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1 An example protocol

Here we describe a construction of strong coin-flipping protocols based on
quantum bit-commitment [11, [3], [11], [6] that consists of three messages. First,
Alice chooses a uniformly random bit a, creates a state of the form
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and sends A to Bob, i.e., the first message consists of qubits corresponding to
the space C4. (For ease of exposition, we use this language throughout, i.e.,
refer to qubits by the labels of the corresponding spaces.) This first message
is the commit stage since she potentially gives some information about the bit
a, for which she may be held accountable later. Then Bob chooses a uniformly
random bit b and sends it to Alice. Alice then sends a and A’ to Bob. Alice’s
last message is the reveal stage. Bob checks to see if the qubits he received are
in state 1, (we give more details about this step below). If Bob is convinced
that the state is correct, they both output 0 when a = b, or 1 if a # b, i.e.,
they output the XOR of a and b.

This description can be cast in the form of a quantum protocol as presented
in [7]: we can encode 0 as basis state ey and 1 as e;, we can simulate the
generation of a uniformly random bit by preparing a uniform superposition
over the two basis states, and we can “send” qubits by permuting their order (a
unitary operation) so that they are part of the message subsystem. In fact, we
can encode an entirely classical protocol using a quantum one in this manner.

We present a protocol from [6] which follows the above framework.

Definition 1 (Coin-flipping protocol example)
Let A := {0,1,2}, A’ := A, and let C* and C* be spaces for Alice’s two
messages.

o Alice chooses a € {0,1} uniformly at random and creates the state

1 ]. !
Vo= —=€a®es+ —=e2@ey €CLRCH,

V2 V2

where {eg, e1,e2} are standard basis vectors. Alice sends the A part of v,
to Bob.

e Bob chooses b € {0,1} uniformly at random and sends it to Alice.

e Alice reveals a to Bob and sends the rest of 9,, i.e., she sends A’.

e Bob checks to see if the state sent by Alice is v, i.e., he checks to see if
Alice has tampered with the state during the protocol. The measurement
on CA @ C¥ corresponding to this check is

(Haccept = 1;[}(11;[};, Ipors :=1— Haccept)-

If the measurement outcome is “abort” then Bob aborts the protocol.

e Each player outputs the XOR of the two bits, i.e., Alice outputs a & ¥V,
where b’ is the bit she received in the second round, and if he does not
abort, Bob outputs a’ @ b, where a’ is the bit received by him in the third
round.

In the honest case, Bob does not abort since (Il.port,¥a?s) = 0. Fur-
thermore, Alice and Bob get the same outcome which is uniformly random.
Therefore, this is a well-defined coin-flipping protocol. We now sketch a proof
that this protocol has bias € = 1/4.
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Bob cheating. We consider the case when Bob cheats towards 0; the
analysis of cheating towards 1 is similar. If Bob wishes to maximize the proba-
bility of outcome 0, he has to maximize the probability that the bit b he sends
equals a. In other words, he may only cheat by measuring Alice’s first message
to try to learn a, then choose b suitably to force the desired outcome. Define
Pa = Tras (a1)%). This is the reduced state of the A-qubits Bob has after the
first message. Recall Bob can learn the value of a with probability

1 1
—4+-A =3/4
2 + ) (pOapl) / )

and this bound can be achieved. This strategy is independent of the outcome
Bob desires, thus P§ , = Pg ; = 3/4.

Alice cheating. Alice’s most general cheating strategy is to send a state in
the first message such that she can decide the value of a after receiving b, and
yet pass Bob’s cheat detection step with maximum probability. For example,
if Alice wants outcome 0 then she returns a = b and if she wants outcome 1,
she returns a = b. Alice always gets the desired outcome as long as Bob does
not detect her cheating. As a primer for more complicated protocols, we show
an SDP formulation for a cheating Alice based on the above cheating strategy
description. There are three important quantum states to consider here. The
first is Alice’s first message, which we denote as o € Sﬁ. The other two states
are the states Bob has at the end of the protocol depending on whether b = 0
or b =1, we denote them by o} € Sf®‘4/. Note that Tra/(o¢) = Tras(o1) = o
since they are consistent with the first message c—Alice does not know b when
o is sent. However, they could be different on A’ because Alice may apply some
quantum operation depending upon b before sending the A’ qubits. Then Alice
can cheat with probability given by the optimal objective value of the following
SDP:

sup %<¢0¢67 UO> + %<w1’¢)f’ Ul>
=0

subject to  Tras(op) : for all b € {0,1},
Tr(o) =1,
o€ Sﬁ,
op € Sﬁ@m/, for all b € {0,1},

recalling that the partial trace is trace-preserving, any unit trace, positive
semidefinite matrix represents a valid quantum state, and that two purifi-
cations of the same density matrix are related to each other by a unitary
transformation on the part that is traced out.

It has been shown [I1], [3], [9] that the optimal objective function value of

this problem is

1 1
—+ —+F =3/4
) + 9 (POaPl) 3/

given by the optimal solution (cq,01,0) = (Yip*, Yp*, Trar (Yip*)), where

w—\F@@ +\/T ® +\F ®
= 660 €0 661 €1 362 €o .
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Therefore, the bias of this protocol is
max{ Py o, Px 1, P50, P51} —1/2=3/4-1/2=1/4.

Using the Fuchs-van de Graaf inequalities [5], it was shown in [3] that for any
po and p1, we have

maX{ + 5 \/ (Po, p1), + Apoapl)}—lﬂ > 1/4.

Thus, we cannot improve the bias by simply changing the starting states in this
type of protocol, suggesting a substantial change of the form of the protocol
is necessary to find a smaller bias.

2 SDP characterization of cheating strategies
We start by formulating strategies for cheating Bob and cheating Alice as
semidefinite programs as proposed by Kitaev [7] restricting to the protocols

examined in this paper. The communication of such a protocol is depicted in
Figure [} below.

. / Ao AL 5 A ) , -
Alice prepares 1) € CAoxApxArxAzxApxA Bob prepares ¢ € CBoxBoxBixB2xByxB;

Alice sends C*t  (z1 € Ay)

Bob sends CPt  (y; € By)

Alice sends C*2 (12 € Ap)

Bob sends CP2  (y5 € Bo)

CALX AL x Al

Alice sends C- (a € {0,1} and a copy of 1, x2)

Bob sends CB0*BixB:  (he {0,1} and a copy of y1,y2)

Alice checks if Bob cheated Bob checks if Alice cheated

Alice and Bob output a & b if no cheating is detected
Fig. 1 A six-round protocol.
The extent to which Bob can cheat is captured by the following lemma.

Lemma 1 The mazimum probability with which cheating Bob can force honest
Alice to accept ¢ € {0,1} is given by the optimal objective value of the following
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SDP:

sup  (pr, Iac)
s.t. Trg, (p1) = Tra, (Vy*),
Trp, (p;) = Tra,(pj—1), Vi€{2,...,n},
TrB’xB()(pF) = TrA’xfll(’J(pn)v ,
p; € SﬁOXAOXBlX"'XBjXAj+1X"'><Ar,LXA Ve {1’ o ’n}’
P € S_?OXB‘GXBXBI.

Furthermore, an optimal cheating strategy for Bob may be derived from an
optimal feasible solution of this SDP.

Proof The matrix constraints in the SDP may readily be rewritten as linear
constraints on the variables p;, so the optimization problem is an SDP. The
variables are the density matrices of qubits under Alice’s control after each of
Bob’s messages. The partial trace is trace-preserving, so any feasible solution
satisfies
Tr(pr) = Tr(pn) = -+ = Tr(p1) = Tr(vy™) = 1.

Since p1, ..., pn, pr are constrained to be positive semidefinite, they are quan-
tum states.

Bob sends the By qubits to Alice replacing the A; part already sent to
him. Being the density matrix Alice has after Bob’s first message, p; satisfies

TrBl (pl) = ’—‘[‘I‘Al (1/J¢*),

since the state of the qubits other than those in A, By remains unchanged.
Similarly, we have the constraint

TrBj(pj) :TrAj(pj—1)7 for .] € {2a'--7n}7

for each p; after Bob’s j'th message. Also pp, the state Alice has at the end
of the protocol, satisfies

Trpix By (pr) = Trarxay (pn)-

She then measures pp and accepts ¢ with probability (pr, ITa ¢).

These constraints are necessary conditions on the states under Alice’s con-
trol. We may further restrict the states to be real matrices: the real parts
of any complex feasible solution also form a feasible solution with the same
objective function value.

We now show that every feasible solution to the above problem yields
a valid cheating strategy for Bob with success probability equal to the ob-
jective function value of the feasible solution. He can find such a strategy
by maintaining a purification of each density matrix in the feasible solution.
For example, suppose the protocol starts in the state n := ¥ ® ¢, where
¢ € CK .=CPo CBo © CB @ CB ® CK’ where CX' is extra space Bob uses
to cheat. Consider 7 € C4 @ C4 @ C* @ CA" ® CK a purification of p;. Since
TrBl (pl) = TrAl (1/)1/1*)7 we have

TrAl XK(TT*) = TrBl (pl) = TrAl (W/)*) = TrAl XK(UU*)'
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Alice prepares 1) € CAoX Ay Arx Apx Ay x Ay Bob does not follow protocol
Bob maintains purifications of p1, p2, pr

Y
Alice sends C* (z1 € A4y)

Tra, (V1)
Bob sends CPt  (y; € By)

P1
Alice sends C*2 (x5 € Ag)

Tra,(p1)
? Bob sends CP2  (y; € Bs)

2
P CAYX A x A}

Alice sends C (a € {0,1} and a copy of z1, x3)

Tr g4y %45 (P2) A
Bob sends CP0*Pi*Bz (b € {0,1} and a copy of 1, y2)

PR
Alice checks if Bob cheated Bob simply outputs his desired outcome

Fig. 2 Bob cheating in a six-round protocol.

