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Abstract Coin-flipping is a cryptographic task in which two physically sep-
arated, mistrustful parties wish to generate a fair coin-flip by communicating
with each other. Chailloux and Kerenidis (2009) designed quantum protocols
that guarantee coin-flips with near optimal bias away from uniform, even when
one party deviates arbitrarily from the protocol. The probability of any out-
come in these protocols is provably at most %Jré for any given § > 0. However,
no explicit description of these protocols is known; in fact, the smallest bias
achieved by known explicit protocols is 1/4 (Ambainis, 2001).

We take a computational optimization approach, based mostly on convex
optimization, to the search for simple and explicit quantum strong coin-flipping
protocols. We present a search algorithm to identify protocols with low bias
within a natural class, protocols based on bit-commitment (Nayak and Shor,
2003). The techniques we develop enable a computational search for protocols
given by a mesh over the corresponding parameter space. We conduct searches
for four-round and six-round protocols with bias below 0.2499 each of varying
dimension which include the best known explicit protocol (with bias 1/4).
After checking over 10'® protocols, a task which would be infeasible using
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semidefinite programming alone, we conjecture that the smallest achievable
bias within the family of protocols we consider is 1/4.

Keywords Semidefinite programming - Quantum coin-flipping - Computa-
tional optimization

1 Introduction

Quantum coin-flipping is a fundamental task in Quantum Cryptography which
can potentially be used as a building block for other, more sophisticated tasks
in quantum computing. Many fundamental problems about quantum coin-
flipping (e.g., determination of the bias of a given protocol) allow formulations
in the language of convex optimization in the space of Hermitian matrices
over the complex numbers, in particular, in the language of semidefinite op-
timization. However, the problem of finding a good quantum coin-flipping
protocol using such SDP (Semidefinite Programming) formulations becomes
a very hard, nonconvex optimization problem. In our approach, we design an
algorithm to approximately solve the nonconvex problem. We take a compu-
tational optimization approach. We treat the space of quantum coin-flipping
protocols as a data space for our SDPs and numerically search for good pro-
tocols in this data space by solving a huge number of SDPs. To speed up
the search, we derive new bounds on the optimal objective function values of
the SDPs by special feasible solutions. These feasible solutions are obtained
by analytically solving restrictions to the feasible region, which in turn are
derived from good quantum coin-flipping strategies. The resulting bounds are
attractive since they have closed-form expressions which can be computed
very efficiently. If these solutions are found to have large objective function
value (large with respect to the value of previously analyzed good protocols),
then the need to invoke the general purpose SDP solver is eliminated, thereby
saving time.

We now discuss quantum coin-flipping and introduce our approach.

Quantum coin-flipping. Coin-flipping is a classic cryptographic task in-
troduced by Blum [6]. In this task, two remotely situated parties, Alice and
Bob, would like to agree on a uniformly random bit by communicating with
each other. The complication is that neither party trusts the other. If Alice
were to toss a coin and send the outcome to Bob, Bob would have no means
to verify whether this was a uniformly random outcome. In particular, if Alice
wishes to cheat, she could send the outcome of her choice without any possi-
bility of being caught cheating. We are interested in a communication protocol
that is designed to protect an honest party from being cheated.

More precisely, a “strong coin-flipping protocol” with bias € is a two-
party communication protocol in the style of Yao [29/30]. In the protocol,
the two players, Alice and Bob, start with no inputs and compute a value
ca,cp € {0,1}, respectively, or declare that the other player is cheating. If both
players are honest, i.e., follow the protocol, then they agree on the outcome
of the protocol (ca = ¢g), and the coin toss is fair (Pr(ca = ¢g = b) = 1/2,
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for any b € {0,1}). Moreover, if one of the players deviates arbitrarily from
the protocol in his or her local computation, i.e., is “dishonest” (and the other
party is honest), then the probability of either outcome 0 or 1 is at most 1/2+e.
Other variants of coin-flipping have also been studied in the literature. How-
ever, in the rest of the article, by “coin-flipping” (without any modifiers) we
mean strong coin flipping.

A straightforward game-theoretic argument proves that if the two parties in
a coin-flipping protocol communicate classically and are computationally un-
bounded, at least one party can cheat perfectly (with bias 1/2). In other words,
there is at least one party, say Bob, and at least one outcome b € {0,1} such
that Bob can ensure outcome b with probability 1 by choosing his messages
in the protocol appropriately. Consequently, classical coin-flipping protocols
with bias € < 1/2 are only possible under complexity-theoretic assumptions,
and when Alice and Bob have limited computational resources.

Quantum communication offers the possibility of “unconditionally secure”
cryptography, wherein the security of a protocol rests solely on the validity of
quantum mechanics as a faithful description of nature. The first few propos-
als for quantum information processing, namely the Wiesner quantum money
scheme [27] and the Bennett-Brassard quantum key expansion protocol [4]
were motivated by precisely this idea. These schemes were indeed eventu-
ally shown to be unconditionally secure in principle [I5LI3L2TL18]. In light of
these results, several researchers have studied the possibility of quantum coin-
flipping protocols, as a step towards studying more general secure multi-party
computations.

Lo and Chau [I2] and Mayers [14] were the first to consider quantum pro-
tocols for coin-flipping without any computational assumptions. They proved
that no protocol with a finite number of rounds could achieve 0 bias. Nonethe-
less, Aharonov, Ta-Shma, Vazirani, and Yao [2] designed a simple, three-round
quantum protocol that achieved bias & 0.4143 < 1/2. This is impossible clas-
sically, even with an unbounded number of rounds. Ambainis [3] designed a
protocol with bias 1/4 ¢ la Aharonov et al., and proved that it is optimal
within a class (see also Refs. [23/[10] for a simpler version of the protocol and
a complete proof of security). Shortly thereafter, Kitaev [11] proved that any
strong coin-flipping protocol with a finite number of rounds of communication
has bias at least (v/2 —1)/2 ~ 0.207 (see Ref. [9] for an alternative proof).
Kitaev’s seminal work uses semidefinite optimization in a central way. This
argument extends to protocols with an unbounded number of rounds. This
remained the state of the art for several years, with inconclusive evidence in
either direction as to whether 1/4 = 0.25 or (/2 — 1)/2 is optimal. In 2009,
Chailloux and Kerenidis [7] settled this question through an elegant protocol
scheme that has bias at most (v/2 — 1)/2 4 6 for any § > 0 of our choice
(building on [I7], see below). We refer to this as the CK protocol.

The CK protocol uses breakthrough work by Mochon [I7], which itself
builds upon the “point game” framework proposed by Kitaev. Mochon shows
there are weak coin-flipping protocols with arbitrarily small bias. (This work
has appeared only in the form of an unpublished manuscript, but has been
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verified by experts on the topic; see e.g. [I].) A weak coin-flipping protocol is
a variant of coin-flipping in which each party favours a distinct outcome, say
Alice favours 0 and Bob favours 1. The requirement when they are honest is
the same as before. We say it has bias € if the following condition holds. When
Alice is dishonest and Bob honest, we only require that Bob’s outcome is 0
(Alice’s favoured outcome) with probability at most 1/24¢€. A similar condition
to protect Alice holds, when she is honest and Bob is dishonest. The weaker
requirement of security against a dishonest player allows us to circumvent the
Kitaev lower bound. While Mochon’s work pins down the optimal bias for weak
coin-flipping, it does this in a non-constructive fashion: we only know of the
ezistence of protocols with arbitrarily small bias, not of its explicit description.
Moreover, the number of rounds tends to infinity as the bias decreases to 0. As
a consequence, the CK protocol for strong coin-flipping is also existential, and
the number of rounds tends to infinity as the bias decreases to (v/2 —1)/2. It
is perhaps very surprising that no progress on finding better explicit protocols
has been made in over a decade.

Search for explicit protocols. This work is driven by the quest to find
explicit and simple strong coin-flipping protocols with bias smaller than 1/4.
There are two main challenges in this quest. First, there seems to be little
insight into the structure (if any) that protocols with small bias have; knowl-
edge of such structure might help narrow our search for an optimal protocol.
Second, the analysis of protocols, even those of a restricted form, with more
than three rounds of communication is technically quite difficult. As the first
step in deriving the (v/2 —1)/2 lower bound, Kitaev [I1] proved that the opti-
mal cheating probability of any dishonest party in a protocol with an explicit
description is characterized by a semidefinite program (SDP). While this does
not entirely address the second challenge, it reduces the analysis of a proto-
col to that of a well-studied optimization problem. In fact this formulation as
an SDP enabled Mochon to analyze an important class of weak coin-flipping
protocols [16], and later discover the optimal weak coin flipping protocol [17].
SDPs resulting from strong coin-flipping protocols, however, do not appear to
be amenable to similar analysis.

