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Abstract

In this paper, we establish the local superlinear convergence property of some polynomial-
time interior-point methods for an important family of conic optimization problems. The main
structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier
function, which must have negative curvature. We propose a new path-following predictor-corrector
scheme, which works only in the dual space. It is based on an easily computable gradient proximity
measure, which ensures an automatic transformation of the global linear rate of convergence to the
local superlinear one under some mild assumptions. Our step-size procedure for the predictor step is
related to the maximum step size maintaining feasibility. As the optimal solution set is approached,
our algorithm automatically tightens the neighborhood of the central path proportionally to the
current duality gap.
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1 Introduction

Motivation. Local superlinear convergence is a natural and very desirable property of many
methods in Nonlinear Optimization. However, for interior-point methods the corresponding analysis
is not trivial. The reason is that the barrier function is not defined in a neighborhood of the
solution. Therefore, in order to study the behavior of the central path, we need to employ somehow
the separable structure of the functional inequality constraints. From the very beginning [3], this
analysis was based on the Implicit Function Theorem as applied to Karush-Kuhn-Tucker conditions.

This tradition explains, to some extent, the delay in developing an appropriate framework for
analyzing the local behavior of general polynomial-time interior-point methods [13]. Indeed, in the
theory of self-concordant functions it is difficult to analyze the local structure of the solution since
we have no access to the components of the barrier function. Moreover, in general, it is difficult
to relate the self-concordant barrier to the particular functional inequality constraints of the initial
optimization problems. Therefore, up to now, the local superlinear convergence for polynomial-
time path-following methods was proved only for Linear Programming [18, 10] and for Semidefinite
Programming problems [6, 16, 9, 5, 15]. In both cases, the authors use in their analysis the special
boundary structure of the feasible regions and of the set of optimal solutions.

In this paper, we establish the local superlinear convergence property of interior-point path-
following methods by employing some geometric properties of quite general conic optimization
problem. The main structural property used in our analysis is the logarithmic homogeneity of self-
concordant barrier functions, and the condition that the barrier must have negative curvature. We
propose a new path-following predictor-corrector scheme, which works in the dual space. It is based
on an easily computable gradient proximity measure, which ensures an automatic transformation
of the global linear rate of convergence to the local superlinear rate (under a mild assumption).
Our step-size procedure for the predictor step is related to the maximum step size maintaining
feasibility. As the iterates approach the optimal solution set, our algorithm automatically tightens
the neighborhood of the central path proportionally to the current duality gap. In the literature (as
we noted above) similar conditions have been imposed on the iterates of interior-point algorithms
in order to attain local superlinear convergence in the Semidefinite Programming setting. However,
there exist different, weaker combinations of conditions that have been studied in the Semidefinite
Programming setting as well (see for instance [15, 5, 7, 8]). As a key feature of our analysis,
we avoid distinguishing individual subvectors as “large” or “small.” Many of the ingredients of
our approach are primal-dual symetric; however, we break the symmetry, when necessary, by our
choice of assumptions and algorithms. Indeed, in general (beyond the special case of symmetric
cones and self-scaled barriers), only one of the primal, dual problems may admit a logarithmically
homogeneous self-concordant barrier with negative curvature.

Contents. The paper is organized as follows. In Section 2 we introduce a conic primal-dual
problem and define the central path. After that, we consider a small full-dimensional dual problem
and define the prediction operator. We derive some representations, which help us bound the
curvature of the central path. In Section 3 we justify the choice of the fixed Euclidean metrics in
the primal and dual spaces. Then, in Section 4 we introduce two main assumptions ensuring the
quadratic drop in the duality gap for predicted points from a tight neighborhood of the central path.
The first one is on the sharpness of the dual maximum, and the second one is on the boundedness of
the vector ∇2F∗(s)s∗ along the central path. The main result of this section is Theorem 4.2 which
demonstrates the quadratic decrease of the distance to the optimal solution for the prediction point,
measured in an appropriately chosen fixed Euclidean norm. In Section 5, we estimate efficiency of
the predictor step measured in a local norm defined by the dual barrier function. Also, we show
that the local quadratic convergence can be achieved by a feasible predictor step.

In Section 6 we prepare for analysis of polynomial-time predictor-corrector strategies. For that,
we study an important class of barriers with negative curvature. This class includes at least the
self-scaled barriers [14] and hyperbolic barriers [4, 1, 17], possibly many others. In Section 7 we
establish some bounds on the growth of a variant of the gradient proximity measure. We show
that we can achieve a local superlinear rate of convergence. It is important to relate the decrease
of penalty parameter of the central path with the distance to the boundary of the feasible set while
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performing the predictor step. At the same time, we show that, for achieving the local superlinear
convergence, the centering condition must be satisfied with increasing accuracy.

In Section 8 we show that the local superlinear convergence can be combined with the global
polynomial-time complexity. We present a method, which works for the barriers with negative
curvature, and has a desired property of cheap computation of the predictor step. Finally, in Section
9, we discuss the results and study two 2D-examples, which demonstrate that our assumptions are
quite natural.

Notation and generalities. In what follows, we denote by E a finite-dimensional linear space
(other variants: H, V), and by E∗ its dual space, composed by linear functions on E. The value of
function s ∈ E∗ at point x ∈ E is denoted by 〈s, x〉. This notation is the same for all spaces in use.

For a linear transformation A : E → H∗ we denote by A∗ the corresponding adjoint linear
transformation:

〈Ax, y〉 = 〈A∗y, x〉, x ∈ E, y ∈ H.

Thus, A∗ : H→ E∗. A self-adjoint positive-definite operator B : E→ E∗ (notation B � 0) defines
the Euclidean norms for the primal and dual spaces:

‖x‖B = 〈Bx, x〉1/2, x ∈ E, ‖s‖B = 〈s,B−1s〉1/2, s ∈ E∗.

The sense of this notation is determined by the space of arguments. We use the following notation
for ellipsoids in E:

EB(x, r) = {u ∈ E : ‖u− x‖B ≤ r}.
If in this notation parameter r is missing, this means that r = 1.

In what follows, we often use the following simple result from Linear Algebra. Let self-adjoint
linear operators ∆ and B map E to E∗, and B � 0. Then, for every tolerance parameter τ > 0 we
have

±∆ � τB ⇔ ∆B−1∆ � τ2B. (1.1)

For future reference, let us recall some facts from the theory of self-concordant functions. Most
of these results can be found in Section 4 in [11]. We use the following notation for gradient and
Hessian of function Φ:

∇Φ(x) ∈ E∗, ∇2Φ(x) · h ∈ E∗, x, h ∈ E.
Let Φ be a self-concordant function defined on the interior of a convex set Q ⊂ E:∣∣∇3Φ(x)[h, h, h]

∣∣ ≤ 2〈∇2Φ(x)h, h〉3/2, x ∈ intQ, h ∈ E, (1.2)

where ∇3Φ(x)[h1, h2, h3] is the third differential of function Φ at point x along the corresponding
directions h1, h2, h3. Note that ∇3Φ(x)[h1, h2, h3] is a trilinear symmetric form. Thus,

∇3Φ(x)[h1, h2] = ∇3Φ(x)[h2, h1] ∈ E∗,

and ∇3Φ(x)[h] is a self-adjoint linear operator from E to E∗.
Assume that Q contains no straight line. Then ∇2Φ(u) is nondegenerate for every u ∈ intQ.

Self-concordant function Φ is called a ν-self-concordant barrier if

〈∇Φ(u), [∇2Φ(u)]−1∇Φ(u)〉 ≤ ν. (1.3)

For local norms related to self-concordant functions we use the following concise notation:

‖h‖u = 〈∇2Φ(u)h, h〉1/2, h ∈ E,

‖s‖u = 〈s, [∇2Φ(u)]−1s〉1/2, s ∈ E∗.

Thus, inequality (1.3) can be written as ‖∇Φ(u)‖2u ≤ ν. The following result is very useful.

Theorem 1.1 (Theorem on Recession Direction; see Section 4 in [11] for the proof.) If h is a
recession direction of the set Q and u ∈ intQ, then

‖h‖u ≤ 〈−∇Φ(u), h〉. (1.4)
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For u ∈ intQ, define the Dikin ellipsoid Wr(u)
def
= E∇2Φ(u)(u, r). Then Wr(u) ⊆ Q for all

r ∈ [0, 1). If v ∈Wr(u), then

〈∇Φ(v)−∇Φ(u), v − u〉 ≥ r2

1+r , r ≥ 0. (1.5)

For r ∈ [0, 1) we have

(1− r)2∇2Φ(u) � ∇2Φ(v) � 1
(1−r)2∇2Φ(u), (1.6)

‖∇Φ(v)−∇Φ(u)‖u ≤ r
1−r , (1.7)

‖∇Φ(v)−∇Φ(u)−∇2Φ(u)(v − u)‖u ≤ r2

1−r . (1.8)

Finally, we need several statements on barriers for convex cones. We call cone K ⊂ E regular,
if it is a closed, convex, and pointed cone with nonempty interior. Sometimes it is convenient to
write inclusion x ∈ K in the form x �K 0.

If K is regular, then the dual cone

K∗ = {s ∈ E∗ : 〈s, x〉 ≥ 0, ∀x ∈ K } ,

is also regular. For cone K, we assume available a ν-normal barrier F (x). This means that F is
self-concordant and ν-logarithmically homogeneous:

F (τx) = F (x)− ν ln τ, x ∈ intK, τ > 0. (1.9)

Note that −∇F (x) ∈ intK∗ for every x ∈ intK. Equality (1.9) leads to many interesting identities:

∇F (τx) = τ−1 · ∇F (x), (1.10)

∇2F (τx) = τ−2 · ∇2F (x), (1.11)

〈∇F (x), x〉 = −ν, (1.12)

∇2F (x) · x = −∇F (x), (1.13)

∇3F (x)[x] = −2∇2F (x), (1.14)

‖∇F (x)‖2x = ν, (1.15)

where x ∈ intK and τ > 0. Note that the dual barrier

F∗(s) = max
x∈intK

{ −〈s, x〉 − F (x) }

is a ν-normal barrier for cone K∗. The differential characteristics of the primal and dual barriers
are related as follows:

∇F (−∇F∗(s)) = −s, ∇2F (−∇F∗(s)) = [∇2F∗(s)]
−1,

∇F∗(−∇F (x)) = −x, ∇2F∗(−∇F (x)) = [∇2F (x)]−1,
(1.16)

where x ∈ intK and s ∈ intK∗.
For normal barriers, the Theorem on Recession Direction (1.4) can be written both in primal

and dual forms:

‖u‖x ≤ 〈−∇F (x), u〉, x ∈ intK,u ∈ K, (1.17)

‖s‖x ≤ 〈s, x〉, x ∈ intK, s ∈ K∗. (1.18)

The following statement is very useful.

