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Abstract. We propose and analyse primal-dual interior-point algorithms for convex optimiza-
tion problems in conic form. The families of algorithms whose iteration complexity we analyse
are so-called short-step algorithms. Our iteration complexity bounds match the current best
iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and
Todd, for symmetric cone programming problems with given self-scaled barriers. Our results
apply to any self-concordant barrier for any convex cone. We also prove that certain specializa-
tions of our algorithms to hyperbolicity cone programming problems (which lie strictly between
symmetric cone programming and general convex optimization problems in terms of generality)
can take advantage of the favourable special structure of hyperbolic barriers. We make new
connections to Riemannian geometry, integrals over operator spaces, Gaussian quadrature, and
strengthen the connection of our algorithms to quasi-Newton updates and hence first-order
methods in general.
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1. Introduction

Convex optimization problems (of minimizing a given convex function in a given convex set)
form a beautiful research area with very powerful theory and algorithms and many far-reaching
applications. Among the main algorithms to solve convex optimization problems are modern
interior-point methods. The modern theory of interior-point methods have flourished since
Karmarkar’s ground-breaking paper [11].

Every convex optimization problem can be paired with another convex optimization problem
based on the same data, called its dual. Rigorous solution methods for convex optimization
problems typically generate, together with solutions to the problem at hand (primal problem),
solutions for its dual. A particularly successful line of research pursued methods that work
“equally hard” at solving both primal and dual problems simultaneously, called primal-dual
symmetric methods (for a rigorous definition, see [45]).

In the special cases of linear programming (LP) and semidefinite programming (SDP), these
primal-dual symmetric methods, in addition to carrying certain elegance, led to improved results
in theory, in computation, and in applications.

Part of the success of primal-dual symmetric methods for LP and SDP might stem from the fact
that both classes admit convex conic formulations where the underlying cone is self-dual (the
primal convex cone and the dual convex cone are linearly isomorphic) and homogeneous (the
automorphism group of the cone acts transitively in its interior). Convex cones that are both
homogeneous and self-dual are called symmetric cones. The success of primal-dual symmetric
interior-point methods was further extended to the setting of symmetric cone programming,
which led to deeper connections with other areas of mathematics.

In this paper, we will extend many of the underlying mathematical entities, analyses and
iteration complexity bounds of these algorithms to a general convex optimization setting (with
arbitrary convex cones).

The primal variable x lives in a finite dimensional vector space E and the dual variables y and
s live in the finite dimensional vector spaces Y and E∗ respectively, where E∗ is the dual space
of E. Every convex optimization problem can be put into the following conic form (under some
mild assumptions):

(P ) inf 〈c, x〉
Ax = b,
x ∈ K,

where A : E → Y∗ is a linear map, b ∈ Y∗, c ∈ E∗ and K ⊂ E is a pointed, closed, convex
cone with nonempty interior. We assume that A, b, c are given explicitly and K is described via
F : int(K)→ R, a logarithmically homogeneous self-concordant barrier function for K (defined
in the next section). We assume without loss of generality that A is surjective (i.e., AE = Y∗).
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We define the dual of (P ) as

(D) sup 〈b, y〉D
A∗y + s = c,

s ∈ K∗,

where K∗ is the dual of cone K, namely

K∗ := {s ∈ E∗ : 〈s, x〉 ≥ 0, ∀x ∈ K} .
We are using 〈·, ·〉 to denote the dual pairing on (E,E∗) and 〈·, ·〉D to denote the dual pairing
on (Y,Y∗). A∗ : Y→ E∗ denotes the adjoint of A defined by the equations:

〈A∗y, x〉 = 〈Ax, y〉D , ∀ x ∈ E, y ∈ Y.
For both of these spaces E and Y, we identify the dual of the dual space with the original
space, i.e., E∗∗ = E and Y∗∗ = Y. In this setting, under our assumptions, K∗ is also a pointed,
closed convex cone with nonempty interior and K∗∗ = K. Now, it is not difficult to verify that
under our definitions, the optimization problem dual to the problem (D) is indeed equivalent
to (P ). Primal-dual symmetric conic formulations of convex optimization problems with self-
concordant barrier functions were suggested by Nesterov and Nemirovski [28], and since their
inception in the early 1990s, such formulations have had a significant influence on modern
convex optimization.

In this paper, we utilize many of the fundamental techniques developed throughout the history
of interior-point methods. One of the main algorithms we design and analyse is a predictor-
corrector algorithm generalizing the algorithm of Mizuno, Todd and Ye [15] from the LP setting.
However, even in the LP setting, some of our algorithms are new. Our algorithms use Newton
directions as in Renegar’s algorithm for LP [35], and one of our main algorithms uses a similar
predictor-corrector scheme, but both predictor and corrector parts in a primal-dual setting.

The modern theory of interior-point methods employed the concept of self-concordant barrier
functions (see Nesterov and Nemirovski [29]). The Hessians of these nice convex functions
induce local metrics with excellent properties. For instance, the unit ball induced by the
Hessian at a point, called the Dikin ellipsoid, is contained in the cone.

The self-concordance property implies that, as we make local moves in the domain of the barrier
function, the local metrics do not change fast unless their norms are large. More precisely, the
speed of the change in the local metric can be bounded in terms of the local metric itself.

One of the indicators of how good a barrier function is (in terms of the local metrics it generates)
can be measured by how well the Dikin ellipsoid approximates the domain of the function. This
leads to the notion of long-step Hessian estimation property (defined in Section 2) of barriers.
This property amounts to extending the controlled change of the Hessian of the barrier to
the “best, norm-like local approximation” of the domain of the barrier. Various long-step
strategies for interior-point methods have been investigated extensively in [21]. This long-step
Hessian estimation property has been proven for self-scaled barriers [30, 31] (whose domains are
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symmetric cones and these barriers have been completely classified [8, 9, 42]) and hyperbolic
barriers [6] (whose domains are hyperbolicity cones; for results on the structure of these cones
see [6, 1, 37, 38]), but there exist barriers for which this property fails.

For a related, but weaker notion of long-step, also see [26]. Indeed, we would like our algorithms
to exploit such properties when they are present. (Beyond the set-up of symmetric cones
and self-scaled barriers, exploitation of this long step property forces us to break the primal-
dual symmetry of our algorithms in the favor of the problem with barrier function admitting
this property.) Our general approach and many of our main technical results are primal-dual
symmetric (in the sense of [45]); however, beyond symmetric cones and self-scaled barriers,
there may be advantages to breaking the primal-dual symmetry in favor of the better behaved
(or better posed) problem. A large part of these favorable structures of hyperbolic barriers
that we understand, lies with the long-step Hessian-estimation property, another large part are
the special algebraic structures given by these polynomials defining the self-concordant barriers
(such structures created advantageous situations for breaking primal-dual symmetry, even in
the case of convex optimization with univariate polynomials, see [22, 5, 34]). Our approach
also provides useful tools for exploiting such structures when they are present.

Independent of this work, recently, simultaneously with an announcement of this work [18],
Renegar announced a primal-dual affine-scaling method for hyperbolicity cone programming
[39] (also see Renegar and Sondjaja [40]). Nesterov and Todd [30, 31] present very elegant
primal-dual interior-point algorithms with outstanding mathematical properties in the setting
of self-scaled barriers; however, beyond self-scaled barriers, there are many other primal-dual
approaches that are not as symmetric, but retain some of the desired properties (see [47, 20, 2,
3, ?, 25]).

Some recent study of the interior-point methods and the central paths defined by self-concordant
barriers led to connections with Riemannian geometry, see [32, 27]. We also make some ad-
ditional connections to Riemannian geometry through the local primal-dual metrics that we
utilize in this paper.

Hessians of self-concordant barriers, in addition to inducing local metrics, provide linear iso-
morphisms between primal and dual spaces E and E∗. In the special case of self-scaled barriers,
we have F ′′(w) int(K) = int(K∗) for every w ∈ int(K). We focus on generalization of such
behaviour and simulate it with a symmetric positive-definite bilinear form T 2 mapping E∗ to
E. Upon fixing an inner product (e.g., based on the Hessians of F and F∗ evaluated at the
starting pair (x(0), s(0)) and considering realization of T 2 : Rn → Rn, this leads to (via its
unique self-adjoint, positive-definite square-root T ) construction of a v-space as a space that is
“half-way between” E and E∗, i.e., E(∗/2).

The overall structure of the remainder of this paper is as follows:

• Section 2 presents some fundamental notation, definitions and properties of underlying
primal-dual spaces and the class of convex barrier functions.
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• Section 3 presents a new primal-dual scaling map based on integration of the barrier’s
Hessian.
• Section 4 presents some low-rank update formulae for the construction of local primal-

dual metrics and connects these formulae to classical work on quasi-Newton updates.
• Section 5 delves deeper into investigating the relationship between the set of Hessians

of self-concordant barriers and the set of local primal-dual metrics we use.
• Sections 6 and 7 combine a crude approximation of the scaling from Section 4 with the

technique of Section 3 to derive and analyse some theoretically efficient interior-point
algorithms for convex programming.
• Section 8 examines some of the special properties of our approach for hyperbolic cones

that may make our techniques particularly effective.
• Some side issues, such as technical details of primal-dual symmetry of our approach

(which is established via geodesic convexity of the underlying sets of local metrics),
details of the complexity analysis in terms of individual tensor terms and with specific
absolute constants, and the numerical evaluation of integrals of Hessians are relegated
to Appendices A, B and C respectively.

Before moving into the technical development, we next summarize the major goals of the paper,
highlight some of the major ideas, and describe how our results fit in the general framework
of interior-point methods and in which way our results improve the state-of-the-art in interior-
point-methods for general convex cones:

• Since the proposal of primal-dual symmetric polynomial-time interior-point algorithms
in the late 1980’s, the problems of determining which classes of convex optimization
problems admit such algorithms and of determining what worst-case iteration com-
plexity bounds are achievable for such algorithms have been of great interest to many
researchers. One of our major goals is to prove that for all convex optimization problems
in the conic form, there exists such a primal-dual symmetric interior-point algorithm
attaining the current best, worst-case iteration complexity bound for interior-point al-
gorithms. Another major goal is to construct these proofs and develop the underlying
theory in such a manner that in addition to the usual theoretical goals, paves the way
for numerical implementations and further inspires the design and analysis of better
algorithms.
• Some of the highlights in the paper include the construction of primal-dual metrics

with special properties via integration of Hessians of convex barrier functions, new
decompositions for the existing rank-4 update formulae for interior-point methods [47],
that are written as two consecutive rank-2 update formulas, with the second rank-2
formula exposing new, very meaningful terms in regard to proximity to the central path.
Another feature of the paper is on the one hand, a high-level complexity analysis that
reveals geometric and algebraic insights and emphasizes the generality of the framework,
on the other hand, a very detailed term by term analysis (relegated to an appendix)
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that is very useful in designing robust algorithms which perform numerical computations
accurately.
• Even though the theoretical analysis with the polynomial iteration complexity bound

only applies to short-step version of the algorithm, our development of the underlying
theory does properly generalize Nesterov and Todd’s primal-dual symmetric, long-step
algorithms and in more general settings is applicable to the analysis of long-step algo-
rithms, provided one is willing to sacrifice at least some of the primal-dual symmetry
when necessary (that is, beyond the symmetric cone case).
• We also provide short proofs of existence of integral scalings, and a relatively transpar-

ent proof of nonexistence of pointwise evaluated primal-dual Hessian metrics beyond
symmetric cones. This proof utilizes an axiomatic characterization of Euclidean Jordan
Algebras in an elementary way.
• We further provide deeper connections from primal-dual metrics for interior-point meth-

ods to quasi-Newton methods, Riemanian geometry (both via integration of Hessians,
and via a primal-dual symmetry proof (Appendix A)).
• Algorithms that we analyse are new even for Linear Programming problems. In our

computational experiments, we observed that the practical versions of the algorithms
with low-rank updates save a few Cholesky decompositions on many of the test instances
(see [19]). This is already a promising development indicating some computational
promise of the approach. The algorithms allow for adjusting the amount of the second-
order information utilized from one iteration to the next.

2. Preliminaries

In this section, we introduce some of the fundamental concepts, definitions and properties that
will be useful in the rest of the paper. For a more detailed exposure to these concepts, see the
standard references [29, 30, 31, 36, 23] as well as [45, 47].

Definition 2.1. (Self-concordance) Let K ⊂ E be a pointed, closed convex cone with nonemmpty
interior and let F : int(K) → R be a C3-smooth, closed convex function such that the domain
of F is int(K) and there exists ϑ ∈ R such that, for every t > 0,

F (tx) = F (x)− ϑ ln(t),

and

|D3F (x)[h, h, h]| ≤ 2
(
D2F (x)[h, h]

)3/2
(1)

for all x ∈ int(K) and for all h ∈ E. Then F is called a ϑ-logarithmically homogeneous
self-concordant barrier (ϑ-LHSCB) for K.

