a chosen weight vector w'!. The step-by-step
algorithm is as follows:

S-space Algorithm:

e Step 1: Set w® = Le and find the w%-centers (29, 1%, s°) with respect to F.

m

e Step 2: Set k=0, Ag = A, ¥ = b, and Fy = F.
e Step 3: If s* satisfies the DM, return (z*, 3", s*) and stop.
e Step 4: Set k =k + 1. Find ¢!, the supergradient of U(s) at s*~!. Set
Aj_ b1
Ak = - ) bk = )
(gk—l)TAk_l (gk_l)TAk_lxk_l
(19) Fp = {3: eR": (al),z) < bk Vie {1,2,...,m—|—kz}}.

e Step 5: Set wk = # fori € {m+1,...,m+k}and wf =L — # for i € {1,...,m}. Find

the w”-center (z*,y*, s*) with respect to F. Return to Step 3.

The logic behind Step 5 is that we want to give smaller weights to the new constraints than
the original ones (however, our choices above are just examples; implementers should make suitable,
practical choices that are tailored to their specific application). A main problem with this algorithm
is that the dimension of the weight-space is very large and is increased by one every time we add a
constraint. We show that this problem is solved by our w-space algorithm and the notion of driving
factors in the following subsections.
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4.2. Cutting-plane algorithm in the w-space. In this subsection, we consider the cuts in the
w-space. To do that, we first try a natural way of extending the algorithm in the s-space to the one in
the w-space. We show that this extension only works for a limited subset of utility functions. Then,
we develop an algorithm applicable to all concave utility functions.

Like the s-space, we try to use the supergradients of U(s). Let U, denote the utility function as
a function of w. From (@) we have Ys = w; so, Uy, (w) = U(s) = U(Y 'w). If Y were constant
for all weight vectors, Uy (w) would be a concave function, and we could use Lemma [1] to find the
supergradient at each point. The problem here is that Y is not necessarily the same for different
weight vectors. Assume that we confine ourselves to weight vectors in the simplex W with the same
y-vector (W,). Uy, (w) is a concave function on Wy, so, we can define its supergradient. By Lemma
[T we conclude that OU,,(w) = Y ~10U(s) for all w € W,

Suppose we start at w® with the weighted center (2,1, s%). Let us define ¢g° := (Y?)~1¢%, where
¢° is a supergradient of U(s) at s°. Then, from (7)) we have,

(20) Up(w) < Up(w®) + (¢") " (w — w), Yw € Wpp.

If we confine the weight-space to W, by the same procedure used for s-space, we can introduce cuts in
the w-space using (20). The problem is that we do not have a proper characterization of Wy. On the
other hand, U,, may not be a concave function on the whole simplex. Assume that s° is an optimal
solution of ([I6), and Wop is the set of weight vectors in the simplex with s-vector s°%. It is easy to
see that Wopt is convex. We also have the following lemma:

Lemma 4.2. Let (2/,y,s') be the weighted center corresponding to w', s°Pt be an optimal solution
of (@8), and g be the supergradient of U(s) at s'. Then, Sy is in the half-space ¢’} (w —w') > 0,
where g, =Y'"1q.

Proof. We have g’l(S"pty’ —w) = gTY' 7 (§Pty — §'y) = ¢'T(sPt — &') > 0. The last inequality
follows from the fact that s’ is a maximizer and ¢’ is a supergradient of U(s) at s'. O

The above lemma shows that using hyperplanes of the form ¢'"Y’~!(w —w’), we can always keep a
point from Wopt. Now, using the fact that Wept is convex and the above lemma, the question is: if we
use a sequence of these hyperplanes, can we always keep a point from Wept? A simpler question is: We
start with w® and shrink the simplex W into the intersection of the half-space (¢°*) " (w—w") > 0 and
the simplex, say Wy. Then we choose an arbitrary weight vector w! with weighted center (z!,y', s')
from the shrunken space Wy. If g' is a supergradient of U(s) at s!, then we shrink Wy into the
intersection of Wy and the half-space (¢'*)T (w — w') > 0, where g'* = (Y1)~1g!, and call the last
shrunken space Wi. Is it always true that a weight vector with s-vector s°P! exists in W;? In the
following, we show that this is true for some utility functions, but not true in general. We define a
special set of functions that have good properties for cuts in the w-space, and the above algorithm
works for them.

Definition 4.1. A function f : R, — R is called Non-Decreasing under Affine Scaling (NDAS) if
for every d € R, we have:

(1) f(s) <max{f(Ds),f(D"'s)}, VseR™,.
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(2) If for a single s° € RT we have f(s°) < f(Ds%), then f(s) < f(Ds) for all s € RT, .

For every t € R™ the function fi(s) := >, t;logs; is NDAS. Indeed, for every s,d € R}, we
have:

fi(s) — fi(Ds) = —Ztilogdi,
i—1

m 1 m
s)— f1(D7's) = — tilog — = t; log d;,
fi(s) = fu( ) ; & ; g

and so we have 2fi(s) = fi(Ds) + fi(D~'s). The second property is also easy to verify and the

function is NDAS. fi(s) is also important due to its relation to a family of classical utility functions

in mathematical economics: Cobb-Douglas production function which is defined as Ugq(s) = [~ szi,

where ¢ € R, . Usage of this function to simulate problems in economics goes back to at least the
1920’s. Maximization of U.4(s) is equivalent to the maximization of its logarithm which is equal to
fi(s) = In(Uea(s)) = > it t;logs;. Authors in [35] considered the Cobb-Douglas utility function to
present an algorithm for evaluating and ranking items with multiple attributes. [35] is related to our
work as the proposed algorithm is a cutting-plane one. [35] also used the idea of weight-space as the
utility function is the weighted sum of the attributes. However, our algorithm uses the concept of
weighted analytic center which is different. Now, we have the following proposition.

Proposition 4.1. Assume that U(s) is a NDAS concave function. Let (x2°,y° s%) and (z!,yt, st)
be the weighted centers of w® and w', and ¢° and g' be the supergradients of U(s) at s° and s',
respectively. Then we have

fw: ()T w=u) 20, (") (w=w") 20} N W £ 6,

where ¢°% = (Y9)71g° and g** = (Y1)~ 1gt.

Proof. Consider the weight vectors Y95 and Y1s°P!. Our two hyperplanes are
Pyi={w: ()T (V") Hw-v%" =0},
Pro={w: (") (vYH (w-vish) =0}

By Lemma @2 Y5 is in the half-space (¢°)T(Y?)~!(w — Y?5%) > 0 and Y's° is in the half-space
(gH (Y1)~ w — Y's;) > 0. If one of these two points is also in the other half-space, then we are
done. So, assume that

()T (V) Lyt — vOs0) <0 and (¢))T(YHL(¥0s® — Ylsl) <0
(we are seeking contradiction), which is equivalent to
(21) ()T (Y7 tytsPt — 5% <0 and (g8 T ((YH)71Y %Pt —s1) < 0.
Using (20)) and (21]) we conclude that
U9 'ylsort) < U(s%) <U
U(YH=H(Y)s™) < U(s!) <

Py and

(s
U (s°P).
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However, note that (Y9)71Y! = ((Y1)~'Y?)~! and this is a contradiction to Definition EIl So (1)
is not true and at least one of Y5 and Y15 is in

{w: (9") " (w—u’) 20, (¢")" (w—w') > 0}.
O

By Proposition 1] using the first two hyperplanes, the intersection of the shrunken space and
Wopt is not empty. Now, we want to show that we can continue shrinking the space and have nonempty
intersection with Wopt.