We take a computational optimization approach to the search for explicit
strong coin-flipping protocols. We focus on a class of protocols studied by
Nayak and Shor [I9] that are based on “bit-commitment”. This is a natural
class of protocols that generalizes those due to Aharonov et al. and Ambainis,
and provides a rich test bed for our search. (See Section [3|for a description of
such protocols.) Early proposals of multi-round protocols in this class were all
shown to have bias at least 1/4, without eliminating the possibility of smaller
bias (see, e.g., Ref. [19]). A characterization of the smallest bias achievable in
this class would be significant progress on the problem: it would either lead to
simple, explicit protocols with bias smaller than 1/4, or we would learn that
protocols with smaller bias take some other, yet to be discovered form.

Chailloux and Kerenidis [8] have studied a version of bit-commitment that
may have implications for coin-flipping. They proved that in any quantum
bit-commitment protocol with computationally unbounded players, at least
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one party can cheat with bias at least &~ 0.239. Since the protocols we study
involve two interleaved commitments to independently chosen bits, this lower
bound does not apply to the class. Chailloux and Kerenidis also give a protocol
scheme for bit-commitment that guarantees bias arbitrarily close to 0.239. The
protocol scheme is non-constructive as it uses the Mochon weak coin-flipping
protocol. It is possible that any explicit protocols we discover for coin-flipping
could also lead to explicit bit-commitment with bias smaller than 1/4.

We present an algorithm for finding protocols with low bias. Each bit-
commitment based coin-flipping protocol is specified by a 4-tuple of quantum
states. At a high level, the algorithm iterates through a suitably fine mesh of
such 4-tuples, and computes the bias of the resulting protocols. The size of
the mesh scales faster than 1/v"P where v is a precision parameter, & is a
universal constant, and D is the dimension of the states. The dimension itself
scales as 2", where n is the number of quantum bits involved. In order to
minimize the doubly exponential size of the set of 4-tuples we examine, we
further restrict our attention to states of the form introduced by Mochon for
weak coin-flipping [16]. The additional advantage of this kind of state is that
the SDPs in the analysis of the protocols simplify drastically. In fact, all but
a few constraints reduce to linear equalities so that the SDPs may be solved
more efficiently.

Next, we employ two techniques to prune the search space of 4-tuples.
First, we use a sequence of strategies for dishonest players whose bias is given
by a closed form expression determined by the four states. The idea is that
if the bias for any of these strategies is higher than 1/4 for any 4-tuple of
states, we may safely rule it out as a candidate optimal protocol. This also
has the advantage of avoiding a call to the SDP solver, the computationally
most intensive step in the search algorithm. The second technique is to invoke
symmetries in the search space as well as in the problem to identify protocols
with the same bias. The idea here is to compute the bias for as few members
of an equivalence class of protocols as possible.

These techniques enable a computational search for protocols with up to six
rounds of communication, with messages of varying dimension. The Ambainis
protocol with bias 1/4 has three rounds, and it is entirely possible that a strong
coin-flipping protocol with a small number of rounds be optimal. Thus, the
search non-trivially extends our understanding of this cryptographic primitive.
We elaborate on this next.

The results. We performed searches that sought protocols within the
mesh with bias at most 1/4 minus a small constant. We chose the constant to
be 0.001. The rationale here was that if the mesh contains protocols with bias
close to the lower bound of =~ 0.207, we would find protocols that have bias
closer to 0.25 (but smaller than it) relatively quickly. We searched for four-
round protocols in which each message is of dimension ranging from 2 to 9,
each with varying fineness for the mesh. We found that our heuristics, i.e., the
filtering by fixed cheating strategies, performed so well that they eliminated
every protocol: all of the protocols given by the mesh were found to have bias
larger than 0.2499 without the need to solve any SDP.
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The initial search for four-round protocols helped us fine-tune the filter by
a careful selection of the order in which the cheating strategies were tried. The
idea was to eliminate most protocols with the least amount of computation.
This made it feasible for us to search for protocols in finer meshes, with mes-
sages of higher dimension, and with a larger number of rounds. In particular,
we were able to check six-round protocols with messages of dimension 2 and
3. Our heuristics again performed very well, eliminating almost every protocol
before any SDP needed to be solved. Even during this search, not a single
protocol with bias less than 0.2499 was found.

It may not immediately be evident that the above searches involved a
computational examination of extremely large sets of protocols and that the
techniques described above in Section [B] were crucial in enabling this search.
The symmetry arguments pruned the searches drastically, and in some cases
only 1 in every 1,000,000 protocols needed to be checked. In most cases, the
cheating strategies (developed in Subsection filtered out the rest of the
protocols entirely. To give an example of the efficiency of our search, we were
able to check 2.74 x 10 protocols in a matter of days. Without the symmetry
arguments and the use of cheating strategies as a filter, this same search would
have taken well over 69 million years, even using the very simplified forms of
the SDPs. Further refinement of these ideas may make a more thorough search
of protocols with four or more rounds feasible.

Finally, based on our computational findings, we make the following con-
jecture: Any strong coin-flipping protocol based on bit-commitment as defined
formally in Section [3| has bias at least 1/4. This conjecture, if true, would im-
ply that we need to investigate new kinds of protocols to find ones with bias
less than 1/4. Regardless of the truth of the above conjecture, we hope that
the new techniques developed for analyzing protocols via modern optimization
methods and for simplifying semidefinite optimization problems with special
structure will be helpful in future work in the areas of quantum computing
and semidefinite programming.

Organization of the paper. We begin with an introduction to the ideas
contained in this paper in Section 2]including an introduction to quantum com-
puting and semidefinite programming. Section [3| defines strong coin-flipping
protocols and the measure of their security (namely, their bias). We define
the notion of protocols based on bit-commitment and model optimal cheating
strategies for such protocols using semidefinite programming in Section[4] Sec-
tion [5| introduces several heuristics to speed up our search including the use of
a protocol filter (Subsection and symmetry (Subsection . Our search
algorithm is presented in Section [6] and our numerical results in Section [7] We
conclude with some final remarks in Section

The background material on quantum computation and optimization is
aimed at making this work accessible to researchers in both communities.
Readers conversant with either topic need only skim the corresponding sections
to familiarize themselves with the notation used.
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2 Background and notation

In this section, we establish the notation and the necessary background for
this paper.

Linear algebra. For a finite set A4, we denote by R4, Rf, ProbA, and
C# the set of real vectors, nonnegative real vectors, probability vectors, and
complex vectors, respectively, each indexed by A. We use R™, R"}, Prob”,
and C" for the special case when A = {1,...,n}. For x € A, the vectors e,
denote the standard basis vectors of R?. The vector e4 € R# denotes the all 1
vector ) . 4 €s.

We denote by S4 and S_‘ﬁ the set of Hermitian matrices and positive
semidefinite matrices, respectively, each over the reals with columns and rows
indexed by A.

It is convenient to define /= to be the element-wise square root of a non-
negative vector x. The element-wise square root of a probability vector yields a
unit vector (in the Euclidean norm). This operation maps a probability vector
to a quantum state (defined later in this section).

For vectors x and y, the notation x > y denotes that x —y has nonnegative
entries, * > y denotes that z — y has positive entries, and for matrices X
and Y, the notation X > Y denotes that X — Y is positive semidefinite, and
X > Y denotes X —Y is positive definite when the underlying spaces are clear
from context. When we say that a matrix is positive semidefinite or positive
definite, it is assumed to be Hermitian which implies that S_‘ﬁ C SA.

The Kronecker product of matrices X and Y, denoted X ® Y, is defined
such that the ¢, j’th block is equal to X; ; - Y. Note that X @ Y € SfXB when
X esStandY € S and Tr(X ® Y) = Tr(X) - Tr(Y) when X and Y are
square.

The Schatten 1-norm, or nuclear norm, of a matrix X is defined as

X1, == Tr(V X*X),

where X* is the adjoint of X and v/X denotes the square root of a positive
semidefinite matrix X, i.e., the positive semidefinite matrix Y such that Y2 =
X. Note that the 1-norm of a matrix is the sum of its singular values. The
I-norm of a vector p € C*4 is denoted as

el = 3 Ipal.

z€A

We use the notation a to denote the complement of a bit a with respect to
0 and 1 and a @ b to denote the XOR of the bits a and b. We use Z3 to denote
the set of n-bit binary strings.

For a vector p € R4, we denote by Diag(p) € S4 the diagonal matrix with
p on the diagonal. For a matrix X € S#, we denote by diag(X) € R4 the
vector on the diagonal of X.

For a vector z € C#, we denote by supp(z) the set of indices of A where
x is nonzero. We denote by x~! the element-wise inverse of x (mapping the 0
entries to 0).
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For a matrix X, we denote by Null(X) the nullspace of X, by det(X) the
determinant of X, and by Apax(X) the largest eigenvalue of X. We denote
by (X,Y) the standard inner product Tr(X*Y") of matrices X,Y of the same
dimension.

Convex analysis. A convex combination of finitely many vectors x1, ..., Ty,
is any vector of the form Y | \iz;, when A1, ..., A, € [0,1] satisfy Y ;" | A; = 1.
The convez hull of a set C' is the set of convex combinations of elements of C,
denoted conv(C). A set C'is convez if C' = conv(C).