It follows from the above definition that ϑ ≥ 1 and that for every sequence in the interior of
K, converging to a boundary point of K, the corresponding function values F (x)→ +∞.
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If F is a ϑ-LHSCB for K, then its Legendre-Fenchel conjugate

F∗(s) := sup{−〈s, x〉 − F (x) : x ∈ int(K)},
is a ϑ-LHSCB for the dual cone K∗ (Nesterov and Nemirovskii [29]). We refer to F∗ simply as
the conjugate barrier.

Once we have a ϑ-LHSCB F for K, at every point x ∈ int(K), F ′′(x)[·, ·] : E ⊕ E → R is a
symmetric, bilinear, positive-definite form. Hence, the Hessian of F defines a local metric. For
every h ∈ E the local norm induced by F at x is

||h||x := 〈F ′′(x)h, h〉1/2.
Moreover, for every x ∈ int(K), we may think of F ′′(x) : E→ E∗ as a linear map from the primal
space to the dual space. Therefore, [F ′′(x)]−1 : E∗ → E is well-defined and [F ′′(x)]−1 [·, ·] :
E∗ ⊕ E∗ → R is a symmetric, bilinear, positive-definite form. For every u ∈ E∗, we define

||u||∗x :=
〈
u, [F ′′(x)]

−1
u
〉1/2

.

Proposition 2.2. Let F be a ϑ-LHSCB for K. Then for every x ∈ int(K), ||·||∗x is the norm
dual to ||·||x. I.e., for every x ∈ int(K),

||u||∗x = sup {〈u, h〉 : ||h||x ≤ 1, h ∈ E} , ∀u ∈ E∗.

The above proposition implies:

|〈u, h〉| ≤ ||u||∗x ||h||x , ∀u ∈ E∗, h ∈ E.
We use the above “Cauchy-Schwarz” inequality quite often. Note that

||F ′(x)||∗x = ||h||x ,

where h := [F ′′(x)]−1 F ′(x), the Newton step at x for minimizing F .

Theorem 2.3. Let F be a ϑ-LHSCB for K. Then, for every x ∈ int(K), the open unit ellipsoid
centered at x and defined by the positive-definite Hessian F ′′(x) is contained in the interior of
the cone. That is

E(x;F
′′
(x)) := {z ∈ E : 〈F ′′(x)(z − x), z − x〉 < 1} ⊂ int(K).

Moreover, for every z ∈ int(K) such that α := ||x− z||x < 1, we have

(1− α)2F ′′(x)[h, h] ≤ F ′′(z)[h, h] ≤ 1

(1− α)2
F ′′(x)[h, h],

for all h ∈ E.

We use (as above) F ′′(x)[h(1), h(2)] to denote the second derivative of F evaluated along the
directions h(1), h(2) ∈ E. We also use the notation

〈
F ′′(x)h(1), h(2)

〉
to denote the same quantity.

In both expressions, F ′′(x) is the Hessian of F . As we deal with the Hessians and other
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symmetric bilinear forms in the same space, we sometimes utilize the Löwner order, we write
A � B to mean (B − A) is a symmetric, bilinear positive semidefinite form. With these
clarifications, the above inequalities in the statement of the last theorem, can be equivalently
written as:

(1− α)2F ′′(x) � F ′′(z) � 1

(1− α)2
F ′′(x);

we refer to the above relations as the Dikin ellipsoid bound.

For every x ∈ int(K) and every h ∈ Rn, define

σx(h) :=
1

sup {t : (x− th) ∈ K}
.

We say that F has the long-step Hessian estimation property if

1

[1 + tσx(−h)]2
F
′′
(x) � F

′′
(x− th) � 1

[1− tσx(h)]2
F
′′
(x),(2)

for every x ∈ int(K), h ∈ Rn and t ∈ [0, 1/σx(h)) . Nesterov and Todd [30] proved that every
self-scaled barrier has this property. Güler [6] extended this property to hyperbolic barriers.
However, Nesterov proved (see Theorem 7.2 in [6]) that the relation (2) can hold for a self-
concordant barrier and its conjugate only if K is a symmetric cone. Essentially equivalent
properties are expressed as the convexity of 〈−F ′(x), u〉 , (in x) for every u ∈ K, or, as suffi-
ciently smooth F having negative curvature: F ′′′(x)[u] � 0 for every x ∈ int(K) and for every
u ∈ K.

All of the properties listed in the next theorem can be derived directly from the logarithmic
homogeneity property of F . We denote the kth derivative of F by DkF .

Theorem 2.4. Let F be a ϑ-LHSCB barrier for K.Then for all x ∈ int(K) and s ∈ int(K∗),
F has the following properties:

(1) For all k ≥ 1 integer and t > 0, if F is k times differentiable, then DkF (tx) = 1
tk
DkF (x);

(2) 〈−F ′(x), x〉 = ϑ;
(3) F

′′
(x)x = −F ′(x);

(4) 〈F ′′(x)x, x〉 = ϑ = ||x||2x ,
〈
[F ′′(x)]−1 F ′(x), F ′(x)

〉
= ϑ = (||F ′(x)||∗x)

2
;

(5) F
′′′

(x)[x] = −2F
′′
(x).

The LHSCB F and its conjugate barrier F∗ interact very nicely due to the elegant and powerful
analytic structure imposed by the Legendre-Fenchel conjugacy:

Theorem 2.5. Let F be a ϑ-LHSCB barrier for K.Then for all x ∈ int(K) and s ∈ int(K∗),
F and F∗ satisfy the following properties:

(1) F∗(−F
′
(x)) = −ϑ− F (x) and F (−F ′∗(s)) = −ϑ− F∗(s);

(2) −F ′∗(−F
′
(x)) = x and −F ′(−F ′∗(s)) = s;
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(3) F
′′
∗ (−F ′(x)) =

[
F
′′
(x)
]−1

and F
′′
(−F ′∗(s)) =

[
F
′′
∗ (s)

]−1
.

Maps between primal space E and the dual space E∗ play very fundamental roles. Among such
maps, those which take int(K) to int(K∗) bijectively are particularly useful. One such map
is −F ′(·) (i.e., the duality mapping). In the special case of symmetric cones and self-scaled
barriers F , F ′′(u) gives a linear isomorphism between int(K) and int(K∗) for every choice of
u ∈ int(K).

Next, we define three sets of such linear transformations: T 2
0 , T 2

1 , T 2
2 [47]. We further require in

the definitions that these linear transformations, just like Hessians of self-concordant barriers
above, be also symmetric bilinear positive-definite forms. These sets are indexed based on
their usage of information from the underlying self-concordant barrier functions (zeroth-order
information only, up to first-order information only, and up to second-order information only,
respectively). We denote by S++(E,E) the set of symmetric bilinear positive-definite forms
H[·, ·] : E ⊕ E → R. Note that such forms are also interpreted in this paper as linear maps
H : E→ E∗.
Sometimes it is suitable to fix some inner product on E, and hence some linear isomorphism
between E and E∗, and identify both E and E∗ by Rn (n := dim(E)). We can then represent
every T 2 ∈ S++(E∗,E∗) by a symmetric positive-definite matrix over the reals. We use the same
notation T 2 ∈ Sn++ for such representations. Then, we are able utilize the unique symmetric
positive-definite square-root, T ∈ Sn++ of T 2. Since T 2 : E∗ ≡ Rn → E ≡ Rn, one may

conceptually think of T : E∗ → E∗/2, as we eluded to in the Introduction. Such representations
are only necessary for our explicit discussions of the v-space constructions and for drawing
closer parallels to the Linear Programming special case. In fact, the algorithms can be stated,
implemented and analysed without any need to directly computing T or even referring to it
(we can fully operate with T 2 and T−2).

Definition 2.6. For every pair (x, s) ∈ int(K)⊕ int(K∗), we define

T 2
0 (x, s) :=

{
T 2 ∈ S++(E∗,E∗) : T 2s = x

}
.

In words, T 2
0 (x, s) is the set of all symmetric bilinear positive-definite forms which map s to x.

It may not be obvious, but this set is nonempty for every convex cone K and for every pair
of points x and s in the interiors of respective cones. A proof of this fact was given, in the
context of self-scaled barriers, by Nesterov and Todd [30] and two other proofs were given in
[47] (Theorems 3.2, and 3.3). In fact, this set is convex and its dimension is Ω(n2).

For a given pair of x, s, let us define

µ(x, s) :=
〈s, x〉
ϑ

.

Note that if x and s are feasible in their respective problems, then ϑµ(x, s) is their duality gap:

ϑµ(x, s) = 〈s, x〉 = 〈c, x〉 − 〈b, y〉D ≥ 0.
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We will often write simply µ for µ(x, s). We immediately further abuse this notation and
consider for every µ > 0, the unique minimizers of the problem

(Pµ) min 1
µ
〈c, x〉 + F (x)

Ax = b,
(x ∈ int(K)).

Under the assumptions that both problems (P ) and (D) have Slater points, and that A is
surjective, (Pµ) has a unique solution for every µ > 0. The necessary and sufficient conditions
for optimality applied to (Pµ) yield that for every µ > 0, the unique solution x(µ) of the
minimization problem above make up the x-part of the unique solution (x(µ), y(µ), s(µ)) to the
system:

Ax = b, x ∈ int(K)
A∗y + s = c,

s = −µF ′(x).

Moreover, these solutions (x(µ), y(µ), s(µ)) define a smooth path, called central path. Now we
can explain the latest abuse of notation; we have, for such points on the central path:

〈s(µ), x(µ)〉 = ϑµ.

Therefore, our definition of µ(x, s) is consistent with this usage of µ as well.

To pass from the general set up of T 2 to the Euclidean structure requiring set up of T , we
may use a “static” Hessian to (for example, assume (x(0), s(0)) lies on the central path with

parameter µ = 1, and based on F ′′∗ (s(0)) =
[
F ′′(x(0))

]−1
) fix an inner product for primal and

dual spaces as in [34].

Let T 2 ∈ T 2
0 (x, s), and define T as above. Upon further defining v := Ts = T−1x, we observe

ϑµ = 〈s, x〉 =
(
s>T

) (
T−1x

)
= v>v.

These linear transformations allow generalizations of so-called v-space approaches to primal-
dual interior-point methods from LP and SDP (see for instance, [17, 12, 10, 44, 24]) as well
as symmetric cone programming settings [30, 31, 45, 7] to the general convex optimization
setting [45, 47]. What perhaps started as a convenience of notation as well as simplicity and
elegance of analysis in the 1980’s, by now turned into a solid theoretical framework in which
deep problems can be posed and solved whether they relate to the mathematical structures or
are directly motivated by a family of algorithms.

Note that the set T 2
0 does not use any information about the most difficult constraints of the

convex optimization problem. Indeed, in the worst-case, certain algorithms using only T 2
0 need

not even converge to an optimal solution (see [50]). Using first order information via F ′(x) and
F ′∗(s), we can focus on a smaller, but more interesting and useful subset of T 2

0 :
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Definition 2.7. For every pair (x, s) ∈ int(K)⊕ int(K∗), we define

T 2
1 (x, s) :=

{
H ∈ S++(E∗,E∗) : Hs = x, H

[
−F ′(x)

]
= −F ′∗(s)

}
.

Just like T 2
0 , T 2

1 is also convex, nonempty and has dimension Ω(n2). However, the nonemptiness
may be less obvious (for a proof, see [47], or Sections 3 and 4 of this paper).

For convenience, we sometimes write x̃ := x̃(s) := −F ′∗(s) and s̃ := s̃(x) := −F ′(x). One can
think of x̃ and s̃ as the shadow iterates, as x̃ ∈ int(K) and s̃ ∈ int(K∗) and if (x, s) is a feasible
pair, then µx̃ = x iff µs̃ = s iff (x, s) lies on the central path. In this paper, s and decorated
versions of it; s̃, š, s̄, etc. all belong to the dual s-space E∗; similarly, x and all of its decorated
versions belong to the x-space E.

We also denote µ̃ := µ̃(x, s) := 〈s̃, x̃〉/ϑ. In this context, x̃ is the primal shadow of the dual
solution s. Analogous to the definition of v, for every T obtained from a T 2 ∈ T 2

1 (x, s), we can
now define

w := T s̃ = T−1x̃.

Note that w>w = ϑµ̃.

Once we have such a transformation T , we can map the primal space using T−1, and the dual
space using T to arrive at the data of the underlying (equivalent) scaled primal-dual pair. We
define Ā := A (T (·)) and, we have

(P̄ ) inf (Tc)>x̄
Āx̄ = b,
x̄ ∈ T−1K,

(D̄) sup 〈b, y〉D
Ā∗y + s̄ = Tc,

s̄ ∈ TK∗.

Then the search directions for the scaled primal-dual pair (P̄ ) and (D̄) are (respectively)

d̄x := T−1dx, d̄s := Tds,

where dx, ds denote the search directions in the original primal and dual spaces respectively.

Lemma 2.8. (Nesterov and Todd [31], also see [47, 48]) For every (x, s) ∈ int(K)⊕ int(K∗),

〈s, x〉
ϑ

〈F ′(x), F ′∗(s)〉
ϑ

= µµ̃ ≥ 1.