Proposition 4.2. Assume that U(s) is a NDAS concave function. Let (2%, 9", s') be the weighted
centers of w', i € {0,...,k}, and g' be the supergradients of U(s) at s*. Let us define

W= {w : (g™ (w —w') > 0} Nnw,

where g = (Y))~1g'. Assume we picked the points such that

i—1
(22) w' €relint [ (YW7 |, ie{l,... .k}
=0
Then we have
k
(23) ﬂ W] N Ws"m 7é (b?
=0

t

where s°P* is an optimal solution of (IG)).

Proof. Among the three representations of W were given in (52), we use the second one in the
following. If (23] is not true, then the following system is infeasible:

AT (8P Ly =0, efw=1, w>0,

(24) (") (w—w') >0, ie{0,...,k}.
By Farkas’ Lemma, there exist v € R", p € R, and ¢ € R’i such that:
k k
(SPHY =L Av + pe — Z 6" >0 < Av+ psP — Z ¢ SPH Y )yt >0,
i=0 i=0
(25) =Y alg™) W' <0 & p-3 als) s <0
i=0 =0

Now for each j € {0, ..., k}, we multiply both sides of the first inequality in (25) with e Y7, then we
have:
k

p—Y @) YI(Y) g >0, Vje{0,... k},
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where we used the facts that e Y7 Av = (ATy?)Tv = 0 and eTY75°Pt = 1. If we multiply the first set
of inequalities in (28] with —1 and add it to the second one we have

(27) () (5™ =T+ > ailg) T (YY) TP = s') <0,

i#]
forall j € {0,...,k}. g € Rﬁ and (¢7) T (s°Pt — s7) > 0 by supergradient inequality. Hence, from (27]),
for each j € {0,...,k}, there exists ¢; € {0,...,k}\{j} such that (¢%/)T(YI(Y95)~1sPt — 5%5) < 0

which, using (8], means U (Y7 (Y %)~ 1sP!) < U(s%) < U(sP!). Therefore, by the first property of
NDAS functions, we must have

(28) U(Y% (Y7)7LsoPt) > U (sP).

Now, it is easy to see that there exists a sequence ji,...,j € {0,...,k} such that ¢;, = ji4+1 and

¢j, = j1. By using (28] and the second property of NDAS functions ¢ — 1 times we can write:
U(SOPt) < U(yjz(yjl)—lsoznt)

U(yja (sz)—lyjz (le )—1Sopt)

c S U(YI (YT Ty (YT Lgert

(29) U (Y3t (yir)—tsorty,

However, we had U (Y7t (Y71)~1s%Pt) = U(YJt(Y %)~ 1sPt) < U(s°P) which is a contradiction to (2.
This means the system (24]) is feasible and we are done. O

IN A

Proposition shows that the above-mentioned cutting-plane algorithm works for the NDAS
functions. However, the conclusion of the proposition is not true for a general concave function. For
a counter example, see Example in Appendix[Cl To be able to perform a cutting-plane algorithm
in the w-space, we modify the definition of cutting hyperplanes. In the next two propositions, we
introduce a new set of cutting-planes.

Proposition 4.3. For every point Y°sY € W, there exists a hyperplane P passing through it such
that:

1- P contains all the points in W, and

2- P cuts Wy the same way as (¢°)" (Y?) ™ (w — YOs") = 0 cuts it; the intersections of P and
()T (YO w—Ys%) = 0 with W is the same, and the projections of their normals onto W0 have
the same direction.

Proof. Assume that w® = Y?s? is the point that is chosen and let u° be the normal vector to the
desired hyperplane P. First, we want the hyperplane to contain W. This means that for all centric
7, the vector S%° — S% is on P, i.e., we have (u")"S%(y° — ) = 0. Since AT (3° — §) = 0, we can
put u® = (S°)"LAR? with an arbitrary h° and we have:

(u0) TS0y —§) = (hO)TAT (8971800 — §) = 0.

Now, we want to find h° such that (u®) " (w — Y?s%) cuts W,o the same way as

(g") T (Y9~ (w —YO5%) cuts it. We actually want to find h® which satisfies the stronger property that
(W) T (w—=Y0") = (¢°) " (Yo) ' (w—YOs") for all w € W,o. All the points in W, are of the form Y3,
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so we must have (u®)TY (5 — s%) = (¢°) T (5 — s°). Since (5 — s°) is in the range of A, this equation is
true for every § if and only if:

W) Y%z = (*)TAz = ((°)TY° = (¢*)")Az =0, VzeR"
This means that Yu" — g° must be in R(A)+ = N(AT), which means AT (Y%" — ¢°) = 0. However,
we had from above that u® = (S°)~'Ah® and hence:
(30) ATY%0 =ATg" = ATYO(SO)TAR = AT¢" = K0 =(ATY?(S%)~1a)~1AaT 40

So, the hyperplane with normal vector u® = (S9)~1 ALY, where h® = (ATY?(S%)~1A4)~1AT ¢° has the
required properties. Since this hyperplane cuts W,o the same way as (") T (YO~ (w—-Y5s%) does, we
conclude that (u®) " (Y57t —¥05%) > 0. Therefore, Y95 is in the half-space (u°) T (w—Y%s%) > 0. O

The normal of the hyperplane derived in Proposition has a nice interpretation with respect to
orthogonal projection and the primal-dual scaling Y ~1S. We have:

uO _ (SO)_lA(ATYO(SO)_1A)_1AT90
(YO)—1/2(SO)—1/2
[((Y0)1/2(SO)—1/2A)(ATy0(SO)—IA)—I(AT(SO)—1/2(YO)1/2)](YO)—1/2(SO)1/290
II
(31) — (YO)_1/2(SO)_1/2P(YO)_1/2(50)1/290,

where I is the orthogonal projection onto the range of (Y°)1/2(59)~1/2A. Note that a main benefit of
the hyperplane in Proposition is that when we choose a point Y?s% we can cut away Wyo. Now,
we prove the following proposition which shows we can cut the simplex with a sequence of hyperplanes
such that the intersection of their corresponding half-spaces contain a point from Wopt.

Proposition 4.4. Assume that we choose the points Y°s0, Y1s' € W. The hyperplane P passing
through Y's', with the normal vector u' := (SV)71AR! | Al = (ATYO(SYH)~TA)"TATg! satisfies the
following properties:

1- P contains all the points in W, and

2- (uh) T (Y05t —Y1sl) > 0 for every feasible mazimizer of U(s).

Proof. As in the proof of Proposition 3] if we set u' = (S')~tAh!, then the hyperplane contains all
the points in W1. To satisfy the second property, we want to find ! with the stronger property that

(32) (W) (Y%= Y'sh) = (g") T (5 — 5",
for all the centric 3. The reason is that we already have (g')' (sopt — s') > 0. By the choice of
ul = (SY)L AR, for every centric y we have
(ul)Tsly _ (hl)TAT(Sl)_lsly _ (hl)TATy —0.
So, we have (u')TY's' = (u!)TY%s! = 0 and we can continue the above equation as follows:
(4H'G-s") = (W) (¥%-Ysh) = (u!) (Y9
_ (ul)T(Y0§ . YOSI)
= (u)TY%s5—st).
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Now we can continue in a similar way as in the proof of Proposition =3l Since (5 — s°) is in the range
of A, we must have:

(u))TY? — (¢") Az =0, VaeR™
By the same reasoning, we have:
(33)  ATYO%ul=ATgt = ATYO(SH1Arl = ATg! = Al =(ATYO(SH)14) 14T 4.

So, the hyperplane with normal vector u! = (S')~!Ah!, where h! = (ATY?(S1)71A)"1ATg! has the
required properties. ]

By Proposition 44l we can create a sequence of points and hyperplanes such that the corresponding
half-spaces contain Ys!. The algorithm is as follows:

W-space Algorithm:

Step 1: Set w® = %e and find the w%-centers (2,4, s) with respect to F.