Thus, there exists a unitary U which acts on C4* @ CX which maps 7 to 7.
If Bob applies this unitary after Alice’s first message and sends the By qubits
back then he creates p; under Alice’s control. The same argument can be
applied to the remaining constraints.

The states corresponding to honest Bob yield a feasible solution. Attain-
ment of an optimal solution then follows from continuity of the objective func-
tion and from the compactness of the feasible region. An optimal solution
yields an optimal cheating strategy. a

We call the SDP in Lemma|[I] Bob’s cheating SDP and depict Bob cheating,
and the context of the SDP variables, in a six-round protocol in Figure
above.

In a similar fashion, we can formulate Alice’s cheating SDP.

Lemma 2 The maximum probability with which cheating Alice can force hon-
est Bob to accept ¢ € {0,1} is given by the optimal objective value of the
following SDP:

sup (op, Il @ Ip;xp)
s.t. Tra, (01) = ¢o*,
TrA2 (02) = TrBl (Ul)a

TrAn (On) = Tan—l(U'ﬂ—l)?
TrA/xA()(O'F) = Tan(O'n),
BoxBix A1 x--XxA;jXBjx--xBpxB’ .
o; € S{PTTOT Inm "tV e{l,. .. ,n},
BoxBixAjxAxA'xB’
OF € SJrO om0 .

Furthermore, we may derive an optimal cheating strategy for Alice from an
optimal feasible solution to this SDP.
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Alice does not follow protocol Bob prepares ¢ € CBoxByxBixB2x B xB;

Alice maintains purifications of o1, 03, o

Lo
Alice sends C41  (z1 € Ay)
o1
Bob sends CPt  (y; € By)
Trp, (01)
Alice sends C42 (29 € Ag) !
oy
Bob sends CP2  (y, € By)
A Trp, (02)
Alice sends C*0*41*42  (q € {0,1} and a copy of a1, 22) :
oF

Bob sends CP0*BixB: (b € {0,1} and a copy of y1, y2)

TrpyxpyxBy(0F)
Alice simply outputs her desired outcome Bob checks if Alice cheated

Fig. 3 Alice cheating in a six-round protocol.

The characterization of Alice’s cheating strategies is almost the same as
that for cheating Bob; we only sketch the parts that are different.

Proof There are two key differences from the proof of Lemma [l} One is that
Alice sends the first message and Bob sends the last, explaining the slightly
different constraints. Secondly, Bob measures only the CPo CY% @CAgCY
part of his state after Alice’s last message, i.e., he measures Tr Byx B’ (or). Note
that the adjoint of the partial trace can be written as

TI‘E(I)XB’(Y) = Y®IB(’)><B’

Therefore we have <TTB()xB'(0F),UB,c> = <0F,HB,C®IB()X3/>, which ex-
plains the objective function. O

We depict Alice cheating, and the context of her SDP variables, in a six-
round protocol in Figure [3] above.

Analyzing and solving these problems computationally gets increasingly
difficult and time consuming as n increases, since the dimension of the variables
increases exponentially in n. This is precisely why we develop the reduced
problems which are conceptually simpler and much easier to solve numerically.

3 Derivations of the reduced SDPs

We now show the derivation of Alice’s reduced cheating strategies (the deriva-
tion of Bob’s is very similar and the arguments are the same). We show that if
we are given an optimal solution to Alice’s cheating SDP, then we can assume
it has a special form while retaining the same objective function value. Then
we show this special form for an optimal solution can be written in the way
desired.
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We now discuss some of the tools used in the upcoming proofs.

Lemma 3 Suppose A is a finite set. Suppose p = Zpr s ® ey € Prob?*4
T€EA
and o € Sﬁ is a density matriz. Then we have

max {(VovB"p) i Tralp) = o b < max {(vByB",p):Tra(p) = Ding(0) },

AXA AXA
pESY pESY

where Diag restricts to the diagonal of a square matriz. Moreover, an optimal
solution to the problem on the right is p := \/a\/qT, where

q= Z[a}w; er ® ey € Prob™* 4,
r€A

yielding an objective function value of F(p,q).

Proof Consider p as defined in the statement of the lemma. Since we have
Tra(p) = Diag(o), it suffices to show that for any density matrix p € S_?XA
satisfying either Tra(p) = o or Tra(p) = Diag(o), we have

(VovB' 0) < (VBVB'.7) = F(p.a).

Expanding the first inner product, and using the Cauchy-Schwartz inequal-
ity, we get

(VBVBp) = 3 VBB er ® en) o (e, @)

T,yEA
< 3 VB VA (e @ el - VA (e, @ el
z,y€A

We can simplify this by noting

”\/ﬁ(ex by ew)||2 = (ez & ex)TP (ea; ® 61-)

<> (e-®en)ple-@ey)
z€EA

= e, Tra(p)es

= [0]e
implying

(vovp'p) < 3 \ﬁpqua]x,x[a]y,y)%:(Z pmmz,x) = F(p.q).

z,y€EA

as desired. 0
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Definition 2 We define the partial Diag operator over the subspace C#, de-
noted Diag 4, as the operator that projects density matrices over CB © C4
onto the diagonal only on the subspace C4:

DiagA(p) = Z (IB ® 65) P (IB 0 em) ® ea:e;:["
r€EA

We may write Diag 4 as the superoperator I ® Diag 4, where I is the identity

superoperator acting on the rest of the space. Similarly, we may write the

partial trace over A as the superoperator Trs := I ® Tr(-) where Tr(-) acts

only on CA. Using this perspective, we see that the partial trace and the

partial Diag operators commute when they act on different subspaces. Also,

Tr4 o Diag 4, = Tr4 since the trace only depends on the diagonal elements.
We also make use of the following lemma.

Lemma 4 Consider a matriz p € SﬁXB. If Tra(p) = vb* for some vector
W € CB, then p can be written as p = p @ Y)*, for some p € Sﬁ.

This is easily proven using the fact that the half-line emanating through
a rank one positive semidefinite matrix forms an extreme ray of the cone
of positive semidefinite matrices, or more directly by expressing p using an
orthogonal basis for CP that includes ).

3.1 Derivation of Alice’s reduced cheating strategies

Assume (01,09, ...,0,,0F) is optimal for Alice’s cheating SDP. We now define
new variables (01,0%,...,0,,,0%) from this optimal solution as

(01,Diagp, (02), ..., Diagp, ...« 5, (on),Diagp:, 41 (0r))

and show it is also optimal. All we need to show is feasibility since the objective
function value is preserved because IIg. ® Iy« p 1s diagonal in the space
Sf/XAé. The context of this “reduced strategy” is very simple, Alice simply
changes the probability of which the next message is chosen, controlled on
the messages sent and received so far (doing so in superposition). This is a
very simple form, Alice’s cheating is certainly not limited to such a strategy.
However, here we show that such a strategy is optimal.

The first constraint is satisfied since ¢} = o7 is part of a feasible solution.
From Lemma we can write o} = ¢¢* ® 71 for some &1 € Sﬁ‘. We can write

TrBl (Ui) = Z 691621 ® ¢y1¢21 ® &1’
y1E€B]

where

1 —
Py 1= Z Z Z V2 Boy er@er@ey, ,, Qey,; @ - -Qey, Qey,,

be By y]'+1EB}+1 yneB;L
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CBongxBHle}me

!
which is in *BuxB, Therefore, Trp, (0}) is diagonal in

B and
TrBl (01) = DiagB{ TrB1 (J

—_~
~—
~—

= Tra,(03). (1)

Therefore, the second constraint is satisfied. Since o} is diagonal in Bf we can
write it as

BoxB{X A1 XA X BaX+++XBp X By XX B,
oh = E €y, €y, @02y, , for some o3, € ST .

y1€B]

By feasibility,

TrAz 02 E : €y, € y1 ®Trz42 (02 yl) TrBl Jl E €y, € yl ®¢’y1¢y1 ® o1,
y1E€B] y1€B]

therefore 0y = 3° cpr ey, €y, ® ¢y, @), @ Gay,, where 5oy, € SB"XB oXA1x A
satisfies Tra, (62,,) = 1 for all y; € Bf. Using similar arguments, we may
show that the rest of the first n constraints are satisfied. For every j € {3,...,n},

we have

f— DEEY * ... * * N-
- § : E : eyley1® ®eyj—1eyj—l®¢y1’~»-vyj—l¢y1,...,y]‘_1®0—]1y11~»-»y_j—17
y1€B] y;-1€B)_,;

where

BO><B XAy X XAj

Tjyrryj1 € S4 satisfies Tra, (aj7y1,m7y],_l) =0j_1,y,

elYj—2

for each y; € By,...,yj—1 € Bj,_;. Note that

Trp, ( § :eye ®¢y¢ ®Q Onyryesyn—1
yeB’

which is helpful in proving feasibility of the last constraint. For the last con-
straint, we can use a similar reduction as in Equation to show o’ satisfies
Trarxay (0F) = Trp, (0},) proving (01, ...,0,,,0%) is feasible. We now use this
feasible solution to simplify the problem.