Equality holds above iff x = −µF ′∗(s) (and hence s = −µF ′(x)).

Note that the equality above together with feasibility of x and s in their respective problems,
define the primal-dual central path:

{(x(µ), s(µ)) : µ > 0} .
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Further note that for each T ∈ T1, we can equivalently express the centrality condition as
v = µw (of course, together with the requirement that the underlying x and s be feasible in
their respective problems). Primal and dual deviations from the central path are:

δP := x− µx̃ and δD := s− µs̃.
In v-space, these deviations are both represented by

δv := v − µw.

Corollary 2.9. For every (x, s) ∈ int(K)⊕ int(K∗),

〈s+ µF
′
(x), x+ µF

′

∗(s)〉 = 〈δD, δP 〉 = ||δv||22 ≥ 0.

The equality holds above iff x = −µF ′∗(s) (and hence s = −µF ′(x)).

The above quantities have their counterpart, called the gradient proximity measure and denoted
by γG(x, s), in the work of Nesterov and Todd [31]. In their paper, the corresponding measure
is

γG(x, s) = ϑ (µµ̃− 1) =
||δv||22
µ

.

Now, we consider the system of linear equations (we utilized Newton’s method, to follow the
central path, approximately):

Ād̄x = 0(3)

Ā∗dy + d̄s = 0.(4)

d̄x + d̄s = −v + γµw,(5)

where γ ∈ [0, 1] is a centering parameter.

Clearly, (d̄x, d̄s) solves the above linear system of equations iff d̄x and d̄s are the orthogonal
projections of (−v+ γµw) onto the kernel of Ā and the image of Ā∗ respectively. Given a pair
of search directions, we define

x(α) := x+ αdx, s(α) := s+ αds.

Using the above observations, the following result is immediate.

Lemma 2.10. Let γ ∈ [0, 1]. Then

〈s(α), x(α)〉 = [1− α(1− γ)] 〈s, x〉.

For every s ∈ int(K∗), we define the operator norm

||M ||s = sup
||u||s≤1

||Mu||∗s.

Then, by definition, ||Mu||∗s ≤ ||M ||s||u||s. We will also utilize bilinear forms defined via ten-
sors. Just like the Hessians and bilinear forms T 2 above, these new bilinear forms will also
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be interpreted as linear transformations between two spaces: For u ∈ E1, z ∈ E2, we define
u⊗ z : E∗2 → E1 by

(u⊗ z)h := 〈z, h〉u, ∀h ∈ E∗2,
as well as a bilinear form, u⊗ z : E2 ⊕ E∗1 → R. This bilinear form acts as

(u⊗ z)[h1, h2] := 〈u, h1〉 〈z, h2〉 , ∀h1 ∈ E∗1, h2 ∈ E∗2.

Next, let us observe that for every pair h, u ∈ E, we have

2 (h⊗ h− u⊗ u) = [(h− u)⊗ (h+ u)] + [(h+ u)⊗ (h− u)] .

We make considerable use of the following difference-of-squares bound for the operator norm
of the difference of two tensors:

Lemma 2.11. Let h and u lie in E and s ∈ int(K∗). Then

||(h⊗ h)− (u⊗ u)||s ≤ ||h− u||∗s||h+ u||∗s.

Proof. By the triangle inequality,

2||(h⊗ h)− (u⊗ u)||s = ||[(h− u)⊗ (h+ u)] + [(h+ u)⊗ (h− u)]||s
≤ ||(h− u)⊗ (h+ u)||s + ||(h+ u)⊗ (h− u)||s .

Now, we compute

||(h− u)⊗ (h+ u)||s = sup
||z||s≤1

||(h− u) 〈z, h+ u〉||∗s

= sup
||z||s≤1

〈z, h+ u〉 ||h− u||∗s = ||h+ u||∗s ||h− u||
∗
s ;

and similarly

||(h+ u)⊗ (h− u)||s = ||h+ u||∗s ||h− u||
∗
s .

Adding these together gives the advertised result. �

The next lemma is used many times in the following analysis.

Lemma 2.12. Let s ∈ int(K∗), h ∈ E∗ such that ||h||s < 1. Then,

(1− ||h||s)2 ≤ sup
u∈E∗:||u||s≤1

||F ′′∗ (s+ h)u||∗s ≤
1

(1− ||h||s)
2 .

Proof. Let s and h be as in the statement of the lemma. Then F ′′∗ (s+ h) � 1

(1−||h||s)
2F ′′∗ (s) by

the Dikin ellipsoid bound. Thus, the maximum eigenvalue of [F ′′∗ (s)]−1/2 F ′′∗ (s + h) [F ′′∗ (s)]−1/2

is bounded above by 1

(1−||h||s)
2 . The square of this quantity is an upper bound on the largest

eigenvalue of [F ′′∗ (s)]−1/2 F ′′∗ (s + h) [F ′′∗ (s)]−1 F ′′∗ (s + h) [F ′′∗ (s)]−1/2. Therefore, the supremum
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in the statement of the lemma is bounded above by 1

(1−||h||s)
2 as desired. The left-hand side

inequality can be proved similarly. �

Now, we are ready to define the set of local primal-dual metrics which will utilize local second-
order information from the underlying pair of self-concordant barriers. For each F and each pair
(x, s) ∈ int(K) ⊕ int(K∗), consider the optimization problem with variables T 2 ∈ S++(E∗,E∗)
and ξ ∈ R:

(PD)2 inf ξ
T 2s = x,

T 2
[
−F ′(x)

]
= −F ′∗(s),

µ
ξ[ϑ(µµ̃−1)+1]

F
′′
∗ (s) � T 2 � ξ[ϑ(µµ̃−1)+1]

µ

[
F
′′
(x)
]−1

,

ξ ≥ 1, T 2 ∈ S++(E∗,E∗).

This problem is indeed an SDP (a SemiDefinite Programming problem in variables T 2 and ξ).
Let ξ∗ be the optimum value of (PD)2.

Definition 2.13. For every pair (x, s) ∈ int(K)⊕ int(K∗), we define

T 2
2 (η;x, s) :=

H ∈ S++(E∗,E∗) :

Hs = x,
H
[
−F ′(x)

]
= −F ′∗(s),

µ
ηξ∗[ϑ(µµ̃−1)+1]

F
′′
∗ (s) � H � ηξ∗[ϑ(µµ̃−1)+1]

µ

[
F
′′
(x)
]−1

 ,

for η ≥ 1.

Sometimes we find it convenient to refer to T directly. So, we define T0, T1, T2 as the set of
T ∈ Sn++ whose square, T 2 lie in T 2

0 , T 2
1 , T 2

2 respectively.

When the underlying cone K is symmetric, we have (P ) and (D) as symmetric cone pro-
gramming problems. Symmetric cones (are homogeneous and self-dual, and) admit self-scaled
barriers. For such problems, there is a very small upper bound on ξ∗ for every pair of interior-
points. The following theorem follows mainly from Theorem 5.2 and Corollary 4.1 of Nesterov
and Todd [30].

Theorem 2.14. (see [47]) Let K be a symmetric cone and F be a self-scaled barrier for K.
Then, for every (x, s) ∈ int(K)⊕ int(K∗), ξ∗ ≤ 4/3.

Being able to establish a nice upper bound on ξ∗ for all iterates, and then, for some small
η ≥ 1, finding an efficient way of computing an element of T 2

2 (η;x, s), directly yield primal-
dual interior-point algorithms with good properties. In particular, if the upper bounds on
ξ∗ and η are both O(1), then such results directly yield primal-dual interior-point algorithms

with iteration complexity bound O
(√

ϑ ln (1/ε)
)

; see, [47]. Next, we consider various ways of

constructing good symmetric positive-definite bilinear forms in T 2
1 and T 2

2 .
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3. Primal-dual metrics via Hessian integration

In the special case where cone K is symmetric and F is a self-scaled barrier for K, Nesterov and
Todd [30, 31] identified a specific element of the sets T0, T1 and T2 in terms of the Hessians of
certain scaling points (i.e., for every pair (x, s), there exists w ∈ int(K∗) such that T 2 = F ′′∗ (w)).
There is also an explicit linear algebraic formula which expresses the Hessian at w in terms of the
Hessians of F and the conjugate barrier F∗ at x and s respectively. The next theorem achieves
an analogous goal in the fully general case of an arbitrary convex cone K and an arbitrary self-
concordant barrier F for K by expressing a primal-dual scaling in T 2

1 as an integral of Hessians
along the line segment joining the dual iterate to the dual shadow of the primal iterate. Later
in Section 5, we prove that beyond symmetric cones and self-scaled barriers, one should not
expect in general to find, for every pair of primal dual interior points (x, s), a w ∈ int(K∗) such
that F ′′∗ (w) ∈ T 2

1 (x, s). Perhaps surprisingly, we prove next that “an average of the Hessians”
works!

Theorem 3.1. Let F be a LHSCB for K and (x, s) ∈ int(K) ⊕ int(K∗). Then, the linear
transformation

T 2
D := µ

∫ 1

0

F ′′∗ (s− tδD)dt

maps s to x, and maps s̃ to x̃, and T 2
D[·, ·] is a symmetric positive-definite bilinear form.

Therefore, T 2
D is in T 2

1 (x, s).

Proof. Using the fundamental theorem of calculus (for the second equation below) followed by
the property −F ′∗ (−F ′(x)) = x (for the third equation below), we obtain

T 2
DδD = µ

∫ 1

0

F ′′∗ (s− tδD)δDdt = µ [−F ′∗(s− δD) + F ′∗(s)] = µ (x/µ− x̃) = δP .

We next compute, using the substitution t̃ = 1/t,

T 2
Ds = µ

∫ 1

0

F ′′∗ (s− tδD)sdt

= µ

∫ 1

0

1

t2
F ′′∗ (s/t− δD)sdt

= µ

∫ ∞
1

F ′′∗ (t̃s− δD)sdt̃

= −µF ′∗(s− δD) = x.

Further, T 2
D is the mean of some symmetric positive-definite bilinear forms, so T 2

D itself is a
symmetric positive-definite bilinear form. �

We call this scaling operator the dual integral scaling. Note that the above theorem holds
under weaker assumptions (we only used the facts that F is logarithmically homogeneous and
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F, F∗ are Legendre-type functions in the sense of Rockafellar [41]). The dual integral scaling is
expected to inherit many of the nice properties of the Hessians. Thus, if F∗ is well-behaved,
then one can prove nice bounds on the deviation of dual integral scaling from the dual Hessian
at s and µs̃:

Theorem 3.2. If σ < 1 is such that, for any t ∈ [0, 1],

(1− tσ)2F ′′∗ (s) � F ′′∗ (s− tδD) � 1

(1− tσ)2
F ′′∗ (s),

then

(1− σ)µF ′′∗ (s) � T 2
D �

1

1− σ
µF ′′∗ (s).

Proof. This follows directly from the definition of T 2
D. �

Interestingly, the dual integral scaling (the mean of Hessians along the line segment joining s
and µs̃) is not as “canonical” as the Nesterov–Todd scaling (the geodesic mean of the Hessians
joining the same two points in the interior of K∗) in terms of primal-dual symmetry properties.
For the remainder of this section, we elaborate on this and related issues. Also, in Section 8
when we specialize on Hyperbolicity Cone Programming problems, we show that the integral
scaling can have advantages (when one of the primal and dual problems is more tractable or
nicer for the approach at hand, as a benefit of breaking this primal-dual symmetry well, and
properties like those given by Theorem 3.2).

Notice that the dual integral scaling∫ 1

0

µF ′′∗ (ts+ (1− t)µs̃)dt

and the primal integral scaling

T 2
P :=

(∫ 1

0

µF ′′(tx+ (1− t)µx̃)dt

)−1

are both scalings that map s to x and s̃ to x̃. These are not in general the same, though they
do coincide with the usual scaling Diag(x) [Diag(s)]−1 in the case of Linear Programming.

Example 3.3. (A comparison of primal-dual local metrics for the positive semidefinite cone)
We work out the integral scaling for the positive semidefinite cone Sn+. If X is the primal iterate

and X̃ is the primal shadow of the dual iterate, then we see that(
T 2
P

)−1
[H,H] = µ

∫ 1

0

〈
(tX + (1− t)µX̃)−1H(tX + (1− t)µX̃)−1, H

〉
dt.

One can make this slightly more explicit. There always exists a U ∈ GL(n) such that UXU> =
I and UµX̃U> is diagonal; one can compose a Q that orthogonally diagonalises X, an S that
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scales Q>XQ to the identity matrix, and a Q′ that orthogonally diagonalises SQ>µX̃QS. Say
UµX̃U> = D. Then we can compute

T 2
D[UHU>, UHU>] = µ

∫ 1

0

〈
(tI + (1− t)D)−1H(tI + (1− t)D)−1, H

〉
dt.

In particular, if H is Eij, we have

T 2
D[UEijU

>, UEijU
>] = µ

∫ 1

0

(t+ (1− t)Di)
−1(t+ (1− t)Dj)

−1dt = µ
lnDj − lnDi

Dj −Di

.