A convex function f:R™ — R U {oo} is one that satisfies

FOx+ (1 =Ny) < Af(x)+(1—XN)f(y), for all z,y € R", X\ € [0,1].
A convex function is strictly convez if
FOa + (1= N)y) < Af(@)+ (L= N f(y), for all @ # y, 2,y € R", A € (0,1).

We say that a convex function is proper if f(z) < +o0 for some z € R"™. The
epigraph of a function f is the set

epi(f) := {(x,1) : f(x) <t}

which are the points above the graph of the function f. A function is convex
if and only if its epigraph is a convex set.

A function f : R™ — R U {—o0} is (strictly) concave if —f is (strictly)
convex, and proper when f(z) > —oo for some z € R™. The hypograph of a
function f is the set

hypo(f) := {(2,t) : f(x) > t}

which are the points below the graph of the function f. A function is concave
if and only if its hypograph is a convex set.

Let f1,...,fn : R™ — R U {oc} be proper, convex functions. We denote
the convex hull of the functions {f1,..., fn} by conv{f1,..., fn} which is the
greatest convex function f such that f(x) < fi(x),..., fn(z) for every z € R™.
The convex hull can be written in terms of the epigraphs

conv{fi,..., fu}(z) :==inf {t: (z,t) € conv(U]_ epi(f;))} .

We denote the concave hull of {f1,..., fn} by conc{fi,..., fn} which can be
written as

conc{fi,...,fn}:=—conv{—f1,....,—fn}

when fi,..., fn : R™ = RU{—o00} are proper, concave functions. The concave
hull is the least concave function f such that f(x) > fi(z),..., fn(z) for every
x € R™ and can be written as

conc{fi,..., fa}(x) :=sup {t : (z,1) € conv(UiLhypo(fi))} -

A convex optimization problem or convex program is one of the form

inf f(x),

zeC
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where f is a convex function and C' is a convex set. Alternatively, one could
maximize a concave function over a convex set.

Semidefinite programming. A natural model of optimization when study-
ing quantum information is semidefinite programming. A semidefinite program,
abbreviated as SDP, is an optimization problem of the form

(P) sup{(C,X): A(X)=0b, X €S},

where A : S — R™ is linear, C' € S", and b € R™. The SDPs that arise in
quantum computation may involve optimization over complex matrices. How-
ever, they may be transformed to the above standard form in a straightforward
manner, by observing that Hermitian matrices form a real subspace of the vec-
tor space of n x n complex matrices. However, in this paper we only have need
to study SDPs defined over real variables.

Similar to linear programs, every SDP has a dual. We can write the dual
of (P) as

(D) inf{{b,y): A*(y) — S = C, S € S},

where A* is the adjoint of A. We refer to (P) as the primal problem and to (D)
as its dual. We say X is feasible for (P) if it satisfies the constraints A(X) =b
and X € S%, and (y,S) is feasible for (D) if A*(y) — S = C,S € S}. The
usefulness of defining the dual in the above manner is apparent in the following
lemmas.

Lemma 1 (Weak duality) For every X feasible for (P) and (y,S) feasible
for (D) we have (C, X) < (b,y).

Using weak duality, we can prove bounds on the optimal objective value of
(P) and (D), i.e., the objective function value of any primal feasible solution
yields a lower bound on (D) and the objective function value of any dual
feasible solution yields an upper bound on (P).

Under mild conditions, we have that the optimal objective values of (P)
and (D) coincide.

Lemma 2 (Strong duality) If the objective function of (P) is bounded from
above on the set of feasible solutions of (P) and there exists a strictly feasible
solution, i.e., there exists X = 0 such that A(X) = b, then (D) has an optimal
solution and the optimal objective values of (P) and (D) coincide.

A strictly feasible solution as in the above lemma is also called a Slater point.
Semidefinite programming has a powerful and rich duality theory and the
interested reader is referred to [28], [26] and the references therein.
Quantum information. We now give a brief introduction to quantum
information. For a more thorough treatment of the subject, we refer the reader
to [20].
Quantum states. Quantum states are a description of the state of a
physical system, such as the spin of an electron. In the simplest case, such a
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state is a unit vector in a finite-dimensional Hilbert space (which is a complex
Euclidean space). For example, the following vectors are quantum states in C?

O A |

The first two are standard basis vectors and can be thought of as the logical
states of a standard computer. In general, a qubit can be written as

Y i=agey + ayer,

where ag, a; € C satisfy |ag|? + |a1|? = 1. This condition ensures that v has
norm equal to 1. Up to factor of modulus 1, the set of pairs (g, a1) defining a
two-dimensional quantum state is in one-to-one correspondence with the unit
sphere in R3.

Systems with a two dimensional state space are called quantum bits or
qubits. The state space of a sequence of n qubits is given by the n-fold tensor
product (C?)®" = C2?". Higher dimensional systems, say, of dimension d < 2",
may be viewed as being composed of a sequence of n qubits via a canonical
isometry C% — C2".

Notice that e = %eo + %el and e_ = %eo — %61. These states are
said to be in a superposition of the states ey and e; and exhibit properties
of being in both states at the same time. This is in part what gives quantum
computers the power to efficiently tackle hard problems such as factoring [22].

In general, a system may be in a random superposition according to some
probability distribution. Suppose a quantum system is in such a state drawn
from the ensemble of states (¢o, 1, ..., 1¥,) with probabilities (pg, p1, ..., Pn),
respectively. This quantum state may be described more succinctly as a density

matriz, defined as
n
> piviy.
i=0

Notice that this matrix is positive semidefinite and has unit trace. Moreover,
any positive semidefinite matrix with unit trace can be written in the above
form using its spectral decomposition.

Two different probability distributions over superpositions may have the
same density matrix. For example, density matrices do not record “phase in-
formation”, i.e., the density matrix of state v is the same as that of —u.
However, two ensembles with the same density matrix behave identically un-
der all allowed physical operations. Therefore, there is no loss in working with
density matrices, and we identify an ensemble with its density matrix.

A quantum superposition given by the vector v corresponds to the rank 1
density matrix ¥y* and we call it a pure state. States with a density matrix
of rank 2 or more are said to be mized.

Quantum operations. The most basic quantum operation is specified by
a unitary transformation. Suppose U is a unitary operator acting on C* and
1 € C4 is a quantum state. If we apply U to 1 then the resulting quantum
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state is Ut € CA. Note this is a well-defined quantum state since unitary
operators preserve Euclidean norm.

Suppose we are given a state drawn from the ensemble (g, 1, ..., ¥,)
with probabilities (pg, p1,...,pn). Then if we apply a unitary matrix U to the
state, the resulting state is given by the ensemble (U, Ut)y, ..., U, ) with
the same probabilities. The new density matrix is thus

> piUipiU* =U (Zpi «w;) U,
=0

i=0

where U* is the adjoint of U. Thus, if we apply the unitary U to a state (with
density matrix) p, then the resulting quantum state is UpU™*. Note that this
matrix is still positive semidefinite with unit trace.

We assume that parties capable of quantum information processing have
access to qubits initialized to a fixed quantum state, say eg, can apply arbitrary
unitary operations, and can physically transport (“send”) qubits without dis-
turbing their state. We use the phrase “prepare a quantum state 1 € C*” to
mean that we start with sufficiently many qubits (say n such that C4 C C?")
in state ef™ and apply any unitary transformation that maps 5™ to .

Quantum measurement. Measurement is a means of extracting classical
information from a quantum state. A quantum measurement on space C4 is
a sequence of positive semidefinite operators (I1y,...,I1,), with II; € Sﬁ for
each i € {1,...,n}, satisfying > | II; = . This sequence of operators is also
called a positive operator valued measure or a POVM in the literature. If we
have some qubits in state p and we apply the measurement (IIy,...,II,) (or
“observe the qubits according to the measurement”), we obtain outcome “i”
with probability (I1;, p). The definitions of density matrices and measurements
establish ((II;, p)) as a well-defined probability distribution over the indices.
The alteration of state resulting from a measurement is referred to as a col-
lapse. Due to this restricted kind of access, in general only a limited amount
of classical information may be extracted from a given quantum state.

For example, if we apply the measurement {IIj := epeg, II; := e1e}} to the
state ey e’} , we obtain the outcomes:

“0” with probability <HO7 e+ei> =1/2,
“1” with probability <H1, 6+€i> =1/2.