Lemma 1.1 Let F be a ν-normal barrier for K and H : E→ E∗, H � 0. Assume that EH(u) ⊂ K,
and for some x ∈ intK we have

〈∇F (x), u− x〉 ≥ 0.

Then, H � 1
4ν2∇2F (x).
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Proof:
Let us fix an arbitrary direction h ∈ E∗. We can assume that

〈∇F (x), H−1h〉 ≥ 0, (1.19)

(otherwise, multiply h by −1). Denote y = u+ H−1h
‖h‖H . Then y ∈ K. Therefore,

‖H−1h‖x
‖h‖H ≤ ‖u‖x + ‖y‖x

(1.17)

≤ 〈−∇F (x), u〉+ 〈−∇F (x), y〉

(1.19)

≤ 2〈−∇F (x), u〉 ≤ 2〈−∇F (x), x〉 (1.12)
= 2ν.

Thus, H−1∇2F (x)H−1 � 4ν2H−1. 2

Corollary 1.1 Let x, u ∈ intK and 〈∇F (x), u− x〉 ≥ 0. Then ∇2F (u) � 1
4ν2∇2F (x).

Corollary 1.2 Let x ∈ intK and u ∈ K. Then ∇2F (x+ u) � 4ν2∇2F (x).

Proof:
Denote y = x + u ∈ intK. Then 〈∇F (y), x − y〉 = 〈−∇F (y), u〉 ≥ 0. Hence, we can apply
Corollary 1.1. 2

To conclude with notation, let us introduce the following relative measure for directions in E:

σx(h) = min
ρ≥0
{ρ : ρ · x− h ∈ K} ≤ ‖h‖x, x ∈ intK, h ∈ E. (1.20)

2 Predicting the optimal solution

Consider the standard conic optimization problem:

min
x∈K
{ 〈c, x〉 : Ax = b } , (2.1)

where c ∈ E∗, b ∈ H∗, A is a linear transformation from E to H∗, and K ⊂ E is a regular cone. If
A is not surjective, we either find that Ax = b has no solution (implying our optimization problem
is infeasible) or detect and eliminate all redundant equations in the system Ax = b, and redefine
A and b without changing the set of feasible solutions and the set of optimal solutions. Therefore,
we assume, without loss of generality, that A is surjective.

The problem dual to (2.1) is then

max
s∈K∗, y∈H

{〈b, y〉 : s+A∗y = c } . (2.2)

Note that the feasible points of the primal and dual problems move in the orthogonal subspaces:

〈s1 − s2, x1 − x2〉 = 0 (2.3)

for all x1, x2 ∈ Fp
def
= {x ∈ K : Ax = b}, and s1, s2 ∈ Fd

def
= {s ∈ K∗ : s+A∗y = c}.

Under the strict feasibility assumption,

∃ x0 ∈ intK, s0 ∈ intK∗, y0 ∈ H : Ax0 = b, s0 +A∗y0 = c, (2.4)

the optimal sets of the primal and dual problems are nonempty and bounded, and there is no

duality gap (see for instance [13]). Moreover, a primal-dual central path zµ
def
= (xµ, sµ, yµ):

Axµ = b

c+ µ∇F (xµ) = A∗yµ

sµ = −µ∇F (xµ)
(1.16),(1.10)⇔ xµ = −µ∇F∗(sµ)

 , µ > 0, (2.5)
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is well defined. Note that

〈c, xµ〉 − 〈b, yµ〉 = 〈sµ, xµ〉
(2.5),(1.12)

= ν · µ. (2.6)

The majority of modern strategies for solving the primal-dual problem pair (2.1), (2.2) suggest
to follow this trajectory as µ→ 0. On the one hand, it is important that µ be decreased at a linear
rate to attain a polynomial-time complexity. However, on the other hand, in a small neighborhood
of the solution, it is highly desirable to switch on a superlinear rate. Such a possibility was already
discovered for Linear Programming problems [19, 18, 10]. There has also been significant progress
in the case of Semidefinite Programming [6, 16, 9, 5]. In this paper, we study more general conic
problems.

For a fast local convergence of a path-following scheme, we need to show that the predicted
point

ẑµ = zµ − z′µ · µ
enters a small neighborhood of the solution point

z∗ = lim
µ→0

zµ = (x∗, s∗, y∗).

It is more convenient to analyze this situation by looking at y-component of the central path.
Note that s-component of the dual problem (2.2) can be easily eliminated:

s = s(y)
def
= c−A∗y.

Then, the remaining part of the dual problem can be written in a more concise full-dimensional
form:

f∗
def
= max

y∈H
{ 〈b, y〉 : y ∈ Q},

Q
def
= {y ∈ H : c−A∗y ∈ K∗}.

(2.7)

In view of Assumption (2.4), interior of the set Q is nonempty. Moreover, for this set we have a
ν-self-concordant barrier

f(y) = F∗(c−A∗y), y ∈ intQ.

Since the optimal set of problem (2.7) is bounded, Q contains no straight line. Thus, this barrier
has a nondegenerate Hessian at every strictly feasible point.

It is clear that y-component of the primal-dual central path zµ coincides with the central path
of the problem (2.7):

b = µ∇f(yµ) = −µA∇F∗(c−A∗yµ)

= −µA∇F∗(sµ)
(2.5)
= Axµ, µ > 0.

(2.8)

Let us estimate the quality of the following prediction point:

p(y)
def
= y + v(y), y ∈ intQ,

v(y)
def
= [∇2f(y)]−1∇f(y), sp(y)

def
= s(y)−A∗v(y).

Definition of the displacement v(y) is motivated by identity (1.13), which is valid for arbitrary
convex cones. Indeed, in a neighborhood of a suitably non-degenerate solution, the barrier function
should be close to the barrier of a tangent cone centered at the solution. Hence, the relation (1.13)
should be satisfied with a reasonably high accuracy. For every y ∈ intQ, we have

p(y) = [∇2f(y)]−1 ·
[
∇2f(y)y +∇f(y)

]
= [∇2f(y)]−1 ·

[
A∇2F∗(c−A∗y)A∗y − A∇F∗(c−A∗y)

]
(1.13)

= [∇2f(y)]−1 ·
[
A∇2F∗(c−A∗y)A∗y + A∇2F∗(c−A∗y)(c−A∗y)

]
= [∇2f(y)]−1A∇2F∗(c−A∗y) · c.
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Let us choose an arbitrary pair (s∗, y∗) from the optimal solution set of the problem (2.2). Then,

c = A∗y∗ + s∗.

Thus, we have proved the following representation.

Lemma 2.1 For every y ∈ intQ and every optimal pair (s∗, y∗) of dual problem (2.2), we have1

p(y) = y∗ + [∇2f(y)]−1A∇2F∗(s(y))s∗. (2.9)

Remark 2.1 Note that the right-hand side of equation (2.9) has a gradient interpretation. Indeed,
let us fix some s ∈ K∗ and define the function

φs(y) = −〈s,∇F∗(c−A∗y)〉, y ∈ Q.

Then ∇φs(y) = A∇2F∗(c−A∗y) · s, and, for self-scaled barriers φs(·) is convex (as well as for the
barriers with negative curvature, see Section 6) . Thus, the representation (2.9) can be rewritten
as follows:

p(y) = y∗ + [∇2f(y)]−1∇φs∗(y). (2.10)

Note that [∇2f(y)]−1 in the limit acts as a projector onto the tangent subspace to the feasible set
at the solution.

To conclude this section, let us describe our prediction abilities from the points of the central
path. For that, we need to compute derivatives of the trajectory (2.5). Differentiating the last line
of this definition in µ, we obtain

0 = −A∇F∗(sµ) + µA∇2F∗(sµ)A∗y′µ.

Thus,
y′µ = 1

µ [A∇2F∗(sµ)A∗]−1A∇F∗(sµ) = − 1
µ [∇2f(yµ)]−1∇f(yµ). (2.11)

Therefore, we have the following representation of the prediction point:

p(yµ) = yµ − µy′µ. (2.12)

Hence, for the points of the central path, identity (2.9) can be written in the following form:

yµ − µy′µ − y∗ = [∇2f(yµ)]−1A∇2F∗(sµ)s∗. (2.13)

For the primal trajectory, we have

x′µ
(2.5)
= 1

µxµ + µ∇2F∗(sµ)A∗y′µ
(2.11)

= 1
µxµ +∇2F∗(sµ)A∗[A∇2F∗(sµ)A∗]−1A∇F∗(sµ)

(1.13)
= 1

µxµ −∇
2F∗(sµ)A∗[A∇2F∗(sµ)A∗]−1A∇2F∗(sµ)(c−A∗yµ)

= 1
µxµ −∇

2F∗(sµ)A∗[A∇2F∗(sµ)A∗]−1A∇2F∗(sµ)(s∗ +A∗(y∗ − yµ))

= 1
µxµ −∇

2F∗(sµ)
(
sµ − s∗ +A∗[A∇2F∗(sµ)A∗]−1A∇2F∗(sµ)s∗

)
.

Using now identity (1.13), definition (2.5), and equation (2.13), we obtain the following represen-
tation:

x′µ = ∇2F∗(sµ)s∗ −∇2F∗(sµ)A∗
(
yµ − µy′µ − y∗

)
. (2.14)

Due to the primal-dual symmetry of our set-up, we have the following elegant geometric interpre-

tation. Let H
def
= ∇2F∗(sµ), then we have

H−1/2
(
x∗ − xµ + µx′µ

)
= projection of H−1/2x∗ onto the kernel of AH1/2,

H1/2A∗
(
y∗ − yµ + µy′µ

)
= projection of H1/2s∗ onto the image of

(
AH1/2

)∗
.

In Section 4, we introduce two conditions, ensuring the boundedness of the derivative x′µ and
the high quality of the prediction from the central dual trajectory: yµ−µy′µ−y∗ ≈ O(µ2). However,
first we need to decide on how to measure distances in primal and dual spaces.