We can clean up o by noting that it is diagonal in CB" and C4 and write
it as

! * * )
op = E E €a€, @ €ye, @ OFay, forsome opq, €S]
a€Aj yeB’

BO><B0><A><A

Thus,

Tr s a (o) = Z Z eyey @Trar(0ray)= Z eyey® Z Tra(0Fay)

acAj yeB’ yeB’ a€ Ay



Supplemental Material

11

Similarly, by feasibility, we have

Trarxay (0F) =Trp,(0,) = Z eyey © Gydy ® Onyy,..y,—s-

yeB’

Thus,
0‘}; = Z Z eae: X eyez X ¢y¢z ® 5_F,a,ya

a€ A} yeB’

’
by writing opa,y = ¢yPy @ GFa,y Where orqy € SﬁXA satisfies

§ Tra(GFay) = Onys,.oyn
acAj

for all a € Aj and y € B’.
The objective function becomes

1
<U%‘7 HB,O & IB()XB’> = 5 Z Z Ba,y <5—F,a,y7wa¢2> .

a€AjyeB’

At this point, we note that

1 ~ .
<O-%‘7HB,1 & IB(')XB’> = 5 Z Z Bé,y <O-F,a,yaq/)a1/}a> )

acAy yeB’

proving that evaluating Alice’s success probability of cheating towards 0 or 1
with this strategy is a matter of switching Bob’s two probability distributions.

Carrying on with Py , we get the following SDP

sup % Z Ba,y (OF,ay, Ya¥a)

acAj,yeB’
s.t. ’IYAI(&l) =1,
TrAj (O-j7y17~~,yjf1) = 0j5-1y1,...,yj—2> Vj € {27 R n} s
Vyl S Bi,
Vyj,1 S B;'—la
Zae% Trar(Gray) = Onyryn1r VY E B,

~ A XX Aj .

Girryyr €SI 7, v ed{l,...,n},
Vyl S Bi,
Vy;j—1 € Bj_y,

GFay € ST 4, Va € Aj,y € B
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By Lemmal/3] the following restrictions can only improve the objective function
value:
51 == diag(51),
sy = diag(32,0). Vo € B,

s V=1 = diag (G on 1)y Y1 € BY, . yn1 € Bh_q,
slaw) .= diag(Tras (6Fa,y)), Vae€ Ay, ye B,
Tra (Gray) = Diag(s@¥)), Vae A), ye B,

where the superscripts are the restrictions of the vectors as before. With these
new variables, and using Lemma [3] we can write the new objective function

as
1
5 2 O Bay P, ),
ac{0,1} y€B
where (s1, ..., 5, s) € Pa. Any feasible solution to the reduced SDP also gives

us a feasible solution to the original SDP, so their optimal values are equal. 0O

This proof shows that the reduced cheating problem does not eliminate
all of the optimal solutions of the corresponding SDP. We can also show that
the reduced problems capture optimal solutions to the corresponding SDPs by
examining the dual SDPs. However, the primal SDPs are more important for
the purposes of this paper and this proof is more illustrative.

We note here that we can get similar SDPs and reductions if Alice chooses
a with a non-uniform probability distribution and similarly for Bob. It only
changes the multiplicative factor 1/2 in the reduced problems to something
that depends on a (or b) and the proofs are nearly identical. Note that this
causes the honest outcome probabilities to not be uniformly random and this
no longer falls into our definition of a coin-flipping protocol. However, some-
times such “unbalanced” coin-flipping protocols are useful, see [4].

4 Second-order cone programming formulations and analysis

Here we define second-order cone programs and discuss such formulations of
the optimal cheating probabilities for Alice and Bob.
The second-order cone (or Lorentz cone) in R™, n > 2, is defined as

SOC™ := {(z,t) e R" : t > ||z, } .

A second-order cone program, denoted SOCP, is an optimization problem of
the form
(P) sup (¢, z)
subject to  Ax = b,
z € SOC™ & --- & SOC™,
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where A is an m x (Zle ng) matrix, b € R™, c € RXi-1 7 and k is finite.
A related cone, called the rotated second-order cone, is defined as

RSOC™ := {(a,b, z) €R™ :a,b> 0, 2ab > Hx||§} .

Optimizing over the rotated second-order cone is also called second-order cone
programming because (z,t) € SOC™ if and only if (t/2,t,2) € RSOC™! and
(a,b,z) € RSOC™ if and only if (z,a,b,a +b) € SOC™ and a,b > 0. In
fact, both second-order cone constraints can be cast as positive semidefinite
constraints:

2a =T

t 2T 9
=0 and a,b>0,2ab>z]; < || =0

>
e2lell, = |15

Despite second-order cone programming being a special case of semidefinite
programming, there are some notable differences. One is that the algorithms
for solving second-order cone programs can be more efficient and robust than
those for solving semidefinite programs. We refer the interested reader to [12],
[13], [8], [2] and the references therein.

4.1 SOCP formulations for the reduced problems

We now show that the reduced SDPs can be modelled using second-order
cone programming. We elaborate on this below and explain the significance to
solving these problems computationally.

We start by first explaining how to model fidelity as an SOCP. Suppose
we are given the problem

max { F(p,q)}: max {Xn:\/ﬁiti:t?gqi,Vie{l,...,n}},
i=1

q€R? NS q€RT NS
where p € R} and § C R". We can replace t? < g; with the equivalent
constraint (1/2,¢;,t;) € RSOC?, for all i € {1,...,n}. Therefore, we can
maximize the fidelity using n rotated second-order cone constraints.

For the same reason, we can use second-order cone programming to solve
a problem of the form

max Zaﬂ/F(pj,qj) (g1, qm) €ERYP NS S
j=1

where a € R* and §” € R™". However, this does not apply directly to the
reduced problems since we need to optimize over a linear combination of fi-
delities and f(x) = 22 is not a concave function. For example, Alice’s reduced
problem is of the form

m
max ¢ > a;F(pj,q) : (q1,-..,qm) ERT NS
j=1
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The root of this problem arises from the fact that the fidelity function, which
is concave, is a composition of a concave function with a convex function, thus
we cannot break it into these two steps. Even though the above analysis does
not work to capture the reduced problems as SOCPs, it does have a desirable
property that it only uses O(n) second-order cone constraints and perhaps this
formulation will be useful for future applications.

We now explain how to model the reduced problems as SOCPs directly.

Lemma 5 Forp,q € R}, we have

Z \/PiDj ti,j : (Qi7Qj;ti,j) c RSOCS, VZ,] S {1, . ,n}

J=1

1
F(p,q)=max { —
V2,
Proof For every i,j € {1,,...,n}, we have (¢;,q;,ti;) € RSOC? if and only
if ¢;,q; > 0, and 2¢;q; > tij. Thus, t;; = 1/2¢;q; is optimal with objective
function value F(p, q). O

This lemma provides an SOCP representation for the hypograph of the
fidelity function. Recall that the hypograph of a concave function is a convex
set. Also, the dimension of the hypograph of F(-,¢q) : R} — R is equal to n
(assuming ¢ > 0). Since the hypograph is O(n)-dimensional and convex, there
exists a so-called self-concordant barrier function for the set with complexity
parameter O(n), shown by Nesterov and Nemirovski [10]. The details of such
functions are not necessary for this paper, but we mention that such a function
allows the derivation of interior-point methods for the underlying convex opti-
mization problem which use O(y/nlog(1/¢)) iterations, where € is an accuracy
parameter. The above lemma uses §2(n?) second-order cone constraints and
the usual treatment of these “cone constraints” with optimal self-concordant
barrier functions lead to interior-point methods with an iteration complexity
bound of O(nlog(1/¢)). It is conceivable that there exist better convex repre-
sentations of the hypograph of the fidelity function than the one we provided
in Lemma

We can further simplify the reduced problems using fewer SOC constraints
than derived above. We first consider the dual formulation of the reduced
problems, so as to avoid the hypograph of the fidelity function.

Using the SDP characterization of the fidelity function, we write Alice’s
reduced problem for forcing outcome 0 as an SDP. The dual of this SDP is

inf 21
subject to z1-ea, > Trp, (22),
22 ®ea, > Trp,(23),

zn ®ea, > Trp, (Zn41),
Diag(szﬁl) > %ﬁa,y VOar/ Va e {0,1},y€ B ,
zZ1 € R,
z; € RAXBixexAiaxXBicy e 12 n+1}

(v)  _
where Znile = Fntlaizoys wayn,  VEEAYEB .
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The only nonlinear constraint in the above problem is of the form

Diag(2) = Vava
for some fixed ¢ > 0. Recall that for z which is positive in every coordinate,
we have
Diag(z) = \/§\/§T — <z*1,q> <1
So, it suffices to characterize inverses using SOCP constraints which can be
done by considering

(21,73, V2) €RSOC = r; > 2.

With this observation, we can write the dual of Alice and Bob’s reduced
problems using O(n) RSOC constraints for each fidelity function in the ob-
jective function as opposed to £2(n?) RSOC constraints had we combined the
reduced problems with Lemma [f] above.

4.2 Numerical performance of SDP formulation vs. SOCP formulation

Since the search algorithm designed in this paper examines the optimal cheat-
ing probabilities of many protocols (more than 10¢) we are concerned with
the efficiency of solving the reduced problems. In this subsection, we discuss
the efficiency of this computation. Our computational platform is an SGI XE
C1103 with 2x 3.2 GHz 4-core Intel X5672 x86 CPUs processor, and 10 GB
memory, running Linux. The reduced problems were solved using SeDuMi 1.3,
a program for solving semidefinite programs and rotated second-order cone
programs in Matlab (Version 7.12.0.635) [12], [13].

Table [1] (on the next page) compares the computation of Alice’s reduced
problem in a four-round protocol for forcing an outcome of 0 with 5-dimensional
messages. The top part of the table presents the average running time, the
maximum running time, and the worst gap (the maximum of the extra time
needed to solve the problem compared to the other formulation (SOCP vs.
SDP)). The bottom part of the table presents the average number of itera-
tions, the average feasratio, the average timing (the time spent in preprocess-
ing, iterations, and postprocessing, respectively), and the average cpusec.