Multiple quantum systems. For convenience, we refer to a quantum
system with state space C4 by the index set A. Suppose we have two quantum
systems A;, A, that are independently in pure states ¢, € CAt and v, € C42.
Their combined state is 1, ® ¥y € CA @ CA2 =2 CA1X42 where ® denotes
the Kronecker (or tensor) product. Note that the Kronecker product has the
property that ||z ® y||, = ||z]5 ||y]l, so unit norm is preserved. It is not always
possible to decompose a vector in C41 @ C42 as a Kronecker product of vectors
in C4* and C#2; a state with this property is said to be entangled. For example,
the state T = [1/v/2,0,0,1/v/2]T is entangled; it cannot be expressed as
11 ® 1y for any choice of 11,1y € C2.
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These concepts extend to mixed states as well. If two disjoint quantum
systems are independently in states p; € Sﬁl and pg € sz, then the joint state
of the combined system is the density matrix p; ® pa € Sﬁl *A2 We make use
of the properties that Kronecker products preserve positive semidefiniteness
and that Tr(A® B) = Tr(A) Tr(B). It is not always possible to write a density
matrix p € Sﬁl *A2 a8 p1 @ py where py € Sf_l and p2 € SﬁQ, or more generally,
as a convex combination of such Kronecker products. In the latter case, the
state is said to be entangled, and otherwise, it is said to be unentangled.

We typically consider systems consisting of two-dimensional particles (i.e.,
qubits), but it is sometimes convenient to work with higher dimensional par-
ticles. Since higher dimensional spaces may be viewed as subspaces of suitable
tensor powers of C2, we continue to describe such systems in terms of qubits.

Partial trace. The partial trace over Ay is the unique linear transforma-
tion Try, : S41*42 5 §42 which satisfies

Tra, (p1 @ p2) = Tr(p1) - p2,

for all p; € S4 and py € S42. More explicitly, given any matrix X € Sj‘_lwb

we define Tr4, as

Tra,(X) = Y (€, ®La,) X (€5, ®14,),

r1€AL

where {e,, : 1 € Ay} is the standard basis for CA41. In fact, the definition is
independent of the choice of basis, so long as it is orthonormal. Note that
the partial trace is positive, i.e., Try, (X) € Sﬁg when X € Sflx’%, and also
trace-preserving. (In fact, it is a completely positive operation.) This ensures
that the image of any density matrix under this operation, called its reduced
state, is a well-defined density matrix.

Consider the scenario where two parties, Alice and Bob, hold parts of a
quantum system which are jointly in some state p, i.e., they “share” a quantum
state p over the space C4 ® CB. Then the partial trace of p over one space
characterizes the quantum state over the remaining space (if we are interested
only in operations on the latter space). For example, Tra(p) is the density
matrix representing Bob’s half of the state and Trp(p) represents Alice’s half.
Note that p may not equal Trp(p) ® Tra(p) in general.

Suppose we are given the density matrix p € Sﬁ. We call the pure state
Y € CA®CP a purification of p if Trg (Y*) = p. A purification always exists if
|B| > |A|, and is in general not unique. An important property of purifications
of the same state is that they are related to each other by a unitary operator:
if Trg (Y1p*) = Trp (¢¢*), then there exists a unitary U acting on CZ alone
such that v = (14 @ U) ¢.

The partial trace operation is the quantum analogue of calculating marginal
probability distributions. Consider the linear operator Try : RA*E — REB
defined by

[Tra(@)y = vey »

z€A
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for y € B. This is called the partial trace over A. Note that Tr4(p) gives the
marginal distribution over B of the probability distribution p € Prob?*®. One
may view probability distributions as diagonal positive semidefinite matrices
with unit trace. Then, taking the partial trace (as defined for quantum states)
corresponds exactly to the computation of marginal distributions.

Distance measures. Notions of distance between quantum states and
probability distributions are very important in quantum cryptography. Here,
we discuss two measures used in this paper and how they are related.

We define the fidelity of two nonnegative vectors p,q € Rf as

F(p,q) == <Z @@)

z€A

and the fidelity of two positive semidefinite matrices p; and py as

F(p1, p2) = |orv/eal? -

Notice, F(p1,p2) > 0 with equality if and only if (p1, p2) = 0 and, if p; and
p2 are quantum states, F(p1, p2) < 1 with equality if and only if p; = pa. An
analogous statement can be made for fidelity over probability vectors.

Fidelity has several useful properties, which we later use in this paper. We
have occasion to consider fidelity only of probability distributions, and state
the properties in terms of these. However, the following properties hold for
quantum states as well. Fidelity is symmetric, positively homogeneous in both
arguments, i.e., AF(p,q) = F(Ap,q) = F(p, Aq) for all A > 0, and is concave,
te, FOO Xiping) > Y0 M F (pi, q), for all X € Prob™.

Another distance measure is the trace distance. We define the trace distance
between two probability vectors p and ¢, denoted A(p, q), as

1
Alp,q) == 5 lp—dqll; -

This is also commonly known as the total variation distance. We similarly
define the trace distance between two quantum states p; and ps as

1
A(p1, p2) = 3 o1 — pall, -

Notice A(p1,p2) > 0 with equality if and only if p; = po, and A(p1,p2) < 1
with equality if and only if (p1, p2) = 0. An analogous statement can be made
for the trace distance between probability vectors.

We now discuss two important notions in quantum cryptography. The first
is how easily two states can be distinguished from each other. For example, if
Alice gives to Bob one of two states p; or ps chosen uniformly at random, then
Bob can measure to learn whether he has been given p; or p, with maximum
probability

11 11
Z 4 oy — — 4+ -A .
511 llor — p2ll., 515 (p1,p2)



14 A. Nayak, J. Sikora, L. Tungel

The second notion is quantum steering. Suppose Alice has given to Bob the
A; part (i.e., the subsystem A; of qubits) of ¢ € CA1*42. Now suppose she
wants to modify and send the A, part in a way so as to convince Bob that
a different state was sent, say 1 € CA41*42, Her most general strategy is
to apply a quantum operation on As (i.e., a sequence of unitary operations
and measurements) before sending it to Bob. If Bob measures according to
the POVM (¢p*, 1 — pp*), Alice can convince him that the state is ¢ with
maximum probability

F(TrA2 (7/11/1*)7 Tra, (¢¢*)) .
3 Coin-flipping protocols

A strong coin-flipping protocol is a two-party quantum commaunication protocol
in the style of Yao [30]. We concentrate on a class of communication protocols
relevant to coin-flipping. Informally, in such protocols, two parties Alice and
Bob hold some number of qubits; the qubits with each party are initialized
to a fixed pure state. The initial joint state is therefore unentangled across
Alice and Bob. The two parties then “play” in turns. Suppose it is Alice’s
turn to play. Alice applies a unitary transformation on her qubits and then
sends one or more qubits to Bob. Sending qubits does not change the overall
superposition, but rather changes the ownership of the qubits. This allows
Bob to apply his next unitary transformation on the newly received qubits.
At the end of the protocol, each player makes a measurement of their qubits
and announces the outcome as the result of the protocol.

Formally, the players Alice and Bob, hold some number of qubits, which
initially factor into a tensor product C4° @ CPBo of Hilbert spaces. The qubits
corresponding to C4° are in Alice’s possession, and those in CP° are in Bob’s
possession. When the protocol starts, the qubits in C4° are initialized to some
superposition 14 o and those in CP° to 1 o, both of which specified by the
protocol. The communication consists of ¢ > 1 alternations of message ex-
change (“rounds”), in which the two players “play”. Either party may play
first. The protocol specifies a factorization of the joint state space just before
each round, corresponding to the ownership of the qubits. In the ith round,
i > 1, suppose it is Alice’s turn to play. Suppose the factorization of the state
space just before the ith round is C4i-1 @ CPi-1. Alice applies a unitary op-
erator Up ; to the qubits in CA4i-1. Then, Alice sends some of her qubits to
Bob. Formally, the space C4~1 is expressed as C4 @ CM:, where C4 is Al-
ice’s state space after the ith message is sent and CM: is the state space for
the ¢th message. Consequently, Bob’s state space after receiving the ¢th mes-
sage is CP# = CM: @ CPi-1. In the next round, Bob may thus apply a unitary
operation to the qubits previously in Alice’s control.

At the end of the ¢ rounds of play, Alice and Bob observe the qubits in their
possession according to some measurement. The outcomes of these measure-
ments represent their outputs. We emphasize that there are no measurements
until all rounds of communication are completed. A protocol with intermedi-
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ate measurements may be transformed into this form by appealing to standard
techniques [5].

Definition 1 (Strong coin-flipping) A strong coin-flipping protocol is a
two-party communication protocol as described above, in which the measure-
ments of Alice and Bob are given by respective POVMs (14,0, a1, ITA abort)
and (ITg o, ITs 1, IIB abort ). When both parties follow the protocol, they do not
abort, i.e., only get outcomes in {0, 1}. Further, each party outputs the same
bit ¢ € {0,1} and each binary outcome occurs with probability 1/2.

We are interested in the probabilities of the different outcomes in a coin-
flipping protocol, when either party “cheats”. Suppose Alice and Bob have
agreed upon a protocol, i.e., a set of rules for the state initialization, commu-
nication, quantum operations, and measurements. What if Alice or Bob do not
follow protocol? Suppose Alice is dishonest and would like to force an outcome
of 0. She may use a different number of qubits for her private operations, so
that her space CAi may be much larger than C4¢. She may create any initial
state she wants. During the communication, the only restriction is that she
send a state of the correct dimension, e.g., if the protocol requires a message
with 3 qubits in the first message, then Alice sends 3 qubits. Between mes-
sages, she may apply any quantum operation she wants on the qubits in her
possession. At the end of the protocol, she may use a different measurement
of her choice. For example, she may simply output “0” as this is her desired
outcome (which corresponds to a trivial measurement). The rules that Alice
chooses to follow instead of the protocol constitute a cheating strategy.