Special attention needs to be given to the case when Di = Dj; here, the integral evaluates to
µ/Di.

If H = Eij + Ekl (with (i, j) 6= (k, l)), we have T 2
D[U(Eij + Ekl)U

>, U(Eij + Ekl)U
>] given by

µ

∫ 1

0

(t+ (1− t)Di)
−1(t+ (1− t)Dj)

−1 + (t+ (1− t)Dk)
−1(t+ (1− t)Dl)

−1dt.

This is the sum of T 2
D[UEijU

>, UEijU
>] with T 2

D[UEklU
>, UEklU

>], meaning that

T 2
D[UEijU

>, UEklU
>] = δikδjlT

2
D[UEijU

>, UEijU
>].

Put another way, the operator CU>T
2
DCU is diagonal where CU is the conjugation operator

given by CU(Z) = UZU>. For every nonsingular U , the map CU preserves operator geometric
means; that is,

UA1/2
(
A−1/2BA−1/2

)1/2
A1/2U>

= (UAU>)1/2
(
(UAU>)−1/2UBU>(UAU>)−1/2

)1/2
(UAU>)1/2.

One can show this as follows: The geometric mean of X � 0 and Y � 0 is the unique positive-

definite G := X1/2
(
X1/2Y −1X1/2

)−1/2
X1/2 such that GX−1G = Y . Taking H = UGU>, we

have

HU−>X−1U−1H = UGU>U−>X−1U−1UGU> = UGX−1GU> = UY U>.

Interestingly, Molnár [16] proved that every linear automorphism of the semidefinite cone over a
complex Hilbert space that preserves geometric means is a conjugation operator. The converse is
also true, since the set of automorphisms of Sn+ is the set of conjugations given by the nonsingular
U (see a discussion in [46] of Güler’s proof utilizing the proof technique of Waterhouse [49]),
and as we observed above, it is easy to verify that the conjugation operator preserves operator
geometric means. Thus, we can make a natural comparison with the Nesterov–Todd scaling
given by

N [H,H] = 〈(V D′1/2V >)−1H(V D′
1/2
V >)−1, H〉,
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where V D′V > is the spectral decomposition of operator geometric mean of X and µX̃. Notice
that

N [V EijV
>, V EijV

>] = 〈D′−1/2
EijD

′−1/2
, Eij〉 =

1√
D′iD

′
j

and that N is similarly diagonal with respect to that basis. (The conjugation CUNC
>
U does

not in general result in a diagonal matrix, so we need to take this different V instead in order
to diagonalise N .) Notice that

N [UEijU
>, UEijU

>] = e>i U
>GUeie

>
j U
>GUej

whatever U is. Thus, when we form the matrix whose ij entry is N [UEijU
>, UEijU

>], we
always obtain a rank-one matrix. However, such a matrix formed from the integral scaling T 2

D

can have full rank. We proceed with an example. Consider D = (ε, ε2, . . . , εn). Notice that
lnDi− lnDj = (i− j) ln ε, while Di−Dj = εi− εj. Thus, the (i, j) entry of this matrix is on the
order of ε−min(i,j). For sufficiently small ε, then, the determinant of this matrix is dominated
by the product along the diagonal, which is positive—it follows that this matrix is nonsingular.

4. Local primal-dual metrics expressed as low rank updates

It may be impractical in many cases to evaluate the integral scaling from Section 2 exactly
or to high enough accuracy. Due to this, or perhaps due to numerical instabilities arising in
computations, we may have to make do with an approximation H that does not necessarily
satisfy the equations Hs = x and Hs̃ = x̃.

The second author [47] constructed the following low-rank update which “fixes” such problems
encountered by any symmetric, positive-definite H:

T 2
H := H + a1x⊗ x+ g1Hs⊗Hs+ ã1x̃⊗ x̃+ g̃1Hs̃⊗Hs̃+ a2 [(x⊗ x̃) + (x̃⊗ x)](6)

+g2 [(Hs⊗Hs̃) + (Hs̃⊗Hs)] ,
where

a1 =
µ̃

ϑ(µµ̃− 1)
, ã1 =

µ

ϑ(µµ̃− 1)
, a2 =

−1

ϑ(µµ̃− 1)
,

g1 =
H[s̃, s̃]

H[s, s]H[s̃, s̃]− (H[s̃, s])2 , g̃1 =
H[s, s]

H[s, s]H[s̃, s̃]− (H[s̃, s])2 , g2 =
H[s, s̃]

H[s, s]H[s̃, s̃]− (H[s̃, s])2 .

The second author [47] proved that, as long as H is positive-definite, T 2
H is positive-definite,

maps s to x, and maps s̃ to x̃.

As written, Equation (6) is somewhat unwieldy for purposes of analysis. It is not immediately
obvious that, in the case that the pair (x, s) satisfy the centrality condition x = µx̃ (or,
equivalently, µµ̃ = 1), the formula collapses to a rank-two update. (Indeed, it has a singularity
there.) We prove that the above given complicated operator has an equivalent form as two,
simple, consecutive updates due to the special structure of our set-up:
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Theorem 4.1. Let x, x̃ ∈ E and s, s̃ ∈ E∗ satisfy the following conditions (under the definitions
δP := x− µx̃ and δD := s− µs̃):

• 0 < 〈s̃, x〉 = 〈s, x̃〉 =: ϑ
• 0 < 〈s, x〉 =: ϑµ
• 0 < 〈s̃, x̃〉 =: ϑµ̃
• 〈δD, δP 〉 > 0.

Further let H ∈ S++(E∗,E∗). Then, H2 in the following formula is a symmetric, positive-
definite bilinear form and it maps s to x, and maps s̃ to x̃:

H1 := H +
1

〈s, x〉
x⊗ x− 1

〈s,Hs〉
Hs⊗Hs(7)

H2 := H1 +
1

〈δD, δP 〉
δP ⊗ δP −

1

〈δD, H1δD〉
H1δD ⊗H1δD.

Proof. Notice that H1s = Hs + x − Hs = x. Notice further that 〈s, δP 〉 = 〈δD, x〉 = 0 by
expanding the dual pairing conditions, so H2s = H1s. Thus, H2 maps s to x. Next, note that
H2δD = H1δD +δP −H1δD = δP . Thus, H2 also maps δD to δP . Hence, H2 maps s̃ to x̃. Clearly
H2 is a linear combination of symmetric bilinear forms and hence itself is a symmetric bilinear
form. We recall from the theory of quasi-Newton updates (see for instance Lemma 9.2.1 in [4])
that the “curvature condition” 〈s, x〉 > 0 is necessary and sufficient to guarantee that H1 is
positive-definite, and, given that H1 is positive-definite, the curvature condition 〈δD, δP 〉 > 0
is necessary and sufficient for H2 to be positive-definite. Therefore, H2 is positive-definite as
well. �

Note that the positivity of the scalar products 〈s, x〉 and 〈δD, δP 〉, together with the orthogo-
nality conditions 〈s, δP 〉 = 〈δD, x〉 = 0 suffice for the above theorem to hold. Thus, there may
be a potential use of these formulae in classical quasi-Newton approaches. Such considerations
are left for future work.

We remark that we can apply the above formulas after switching x and s and then inverting
the resulting T 2 to obtain the following low-rank updates (under the same conditions):

Theorem 4.2. Let H, x, x̃, s, and s̃ be as in Theorem 4.1. Then H2 in the following formula
is symmetric, positive-definite, maps s to x, and maps s̃ to x̃:

(8) H1 :=

(
I − x⊗ s
〈s, x〉

)
H

(
I − s⊗ x
〈s, x〉

)
+
x⊗ x
〈s, x〉

H2 :=

(
I − δP ⊗ δD
〈δD, δP 〉

)
H1

(
I − δD ⊗ δP
〈δD, δP 〉

)
+
δP ⊗ δP
〈δD, δP 〉

.
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Proof. We again see that H1s = x and H2δD = δP by correctness of the BFGS/DFP update.
We compute

H2s =

(
I − δP ⊗ δD
〈δD, δP 〉

)
H1

(
I − δD ⊗ δP
〈δD, δP 〉

)
s+

δP ⊗ δP
〈δD, δP 〉

s =

(
I − δP ⊗ δD
〈δD, δP 〉

)
x+ 0 = x.

It is easy to verify that both H1 and H2 are symmetric bilinear forms. H1 is positive-definite
because the curvature condition 〈s, x〉 > 0 is satisfied. H2 is positive-definite because the
curvature condition 〈δD, δP 〉 > 0 is satisfied. �

Due to the variational interpretations of quasi-Newton update formulae, we have the corre-
sponding interpretations in our set-up (i.e., H1 is the closest—minimum distance—symmetric
bilinear form to H satisfying H1s = x; similarly for H2 and H1). Moreover, as in [47], the above
formulae can be used in convex combinations (analogous to Broyden’s convex class in the clas-
sical quasi-Newton context) due to convexity of T1. Of course, we may also use the formula for
H1 in Theorem 4.1 together with the formula for H2 in Theorem 4.2, etc. In Appendix B, we
will look at these properties more deeply from a strict primal-dual symmetry viewpoint.

5. Primal-dual Hessian local metrics based on a single scaling point

In this section, we ask and partially answer the following question: For which ϑ-LHSCBs F∗
does there exist a unique scaling point w ∈ int(K∗) such that F ′′∗ (w) ∈ T 2

1 (x, s) for every
x ∈ int(K) and s ∈ int(K∗)?

Note that, on the one hand, for every ϑ-LHSCB F∗, there exists a scaling point w ∈ int(K∗)
such that F ′′∗ (w) ∈ T 2

0 (x, s) for every x ∈ int(K) and s ∈ int(K∗) (as it was already proved by
Nesterov and Todd [30]; see [47], Theorem 3.1). On the other hand, the Nesterov–Todd scaling
point given by the geodesic mean of s and −F ′(x) provides an example of such a w in the
symmetric cone case (in this special case, F ′′∗ (w) ∈ T 2

1 (x, s)). We show that this property does
not generalise to slices of a symmetric cone that are not themselves symmetric cones. Every
symmetric cone is a slice of a positive semidefinite cone. Therefore, for the sake of simplicity
of notation we will stick with the slices of positive semidefinite cones in the following.

Lemma 5.1. Let L be a linear subspace of Sn that contains I but is not closed under matrix
squaring. Then there exists a B ∈ L such that TrB = 0 and B2 6∈ L.

Proof. Select a C such that C2 6∈ L. Let t := TrC/n and B := C − tI. Then, TrB = 0 and
B2 = C2 − 2tC + t2I. The latter two terms of this expansion lie in L while C2 does not, so
B2 6∈ L. �

Given a linear subspace L, let ΠL denote the orthogonal projection onto L.

Proposition 5.2. Let L be a linear subspace of Sn that contains I but is not closed under matrix
squaring. Choose the barrier F (X) = − ln detX for the cone K := Sn+∩L. (The dual cone of K
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is K∗ = {S ∈ L : ∀X ∈ K,Tr(SX) ≥ 0} = ΠL

(
Sn+
)
.) There exist X ∈ int(K) and S ∈ int(K∗)

such that, for all W ∈ int(K), either F ′′(W )[X] 6= S or F ′′(W )[−F ′∗(S)] 6= −F ′(X).

Proof. For the claim about K∗, note that

K∗ =
(
Sn+ ∩ L

)∗ ∩ L =
(
Sn+ + L⊥

)
∩ L = ΠL

(
Sn+
)
,

where the second equation above uses the facts that L ∩ Sn++ 6= ∅,
(
Sn+
)∗

= Sn+ and L∗ = L⊥.
Assume for the purpose of contradiction that there are n and L such that, for every choice
of X ∈ int(K) and S ∈ int(K∗), there exists a W ∈ int(K) for which F ′′(W )[X] = S and
F ′′(W )[−F ′∗(S)] = −F ′(X).

For Z ∈ int(K), we compute (e.g., by using Taylor’s formula for F (x + td), for x ∈ int(K),
d ∈ L)

F ′(Z) = −ΠL(Z−1)

and

F ′′(Z)[H] = lim
h→0+

−1

h
ΠL((Z + hH)−1 − Z−1) = ΠL(Z−1HZ−1).

Select B ∈ L such that TrB = 0 and B2 6∈ L. Let S := X := I + εB; we shall choose ε > 0
later. (For sufficiently small ε, X lies in the interior of K and S in the interior of K∗.) Notice
that this choice of S and X implies that S = F ′′(W )[X] = ΠL(W−1XW−1).

Next, we check that W = I is the only solution to S = F ′′(W )[X]. Suppose W is such that
S = F ′′(W )[X]. Consider the problem

min Tr(Z−1X)
subject to Tr(ZX) ≤ Tr(WX)

Z ∈ L
Z � 0.