Table [I] suggests that solving the rotated second-order cone programs are
comparable to solving the semidefinite programs. However, before testing the
other three cheating probabilities, we test the performance of the two formula-
tions from Table[I]in a setting that appears more frequently in the search. In
particular, most the searches dealt with in this paper involve many protocols
with very sparse parameters. We retest the values in Table [1| when we force
the first entry of ag, the second entry of «y, the third entry of 3y, and the
fourth entry of 1 to all be 0. The results are shown in Table [2]

As we can see, the second-order cone programming formulation stumbles
when the data does not have full support. Notice the feasratio in that scenario
is 0.5172; suggesting SeDuMi ran into some numerical problems. Since we
search over many vectors without full support, we use the SDP formulations
for the search algorithm.
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Table 1 Comparison of solving the SOCP formulation (the O(n) RSOC constraints version)
and the reduced SDP formulations for Alice forcing outcome 0 with 5-dimensional messages

in four-rounds (averaged over 1,000 randomly selected protocols).

[ INFO parameters [ SOCP SDP
Average running time (s) 0.1551 0.1529
Max running time (s) 0.7491 0.2394

Worst gap (s) +0.5098 +0.0927

Average iteration 14.4420 12.2940

Average feasratio 0.9990 1.0000

Average timing | [0.0270,0.1267,0.0010]T | [0.0024,0.1494,0.0009]T
Average cpusec 0.9283 0.6588

Table 2 Comparison of solving the SOCP formulation (the O(n) RSOC constraints version)
and the reduced SDP formulations for Alice forcing outcome 0 with 5-dimensional messages

in four-rounds (averaged over 1,000 randomly selected protocols with forced 0 entries).

[ INFO parameters [ SOCP SDP
Average running time (s) 0.4104 0.1507
Max running time (s) 0.7812 0.2084
Worst gap (s) +0.6323 +0
Average iterations 32.7370 12.2530
Average feasratio 0.5172 1.0000
Average timing | [0.0279,0.3814,0.0010]T | [0.0023,0.1473,0.0009]T
Average cpusec 2.4953 0.5605

5 Developing the strategies in the filter

5.1 Cheating Alice

We now reproduce Theorem 4, give brief descriptions of the cheating strategies,

then derive them and the corresponding bounds.
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Theorem 4 For a protocol parameterized by g, a1 € ProbA, Bo, B1 € Prob?,
we can bound Alice’s optimal cheating probability as follows:

1
Pio> 3 Z conc { B, F (-, aq) : a € {0,1}} (v) (2)
yeEB
1 T T
2 5)\max (77 \Y% (&7)) V Qo + 7'\/ a1 vV aq ) (3)
1 1 1 1
> 5+ 5vFanan) (5 +3400). (W
where
n = Z Boy and T:= Z Biy
yEB: yEB:
Bo,y=81,y Bo.y<B1y

and /v is the normalized principal eigenvector of n‘/ao./aoT + Ty/ar/art.
Furthermore, in a siz-round protocol, we have

Pho = 3hms (VI @)V Toa,(o0) 47T (a0 Tea () ) (6)

> <1+;¢F<Tuz (o), T, <a1>>)(1+1A<Tr32 (50), e, (ﬁm) (6)

V

2 2 2
where
7’]/ = Z [T‘I‘B2 (60)]1}1 and 7' := Z [TrBz (61)]1/1
Y1 €By: v1€B:
[Tr By (B0)]yy 2[Tr By (B1)]yy [Tr 5y (Bo)lyy <[Trpy By

We have analogous bounds for Py |, which are obtained by interchanging o
and B1 in the above expressions.

We call Alice’s improved eigenstrategy, her eigenstrategy, and her
three-round strategy. For six-round protocols, we call Alice’s eigenstrategy
and @ her measuring strategy.

Note that only the improved eigenstrategy is affected by switching By and
51 (as long as we are willing to accept a slight modification to how we break
ties in the definitions of 0,7, 7, and 7’).

We now briefly describe the strategies that yield the corresponding cheat-
ing probabilities in Theorem [] Her three-round strategy is to prepare the
qubits AA’ in the state ' = (o + 1)/ ||tbo + 11| instead of 1y or ¥, send
the first n messages accordingly, then measure the qubits received from Bob to
try to learn b, and reply with a bit a using the measurement outcome (along
with the rest of the state ¢'), to bias the coin towards her desired output. Her
eigenstrategy is the same as her three-round strategy, except that the first
message is further optimized. The improved eigenstrategy has the same first
message as in her eigenstrategy, but the last message is further optimized. For
a six-round protocol, Alice’s measuring strategy is to prepare the qubits AA’
in the following state " = (v + 91)/ || + 1|| where v and ¢ are purifi-
cations of Tra, as(Yow§) and Tra, ar(¥197]), respectively. She measures Bob’s
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first message to try to learn b, then depending on the outcome, she applies
a (fidelity achieving) unitary before sending the rest of her messages. Her
six-round eigenstrategy is similar to her measuring strategy, except her first
message is optimized in a way described in the proof.

Proof of Theorem 4. Recall Alice’s optimization problem

1

ko - (a,y) .

Py} o = max 5 E E Ba,y F(s ,0q) ¢ (S1,--+,8n,8) € Pa
a€{0,1} yeB

To get a feasible solution, suppose Alice guesses b before she reveals a in
the following way. If Bob reveals y € B, then Alice guesses b = 0 if 8y > B14
and b=1if By, < f1,. Let Alice’s guess be denoted by f(y), so

fy) = argmax {fay} € {0,1},

and we set f(y) = 0 in the case of a tie. We have chosen a way to satisfy the
last constraint in Alice’s cheating polytope, but we can choose how Alice sends
her first n messages s1,...,S,. We make one more restriction, we set s, =
d®ep,x...xB,_, and optimize over d € Prob®. We can easily satisfy the rest
of the constraints given any d by choosing each variable as the corresponding
marginal probability distribution.

Under these restrictions, we have that Alice’s reduced problem can be
written as

1
lhax 45 U;B BraoFld ape)) o= max {nF(d ao) +7F(d o)}

We can simplify this using the following lemma.

Lemma 6 For nonnegative vectors {z1,...,z,} C R, we have that
n n
max {Z F(p,zi):p€ Prob"} = Amax (Z \/Z\/ZT> :
i=1 i=1

Furthermore, an optimal solution is the entry-wise square of the normalized
principal eigenvector.

n n n
. T T
Proof Since Y F(p, )=y (VBvD'  VaVE | ) =VD' (Z VEVE ) VD,

i=1 i=1 i=1
where /- is the entry-wise square root, the maximization problem reduces to

max {\/;BT <Z \/Z\/ZT> VDD E Prob"} .
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Let & € R™ be the restriction of a vector z onto U ;supp(z;). Then the
optimal objective value of the above optimization problem is equal to that of

max{ (Z VAVE ) Vb e Probic 1supp<z1>}.

If the nonnegativity constraint were not present, the optimum value would be
attained by setting v/p to be the normalized principal eigenvector of the matrix

S V77 . Because S VZiVZ has positive entries, we know the prin-
cipal eigenvector is also positive by the Perron-Frobenius Theorem. Since this
does not violate the nonnegativity constraint in the problem, p, where 1/p is the
normalized principal eigenvector, is an optimal solution yielding an optimal

objective value of Apax (Z:L:I \/Z\/ZTZT> Notice that Y0, \/ZTZ\/ZT is the
matrix obtained by removing the zero rows and columns from » " | \/z; \/ZT
and thus has the same largest eigenvalue. [
Using this lemma, Alice can cheat with probability
1 \ T T
5 Amax {11V @0V o +TVorar ),

which we call Alice’s eigenstrategy.
We can find a lower bound on this value using the following two lemmas.

Lemma 7 For By, 1, n, and 7 defined above, we have n+1 =1+ A(By, B1)-

Proof Notice that we can write Z gg)ﬁ} {Bay} + Z ér{%nl} {Bay} =2 and

we can also write Z max {Baﬂ,} Z mm {Bay} 2A(Bo, f1). With

aG{O 1}

thi ld that = ay} = 1+ A(Bo,
18, we can conclude that n + 7 y;ag%goi}{ﬂ y} + A(Bo, B1), a

desired. O

The above 1 be restated o 1+ A(Bo, f1) fi
e above lemma can be restated as Z gg)i} {Bay} =1+ A(Bo, p1) for

any probability distributions 8y and 5. ThlS is helpful when looking at Bob’s
cheating strategies as well.

Lemma 8 Forn,7 € R and p,q € Prob™, we have

A (VBB +7vaVT") = 5 (147 + - TP E A F ).

2
Proof Since we can write F(p, q) = (\/f)T \/a) , we can apply a unitary to both

/P and ,/q and both sides of the equality we want to prove are unaffected.
Choose a unitary U such that

Uyp=[1,0,0,...,0]" and U,/q=[sin6,cos6,0,...,0]",
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for some 6 € [0, 27). Then we can write F(p, ) = sin” . Let Ayax be the largest
eigenvalue of the matrix n\/ﬁ\/ﬁT + T\/ﬁ\/aT, or equivalently, of the matrix

nU\/ﬁ\/ﬁTU* JrTU\/E\/aTU*, and let Ao be the second largest eigenvalue.
Then

Amax + A2 = Tr(ny/py/DT +7VaV/a ) =n+7

and, by taking the determinant of the only nonzero block, we get

/\max ‘A = nrT COSZ 0= 777(1 - F(pa q))

implying Apax = = (77 +7+(n 2+ 4nTF(p, )), as desired. O
Note that Lemma [8] shows that switching the roles of 1 and 7 does not affect

the largest eigenvalue.
Using the above two lemmas, we have

1
5)\max (77\/ OZO\/OZOT + T\/OZ1\/C¥1T)

1
=1 (77+T+ \/ +4777'F(a0,a1)>

1
> Z (77+7‘+ \/ (n—7)?F(ap, 1) +4777F(a0,a1))

1 (14 VFGag,a0) -+ 7))
<; +% F(ao,al)> ( ;A(ﬁo,ﬁl))

This lower bound has a natural interpretation. This is the strategy where
Alice ignores all of Bob’s messages until CP» is sent. Then she measures it
to learn b with probability % + %A(ﬂo, B1). Conditioned on having the correct
value for b, she tries to get past Bob’s cheat detection and can do so with
probability % + %\/F(ao, aq). We call this Alice’s three-round strategy since it
combines optimal strategies for the three-round protocol example in Subsec-
tion [I} It makes sense that this is a lower bound on the success probability
of Alice’s eigenstrategy since her eigenstrategy is optimized from the same
restrictions that apply to her three-round strategy.