We would like to quantify the extent to which a cheating player can con-
vince an honest one of a desired outcome, so we focus on runs of the protocol in
which at most one party is dishonest. We analyze in this paper the maximum
probability with which Alice (or Bob) can force a desired outcome in terms of
the “bias”, i.e., the advantage over 1/2 that a cheating party can achieve.

Definition 2 (Bias) For a strong coin-flipping protocol, for each ¢ € {0, 1},
define

e P .:=sup {Pr[honest Bob outputs ¢ when Alice may cheat|},
e 15 . :=sup {Pr[honest Alice outputs ¢ when Bob may cheat]},

where the suprema are taken over all cheating strategies of the dishonest
player. The bias € of the protocol is defined as

€= maX{ng, PA‘J, P§70,P§)1} -1/2 .

In the Supplemental Material we work out the cheating probabilities of an
example protocol.

A family of protocols. We now consider a family of protocols which
generalizes the above idea. Alice and Bob each flip a coin and commit to
their respective bits by exchanging quantum states. Then they reveal their
bits and send the remaining part of the commitment state. Each party checks
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the received state against the one they expect, and abort the protocol if they
detect an inconsistency. They output the XOR of the two bits otherwise. We
see that this is uniformly random, when a and b are uniformly random.

The difficulty in designing a good protocol is in deciding how Alice and
Bob commit to their bits. If Alice or Bob leaks too much information early,
then the other party has more freedom to cheat. Thus, we try to maintain a
balance between the two parties so as to minimize the bias they can achieve
by cheating.

Consider the following Cartesian product of finite sets A = Ay x -+ X A,,.
These are used for Alice’s first n messages to Bob. Suppose we are given two
probability distributions ag, a1 € Prob”. Define the following two quantum
states ,

@Da:ZMex@ezGCA@CA for a€{0,1},

z€A

where A’ = A. The reason we define the state over C* and a copy is because in
the protocol, Alice sends states in C* while retaining copies in C4' for herself.
We may simulate Alice’s choice of uniformly random a and the corresponding
messages by preparing the initial state

1 ’ ’
b= > \7ea®ea®wae<CA°®<CA°®<CA®CA’
a€{0,1} 2

where Ag = A = {0,1} are used for two copies of Alice’s bit a, one for Bob
and a copy for herself.

We now describe the setting for Bob’s messages. Consider the following
Cartesian product of finite sets B = By X --- X B,, used for Bob’s first n mes-
sages to Alice. Suppose we are given probability distributions g, 81 € Prob®.
Define the following two quantum states

B= VByey,®e, €CPCY  for be{0,1},

yeB

where B’ = B. Bob’s choice of uniformly random b, and the corresponding
messages may be simulated by preparing the initial state

1 ! ’
pi= Y —ea®eddpcCPCHaC?aC,
be{o,l}\/é

where By = B{, = {0, 1} are used for two copies of Bob’s bit b, one for Alice
and a copy for himself.
We now describe the communication and cheat detection in the protocol.

Definition 3 (Coin-flipping protocol based on bit-commitment) A
coin-flipping protocol based on bit-commitment is specified by a 4-tuple of
probability distributions (g, a1, Bo, 51) that define states 1, ¢ as above.

e Alice prepares the state 1 and Bob prepares the state ¢ as defined above.
e For i from 1 to n: Alice sends C** to Bob who replies with C5:.
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e Alice fully reveals her bit by sending C4. She also sends C*" which Bob
uses later to check if she was honest. Bob then reveals his bit by sending
CPo. He also sends C?" which Alice uses later to check if he was honest.

e Alice observes the qubits in her possession according to the measurement
AgxB{xBxB’

(ITa,0,IIA 1, IIA abort) defined on the space S , Where
Hap= > ee;@ee; @bty Haii= Y  ee; @ epes ® dooy,
be{0,1} be{0,1}

and Iz apory :=1—IIa o — IIa 1.

e Bob observes the qubits in his possession according to the measurement
Box AGx Ax A’

(IIg,0, 11,1, IIB abort) defined on the space S7 , where
HB,O = Z eae: & eaez ® 'l/}a'dJ:;a HB,l = Z 6(16:—; & 6a6:: ® 1/1117;[}::7
ac{0,1} ac{0,1}

and I abors *= 1—1IIp,0—1IIp,1. (These last two steps can be interchanged.)

Note that the measurements check two things. First, they check whether
the outcome is 0 or 1. The first two terms determine this, i.e., whether a = b
or if a # b. Second, they check whether the other party was honest. For
example, if Alice’s measurement projects onto a subspace where b = 0 and
Bob’s messages are not in state ¢g, then Alice knows Bob has cheated and
aborts.

Notice that our protocol is parameterized by the four probability distri-
butions ag, a1, 8o, and B1. It seems to be a very difficult problem to solve
for the choice of these parameters that gives us the least bias. Indeed, we do
not even have an upper bound on the dimension of these parameters in an
optimal protocol. However, we can solve for the bias of a protocol once these
parameters are fixed using the optimization techniques in Section [d] Once we
have a means for computing the bias given some choice of fixed parameters,
we then turn our attention to solving for the best choice of parameters. We use
the heuristics in Subsections [5.1] and [5.2] to design an algorithm in Section [6]
to search for these.

4 Cheating strategies as semidefinite programs

In this section, we show that the optimal cheating strategy of a player in a coin-
flipping protocol is characterized by highly structured semidefinite programs.

Definition 4 We define Bob’s cheating polytope, denoted as Ppg, as the set of
all vectors (p1,p2,...,pn) such that

TrB1 (pl) = €A,
Trp,(p2) = p1 ®ea,,

Trp, (pn) = pn-1 @ ea,,
p; € R_?IXBM“'XA"XBJ, for all j € {1,...,n},
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where e4; denotes the vector of all ones on the corresponding space CA4.

In the Supplemental Material, we work out the cheating probabilities in
the manner of Kitaev [I1]. We now define simpler “reduced” problems that
capture Bob’s optimal cheating probabilities.

Theorem 1 (Bob’s Reduced Problems) The mazimum probability with
which cheating Bob can force honest Alice to accept outcome ¢ € {0,1} is given
by the optimal objective function value of the following convex optimization
problem

1
Pg . = max 9 Z F ((aa ®15) " pn, ﬁa@c) 2 (P1,--,Pn) €PB ¢,
a€{0,1}

where the arguments of the fidelity functions are probability vectors over B.

A proof of the above theorem is presented in the Supplemental Material.
The connection between the fidelity function and semidefinite programming is
detailed later in this section.

We can also define Alice’s cheating polytope.

Definition 5 We define Alice’s cheating polytope, denoted as Py, as the set
of all vectors (s1, 82, .., 8n,s) satisfying

Tra, (s1) =1,
Tra,(s2) = s1®@ep,,

TI‘A“(Sn) =Sp—1®€p,_,,
Tra,(s) = sn ®ep,,
S1 € ]R_‘,'A_l,
55 € RﬁlXBIX'”XB"“XA", for all j € {2,...,n},

Al xAxB
s € R,° ,

where ep; denotes the vector of all ones on the corresponding space CBi,
Now we can define Alice’s reduced problems.

Theorem 2 (Alice’s Reduced Problems) The mazimum probability with
which cheating Alice can force honest Bob to accept outcome ¢ € {0, 1} is given
by the optimal objective function value of the following convex optimization
problem

1

o - (a,y) .

Py . = max 5 Z Zﬁa@c,y F(s ,0g) (81,480, 8) EPa
a€{0,1} y€B

w?er()a slay) ¢ Rf is the restriction of s with the indices (a,y) fived, i.e.,
[s'¥]

z = Sazy-
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We present a proof of the above theorem in the Supplemental Material.

We point out that the reduced problems are also semidefinite programs.
The containment of the variables in a polytope is captured by linear con-
straints, so it suffices to express the objective function as a linear functional
of an appropriately defined positive semidefinite matrix variable.

Lemma 3 For any p,q € Rﬁ, we have

F(p,q) = max{<X, \/}3\/]3T> cdiag(X) =¢q, X € Sﬁ} )

Proof Notice that X := \/(j\/@T is a feasible solution to the SDP with objective
function value F(p, ¢). All that remains to show is that it is an optimal solution.
If p = 0, then we are done, so assume p # 0. The dual can be written as

inf{(y, ) : Diag(y) = vpy/p ,y € R4},

Define y, as a function of € > 0, entry-wise for each x € A as

(VEP.q) +€) Y if poigz >0,

Yo (€) := (v/F(p,9)+e)llpll,

€

if gz = 0,
e if p, =0,q, > 0.

We can check that (y(¢),q) — F(p, q) as ¢ — 0, so it suffices to show that y(e)
is dual feasible for all € > 0. For any y > 0,

Diag(y) = v/pv/p' <= La > Diag(y)"/?\/p/p" Diag(y) '/

= 1> \/f)TDiag(y)_l\/;B
— 1> Z iy

z€A Ya

noting Diag(y)~'/2,/p,/p" Diag(y)~'/? is rank 1 so the largest eigenvalue is
equal to its trace. From this, we can check that y(e) is feasible for all € > 0.
O

The optimization problem in Lemma [3|remains an SDP if we replace ¢ with
a variable constrained to be in a polytope. Therefore, the reduced problems in
Theorems [I] and [2] can be modelled as semidefinite programs.

In the Supplemental Material, we discuss how the reduced problems can be
modelled as second-order cone programs and present numerical tests compar-
ing them to the SDP formulations. The numerical experiments suggest that
the current software is more robust in solving the SDP formulations for typical
data in our search algorithm, so we use the SDP formulations. However, the
second-order cone program formulations may be of independent interest so we
include them in the Supplemental Material.
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5 Speeding up the search

In this section, we introduce heuristics which dramatically speed up our search
algorithm.

5.1 Protocol filter

In this subsection, we describe ways to bound the optimal cheating proba-
bilities from below by finding feasible solutions to Alice and Bob’s reduced
cheating problems. In the search for parameters that lead to the lowest bias,
our algorithm tests many protocols. The idea is to devise simple tests to check
whether a protocol is a good candidate for being optimal. For example, suppose
we can quickly compute the success probability of a certain cheating strategy
for Bob. If this strategy succeeds with too high a probability for a given set
of parameters, then we can rule out these parameters as being good choices.
This saves the time it would have taken to solve the SDPs (or SOCPs).
We illustrate this idea using the Kitaev lower bound below.

Theorem 3 ([I1], [9]) For any coin-flipping protocol, we have
ProPso = 5 and Py Pg; > 5

Suppose that we find that P}, ~ 1/2, that is, the protocol is very secure
against dishonest Alice cheating towards 0. Then, from the Kitaev bound, we
infer that Pgo ~ 1 and the protocol is highly insecure against cheating Bob.
Therefore, we can avoid solving for Pj .

The remainder of this section is divided according to the party that is
dishonest. For each party, we discuss general cheating strategies and then also
for the special cases of four and six-round protocols.

We now present a theorem which captures some of Alice’s cheating strate-
gies. The proof of this theorem and the similar theorem for cheating Bob can
be found in the Supplemental Material.

Theorem 4 For a protocol parameterized by o, a1 € ProbA, Bo, 1 € ProbB,
we can bound Alice’s optimal cheating probability as follows:

Pio 5 3 conc (B P 0u) a € (0,11} () 1)
yeEB

> S (1VG0va" + 7yarvar”) @

> 5+ 5vFanan ) (5 +3A00). ®)

where

n = Z Boy and T:= Z Biy

yEB: yEB:
Bo,y=B1,y Bo,y<Bi,y

and /v is the normalized principal eigenvector of n\/cm‘/aoT + T/ar/ar .
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Furthermore, in a siz-round protocol, we have

Pio > 3w (1T (a0 VT (a0) 47T (@) T () ) (4)

> (G4 VT o) Toas ) ) 5+ 3 AT (50, T (1)) )

77/ = Z [TrBQ(ﬁo)]yl and 7' := Z [TrBQ(ﬁl)]yl'

y1€B7: y1€B7:
[Trpy (Bo)lyy 2[Trp, (B1)]lyy [Trpy (Bo)lyq <[Trp, (B1)lyy

We have analogous bounds for Py ,, which are obtained by switching the roles
of Bo and By in the above expressions.

We call Alice’s improved eigenstrategy, her eigenstrategy, and her
three-round strategy. For six-round protocols, we call Alice’s eigenstrategy
and her measuring strategy.

Note that only the improved eigenstrategy is affected by switching 8y and
b1 (as long as we are willing to accept a slight modification to how we break
ties in the definitions of 7,7, 7, and 7’).

We turn to strategies for a dishonest Bob.

Theorem 5 For a protocol parameterized by ag, v € ProbA, Bo, P1 € Prob?,
we can bound Bob’s optimal cheating probability as follows:

L1 1
Pgy > §+§VF(50751)7 (6)
and
L1 1
B0 = 5 + §A(TYA2X-~-xAn (a0), Trayx-.-xa, (a1)). (7)

In a four-round protocol, we have

P> % > F<Z aa,xvx,b’a> (®)

ac{0,1} €A

1 T
Z 5 Z )\max Z aa,w V ﬂa V /Ba (9)
€A a€{0,1}
1 1 1 1
Zmax{2+2A(a07a1)a 2+2\/F(50aﬁ1)} )

where /vy is the normalized principal eigenvector of ZaE{O,l} aa,x\/ﬁa\/ﬁaT.
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In a siz-round protocol, we have

Pho> % S F (Z Qo pa@’,ﬁa) (10)

acAj z€A

> 2 o (v T, o)V T, (o) +Cy/ T, (BT, (1)) (1)

1 1 1 1
> (54 5 VAT o) oo 00 ) (5 + gA0an)) . (12)
where
ﬂg T):Yl1,Y ;
o o T (5l i [T, (By@)lu >0,

[P2 ]y17y2 =

Cyy |Bl2| Zf [TrB2 (ﬂg(z))]lh =0,
K= Z Qo C = Z ayz g(:C) = argmax {aa,z} )
zEA: xEA: @
ag,e>al g @0,z <A1,z

and +/c is the normalized principal eigenvector of

5 Ao (/T (o) T, (o) + G/ T, ()T, (1))

Furthermore, if |A;| = |B;| for alli € {1,...,n}, then

1
Pio>5 D, Flaafa) - (13)

a€{0,1}

We get analogous lower bounds for Py, by switching the roles of By and
51 in the above expressions.

We call @ Bob’s ignoring strategy and ([7)) his measuring strategy. For four-
round protocols, we call Bob’s eigenstrategy and @D his eigenstrategy lower
bound. For six-round protocols, we call Bob’s siz-round eigenstrategy, (L1))
his eigenstrategy lower bound, and his three-round strategy. We call (13])
Bob’s returning strategy.

Note that the only strategies that are affected by switching 8y and B; are
the eigenstrategy and the returning strategy.

Descriptions of the cheating strategies corresponding to the values in The-
orems [4] and [f] can be found in the Supplemental Material.

5.2 Protocol symmetry

In this subsection, we discuss equivalence between protocols due to symmetry
in the states used in them. Namely, we identify transformations on states under
which the bias remains unchanged. This allows us to prune the search space
of parameters needed to specify a protocol in the family under scrutiny. As a
result, we significantly reduce the time required for our searches.
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We first discuss index symmetry, that if we permute the elements of A; or
By, for any ¢ € {1,...,n}, then this does not change the bias of the protocol.
It is easy to see from the reduced problems of Alice and Bob that any feasible
solution can be permuted accordingly to accommodate for any (local) permu-
tation in the indices of A; or B; while retaining the same objective function
value. Thus, such a permutation does not decrease the bias.

We now identify a different kind of symmetry in the protocols, namely
symmetry between probability distributions. If we simultaneously switch «q
with a1 and By with £, then it is obvious from the objective functions in
Bob’s reduced problems that his cheating probabilities do not change. We can
claim the same thing for Alice noting that in Alice’s reduced problems, the
only constraints involving s(*%) can be written as

S s(@t) = gl

ac Ay

for each y = (y1,---,Yn—1,Yn) € B, which are symmetric about a. Also,
switching o with 81 switches Py w1th Py, and P} ; with Pg ;. Thus, the
bias does not decrease by mdependently sw1tch1ng Qo Wwith ay or By with Sy.

The use of symmetry in the search algorithm. Since we are able to
switch the roles of o and a7, we assume ag has the largest entry out of «ag
and a7 and similarly that 8y has the largest entry out of 8y and f.

In four-round protocols, since we can permute the elements of A = Aq,
we also assume «g has entries that are non-decreasing. This allows us to up-
per bound all the entries of oy and a; by the last entry in «g. We do this
simultaneously for 5y and ;.

In the six-round version, we need to be careful when applying the index
symmetry, we cannot permute all of the entries in «g. The index symmetry
only applies to local permutations so we only partially order them. We order As
such that the entries ayg 3,4, do not decrease for one particular index ¥, € A;.
It is convenient to choose the index corresponding to the largest entry. Then
we order the last block of entries in g such that they do not decrease. Note
that the last entry in g is now the largest among all the entries in «y and
a1. We do this simultaneously for 8y and ;. Note that the search algorithm
does not stop all symmetry; for example if ag and a; both have an entry of
largest magnitude, we do not compare the second largest entries. But, as will
be shown in the computational tests, we have a dramatic reduction in the
number of protocols to be tested using the symmetry in the way described
above.

6 Search algorithm

In this section, we develop an algorithm for finding coin-flipping protocols with
small bias within our parametrized family.
To search for protocols, we first fix a local dimension d for the parameters

D
a07a1a607ﬁ1 € Prob )
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where D := d for four-round protocols and D := d? for six-round protocols.
We then create a finite mesh over these parameters by creating a mesh over the
entries in the probability vectors ag, a1, By, and S;. We do so by increments
of a precision parameter v € (0,1). For example, we range over the values

{0,v,2v,...,1 -1, 1}
for [a]o, the first entry of ag. For the second entry of ag, we range over
{0,v,2v,...,1 —[ao]o}

and so forth. Note that we only consider v = 1/N for some positive integer N
so that we use the endpoints of the intervals.

This choice in creating the mesh makes it very easy to exploit the symmetry
discussed in Subsection We show computationally (in Section [7]) that this
symmetry helps by dramatically reducing the number of protocols to be tested.
This is important since there are (D +]]\\,[ _1)4 protocols to test (before applying
symmetry considerations).

Each point in this mesh is a set of candidate parameters for an optimal
protocol. As described in Subsection the protocol filter can be used to
expedite the process of checking whether the protocol has high bias or is a
good candidate for an optimal protocol. There are two things to be considered
at this point which we now address.

First, we have to determine the order in which the cheating strategies in
the protocol filter are applied. It is roughly the case that the computationally
cheaper tasks give a looser lower bound to the optimal cheating probabilities.
Therefore, we start with these easily computable probabilities, i.e. the prob-
abilities involving norms and fidelities, then check the more computationally
expensive tasks such as largest eigenvalues and calculating principal eigenvec-
tors. We lastly solve the semidefinite programs. Another heuristic that we use
is alternating between Alice and Bob’s strategies. Many protocols with high
bias seem to prefer either cheating Alice or cheating Bob. Having cheating
strategies for both Alice and Bob early in the filter removes the possibility
of checking many of Bob’s strategies when it is clearly insecure concerning
cheating Alice and vice versa. Starting with these heuristics, we then ran pre-
liminary tests to see which order seemed to perform the best. The order (as
well as the running times for the filter strategies) is shown in Tables [1| and
for the four-round version and for the six-round version, respectively.

Second, we need to determine a threshold for what constitutes a “high
bias”. If a filter strategy has success probability 0.9, do we eliminate this can-
didate protocol? The lower the threshold, the more quickly the filter eliminates
protocols. However, if the threshold is too low, we may be too ambitious and
not find any protocols. To determine a good threshold, consider the following
protocol parameters

10,17, ar=2/0,L1", Bo=[L0", B=[01".

ag — B

N | =
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This is the four-round version of the optimal three-round protocol in [I0].
Numerically solving for the cheating probabilities for this protocol shows that

PX,OZPX,1:P§,0:P§,1:3/4~

Thus, there exists a protocol with the same bias as the best-known explicit
coin-flipping protocol constructions. This suggests that we use a threshold
around 0.75. Preliminary tests show that using a threshold of 0.75 or larger is
much slower than a value of 0.7499. This is because using the larger threshold
allows protocols with optimal cheating probabilities (or filter cheating prob-
abilities) of 0.75 to slip through the filter and these protocols are no better
than the one mentioned above (and many are just higher dimensional embed-
dings of it). Therefore, we use a threshold of 0.7499. (Tests using a threshold
of slightly larger than 0.75 are considered in the Supplemental Material.)
Using these ideas, we now state the search algorithm.

Search Algorithm

e Fix a local dimension d and mesh precision v.
e For each protocol in the mesh (modulo the symmetry):
— Use the Protocol Filter to eliminate protocols with bias above 0.2499.
— Calculate the optimal cheating probabilities by solving the SDPs.
- If any are larger than 0.7499, move on to the next protocol.
- Else, output the protocol parameters with bias € < 1/4.

We test the algorithm on the cases of four and six-round protocols and for
certain dimensions and precisions for the mesh. These are presented in detail
next.

7 Numerical results

Computational Platform. We ran our search programs on Matlab, Version
7.12.0.635, on an SGI XE C1103 with 2x 3.2 GHz 4-core Intel X5672 x86 CPUs
processor, and 10 GB memory, running Linux.

We solved the semidefinite programs using SeDuMi 1.3, a program for
solving semidefinite programs in Matlab [24], [25].

Sample programs can be found at the following link:

http://www.math.uwaterloo.ca/~anayak/coin-search/

Four-round search. We list the filter cheating strategies in Table [[] which
also give an estimate of how long it takes the program to compute the success
probability for each strategy based on the average over 1000 random instances
(i.e. four randomly chosen probability vectors «g, a1, By, and 31.)

Notice the two strategies with codes F1 and F2 are special because they
only involve two of the four probability distributions. Preliminary tests show
that first generating 8y and $; and checking with F1 is much faster than first
generating ap and a; and checking with F2, even though F2 is much faster to
compute.
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[ Description or Equation [ Comp. Time (s) [ Code ]
6) 0.000034429 F1
; 0.000004640 F2
g 0.000025980 F3
1-3 0.000023767 F4
with fo, f1 switched |  0.000018019 F5
; 0.000036613 F6
; 0.000073010 F7
g 0.000697611 F8
with B0, B1 switched 0.000532954 F9
] 0.122971205 F10
with 50,_51 switched 0.123375678 F11
PX,O 0.149814373 SDPAO
ﬁ 0.000000947 F12
P]_;,O 0.070846378 SDPBO
P, 0.149176117 SDPA1
ﬁ 0.000000760 F13
Py, 0.070479449 SDPBI1

Table 1 Average running times for filter strategies for a 4-round protocol when d = 5 over
random protocol states. Equation references are to Theoremsand and the codes (on the
right) are used for reference in the numerical search experiments.

We can similarly justify the placement of PJ , before Pg, or Pj ;. The
strategies F8 and F9 perform very well and the cheating probabilities are
empirically very close to P§ ; and Pp ;. Thus, if a protocol gets through the
F8 and F9 filter strategies, then it is likely that Py, and Pj; are also less
than 0.7499. This is why we place Py , first (although it will be shown that
the order of solving the SDPs does not matter much).

We then give tables detailing how well the filter performs for four-round
protocols, by counting the number of protocols that are not determined to have
bias greater than 0.2499 by each prefix of cheating strategies. We test four-
round protocols with message dimension d € {2,...,9} and precision v ranging
up to 1/2000 (depending on d). The summary of results for d € {2, 3,4,5} can
be found in Table |2 and the summary of results for d € {6,7,8,9} can be
found in Table[3] Tables giving the exact numbers for the above searches and
also for lower precision searches can be found in the Supplemental Material.
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4Rounds [[d=2v=ggp [d=3,v=¢5 [d=4v=1g5 [d=5v=1;
No. Protocols 1.60e + 13 3.09e + 12 8.86e + 14 1.09¢ + 13
Symmetry 1.00e + 12 2.54e+ 10 7.36e+ 11 2.48e + 09
F1 2.36e+ 10 1.02e 4 09 4.97e+ 10 5.67e+ 08
F2 1.76e 4 10 6.62e + 08 2.77e+ 10 2.03e + 08
F3 1.24e 4 02 4.41e 4 06 7.38e 4+ 08 1.77e 407
F4 0 2.02e + 06 4.06e + 08 1.36e 4+ 07
F5 0 2.00e + 06 4.06 e + 08 1.36e 4+ 07
F6 0 1.76e 4 06 3.67¢e+ 08 1.31e 4+ 07
F7 0 1.15e 403 1.90e + 05 4.34e+ 04
F8 0 0 0 0

Table 2 A summary of the number of 4-round protocols that get past symmetry reductions
and each strategy in the filter for d € {2,3,4,5} and the highest precision tested for each d.

4-Rounds Hd:G,V:l—g‘d:?,u:%‘d:&u:é d:9,u:%
No. Protocols 1.46e+ 15 4.11e+ 15 1.71e+ 16 2.74e + 16
Symmetry 4.6le+ 10 3.04e+ 10 4.23e+ 10 3.98e+ 10
F1 1.33e+ 10 1.09e + 10 2.30e+ 10 2.48e 4+ 10
F2 3.84e+ 09 2.41e+ 09 4.41e+09 2.21e+ 09
F3 4.68e + 08 4.49e + 08 1.27e 4+ 09 4.32e+ 08
F4 3.90e + 08 4.09e + 08 1.20e 4 09 4.21e+ 08
F5 3.90e 4 08 4.09e + 08 1.20e 4 09 4.21e+ 08
F6 3.77e+ 08 3.83e+ 08 1.15e 4 09 4.16e+ 08
F7 1.15e + 06 1.80e + 06 3.19e + 06 1.80e 4 06
F8 0 0 0 0

Table 3 A summary of the number of 4-round protocols that get past symmetry reductions
and each strategy in the filter for d € {6,7,8,9} and the highest precision tested for each d.

Observations on the four-round search. We were able to search larger
spaces than feasible with the SDP formulations alone. For example, suppose
we took the 2.74 x 10! protocols from the d = 9, v = 1/8 search and checked
to see if any of these had bias less than 0.7499 by solving only the reduced
SDPs. Since each SDP takes at least 0.08 seconds to solve, this search would
take at least 69 million years to finish. By applying the techniques in this
paper, we were able to run this search in a matter of days.

We see that symmetry helped dramatically reduce the number of protocols
that needed to be tested. In the largest search, we were able to cut the number
of protocols down from 2.74 x 106 to 3.98 x 10'°. F1 and F2 perform very well,
together cutting down the number of protocols by a factor of about 10. An
interesting observation is that F2 performs much better than F1, and is also 10
times faster to compute. It may seem better to put F2 before F1 in the tests,
however, we place F1 first since it is beneficial to have the more expensive
strategy being computed first. This way, it only needs to be computed for
every choice of By and (1. If we were to calculate F2 first, we would have to
calculate F1 on every (g, a1, 8o, 51) for those ap,a; that F2 did not filter
out. Being the first strategy to rely on all four probability distributions, F3
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performs very well by reducing the number of protocols by another factor of

10. F4, F5, and F6 do not perform well (F5 being the same as F4 but with

Bo swapped with (3); they cut down the number of protocols by a very small

number. F7 and F8 perform so well that no SDPs were needed to be solved.
These numbers suggest a conjecture along the lines of

min max {F1,...,F8} > 0.7499.
ag,a1,80,61 EProb?

However, in the Supplemental Material we give evidence that this may not be
true if we replace 0.7499 with 0.75 by conducting “zoning-in searches” with
much higher precisions.

Six-round search. We list the filter cheating strategies in Table[dand give
an estimate for how long it takes to compute the success probability for each
strategy by taking the average over 1000 random instances. We then present a
table showing how well the filter performs for six-round protocols with d = 2
and v = 1/15 and for d = 3 and v = 1/4. The measure of performance of
the filter that we use is as before. For each prefix of cheating strategies in the
filter, we count the number of protocols in the mesh that are not determined
to have bias greater than 0.2499 by that prefix.

Again, we choose which strategy to put first, G1 or G2. Preliminary tests
show that placing G1 first results in a much faster search, similar to the four-
round case. Even though G5 takes longer to compute than G6, tests show that
it is better to have G5 first. We calculate P , before P} j since G9 and G10
are close approximations of Py o and Py ,, respectively. It will be evident that
the order of solving the SDPs does not matter much.

We note here a few omissions as compared to the four-round tests. First, we
have removed the two returning strategies, F4 and F5. These did not perform
well in the four-round tests and preliminary tests show that they did not
perform well in the six-round search either. Also, we do not have all the lower
bounds for the eigenstrategies. Preliminary tests show that these lower bounds
(omitted from the six-round search) take just as long or longer to compute than
the eigenstrategies themselves, so there is no advantage in calculating them.
Also, the marginal probabilities take approximately 5.49 x 1076 seconds to
compute which is negligible compared to the other times. Thus, we need not
be concerned whether the strategies rely on the full probability distributions
or marginal distributions.

The summary of results for d € {2,3} can be found in Table |5 Tables
giving the exact numbers for the above searches and also for lower precision
searches can be found in the Supplemental Material.

Observations on the six-round search. We first note that the filter
does not work as effectively as in the four-round case. The six-round search
for d = 3 ran for about a month. In comparison, all the four-round searches
ran in the matter of days.

The symmetry arguments cut down the number of protocols we need to
examine significantly, by a factor of roughly 100. Note that in the four-round



A search for quantum coin-flipping protocols using optimization techniques

29

[ Description or Equation [ Comp. Time (s) [ Code
6 0.000036128 G1
; 0.000005552 G2
¥ 0.000015667 G3
0.000028408 G4
0.000052325 G5
0.000044243 G6
0.000879119 G7
with Bo, 81 switched 0.000797106 G8
u 0.256377981 G9
with fBo, B1 switched 0.249946219 G10
P, 0.164744870 SDPBO0
ﬁ 0.000000996 G11
P;g;0 0.276034548 SDPAO
P34 0.162818974 SDPB1
ﬁ 0.000001075 G12
P} 0.271631913 SDPA1

Table 4 Average running times for filter strategies in a 6-round protocol for d = 3 over
random protocol states. Equation references are to Theorems [4| and [5| and the codes (on the
right) are used for reference in the numerical search experiments.

6-Rounds Hd:2,l/:%5‘d:3,1/:i‘
No. Protocols 4.43e+11 6.00e + 10
Symmetry 9.37e+ 09 2.79e+ 08
G1 1.04e+ 09 1.80e + 08
G2 8.77e + 08 8.61le+ 07
G3 7.39e + 08 5.80e + 07
G4 3.50e + 08 3.07e+ 07
G5 4.37e 407 1.53e+ 07
G6 4.31e+ 07 1.53e+ 07
G7 1.97e 4 06 6.55¢e + 06
G8 4.79e+ 05 5.44e + 06
G9 4.11e+ 05 5.39e + 06
G10 3.86e + 05 5.39e + 06
SDPBO 5.94e+ 02 2.40e + 04
G11 5.94e+ 02 2.40e + 04

SDPAO 0 0

Table 5 A summary of the number of 6-round protocols that get past symmetry reductions

and each strategy in the filter for d € {2,3} and the highest precision tested for each d.
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case it was a factor of 1,000,000 (for the d = 9 case). This can be explained
by the weaker index symmetry in the six-round version.

Cheating strategy G1 cut the number of protocols down by a factor of 10
with G2 performing less well than the corresponding strategy in the four-round
tests. G5 also performed well, but after this, G6 was not much help. G7 and
G8 cut down the number of protocols by a factor of 10 each in the d = 2
case, but not as much in the d = 3 case. The next notable strategy was G10,
being G9 with By and 1 swapped, which performed very poorly. It seems that
the swapped strategies do not help much in the filters, that is, there is not
much discrepancy between cheating towards 0 or 1. SDPBO0 almost filtered
out the rest of the protocols, relying on SDPAO to stop the rest. The implicit
strategy from Kitaev’s bound, G11, did not perform well after SDPBO (note
that it relies on SDPBO so it is computed afterwards). Again, we notice that
no protocols with bias less than 0.2499 were found.

We notice that G9 and G10, the improved eigenstrategies for Alice, hardly
filter out any protocols, if any at all, in the low-precision tests (presented in
the Supplemental Material). In these strategies, we compute a value on the
concave hull conc {380, F(-,a0), 3814 F(-, 1)}, for every value of y. In the
eigenstrategy, we approximate the concave hull with the one of the two that
has the larger constant. When we choose these constants according to a coarse
mesh, e.g., v = 1/3 or v = 1/4, the one with the larger constant is a very good
approximation of the concave hull. It appears that, we need finer precisions to
bring out the power of this strategy in the filter.

In all of our searches, we did not find any protocols with bias less than
0.2499, and it seems that 1/4 might be the least bias achievable by the class
of protocols we study. In the Supplemental Material, we perform two different
kinds of searches to test this conjecture. First, we perform “random offset”
searches to test protocols defined by possibly less structured parameters. That
is, we test the filter strategies (and our conjecture above) by offsetting the
mesh by a random constant. We give tables detailing the performance of the
filter strategies and give further evidence that 1/4 is the least bias within this
family of protocols. Second, we “zone-in” on protocols with bias exactly 1/4
to see if small perturbations allow a decrease in bias. Since we are searching
over a smaller region, finer precisions can be used. We give tables detailing the
performance of the filter strategies for these tests and note here that no tested
perturbations allow a decrease in bias.

Inspired by the numerical results, in the Supplemental Material we prove a
lower bound for four-round qubit protocols and discuss computer aided bounds
on bias.

8 Conclusions

We introduced a parameterized family of quantum coin-flipping protocols
based on bit-commitment, and formulated the cheating probabilities of Al-
ice and Bob as simple semidefinite programs. Using these semidefinite pro-
gramming formulations, we designed an algorithm to search for parameters
yielding a protocol with small bias. We exploited symmetry and developed
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cheating strategies to create a protocol filter so that a wider array of protocols
can be searched. For example, without the heuristics used in this paper, it
would have taken over 69 million years to search the same 3 x 10'6 protocols
that we tested.

Using the search algorithm, we searched four and six-round protocols from
a mesh over the parameter space, with messages of varying dimension and
with varying fineness for the mesh. After the systematic searches, no protocols
having all four cheating probabilities less than 0.7499 were found.

An obvious open problem is to resolve the conjecture that all the protocols
in the family we study have bias at least 1/4. It seems the smallest bias does
not decrease when the number of messages increases from four rounds to six.
We conjecture the smallest bias does not decrease even if more messages are
added. One way to show this is to find closed-form expressions for the optimal
objective function values of the SDP formulations. This would be of great the-
oretical significance since very few highly interactive protocols (such as those
examined in this paper) have been characterized by closed-form expressions
for their bias or even by a description of optimal cheating strategies.
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