Step 2: Set k=0, and Wy =W.

Step 3: If s* satisfies the optimality condition, return (z*,y*, s*) and stop.

Step 4: Find ¢, the supergradient of U(s) at s*. Find h* by solving the following equation

(34) ATYO(SFYTLARF = AT gk
Step 5: Set u* = (S*)"1AR* and Wy, = Wi N {w : (u¥)T (w — w*) > 0}. Pick a point w**!

from Wy 1 (see subsection 4] and find the w**!-center (z¥*1, y¥+1 sk+1) with respect to F.
Set k = k + 1 and return to Step 3.

A clear advantage of this algorithm over the one in the s-space is that we do not have to increase
the dimension of the w-space at each pass and subsequently we do not have to assign weights to the
newly added constraints. So, the above algorithm is straightforward to implement. The convergence
of the algorithm depends on the choice of w**! in Step 5, which we discuss in Subsection -4l We can
also use the properties of the weighted center we derived in Appendix [Bl to improve the performance
of the algorithm.

4.3. Some implementation ideas. In the previous subsections, we introduced an algorithm that is
highly cooperative with the DM and proved many interesting features about it. In this subsection, we
set forth some implementation ideas.

4.3.1. Driving factors. As we mentioned, one of our main criticisms of classical robust optimization
is that it is not practical to ask the DM to specify an m-dimensional ellipsoid for the uncertainty
set. Our approach improves this situation by asking easier questions. The idea is similar to those
used in the area of multi-criteria optimization. Consider the system of inequalities Az < b and the
corresponding slack vector s = b — Ax representing the problem. The DM might prefer to directly
consider only a few factors that really matter, we call them Driving Factors. For example, the driving
factors for a DM might be budget amount, profit, allocated human resources, etc. We can represent
k driving factors by (ci)Tx, i € {1,...,k}, and the problem for the DM is to maximize the utility
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function U((c')Tz,...,(c¥) x). Similar to the way we added the objective of the linear program to
the constraints, we can add k constraints to problem and write (I6]) as:

max U, &)
st Gi=b—(NTx, €>0, ie{l,... .k}
(35) s=b—Ax, s>0.

As can be seen, the supergradient vector has only k& nonzero elements which makes it much easier for
the DM to specify it for £ < m. k is usually very small and we can figure out approximate gradients
by asking pair-wise comparison questions among the driving factors. However, it still may have the
problem that the cutting plane algorithm is in a high-dimensional space and it might be slow. We can
take one step further to resolve this difficulty.

Consider the following setup:

e A very large system of equalities and inequalities Az + s =15b, s > 0.
e A very small driving factor system in the space of ¢ ‘variables. Our goal is to solve problem

max U, &)
(36) s.t. § € B,

where Bg := {5 S R’i (& =b — (A Taie{l,... k}, Az < b} and, without loss of generality,
we may assume that U(y,. .., &) is a monotone non-decreasing function of &, . .., &.

e A matrix C' and a vector d such that £ = Cs +d.

e A matrix C that translates a displacement in the driving factor space d¢ to a displacement
in the s-space dg, i.e., d; = Cd¢. Note that considering d¢ = Cds, there are infinite number
of choices for C' and finding the most effective one can be done by an optimizer/expert. The
system dg = C’dg actually showing how to change big space variables when there is a change
in the driving factors. For example, assume that d¢ requires decreasing workforce in a retail
corporation with several branches. The change in the workforce for each individual branch,
embedded in dg, should be done by an optimizer/expert. However, to mention one possibility,
we may consider the pseudoinverse of C' as C' := CT(CCT)™L

([B6)) is a problem in a k-dimensional space (say, k € {1,2,...,20}) and can be solved efficiently with
our cutting-plane algorithms. Assume that at the k’th iteration we have a feasible slack vector s* in
the big space and a feasible slack vector £* in the very small driving factor space, and by applying
our algorithm in the driving factor space, we get a search direction d¢. Using C we get dg = Cdg to
update st = s* + ad, for an appropriate o > 0. Algorithm in the we-space stops quickly, and we
have a good estimate of the optimal weights in w-space.

The DM deals only with problem (B6]) directly, however, an optimizer /expert needs to translate the
cuts (and the information extracted from the DM) in we-space into changes in the current assignment
of weights in the big w-space and coordinate the search between the we-space and w-space (see Figure

f).

4.3.2. Approximate gradients. In the previous subsection, we derived a cutting-plane algorithm in
the w-space. As can be seen from Propositions and @4l for the implementation we need the
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FIGURE 5. Diagram for the driving factor approach.

supergradients of the utility function U(s). However, we usually do not have an explicit formula for
U(s) and our knowledge about it comes from the interaction with the DM. Supplying supergradient
information on preferences (i.e., the utility function) might still be a difficult task for the DM. So, we
have to simplify our questions for the DM and try to adapt our algorithm accordingly.

We try to derive approximate supergradients based on simple questions from the DM. The idea is
similar to the one used by Arbel and Oren in [3]. Assume that U(s) is differentiable which means the
supergradient at each point is unique and equal to the gradient of the function at that point. Assume
that the algorithm is at the point s. By Taylor’s Theorem (first order expansion) for arbitrarily small
scalars €; > 0 we have:

u; :=U(s + €e;) = U(s) + 8U(S)Ei
Osi
oU(s)  wu; —ug o
(37) = 05, T 0 W= Ul(s).
Assume that we have m + 1 points s and s + €e;, i € {1,...,m}. By the above equations, if we

have the value of U(s) at these points, we can find the approximate gradient. But in the absence of
true utility function, we have to find these values through proper questions from the DM. Here, we
assume that we can ask the DM about the relative preference for the value of the function at these
m + 1 points. For example, DM can use a method called Analytic Hierarchy Process (AHP) to assess
relative preference. We use these relative preferences to find the approximate gradient.

Assume that the DM provides us with the priority vector p, then we have the following relationship
between p and wu;’s

w p N
u—;:p—;, i,7 € {0,...,m},
N ui—uozpi—po,
U Do
o
(38) = u;—ug = Po(pi —po), Bo:= o

Now, we can substitute the values of u; — ug from (B8] into ([B7) and we have

-
P1 — Po Pm — Po
€1 €m '

(39) VU(s) = Bo
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The problem here is that we do not have the parameter gy. However, this parameter is not important
in our algorithm because we are looking for normals to our proper hyperplanes and, as it can be seen in
Propositions and @4}, a scaled gradient vector can also be used to calculate h° and h'. Therefore,
we can simply ignore Sy in our algorithm.

Note that supergradients may be approximate due to the imperfect nature of the interaction with
the DM. However, this issue gives us an opportunity to highlight another advantage of our approach
when compared to classical robust optimization. Small errors in the determination of uncertainty
regions in classical robust optimization may change the solution set rather dramatically or even make
the underlying problem infeasible. In our approach, however flawed the supergradient information, as
long as the halfspace defined by it contains an optimal solution or an approximately optimal solution,
our algorithms are guaranteed to perform well. Therefore, this approximation in data is more serious
in classical robust optimization that the DM needs to specify the whole uncertainty region, versus our
approach wherein the supergradient is basically the normal to the halfspace used in reducing the set
of weights under consideration.