1In fact, in representation (2.9) we can replace the pair (s∗, y∗) by any pair (s̄, ȳ), satisfying the condition c = A∗ȳ+ s̄.
However, in our analysis we are interested only in predicting the optimal solutions.
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3 Measuring the distances

Recall that the global complexity analysis of interior-point methods is done in an affine-invariant
framework. However, for analyzing the local convergence of these schemes, we need to fix some
Euclidean norms in the primal and dual spaces. Recall the definitions of Euclidean norms based
on a positive definite operator B : E→ E∗.

‖x‖B = 〈Bx, x〉1/2, x ∈ E, ‖s‖B = 〈s,B−1s〉1/2, s ∈ E∗. (3.1)

Using this operator, we can define another operator

G
def
= AB−1A∗ : H→ H∗. (3.2)

By a Schur complement argument and the fact that A is surjective, we conclude that

A∗G−1A � B. (3.3)

It is convenient to choose B related in a certain way to our cones and barriers. Sometimes it is
useful to have B such that

BK ⊆ K∗. (3.4)

Lemma 3.1 Let B be as above, suppose B satisfies (3.4) and u �K ±v. Then ‖v‖B ≤ ‖u‖B.

Proof:

Let B, u and v be as above. Then, 〈Bu, u〉 − 〈Bv, v〉 = 〈B(u− v), u+ v〉
(3.4)

≥ 0. 2

In what follows, we choose B in a way that is related to the primal central path. Let us define

B = ∇2F (xµ) with µ = 1. (3.5)

Remark 3.1 As a side remark, we will see that, if F has negative curvature (see Section 6), then
B chosen in (3.5) satisfies (3.4). In the general case, it is also possible to satisfy (3.4) by choosing

B = ∇2F (x̄) +∇F (x̄) [∇F (x̄)]
∗
,

where x̄ is an arbitrary point from intK. This operator acts as

Bh = ∇2F (x̄)h+ 〈∇F (x̄), h〉 · ∇F (x̄), ∀h ∈ E.

Then, the property (3.4) easily follows from the Theorem on Recession Direction. Note that

∇2F (x̄) � B
(1.15)

� (ν + 1) · ∇2F (x̄).

We need some bounds for the points of the primal and dual central paths. Denote by X∗ ⊂ E
the set of limit points of the primal central path, and by S∗ ⊂ E∗ the set of limit points of the dual
central path.

Lemma 3.2 If µ1 ∈ (0, µ0], then

‖xµ1
‖xµ0

≤ ν, ‖sµ1
‖sµ0

≤ ν. (3.6)

In particular, for every x∗ ∈ X∗ and every s∗ ∈ S∗ we have:

‖x∗‖B ≤ ν, ‖s∗‖B ≤ ν. (3.7)

Moreover, if µ ∈ (0, 1], then

1
4ν2B � ∇2F (xµ) � 4ν2

µ2 B,

1
4ν2B

−1 � ∇2F∗(sµ) � 4ν2

µ2 B
−1.

(3.8)
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Proof:
Indeed,

‖xµ1
‖2xµ0

(1.17)

≤ 〈−∇F (xµ0
), xµ1

〉2 = 1
µ2

0
〈sµ0

, xµ1
〉2 (2.5)

= 1
µ2

0
[〈c, xµ1

〉 − 〈b, yµ0
〉]2

(2.6)

≤ ν2.

The last inequality also uses the fact that 〈c, xµ1〉 ≤ 〈c, xµ0〉. Applying this inequality with µ0 = 1
and taking the limit as µ1 → 0, we obtain (3.7) in view of the choice (3.5). The reasoning for the
dual central path is the same.

Further, 〈∇F (x1), xµ − x1〉
(2.5)
= 〈c, x1 − xµ〉 ≥ 0. Therefore, applying Corollary 1.1, we get

the first relation in the first line of (3.8). Similarly, we justify the first relation in the second line
of (3.8). Finally,

∇2F (xµ)
(2.5)
= ∇2F (−µ∇F∗(sµ))

(1.11)
= 1

µ2∇2F (−∇F∗(sµ))
(1.16)

= 1
µ2 [∇2F∗(sµ)]−1.

Using this, with the first relation, in the second line of (3.8) and the Löwner order reversing property
of the inverse, we conclude the second relation in the first line of (3.8). The last unproved relation
can be justified in a similar way. 2

Corollary 3.1 For every µ ∈ (0, 1] we have

‖∇2F∗(sµ)‖B ≤ 4ν2

µ2 . (3.9)

Proof:
Indeed, for every h ∈ E∗, we have

‖∇2F∗(sµ)h‖2B = 〈B∇2F∗(sµ)h,∇2F∗(sµ)h〉

(3.8)

≤ 4ν2

µ2 〈h,∇2F∗(sµ)h〉
(3.8)

≤ 16ν4

µ4 〈h,B−1h〉.

2

Finally, we need to estimate the norms of the initial data.

Lemma 3.3 We have

‖A‖G,B
def
= max

h∈E
{‖Ah‖G : ‖h‖B = 1} ≤ 1,

‖A∗‖B,G
def
= max

y∈H
{‖A∗y‖B : ‖y‖G = 1} ≤ 1,

‖b‖G ≤ ν1/2.

(3.10)

Proof:
Indeed, for every h ∈ E, we have

‖Ah‖2G,B = 〈Ah,G−1Ah〉 = max
y∈H

[2〈Ah, y〉 − 〈Gy, y〉]

= max
y∈H

[
2〈A∗y, h〉 − 〈A∗y,B−1A∗y〉

]
≤ max

s∈E∗

[
2〈s, h〉 − 〈s,B−1s〉

]
= ‖h‖2B .

Further,

‖A∗‖B,G = max
h∈E,y∈H

{〈A∗y, h〉 : ‖h‖B = 1, ‖y‖G = 1}

= max
h∈E,y∈H

{〈Ah, y〉 : ‖h‖B = 1, ‖y‖G = 1} = ‖A‖G,B ≤ 1.
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To justify the remaining inequality, note that

‖b‖2G = 〈b,G−1b〉 = max
y∈H

[
2〈b, y〉 − 〈A∗y,B−1A∗y〉

]
= max

y∈H

[
2〈A∗y, x1〉 − 〈A∗y,B−1A∗y〉

]
≤ max

s∈E∗

[
2〈s, x1〉 − 〈s,B−1s〉

]
= 〈Bx1, x1〉

(3.5)
= 〈∇2F (x1)x1, x1〉

(1.12),(1.13)
= ν.

2

4 Main assumptions

Now, we can introduce our main assumptions.

Assumption 1 The dual problem (2.2) has a unique optimal solution y∗ and there exists a constant
γd > 0 such that

f∗ − 〈b, y〉 = 〈s, x∗〉 ≥ γd‖y − y∗‖G
(3.2)
= γd‖s− s∗‖B , (4.1)

for every y ∈ Q (that is s = s(y) ∈ Fd).

Thus, we assume that the dual problem (2.2) admits a sharp optimal solution. Let us derive
from Assumption 1 that [∇2f(y)]−1 becomes small in norm as y approaches y∗.

Lemma 4.1 For every y ∈ intQ, we have

[∇2f(y)]−1 � 4
γ2
d
[f∗ − 〈b, y〉]2 ·G−1. (4.2)

Proof:
Let us fix some y ∈ intQ. Consider an arbitrary direction h ∈ H∗. Without loss of generality,
we may assume that 〈b, [∇2f(y)]−1h〉 ≥ 0 (otherwise, we can consider direction −h). Since f is a
self-concordant barrier, the point

yh
def
= y + [∇2f(y)]−1h

〈h,[∇2f(y)]−1h〉1/2

belongs to the set Q. Therefore, in view of inequality (4.1), we have

γd‖yh − y∗‖G ≤ f∗ − 〈b, yh〉 ≤ f∗ − 〈b, y〉.

Hence,
1
γd

[f∗ − 〈b, y〉] ≥ ‖[∇2f(y)]−1h‖G
〈h,[∇2f(y)]−1h〉1/2 − ‖y − y∗‖G

(4.1)

≥ ‖[∇2f(y)]−1h‖G
〈h,[∇2f(y)]−1h〉1/2 − 1

γd
[f∗ − 〈b, y〉].

Thus, for every h ∈ H∗ we have

‖[∇2f(y)]−1h‖2G ≤ 4
γ2
d
[f∗ − 〈b, y〉]2 · 〈h, [∇2f(y)]−1h〉.

This means that

[∇2f(y)]−1G[∇2f(y)]−1 � 4
γ2
d
[f∗ − 〈b, y〉]2[∇2f(y)]−1,
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and (4.2) follows. 2

Now we can estimate the size of the Hessian ∇2f(y) with respect to the norm induced by G:

‖[∇2f(y)]−1‖G
def
= max

h∈H∗

{
‖[∇2f(y)]−1h‖G : ‖h‖G = 1

}
.

Corollary 4.1 For every y ∈ intQ, we have

‖[∇2f(y)]−1‖G ≤ 4
γ2
d
[f∗ − 〈b, y〉]2. (4.3)

Therefore, ‖v(y)‖G ≤ 2ν1/2

γd
[f∗ − 〈b, y〉].

Proof:
Note that

‖[∇2f(y)]−1h‖2G = 〈h, [∇2f(y)]−1G[∇2f(y)]−1h〉, h ∈ H∗.

Hence, (4.3) follows directly from (4.2). Further,

‖v(y)‖2G = 〈G[∇2f(y)]−1∇f(y), [∇2f(y)]−1∇f(y)〉

(4.2)

≤ 4
γ2
d
[f∗ − 〈b, y〉]2〈∇f(y), [∇2f(y)]−1∇f(y)〉.

It remains to use inequality (1.3). 2

Assumption 1 and Lemma 4.1 help us bound the norm of the right-hand side of representa-
tion (2.13). However, in this expression there is one more object, which potentially can be large.
This is the vector ∇2F∗(sµ)s∗. Therefore, we need one more assumption.

Assumption 2 There exists a constant σd such that for every µ ∈ (0, 1] we have

‖∇2F∗(sµ)s∗‖B ≤ σd. (4.4)

Note that the representation (2.13) shows that if we want to bound the error of the first-order
estimate for central points yµ in terms of the norm of the Hessian of f at yµ, without explicitly taking
into account the possible special interaction of this Hessian with the element A∇2F∗(sµ)s∗, in view
of the previous results of this section, then Assumption 2 is justifiable. It is plausible (and in fact
likely) that a much more involved analysis than what we are presenting here, focusing on bounding

the full expression
[
∇2f(yµ)

]−1
A∇2F∗(sµ)s∗ without bounding the three main components of

this expression separately (and somewhat independently as we do below) would lead to the same
convergence results as ours under a weaker set of assumptions. However, at the time of this writing,
it seems wise to leave this for future research.