Notice that the objective is strictly convex (this is indeed related to the fact that the long-step
Hessian estimation property holds for − ln det(·)) and that the feasible region is nonempty,
compact and convex (since X is positive-definite). Thus this problem has a unique optimal
solution. This optimal solution does not lie in the boundary of the positive semidefinite cone
since the objective is +∞ there and finite elsewhere. Thus, we may drop the constraint Z � 0.
Z := W/2 is a feasible solution satisfying the positive semidefiniteness constraint and the linear
inequality strictly, so Slater’s condition holds. Notice that the gradient of the objective is
−Z−1XZ−1.

By the Karush-Kuhn-Tucker theorem applied to the problem without the explicit constraint
Z succeq0, every point Z for which Tr(ZX) = Tr(WX) and there exists a λ ≥ 0 and `⊥ ∈ L⊥
such that Z−1XZ−1 − λX + `⊥ = 0 is optimal. Note that Z = W is a solution with λ = 1.
Note that Z := Tr(WX)I/TrX is also a solution with λ = [Tr(X)/Tr(WX)]2 . Thus W must
be a scalar multiple of I; since ΠL(W−1XW−1) = X, that scalar must be 1.
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Define X̃ := −F ′∗(S). Then, we must have F ′′(W )[X̃] = −F ′(X); X̃ = ΠL(X−1) = X−1 − P
for some P ∈ L⊥. Observe that, for sufficiently small ε,

X−1 = I − εB + ε2B2 +O(ε3).

Both I and B lie in L, so
P = ΠL⊥(ε2B2) +O(ε3).

We compute, for sufficiently small ε,

n = TrS = Tr
[
−F ′(X̃)

]
= Tr

[
(X−1 − P )−1

]
= Tr

[
X +XPX +XPXPX +O(ε6)

]
= Tr

[
I + εB + P + εBP + εPB + ε2BPB + P 2 +O(ε5)

]
= n+ 0 + 0 + 0 + 0 + ε2 Tr(B2P ) + Tr(P 2) +O(ε5).

For the last equation above, we used the fact that Tr(P ) = 0 (since P ∈ L⊥ and I ∈ L).
Noting that P = ΠL⊥(ε2B2) + O (ε3), we see that ε2 Tr(B2P ) = Tr(P 2), which is the squared
Frobenius norm of P . By our choice of B, this is positive. Thus, for sufficiently small ε,

TrX = TrS = Tr
[
−F ′(X̃)

]
> TrX, a contradiction. �

There is a five-dimensional semidefinite cone slice where a T1 scaling defined by a single point
does not exist for all x and s, namely the cone of symmetric, positive semidefinite matrices
with the sparsity pattern  ∗ ∗ ∗∗ ∗ 0

∗ 0 ∗

 .

This cone (described above as a slice of 3-by-3 positive semidefinite cone) is also known as the
Vinberg cone. (Here we are working with its SDP representation). It is the smallest-dimensional
homogeneous cone that is not self-dual, whence not a symmetric cone. This particular subspace
L contains I, and it is not closed under matrix squaring.

Let us note that if L is a linear subspace of Sn that contains I and is closed under matrix
squaring, then

∀U, V ∈ L, UV + V U = (U + V )2 − U2 − V 2 ∈ L.
Moreover, since for every pair U, V ∈ L, the equation

U
(
U2V + V U2

)
+
(
U2V + V U2

)
U = U2 (UV + V U) + (UV + V U)U2

is self-evident, we have an Euclidean Jordan algebra over L. Hence,
(
Sn+ ∩ L

)
is an SDP

representation of a symmetric cone and indeed the function − ln det(·) : int(K) → R is a self-
scaled barrier for

(
Sn+ ∩ L

)
. Therefore, Proposition 5.2 proves that among all SDP-representable

cones (as a slice of Sn+), symmetric cones are the only ones for which

{F ′′∗ (w) : w ∈ int(K∗)} ∩ T 2
1 (x, s) 6= ∅, ∀(x, s) ∈ int(K)⊕ int(K∗),
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where F (X) := − ln det(X) (over the representing cone Sn+).

The proof technique of Proposition 5.2 is more generally applicable. As a result, a more general
and sharper characterization of the underlying behaviour is possible. This will be addressed,
in detail, in future work.

6. The norm of the low-rank updates near the central path

We know that if we can compute T 2 ∈ T 2
2 (η;x, s) efficiently, with ensuring ξ∗ = O(1) and

η = O(1) for all iterates, then we will have one of the most important ingredients of a general

family of primal-dual interior-point algorithms with iteration complexity O
(√

ϑ ln(1/ε)
)

.

Up to this point, we have seen many ways of constructing T 2 ∈ T 2
1 (x, s). However, we also

discovered that we cannot expect to have a z ∈ int(K∗) such that F ′′∗ (z) ∈ T 2
1 (x, s), in general.

We will later present and analyse an algorithm for convex programming based on Mizuno,
Todd, and Ye’s predictor-corrector approach [15]. We will first assume explicit access to oracles
computing a ϑ-self-concordant primal barrier F for the primal cone and the conjugate barrier
F∗ for the dual cone. We will argue later that the algorithms can be modified to work without
an explicit F∗ oracle.

These oracles may be expensive; it may be unreasonable (or simply unnecessary) to try to
compute the dual integral scaling directly to high precision at every iteration. We thus consider
computing an approximation H to T 2

D and then using a low-rank update to H to get a scaling
in T 2

H ∈ T1(x, s). Specifically, we approximate the operator integral by evaluating it at the
midpoint of the line segment joining s and µs̃, corresponding to the two extremes of the set of
symmetric bilinear positive-definite forms {F ′′∗ (s− tδD) : t ∈ [0, 1]}. Then, we use the low-rank
updates of Section 4 to restore membership in T 2

1 (x, s).

Define

š :=
s+ µs̃

2
and H := µF ′′∗ (š),

and take H1 and T 2
H := H2 as in (7).

Our analysis hinges on the resulting scaling (local metric T 2
H) being close to µF ′′∗ (s) and

[µF ′′(x)]−1 (in the sense of Definition 2.13) in every iteration of the algorithm. We there-
fore devote the remainder of this section to computing bounds, somehow dependent on the
error in approximating T 2

D by H, of the additional error introduced by the low-rank updates.
We will prove in this section that for every pair of interior points (x, s) ∈ int(K) ⊕ int(K∗)
for which x is close to µx̃, and hence s is close to µs̃ (in the sense that e.g., ||δD||s < 1/64),
ξ∗ is O(1) (in fact, less than 4/3), and T 2

H is a 4/3-approximate solution to the SDP defining
T 2

2 (1;x, s). We made a particular choice of 1/64 for the neighbourhood parameter; indeed, a
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continuous parametrization of the following analysis with respect to the neighbourhood param-
eter is possible (and implicit). More importantly, we chose a measure of proximity in the dual
space for the analysis (rather than, for example, choosing a primal-dual symmetric measure
of proximity). For the order of the iteration bounds this does not seem to make a difference,
moreover, we wanted state at least some of the analysis in a way that would be useful in imple-
mentations of the algorithms in this framework that break the symmetry in favor of the dual
problem.

For x ∈ intK, define ||h||K,x to be the smallest positive λ such that x+ h/λ and x− h/λ both
lie in K. Then,

||h||K,x = min {σx(h), σx(−h)} .
One can check that ||·||K,x is a norm. Let ||h||∗K,x be its dual norm. If H : E∗ ⊕ E∗ → R is a
symmetric bilinear form, define

||H||K,x := max
||u||∗K,x≤1

max
||`||∗K,x≤1

H[u, `];

this is the operator norm induced by the norm ||·||K,x.

Good bounds on the difference between two vectors in ||·||K,x imply some very useful conic
inequalities:

Proposition 6.1. If ||u− `||K,` ≤ δ < 1, then there are x and y in K such that u = (1− δ)`+

x = (1 + δ)`− y.

Proof. Let s ∈ K∗. Then 〈s, `〉 ≥ 0 and 〈s, `± (u− `)/δ〉 ≥ 0. Thus 〈s, (δ − 1)`+ u〉 ≥ 0 and
〈s, (1 + δ)`− u〉 ≥ 0. This is true for every s ∈ K∗, so (δ− 1)`+ u and (1 + δ)`− u both lie in
K, as desired. �

The operator norm still behaves as expected on rank-one matrices:

Proposition 6.2. Let u, ` ∈ E. Then the operator norm of the bilinear form u⊗ ` is

||u⊗ `||K,x = ||u||K,x ||`||K,x .

Proof. We use the definitions, to deduce:

||u⊗ `||K,x = max
||y||∗K,x≤1

max
||z||∗K,x≤1

〈u, y〉 〈`, z〉 =

(
max
||y||∗K,x≤1

〈u, y〉

)(
max
||z||∗K,x≤1

〈`, z〉

)
= ||u||K,x ||`||K,x .

�

The difference-of-squares bound also still holds:

Proposition 6.3. Let u, ` ∈ E. Then

||(u⊗ u)− (`⊗ `)||K,x ≤ ||u− `||K,x ||u+ `||K,x
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Proof. We apply the definitions:

(u⊗ u)− (`⊗ `) =
1

2
([(u− `)⊗ (u+ `)] + [(u+ `)⊗ (u− `)]) .

Now, we apply the triangle inequality and the previous proposition. �

We can control the ||·||K,x norm of the quasi-Newton updates from Section 4 in terms of the

||·||K,x norm of the correction to be made. The following theorem makes special use of the fact
that s lies in K∗ and x in K to get a strong bound:

Theorem 6.4. Let x ∈ int(K) and s ∈ int(K∗). Let H : E∗ ⊕E∗ → R be a symmetric bilinear
positive-definite form. Suppose ||Hs− x||K,x ≤ ε1 < 1. Then,∣∣∣∣∣∣∣∣Hs⊗Hs〈s,Hs〉

− x⊗ x
〈s, x〉

∣∣∣∣∣∣∣∣
K,x

≤ ε1
3 + ε1
1− ε1

.

Proof. By the triangle inequality,
(9)∣∣∣∣∣∣∣∣Hs⊗Hs〈s,Hs〉

− x⊗ x
〈s, x〉

∣∣∣∣∣∣∣∣
K,x

≤
∣∣∣∣ 〈s, x−Hs〉〈s, x〉 〈s,Hs〉

∣∣∣∣ ||Hs⊗Hs||K,x +
1

〈s, x〉
||(x⊗ x)− (Hs⊗Hs)||K,x .

We use Proposition 6.1 to write Hs = (1 − ε1)x + y = (1 + ε1)x − z for y and z in K. Then,
〈s, x−Hs〉 = 〈s, ε1x− y〉 ≤ ε1 〈s, x〉 and 〈s, x−Hs〉 = 〈s, z − ε1x〉 ≥ −ε1 〈s, x〉. Thus,

|〈s, x−Hs〉| ≤ ε1 〈s, x〉 .
Hence, ∣∣∣∣ 〈s, x−Hs〉〈s, x〉 〈s,Hs〉

∣∣∣∣ ≤ ∣∣∣∣ ε1 〈s, x〉
〈s, x〉 (〈s, x〉+ 〈s,Hs− x〉)

∣∣∣∣ ≤ ε1
(1− ε1) 〈s, x〉

.

Since ||Hs||K,x ≤ ||x||K,x+ ||Hs− x||K,x ≤ 1+ε1, it follows that the first term on the right-hand

side of (9) is bounded above by

ε1 ||Hs||2K,x
(1− ε1) 〈s, x〉

≤ ε1(1 + ε1)2

(1− ε1) 〈s, x〉
.

The second term on the right-hand side of (9) can be bounded above by

(2 + ε1)ε1
〈s, x〉

.

This implies the desired bound. �

The following theorem applies more generally, but the bound is weaker:

Theorem 6.5. Let x ∈ int(K). Further let δP ∈ E and δD ∈ E∗ and H and T 2 : E∗ ⊕ E∗ → R
be a pair of symmetric, positive-definite bilinear forms such that
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• 〈δD, δP 〉 > 0;
• T 2δD = δP ;
• there exists σ < 1 such that, for every z ∈ E∗,

(1− σ)2T 2[z, z] ≤ H[z, z] ≤ T 2[z, z]

(1− σ)2
;

• there exists ε2 < 1 such that ||HδD − δP ||K,x ≤ ε2 ||HδD||K,x .

Then, ∣∣∣∣∣∣∣∣δP ⊗ δP〈δD, δP 〉
− HδD ⊗HδD
〈δD, HδD〉

∣∣∣∣∣∣∣∣
K,x

≤
(
σ(2 + σ)

1− 4σ
+ ε2(2 + ε2)

) ||HδD||2K,x
〈δD, δP 〉

.

Proof. Note that∣∣∣∣∣∣∣∣δP ⊗ δP〈δD, δP 〉
− HδD ⊗HδD
〈δD, HδD〉

∣∣∣∣∣∣∣∣
K,x

≤
∣∣∣∣ 〈δD, HδD − δP 〉〈δD, δP 〉 〈δD, HδD〉

∣∣∣∣ ||HδD ⊗HδD||K,x +
1

〈δD, δP 〉
||(δP ⊗ δP )− (HδD ⊗HδD)||

≤
∣∣∣∣〈δD, HδD − δP 〉〈δD, HδD〉

∣∣∣∣ ||HδD||2K,x〈δD, δP 〉
+
ε2(2 + ε2) ||HδD||2K,x

〈δD, δP 〉
.