4.4. Convergence of the algorithm. In this subsection, we focus on the convergence results for the
w-space algorithm as our main algorithm. Note that no matter what the problem is, our cutting plane
algorithm is applied to the unit simplex in the w-space. This makes the analysis straightforward and
lets us use many results from the literature. On the other hand, if we use the driving factor scheme
introduced above, our weight space has always dimension £ < 20 and cutting plane algorithms become
really fast. We define Wy as the set of all weights w such that the weighted center of w is acceptable
to the DM. In all cutting plane algorithms, a “center” of the shrunken space must be chosen as the
test point, which is crucial in the speed and convergence results of cutting plane algorithms.

Introduction of cutting-plane algorithms goes back at least to the 1960’s and one of the first
appealing ones is the center of gravity version [54]. The center of gravity algorithm has not been used
in practice because computing the center of gravity, in general, is difficult. However, it is noteworthy
due to its theoretical properties. For example, Griinbaum [29] proved that by using any cutting-plane
through the center, more than 1/exp(1) &~ 0.3678 of the feasible set is cut out. Such results guarantee
a geometric convergence rate with a sizeable constant [40] 28]. Many different types of centers have
been proposed in the literature. A group of algorithms use the center of a specific localization set,
which is updated at each step. One of them is the ellipsoid method [68] where the localization set
is represented by an ellipsoid containing an optimal solution. Ellipsoid method can be related to
our algorithm as we can use it to find the new weight vectors at each iteration. Amnother family of
cutting-plane algorithms are based on volumetric barriers or volumetric centers [65] 60, 2]. Vaidya
used the volumetric center to design a new algorithm for minimizing a convex function over a convex
set [65]. More sophisticated algorithms have been developed based on Vaidya’s volumetric cutting
plane method [66] 2]. Let us summarize the above discussions about the three centering methods in
a theorem:

Theorem 4.2. Assume that at Step 5 of the w-space algorithm, we set w*t! as one of the three
following centers of Wh+1:

e the center of gravity,
e the center of the minimum volume ellipsoid containing W*+1,
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e the volumetric center.

Also assume that Wy contains a ball of radius €. Then, using the driving factor approach with k =
O(1), the algorithm stops in O (ln (%)) iterations, with a solution acceptable to the DM.

The cutting-plane method which is most relevant to our algorithm and is more efficient in practice
is the analytic-center cutting plane method (ACCPM), see [26] for a survey. In this method, the new
point at each iteration is an approximate analytic center of the remaining polytope. The complexity of
such algorithms has been widely studied in the literature [52, 25]. Let us prove the following theorem:

Theorem 4.3. Assume that at Step 5 of the w-space algorithm, we calculate W' as the analytic
center of WKL, Also assume that Wo contains a ball of radius €. Then, using the driving factor
approach with k = O(1), the algorithm stops in O* (Elg) iterations with a solution acceptable to the
DM, where O* means we ignore some logarithmic terms.

Proof. We use existing proved results in [25] and [26]. Consider the proof in Section 4 of [26] for
feasibility version of the analytic center cutting plane algorithm. The considered problem is finding
w € CN[0,1]", where C is a closed convex set and contains a ball of radius e. C' is also equipped
with an oracle that returns a cutting plane (a,w — w) > 0 whenever w ¢ C. Note that we designed
our approach so that our weight vectors are from the unit simplex, so 0 < w < e. If we let C' = W),
it has all the required properties we mentioned. Therefore, all the discussions are carried forward and

we have the O* (%;) iterations bound. However, as we use the driving factor approach, we further

have n = k = O(1). Hence, for our approach, the complexity bound is O* (;15) O

An alternative way to interpret the convergence properties above is after at most O (ln (%)) itera-
tions (ellipsoidal center algorithm) or O* (}2) iterations (analytic center algorithm) our current iterate
is within an e-neighborhood of a weight vector in Wy. [26] also has a discussion on how to modify
the complexity if we use the approximate analytic center. Note that by some cut elimination and
a complicated analysis, the authors in [4] proved a stronger convergence result for ACCPM that we
mention for our approach in the following remark:

Remark 4.1. If we use the cut elimination approach of 4], we can improve the convergence result in
Theorem [1-3 to O (In® (1)) iterations.

5. ILLUSTRATIVE PRELIMINARY COMPUTATIONAL EXPERIMENTS

In this section, we present some numerical results to illustrate the performance of the algorithms
in the w-space designed in Section [@ As we mentioned in previous sections, the utility function is
not assumed to be explicitly available in our approach. So, for computational experiments with our
algorithms, we maintain the same assumption. We choose a utility function; however, the algorithm
does not “see” the utility function we chose. The algorithm interacts with the utility function only
through the supergradient oracle. LP problems we use are chosen from the NETLIB library of LPs.
Most of these LP problems are not in the format we have used throughout the paper which is the
standard inequality form. Hence, we convert each problem to the standard equality form and then
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use the dual problem. In this section, the problem max{(c(?)Tz : Az < b®} is the converted one.

In the following, we consider several numerical examples.

Example 1: In this example, we consider a simple problem of maximizing a quadratic function.
Consider the ADLITTLE problem (in the converted form) with 139 constraints and 56 variables. We
apply the algorithm to function U;;(s) = —(s; — s;)? which makes two slack variables as close as
possible. This function may not have any practical application, however, shows a simple example
difficult to solve by classical robust optimization.

The stopping criteria is |g|| < 1075. For Uz the algorithm takes 36 iterations and returns
Uz = —5 x 1071, For Usy the algorithm takes 35 iterations and returns Usy = —2.4 x 10712,

Example 2: Consider the ADLITTLE problem and assume that three constraints {68, 71,74} are
important for the DM. Assume that the DM estimates that there is 20 percent uncertainty in the RHS
of these inequalities. We have (bgs, b71,b74) = (500,493,506) and so the desired slack variables are
around (sgs, $71, s74) = (100, 98,101). By using the classical robust optimization method that satisfies
the worst case scenario, the optimal objective value is obj. = 1.6894 x 10°.

Now assume that the following utility function represents DM’s preferences:
Ul(s) = g8 ln(368) +t7n ln(371) + 74 ln(374) +tn ln(sm).

This function is a NDAS function that we defined in Definition £.Il Assume that the DM set ¢,, = 10
and tgg = t7; = ty4 = 1. By using our algorithm, we get the objective value of obj; = 1.7137 x 10°
with the slack variables (sgg, s71,574) = (82,83,132). As we observe, the objective value is higher than
the classical robust optimization method while two of the slack conditions are not satisfied. However,
the slack variables are close to the desired ones. If the DM sets t,,, = 20, we get the objective value
of objs = 1.9694 x 10° with the slack variables (sgs,s71,574) = (40,41,79). However, all the iterates
might be interesting for the DM. The following results are also returned by the algorithm before the
optimal one:

objz = 1.8847 x 10°, (sgs, 571, 574) = (56, 58, 83),
objy = 1.7 x 10°, (ses, s71,574) = (82,84,125).

Now assume that the DM wants to put more weight on constraints 68 and 71 and so set tgg = t71 = 2,
tzs = 1 and t,, = 20. In this case, the algorithm returns objs = 1.8026 x 10° with the slack variables
(368, 571, 874) = (82, 84, 64).

Example 3: In this example, we consider the DEGEN2 problem (in the converted form) with 757
constraints and 442 variables. The optimal solution of this LP is obj; = —1.4352 x 103. Assume that
constraints 245, 246, and 247 are important for the DM who wants them as large as possible, however,
at the optimal solution we have s(245) = s(246) = s(247) = 0. The DM also wants the optimal
objective value to be at least —1.5 x 103. As we stated before, we add the objective function as a
constraint to the system. To have the objective value at least —1.5 x 103, we can add this constraint
as ¢' x = —1500 + s,,41. For the utility function, the DM can use the NDAS function

U(s) = In(s245) + In(s246) + In(s247).
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By running the algorithm for the above utility function, we get
(8245, S246, S247) = (7.75,17.31,17.8) with objective value objs =~ —1500 after 50 iterations and
(8245, S246, S247) = (15.6,27.58,27.58) with objs ~ —1500 after 100 iterations.