In what follows, we always suppose that Assumptions 1 and 2 are valid. Let us point out their
immediate consequence which also provides some justification for these assumptions.

Theorem 4.1 For every µ ∈ (0, 1], we have the following bounds:

‖yµ − µy′µ − y∗‖G ≤ 4σdν
2

γ2
d

µ2, (4.5)

‖x′µ‖B ≤ σp
def
= σd

(
1 + 16ν4

γ2
d

)
. (4.6)

Proof:
Indeed, in view of representation (2.13), we have

‖yµ − µy′µ − y∗‖G ≤ ‖∇2f(yµ)‖G · ‖A‖G,B · ‖∇2F∗(sµ)s∗‖B .
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Thus, in view of inequalities (4.3), (3.10), and (4.4), we have

‖yµ − µy′µ − y∗‖G ≤ 4σd
γ2
d

(f∗ − 〈b, yµ〉)2.

Applying now identity (2.6), we obtain (4.5). Further, in view of representation (2.14), we have

‖x′µ‖B ≤ ‖∇2F∗(sµ)s∗‖B + ‖∇2F∗(sµ)‖B · ‖A∗‖B,G · ‖yµ − µy′µ − y∗‖G.

It remains to apply inequalities (4.4), (3.9), (3.10), and (4.5). 2

Corollary 4.2 There is a unique limit point of the primal central path: x∗ = lim
µ→0

xµ. Moreover,

for every µ ∈ (0, 1] we have
‖xµ − x∗‖B ≤ σpµ. (4.7)

Note that Assumptions 1 and 2 do not guarantee the uniqueness of the primal optimal solution
in the problem (2.1).

Next, we illustrate our assumptions on some of the most popular special cases.

Example 4.1 Consider the nonnegative orthant K = K∗ = Rn+ with barriers

F (x) = −
n∑
i=1

lnx(i), F∗(s) = −n−
n∑
i=1

ln s(i).

Denote by I∗ the set of positive components of the optimal dual solution s∗. Then denoting by e
the vector of all ones, we have

〈e,∇2F∗(sµ)s∗〉 =
∑
i∈I∗

s(i)∗
(s

(i)
µ )2

=
∑
i∈I∗

1

s
(i)
∗

(
s(i)∗
s
(i)
µ

)2

≤ ‖s∗‖2sµ max
i∈I∗

1

s
(i)
∗

(3.6)

≤ max
i∈I∗

n2

s
(i)
∗
.

Since vector ∇2F∗(sµ)s∗ is nonnegative, we obtain for its norm an upper bound in terms of max
i∈I∗

n2

s
(i)
∗

.

Note that this bound is valid even for degenerate dual solutions (too many active facets in Q), or
multiple dual optimal solutions (which is excluded by Assumption 1).

It is interesting, that we can find a bound for vector ∇2F∗(sµ)s∗ based on the properties of the
primal central path. Indeed, for all i ∈ I∗, we have

(
∇2F∗(sµ)s∗)

)(i)
=

s(i)∗
(s

(i)
µ )2

= s
(i)
∗ ·

(x(i)
µ )2

µ2 = s
(i)
∗ ·

(
x(i)
µ −x

(i)
∗

µ

)2

.

Thus, assuming ‖xµ − x∗‖B ≤ O(µ), we get a bound for ∇2F∗(sµ)s∗. In view of inequality (4.7),
this confirms that for Linear Programming our assumptions are very natural.

Example 4.2 For the cone of positive-semidefinite matrices K = K∗ = Sn+, we choose

F (X) = − ln detX, F∗(S) = −n− ln detS.

Then,
〈I,∇2F∗(Sµ)S∗〉 = 〈I, S−1

µ S∗S
−1
µ 〉.

It seems difficult to get an upper bound for this value in terms of ‖S∗‖2Sµ = 〈S−1
µ S∗S

−1
µ , S∗〉.

However, the second approach also works here:

〈I, S−1
µ S∗S

−1
µ 〉 = µ−2〈X2

µ, S∗〉 = µ−2〈(Xµ −X∗)2, S∗〉.

Thus, we get an upper bound for ‖∇2F∗(Sµ)S∗‖B assuming ‖Xµ−X∗‖B ∈ O(µ). This last condition
has been used in superlinear convergence analyses in the semidefinite programming literature (see,
for instance, [9]). 2
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Our algorithms will work with points in a small neighborhood of the central path defined by
the local gradient proximity measure. Denote

N (µ, β) =
{
y ∈ H : γ(y, µ)

def
= ‖∇f(y)− 1

µb‖y ≤ β
}
, µ ∈ (0, 1], β ∈ [0, 1

2 ]. (4.8)

This proximity measure has a very familiar interpretation in the special case of Linear Programming.
Denoting by S the diagonal matrix made up from the slack variable s = c−A>y, notice that Dikin’s

affine scaling direction in this case is given by
[
AS−2A>

]−1
b. Then, our predictor step corresponds

to the search direction
[
AS−2A>

]−1
AS−1e, and our proximity measure becomes∥∥∥AS−1e− 1

µb
∥∥∥
AS−2A>

.

Let us prove the main result of this section.

Lemma 4.2 Let y ∈ N (µ, β) with µ ∈ (0, 1] and β ∈ [0, 1
9 ]. Then

‖∇2F∗(s(y))s∗‖B ≤ σd + 6ν2

µ β, (4.9)

f∗ − 〈b, y〉 ≤ κ1 · µ, (4.10)

where κ1 = ν + β(β+
√
ν)

1−β .

Proof:
Indeed,

‖s(y)− sµ‖s(y) = 〈∇2F∗(s(y))A∗(y − yµ), A∗(y − yµ)〉1/2 = ‖y − yµ‖y
def
= r.

Since y ∈ N (µ, β) and β ∈ [0, 1
9 ], we have r < 1; therefore, by (1.6) we have

(1− r)2∇2F∗(sµ) � ∇2F∗(s(y)) � 1
(1−r)2∇2F∗(sµ).

Denote H = ∇2F∗(s(y))−∇2F∗(sµ). Then,

±H � max
{

1
(1−r)2 − 1, 1− (1− r)2

}
∇2F∗(sµ) = r(2−r)

(1−r)2∇2F∗(sµ).

Note that ‖∇2F∗(s(y))s∗‖B
(4.4)

≤ σd + ‖Hs∗‖B . At the same time,

‖Hs∗‖2B = 〈BHs∗, Hs∗〉
(3.8)

≤ 4ν2

µ2 〈[∇2F∗(sµ)]−1Hs∗, Hs∗〉

(1.1)

≤ 4ν2r2(2−r)2

µ2(1−r)4 〈∇2F∗(sµ)s∗, s∗〉
(3.6)

≤ 4ν4r2(2−r)2

µ2(1−r)4 .

Thus, ‖∇2F∗(s(y))s∗‖B ≤ σd + 2ν2r(2−r)
µ(1−r)2 . For proving (4.9), it remains to note that r

(1.5)

≤ β
1−β ,

and

r(2−r)
(1−r)2 = 1

(1−r)2 − 1 ≤ (1−β)2

(1−2β)2 − 1 = 2β−3β2

(1−2β)2 < β(2−3β)
1−4β ≤ 3β, β ∈ [0, 1

9 ].

To establish (4.10), note that

1
µ [f∗ − 〈b, y〉] = 1

µ [〈b, y∗ − yµ〉+ 〈b, yµ − y〉]

(2.6)

≤ ν + 〈 bµ , yµ − y〉

= ν + 〈−∇f(y) + b
µ , yµ − y〉+ 〈∇f(y), yµ − y〉

≤ ν + ‖∇f(y)− b
µ‖y · ‖y − yµ‖y + ‖∇f(y)‖y · ‖y − yµ‖y

≤ ν + β β
1−β +

√
ν β

1−β ,
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where the last inequality follows from the assumptions of the lemma and (1.3). 2

Now, we can put all our observations together.

Theorem 4.2 Let dual problem (2.2) satisfy Assumptions 1 and 2. If for some µ ∈ (0, 1] and
β ∈ [0, 1

9 ] we have y ∈ N (µ, β), then

‖p(y)− y∗‖G ≤ 4
γ2
d

(
σd + 6ν2

µ β
)
〈b, y − y∗〉2 ≤ 4ν

γ2
d

(
σd + 6ν2

µ β
)
· ‖y − y∗‖2G. (4.11)

Proof:
Indeed, in view of representation (2.9), we have

‖p(y)− y∗‖G ≤ ‖[∇2f(y)]−1‖G · ‖A‖G,B · ‖∇2F∗(s(y))s∗‖B .

Now, we can use inequalities (4.3), (3.10), and (4.9). For justifying the second inequality, we apply
the third bound in (3.10). 2

The most important consequence of the estimate (4.11) consists in the necessity to keep the
neighborhood size parameter β at the same order as the (central path) penalty parameter µ. In
our reasoning below, we often use

β = 1
9µ. (4.12)

5 Efficiency of the predictor step

Let us estimate now the efficiency of the predictor step with respect to the local norm.

Lemma 5.1 If y ∈ N (µ, β), then

‖p(y)− y∗‖y ≤ κ2 · [f∗ − 〈b, y〉] ≤ µ · κ, (5.1)

where κ2 = 2
γd

(
σd + 6ν2

µ β
)

, and κ = κ1 · κ2.

Proof:
Indeed,

‖p(y)− y∗‖2y
(2.9)
= 〈A∇2F∗(s(y))s∗, [∇2f(y)]−1A∇2F∗(s(y))s∗〉

(4.2)

≤ 4
γ2
d
[f∗ − 〈b, y〉]2〈A∇2F∗(s(y))s∗, G

−1A∇2F∗(s(y))s∗〉

(3.3)

≤ 4
γ2
d
[f∗ − 〈b, y〉]2〈B∇2F∗(s(y))s∗,∇2F∗(s(y))s∗〉.

It remains to use the bounds (4.9) and (4.10). 2

Since ‖y∗ − y‖y ≥ 1, inequality (5.1) demonstrates a significant drop in the distance to the
optimal point after a full predictor step. Recall, v(y) = [∇2f(y)]−1∇f(y) and sp(y) = s(y)−A∗v(y).
The following fact is also useful.

Lemma 5.2 For every y ∈ Q, we have A · ∇2F∗(s(y)) · sp(y) = 0.

Proof:

Indeed, A∇2F∗(s(y))sp(y) = A∇2F∗(s(y))(s(y)−A∗v(y))
(1.13)

= −A∇F∗(s(y))−∇f(y) = 0. 2
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Corollary 5.1 If Fp is bounded, then the point ∇2F∗(s(y)) · sp(y) /∈ K (therefore, it is infeasible
for the primal problem (2.1)).

We can show now that a large predictor step can still keep dual feasibility. Denote

y(α) = y + αv(y), α ∈ [0, 1].

Theorem 5.1 Let y ∈ N (µ, β) with µ ∈ (0, 1] and β ∈ [0, 1
9 ]. Then, for every r ∈ (0, 1), the point

y(α̂) with

α̂
def
= r

r+κ2[f∗−〈b,y〉] (5.2)

belongs to Q. Moreover,
f∗ − 〈b, y(α̂)〉 ≤ κ3 · [f∗ − 〈b, y〉]2, (5.3)

where κ3 = κ2 ·
(

1
r + 2

√
ν

γd

)
.

Proof:
Consider the Dikin ellipsoid Wr(y) = {u ∈ H : ‖u − y‖y ≤ r}. Since Wr(y) ⊆ Q, its convex
combination with point y∗, defined as

Q(y) = {u ∈ H : ‖u− (1− t)y − ty∗‖y ≤ r(1− t), t ∈ [0, 1]},

is contained in Q. Note that

‖y(α̂)− (1− α̂)y − α̂y∗‖y = α̂‖p(y)− y∗‖y

(5.1)

≤ κ2α̂[f∗ − 〈b, y〉] (5.2)
= r(1− α̂).

Hence, y(α̂) ∈ Q. Further,

f∗ − 〈b, y(α̂)〉 = (1− α̂)[f∗ − 〈b, y〉] + α̂〈b, y∗ − p(y)〉

≤ κ2

r [f∗ − 〈b, y〉]2 + ‖b‖G · ‖p(y)− y∗‖G.

Since ‖b‖G
(3.10)

≤
√
ν and

‖p(y)− y∗‖G
(4.11)

≤ 2κ2

γd
[f∗ − 〈b, y〉]2,

we obtain the desired inequality (5.3). 2

Denote by ᾱ(y), the maximal feasible step along direction v(y):

ᾱ(y) = max
α≥0
{α : y + αv(y) ∈ Q}.

Let us show that ᾱ = ᾱ(y) is large enough. In general,

ᾱ(y) ≥ 1
‖v(y)‖y

(1.3)

≥ 1
ν1/2 . (5.4)

However, in a small neighborhood of the solution, we can establish a better bound.

Theorem 5.2 Let y ∈ N (µ, β) with µ ∈ (0, 1] and β ∈ [0, 1
9 ]. Then

1− ᾱ(y) ≤ κµ
1+κµ . (5.5)

Moreover, if
µ < 1−2β

κ , (5.6)

then
ᾱ(y)− 1 ≤ κµ

1−κµ−2β , (5.7)

and
‖y(ᾱ)− y∗‖y ≤ κµ

(
1 +

√
ν

1−κµ−2β

)
. (5.8)
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Proof:
Since for every r ∈ (0, 1)

ᾱ
(5.2)

≥ α̂ = r
r+κ2[f∗−〈b,y〉] ,

we have 1− ᾱ ≤ κ2[f∗−〈b,y〉]
1+κ2[f∗−〈b,y〉]

(4.10)

≤ κµ
1+κµ , which is (5.5). On the other hand,

〈b, v(y)〉 = 〈b, [f ′′(y)]−1(f ′(y)− 1
µb+ 1

µb〉 ≥
1
µ‖b‖

2
y − β‖b‖y

= ‖b‖y(‖f ′(y) + 1
µb− f

′(y)‖y − β) ≥ ‖b‖y(‖f ′(y)‖y − 2β)

= ‖b‖y(‖p(y)− y‖y − 2β) ≥ ‖b‖y(‖y − y∗‖y − ‖p(y)− y∗‖y − 2β).

Thus, using the estimate (5.1) and the bound ‖y− y∗‖y ≥ 1 (since y∗ is on the boundary of Q), we
get

〈b, v(y)〉 ≥ ‖b‖y(1− κµ− 2β). (5.9)

Therefore, condition (5.6) guarantees that 〈b, v(y)〉 > 0. Define α̃ = f∗−〈b,y〉
〈b,v(y)〉 . Then

〈b, y + α̃v(y)〉 = f∗.

Therefore, y + α̃v(y) 6∈ Q. Hence,

ᾱ ≤ α̃ = 1 + 〈b,y∗−y−v(y)〉
〈b,v(y)〉

(5.1)

≤ 1 +
‖b‖y·κµ
〈b,v(y)〉

(5.9)

≤ 1 + κµ
1−κµ−2β .

Further,

‖y(ᾱ)− y∗‖y ≤ ‖y(ᾱ)− p(y)‖y + ‖p(y)− y∗‖y
(5.1)

≤ |1− ᾱ| · ‖v(y)‖y + κ · µ

(1.3)

≤ |1− ᾱ|
√
ν + κ · µ.

Taking into account that in view of (5.5) and (5.7) |1− ᾱ| ≤ κµ
1−κµ−2β , we get inequality (5.8). 2

Despite the extremely good progress in function value, we have to worry about the distance to
the central path. Indeed, for getting close again to the central path, we need to find an approximate
solution to the auxiliary problem

min
y
{f(y) : 〈b, y〉 = 〈b, y(α̂)〉}.

In order to estimate the complexity of this corrector stage, we need to develop some bounds on the
growth of the gradient proximity measure.

6 Barriers with negative curvature

Definition 6.1 Let F be a normal barrier for the regular cone K. We say that F has negative
curvature if for every x ∈ intK and h ∈ K we have

∇3F (x)[h] � 0. (6.1)

It is clear that self-scaled barriers have negative curvature (see [14]). Some other important barriers,
like the negation of the logarithms of hyperbolic polynomials (see [4]) also share this property.

Theorem 6.1 Let K be a regular cone and F be a normal barrier for K. Then, the following
statements are equivalent:
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1. F has negative curvature;

2. for every x ∈ intK and h ∈ E we have

−∇3F (x)[h, h] ∈ K∗; (6.2)

3. for every x ∈ intK and for every h ∈ E such that x+ h ∈ intK, we have

∇F (x+ h)−∇F (x) �K∗ ∇2F (x)h. (6.3)

Proof:
Let F have negative curvature. Then, for every h ∈ E, x ∈ intK, and u ∈ K we have

0 ≥ ∇3F (x)[h, h, u] = 〈∇3F (x)[h, h], u〉. (6.4)

Clearly, this condition is equivalent to (6.2). Therefore, statement 1. implies statement 2. Next,
suppose statement 2. holds. Then, using the equation in (6.4) and the fact that statement 2. holds,
we see that statement 1. holds. Now, suppose statement 2. holds. Then, for every x ∈ intK and
for every h ∈ E such that x+ h ∈ intK, we have

∇F (x+ h)−∇F (x)−∇2F (x)h =
1∫
0

∇3F (x+ τh)[h, h] dτ �K∗ 0.

Therefore, statement 3. holds. Finally, suppose statement 3. holds. Then, for every x ∈ intK and
for every h ∈ E such that x+ h ∈ intK, and for every t ∈ (0, 1), we have

0 �K∗ ∇F (x+ th)−∇F (x)− t∇2F (x)h = t2
1∫
0

∇3F (x+ τth)[h, h] dτ.

This implies, upon dividing both sides by t2, for every t ∈ (0, 1),

1∫
0

∇3F (x+ τth)[h, h] dτ �K∗ 0.

Now, taking the limit as t→ 0+, we obtain statement 1. 2

Theorem 6.2 Let the curvature of F be negative. Then for every x ∈ K, we have

∇2F (x)h �K∗ 0, ∀h ∈ K, (6.5)

and, consequently,
∇F (x+ h)−∇F (x) �K∗ 0. (6.6)

Proof:
Let us prove that ∇2F (x)h ∈ K∗ for h ∈ K. Assume first that h ∈ intK. Consider the following
vector function:

s(t) = ∇2F (x+ th)h ∈ E∗, t ≥ 0.

Note that s′(t) = ∇3F (x+ th)[h, h]
(6.2)

�K∗ 0. This means that

∇2F (x)h �K∗ ∇2F (x+ th)h
(1.11)

= 1
t2∇

2F (h+ 1
tx)h.

Taking the limit as t → ∞, we get ∇2F (x)h ∈ K∗. By continuity arguments, we can extend this
inclusion onto all h ∈ K. Therefore,

∇F (x+ h) = ∇F (x) +
1∫
0

∇2F (x+ τh)h dτ �K∗ ∇F (x).
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2

As we have proved, if F has negative curvature, then ∇2F (x)K ⊆ K∗, for every x ∈ intK.
This property implies that the situations when both F and F∗ have negative curvature are very
seldom.

Lemma 6.1 Let both F and F ∗ have negative curvature. Then K is a symmetric cone.

Proof:
Indeed, for every x ∈ intK we have ∇2F (x)K ⊆ K∗. Denote s = −∇F (x). Since F∗ has

negative curvature, then ∇2F∗(s)K
∗ ⊆ K. However, since ∇2F∗(s)

(1.16)
= [∇2F (x)]−1, this means

K∗ ⊆ ∇2F (x)K. Thus K∗ = ∇2F (x)K. Now, using the same arguments as in [14] it is easy to
prove that for every pair x ∈ intK and s ∈ intK∗ there exists a scaling point w ∈ intK such that
s = ∇2F (w)x (this w can be taken as the minimizer of the convex function −〈∇F (w), x〉+ 〈s, w〉).
Thus, we have proved that K is homogeneous and self-dual. Hence, it is symmetric. 2

Recall,
σx(h) = min

ρ≥0
{ρ : ρ · x− h ∈ K} ≤ ‖h‖x, x ∈ intK, h ∈ E.

Theorem 6.3 Let K be a regular cone and F be a normal barrier for K, which has negative
curvature. Further let x, x+ h ∈ intK. Then for every α ∈ [0, 1) we have

1
(1+ασx(h))2∇2F (x) � ∇2F (x+ αh) � 1

(1−α)2∇2F (x). (6.7)

Proof:
Indeed,

∇2F (x+ αh) = ∇2F ((1− α)x+ α(x+ h))

(6.1)

� ∇2F ((1− α)x)
(1.11)

= 1
(1−α)2∇2F (x).

Further, denote x̄ = x− h
σx(h) . By definition, x̄ ∈ K. Note that

x = (x+ αh) + ασx(h)
1+ασx(h) (x̄− (x+ αh)).

Therefore, by the second inequality in (6.7), we have

∇2F (x) � (1 + ασx(h))2∇2F (x+ αh).

2

7 Bounding the growth of the proximity measure

Let us analyze now our predictor step

y(α) = y + αv(y), α ∈ [0, ᾱ],

where ᾱ = ᾱ(y). Denote s̄ = s(y(ᾱ)) ∈ K∗. Recall that our proximity measure is:

γ(y, µ) =

∥∥∥∥∇f(y)− 1

µ
b

∥∥∥∥
y

.

Therefore, first we try to estimate how ∇f(y(α)) varies with the step size α.
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Lemma 7.1 Let F∗ have negative curvature. Then, for every α ∈ [0, ᾱ), we have

δy(α)
def
= ‖∇f(y(α))− ᾱ

ᾱ−α∇f(y)‖G ≤ αᾱ
(ᾱ−α)2 ‖∇2F∗(s(y))s̄‖B . (7.1)

Proof:
Indeed,

δ2
y(α) = 〈G−1(∇f(y(α))− ᾱ

ᾱ−α∇f(y)),∇f(y(α))− ᾱ
ᾱ−α∇f(y)〉

= 〈G−1A(∇F∗(s(y(α)))− ᾱ
ᾱ−α∇F∗(s(y))), A(∇F∗(s(y(α)))− ᾱ

ᾱ−α∇F∗(s(y)))〉

(3.3)

≤ 〈B(∇F∗(s(y(α)))−∇F∗((1− α
ᾱ )s(y))),∇F∗(s(y(α)))−∇F∗((1− α

ᾱ )s(y))〉.

Note that y(α) = y + α
ᾱ (y(ᾱ)− y). Therefore,

s(y(α)) = (1− α
ᾱ )s(y) + α

ᾱ s̄.

Since F∗ has negative curvature, we have

x′
def
= ∇F∗(s(y(α)))−∇F∗

((
1− α

ᾱ

)
s(y)

)
�K 0.

Using (6.3) in Theorem 6.1, we also have

x′′
def
= ∇2F∗

((
1− α

ᾱ

)
s(y)

)
·
(α
ᾱ
s̄
)
�K x′.

Thus, x′′ �K ±x′. By (6.5) in Theorem 6.2 and Lemma 3.1, we obtain 〈Bx′′, x′′〉 ≥ 〈Bx′, x′〉 which
gives the desired conclusion. 2

Note that at the predictor stage, we need to choose the rate of decrease of the penalty parameter
(central path parameter) µ as a function of the predictor step size α. Inequality (7.1) suggests the
following dependence:

µ(α) ≈
(
1− α

ᾱ

)
· µ. (7.2)

However, if ᾱ is close to its lower limit (5.4), this strategy may be too aggressive. Indeed, in a
small neighborhood of the point y we can guarantee only

‖∇f(y(α))− (1 + α)∇f(y)‖y = ‖∇f(y(α))−∇f(y)− α∇2f(y)v(y)‖y

(1.8)

≤ α2‖v(y)‖2y
1−α‖v(y)‖y .

(7.3)

In this situation, a more reasonable strategy for decreasing µ seems to be:

µ(α) ≈ µ
1+α . (7.4)

It appears that it is possible to combine both strategies (7.2) and (7.4) in a single expression.
Denote

ξᾱ(α) = 1 + αᾱ
ᾱ−α , α ∈ [0, ᾱ).

Note that
ξᾱ(α) = 1 + α+ α2

ᾱ−α = ᾱ
ᾱ−α −

α(1−ᾱ)
ᾱ−α . (7.5)

Let us prove an upper bound for the growth of the local gradient proximity measure along direction
v(y), when the penalty parameter is divided by the factor ξᾱ(α).
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Theorem 7.1 Suppose F∗ has negative curvature. Let y ∈ N (µ, β) with µ ∈ (0, 1] and β ∈ [0, 1
9 ],

satisfying condition (5.6). Then, for y(α) = y + αv(y) with α ∈ (0, ᾱ), we have

γ
(
y(α), µ

ξᾱ(α)

)
≤ Γµ(y, α)

def
=
(
1 + α · σs(y) (−A∗v(y))

)
‖∇f(y(α))− ξᾱ(α)

µ · b‖y

≤ (1 + α · σs(y)(−A∗v(y)))
[
γ1(α) + β ·

(
1 + αᾱ

ᾱ−α

)]
,

γ1(α)
def
= ‖∇f(y(α))− ξᾱ(α)∇f(y)‖y

≤ αᾱµ
(ᾱ−α)2

((
1− α

ᾱ

)
κ
√
ν + 2κ1

γd

[
σd + 6ν2β

µ + 2κν
(

1 +
√
ν

1−κµ−2β

)
1−β
1−2β

])
.

(7.6)

Proof:
Indeed,

γ
(
y(α), µ

ξᾱ(α)

)
= ‖∇f(y(α))− ξᾱ(α)

µ · b‖y(α)

(6.7)

≤ (1 + ασs(y)(−A∗v(y))) · ‖∇f(y(α))− ξᾱ(α)
µ · b‖y.

Further,
‖∇f(y(α))− ξᾱ(α)

µ · b‖y ≤ γ1(α) + ξᾱ(α)‖∇f(y)− 1
µb‖y.

Since y ∈ N (µ, β), the last term does not exceed β · ξᾱ(α). Let us estimate now γ1(α).

γ1(α)
(7.5)

≤ ‖∇f(y(α))− ᾱ
ᾱ−α∇f(y)‖y + α(1−ᾱ)

ᾱ−α ‖∇f(y)‖y

(5.5)

≤ ‖∇f(y(α))− ᾱ
ᾱ−α∇f(y)‖y + α

ᾱ−α ·
κµ
√
ν

1+κµ .

For the second inequality above, we also used (1.3). Note that

‖∇f(y(α))− ᾱ
ᾱ−α∇f(y)‖2y

= 〈[∇2f(y)]−1(∇f(y(α))− ᾱ
ᾱ−α∇f(y)),∇f(y(α))− ᾱ

ᾱ−α∇f(y)〉

(4.2)

≤ 4
γ2
d
[f∗ − 〈b, y〉]2 · ‖∇f(y(α))− ᾱ

ᾱ−α∇f(y)‖2G
(4.10)

≤ 4κ2
1µ

2

γ2
d
· δ2
y(α).

Moreover,

δy(α)
(7.1)

≤ αᾱ
(ᾱ−α)2 ‖∇2F∗(s(y))s̄‖B

≤ αᾱ
(ᾱ−α)2

[
‖∇2F∗(s(y))s∗‖B + ‖∇2F∗(s(y))(s̄− s∗)‖B

]
(4.9)

≤ αᾱ
(ᾱ−α)2

[
σd + 6ν2

µ β + ‖∇2F∗(s(y))(s̄− s∗)‖B
]
.

It remains to estimate the last term.

Denote r = ‖s(y)− sµ‖s(y)

(1.5)

≤ β
1−β . Since β ∈ [0, 1/9], we have r < 1. Then, using µ ∈ (0, 1],

B
(3.8)

� 4ν2

µ2 [∇2F∗(sµ)]−1
(1.6)

� 4ν2

µ2(1−r)2 [∇2F∗(s(y))]−1.

Therefore,

‖∇2F∗(s(y))(s̄− s∗)‖B ≤ 2ν
µ(1−r)‖y(ᾱ)− y∗‖y

(5.8)

≤ 2κν
(

1 +
√
ν

1−κµ−2β

)
· 1−β

1−2β .
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Putting all the estimates together, we obtain the claimed upper bound on γ1(α).
2

Taking into account the definition of ξᾱ(α), we can now show that our predictor-corrector
scheme with neighborhood size parameter β = O(µ) has local superlinear convergence.

8 Polynomial-time path-following method

Let us describe now our path-following predictor-corrector strategy. It employs the following uni-
variate function:

ηᾱ(α) =

{
2α, α ∈ [0, 1

3 ᾱ),
α+ᾱ

2 , α ∈ [ 1
3 ᾱ, ᾱ].

(8.1)

This function will be used for updating the length of the current predictor step α by the rule
α+ = ηᾱ(α). If the current step is small, then it will be doubled. On the other hand, if α is close
enough to the maximal step size ᾱ, then this distance for the new value α+ will be halved.

Let us fix the tolerance parameter β′ = 1
6 for the proximity measure Γ. Consider the following

method.

Dual path-following method
for barriers with negative curvature

1. Set µ0 = 1 and find point y0 ∈ N
(
µ0,

1
25

)
.

2. For k ≥ 0 iterate: a) Compute ᾱk = ᾱ(yk).

b) Set αk,0 = 1
6 min

{
1, 1
‖v(yk)‖yk

}
. Using recurrence

αk,i+1 = ηᾱk(αk,i), find the maximal i ≡ ik,
such that Γµk(yk, αk,i) ≤ β′.

c) Set αk = αk,ik , pk = yk + αkv(yk), µk+1 = µk
ξᾱk (αk) .

d) Starting from pk, apply the Newton method for
finding yk+1 ∈ N (µk+1, βk+1) with βk+1 = µk+1

25 .

(8.2)

First, we analyze the predictor step. Recall that the bound

Γµ(y, α) = (1 + ασs(y)(−A∗v(y)))‖∇f(y(α))− 1
µξᾱ(α)b‖y

is explicitly computable for different values of α (we need to compute only the new vectors of the
gradients ∇f(y(α))).

Let us show now that the predictor-corrector scheme (8.2) has polynomial-time complexity.

Lemma 8.1 Suppose F∗ has negative curvature and let y ∈ N (µ, β) with β ≤ 1
25 . Then for all

α ∈
[
0, 1

6 min
{

1, 1
‖v(y)‖y

}]
(8.3)

we have Γµ(y, α) ≤ β′.

Proof:
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Denote r = ‖v(y)‖y, and r̂ = max{1, ‖v(y)‖y}. For every α ∈ [0, 1
6r̂ ] we have

Γµ(y, α)
(1.20)

≤ (1 + αr) · ‖∇f(y(α))− ξᾱ(α)
µ · b‖y

(7.5)

≤ (1 + αr) ·
(
‖∇f(y(α))− (1 + α)∇f(y)‖y + α2r

ᾱ−α + ξᾱ(α)‖∇f(y)− 1
µ · b‖y

)
(7.3),(5.4)

≤ (1 + αr) ·
(

2α2r2

1−αr + β ·
[
1 + α

1−αr

])
≤ (1 + αr̂) · 2α2r̂2+β(1+α)

1−αr̂ .

To derive the second inequality above, we add and subtract (1 +α)∇f(y(α)) inside the norm, then
collect the necessary terms and finally use (7.5) and the definition of r.

Hence, Γµ(y, α)
(8.3)

≤
(
1 + 1

6

)
·

2
36 + 1

25 (1+ 1
6 )

1− 1
6

< 1
6 . 2

Corollary 8.1 Let sequence {µk} be generated by method (8.2). Then for every k ≥ 0 we have

µk+1 ≤
(
1 + 1

6ν1/2

)−1
µk. (8.4)

Proof:
Note that by Lemma 8.1, we get Γµk(yk, αk,0) ≤ β′. Therefore, in method (8.2) we always have

αk ≥ αk,0
(1.3)

≥ 1
6ν1/2 . It remains to note that ξᾱ(αk)

(7.5)

≥ 1 + αk. 2

Secondly, we rigorously define and analyze the corrector step of the method (8.2). After Step
c) of the method, we have yk ∈ N (µk+1, β

′), by Lemma 8.1. Our goal is to quickly find yk+1 ∈
N (µk+1, β). So, we minimize the function

g(y) := f(y)− 1

µk+1
b>y,

utilizing the Newton method. Indeed, the Newton direction to minimize g is the unique solution d
of the linear system

∇2f(yk)d = −
[
∇f(yk)− 1

µk+1
b

]
.

Moreover, g is a self-concordant barrier and the Newton decrement for g at yk is precisely

‖∇g(yk)‖yk = γ(yk, µk+1) ≤ β′.

By the proof of Theorem 2.2.2 in [13] (page 20), defining

yk+1 = yk + d,

we have

γ(yk+1, µk+1) ≤ [γ(yk, µk+1)]
2

[1− γ(yk, µk+1)]
2 ≤

(β′)2

(1− β′)2
,

achieving quadratic convergence, as desired. Thus, we have proved the following lemma.

Lemma 8.2 Let β′ ≤ 1/6 and for every y ∈ N (µ, β′), define d as above (the Newton direction at

y for minimizing g). Then, (y + d) ∈ N (µ, β), where β ≤ (β′)2

(1−β′)2 .

At the same time, it follows from Theorem 7.1 that method (8.2) can be accelerated. Taking
into account the choice βk = µk

25 in (8.2), we see that

κ1 ≤ ν +
1
25 ( 1

25 +ν1/2)

1− 1
25

,

κ2 ≤ 2
γd

(σd + 6
25ν

2),
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and κ = κ1κ2. Let us assume that µk is small enough. Namely, we assume that

1
1−κµk−2βk

≤ 2 ⇔ µk ≤ 1
2(κ+ 2

25 )
. (8.5)

Then

ᾱk
(5.7)

≤ 1 + κµk
1−κµk− 2

25µk
≤ 1 + 2κµk

(8.5)

≤ 2,

ᾱk
(5.5)

≥ 1
1+κµk

(8.5)

≥ 2
3 .

(8.6)

Therefore, taking into account that

σs(y)(−A∗v(y))
(1.20)

≤ ‖A∗v(y)‖s(y) = ‖v(y)‖y
(1.3)

≤ ν1/2,

we have the following bound on the growth of the proximity measure:

Γµk(yk, α)
(7.6)

≤ (1 + ᾱkν
1/2)

[
αᾱk

(ᾱk−α)2µkc0 + µk
25

(
1 + αᾱk

ᾱk−α

)]
(8.6)

≤ (1 + 2ν1/2)µk

[
ᾱ2
k

(ᾱk−α)2 c0 + 1
25

(
1 + 2ᾱk

ᾱk−α

)]
,

(8.7)

where c0
(8.5)
= κν1/2 + 2κ1

γd

[
σd + 6

25ν
2 + 2κν(1 + 2ν1/2)

1− 1
25

1− 2
25

]
.

To establish the asymptotic superlinear convergence of our method, we next assume µk is even
smaller, namely, that

µk ≤ β′

(1+2ν1/2)(9c0+ 7
25 )
. (8.8)

Theorem 8.1 Suppose that µk satisfies condition (8.8). Then method (8.2) has a local superlinear
rate of convergence:

µk+1 ≤ 9

c
1/2
1

µ
3/2
k .

Proof:
Assume µk satisfies (8.8). Denote by ξ(µ) the unique positive solution of the equation

c0ξ
2 + 1

25 (1 + 2ξ) = β′

(1+2ν1/2)µ
. (8.9)

In view of assumption (8.8), we have 1 ≤ 1
3ξ(µk). Therefore,

β′

(1+2ν1/2)µk
≤ (c0 + 7

9·25 )ξ2(µk). (8.10)

Note that for α(µk) defined by the equation

ᾱk
ᾱk−α(µk) = ξ(µk)

(8.8)

≥ 3,

we have Γµk(yk, α(µk)) ≤ β′. Therefore, yk + α(µk)v(yk) ∈ Q. At the same time,

α(µk) ≥ 2
3 ᾱk. (8.11)

Note that in view of the termination criterion of Step b) in method (8.2) we either have 2αk ≥ α(µk),
or 1

2 (ᾱk +αk) ≥ α(µk). The first case is possible only if αk <
1
3 ᾱk. This implies α(µk) < 2

3 ᾱk, and
this contradicts the lower bound (8.11). Thus, we have

αk ≥ 2α(µk)− ᾱk.
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Therefore,

ξᾱk(αk) = 1 + αkᾱk
ᾱk−αk ≥ 1 + ᾱk(2α(µk)−ᾱk)

2(ᾱk−α(µk))

(8.11)

≥ 1 +
ᾱ2
k

6(ᾱk−α(µk))

= 1 + 1
6 ᾱkξ(µk)

(8.6)

≥ 1 + 1
9ξ(µk)

(8.10)

≥ 1 + 1
9

√
c1
µk
,

where c1 = β′

(1+2ν1/2)(c0+ 7
9·25 )

. Whence, µk+1 ≤ 9

c
1/2
1

µ
3/2
k , as desired. 2

It remains to estimate the full complexity of one iteration of method (8.2). It has two auxiliary
search procedures. The first one (that is Step b)) consists in finding an appropriate value of the
predictor step. We need an auxiliary statement on performance of its recursive rule α+ = ηᾱ(α).

Lemma 8.3 If α ≥ 0 and α+ = ηᾱ(α), then ξᾱ(α+) ≥ 2ξᾱ(α)− 1. Hence, for the recurrence

αi+1 = ηᾱ(αi), i ≥ 0,

we have ξᾱ(αi) ≥ 1 + α0 · 2i.

Proof:
If α+ = 2α, then ξᾱ(α+) = 1 + 2αᾱ

ᾱ−2α ≥ 1 + 2αᾱ
ᾱ−α = 2ξᾱ(α)− 1. If α+ = α+ᾱ

2 , then

ξᾱ(α+) = 1 + ᾱ(ᾱ+α)
ᾱ−α = ξᾱ(α) + ᾱ2

ᾱ−α ≥ 2ξᾱ(α)− 1.

Therefore, ξᾱ(αi) ≥ 1 + (ξᾱ(α0)− 1) · 2i
(7.5)

≥ 1 + α0 · 2i. 2

Note that the number of evaluations of the proximity measure Γµk(yk, ·) at Step b) of method
(8.2) is equal to ik + 2. Therefore, for the first N iterations of this method we have

N−1∑
k=0

(ik + 2) ≤ 2N +
N−1∑
k=0

log2
µk

µk+1αk,0
≤ N(2 + 1

2 log2 ν)− log2 µN .

Taking into account that for solving the problem (2.2) with absolute accuracy ε we need to ensure
µN ≤ ν

ε , and using the rate of convergence (8.4), we conclude that the total number of evaluations

of the proximity measure Γµk(yk, ·) does not exceed O(ν1/2 ln ν ln ν
ε ).

It remains to estimate the complexity of the correction process (this is Step d)). This process
cannot be too long either. Note that the penalty parameters µk are bounded from below by ε

ν ,
where ε is the desired accuracy of the solution. On the other hand, the point pk belongs to the
region of quadratic convergence of the Newton method by Lemma 8.2. Therefore, the number
of iterations at Step d) is bounded by O(ln ln κ1

ε ). In Section 9, we will demonstrate on simple
examples that the high accuracy in approximating the trajectory of central path is crucial for local
superlinear convergence of the proposed algorithm.

There exists another possibility for organizing the correction process at Step d). We can apply
a gradient method in the metric defined by the Hessian of the objective function at point pk. Then
the rate of convergence will be linear, and we might not be able to prove an upper bound better
than Ω(ln ν

ε ) correction iterations at each Step d) of method (8.2). However, each such corrector
direction will be cheap to compute since this type of corrector steps do not require us to reevaluate
the Hessian. (We would evaluate the Hessian at pk only, then compute a suitable decomposition
of it, e.g., Cholesky, and then only perform backsolves with this decomposition until a point in the
desired neighborhood of the central path is obtained.)
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9 Discussion

9.1 2D-examples

Let us look now at several 2D-examples illustrating different aspects of our approach. Let us start
with the following problem:

max
y∈R2
{〈b, y〉 : y2 ≥ 0, y1 ≥ y2

2}. (9.1)

For this problem, we can use the following barrier function:

f(y) = − ln(y1 − y2
2)− ln y2.

We will take b = [−1, 0]> and check our conditions for the optimal point y∗ = 0.
Problem (9.1) can be seen as a restriction of the following conic problem:

max
s,y
{〈b, y〉 : s1 = y1, s2 = y2, s3 = 1, s4 = y2, s1s3 ≥ s2

2, s4 ≥ 0}, (9.2)

endowed with the barrier F∗(s) = − ln(s1s3 − s2
2)− ln s4. Note that

∇F∗(s) =

(
−s3

s1s3 − s2
2

,
2s2

s1s3 − s2
2

,
−s1

s1s3 − s2
2

,
−1

s4

)>
.