We write 〈δD, HδD − δP 〉 = 〈δD, (H − T 2)δD〉. Then,(
(1− σ)2 − 1

) 〈
δD, T

2δD
〉
≤
〈
δD, (H − T 2)δD

〉
≤
(

1

(1− σ)2
− 1

)〈
δD, T

2δD
〉
.

Thus,

|〈δD, HδD − δP 〉| ≤
2σ + σ2

(1− σ)2
〈δD, δP 〉 .

Writing 〈δD, HδD〉 = 〈δD, δP 〉+ 〈δD, HδD − δP 〉, it follows that
∣∣∣ 〈δD,HδD−δP 〉〈δD,HδD〉

∣∣∣ ≤ 2σ+σ2

1−4σ
. Hence,∣∣∣∣ 〈δD, HδD − δP 〉〈δD, δP 〉 〈δD, HδD〉

∣∣∣∣ ||HδD ⊗HδD||K,x ≤ 2σ + σ2

1− 4σ

||HδD||2K,x
〈δD, δP 〉

.

The desired result follows. �

Now that we have seen a high-level analysis on bounding the norms of low rank updates
in a neighbourhood of the central path, we see that providing upper bounds on ||Hs− x||∗s,
||HδD − δP ||∗s, and lower bounds on 〈δD, δP 〉, 〈δD, HδD〉, and 〈δD, H1δD〉 will be useful in the
complexity analysis as well as in designing robust implementations of the algorithms. For the
rest of the analysis, we will increase the use of explicit absolute constants, for the sake of
concreteness. We either write these constants as ratios of two integers or as decimals which
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represent rationals with denominator: 106 (whence, we are able to express the latter constants
exactly as decimals with six digits after the point).

Theorem 6.6. Assume ||δD||s ≤ 1/64, and take H := µF ′′∗ (š) and

H1 := H +
x⊗ x
〈s, x〉

− Hs⊗Hs
〈s,Hs〉

.

Then, ∣∣∣∣∣∣∣∣δP ⊗ δP〈δD, δP 〉
− H1δD ⊗H1δD
〈δD, H1δD〉

∣∣∣∣∣∣∣∣∗
s

≤ 3.502346µ||δD||s.

Proof. We write

δP ⊗ δP
〈δD, δP 〉

− H1δD ⊗H1δD
〈δD, H1δD〉

=
1

〈δD, δP 〉
[(δP ⊗ δP )− (H1δD ⊗H1δD)]

+

(
1

〈δD, H1δD〉
− 1

〈δD, δP 〉

)
H1δD ⊗H1δD.

Notice that∣∣∣∣ 1

〈δD, H1δD〉
− 1

〈δD, δP 〉

∣∣∣∣ =

∣∣∣∣ 〈δD, H1δD − δP 〉
〈δD, H1δD〉 〈δD, δP 〉

∣∣∣∣ ≤ ||δD||s||H1δD − δP ||∗s
| 〈δD, H1δD〉 〈δD, δP 〉 |

≤ (1065087000000/907152721283)
1

µ||δD||s
.

Further, recall that ||H1δD||∗s ≤ 1.024263µ||δD||s. Thus, the second term’s norm is bounded
above by 1.231765µ||δD||s. Using the lower bound on 〈δD, δP 〉 and the upper bounds on
||H1δD − δP ||∗s and ||H1δD + δP ||∗s, we get a bound on the first term’s norm of

(1.065087) · (2.048265)

0.960803
µ||δD||s ≤ 2.270581µ||δD||s.

Adding the bounds on the two terms together gives the advertised bound. �

Theorem 6.7. Assume ||δD||s ≤ 1/64, and take H := µF ′′∗ (š),

H1 := H +
x⊗ x
〈s, x〉

− Hs⊗Hs
〈s,Hs〉

, and

T 2 := H1 +
δP ⊗ δP
〈δD, δP 〉

− H1δD ⊗H1δD
〈δD, H1δD〉

.

Then, ||T 2 −H||∗s ≤ 9.859785µ ||δD||s ≤ 0.154060µ.

Proof. We consider the two rank-two updates separately; Theorem B.3 controls the size of the
first rank-two update and Theorem 6.6 controls the size of the second update. We simply add
the two bounds together. �
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Theorem 6.8. If ||δD||s ≤ 1/64, then there exists a T 2 ∈ S++(E∗,E∗) satisfying the following
properties:

• T 2s = x;
• T 2s̃ = x̃;
• 0.8303376µF ′′∗ (s) � T 2 � 1.169871µF ′′∗ (s);
• 0.825446

µ
[F ′′(x)]−1 � T 2 � 1.174800

µ
[F ′′(x)]−1 .

That is, T 2 ∈ T 2
2 (1.211468;x, s).

Proof. We use Theorem 6.7 which gives a T 2 ∈ T 2
1 (x, s) such that ||T 2 − µF ′′∗ (š)|| ≤ 0.154060µ.

Now, we use the Dikin ellipsoid bound, the fact that 1

(1−||δD||s)
2 ≤ 1.031998 and Theorem 2.5

to obtain the last two operator relations. �

Note that in the above analysis, we did not utilize the additional flexibility provided by the
term (µµ̃ − 1). This establishes, in the language of [47], that ξ∗ is O(1) within a particular
neighbourhood of the central path. Moreover, our specific choice TH is in T2(η;x, s) for η =
O(1), for every pair (x, s) that is in the same neighbourhood.

Therefore, Theorem 5.1 of [47] implies that a wide range of potential reduction algorithms
(whose iterates are restricted in a neighbourhood of the central path) have the iteration com-

plexity of O
(√

ϑ ln (1/ε)
)

.

6.1. Bounds in v-space. In this subsection and the next section, we assume that some suitable
bases (and the underlying inner product) have been chosen for the underlying spaces (and we
identify both E and E∗ with Rn) and for the sake of concreteness, we write A for the underlying
matrix representation of A etc.

The following lemma is useful to the convergence analysis in the next section.

Lemma 6.9. Suppose x ∈ int(K) and s ∈ int(K∗) are such that ||δD||s < 1/64. Take T 2 as
in Theorem 6.8 and take T ∈ Sn++ to be its unique symmetric positive-definite square root. Let
v := Ts = T−1x and δv := TδD. Let z be an arbitrary vector in v-space. Let x′ ∈ int(K) and
s′ ∈ int(K∗); define δ′D := s′ + µF ′(x′) and δ′v := Tδ′D. Then,

(1) ||Tz|| ≤ 1.081606
√
µ ||z||s;

(2) ||z||s ≤ 1.097395 ||Tz|| /√µ;
(3) ||δv|| ≤ 0.016901

√
µ;

(4) ||δ′D||s′ ≤
||δ′D||s

1−||s−s′||s ;

(5) if ||δ′v|| ≤ 0.003703
√
µ and ||s− s′||s ≤ 1/25, then ||δ′D||s′ ≤ 0.004234;

(6) if ||δ′v|| ≤ 0.010519
√
µ and ||s− s′||s ≤ 1/25, then ||δ′D||s′ ≤ 1/64.



CONVEX OPTIMIZATION VIA PRIMAL-DUAL METRICS 29

Proof. Recall from Theorem 6.8 that

(10) 0.830376µ||z||2s ≤ ||Tz||2 ≤ 1.1169871µ||z||2s.

(1) This is the square root of ||Tz||2 ≤ 1.169871µ ||z||2s with a constant rounded up.

(2) This is the square root of µ ||z||2s ≤
1

0.830376
||Tz||2 with a constant rounded up.

(3) Take z = δD in part (1) and then use ||δD||s ≤ 1/64; we see

||δv|| < 1.081606
√
µ||δD||s ≤ 0.016901

√
µ,

as desired.
(4) This is the Dikin ellipsoid bound for comparing the s′-norm with the s-norm.
(5) If ||δ′v|| ≤ 0.003703

√
µ, then by part (2) ||δ′D||s ≤ 0.004064. By part (4), then,

||δ′D||s′ ≤ 0.004234, as desired.
(6) If ||δ′v|| ≤ 0.010519

√
µ, then by part (2) ||δ′D||s ≤ 0.011544. By part (4), then,

||δ′D||s′ ≤ 0.012025, which implies the desired result.

�

7. Algorithms

In this section, we complete our proof of O(
√
ϑ ln 1

ε
) iteration complexity bounds on variants of

the following feasible-start primal-dual interior point algorithm with different choices of α and
γ:

Take k := 0 and
(
x(0), y(0), s(0)

)
to be feasible and central (we can also accept approximately

central points).

while
(
s(k)
)>
x(k) > εϑ do

Let µk :=
(
s(k)
)>
x(k)/ϑ.

Take T 2 as in Theorem 6.7.
Select γ ∈ [0, 1].
Solve  0 A> I

A 0 0
I 0 T 2

 dx
dy
ds

 =

 0
0

−x(k) − γµkF ′∗(s)

 .

Select αk ∈ [0,∞).(
x(k+1), y(k+1), s(k+1)

)
←
(
x(k), y(k), s(k)

)
+ αk(dx, dy, ds).

k ← k + 1.
end while

Lemma 7.1. Let rv := −v + γµw. Then, the system of equations in Line 3 of the above
algorithm imply

T−1dx = Πker(AT )rv, Tds = Πim((AT )>)rv.
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In particular, ||T−1dx|| ≤ ||rv|| and ||Tds|| ≤ ||rv||.

Proof. The third equation ensures that T−1dx + Tds = rv. The first two equations imply that
T−1dx must lie in ker(AT ) while Tds must lie in im

(
(AT )>.

)
Since these two linear spaces are

orthogonal, the result follows. �

The following result does not hint at quadratic convergence. However, a tighter analysis of
the low-rank updates showing that the approximation error is linear in ||δD||s within the 1

64
-

neighbourhood would suffice to establish quadratic convergence. This is not hard to do, since
the ingredients are already given above. We do not do this here, because quadratic convergence
of centering is not needed to establish the desired complexity result.

Lemma 7.2. Suppose x(k) ∈ int(K) and s(k) ∈ int(K∗) define a feasible solution. If γk = 1
and αk = 1 and ||δkD||s(k) ≤ 1

64
, then

• Ax(k+1) = b and A>y(k+1) + s(k+1) = c.
• x(k+1) ∈ int(K) and s(k+1) ∈ int(K∗).

• ||δ(k+1)
D ||s(k+1) ≤ 0.004234.

• µk+1 = µk.

Proof. The system of linear equations that determine dx, dy, and ds guarantee that dx ∈ kerA
and ds = −A>dy; since Ax(k) = b and A>y(k) + s(k) = c, it follows that Ax(k+1) = b and
A>y(k+1) +s(k+1) = c. We drop the superscript k when speaking of the kth iterate in this proof.

Notice that, with this choice of γ,

T−1dx + Tds = −δv.

Since

||dx||x ≤
√

1.174800
√
µ

||T−1dx|| ≤
√

1.174800
√
µ

||δv|| ≤ 0.018319 < 1,

strict primal feasibility is retained (for the last inequality above, we used Lemma 6.9 part (3)).
A similar argument shows that strict dual feasibility is retained.

For the first equation below, we use the identity F ′(x+ dx) = F ′(x) +
∫ 1

0
F ′′(x+ τdx)dxdτ and

obtain

||T (s+ ds + µF ′(x+ dx))|| =

∣∣∣∣∣∣∣∣T [δD + ds + µ

(∫ 1

0

F ′′(x+ τdx)dτ

)
dx

]∣∣∣∣∣∣∣∣
≤ ||δv + Tds + T−1dx||+

∣∣∣∣∣∣∣∣T [T−2 − µ
(∫ 1

0

F ′′(x+ τdx)dτ

)]
dx

∣∣∣∣∣∣∣∣ .
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The first term is, of course, zero. However, notice that, by the Dikin ellipsoid bound and
Theorem 6.8

µ

(∫ 1

0

F ′′(x+ τdx)dτ

)
� 1.219055T−2

and, similarly,

µ

(∫ 1

0

F ′′(x+ τdx)dτ

)
� 0.795480T−2

We therefore bound, using Lemma 6.9 part (3),∣∣∣∣∣∣∣∣T [T−2 − µ
(∫ 1

0

F ′′(x+ τdx)dτ

)]
dx

∣∣∣∣∣∣∣∣ ≤ 0.219055
∣∣∣∣T−1dx

∣∣∣∣ = 0.219055||δv|| < 0.003703
√
µ,

which implies, by Lemma 6.9 part (5), the advertised bound on the new ||δD||s.
As we observed in Section 2, µ is unchanged by a centering iteration. �

Lemma 7.3. Suppose ||δ(k)
D ||s(k) ≤ 0.004234, let γk := 0 and αk := 0.005√

ϑ
. Then,

• Ax(k+1) = b and A>y(k+1) + s(k+1) = c;
• x(k+1) ∈ int(K) and s(k+1) ∈ int(K∗);
• µk+1 ≤ (1− αk)µk;

• ||δ(k+1)
D ||s(k+1) ≤ 1

64
.

