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Abstract. Coffman and Sethi proposed a heuristic algorithm, called LD (Longest Decreasing),

for multi-processor scheduling, to minimize makespan over flowtime-optimal schedules. The LD

algorithm is an extension of a very well-known list scheduling algorithm, Longest Processing

Time (LPT) list scheduling, to this bicriteria scheduling problem. Coffman and Sethi conjec-

tured (in 1976) that the LD algorithm has the following precise worst-case performance bound:
5
4
− 3

4(4m−1)
, where m is the number of machines. In this paper, utilizing some recent work

by the authors and Huang (2016), which exposed some very strong combinatorial properties

of various presumed minimal counterexamples to the conjecture, we provide a proof of this

conjecture. The problem and the LD algorithm have connections to some other fundamental

problems (such as the assembly line-balancing problem) and algorithms.

1. Introduction

The most fundamental machine environment in multiprocessor scheduling problems is a par-

allel identical machine model. In this basic set-up, we have m parallel identical machines and

n independent jobs, all simultaneously available at time zero, indexed by 1, 2, . . . , n with given

processing times p1, p2, . . . , pn. No pre-emption is allowed, and the machines are assumed to

be completely reliable. For a scheduling problem environment described above, with data

m, p1, p2, . . . , pn, there are two performance criteria that immediately come to mind:

• minimize the completion time of the last job (i.e., makespan),

• minimize the total (or equivalently the average) time that the jobs spend in the system

(i.e., total or average flowtime).

Given a feasible schedule, let Cj denote the completion time of job j in that schedule. By

denoting Cmax := maxj∈{1,2,...,n} {Cj}, our two criteria are: minimize Cmax, minimize
∑n

j=1Cj .

Both of these objective functions are easily justifiable. Indeed, the minimization of makespan

may ensure optimal utilization of resources (i.e., machines) as well as ensuring the earliest

possible start times for other tasks that require the completion of all the jobs 1, 2, . . . , n to

be started. Minimization of total flow time F :=
∑n

j=1Cj , minimizes the amount of time

the jobs spend in the system (in our setting this is Cj for each job j). Thus, minimizing F
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equivalently minimizes, in many applications, work-in-process inventory. A feasible schedule is

called flowtime-optimal if it minimizes F . In this paper, we consider the bicriteria optimization

problem of minimizing makespan among all flowtime-optimal schedules. In scheduling theory

notation, let F ∗ denote the optimal objective function value of P / /
∑
Cj . Then, our bicriteria

optimization problem is: P / / (Cmax;
∑
Cj = F ∗), which we call Flowtime-Makespan (FM)

problem.

There are two single objective function scheduling problems that make up our bicriteria

optimization problem: P / / Cmax, and P / /
∑
Cj . The second problem is as easy as sorting

and, as a result, admits algorithms with O(n log(n)) complexity. Moreover, we have a complete

characterization of all optimal solutions of P / /
∑
Cj . The mathematical foundations of such

characterizations go back to an inequality (and characterization of when it is tight) due to Hardy,

Littlewood and Pólya [12]. Related to this fundamental result, Conway, Maxwell and Miller [4],

in their seminal book, develop the notion of rank for the FM problem.

Without loss of generality, we may assume that m divides n (if m does not divide n, we can

add (m dn/me − n) dummy jobs with zero processing times). We may further assume that the

jobs are indexed in nonincreasing order of processing times.

Definition 1. The number of ranks for an FM instance is defined by k := n/m, and the set of

jobs belonging to rank r are the following: (r − 1)m+ 1, (r − 1)m+ 2, . . . , (r − 1)m+m.

A feasible schedule in which all rank (r + 1) jobs are started before all rank r jobs (where

r ∈ {1, 2, . . . , (n/m) − 1}) is said to satisfy the rank restriction or rank constraint. A feasible

schedule without idle time and satisfying the rank constraint, and in which all rank n/m jobs

start at time zero, is a flowtime-optimal schedule. Since within each rank the assignment of

jobs to machines can be arbitrary, it immediately follows that there are at least (m!)(n/m)

flowtime-optimal schedules. From at least a mathematical viewpoint, it makes sense to consider

a secondary criterion to choose a “best” flowtime-optimal schedule among these (a huge number

of) schedules each of which minimizes total flowtime. Also, this is reasonable from a practical

viewpoint.

The first problem, P / / Cmax, is NP-hard even for m = 2 (trivial reduction from PARTI-

TION). Graham’s ground-breaking work on the subject in the 1960’s tackled the problem

P / / Cmax. This work was ground-breaking not only in approximation algorithms for sched-

uling, but in approximation algorithms in general. Graham first proved:

Theorem 1. (Graham [8]) The List Scheduling algorithm has a worst-case approximation ratio

of
(
2− 1

m

)
. Moreover, this bound is tight for every m ≥ 2.

Then, Graham analyzed the List Scheduling algorithm when the list is given in LPT order

and provided a very elegant proof of the following result:

Theorem 2. (Graham [9]) The LPT-List Scheduling algorithm has a worst-case approximation

ratio of
(

4
3 −

1
3m

)
. Moreover, this bound is tight for every m ≥ 2.

Just like the scheduling problem P / / Cmax, the FM problem is also NP-hard (a result of

Bruno, Coffman and Sethi [1]). In 1976, Coffman and Sethi [2] proposed some approximation
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algorithms for the FM problem. Among these algorithms, the LD algorithm is the closest

extension of LPT list scheduling to the FM problem. In short, LD is an implementation of the

LPT idea which respects the rank constraint. Detailed description follows:

LD Algorithm

Input: positive integers m ≤ n such that m divides n, nonnegative integers p1, p2, . . . , pn such

that p1 ≥ p2 ≥ · · · ≥ pn.
1: k := n

m ,

2: for i := 1 to m do

3: Ci := 0,

4: Ji := ∅,
5: σ(i) := i

6: end for

7: for ` := 1 to k do

8: for i := 1 to m do

9: Cσ(i) := Cσ(i) + p(`−1)m+i,

10: Jσ(i) :=
[
Jσ(i), (`− 1)m+ i

]
11: end for

12: σ := sorting permutation for C

13: end for

14: for i := 1 to m do

15: reverse(Ji)

16: end for

Output: J1, J2, . . . , Jm.

In the above, Ci represents the total amount of processing time assigned to machine i. When

the algorithm terminates, Ci is the completion time on machine i for the LD schedule. Ji is an

ordered string of integers, it represents the jobs assigned to machine i. Until Steps 14–16 of the

algorithm are executed, jobs listed in Ji are in the LPT order. To generate a flowtime optimal

schedule, in the Steps 14–16, the order of assigned jobs in each machine is reversed. σ denotes

the permutation that sorts the integers C1, C2, . . . , Cm (the total processing time assigned to

each machine so far) so that

Cσ(1) ≤ Cσ(2) ≤ · · · ≤ Cσ(m).

The algorithm starts with all Ci equal to zero and σ being the identity permutation. However,

after each run of the loop given by Steps 8–11, we update σ so that σ(i) denotes the number of

the machine which has the ith smallest total processing time at that point. Note that the LD

Algorithm also has very close ties to List Scheduling. For each ` from Step 7, the inside loop

just implements List Scheduling. Coffman and Sethi conjectured the following worst-case bound

for the LD algorithm.
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Coffman-Sethi conjecture [2]: For every m ∈ Z+, the LD algorithm has a

makespan ratio with a worst-case bound equal to

5m− 2

4m− 1
=

5

4
− 3

4(4m− 1)
.

The authors and Huang [16] constructed a family of instances, proving that the above con-

jectured ratio cannot be improved for any m ∈ Z+. (See, Appendix A.) The Coffman-Sethi

conjecture has remained open for four decades. Some of the difficulties in dealing with this

conjecture and similar ones are due to the lack of efficiently computable tight lower bounds

on the makespan of flowtime-optimal schedules (see Lin and Liao [14] for a discussion of such

lower bounds and related heuristics). This is in contrast to the situation in the P / / Cmax

problem and Theorem 2. In the P / / Cmax problem setting, the simple lower bound on C∗max

given by max
{
p1,
∑n

j=1 pj/m
}

(maximum of the length of the longest job and the average work

to be done per machine), when used with a fundamental notion of minimality (smallest n) in

hypothesized counterexamples leads to a very elegant and short proof of the exact worst-case

performance ratio of LPT. However, in the FM problem, the above lower bound and its variants

and the above used basic notion of minimality seem to be too weak to lead to an exact worst-case

analysis for the LD algorithm. The first major advances on the Coffman-Sethi conjecture were

reported by the authors and Huang in [16] (this was a result of the work done in 2004 by Huang

and Tunçel, and then continued by Ravi and Tunçel during 2006–2013). These efforts reduced

the task of verifying the correctness of this long-standing conjecture to checking the cases when

the number of ranks are either 4 or 5, but number of machines in the unsolved cases remained

unbounded. At that time, to verify the remaining cases, the only viable tool seemed to be setting

up and solving to optimality finitely many LP problems for each m ≥ 4. In the next section,

utilizing our recent work with Huang [16], we provide a proof for all the remaining cases of this

conjecture which does not rely on extensive computations or extensive case analysis. Moreover,

our proof here not only covers the remaining cases m ≥ 4 with k ∈ {4m, 5m}, it works for all

m ≥ 4 and k ≥ 4. See Figure 1 .

Eck and Pinedo [7] propose a new algorithm LPT* (which is closely related to the LD algo-

rithm) for the FM problem and for the two machine case, prove the worst-case approximation

ratio of 28/27 which is an exact performance bound in this particular case. Gupta and Ruiz-

Torres [11] present their computational study of LPT* and its variants as well as some lower

bounds for the FM problem (for other approaches to MULTIFIT, see Dósa [6] and the references

therein). Gupta and Ho [10] propose a modified MULTIFIT algorithm for the FM problem when

m = 2 and present computational results. A slight generalization of the FM problem can be

formulated as the problem of permuting the elements within the columns of an m-by-n matrix

with nonnegative entries, so as to minimize its maximum row sum. This problem, which models

the assembly line balancing problem, was studied by Coffman and Yannakakis [3] as well as Hsu

[13]. The LD algorithm is also closely related to some fundamental heuristics for such problems.
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Figure 1. Coverage of proof techniques.

Another related problem is studied by Dokka, Crama and Spieksma [5]. In the next section, we

present a proof of the Coffman–Sethi conjecture.

2. A proof of the Coffman–Sethi conjecture

2.1. Notation and some properties. In every rank r, we identify the largest and smallest

processing times and denote them by λr and µr. Therefore, we have

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λk−1 ≥ µk−1 ≥ λk ≥ µk ≥ 0.(1)

Given an instance of the FM problem, we denote by tLD the makespan of the LD schedule(s).

We use t∗ to denote the makespan of the optimal schedule(s). We will restrict our attention to

problem instances with integer data in this paper (as established in [15, 16] this is without loss

of generality). It follows that the smallest nonzero processing time is bounded below by one. In

our characterizations of minimal counterexamples to the Coffman–Sethi conjecture, minimality

is defined, as in [16], based on the following five attributes, in hierarchical order (in decreasing

order of priority):

(a) smallest k (number of ranks)

(b) smallest m (number of machines)

(c) smallest |{j : pj ≥ 1}| (number of jobs with nonzero processing times)

(d) largest tLD
t∗

(e) smallest
∑n

j=1 pj .

We may assume that in a minimal counterexample, the following property holds (see [16]):

(Property.2) µr = λr+1, ∀r ∈ {1, 2, . . . , k − 1} and µk = 0.

A rectangular schedule is a feasible schedule for FM, without any idle time between time zero

and the makespan. Every rectangular schedule minimizes the makespan, since its objective value

matches an obvious lower bound of
∑n

j=1 pj/m on the makespan of every feasible schedule for

FM. Next, we describe two useful ways (procedures REDUCE(P1,r) and �-REDUCE(P1,r)) of
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generating “smaller” FM instances from a given FM instance. Let P1 denote an FM problem

instance. Let r ∈ {2, 3, . . . , k}.
REDUCE(P1,r): Construct P2 from P1 by subtracting one time unit from the processing

time of every job in rank r− 1 and subtracting one time unit from the processing time of every

job in rank r that has a processing time of λr. Leave the remaining processing times unchanged.

Figure 2 presents an LD schedule S for m := 3, P1 := [9, 8, 7, 7, 6, 5, 5, 2, 1]. Completion times

are 15, 16, and 19 on the machines 1, 2, and 3 respectively.

Machine 1 J9 J6 J1

Machine 2 J8 J5 J2

Machine 3 J7 J4 J3

Figure 2. An LD schedule S for the instance given by P1

Figure 3 presents the result of the application of REDUCE(P1,2) on the original LD schedule

S, yielding REDUCE(P1,2) = [8, 7, 6, 6, 6, 5, 5, 2, 1], and the completion times become 14, 15,

and 17 on the machines 1, 2, and 3 respectively.

Machine 1 J9 J6 J1

Machine 2 J8 J5 J2

Machine 3 J7 J4 J3

Figure 3. LD schedule S1 for the instance REDUCE(P1,2)

�-REDUCE(P1,r): Construct P2 from P1 by applying the procedure REDUCE(P1,r) to P1.

Construct P2R from P2 as follows. For every job in rank 1 of the optimal schedule for P2 that

is processed on a machine with a completion time after rank k that is less than the makespan,

increase the processing time so that the completion time after rank k becomes equal to the

makespan.

Every instance generated by �-REDUCE(P1,·) has, by construction, a rectangular optimal

schedule. Figure 4 presents an optimal schedule for the instance given by

P2 := REDUCE(P1,2) = [8, 7, 6, 6, 6, 5, 5, 2, 1]. In this optimal schedule, the completion times

are 15, 15, and 16 on the machines 1, 2, and 3 respectively.

Figure 5 presents an optimal schedule for the instance �-REDUCE(P1,2). Here,

P2R := �-REDUCE(P1,2) = [9, 8, 6, 6, 6, 5, 5, 2, 1] whose optimal schedules yield a makespan of

16 on every machine.

If the Coffman–Sethi conjecture is false, a counterexample to the conjecture of Type I2 is a

counterexample that has an LD schedule with the following properties (see [16]):
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Machine 1 J9 J5 J1

Machine 2 J8 J4 J2

Machine 3 J7 J6 J3

Figure 4. An optimal schedule for the instance given by P2

Machine 1 J9 J5 J1

Machine 2 J8 J4 J2

Machine 3 J7 J6 J3

Figure 5. An optimal schedule for the instance �-REDUCE(P1,2)

(i) It has only one machine i′ with a completion time after rank k equal to the makespan.

(ii) Machine i′ has a processing time equal to λr in rank r for every r ∈ {2, 3, . . . , k}.
The next lemma can be proved by utilizing procedures like REDUCE and �-REDUCE re-

peatedly.

Lemma 1. (Ravi, Tunçel and Huang [16]) If the Coffman–Sethi conjecture is false, then there

exists a minimal counterexample to the conjecture of Type I2. Moreover, in a minimal coun-

terexample of Type I2, all of the following properties hold:

• the sole machine i′ with a completion time after rank k equal to the makespan in the LD

schedule has a processing time equal to µ1 in rank 1;

• there exists at least one machine i′′ with i′′ 6= i′, such that the completion time after rank

(k − 1) on machine i′′ is greater than or equal to the completion time after rank (k − 1)

on machine i′;

• the smallest completion time after rank k on any machine is at least

tLD − max
r∈{2,3,...,k}

{λr − µr}.

Proof. See Lemmas 6, 7, 8, 9, and 10 of [16]. �

Lemma 1 exposes many, combinatorially very strong properties of a minimal counterexam-

ple of Type I2. These properties allow us to deduce very strong inequalities on the optimal

makespan in terms of the makespan of an LD schedule for such minimal counterexamples. An-

other important ingredient in our proof is the fact that the Coffman–Sethi conjecture has been

verified for all instances with either small m or small k:

Theorem 3. (Ravi, Tunçel and Huang [16]) The Coffman–Sethi conjecture holds for all in-

stances with either property given below:
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(i) m ≤ 3 (FM instances with at most three machines),

(ii) k ≤ 3 (FM instances with at most three ranks, i.e., for all machine-job pairs (m,n)

satisfying n ≤ 3m).

Proof. See, respectively, Theorems 2 and 3 of [16]. �

Next, we prove that the conjecture holds for all of the remaining cases.

Theorem 4. The Coffman–Sethi conjecture holds for all instances with both of the properties

given below:

(i) m ≥ 4 (FM instances with at least four machines),

(ii) k ≥ 4 (FM instances with at least four ranks, i.e., for all machine-job pairs (m,n)

satisfying n ≥ 3m+ 1).

Proof. Suppose the above claim is false. Then, by Lemma 1, there exists a minimal counterex-

ample of Type I2 to the Coffman–Sethi conjecture. Since the conjecture holds for all instances

with m ≤ 3 as well as for all instances with k ≤ 3 (by Theorem 3), there must exist a minimal

counterexample of Type I2 to the claim with k and m both at least equal to four. Let t denote

the makespan for an LD schedule of the minimal counterexample of Type I2 with k ranks. Then,

by Lemma 1, we have

mt∗ ≥ t+ (t− λk) + (m− 2)

(
t− max

r∈{2,...,k}
{λr − µr}

)
.

Note that each term on the right-hand side is obtained from one of the three properties listed

in Lemma 1. The last relation is equivalent to

t∗ ≥ t− λk
m
−
(

1− 2

m

)
max

r∈{2,...,k}
{λr − µr}.(2)

Since we are working with a counterexample,

t >

(
5m− 2

4m− 1

)
t∗.(3)

Inequalities (2) and (3) imply,(
m− 1

4m− 1

)
t∗ <

λk
m

+

(
1− 2

m

)
max

r∈{2,...,k}
{λr − µr}.(4)

Suppose that the maximum, maxr∈{2,...,k}{λr − µr}, is attained by r = k. Then, (4) implies

(since µk = 0 due to (Property.2)): t∗ <
(
4− 1

m

)
λk. However, t∗ ≥ λk +

∑k−1
r=1 µr > kλk. Since

k ≥ 4, we reach a contradiction. Therefore, we may assume, there exists s ∈ {2, 3, . . . , k − 1}
such that maxr∈{2,...,k}{λr − µr} = λs − µs.

Using (2) and (3), as well as the facts µs = λs+1 (due to (Property.2)) and λk ≤ λs+1, we

obtain (
m− 1

5m− 2

)
t <

λs+1

m
+

(
1− 2

m

)
(λs − λs+1).(5)

From the first property in Lemma 1, it follows that

t = 2λ2 +
k∑
r=3

λr,(6)
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substituting this for t in (5), we derive:

λ2 < −1

2

k∑
r=3

λr +
1

2(m− 1)

(
5− 2

m

)
λs+1 +

(
m− 2

2(m− 1)

)(
5− 2

m

)
(λs − λs+1).(7)

Next, we consider a lower bound on t∗ based on λs:

t∗ ≥
s−1∑
r=1

µr + λs +

k∑
r=s+1

µr =

s−1∑
r=2

λr + 2λs +

k∑
r=s+2

λr,(8)

where we used (Property.2). Note that we are using the convention that an empty sum is zero.

Since we are working with a counterexample, we have t
t∗ > 5m−2

4m−1 . This, together with the

relations (8) and (6) imply

2λ2 +
∑k

r=3 λr∑s−1
r=2 λr + 2λs +

∑k
r=s+2 λr

>
5m− 2

4m− 1
.(9)

If s ∈ {3, 4, . . . , k − 1}, then the last inequality is equivalent to

λ2 >
1

3

(
1− 1

m

) s−1∑
r=3

λr +

(
2− 1

m

)
λs −

1

3

(
4− 1

m

)
λs+1 +

1

3

(
1− 1

m

) k∑
r=s+2

λr.(10)

Finally, relations (7) and (10) imply(
5

6
− 1

3m

)(s−1∑
r=3

λr +
k∑

r=s+2

λr

)
+

(
5

2
− 1

m
− (5m− 2)(m− 2)

2m(m− 1)

)
λs

+

(
5

3
−
(

17m− 8

3m(m− 1)

))
λs+1 < 0.

For m and k at least four, sum of the first two terms on the left-hand-side is clearly positive.

The last term is nonnegative for every m ≥ 4. Hence, we reached a contradiction. Therefore,

we may assume, s = 2.

Let us go back to relation (4) and use s = 2 and λk ≤ λ4 to obtain:(
m− 1

5m− 2

)
t <

λ4

m
+

(
1− 2

m

)
(λ2 − λ3).(11)

Substituting (6) into the above, we have

λ2 >

(
6m2 − 13m+ 4

3m2 − 10m+ 4

)
λ3 +

(
m2 − 6m+ 2

3m2 − 10m+ 4

)
λ4.(12)

Since s = 2, (9) becomes

λ2 <

(
4m− 1

2(m− 1)

)
λ3 −

1

2

k∑
r=4

λr.(13)

Now, using the fact that m ≥ 4, relations (12) and (13) imply(
5m2 + 8m− 7

m− 1

)
λ3 < −

(
5m2 − 22m+ 8

)
λ4 −

(
3m2 − 10m+ 4

) k∑
r=5

λr.

For m at least four, the coefficient of λ3 in the left-hand-side above is positive, thus the left-

hand-side is positive; however, for m at least four, the right-hand-side is always nonpositive.
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Hence, we reached a contradiction. Therefore, our original claim that Coffman–Sethi conjecture

holds for all instances with m and k at least four is true. �

Theorem 5. The LD algorithm has a makespan ratio with a worst-case bound equal to 5m−2
4m−1 .

Moreover, this bound is tight for every m ≥ 2.

Proof. Validity of the bound follows from Theorems 3 and 4. The second statement of the

theorem is established by the family of worst-case instances presented in [16]. �
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