We can also examine how Alice can choose her last message optimally
supposing she has already sent her first n messages in a particular way. Le.,
SuUppose Sy, :=Cc® €p, x...xB,,_, LOr some c € Prob® (as in the eigenstrategy).
From this we can find sy, ..., s,_1 satisfying the first n — 1 constraints of her
cheating polytope by taking the corresponding marginal distributions of ¢. We
want to optimize over s satisfying Tray (s) = sp ®ep, = c® ep. In this case,
this constraint can be written as ZaG{O,l} s(@¥) = ¢, for each y € B, where

again, s(*¥) is the restriction of s with a and y fixed. Now we get the following
optimization problem
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max 3 2ac{01} 2oyen Pay F(s®%), o)
subject to Zae{o,l} sl@y) = ¢ for all y € B,

S(a7y) 2 0’

where ¢ is now constant. If we rewrite this as

max % ZyGB Zae{o,l} F(S(a,y)7 Ba,yaa)
subject to Zae{o,l} sl@y) = ¢ for all y € B,
s(@y) >0,

we have a separable problem over y € B. That is, for each fixed § € B, Alice
needs to solve the optimization problem

1 . _ _
Gj(c) :==max B ZF(S("’Q),ﬁa@aa): Z s(@9) = ¢ @) >0, Vg € {0,1}
ac{0,1} ac{0,1}

This optimization problem has a special structure.

Definition 3 The infimal convolution of the convex functions fi, fo, ..., fn,
where
fiseo s fn: R™ > RU{o0}, is

We do not need to worry about the nonnegativity constraints on the vari-
ables since we can define our convex function —F(p, q) = +oo if p or ¢ is not
nonnegative. Note for every p € R™, that —F(p, -) is a proper, convex function,
ie., it is convex and —F(p,q) < 400 for some ¢ € R} and —F(p,q) > —o0
for every ¢ € R'. Proper, convex functions have many useful properties as
detailed in this section. Using these properties and the fact that —F(p,-) is
positively homogeneous, we show a way to express Gy.

Recall that for proper, convex functions fi,...,f, : R™ — R U {oo},
the convex hull of {f1,..., f,} is the greatest convex function f such that
f(x) < fi(z),..., fu(z) for every x € R™. To write down explicitly what the
convex hull is, we use the following lemma.

Lemma 9 ([Roc70, page 37]) Let f1,...,fn : R™ — R U {oco} be proper,
convex functions. Then we have

conv {fl, ey fn} (d) = inf {i )\Zfl(l‘l) : i)\zxz = d} .
i=1 i=1
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For a positively homogeneous function f, we have A f (/\_11‘) = f(z), for
A > 0. Therefore, we have the following corollary.

Corollary 1 Let fi,...,fn : R™ — R U {oco} be positively homogeneous,
proper, convex functions. Then we have

conv {f1,..., fn} = 10f0---0Of,.

Therefore, we can write Alice’s cheating probability using concave hulls as
shown below

1 _ _ _
Gy(c) = max 3 Z F(s%9), B, 50a) - Z 5@ = ¢ 529 >, Va

a€{0,1} ae{0,1}

1 _ _ _
= —min ~3 Z F(s9 B, s) : Z 59 = ¢ @9 >0, va
ae{oﬂ} ae{ovl}

=— (;F(',ﬂo,g%)) O <;F('751,g041)> (©)

= —conv {_2160,171:‘(3040)7 ;ﬁl,gF(', 041)} (c)

1 1
= conc {Qﬁ()’gF(-, Oéo)7 561,17]:?(', 011)} (C)
Thus, for each ¢ € ProbA, we can write Alice’s cheating probability as

Z conc {;BOWF(, ), %[ﬁ,yF(', al)} (o).
yeB
Note this way of optimizing the last message works for any strategy. For a
general strategy, we would have a different ¢ for every yi,...,yn—1.
Thus, we have Alice’s improved eigenstrategy which is when Alice chooses
her first n messages according to her eigenstrategy, yet reveals a optimally.
Cheating Alice in six-round protocols. In six-round protocols, Alice’s
goal is to maximize the objective function

% Z Z Z B F (8012 )

a€{0,1} y1€B1 y2€B2
over (s1, se, s) satisfying:

Tra,(s1) =1,
Tra,(s2) = s1 ®ep,,
Tra;(s) = s2 @ ep,,

S1 € RAI,

82 e Rﬁl ><Bl><A2

b
A x Ay x By X Bax Al
5 € Ry AP BBy
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We suppose that Alice chooses her commitment a based on the most likely
choice of b after seeing y; from Bob’s first message. Let

f'(y) = arg max {[Trp, (Fa)ly, }

and 0 in the case of a tie. The last constraint can be written as the sum
ZaeA{) slavive) — séyl), for all y; € B;, where séyl) is the projection of s, with

the index y; fixed. We set s(@v1¥2) = séyl), if a = f'(y1), and 0 otherwise.

Now we set sgyl) =89, if f'(y1) = 0, and séyl) = 83, if f'(y1) = 1, where we

optimize s9,s3 € Rﬁlx 2. The new objective function can be written as

1
LY Y AunPlra)

a€A, y1€B1,y2€B2

1 P
- 5 Z Z Bf/(yl)ﬁlhyz F(52 (yl),af/(yl))

y1€B81 [y2€B2

1 1

S7 F(s8,00) + 57/ Fsh ).

Since the only constraints remaining are Tra,(s9) = s1 = Tra,(s3), we now
optimize over each choice of sJ and s} separately using the following lemma.

Lemma 10 For o € RﬁlXAQ and c € Rﬁl, we have
max {F(p,a) : Tra,(p) = ¢, p > 0} > F(c, Tra,(a)).

The inequality can be shown to hold with equality by Uhlmann’s theorem.
However, we prove the inequality by exhibiting a feasible solution which is
also useful for the analysis of cheating Bob.

Proof For each 1 € Ay, x5 € Ay, define py, 5, as

Cay mizl(zf]xl if [’I‘rAQ (a)]$1 >0,

le,ZL’Q =
C’Jlllel if [Tra, (a)]z, = 0.

Then we have p > 0 is feasible since [Tra,(p)]z, = ¢z, and it has objective
function value F(p, o) = F(c, Tra,(«)), as desired. O

Using the lemma, we can write the problem as

max 1 F(e, Tra,(ao)) + 7 F(e, Tra, (a1))
c€Prob41

which has optimal value

g (1 VIR @0V Toas (o) +7'v/Toas(an v/ Tra(an) )
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and is lower bounded by

(5 -+ 3VFm(a T @) ) (5 + 5ATw 50, T (51) ).

Again, this last quantity has context. This is the strategy where Alice measures
the first message to learn b early and then tries to change the value of a. She
can learn b with probability § + 3 A(Trp, (o), Trp,(81)). She can successfully
change the value of a with probability § + 2+/F(Tra,(ao), Tra,(c1)). Thus,
she can cheat with probability at least

(5+ 3 VFTm(a T @) ) (5 + 5ATm ), T (51) ).

5.2 Cheating Bob

We now turn to cheating Bob. We reproduce Theorem 5, give brief descriptions
of the cheating strategies, then derive them and the corresponding bounds.

Theorem 5 For a protocol parameterized by g, aq € ProbA, Bo, B1 € Prob?,
we can bound Bob’s optimal cheating probability as follows:

) 1 1
Ppo 2 5+ 5VEPBo, Ar), (7)
and 1 1
Pso 2 5+ 5 AT xxa, (@0), Trayxxa, (1)) (8)

In a four-round protocol, we have

P> % > F(Z aa,wvw,ﬂa> 9)

a€{0,1} z€EA

S D S I SRRV (10)

z€A ac{0,1}
1

1 1 1
2 max {2 + 5A(O¢0,0¢1), 5 + 5 F(ﬁ(ﬁﬂl)} )

where /v, is the normalized principal eigenvector of ZaE{O 1} aa@\/ﬁa\/ﬁaT,
In a six-round protocol, we have

P];,O Z % Z F (Z aa,mﬁ2(1)76a> (11)

a€ Ay z€A

Nevss (3T, (o) Trmy (Bo) +CV/ T, (B1)V T (B1) ) (12)

1
3
(5+3VFER G Tn) )(5 + jAe0an ), 03

v

v
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where

B z),yq, .
(e o MGl 0
(P2 ]y g0 ==

Cyl|3712| Zf [TrBz(Bg(r))]w =0,

KR = Z Qo ¢ = Z Q1 g($> = argm(?x {aa,z} ,

rEA: xEA:
@0,z 21, @g,x <1,z

and +/c is the normalized principal eigenvector of

5 Mo (/T () T, )+ ¢/ T () T, (1) ).

Furthermore, if |A;| = |B;| for alli € {1,...,n}, then

1
Pio> 5 > Flaa,Ba) - (14)

a€{0,1}

We get analogous lower bounds for Py, by switching the roles of By and
81 in the above expressions.

We call (|7) Bob’s ignoring strategy and (8)) his measuring strategy. For four-
round protocols, we call @ Bob’s eigenstrategy and his eigenstrategy lower
bound. For six-round protocols, we call Bob’s siz-round eigenstrategy, (12)
his eigenstrategy lower bound, and his three-round strategy. We call (14])
Bob’s returning strategy.