Example 4: In this example, we consider utility functions introduced at the end of Appendix
[Al Consider problem SCORPION with optimal objective value of obj; = 1.8781 x 103. Assume that
the uncertainty in constraints 211 to 215 are important for the DM and we have ||Ab;||; = 0.7b§0),
i € {211,...,215}, where Ab; was defined in ([5). Let & be the solution of MATLAB’s LP solver,
then we have s911 = -+ = s915 = 0 which is not satisfactory for the DM. Besides, assume that the
DM wants the objective value to be at least 1800. To satisfy that, we add the (m + 1)th constraint as
Sma1 = —1800 + ()T which guarantees (¢{?))Tz > 1800. For the utility function, first we define
ui(s;), i € {211,...,215} similar to Figure [ with €} = ||Ab;|; = 0.7650) and €2 = co. So we have for
ie{211,...,215}:

s s; < || Abi]1

(40) ui(s;) =
Ab|l1 s > [|Abl1.

Now, we can define U(s) := 2225511 Inu;(s;). By running the algorithm, the supergradient goes to
zero after 65 iterations and the algorithm stops. Denote the solution by z*, then the results are as
follows:

() Tz* = 1800.3,
0 0 0 0 0
b\ =3.86, b)) =48.26, b\ =21.81, b\ =48.26, b\ = 3.86,
Now, assume that the DM wants the objective value to be at least 1850 and the (m + 1)th constraint
becomes $y,11 = —1850 + (c(o))T:E. In this case, the norm of the supergradient reaches zero, after 104

iterations. The norm of supergradients versus the number of iterations are shown in Figure [0l for these
two cases. Denote the solution after 100 iterations by z*, then we have:

() Tz* = 1850,
(42) 5511 — 122, §§12 - 1674, §§11 — 680, §§11 - 1454, §§11 - 125

Let z be the returned value in the second case after 65 iterations. It is clearly not robust feasible;
however, we can use bound (9) to find an upper bound on the probability of infeasibility. Assume
that N = 10 and all the entries of Ab; are equal. Then, bound ([@9) reduces to B(N,d;N), where
0; = ||ASTZ||1' The probabilities of infeasibility of Z for constraints 211 to 215 are given in Table [ (using

bound 49)).

6. EXTENSIONS AND CONCLUSION

6.1. Extension to Semidefinite Optimization (SDP). Semidefinite Programming is a special
case of Conic Programming where the cone is a direct product of semidefinite cones. Many convex
optimization problems can be modeled by SDP. Since our method is based on a barrier function for
a polytope in R"™, it can be generalized and used as an approximation method for robust semidefinite
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FIGURE 6. Norm of the supergradient versus the number of iterations for Example 5.
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i | Pr((aj,7) > b;)
211 0
212 0.0827
213 0.0018
214 0.0866
215 0

TABLE 2. The probability of infeasibility of Z for constraints 211 to 215.

programming that is IV P-hard for ellipsoidal uncertainty sets. An SDP problem can be formulated as
follows

sup (¢, z),
ti ] ~

st Y AV + 8 =B, Vie{l,2,..,m},
j=1

S; =0, Vie{l,2,...,m},

where Al(j ) and B; are symmetric matrices of appropriate size, and > is the Lowner order; for two
square, symmetric matrices C; and C5 with the same size, we have C = Cs iff C; — Cs is a semidefinite
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matrix. For every ¢ € {1,...,m}, define

t; ) _
Fi={zeR":Y AV < B},
j=1
Assume that int(F;) # 0 and let F; : int(F;) — R be a self-concordant barrier for F;. The typical
self-concordant barrier for SDP is Fj(z) = —In (det (BZ — Z;izl AZ(-] )xj>>. Assume

F = ﬁ]—]
i=1

is bounded and its interior is nonempty. Now, as in the definition of the weighted center for LP, we
can define a weighted center for SDP. For every w € R'', , we can define the weighted center as follows:

(43) arg min {Z wiFi(x) oz € f}
i=1

The problem with this definition is that we do not have many of the interesting properties we proved
for LP. The main one is that the weighted centers do not cover the relative interior of the whole
feasible region and we cannot sweep the whole feasible region by moving in the w-space. There are
other notions of weighted centers that address this problem; however, they are more difficult to work
with algorithmically. Extending the results we derived for LP to SDP can be a good future research
direction to follow.

6.2. Quasi-concave utility functions. The definition of the quasi-concave function is as follows:

Definition 6.1. A function f : R™ — R is quasi-concave if its domain is convex, and for every
a € R, the set

{z e domf : f(x)>a}

1s also convex.

All concave functions are quasi-concave, however, the converse is not true. Quasi-concave functions
are important in many fields such as game theory and economics. In microeconomics, many utility
functions are modeled as quasi-concave functions. For differentiable functions, we have the following
useful proposition:

Proposition 6.1. A differentiable function f is quasi-concave if and only if the domain of f is convex
and for every x and y in domf we have:

(44) fy) > fl@) = (Vi) (y—2)>0

([44]) is similar to ([I8]), which is the property of the supergradient we used to design our algorithms.
The whole point is that for a differentiable quasi-concave function U(s) and any arbitrary point s°,
the maximizers of U(s) are in the half-space
(VU(s°)) T (s —s%) > 0. This means that we can extend our algorithms to differentiable quasi-concave
utility functions simply by replacing supergradient with gradient, and all the results for s-space and
w-space stay valid.
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6.3. Conclusion. In this paper, we presented new algorithms in a framework for robust optimization
designed to mitigate some of the major drawbacks of robust optimization in practice. Our algorithms
have the potential of increasing the applicability of robust optimization. Some of the advantages of
our new algorithms are:

(1) Instead of a single, isolated, and very demanding interaction with the DM, our algorithms
interact continuously with the DM throughout the optimization process with more reasonable
demands from the DM in each iteration. One of the benefits of our approach is that the DM
“learns” what is feasible to achieve throughout the process. Another benefit is that the DM
is more likely to be satisfied (or at least be content) with the final solution. Moreover, being
personally involved in the production of the final solution, the DM bears some responsibility
for it and is more likely to adapt it in practice.

(2) Our algorithms operate in the weight-space using only driving factors with the DM. This helps
reduce the dimension of the problem, simplify the demands on the DM while computing the
most important aspect of the problem at hand.

(3) Weight-space and weighted-analytic-centers approach embeds a “highly differentiable” struc-
ture into the algorithms. Such tools are extremely useful in both the theory and applications
of optimization. In contrast, classical robust optimization and other competing techniques
usually end up delivering a final solution where differentiability cannot be expected.

Note that many elements of our approach can be partly utilized in other approaches to robust
optimization and decision making situations under uncertainty. Moreover, our work creates natural
connections between robust optimization and multi-attribute utility theory, elicitation methods used
in multi-criteria decision making problems and goal programming theory (see [39] 48] [34]).

Developing similar algorithms for semidefinite programming is left as a future research topic. As
we explained in Subsection [6.I], we can define a similar notion of weighted center for SDP. However,
these weighted centers do not have some of the properties we used for LP, and we may have to switch
to other notions of weighted centers that are more difficult to work with algorithmically, and have
fewer desired properties compared to the LP setting.
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APPENDIX A. PROBABILISTIC ANALYSIS

Probabilistic analysis is tied to robust optimization. One of the recent trends in robust optimization
research is the attempt to try reducing conservatism to get better results, and at the same time
keeping a good level of robustness. In other words, we have to show that our proposed answer has a
low probability of infeasibility. In this section, we derive some probability bounds for our algorithms
based on weight and slack vectors. These bounds can be given to the DM with each answer and the
DM can use them to improve the next feedback.