Denote ω = s1s3 − s2
2. Since in problem (9.2) y∗ = 0 corresponds to s∗ = e3, we have the following

representation:

∇2F∗(s)s∗ = ∇2F∗(s)e3 =
1

ω2
·
(
s2

2,−2s1s2, s
2
1, 0
)>
.

Let us choose in the primal space the norm

〈Bx, x〉 = x2
1 + 1

2x
2
2 + x2

3 + x2
4.

Then ‖∇2F∗(s)s∗‖B = [s2
1 + s2

2]/ω2. Hence, the region ‖∇2F∗(s(y))s∗‖B ≤ σd is formed by vectors
y = (y1, y2) satisfying the inequality

y2
1 + y2

2 ≤ σd(y1 − y2
2)2.

Thus, the boundary curve of this region is given by equation

y1 = y2
2 + 1

σ
1/2
d

√
y2

1 + y2
2 ,

which has a positive slope [σd − 1]−
1
2 at the origin (see Figure 1). Note that the central path

corresponding to the vector b = [−1, 0]> can be found from the equations

1

y1 − y2
2

=
1

µ
,

1

y2
=

2y2

y1 − y2
2

.

Thus, its characteristic equation is y1 = 3y2
2 , and, for any value of σd, it leaves the region of

quadratic convergence as µ→ 0. It is interesting that in our example, Assumption 2 is valid if and
only if the problem (9.1) with y∗ = 0 satisfies Assumption 1.
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6y1

-

y20

y1 = y2
2

Central path b = (−1, 0)>

y1 = y2
2 + 1

σ
1/2
d

√
y2

1 + y2
2

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!

y1 = y2/
√
σd − 1

‖∇2F∗(s(y))s∗‖B ≤ σd

Figure 1. Behavior of ‖∇2F∗(s(y))s∗‖B .

In our second example we need the maximal neighborhood of the central path:

M(β) = Cl

( ⋃
µ∈R
N (µ, β)

)

=
{
y : θ2(y)

def
= ‖∇f(y)‖2y − 1

‖b‖2y
〈∇f(y), [∇2f(y)]−1b〉2 ≤ β2

}
.

(9.3)

Note that θ(y) = min
t∈R
‖∇f(y)− tb‖y.

Consider the following problem:

max
y∈R2
{y1 : ‖y‖ ≤ 1}. (9.4)

where ‖ · ‖ is the standard Euclidean norm. Let us endow the feasible set of this problem with the
standard barrier function f(y) = − ln(1− ‖y‖2). Note that

∇f(y) = 2y
1−‖y‖2 , ∇2f(y) = 2I

1−‖y‖2 + 4yy>

(1−‖y‖2)2 ,

[
∇2f(y)

]−1
= 1−‖y‖2

2

(
I − 2yy>

1+‖y‖2

)
,
[
∇2f(y)

]−1∇f(y) = 1−‖y‖2
1+‖y‖2 · y.

Therefore,

‖∇f(y)‖2y = 2‖y‖2
1+‖y‖2 ,

and for b = [1, 0]> we have

‖b‖2y = 1−‖y‖2
2 · 1−y2

1+y2
2

1+‖y‖2 , 〈∇f(y),
[
∇2f(y)

]−1
b〉 = 1−‖y‖2

1+‖y‖2 · y1.

Thus,

θ2(y) = 2‖y‖2
1+‖y‖2 −

2
1−‖y‖2 ·

1+‖y‖2
1−y2

1+y2
2
· (1−‖y‖2)2y2

1

(1+‖y‖2)2

= 2
1+‖y‖2

(
‖y‖2 − y2

1(1−‖y‖2)

1−y2
1+y2

2

)
=

2y2
2

1−y2
1+y2

2
.
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We conclude that for problem (9.4) the maximal neighborhood of the central path has the following
representation:

M(β) =
{
y ∈ R2 : y2

1 + 2−β2

β2 · y2
2 ≤ 1

}
(9.5)

(see Figure 2).

6y1

-
y2
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0
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Large neighborhood
@
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�
���

Problem: max
‖y‖≤1

y1.

E
E
E
E
E
E
E
E
E
E
E

r
y

r r
p′
-
rp(y)

y+

Figure 2. Prediction in the absence of sharp maximum.

Note that p(y) = 2y
1+‖y‖2 ∈ intQ. If the radii of the small and large neighborhoods of the

central path are fixed, by straightforward computations we can see that the simple predictor-
corrector update y → y+ shown in Figure 2 has local linear rate of convergence. In order to get a
superlinear rate, we need to tighten the small neighborhood of the central path as µ→ 0.

9.2 Examples of cones with negative curvature

In accordance with the definition (6.1), negative curvature of barrier functions is preserved by the
following operations.

• If barriers Fi for cones Ki ⊂ Ei, i ∈ {1, 2}, have negative curvature, then the curvature of the
barrier F1 + F2 for the cone K1 ⊕K2 is negative.

• If barriers Fi for cones Ki ⊂ E, i ∈ {1, 2}, have negative curvature, then the curvature of the
barrier F1 + F2 for the cone K1

⋂
K2 is negative.

• If barrier F for coneK has negative curvature, then the curvature of the barrier f(y) = F (A∗y)
for the cone Ky = {y ∈ H : A∗y ∈ K} is negative.

• If barrier F (x) for cone K has negative curvature, then the curvature of its restriction onto
the linear subspace {x ∈ E : Ax = 0} is negative.

At the same time, we know two important families of cones with negative curvature.

• Self-scaled barriers have negative curvature (see Corollary 3.2(i) in [14]).

• Let p(x) be hyperbolic polynomial. Then the barrier F (x) = − ln p(x) has negative curvature
(see [4]).
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Thus, using above mentioned operations, we can construct barriers with negative curvature for
many interesting cones. In some situations, we can argue that currently, some nonsymmetric
treatments of the primal-dual problem pair have better complexity bounds than the primal-dual
symmetric treatments.

Example 9.1 Consider the cone of nonnegative polynomials:

K =

{
p ∈ R2n+1 :

2n∑
i=0

pit
i ≥ 0, ∀t ∈ R

}
.

The dual to this cone is the cone of positive semidefinite Hankel matrices. For k ∈ {0, 1, . . . , 2n},
denote

Hk ∈ R(n+1)×(n+1) : H
(i,j)
k =

{
1, if i+ j = k + 2
0, otherwise

, i, j ∈ {0, 1, . . . , n}.

For s ∈ R2n+1 we can define now the following linear operator:

H(s) =
2n∑
i=0

si ·Hi.

Then the cone dual to K can be represented as follows:

K∗ = {s ∈ R2n+1 : H(s) � 0}.

The natural barrier for the dual cone is f(s) = − ln detH(s). Clearly, it has negative curvature.
Note that we can lift the primal cone to a higher dimensional space (see [12]):

K =
{
p ∈ R2n+1 : pi = 〈Hi, Y 〉, Y � 0, i ∈ {0, 1, . . . , 2n}

}
,

and use F (Y ) = − ln detY as a barrier function for the extended feasible set. However, in this
case we significantly increase the number of variables. Moreover, we need O(n3) operations for
computing the value of the barrier F (Y ) and its gradient. On the other hand, in the dual space the
cost of all necessary computations is very low (O(n ln2 n) for the function value and O(n2 ln2 n)
for solution of the Newton system, see [2]). On top of these advantages, for non-degenerate dual
problems, now we have a locally superlinearly convergent path-following scheme (8.2).

To conclude the paper, let us mention that the negative curvature seems to be a natural property
of some self-concordant barriers. Indeed, let us move from some point x ∈ intK along the direction
h ∈ K: u = x + h. Then the Dikin ellipsoid of barrier F at point x, moved to the new center u,
still belongs to K:

u+ (Wr(x)− x) = h+Wr(x) ⊂ K.

We should expect that, in this situation, for a good self-concordant barrier, the Dikin ellipsoidWr(u)
becomes even larger (in any case, we should expect that it does not get smaller). This is exactly
the negative curvature condition: ∇2F (x) � ∇2F (u). Thus, we are led to the following unsolved
problem: What is the class of regular convex cones that admit a logarithmically homogeneous self-
concordant barrier with negative curvature?
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[4] O. Güler, Hyperbolic polynomials and interior-point methods for convex programming, Math.
Oper. Res. 22 (1997) 350–377.

[5] J. Ji, F. A. Potra and R. Sheng, On the local convergence of a predictor-corrector method
for semidefinite programming, SIAM J. Optim. 10 (1999) 195–210.

[6] M. Kojima, M. Shida and S. Shindoh, Local convergence of predictor-corrector infeasible-
interior-point algorithms for SDPs and SDLCPs, Math. Program. 80 (1998) 129–160.

[7] Z. Lu and R. D. C. Monteiro, Limiting behavior of the Alizadeh-Haeberly-Overton weighted
paths in semidefinite programming, Optim. Methods Softw. 22 (2007) 849–870.

[8] Z. Lu and R. D. C. Monteiro, Error bounds and limiting behavior of weighted paths associated
with the SDP map X1/2SX1/2, SIAM J. Optim. 15 (2004/05) 348–374.

[9] Z.-Q. Luo, J. F. Sturm and S. Zhang, Superlinear convergence of a symmetric primal-dual
path following algorithm for semidefinite programming, SIAM J. Optim. 8 (1998) 59–81.

[10] S. Mehrotra, Quadratic convergence in a primal-dual method, Math. Oper. Res. 18 (1993)
741–751.

[11] Yu. Nesterov, Introductory Lectures on Convex Optimization, Kluwer, Boston, 2004.

[12] Yu. Nesterov, Squared functional systems and optimization problems, In High Performance
Optimization, H.Frenk, T.Terlaky and S.Zhang (Eds.), Kluwer, 1999. pp.405–439.

[13] Yu. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex Program-
ming: Theory and Applications, SIAM, Philadelphia, 1994.

[14] Yu. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex
programming, Math. Oper. Res. 22 (1997) 1–42.

[15] F. A. Potra and R. Sheng, Superlinear convergence of a predictor-corrector method for
semidefinite programming without shrinking central path neighborhood, Bull. Math. Soc.
Sci. Math. Roumanie 43 (2000) 107–124.

[16] F. A. Potra and R. Sheng, Superlinear convergence of interior-point algorithms for semidefi-
nite programming, J. Optim. Theory Appl. 99 (1998) 103–119.

[17] J. Renegar, Hyperbolic programs, and their derivative relaxations, Found. Comput. Math. 6
(2006) 59–79.
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