Note that the only strategies that are affected by switching 8y and S are
the eigenstrategy and the returning strategy.

We now briefly describe the strategies that yield the corresponding cheat-
ing probabilities in Theorem Bob’s ignoring strategy is to prepare the
qubits BB’ in the state ¢’ = (¢o + ¢1)/ ||po + ¢1|| instead of ¢¢ or ¢1, send
the first n messages accordingly, then send a value for b that favours his de-
sired outcome (along with the rest of ¢'). His measuring strategy is to measure
Alice’s first message, choose b according to his best guess for a and run the
protocol with ¢p. His returning strategy is to send Alice’s messages right back
to her. For the four-round eigenstrategy, Bob’s commitment state is a princi-
pal eigenvector depending on Alice’s first message. For a six-round protocol,
Bob’s three-round strategy is to prepare the qubits BB’ in the following state
¢ = (90 + 91)/ |16y + ¢4 || where ¢ and ¢} are purifications of Trp, g (¢o®g)
and Trp, p/(¢167), respectively. He measures Alice’s second message to try
to learn a, then depending on the outcome, he applies a (fidelity achieving)
unitary before sending the rest of his messages. His six-round eigenstrategy is
similar to his three-round strategy except that the first message is optimized
in a way described in the proof.
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Proof of Theorem 5. Bob’s returning strategy is to send Alice’s messages
right back to her (if the dimensions agree). This way, the state that Alice checks
at the end of the protocol is her own state. This is a good strategy when Alice
and Bob share the same starting states, i.e., for a protocol with parameters
ag = Bo and a3 = B1. To calculate the cheating probability of this strategy,
for any choice of parameters, it is easier to use the original cheating SDP as
opposed to the reduced cheating SDP. This cheating strategy corresponds to
the feasible solution

pL=p2 =" =pn=pr =YY"

which has success probability given by the objective function value

(e Ta) = (00" TTag) =3 > Fla, o).

a€{0,1}

This is clearly optimal when ay = 8y and ay = ;.
Recall Bob’s reduced problem below

. 1
Py o = max 5 Z F ((O‘a ® IB)TPn, 5a) 2 (p1y---,pn) €PB
a€{0,1}

There is a strategy for Bob that works for any n and is very important in the
search algorithm. This is the strategy where Bob ignores all of Alice’s messages
and tries to choose b after learning a from Alice. By ignoring Alice’s messages,
he effectively sets p, = e4 ®@d, for some d € Prob?, which we optimize. Under
this restriction, he can cheat with probability

1 1
max — F((aq® Ip)T(ea®d), B,) = max = F(d,B.)
d€ProbB 20,6%);1} d€ProbB ae%:,l}
1 T T
= 5)\max (\/ ﬂO\/ ﬂO +\/ Bl\/ ﬁl )
1 1
=3 + B F(Bo, B1)

using Lemma [f] and Lemma [8] Note this is similar to the three-round case
(discussed in Subsection . The reason this strategy is important is that it is
easy to compute, only depends on half of the parameters, and is effective in
pruning sub-optimal protocols. We call this Bob’s ignoring strategy.

Another strategy for Bob is to measure Alice’s first message, choose b
accordingly, then play honestly. This is called Bob’s measuring strategy and
succeeds with probability

1 1
5 + §A(T1"A2><~-><An (a0> 7TrA2><---><An (041)),

when n > 2.
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Cheating Bob in four-round protocols. There are cheating strategies
that apply to four-round protocols, that do not extend to a larger number
of rounds. For example, Bob has all of Alice’s C* space before he sends any
messages. We show that Bob can use this to his advantage. One example is
Bob’s measuring strategy, which leads to a cheating probability of

1 1
5 —+ §A(Oz0,a1) .

Similar to cheating Alice, we can develop an eigenstrategy for Bob. For the
special case of four-round protocols, notice that Bob’s cheating polytope con-
tains only the constraints Trg(p) = e4 and p € R_?XB. This can be rewritten

as py € Prob® for all z € A. Also, F ((aa ®15)Tpn, ﬁa) can be written as
F(ZfeA aa,ngf), /J’a>, where pgf':) is the projection of p, with x fixed. Thus,

we can simplify Bob’s reduced problem as

1

* - (z) .o (2) B

Pg o = max 5 E F( g Olg Dy ,ﬂa> cpy € Prob”, for all z € A
ac{0,1} €A

Since fidelity is concave, we have that

g (Z aa,ngf)a &1) 2 Z Qaz F(pgf), ﬂa)'

z€A z€EA

Therefore Bob’s optimal cheating probability is bounded below by

1
- () - ple) B
max § o E E 0o Py, Ba) s 0y € Prob”, for all z € A
r€Aac{0,1}

which separates over x € A. That is, we choose each pslz) € Prob” sepa-
rately to maximize Z . F(p®, 8,), which has optimal objective value
a€{0,1}

T
Amax Z g2V Ba Ba using Lemma (6l Thus, we know that

a€{0,1}

Ppo >

S e | Y @ae/Bar/Ba |-
T€EA

a€{0,1}

DN =

Since we use the concavity of the objective function, the bound we get
may not be tight. Notice that solving the smaller separated problems yields a
solution which is feasible for the original problem. Therefore, we can substitute
this into the original objective function to get a better lower bound on Bob’s
optimal cheating probability. We call this Bob’s eigenstrategy.
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Since eigenvalues are expensive to compute, we can bound this quantity by

1 T
5 Z Amax Z aa,x mm

€A a€{0,1}

> = Z Amax Z g,z mmT

P B
Bos 516 rob ac{0.1}

ac{0,1}

1
52 max {agq}
€A

1 1
= 5 + §A(a0,a1) ,

where the last equality follows from Lemma
Since Amax(X +Y) < Anax(X) + Amax(Y) for all matrices X and Y, we
have that

1 T 1
5 Z)\max Z aa,a;\//Bia\/ﬁia Z 5 max Z Z Qq, L\/E\/E
€A a€{0,1} r€Aacf0,1}
1 T
= §>\max Z \/ﬁia\/ﬁia
ac{0,1}
1
=3 + F(Bo, B1) -

Therefore, Bob’s eigenstrategy performs better than both his measuring strat-
egy and ignoring strategy.

Cheating Bob in six-round protocols. In six-round protocols, Bob’s
goal is to maximize the objective function

% Z F((O{a®IBl><B2)Tp27BCL)

a€{0,1}
over (p1,p2) satisfying:
Trp, (p1) = ea,,

Trp,(p2) = p1 @ €a,,

p]_ e RAIXBI
p2 E RAlXBlXAQXBQ

Like in four-round protocols, we can lower bound the objective function as
1 1
ORI O STIIENEED 95 E 1 SRR
a€ A} z€EA TEA a€A|

and focus our attention on optimizing the function Z F(p;z),aa’xﬁa). We
acAy
use the following lemma.
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Lemma 11 For 5y, 51 € RElXBZ and ¢ € Rfl, we have

max Z F(p, ﬂa) : TrBQ (p> =GP 2 0 2 F(C7 ’I‘I-BQ (6&))7
a€{0,1}

for any a € {0,1}.

Proof Fix any a and choose p € argmax {F(p, 8z) : Trp,(p) = ¢, p > 0}. Since
the fidelity is nonnegative, the result follows by Lemma O

By setting p; = ¢ ® e, we have the constraint Trp,(p(*)) = ¢ for all
x € A. We now apply Lemma [11] to get

Hlaf( Z F(pgx)a O‘a,xﬁa) > Qg (z), F(Cv TrBz (ﬁg(w)))a
P2 acAj

where g(z) := argmax,e 4, {@q,z }, and 0 in the case of a tie.
Substituting this into the relaxed objective function above, we have

max gF(C7 ’I‘rBz(ﬂO)) + gF(C’ TIABZ(BI))

c€ProbB1
= 3 (VB GV T o)+ VT BV T () ) (15
> <; + ;A(ao,a1)> (; + %\/F(Trg2 (Bo), Trp, (ﬁl))) . (16)

The quantity corresponds to the strategy where Bob measures Alice’s
second message to try to learn a early, then tries to change the value of b.
He can learn a after Alice’s second message with probability  + 2 A(ag, a1).
He can change the value of b with probability 3 + 3+/F(Trz,(8o), Trp, (81)).
Thus, he can cheat with probability at least

<; + %\/F(TI'BQ (o), Tr, (51))) @ * %A(ao’ al)) '

We call this Bob’s three-round strategy.

Although we used many bounds in developing the quantity , such as
concavity and the lower bound in Lemma|[TI] we can recover some of the losses
by generating its corresponding feasible solution and computing its objective
function value for the original objective function. For example, we can calculate
c as the entry-wise square of the normalized principal eigenvector of

s (13T, Bo) VT o)+ VT BV T (1))

then calculate péz) for each value of x from the construction of the feasible

solution in the proof of Lemma [I0] We call this Bob’s eigenstrategy.
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6 Computer aided bounds on bias

The search algorithm has the potential to give us computer aided proofs that
certain coin-flipping protocols have bias within a small interval. In this section,
we describe the kind of bound we can deduce under the assumption that the
software provides us an independently verifiable upper bound on the additive
error in terms of the objective value.

We begin by showing that any state & € RP of the form used in the
protocols is suitably close to a state given by the mesh used in the search
algorithm. For an integer N > 1, let My = {j/N:j€Z,0<j < N}.

D
Lemma 12 Let N > 1 be an integer. Consider the state £ = Z Vi€ in RP,
i=1
where v € Prob”. Then there is a probability distribution v € Prob? N ML
D

such that the corresponding state £ = Z vie; satisfies £*¢' >1— D/2N.
i=1

Proof Let 4; = | N| /N for i € {1,2,...,D}. Note that 27;1 % <1, and

that
D D D
1= %=Y v—-> %=3i/N,
=1 =1 =1

for some j € {0,1,2,..., D}. We may obtain v’ by adding 1/N to j coordinates
of 4. For concreteness, let v/, = 4; + 1/N for i € {1,2,...,5} and v, = ¥
fori € {j +1,...,D}. We therefore have ||y —~'||; < D/N, and

D

* ¢~/ — F /1/2 > 1_7
£°¢ (v, > SN

by a Fuchs-van de Graaf inequality [5]. O

The above lemma helps us show that any protocol in the family we consider
is approximated by one given by the mesh.

Lemma 13 Consider a bit-commitment based coin-flipping protocol A with
bias € of the form considered in this paper. Suppose A is specified by the 4-
tuple (ag, a1, Bo, B1), where a;, 3; € Prob”. Then there is a protocol A’ with
bias € of the same form, defined by a 4-tuple (of, o, By, B1), satisfying the
two conditions |e — ¢'| < 2y/D/N and o, 8} € Prob” N ME.

Proof The statement of the lemma is vacuous if 1 — D/2N < 0, we therefore
assume 1 — D/2N > 0. We show that ¢ < e+ 2,/D/N (the other inequality

e <€+ 2,/D/N follows similarly).
Without loss in generality, assume that bias €’ is achieved when Bob cheats
towards 0 in protocol A’. Recall

1
¢:ﬁ(80®60®w0+61®61®w1) ) and

Hao= Y enei@epe; ® bty -
be{0,1}
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Let the probability distributions «f, o}, ), 51 and states (), Y1, ¢, @} corre-
sponding to the distributions «q, a1, Bo, 81, respectively, be the ones guaran-
teed by Lemma [I2] Let

1
w/:$(60®eo®wg+el®el®wi) ,  and

Mho= Y eeh@epe; @G(0)" -
be{0,1}

We have 1*9)' > 1— 2 by Lemma and

1/2

10/ ()" = o7, < 2(1 - ("))
< 2/D/N ,

by a Fuchs-van de Graaf inequality [5]. Further,

1740 — Haoll,, < max {166(65)" = G065llop - 165 (81)7 — 6163 ., }
< VD/N ,

using the identity [lvo* — wu*|,, = (1 - (v*u)2)1/2 for normalized real vectors
v and u. Here, ||X||,, denotes the operator norm of X, namely the largest
singular value of the matrix X.

For this analysis, we assume that the protocol A’ is of the form ana-
lyzed in this paper and the two parties start with joint initial state e?‘m
apply Uy, Us,...,Us, alternately, and finally measure their parts of the sys-
tem to obtain the output.

)

Consider Bob’s cheating strategy towards 0 (which we assumed achieves
bias €). As in the proof of Lemma |1} it follows that there are spaces H; and
corresponding unitary operations U/ on them for even ¢ < 2n that characterize
his cheating strategy. When Alice measures ¢’ = (Us, Uan_1Us, o --- Uy )eS*™,
she obtains outcome 0 with probability HUAO(:’H; = 3+ ¢ (In the expression
for the final state ¢/, we assume that the unitary operations extend to the
combined state space by tensoring with identity over the other part.)

We consider the same cheating strategy for Bob in the protocol A, in
which Alice starts with the commitment state v, and performs the measure-
ment {IIa,0, a1, ITA abors } . This corresponds to a different initial unitary
transformation for Alice instead of U;. Let ¢ be the corresponding final joint
state. Note that ¢ is mapped to ¢ using the same unitary transformation that
maps ¢’ to ¢’ since Bob is using the same cheating strategy. The probability
of outcome 0 is ||HA,0<H§ < 1 +e, as the protocol A has bias e. We may bound
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the difference in probabilities as follows.

€ —e<Tr (H/I\,()C/(C/)*) — Tr (11a,0¢C")
= T (o — TTa0)C(C)") + T (T (¢ ()" = C°))
1
< [T~ Magl,, + 5 1C¢" — )L

1
= Th0 = Maoll,, + 5 lw9" =/ @),
<2y/D/N ,

as claimed. O

We may infer bounds on classes of protocols using the search algorithm
and the lemma above. Suppose the computational approximation to the bias
obtained by the algorithm has net additive error 7 due to the protocol filter
and SDP solver and the finite precision arithmetic used in the computations. If
the algorithm reports that there are no protocols with bias at most €* given by
a mesh with precision parameter N, then it holds that there are no 4-tuples,
even outside the mesh, with bias at most ¢* — 24/D/N — 7. Here D is the
dimension of Alice’s (or Bob’s) first n messages (i.e., commitment states used,
or equivalently, the size of the support of an element of the 4-tuple).

A quick calculation with €* = 0.2499 and 7 =~ 0 shows that mesh fineness
parameter N > 2185 x d for four-round protocols and N > 2185 x d? for
six-round protocols with message dimension d, would be sufficient for us to
conclude that such protocols do not achieve optimal bias =~ 0.2071. A slightly
finer mesh would be needed if one were to expect 7 to be somewhat larger
than 0. We would then obtain computer aided lower bounds for new classes of
bit-commitment based protocols. Thus, a refinement of the search algorithm
that allows finer meshes for messages of larger dimension and over more rounds
would be well worth pursuing.

7 New bounds for four-round qubit protocols

We can derive analytical bounds on the bias of four-round protocols using the
strengthened Fuchs-van de Graaf inequality for qubit states, below:

Proposition 1 ([11]) For any quantum states p1,p2 € S2, i.e., qubits, we
have

1 < Ap1,p2) +F(p1,p2) -

Recall from Section [5] that Bob can cheat in a four-round protocol with
probability bounded below by

Pho 2 5+5F(Bo A a7)
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and L1
P];,O 2 5 + iA((XO)al) (18)

and Alice can cheat with probability bounded below by
Piy > (24 Y/Faman) (t+Lag.s) (19)
A0 Z B 5 Qp, 01 2 5 0, P1 .

If By, 81 € Probz, then by and Proposition [1}, we have
A(Bo, B1) = 4Pg o (1 — Py )
and if ag, oy € Prob?, then from and Proposition |1} we have
F(ag,a1) > 2— 2P .

Combining these two bounds with , we get

1P = (142-2P5,) (1+4Pgo(1 - Phg))

which is a decreasing function of P ;. Setting this lower bound equal to P

and solving for Pj 5, we can show max{ Py o, Pj o} > 0.7487 > 1/v/2 = 0.7071.
In fact, using the regular Fuchs-van de Graaf inequalities [5], we can get bounds
when they are not both two-dimensional. If 5y, 3, are two-dimensional and
g, a1 are not, we get a lesser bound of maX{PX,mPﬁ,o} > 0.7140 > 1/\/5
On the other hand, if ag, a; are two-dimensional and (g, 31 are not, then we
get max{ Py o, P§ o} > 0.7040 % 1/v/2, so we do not rule out the possibility of
protocols with bias 1/v/2 — 1/2 with such parameters. Note that tests where
g, aq are two-dimensional are subsumed in the higher-dimensional tests we
performed. However, future experiments could include computationally testing
the case where Alice’s first message is two-dimensional and Bob’s first message
has dimension 10 or greater.

8 Random offset

We would like to test more protocols, and also avoid anomalies that may
have arisen in the previous tests due to the structure of the mesh we use and
also any special relation the protocol states may have with each other due
to low precision. The six-round searches take a long time, which restricts the
precision v we can use. The resulting mesh is also highly structured. We would
like to test protocol parameters that do not necessarily have such regular
entries. With this end in mind, we offset all of the values in the search by
some random additive term § > 0. For example, say the entries of ag, a1, 8o,
and B; have been selected from the set {0,v,2v,...,1 — v, 1}. With an offset
parameter § € (0,v/2), we use the range

{6, 0+v,0+2v,....,6+1—v}.
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Table 3 The percentage of protocols that get stopped by each strategy in the worst case
after 100 random instances of offset parameter §.

[ d=2Jv=1/3]v=1/4]v=1/5 [ v=1/6]
G1 | 71.87% | 82.35% [ 84.06% | 86.63%
G2 || 17.18% | 29.80% | 15.80% | 24.15%
G3 817% | 10.73% | 13.46% | 12.12%
G4 || 51.45% | 49.68% | 53.99% | 48.44%
G5 || 70.00% | 83.29% | 78.02% | 82.86%

G6 0% 0% 0% 0%

G7 75.00% | 92.43% | 87.32% | 94.35%

G8 100% 100% | 49.10% 100%
G9 0%
G10 0%
SDPBO0 100%

Table 4 The percentage of protocols that get stopped by each strategy in the average case
after 100 random instances of offset parameter §.

[d=2[v=1B]v=1/4]v=1/5] v=1/6]
G1 [ 85.75% | 87.30% [ 89.42% | 90.47%
G2 || 17.18% | 29.80% | 15.80% | 24.15%
G3 || 10.85% | 13.15% [ 14.53% | 12.35%
G4 || 62.49% | 52.53% | 55.34% | 53.03%
G5 || 70.00% | 87.11% [ 93.46% | 93.29%
G6 0% 0% 0% 0%
G7 || 98.70% | 99.01% [ 96.58% | 98.77%

Note that this destroys index symmetry. The simplest way to see this is to
consider the 2-dimensional probability distributions created in this way. They

are
1) 0+v 0+ 2v 0+1—v
1—-6|’|1—-6—v | |1—-0—-2v|""""7 v—20 ’

We see that the set of first entries is not the same as the set of second entries
when & > 0. We choose the last entry in each vector to be such that the
entries add to 1. Since we generate all four of the probability distributions in
the same manner, we can still apply the symmetry arguments to suppose ag
has the largest entry out of both ag and o and similarly for 5y and ;.

Tables [3] and [4] show how well each strategy in the filter performs after
testing 100 random choices of offset parameter 6 € [0,1/100]. The percentages
in the table entries correspond to the amount of protocols that particular
strategy stopped from the ones surviving the previous filter strategies. For
each random choice of §, a percentage is calculated and Table [3] presents the
least percentage and Table [4] presents the average percentage.

Observations on the random offset tests. We notice that G6 performs
very poorly on these tests. We need finer precision to see the effects of G6 in
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the filter. Also, G1 performs generally better as the filter precision increases.
We see from the previous tables that it should stay at roughly 90%. We see
that G5 and G7 perform very well. G7 sometimes filters out the rest (this is
why the average case table only displays up to G7). G8 performs well most of
the time, except in the v = 1/5 case in the worst case table. Few protocols
made it past the entire filter, and only SDPB0 needed to be solved of the four
SDPs. No protocols with bias at most 0.2499 were found.

9 Zoning-in tests

The computational tests that we performed so far suggest that there are no
protocols with cheating probabilities less than 0.7499 (at least for the values
of the parameters used in the tests) which is slightly less than the best known
constructions. The tests also show that the number of protocols grows very
large as the mesh precision increases. This poses the question of whether there
are protocols that have optimal cheating probabilities just slightly less than
3/4 when one considers increased mesh precisions. In this section, we focus on
searching for such protocols.

There are a few obstacles to deal with in such a search. The first is that in-
creasing the precision of the mesh drastically increases the number of protocols
to be tested. To deal with this, we restrict the set of parameters to be tested by
only considering protocols which are close to optimal, i.e., near-optimal proto-
cols. In other words, we “zone in” on some promising protocols to see if there
is any hope of improving the bias by perturbing some of the entries. To do
this, we fix a near-optimal protocol and create a mesh over a small ball around
the entries in each probability vector. We would like a dramatic increase in
precision, so we use a ball of radius 2 v (unless stated otherwise), yielding up to
5 increments tested around each entry. This gives us the advantage of having
a constant number of protocols to check, independent of the mesh precision.
However, this comes at the cost that we lose symmetry, since we do not wish
to permute the entries nor the probability distributions defining the protocol.

Another challenge is to find the near-optimal protocols. The approach we
take is to keep track of the best protocol found, updating the filter threshold
accordingly. There are two issues with this approach. One is that increasing
the threshold decreases the efficiency of the filter, so we are not able to search
over the same mesh precisions given earlier in this section. The second is that
there is an abundance of protocols with cheating probabilities exactly equal to
3/4. As was done in the protocol example section (Section , we can embed
an optimal three-round protocol with optimal cheating probabilities 3/4 into
a four-round (or six-round) protocol. One way to do this is to set ag = oy (i.e.
Alice’s first n messages contain no information) or by setting 5y L 51 (i.e.
Bob’s first message reveals b, making the rest of his messages meaningless). So
we already know many protocols with cheating probabilities equal to 3/4, but
can we find others? We now discuss the structure of near-optimal protocols in
the case of four-round and six-round protocols, and how we zone in on them.
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Four-round version. For the four-round search, we fix a message dimen-
sion d = 5 and use precision parameters v € {1/7,1/8,1/9,1/10,1/11}. This
search yields a minimum (computer verified) bias of € = 0.2647 when we rule
out protocols with ag = a1 or By L 1. In other words, we have that all of the
protocols tested had one of the following three properties:

® o = Qj,

L4 <60761> = 07
o max { P} o, Piy, Py, Py} > 0.7647.

This suggests that near-optimal four-round protocols behave similarly to opti-
mal three-round protocols. We now zone in on two protocols, one representing
each of the first two conditions above. The first protocol is

1 1
ag=5[0,0,0,11)", o = 3[0,0,1,0,1]",

Bo =10,0,0,0,1]", B =1[0,0,0,1,0]"

which satisfies Sy L 51 = 0 and has all four (computationally verified) cheating
probabilities equal to 3/4. The second protocol is

ap =1[0,0,0,0,1]", a; =[0,0,0,0,1]",
1 T 1 T
Bo = 3 [0,0,0,1,1]", S = 3 [0,0,1,0,1]
which satisfies g = 7 and has all four (computationally verified) cheating
probabilities equal to 3/4. Tables [5| and |§| display the zoning-in searches for
these two protocols with threshold exactly 3/4. Note we use mesh precisions
up to 1076 which, by Lemma can guarantee us a change in bias up to
4 x 1078, A (computationally verified) change in bias of this magnitude could
be argued to be an actual decrease in bias and not an error due to finite
precision arithmetic.

Observations on the four-round tests. Note that not all filter strate-
gies are useful in the zoning-in tests. For example, if F1 ~ 1/2 < 3/4 for the
protocol we are zoning-in on, then it never filters out any protocols with the
precisions considered. Considering this, and by examining the tables, we see
that most strategies filter out many protocols, or none at all. Also from the
tables, we see that no protocols get through the entire filter. Notice that we
needed to use more strategies than were needed in previous tables, namely
F9 and F10. In the previous searches, F8 was the last filter strategy needed,
thus demonstrating some protocols which F8 fails to filter out (noting a larger
threshold was used here than in the previous tests). It is worth noting the
efficiency of the four-round filter. The algorithm did not need to solve for any
optimal cheating values in any of the four-round zoning-in tests.

These tables suggest that perturbing the entries of the parameters defining
these two near-optimal protocols does not yield better bias.
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Six-round version. For the six-round search, we fix a message dimension
d = 2 and use precision parameters v € {1/7,1/8,1/9,1/10,1/11,1/12}. For
v > 1/12, the test results were similar to the four-round version, that all of
the protocols tested had one of the following three properties:

® Qo = aj,

o <50751> - 07
e max {P} o, P, P5 o, P} > 0.7521.

We choose the following two near-optimal protocols to represent the first
two conditions:

1 1
04025[0,0,171]T, O[1:§[0,170,1}T,

ﬁo = [070707 1]Ta 61 = [O7Oa170]T7
which satisfies By L f1 =0, and

Qp = [050,07 1]Ta a1 = [0’0’0,1]T7

1 1
60:§[Oa07171]Ta Blzi[ovlaovl}Ta

which satisfies ag = a3. Both of these protocols have all four (computationally
verified) cheating probabilities equal to 3/4.

However, when v = 1/12, we found several protocols with a (computa-
tionally found) bias of 0.25. We therefore searched for all protocols with bias
0.2501 or less. We discovered the following 4 protocols, no two of which are
equivalent to each other with respect to symmetry. Note that these protocols
bear no resemblance to any bias 1/4 protocols previously discovered. These
protocols are below:

1 1
a0:§[0517171]T7 a1:§[17170a1]T7
ﬂfi[oz’)og}T ﬂfi[0390]T
0*12 39y Uy ) 1*12 39y Iy

and

1[0111]T o 1[1101]T
« = - = -

0 3 y Ly dy ) 1 3 s 4y Yy )

ﬁ—i[mog}“‘ B*i[1290}T

0*12 s 4y Uy ) 1*12 s 4y Iy
and

1[0111]T o 1[1110]T
« = - = -

0 3 sy Ly dy ) 1 3 s Ly Ly )

ﬁfi[oz’)og}T ﬁfi[0390}T

0*12 y 9y Uy ) 1*12 39y Iy
and

1 T 1 T
a0:§[0517171] 3 01125[1,1,1,0} )
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ﬂO [1727079]T7 ﬁl

Note that these four protocols have the property that all the filter strategies
for them have cheating probabilities strictly less than 3/4. Since many of these
strategies are derived from optimal three-round strategies, this property makes
them especially interesting. (Other six-round protocols were found. However,
these were equivalent to the ones above via symmetry.)

We now zone-in on these six protocols as indicated in the following tables.
Note that we decrease the radius of the balls to v for the third, fourth, fifth,
and sixth protocol (compared to 2v for the other protocols). This is for two
reasons. One is that most the entries are bounded away from 0 or 1, making the
intersection of the ball and valid probability vectors large. Second, the filter
has to work harder in this case since many of the filter cheating probabilities
are bounded away from 3/4 and thus more computationally expensive cheating
probabilities need to be computed.

Preliminary tests show that when zoning-in on some of these 6 protocols,
the default SDP solver precision is not enough to determine whether the bias
is strictly less than 3/4, or whether it is numerical round-off. To provide a fur-
ther test, we add an extra step for those protocols that get through the filter
and SDPs, we increase the SDP solver accuracy (set pars.eps = 0 in SeDuMi)
and let the solver run until no more progress is being made. The row “Better
Accuracy” shows how many protocols get through this added step. Further-
more, we use the maximum of the primal and dual values when calculating the
optimal cheating values since we are not guaranteed exact feasibility of both
primal and dual solutions in these computational experiments.

Observations on the six-round tests. We see in Tables[7] [§ and[J]that
zoning-in on the six protocols yields no protocols with bias less than 1/4. The
zoning-in tests for the second near-optimal protocol are the only ones where
we needed the added step of increasing the SDP solver accuracy. We see that
this added step removed the remaining protocols.

We remark on the limitations of using such fine mesh precisions. For ex-
ample, when zoning-in on the fourth and sixth protocol, only two strategies
were used, G1 and SDPBO0. These are both strategies for Bob which suggests
that there are some numerical precision issues. We expect that some pertur-
bations would decrease Bob’s cheating probability, for example when «( and
a1 become “closer” and [y and 1 remain the same. However, the precisions
used in these searches do not find any such perturbations.

From the outcome of the zoning-in tests, along with the computational
evidence from all the other tests we conducted, we conjecture that any strong
coin-flipping protocol based on bit-commitment as considered in this paper
has bias at least 1/4.
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10 Full data for the systematic searches for four and six-round
protocols

We present in this section the full data for the searches we conducted for four
and six-round protocols for various message dimensions d and precisions v.
Tables are on the following pages.
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