Proof. We recall that ||δD||s ≤ 0.004234 means that, by Lemma 6.9 part (1), ||δv|| ≤ 0.004580
√
µ.

Notice that by Theorem ??, we have

||dx||x ≤
√

1.174800

µk
||T−1dx|| ≤

√
1.174800

µk
||v|| ≤ 1.0839

√
ϑ.

Consequently, any step with α < 1
2
√
ϑ

retains strict primal feasibility. A similar analysis (due

to the primal-dual symmetry of our set-up) reveals that ||ds||s ≤ 1.097393
√
ϑ and hence the

dual step retains strict dual feasibility for α similarly bounded. Notice that ||αkds||s ≤ 1/25;
this permits us to use Lemma 6.9 part (6) later.

As we observed in Section 2, 〈s(α), x(α)〉 = (1− α)ϑµ. This establishes the desired reduction
in µ.
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We compute∣∣∣∣∣∣Tδ(k+1)
D

∣∣∣∣∣∣ = ||T [s+ αds + µF ′(x+ αdx)]||

=

∣∣∣∣∣∣∣∣T [s+ αds + µF ′(x) + αµ

(∫ 1

0

F ′′(x+ ταdx)dτ

)
dx

]∣∣∣∣∣∣∣∣
≤ ||δv||+ α

∣∣∣∣∣∣∣∣Tds + µT

(∫ 1

0

F ′′(x+ ταdx)dτ

)
dx

∣∣∣∣∣∣∣∣ ,
where for the second equation above, we used the identity

F ′(x+ αdx) = F ′(x) + α
(∫ 1

0
F ′′(x+ ταdx)dτ

)
dx. Let us write

E := µ

(∫ 1

0

F ′′(x+ ταdx)dτ

)
− T−2.

Then, by Theorem 6.8, and the Dikin ellipsoid bound, we obtain

−0.183477T−2 � E � 0.1876638T−2.

We thus get an upper bound of∣∣∣∣∣∣Tδ(k+1)
D

∣∣∣∣∣∣ ≤ ||δv||+ αk
∣∣∣∣Tds + T

(
E + T−2

)
dx
∣∣∣∣

≤ ||δv||+ αk
∣∣∣∣Tds + T−1dx

∣∣∣∣+ αk ||TEdx||
≤ ||δv||+ αk ||v||+ αk ||TET ||

∣∣∣∣T−1dx
∣∣∣∣

≤ ||δv||+ αk (1 + ||TET ||) ||v||
≤ 0.004580

√
µ+ (0.005) · (1.187638)

√
µ

< 0.010519
√
µ.

The norm in the expression ||TET || above is the spectral (operator) 2-norm. This implies, by

Lemma 6.9 part (6), that
∣∣∣∣∣∣δ(k+1)

D

∣∣∣∣∣∣
s(k+1)

≤ 1
64

, as desired. �

We immediately have

Corollary 7.4. Starting from an initial, primal-dual pair of feasible and central points, one
can alternately apply the predictor and corrector steps outlined from the last two lemmata and
recover an algorithm that takes at most 278

√
ϑ iterations to reduce µ by a factor of two. In

particular, this gives an O
(√

ϑ ln (1/ε)
)

bound on the iteration complexity of the algorithm

using this choice of γ.

Proof. By Lemma 7.3, µ is reduced by a factor of
(

1− 0.005√
ϑ

)
in each iteration performing a

predictor step. By Lemma 7.2 every corrector step (which follows every predictor step) gets us
in a neighbourhood of the central path given by ||δD||s ≤ 1/64 without changing µ. Therefore,
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to provide an upperbound on the number of predictor steps (to reduce µ by a factor of two), it
suffices to solve the inequality (

1− 0.005√
ϑ

)k
≤ 1

2
,

for a (small) positive integer k. We obtain (using the fact that ln(1− κ) ≤ −κ, for all κ < 1),
choosing

k ≥ ln(2)

0.005

√
ϑ

suffices. Doubling such a feasible k (to account for the corrector steps) yields the claimed
bound. �

8. Hyperbolicity cone programming: The hyperbolic barriers special case

In this section, we assume that we are given access to a hyperbolic polynomial p and K is a
corresponding hyperbolicity cone. As we mentioned earlier, on the one hand, F (x) := − ln(p(x))
is a self-concordant barrier for K with long-step Hessian estimation property. On the other
hand, we do not necessarily have explicit and efficient access to F∗ or its derivatives; moreover,
F∗ will not have the long-step Hessian estimation property, unless K is a symmetric cone. We
will discuss two issues:

• How do we evaluate F∗?
• Can we compute the primal integral scaling?

8.1. Evaluating the dual barrier. Given an oracle returning F (x), F ′(x), and F ′′(x) on
input x, we describe an algorithm for approximating F ’s Legendre-Fenchel conjugate, F∗, and
discuss its convergence.

loop
r ← F ′(x̂) + s
if ||r||∗x̂ < ε then return x̂
end if
N ← − [F ′′(x̂)]−1 r
x̂← x̂+N

end loop

Intuitively, this is steepest descent in the local x̂-norm (i.e., Newton’s method for solving
F ′(x) + s = 0). This algorithm is locally quadratically convergent, since the dual s-norm is
well-approximated by the dual x̂-norm when −F ′(x̂) is “close to” s. In particular, one can
show that if ||r||∗x̂ ≤ 1

4
, then the x̂-norm of the new residual is at most 16

27
of that of the old.

This implies that the dual s-norm of the new residual is at most 64
81

of that of the old residual,
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ensuring descent. The dual s-norm is scaled by a factor of at most

||r||x̂/(1− ||r||x̂)4 ≤ 3.2||r||x̂
in each iteration, establishing local quadratic convergence.

Note that replacing s with −F ′(x̂), for some sufficiently good approximation x̂, can degrade the
complementarity gap and the measure of centrality ||δP ||x and ruins the equation A>y+ s = c.
Thus one needs to work with an infeasible interior-point method or a self-dual embedding
technique in the absence of an exactly-evaluated dual barrier. However, it is straightforward
to bound the local s-norm of the increase in residual by ||s+ F ′(x̂)||s.
We can use various integration techniques to evaluate the primal integral scaling as we outline
in Appendix C.

9. Conclusions and future work

We presented a new primal-dual scaling map based on a line integral for convex programming
where only a ϑ-LHSCB is supplied. We derived some properties of this scaling, notably that it
points to the richness of potential primal-dual local metrics, enriches the connection of primal-
dual interior-point methods to Riemannian geometry. We presented a new analysis of low-rank
updates of [47] showing that, if one is close to the central path and one begins with a certain
approximation to the integral scaling, the low-rank update has small norm close to the central
path. Some steps of this analysis were peculiar to the particular approximation chosen; we
leave it to future work to generalise the analysis to something depending more directly on the
approximation error. We presented a generalization of the Mizuno-Todd-Ye predictor-corrector
scheme that uses the above tools and showed that it matches the current best, worst-case
iteration complexity of O(

√
ϑ ln(1/ε)), of the special case of symmetric cone programming.

We presented an algorithm for computing an approximation to the conjugate barrier given an
oracle that computes the primal barrier and discussed some bounds that, within the context of
an infeasible-start interior-point method or a self-dual embedding technique (see [51, 33]), do
not degrade the worst-case iteration complexity.

We presented two techniques based on Gaussian quadrature for evaluating the new primal-dual
scaling map for hyperbolic barrier functions; one exact, and one with bounded approximation
error. Again, we leave to future work the problem of tying such an approximation error bound
to a bound on the magnitude of the necessary low-rank update to the approximation.
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Appendix A. Primal-dual symmetry based on the local metrics

In [47] a very general framework for primal-dual symmetric algorithms were provided. In this
section, we make the richness for the choice of such algorithms within the framework provided by
the sets T0, T1, T2, more explicit. Basically, every consistent choice of a local primal-dual metric
T 2 from any of the sets T0, T1, T2 can be used to design a primal-dual symmetric interior-point
algorithm as we prove below.

Proposition A.1. Let (x, s) ∈ int(K)⊕ int(K∗). Then, for every pair H,T ∈ T 2
0 (x, s),

1

2
(H + T ),

(
H−1 + T−1

2

)−1

∈ T 2
0 (x, s).

The same property holds for T 2
1 (x, s) and for T 2

2 (η;x, s) (for every η ≥ 1).

Proof. Follows from the definitions and convexity of T 2
0 , T 2

1 , T 2
2 . �

Corollary A.2. For every convex cone K ⊂ E and for every pair (x, s) ∈ int(K) ⊕ int(K∗),
the sets T 2

0 (x, s), T 2
1 (x, s) and T 2

2 (η;x, s) (for every η ≥ 1) are geodesically convex.

Proof. Since T 2
2 (η;x, s) is a closed subset of Sn++, employing Proposition A.1 above and Lemma

2.3 of [14], we conclude that T 2
2 (η;x, s) is geodesically convex for all η. For T0 and T1 we can

adapt the proof of the same lemma (even though our sets are not closed, we can argue that all
limits of all mean iterations on the elements of T 2

0 and T 2
1 are positive-definite and hence stay

in the corresponding set). �

The above corollary indicates a way to convert any consistent choice of T 2 to a scaling for a
primal-dual symmetric interior-point algorithm in the sense of [45]. (Simply take the operator
geometric mean of the consistent choice of T 2 with the inverse of the same formula for T 2

applied to (P ) and (D) switched.)
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Appendix B. Details of the complexity and error analysis

B.1. Zeroth-order low-rank update. We bound the operator norm of the zeroth-order low-
rank update in a small neighbourhood of the central path defined by the condition ||δD||s ≤ 1

64
.

Theorem B.1. Assume ||δD||s ≤ 1/64. Then

(1) ||F ′′∗ (s)δD||∗s = ||δD||s;
(2) ||F ′′∗ (š)δD||∗s ≤ 1.031998 ||δD||s ;
(3) for every v ∈ E∗,

|〈v, µF ′′∗ (š)δD − δP 〉| ≤ 0.524190µ ||v||s ||δD||
2
s ;

(4) ||µF ′′∗ (š)δD − δP ||∗s ≤ 0.524190µ ||δD||2s .

Proof. (1) This follows straightforwardly from the definitions.
(2) Recall that F ′′∗ (s̄) � 1

(1−||δD||)2
F ′′∗ (s). Now we apply the previous part. Next, we notice

that 1
(1−||δD||s)2

≤ 1.031998.

(3) Let f(t) = 〈u, F ′∗(š+ tδD)〉 . We consider an order-two Taylor expansion of f around
zero; we see that, for every t ∈ [−1/2, 1/2], there exists a t̄ ∈ [min(0, t),max(0, t)] such
that

f(t) = f(0) + tf ′(0) +
1

2
t2f ′′(t̄).

Notice that
|f ′′(t̄)| = |F ′′′∗ (š+ t̄δD)[u, δD, δD]| ≤ 2||u||||δD||2,

where both norms are the local (š+ t̄δD) norms (we used self-concordance property of
F∗). We then apply the Dikin ellipsoid bound to these norms to relate

||u||š+t̄δD ≤
1

1− ||δD||s
||u||s

and similarly for ||δD||. Consequently, using 1/(1− ||δD||s) ≤ 1.015874, we see that

|f ′′(t̄)| ≤ 1.048378||u||s||δD||2s.
Thus, for some t̄1 ∈ [−1/2, 0] and t̄2 ∈ [0, 1/2], we have

f(1/2)− f(−1/2) = f ′(0) +
1

8
(f ′′(t̄1)− f ′′(t̄2)).

Consequently,

|f ′(0)− f(1/2) + f(−1/2)| ≤ 0.262094||u||s||δD||2s.
Notice that, by substitution and the chain rule,
• f ′(0) = 〈u, F ′′∗ (š)δD〉 ;
• f(−1/2) = 〈u, F ′∗(µs̃)〉 = −〈u, x/µ〉 ;
• f(1/2) = 〈u, F ′∗(s)〉 = −〈u, x̃〉 .
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The claimed bound now follows.
(4) We use the definition of a dual norm:

||F ′′∗ (š)δD − x/µ+ x̃||∗s = sup
||u||s=1

〈u, F ′′∗ (š)δD − x/µ+ x̃〉

≤ sup
||u||s=1

0.524190||u||s||δD||2s = 0.524190||δD||2s.

�

Lemma B.2. Assume ||δD||s ≤ 1/64. Then,

(1) for every v ∈ E∗,
|〈v, F ′′∗ (š)[δD]〉| ≤ 1.015811 ||v||s ||δD||s ;

(2) for every v ∈ E∗ and s̄ ∈ [s, µs̃],

|F ′′′∗ (s̄)[v, δD, µs̃]| ≤ 2.096758 ||v||s ||δD||s
√
ϑ;

(3) ||Hs− x||∗s ≤ 2.064190
√
ϑµ ||δD||s ;

(4) ||x||∗s ≤ 1.015874
√
ϑµ;

(5) ||Hs||∗s ≤ 1.015811
√
ϑµ;

(6) ||Hs+ x||∗s ≤ 2.031685
√
ϑµ;

(7) 〈s,Hs〉 ≥ 0.984436ϑµ.