A.1. Representing the robust feasible region with weight vectors. Before starting the prob-
abilistic analysis, want to relate the notion of weights to the parameters of the uncertainty set. As we
explained in Subsection 2, we consider our uncertainty sets as follows:

(45) B; = {b D 3z=(zh,.. 2N e -1, 1N st by = b +ZAbH}

=1
where {Zl}fv sie{l,...,m} are independent random variables, and Ab! is the scaling factor of z!.
We assume that the support of Zl contains z! = —1, i.e., Pr{zl = —1} # 0. Let us define another set

which is related to the weight vectors:

(46) W = {(wl,...,wm):wie[ i(w)]|Ab; |1, 1) sz—l}

where y(w) is the y-vector of w. Our goal is to explicitly specify a set of weights whose corresponding
w-center makes the feasible solution of the robust counterpart.

Proposition A.1. Let x satisfy Az < b for every b € By x By X -+ X By,. Then there exists some
w € W, so that = is the weighted analytic center with respect to the weight vector w, i.e., x = x(w).
In other words,

{x Az <b, VEGleng---me}g{x(w) w e Wh.

Proof. Let @ > 0 be an arbitrary vector such that ", @; = 1, and let (Z, 7, §) be the weighted center

corresponding to it. Assume that z is in the robust feasible region; we must have (a;, z) < bg ) +(Ab;, Z;)
for every Z; with nonzero probability, particularly for Z; = —e where e is all ones vector. So

(as, 2) — b < (Aby, ) = (Abs, —e) = —||Aby]].
Define s; := bl(-o) — (aj, z). Thus, from the above equation, for every i € {1,...,m} we have
0 < [|Ab;]]1 < sq,
and consequently 7;||Ab;||1 < 9;s; using the fact that g; > 0. For every i € {1,...,m}, we set
w; = U;S;.

Since (z,9, s) satisfies the optimality conditions, we have x = z(w). It remains to show that w € W.
First note that:
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where for the second equality we used Lemma [B.Il Now, using the fact that w; > 0 for every
i€ {l,...,m}, we have w; < Z;"’:l w; = 1. We already proved that g;||Ab;||1 < 9s5; = w;. These two
inequalities prove that w; € [g;]|Abi|1,1). O

The above proposition shows that when the robust counterpart problem with respect to the un-
certainty set B1 X Bg X - -+ X By, is feasible, the set W is nonempty. In the next proposition we prove
that the equality holds in the above inclusion.

Proposition A.2. (a)We have
{ : Az <b, Vbe By x By X --- X By} = {z(w) : we W}

(b) Assume that w > 0 satisfies Y " w; = 1, and y is its corresponding y-vector. For every
ie€{l,...,m}, we have

w; > yzHAbzul = (ai,x(w)> <, VBZ € B;.

Proof. (a) C part was proved in Proposition [A.Tl For D, let w € W and (z,y, s) be its corresponding
weighted center. By w € VW we have

yill Abi 11 < w; = siys = (0 — (a5, 2))y; = |Abi]l1 < (B — (ai,x)).

7

Therefore, for all z; € x,[—1,1],
(ag,z) < b — || Ab;|; < b ZAbl 2=\ 1 (5, Aby),

which proves z is a robust feasible solution with respect to the uncertainty set B; X By X -+ X B,
(b) Assume that w > 0 satisfies > " w; = 1, y is its corresponding y-vector, and there exists
i { m} such that w; > y;||Abg||1. If there exists b; € B; such that (a;,z(w)) > b; where
b; = b )y E Abl zL, by using 2! > —1 we have
N; N;
(a, z(w)) > b = (a5, z(w)) > bl(-o) + ZAbﬁ > bl(-o) - ZAbé
=1

= ZAbl>b(0 (as, z(w)) = si(w)

N; N;
= ZAbﬁ > yisi(w) = w; > y; ZAbé
=1 =1

Ni Ni
= ;Abﬁ > ;Abﬁ,
rt -1

which is a contradiction. We conclude that (a;, z(w)) < b; for all b; € B;. O
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A.2. Probability bounds. Without loss of generality, we make the following assumptions on b and

C:

e For every i € {1,2,...,m}, b; can be written as b; = bgo) + Zf\il AbLzl where {221};\21 are
independent random variables for every i € {1,...,m}.
e For each ¢, i € {1,...,n}, we have ¢; = cgo) + e Ackzl where {21}V are independent

random variables.

(0)
1
variables {Ell}fill In practice, the number of these random variables NN, is small compared to the
dimension of A as we explained above: each random variable Zﬁ represents a major source of uncertainty
in the system.

As can be seen above, each variable b; is the summation of a nominal value b;’ with scaled random

Suppose we wish to find a robust feasible solution with respect to the uncertainty set By X Bg X
-+ X By,, where B; was defined in ({#&]). By Proposition [A.2] it is equivalent to finding the weighted
center for a w € W, where W is defined in ([@@). However, finding such a weight vector is not straight
forward as we do not have an explicit formula for V. Assume that we pick an arbitrary weight vector
w > 0 such that > ", w; = 1, with the weighted center (z,y,s). Let us define the vector § for w as

Wi .
0; = A ie{l,2,...,m},

where Ab; was defined in ([@5). For each i € {1,...,m}, if 1 < ¢;, by Proposition [A.2}(b) we have
(a;, x(w)) < b; for all b; € B;. So, the problem is with the constraints that 1 > §;. For every such
constraint, we can find a bound on the probability that (aj, z(w)) > b;. As in the proof of Proposition
[A2}(b), in general we can write:

N;
PI‘{<CL]',JI> > Ej} = Pr {—yZZAbﬁ 55 > Wi = yﬁ,HAb,Hl}
=1

N.
- 2(|| Ab;|1)?
(47) = Pr {_ZAbﬁ- 3> &-HAbiul} < exp (——’ (|]’V, le 2) ;
=1 2 21:21 (Abi)
where the last inequality is derived by using Hoeffding’s inequality:

Lemma A.l. (Hoeffding’s inequality[31]) Let vy, va,...,v, be independent random wvariables with
finite first and second moments, and for every i € {1,2,...,n}, 7, < v; < p;. Then for every ¢ >0

Pr Zn:fu FE Zn:v >n <e —2n2cp2
i — i | = SeXPp |l =77 9| -
i=1 i=1 v P Yie1(pi — 7;)?

Bertsimas and Sim [I4] derived the best possible bound, i.e., a bound that is achievable. The
corresponding lemma proved in [I4] is as follows:

Lemma A.2. (a) If Z, 1 € {1,...,N;}, are independent and symmetrically distributed random vari-
ables in [—1,1], p is a positive constant, and v < 1,1 € {1,...,N;}, then

N;
=1
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where

1 N N /N
B = g (a-m( )+ X (7))
i=|v]+1
where v := (N; +p)/2, and p:=v — |v].
(b) The bound in @) is tight for Zt having a discrete probability distribution:
Pr{zl =1} = Pr{zl = —1} = 1/2, vy = 1, 1 € {1,...,N;}, an integral value of p > 1, and p + N;
being even.

We can use the bound for our relation (@) as follows. Assume that 2/, [ € {1,...,N;}, are
independent and symmetrically distributed random variables in [—1, 1]. Also denote by max(Ab;), the
maximum entry of Ab;. Using (7)), We can write

N;
Pr{(aj,z) > b;} = Pr {Z AbL Zl > 6,~HAbiH1}

=1

N.
~ A 1Abi]11
< S A~ A, Y L L
Pr {; max(Ab;) e max(Ab;)

| Ab;|1
< P W | i1 LS I
(49) < B(Nl,élmax( AB)

To compare these two bounds, assume that all the entries of Ab; are equal. Bound (A7) reduces to
exp(—62N;/2), and bound @J) reduces to B(N;,§;N;). We can prove that bound (@J) dominates
bound ({AT). Moreover, bound (9] is somehow the best possible bound as it can be achieved by a
special probability distribution as in Lemma [A.2l The above probability bounds do not take part in
our algorithm explicitly. However, for each solution, we can present these bounds to the DM and s/he
can use them to improve the feedback to the algorithm. As an example of how these bounds may be
used for the DM, we show how to construct a concave utility function U (s) based on these probability
bounds. Bounds (7)) and (@J]) are functions of §; = inIX?nlll =7 A‘Z”l and as a result, functions of s.

Now, assume that based on the probability bounds, the DM defines a function w;(s;) for each slack
variable s; as shown in Figure [l w;(s;) increases as s; increases, and then at the point e} becomes
flat. At s; = € it starts to decrease to reach zero. Parameters e} and €7 are specified by the DM’s
desired bounds. Now, we can define the utility function as U(s) := [[_; ui(s;). This function is not
concave, but maximization of it is equivalent to the maximization of In(U(s)) which is concave.

APPENDIX B. PROPERTIES OF w-SPACE
In this appendix, we study the properties of weight space as well as W, and W, regions. Let us
start from the following well-known lemma:

Lemma B.1. Let (z,y,s) and (%,7,8) be the solutions of system (I4)) corresponding to the weight
vectors w, w € R, , respectively. For every g in the null space of AT we have:

(5.3) = (5.9
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u,(s;)
y

FIGURE 7. The function u;(s;) defined for the slack variable s;

Proof. From (4], we have s = b — Az and § = b — A%, which results in s — § = A(z — &). Hence we
have s — 5 € R(A). As the null space of AT and the range of A are orthogonal, for every 5 € N(AT)
we can write:

<3_37y> =0 = <§7g> = <37g>‘
U

Let (2,9, ) be the solution of system (4] corresponding to the weight vector w. Moreover, assume
that g7 > 0 is such that A4 = 0. Then, by using Lemma [B.1], we can show that (&, 7, §) is the solution
of system (I4]) corresponding to the weight vector Y(Y)_lii). Hence, there may be many weight vectors
that give the same w-center. A stronger result is the following lemma which shows that in some cases,
we can find the weighted center for a combination of weight vectors by using the combination of their

weighted centers.

Lemma B.2. Let (@ y® @) i e {1,.... ¢}, be solutions of system (), corresponding to the
weights w. Then, for every set of 3; € [0,1], i € {1,... £}, such that Zle B; = 1, and for every
je{l,..., ¢}, we have (Zle 5ix(i),y(j),Zf:1 B;sW) is the w-center of F, where

l
wi= 3 HY O ()10,
i=1

Moreover,
m m .
33l
i=1 i=1

Proof. According to the assumptions, for every i € {1,...,¢}, we have

Az 4 50 = 5O 550,
ATy =0,
50y — (0.
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Now, it can be seen that (Zle Bizx® ), Zle B;s(™) satisfies the system:

¢ ¢ ¢
AD Bz + (O BisD) =0 (> Bis™) >0,
i=1 i=1 i=1

ATy =,
)4 Y '
(50) (Z B; 8@y 0) = Z BY D (y @)=Ly
i=1 i=1

Since the w-center of F is unique, the proof for the first part is done.
For the second part, from (B0) we can write

m l m l

m l
Dowi=3 0 B = 55w = D2 Bty ).
=1

=1 p=1 p=1 i=1 p=1

By Lemma Bl we have (s®), y0)) = (s() 40} Therefore, we can continue the above series of
equations as follows:

m 4 m

l m )4 m
S wi =3 At D) = 37 4> sD) = (3w S8, = 3wl
p=1 p=1 i=1

=1 p=1 1=1 i=1
0

B.1. Properties of w-space. In this subsection, we study the structure of the w-space, which is
important for the design of the algorithms in Section [l Let s and y be centric. First, we note that
the simplex of the weight vectors can be divided into regions of constant y-vector (IW,) and constant
s-vector (Wy). By using Lemma [B.2] if (Z,7, §) is the solution of system (I4]) corresponding to the
weight vector w € W, and § > 0 is any centric y-vector, then (Z, 7, §) is the solution of system ([I4])
corresponding to the weight vector Y(Y)_l
centric vector y, S'y is a weight vector in the simplex.

w. This means that for every centric vector § and any

For every pair of centric vectors s and y, W, and W, are convex. To see this, let (z, 7, s) and (z,y, s)
be the weighted centers of w and w. Then, it is easy to see that for every 5 € [0, 1], (z, By+ (1—5)y, s)
is the weighted center of S + (1 — f)w. With a similar reasoning, W, is convex for every centric y.

Using ([I4]), we can express W, and W, as follows:
(51) W, =Y[(R(A) +b) NRY, N B;(0,1),

(52) W = SIN(AT) NRT,] N By (0,1),

where Bj(0,1) is the unit ball in 1-norm centered at zero vector. Here, we want to find another
formulation for W, that might work better in some cases. We use the following lemma.

Lemma B.3. Assume that the rows of By € R=)Xm make a basis for the null space of ATY . Then
there exists x € R™ such that Y Ax +w = Y'b if and only if Byw = B,Yb. Le., (Yb—w) € R(YA) iff
(Yb—w) € N(By).
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Proof. Assume that there exists = such that YAz +w = Y'b. By multiplying both sides with B, from
the left and using the fact that B,Y A = 0 we have the result. For the other direction, assume that
Byw = ByY'b. Then B,(w —Yb) = 0 which means w — Y'b is in the null space of B,. Then, using the
orthogonal decomposition theorem, we have N'(B,) = 72(3;1r )t = N(ATY)L = R(YA). Thus, there
exists  such that YAz +w = Yb. O

Assume that B € R(m=)*™ is such that its rows make a basis for the null space of AT. For every
vector y, we have ATy = ATY (Y ~1y), so if y is in the null space of AT, Y~y is in the null space of
ATY. Hence, if the rows of B make a basis for the null space of AT, the rows of BY ! make a basis
for the null space of ATY and we can write B, = BY . Using Lemma [B.3] there exists « such that
Y Az +w = Yb if and only if BY ~'w = BY ~'Yb = Bb, and we can write (5I)) as:

(53) W, = {w >0 : BY lw=Bb ¢ w= 1}.
Let us denote the affine hull with aff(.). We can prove the following lemma about W, and W,.

Lemma B.4. Assume that s and y are centric, we have

Wy = aff(Wy) "W and W, = aff(W,) N W.

Proof. We prove the first one and our proof for the second one is the same. Clearly we have Wy C
aff(Ws) N W. To prove the other side, assume by contradiction that there exist w € aff(Ws) N W such
that w ¢ W;. Pick an arbitrary @ € relint(Ws) and consider all the points w(8) = fw + (1 — 8)w for
B € [0,1]. Both w and w are in aff(WWy), so all the points w(f) are also in aff(W;). w(0) € Wy and

w(1) ¢ Wi, so let 3 be sup{f : w(3) € W,}.

Note that all the points in W has the same s-vector, so we have w(8) = Sy(p) for g € [0, 5). By
using (I4]) we must also have w(f) € Wy. We want to prove that 5 = 1. Assume that § < 1. All the

points on the line segment between w(0) and w(f) have the same s-vector and we can write them as

~ ~

S(yy(0) + (1 —v)y(B)) for v € [0,1]. But note that y(5) > 0, so there is a small enough € > 0 such

A~

that y. = (—ey(0) + (1 + €)y(B)) > 0 and hence Sy, is a weight vector in W,. However, it is also a

A~

vector on the line segment between w(f) and w which is a contradiction to 5 = sup{f : w(5) € Ws}.

~

So 8 =1and w = w(1) € W, which is a contradiction. Hence Wy D aff(W;) N W and we are done. [

We conclude that W is sliced in two ways by W,’s and W’s for centric s and y vectors. For each
centric s and each centric y, W, and Wj intersect at a single point Sy on the simplex. We want to
prove that the smallest affine subspace containing Wy and W, is aff(W) = {w : e"w = 1}. To that end,
we prove some results on the intersection of affine subspaces. We start with the following definition:

Definition B.1. The recession cone of a convex set C' € R™ is denoted by rec(C) and defined as:
rec(C):={yeR" : (x+y)eC, Vexel}
The lineality space of a convex set C' is denoted by lin(C) and defined as:
lin(C) := (rec(C)) N (—rec(C)).
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Let U be an affine subspace of R™. If y € rec(U), then —y € rec(U), which means (rec(U)) =
(—rec(U)). Therefore, by Definition [B] we have lin(U) = rec(U). Then, by using the definition of
the affine space we have:

(54) Iin(U) := {u1 —ug : Yu,ug € U}.

In other words, lin(U) is a linear subspace such that U = u + lin(U) for all w € U where '+’ is the
Minkowski sum. The following two lemmas are standard, see, for instance, [23].

Lemma B.5. Given a pair of nonempty affine subspaces U and V in R", the following facts hold:
(1) UNV £ 0 iff for every uw € U and v € V, we have (v —u) € lin(U) + lin(V).
(2) UNV consists of a single point iff for every w € U and v € V, we have

(v—u) € lin(U) +1in(V) and lin(U)Nlin(V) = {0}.
(3) For every u € U and v € V, we have
lin(aff(U UV)) =1lin(U) +lin(V) + {a(v —u) : « € R}.
Lemma B.6. Let U and V' be nonempty affine subspaces in R™. Then we have the following properties:

(1) if UNV =0, then
dim(aff(UUV)) = dim(U) + dim(V) + 1 — dim(lin(U) N lin(V)),

(2) ifUNV £ 0, then
dim(aff(U U V)) = dim(U) + dim(V) — dim(U N V).

Using the above lemmas, we deduce the following proposition.

Proposition B.1. Assume that s and y are centric s-vector and y-vector, respectively. Then the
smallest affine subspace containing Wy and W, is aff(W) = {w : elw=1}.

Proof. We assumed that A € R™*"™ has full column rank, i.e., rank(A) = n < m and the interior of
{z : Az < b} is not empty. Let B, denote the set of all centric s-vectors, i.e., the set of s-vectors for
which there exist (z,vy, s) satisfies all the equations in (I4]). We claim that B; = {s > 0:s=b— Azx}.
For every s € {s > 0 : s = b — Az}, pick an arbitrary y > 0 such that ATy = 0. For every scalar
o we have AT (ay) = 0, so we can choose a such that ay's = 1. Hence (x,ay, s) satisfies (I4) and
we conclude that Bs = {s > 0: s = b— Ax}. The range of A has dimension n and since By is not
empty; it is easy to see that the dimension of By is also n. Moreover, we have W, = Y B and since
Y is non-singular, we have dim(W,) = n.

Now denote by B, the set of centric y-vectors. By (I4]), we have ATy = 0. The dimension of the
null space of AT is (n —m). In addition, we have to consider the restriction e '

l=c'w=e (Ys)=s'y=(b-—Az) y=b'y—z Aly=0"y.

w = 1; we have

So, we have b'y = 1 for centric y-vectors which reduces the dimension by one (since b ¢ R(A)), and
dim(By) = m —n — 1. We have W = SB,, and so by the same explanation dim(W,) =m —n — 1.
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We proved that W, and W, intersect at only a single point w = Sy, so dim(W, N W,) = 0. By
using Lemma [B.6}(2) the dimension of the smallest affine subspace containing Wy and W), is

dim(Wy) + dim(Wy) —dim(W,nWy) =n+m—-n—-1=m — 1.

The dimension of aff(T¥) is also m — 1, so by Lemma [B.4l aff(W) is the least affine subspace containing
W, and W,,. O

AprpPENDIX C.

Example C.1. The statement of Proposition [{.1] is not true for a general concave function.

Proof. Consider the first example of Example B.Il We have m =3, n =1,
A=11, -1, =1]", and b= [1, 0, 0]". Using (), the set of centric s-vectors is

Bs={[1-2 =z 2":2€(0,1)}.

The set of centric y-vectors, By, is specified by solving ATy =0 and y'b = 1 while y > 0 and we
can see that By, = {[1, =z, 1-— 2]" 1 2 € (0,1)}. As shown in Figure @] W, regions are parallel line
segments while W, regions are line segments that all intersect at [1, 0, 0]".

Now, assume that the function U(s) is as follows (does not depend on s3)

351 — So, if 51 < s9;
(55) Uls) = 1 2 1 2
—s1 + 339, if 51> s9.

This function is piecewise linear and it is easy to see that it is concave. U(s) is also differentiable at all
the points except the points s;1 = s9. At any point that the function is differentiable, the supergradient
is equal to the gradient of the function at that point. Hence, we have OU (s) = {[3, —1, 0] "} for s1 < so
and OU (s) = {[~1, 3, 0]T} for s; > so.

If we consider U(s) on Bs, we can see that the maximum of the function is attained at the point
that s1 = 2, S0 Sopt = [1/2, 1/2, 1/2]7. Now assume that we start at w® = $%° = [0.4, 0.1, 0.5]T.
Because we have y; = 1 for all centric y-vectors, w? = S?, and we can easily find s° and y° as
s9 =104, 0.6, 0.6]" and y° = [1, 1/6, 5/6]T. The hyperplane passing through w? is
()T (Y9 (w — w®) = 0 and since s < 59 we have

(56) (@) =103, -1, 0)(Y) ' =[3, -6, 0],

and we can write the hyperplane as 3(w; — 0.4) — 6(wg — 0.1) = 0. In the next step, we have
to choose a point w! such that (¢°)7(Y?)~!(w! — w®) > 0. Let us pick w! = [0.6, 0.19, 0.21]"
for which we can easily find s' = [0.6, 0.4, 0.4]" and y' = [1, 0.475, 0.525]". For this point
we have st > s2 so (¢")"(YH)™! = [~1, 6.32, 0]" and the hyperplane passing through w! is

—(wy — 0.6) + 6.32(w2 — 0.19) = 0. The intersection of two hyperplanes on the simplex can be found
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by solving the following system of equations:

3wy, — 6ws = 0.6 0.57
(57) —w1 — 6’[1)2 =06 = w* = 0.185
wy +wy +wsg =1 0.245

The intersection of simplex and the hyperplanes (¢°) T (Y?) ! (w—w") = 0 and (¢") T (Y N (w—w') =0
are shown in Figure 8l The intersection of simplex with
{fw: ()T w—w’) >0, (¢")"(Y) ' (w—w') >0} is shown by hatching lines. As can be
seen, we have:

{w: (") @=u") 20, (") (w=-w') =0} nW,, = o

Sop

Wy A

»

FIGURE 8. Intersection of simplex and the hyperplanes (gO)T(YO)_l(w —w’) =0 and
(gH T (Y1)~ (w — w') = 0 in Example [C11
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