Proof. (1) We compute, using Cauchy-Schwarz and the Dikin ellipsoid bound,

|〈v, F ′′∗ (š)[δD]〉| = |F ′′∗ (š)[δD, v]| ≤ ||δD||š ||v||š ≤ 1.015810 ||δD||s ||v||s .
(2) We compute

|F ′′′∗ (s̄)[v, δD, µs̃]| ≤ 2 ||v||s̄ ||δD||s̄ ||µs̃||s̄ ≤ 2.096758 ||v||s ||δD||s ||µs̃||µs̃ .

(3) We write

Hs = µF ′′∗ (š)(µs̃) + µF ′′∗ (š)δD.

On the first term, we perform a Taylor expansion around µs̃; for every v there is a s̄ on
the line segment between s and µs̃ such that

F ′′∗ (š)[µs̃, v] = F ′′∗ (s− δD)[µs̃, v] +
1

2
F ′′′∗ (s̄)[µs̃, δD, v]

= 〈v, x〉 /µ+
1

2
F ′′′∗ (s̄)[µs̃, δD, v].

≤ 〈v, x〉 /µ+ 1.048379 ||v||s ||δD||s
√
ϑ.

We also bound (using the Dikin ellipsoid bound first, followed by Lemma 7.2)

〈v, F ′′∗ (š)δD〉 ≤ 1.015811||v||s||δD||s.
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Adding these bounds and taking a supremum over all v such that ||v||s = 1, since ϑ ≥ 1,
yields the bound

||Hs− x||∗s ≤ 2.064190
√
ϑµ||δD||s,

as desired.
(4) This follows directly from the Dikin ellipsoid bound.
(5) Notice that

||Hs||∗s = µ
〈
s, F ′′∗ (š)(F ′′∗ (s))−1F ′′∗ (š)s

〉1/2 ≤ µ
〈s, F ′′∗ (s)s〉1/2

(1− ||δD||s/2)2
≤ 1.015810

√
ϑµ.

(6) We apply the triangle inequality to the last two parts.
(7) Note that 〈s,Hs〉 = µF ′′(š)[s, s] ≥ µ(1− ||δD||s /2)2F ′′(s)[s, s] ≥ (16129/16384)ϑµ.

�

Theorem B.3. Assume ||δD||s ≤ 1/64. Then, the zeroth-order low rank update has a small
norm: ∣∣∣∣∣∣∣∣x⊗ x〈s, x〉

− Hs⊗Hs
〈s,Hs〉

∣∣∣∣∣∣∣∣
s

≤ 6.357439µ ||δD||s .

Proof. We write the first low-rank update as

(x⊗ x)− (Hs⊗Hs)
〈s, x〉

+

(
1

〈s, x〉
− 1

〈s,Hs〉

)
Hs⊗Hs.

Then, using the triangle inequality, Lemma 2.11, and the equation ||h⊗h||s = ||h||∗2s we bound
its norm above by

1

〈s, x〉
||x−Hs||∗s ||x+Hs||∗s +

∣∣∣∣ 1

〈s, x〉
− 1

〈s,Hs〉

∣∣∣∣ ||Hs||∗2s .

The first term is bounded above by

(83875677203/20000000000)µ||δD||s.
To bound the second term, note that∣∣∣∣ 1

〈s, x〉
− 1

〈s,Hs〉

∣∣∣∣ =

∣∣∣∣〈s,Hs− x〉ϑµ 〈s,Hs〉

∣∣∣∣ ≤ ||s||s||Hs− x||∗sϑµ 〈s,Hs〉
≤ 2.064190

||δD||s
〈s,Hs〉

.

Now, we bound 〈s,Hs〉 below by 0.984436ϑµ to get a bound of

(105686528/50403125)
||δD||s
ϑµ

.

The bound ||Hs||∗s ≤ 1.015811
√
ϑµ then gives an overall bound on the second term of

(2129979833381099/98443603515625000)µ||δD||s
Adding fractions gives (something slightly stronger than) the desired bound. �
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B.2. First-order low-rank update. Next, we bound the operator norm of the first-order low-
rank update in a small neighbourhood of the central path defined by the condition ||δD||s ≤ 1

64
.

Lemma B.4. Assume ||δD||s ≤ 1/64. Let H1 := H + x⊗x
〈s,x〉 −

Hs⊗Hs
〈s,Hs〉 . Then,

(1) ||HδD − δP ||∗s ≤ 0.524190µ ||δD||2s ;

(2) 〈δD, HδD〉 ≥ 0.968994µ ||δD||2s;
(3) 〈δD, δP 〉 ≥ 0.960803µ ||δD||2s;
(4) ||HδD||∗s ≤ 1.015811µ ||δD||s ;
(5) ||δP ||∗s ≤ 1.024002µ ||δD||s ;
(6) ||HδD + δP ||∗s ≤ 2.039813µ ||δD||s ;

(7) ||H1δD −HδD||∗s ≤ 0.540897µ ||δD||2s ;
(8) ||H1δD − δP ||∗s ≤ 1.065087µ||δD||2s;
(9) ||H1δD||∗s ≤ 1.024263µ||δD||s;

(10) ||H1δD + δP ||∗s ≤ 2.048265µ||δD||s;
(11) 〈δD, H1δD〉 ≥ 0.944161µ||δD||2s.

Proof. (1) This was proven in Theorem B.1, part (4).
(2) This follows from the Dikin ellipsoid bound; H � 0.968994µF ′′∗ (s).
(3) Notice that

〈δD, δP 〉 = 〈δD, HδD〉+ 〈δD, δP −HδD〉 .
We bound the second term by Cauchy-Schwarz:

〈δD, δP −HδD〉 ≤ ||δD||s||HδD − δP ||∗s ≤ 0.524190µ||δD||3s.

Using this with the bound from the previous part gives the advertised inequality.
(4) We compute, using Lemma 7.2

||HδD||∗s = µ
〈
δD, F

′′
∗ (š) (F ′′∗ (s))

−1
F ′′∗ (š)δD

〉1/2

≤ 1.015811µ 〈δD, F ′′∗ (s)δD〉1/2

= 1.015811µ||δD||s,

as advertised.
(5) We use the triangle inequality followed by parts (1) and (4):

||δP ||∗s ≤ ||HδD||
∗
s + ||δP −HδD||∗s ≤ 1.015811µ ||δD||s + 0.524190µ ||δD||2s ≤ 1.024002µ ||δD||s .

(6) We use the triangle inequality, part (4) and the bound ||δD||s ≤ 1/64:

||HδD + δP ||∗s ≤ 2||HδD||∗s + ||HδD − δP ||∗s ≤ 2.031622µ||δD||s + 0.524190µ||δD||2s
≤ 2.031622µ||δD||s + (52419/6400000)µ||δD||s,

which is the claimed bound.
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(7) Recall that 〈δD, x〉 = 0, so

HδD −H1δD =
〈s,HδD〉
〈s,Hs〉

Hs.

Now, we bound using 〈s, δP 〉 = 0, triangle inequality and part (1):

| 〈s,HδD〉 | = | 〈s, δP 〉+ 〈s,HδD − δP 〉 | ≤ 0 + ||s||s||HδD − δP ||∗s ≤ 0.524190
√
ϑµ||δD||2s

and recall (Lemma B.2 part (7))

〈s,Hs〉 ≥ 0.984436ϑµ

and (Lemma B.2 part (5))

||Hs||∗s ≤ 1.015811
√
ϑµ.

Thus,

||H1δD −HδD||∗s ≤ 0.540897µ||δD||2s.
(8) We use the triangle inequality followed by parts (1) and (7).
(9) We use the triangle inequality followed by parts (4), (7) and the fact that
||δD||s ≤ 1/64.

(10) We use the triangle inequality and parts (5) and (9).
(11) We compute, using previous parts of this lemma,

〈δD, H1δD〉 = 〈δD, δP 〉+ 〈δD, H1δD − δP 〉
≥ 0.960803µ ||δD||2s − ||δD||s ||H1δD − δP ||∗s
≥ 0.960803µ||δD||2s − 1.065087µ||δD||3s
≥ 0.944161µ||δD||2s.

�

Appendix C. Evaluating the primal integral scaling

Given an oracle that can:

• Evaluate F (x), F ′(x), and F ′′(x) for any x ∈ int(K), and
• Compute, in some explicit form, the univariate polynomial t 7→ exp(−F (x + td)) for

any x ∈ int(K) and d ∈ Rn,

we describe how to compute the primal integral scaling(
µ

∫ 1

0

F ′′(x− tδP )dt

)−1
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exactly. We do not claim that this method is practical or useful; in particular, it requires ϑ
evaluations of F ′′. However, we later describe a slightly more practical variant that admits
concrete bounds on approximation error.

The method is a straightforward application of the theory of Gaussian quadrature. A reader
unfamiliar with Gaussian quadrature might consult Section 3.6 of the excellent book by Stoer
and Bulirsch [43].

Notice that, with F = − ln p, we have

F ′′ =
p′(p′)> − pp′′

p2
.

The denominator is a polynomial of degree 2ϑ and the numerator is a matrix whose entries are
polynomials of degree 2ϑ− 2.

Theorem C.1. There exist ϑ points r1, . . . , rϑ in [0, 1] and associated weights w1, . . . , wϑ such
that, if q is a univariate polynomial of degree less than 2ϑ, then∫ 1

0

q(t)

p2(x− tδP )
dt =

ϑ∑
i=1

wiq(ri).

Proof. Notice that 1/p2(x − tδP ) is positive and bounded for t in [0, 1]. In particular, it is
measurable, all moments exist and are finite, and any nonnegative polynomial q such that∫ 1

0
q(t)/p2(x− tδP )dt = 0 is itself zero. Thus a Gaussian quadrature rule with weight function

1/p2(x − tδP ) exists. That is, there exist ϑ points r1, . . . , rϑ in [0, 1] and associated weights
w1, . . . , wϑ such that, for any C2ϑ function f ,∣∣∣∣∣

∫ 1

0

f(t)

p2(x− tδP )
dt−

ϑ∑
i=1

wif(ri)

∣∣∣∣∣ ≤ f (2ϑ)(τ)

(2ϑ)!
C

for some 0 ≤ τ ≤ 1 and some constant C ≥ 0 dependent on ϑ.

Take f = q; the derivative of order 2ϑ vanishes and hence the difference must be zero. �

Indeed, the entries of p′(p′)> − pp′′ have degree 2ϑ− 2; the primal integral scaling is exactly(
µ
∑
i=1

wi
(
p′(ri)(p

′(ri))
> − p(ri)p′′(ri)

))−1

.

It may be practical to use a well-known Gaussian quadrature rule instead of the one arising
from 1/p2. The following theorem considers Gauss-Legendre quadrature of fixed order:
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Theorem C.2. If 1 ≤ k is an integer and ||δP ||x ≤ 1, then∣∣∣∣∣
∣∣∣∣∣T−2
P − µ

k∑
i=1

wLi F
′′(x− rLi δP )

∣∣∣∣∣
∣∣∣∣∣
x

≤ 1

(1− ||δP ||x)2
max
t∈[0,1]

2 ||δP ||2kx−tδP ||F
′′(x− tδP )||k/2x

where rLi are the order-k Gauss-Legendre nodes and wLi are the associated weights.

Proof. Note that∣∣∣∣∣
∣∣∣∣∣T−2
P − µ

k∑
i=1

wLi F
′′(x− rLi δP )

∣∣∣∣∣
∣∣∣∣∣
x

= max
||h||≤1

∣∣∣∣∣T−2
P [h, h]− µ

k∑
i=1

wLi F
′′(x− rLi δP )[h, h]

∣∣∣∣∣ .
Thus let h be the point at which this maximum is attained. By the error bound for Gaussian
quadrature ([43], Theorem 3.6.24),
(11)∣∣∣∣∣T−2

P [h, h]− µ
k∑
i=1

wLi F
′′(x− rLi δP )[h, h]

∣∣∣∣∣ ≤ max
t∈[0,1]

∣∣∣∣F (2k+2)(x− tδP )[δP , . . . , δP , h, h] 〈pk, pk〉
(2k)!

∣∣∣∣ ,
where pk is the kth Legendre polynomial.

A theorem of Güler ([6], Theorem 4.2), together with the results from Appendix 1 of Nesterov
and Nemirovskii’s book [29], shows that

(12)
∣∣F (2k+2)(x− tδP )[δP , . . . , δP , h, h]

∣∣ ≤ (2k + 1)! ||δP ||2kx−tδP ||h||
2
x−tδP .

Using self-concordance, we bound

||h||x−tδP ≤
1

1− t||δP ||x
||h||x =

1

1− t||δP ||x
.

The squared L2 norm of the kth Legendre polynomial is 2/(2k + 1). Substituting these and
(12) into (11), we get the advertised bound. �


