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FACIALLY DUAL COMPLETE (NICE) CONES
AND
LEXICOGRAPHIC TANGENTS*

VERA ROSHCHINAT AND LEVENT TUNQEL?

Abstract. We study the boundary structure of closed convex cones, with a focus on facially
dual complete (nice) cones. These cones form a proper subset of facially exposed convex cones, and
they behave well in the context of duality theory for convex optimization. Using the well-known and
commonly used concept of tangent cones in nonlinear optimization, we introduce some new notions
for exposure of faces of convex sets. Based on these new notions, we obtain a necessary condition and
a sufficient condition for a cone to be facially dual complete. In our sufficient condition, we utilize a
new notion called lexicographic tangent cones (these are a family of cones obtained from a recursive
application of the tangent cone concept). Lexicographic tangent cones are related to Nesterov’s
lexicographic derivatives and to the notion of subtransversality in the context of variational analysis.

Key words. convex cones, boundary structure, duality theory, facially dual complete, facially
exposed, tangent cone, lexicographic tangent
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Understanding the facial structure of convex cones as it relates to the dual cones
is fundamentally useful in convex optimization and analysis. Let K be a closed convex
cone in a finite dimensional Euclidean space E. For a given scalar product (-,-), the
dual cone is

K*:={seE":(s,x) >0 Vx € K},

where E* denotes the dual space. Let C' C E be a closed convex set. A closed convex
subset F' C C is called a face of C if for every x € F and every y,z € C such that
x € (y,z), we have y,z € F. The fact that F is a face of C is denoted by F < C.
Observe that the empty set and the set C' are both faces of C. Just like other partial
orders in this paper, if we write F'<tC, then we mean F is a face of C' but is not equal
to C. A nonempty face F <1 C is called proper. Note that if K is a closed convex cone
and F' < K, then F is a closed convex cone.

We say that a face F' of a closed convex set C' is exposed if there exists a supporting
hyperplane H to the set C such that FF = C'N H. Many convex sets have unexposed
faces, e.g., convex hull of a torus (see Fig. 1). Another example of a convex set with
unexposed faces is the convex hull of a closed unit ball and a disjoint point (see for
instance [18] and Fig. 2 here).

A closed convex set is facially exposed if every proper face of C' is exposed. Facial
exposedness is fundamental in understanding the boundary structure of convex sets; it
even has consequences in the theory of convex representations [3,6]. Symmetric cones
and homogeneous cones are facially exposed (see [5,28,30]). Hyperbolicity cones are
facially exposed too [24], and they represent a powerful and interesting generalization

*Submitted to the editors 20 April 2017.

Funding: The first author was supported by the Australian Research Council (Discovery Early
Career Researcher Award DE150100240). The second author was supported by Discovery Grants
from NSERC and by U.S. Office of Naval Research under award numbers: N00014-12-1-0049 and
NO00014-15-1-2171.

fSchool of Mathematics and Statistics, University of New South Wales, Australia
(v.roshchina@unsw.edu.au); much of the work on this paper was done while this author was af-
filiated with RMIT University and Federation University Australia.

tDepartment of Combinatorics and Optimization, Faculty of Mathematics, University of Water-
loo, Waterloo, Ontario N2L 3G1, Canada (ltuncel@uwaterloo.ca).

1

This manuscript is for review purposes only.


mailto:v.roshchina@unsw.edu.au
mailto:ltuncel@uwaterloo.ca

39
40

2 V. ROSHCHINA AND L. TUNCEL

FiG. 1. Convex hull of a torus is not facially exposed: the dashed line shows the set the extreme
points which are not exposed (see [25]).

unexposed faces

FiGc. 2. An example of a two dimensional set and a three dimensional cone that have an
unezxposed face.

of symmetric cones and homogeneous cones for convex optimization [7,24] and for
many other research areas.

Now we turn to another property of faces. We first motivate the concept and then
define it rigorously. Suppose that for a given family of convex optimization problems
in conic form, we know that there is at least an optimal solution that is contained in a
face F' of K. We may not have a direct access to the face F', but perhaps we know the
linear span of the face F: span(F). Then, to compute an optimal solution, we may
replace the cone constraint « € K, by z € (K Nspan(F)). Now, if we write down the
dual problem, the dual cone constraint (for the dual slack variable s) becomes (see
Proposition 1.1):

s € (K Nspan(F))" =cl (K* + F*)

where F= := {s€E*: (s,2) =0 Va € F}. Indeed, if (K* + F*) happens to be
closed, then we can remove the closure operation; otherwise, we would have to deal
with this closure operation in some way. Beginning with this observation, we have
our first hints for the uses of the concept of Facially Dual Complete convex cones.
Closed convex cones K with the property that

(K* + F*) is closed for every proper face F <1 K,

are called Facially Dual Complete (FDC). Pataki [17,18] called such cones nice. FDC
property is one of the main concepts that we study in this paper. Our interest in
FDChness is motivated by many factors:

e FDC property is very important in duality theory. Presence of facial dual
completeness makes various facial reduction algorithms behave well, e.g. see
Borwein and Wolkowicz [1], Waki and Muramatsu [32] and Pataki [19] (where
it is shown explicitly how facial reduction can be specialised for the case of
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FACIALLY DUAL COMPLETE CONES, LEXICOGRAPHIC TANGENTS 3

FDC cones). Currently, the only exact characterization of FDCness is via
facial reduction (see Liu and Pataki [13]). For some other recent work related
to facial reduction, see [2,4,10-12,15,19-22,31,33].

e FDC property is also relevant in the fundamental subject of closedness of the
image of a convex set under a linear map. See Pataki [17] and the references
therein.

e FDC property comes up in the area of lifted convex representations (see [6])
and in representations of a family of convex cones as a slice of another family
of convex cones (see [3]).

e FDC property seems to have a rather mysterious connection (see Pataki [18])
to facial exposedness of the underlying cone which is an intriguing and rather
beautiful geometric property. Moreover, better understanding of FDC prop-
erty contributes to our understanding of the boundary structure of convex
sets.

Our paper is organized as follows. In Section 2 we recall some notation and
some of the known results related to the facial structure of convex cones, then we
state and prove the necessary and sufficient conditions for facial dual completeness
(Theorems 2.1 and 2.7). Throughout this process, we introduce some new notions for
exposure of faces. In Figure 3 we summarize some of the relationships among various
exposure properties. Up to and including 3-dimensions, for convex cones, all of the
four properties we listed in Fig. 3 are precisely the same. Starting in 4-dimensions,
these four properties identify different sets of convex cones. We are able to illustrate
these 4-dimensional convex cones, by taking 3-dimensional slices.

/— facially exposed N

o=+ tangentially exposed s .

— facially dual complete - = - - - - - - N

strongly
tangentially
exposed

Example 3 Example 2 Example 1

Q..—..—..:..—. T T T T T T T T T T J

F1G. 3. Relationships among various notions of facial exposure and FDCness. The graphics
represent the examples discussed in this paper.

1. Preliminaries. Let E denote a finite dimensional Euclidean vector space,
and let E* be its dual. Throughout this section by K we denote a closed convex cone
in E. We call K regular if K is pointed (does not contain whole lines), closed, convex
and has nonempty interior in E. If K is a regular cone then so is its dual cone K*.

Let C CE and « € C. The cone of feasible directions of C at x is

Dir(z;C) :={d € E : (z +ed) € C for some € > 0}.

This manuscript is for review purposes only.
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4 V. ROSHCHINA AND L. TUNCEL

The tangent cone for C at x is
Tangent(z; C) := ¢l Dir(x; C).

Note that this definition can be restated in terms of the Painlevé—Kuratowski outer
limit (see [26]),
Tangent(z; C) = Limsup t(C — z).

t——+o0

The direction s € E* is said to be normal to a closed convex set C' at a point « if
(s, y—x) <0 Vyedl.

The set of all such directions is called the normal cone at x to C, denoted by
Normal(z; C).

In addition to the notion of dual cone, we also use the closely related concept of
polar of a set. For a subset C' of E, the polar of C is

C°:={sekE":(s,2) <1 VxeC}.

Note that for cones the notions of dual cone and polar are equivalent. For example,
for every convex set C' and for every x € C, we have

Normal(z; C) = [Tangent(z; C)]° and Tangent(z;C) = — [Normal(z; C)]".

The following fact is used many times in this paper.

PROPOSITION 1.1. For every pair of closed convex cones K1 and Ko in E, we
have
(K1 NK9)* =cl (K7 +K3).

If the relative interiors of K1 and Ko have nonempty intersection, then Ki + K5 is
a closed set and therefore the closure operation can be omitted.

Proof. See Corollary 16.4.2 in Rockafellar [25] and Remark 5.3.1. in [8]. O

Our results can be established in a coordinate-free way by keeping the operations
on sets in the primal space and the dual space separate'. However, for reducing the
amount of notation and for better readability, we pick a basis for E, define an inner
product on E from the scalar product above so that with this fixed inner-product
E = E* = R"™. From now on, (-,-) denotes an inner-product on R".

Let C be a closed convex set and let S be a nonempty subset of C. We define the
minimal face of C' containing S as follows:

face(S; C) := ﬂ{F : F<LC,SCF}.

I Let F C E. Then we may consider the dual cone of F with respect to any Euclidean space L

such that span(F) C L C E. We could denote by F|% the dual cone of F' in E*/L~; i.e.,
Fl% = {s EE*/LL: (s,2) >0 Vo€ F}
Next, we would define the projection map in the dual space. For C C E*,
ge )1 (C) :={[v] : v € C},

where [v] is the equivalence class of v € E* with respect to L'.

This manuscript is for review purposes only.
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FACIALLY DUAL COMPLETE CONES, LEXICOGRAPHIC TANGENTS 5

The following facts are elementary (and a few are well-known), we present all but one
without proof. For u € R™, we denote

ut = {zx eR" : (u,z)=0}.

PROPOSITION 1.2 (Properties of faces). Let C be a closed convex set in R™.
Then the following properties are true:
(i) face of a face of C is a face of C (i.e., G AF < C implies G AC);
(i) for every x € C and every u € Normal(z; C) with F := face({z},C), the set
Tangent(x; F) Nu™ is a face of Tangent(z; F);
(i11) for every S C C, we have relint (conv S) Nrelint (face(S; C)) # 0.

PropoOSITION 1.3. Let K be a closed convex cone in R™. Then, for every pair
(u,z) with w € K* and z € (KNu'), with F := face({z},K), we have u €
[Tangent(z; F')]".

Proof. Since u defines a supporting hyperplane to F' at z, this hyperplane is also
supporting for the tangent cone, and hence u € [Tangent(x; F)]". d

PROPOSITION 1.4. A closed convex cone K CR™ is FDC if and only if for every
face F < K

F* nspan F' = Hgpan p(K7).

Here by II;, we denote the orthogonal projection onto a linear subspace L C R™,
i.e. for each x € R™ the projection p = IIy () is the unique point p € L such that

Ip =]l = min |y — o]

Above, we used the Euclidean norm induced by the inner product, hence, for p =
1 (z) we have, in particular, (z — p) € L*, a fact utilised heavily in the sequel.

2. Facially Dual Complete Cones and Tangential Exposure. We say that
a closed convex set C' in R™ has tangential exposure property if

(2.1) Tangent(x; C) Nspan(F — x) = Tangent(x; F) VF < C, Va € F.

If C is a convex cone then span(F — x) = span F for every x € F. So, in this special
case, we may write span F' instead of span(F — z).

Tangential exposure is a stronger property than facial exposure. We discuss the
relation between these two notions and provide illustrative examples later in this
section. Tangential exposure property can be related to subtransversality of the set C
and the affine span of the face F' (see [9]). We also note that while this paper was being
revised, a similar condition was used to derive error bounds for conic problems [14].
Next, we prove Theorem 2.1 which gives a necessary condition for the FDC property,
establishing that every FDC cone is tangentially exposed.

2.1. Proof of the necessary condition.

THEOREM 2.1. If a closed convex cone K C R"™ is facially dual complete, then
for every F < K and every x € F, we have

(2.2) Tangent(z; K) Nspan F' = Tangent(z; F').

This manuscript is for review purposes only.
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6 V. ROSHCHINA AND L. TUNCEL

Proof. Since Tangent(x; F') is a subset of both Tangent(x; K) and span F', the
inclusion
Tangent(z; K) Nspan F' D Tangent(z; F')

follows. For the reverse inclusion, for the sake of reaching a contradiction, assume
the contrary: K is facially dual complete, but there exist F' < K and x € F such
that (2.2) does not hold. Then, there exists g € Tangent(x; K) N span F such that
g ¢ Tangent(x; F). Without loss of generality, we may assume ||g|| = 1. Since
g € span F' =: L, applying the hyperplane separation theorem to g and Tangent(z; F'),
in the space of span F'; we deduce that there exists p € Normal(z; F') N L such that
(p,g) > 0.

Since F is a cone, we have Normal(z; F') C Normal(0; F) = —F*, hence, p € —F™*.
Since K is facially dual complete, by Remark 1 in [18] we have F* = K* + F*; hence,
there exist y € —K* and z € F* such that y = p — z. Since g € span F and z € F*-,
we have

(y,9) = (p—2,9) = (p,g) > 0.

Since g € Tangent(z; K), there exists a sequence {s}, such that s € K and

1, S — &
m ———— =4d.
koo sk —af 7
Therefore,
3 <5k — T, y>

lim ——= = {(g,y) > 0,

dm e ey
and there exists k large enough such that

(s —z,y) > 0.

Now observe that since F' is a cone, and x € F', we also have %m € F and %x e F,

hence, by the definition of the tangent cone,
1 1
——x, —x € Tangent(x; F).
272
Since p € Normal(x; F), this yields (p,x) = 0. Then (x,y) = (z,p) — (x,z) = 0, and
we have
0 < (sk—2,y) = (sk,¥).
However, this is impossible, as s, € K, y € —K*, and hence (sg,y) < 0. Therefore,
our assumption is not true, and by the arbitrariness of F' and z we have shown that
(2.2) holds for all FF < K and all x € F. o

For the sake of completeness of our exposition, we prove that the tangential
exposure yields facial exposure.

PROPOSITION 2.2. Let C' C R"™ be a closed, convex, tangentially exposed set.
Then every proper face F <1 C is exposed.

Proof. Let C be as in the statement of the proposition, and assume that F' is
its proper face. Without loss of generality assume that 0 € relint F. Let E be the
smallest exposed face of C' that contains F. If E = F, there is nothing to prove, so
assume that F' # E. Thus, F Nrelint £ = ().

For every p € relint E we have —ap ¢ E for all & > 0 (otherwise (p, —ap) C C, and
by the definition of a face [p, —ap] C F', which is impossible due to F Nrelint £ = ).
It follows that —p ¢ Tangent(0; E).

This manuscript is for review purposes only.
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By the tangential exposure property, —p ¢ Tangent(0;C), hence, —p can be
separated from Tangent(0; C'): there exists some g # 0 such that

<ga 7p> > sup <g,'U> =0.
vETangent(0;C)
Observe that the normal g defines a supporting hyperplane to Tangent(0;C) (and
hence to C) that contains zero, but does not contain E (since (g,p) < 0 for p €
relint F). This supporting hyperplane exposes some face G of C' which contains F,
because 0 € relint F'. The intersection GN E is a nonempty face of C' that contains F.
Since both G and E are exposed, their intersection is also exposed. The face GN E
is exposed, contains F' and is strictly smaller than E. This contradicts the definition
of F. d

There are regular cones which are facially exposed, not FDC and not tangentially
exposed. The example from [27] satisfies these properties, see Figure 4. Nevertheless,
there are facially exposed regular cones that are also tangentially exposed, but not
FDC. We can prove this by modifying the aforementioned example.

EXAMPLE 1. We revisit the example from [27]. The closed convex cone K C R*
is a standard homogenization K = cone{C x {1}} of a compact convez set C C R3
whose construction and Mathematica rendering are shown in Fig. 4. The set C is a

FiG. 4. A slice of a closed convex cone that is facially exposed but not FDC. Notice that this
set is mot strongly facially exposed (i.e., there exists at least a face that is not facially exposed).

nonsingular affine transformation of the convex hull of four curves. In particular, it
is conv{y1, V2,73, Va}, where

71 (t) :== (0, —sint,cost — 1), ~Y2(t) :== (0,cost — 1, —sint),
v3(t) :== (—sint, 1 — cost,0), ~4(t) := (cost — 1,sint,0),

and t € [0,7/4]. It is not difficult to observe that if C fails the tangential expo-
sure property, then its homogenization K does as well (if the convexr set C is not
tangentially exposed then the certificate of this fact—a face F and x € F—leads
to a corresponding certificate for K failing the tangential exposure property). The
failure of tangential exposure for the set C' is evident from considering tangents to
the face F = conv{ys,v4} and C at the point (0,0,0). Indeed, it is clear that
g :=(0,—1,0) € Tangent(x; K) since

0, —si -1
(0,—1,0) = Limsup ty; (t~*) = lim (0, —sins, cos s )
t— o0 sl0 S

On the other hand,
(g9,73(t)y = cost —1 <0, (g,v4(t)) = —sint <0 Vt € [0,7/4],

This manuscript is for review purposes only.
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190 hence g is separated strictly from Tangent(x; F'). This is illustrated geometrically in
Fig. 5.

Tangent(z; F)

Tangent(z; C) Nspan( F-x)

Fic. 5. Failure of tangential exposure
191
EXAMPLE 2. We construct a modified example of a closed conver cone that is
facially and tangentially exposed, but is not facially dual complete. This cone is a
homogenization of the three-dimensional set C' that is a convex hull of two curves,
one is a piece of a parabola, and the other one is a twisted cubic (see Fig. 6). So, we

Iy

gl

o)

Fic. 6. A rendering of construction of Example 2: A slice of a closed convex cone that is
tangentially exposed but not facially dual complete.

have K := cone{C x {1}}, C := conv{vy1,7v2}, where
Y1(s) = (=8, =52, =), s € [0,1] and 72(t) = (=t,12,0), t € [0,1/3(2 + V7)].

192 It is a technical exercise to show that the cone K (or equivalently the set C) is tan-
193 gentially exposed, but not FDC. We leave the detailed algebraic computations, as well
194 as the proof that the set is not FDC, to the Appendizx.

195 2.2. Lexicographic tangent cones. The last example leads us to the next
196 idea. The above regular cone is facially exposed and tangentially exposed, but it is
197 not FDC. Also, its tangent cone to C' at x = (0,0,0) is not tangentially exposed
198 itself. This is intuitively clear from Fig. 7, where the dotted line in the left-hand-side
199 graphic shows the set of points for which the tangential exposure property fails (on
200 the tangent cone at (0,0,0)) with respect to the adjacent flat face, and the right-
201 hand-side plot shows the slice of this second-order tangent cone. So, we consider a
202  stronger property defined by enforcing tangential exposure condition (2.1) recursively
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y

Fi1G. 7. An illustration of how the tangent cone at the origin for Example 2 is not tangentially
exposed.

on all tangent cones. For example, a second-order tangent cone for C at z € C' and
v € Tangent(z; C) is:

Tangent [v; Tangent(z; C')] = Lim sup o [Tangent(z; C') — v]

to—+o00
= Limsupts { [Limsuph(C - x)] - U} .
to—r+00 t1—+00

We may recursively apply this construction to generate kth-order tangent cones for
every nonnegative integer k. This geometric notion is a geometric counterpart of
Nesterov’s lezicographic derivatives (see [16] for this analytic notion, and the references
therein). Any tangent cone obtained as a result of the above recursive procedure (of
any order) is called a lexicographic tangent cone of C. We say that a closed convex
set is strongly tangentially exposed if it is tangentially exposed along with all of its
lexicographic tangent cones.

Next, we investigate some fundamental properties of the family of lexicographic
tangent cones of closed convex sets. Observe that for u,v € C such that face(u; C) =
face(v; C) =: F, we have

Tangent(u; C) = Tangent(v; C') =: Tangent(F; C).

That is, Tangent(F'; C') denotes the tangent cone for C' at any x € relint F for F <C.
Thus, the cardinality of distinct tangent cones of C' is bounded by the cardinality of
the set of faces of C. With this notation, our Theorem 2.1 can be restated as:

Let K be a regular cone that is FDC. Then for every pair of faces F,G such that
G < F <K, we have

Tangent(G; K) Nspan F = Tangent(G; F).

Let T : families of non-empty closed convex sets in R® — families of non-empty
closed convex cones in R™, defined by

T(K) := {Tangent(F; K) : VF I K, F#0, VK € K},

ie.
T(K) = the set of all tangent cones of convex sets in K.

We define 7°(K) := K and for every positive integer k, T*(K) := T [T*~*(K)] . Note
that, if for some family of convex sets K, we have T (K) = I, then

(2.3) TH(K) =K, for every nonnegative integer k.

This manuscript is for review purposes only.
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Let C be a closed convex set. We abuse the notation slightly and write 7(C) for
T({C}) (when K is a singleton C, we write 7%(C) instead of 7%({C})). Then, the
tangential depth of C is the smallest nonnegative integer k such that 7*T1(C) =
T*(C). The tangential depth of R™ is zero for every nonnegative integer n and the
tangential depth of R’ is one for every positive integer n. For example, T(Ry) =
{R4,R} = T?(R4), and,

TRY) = {R3, R x R,R; x R%, R3} = T2(R3).

In the above, we listed the elements of 7(R%) up to linear isomorphism (there are
eight cones in 7(R%); three of them are isomorphic to RZ x R, and another group
of three are isomorphic to Ry x R?). Next, for every positive integer n, consider the
second order cone SOC™.

T(SOC™) = {SOC", a closed half space, R"} = T?(SOC™).

Thus, the tangential depth of SOC™ is one, for every positive integer n. Note that
for n = 1, the first two elements listed in 7(SOC™) are linearly isomorphic, and for
n > 2, the second element represents infinitely many such cones (one for each extreme
ray of SOC™).

We call a nonempty regular cone smooth if every boundary point of K is on an
extreme ray of K and the normal cone of K at every extreme ray of K has dimension
one so that every extreme ray of K is exposed by a unique supporting hyperplane of
K. All smooth cones have tangential depth one. Using the fact that almost all regular
cones are smooth (in the space of all regular cones), we can conclude that almost all
regular cones have tangential depth one. Indeed, we must caution the reader that
this last statement is measure theoretic in nature and many of the interesting regular
cones we encounter in optimization are not smooth.

Given a nonempty closed convex cone K, suppose there exists a nonnegative
integer k such that 7*T1(K) \ T*(K) contains only polyhedral cones and cones C
with the property that when we express C' = C + L with L being the lineality space
of C, the cone C is a smooth cone. Then, using the above ideas, we can prove that
the tangential depth of K is at most (k + 2).

Next, we prove that the tangential depth of every regular cone is bounded by its
dimension.

THEOREM 2.3. Let K € RY be a nonempty closed convex cone. Then, the tan-
gential depth of K is at most (d — £), where d is the dimension of K and ¢ is the
dimension of the lineality space of K.

Proof. Let K be as in the statement of the theorem and let L denote the lineality
space of K. For every proper face F' <1 K, span(F) 2 L. If span(F) = L, then
Tangent(F; K) = K. However, if span(F) \ L # 0, then since span(F) is a linear
subspace, and Tangent(F'; K) contains span(F'), the dimension of the lineality space
of Tangent(F’; K) is at least (€+1). Now, let k£ be a nonnegative integer and apply this
observation to every cone in T*(K). We conclude that every cone K’ in TF+1(K)\
T*(K) is Tangent(F; K) for some parent cone K € 7*(K) and for a proper face F
of K. Now, combining this with the observation (2.3), we see that for k := d — ¢,
THFH(K) \ TH(K) = 0. Therefore, the tangential depth of K is at most (d —¢). O

Therefore, a regular cone K is strongly tangentially exposed iff every cone in the
set T(K) is tangentially exposed, where d := dim(K). Our next goal is to prove that
strongly tangentially exposed closed convex cones are FDC.

This manuscript is for review purposes only.
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2.3. Proof of the sufficient condition. We use several technical claims in the
proof. The next proposition immediately follows from the above definitions.

PROPOSITION 2.4. Tangent cones inherit strong tangential exposure property from
the original object. That is, if C is strongly tangentially exposed, then every T €
T*(C) is strongly tangentially exposed for every nonnegative integer k.

PRrOPOSITION 2.5. Let K be a regular cone in R™, and let F' <1 K be an exposed
face of K, L :=span F. Then for every nonzero u € F* N L such that u exposes {0}
as a face of F, there exists g € K* such that uw=1lg.

Proof. Let K, F, and L be as above, and let w € F* N L be such that (u,z) > 0,
Vo € F \ {0}. Without loss of generality, we may assume |ju|| = 1. Since F' is an
exposed proper face of K, there exists s € K* such that

(s, ) =0, ifzekF;
B >0, freK\F

Let go := u+ as, a € R. If there exists « such that g, € K*, then we are done. So,
we may assume that for every o € R, there exists x, € K such that

0> (gas Ta) = (U, Ta) + (S, Ta) -

Since K is a cone, we can choose x, to be unit norm. Now, as o — +00, the sequence
{z4} must have a convergent subsequence with limit z € K which also has norm 1.
If (s,Z) > 0, then using

—L< —Jullllzal < (u20) < —a(s,za)

and taking limits as @« — 400 along the subsequence of {z,} converging to T, we
reach a contradiction. Hence, we may assume (s,z) = 0, i.e., T € F. Applying the
above limit argument with this new information, we conclude (u,Z) < 0. Thus, by
our choice of u, T = 0, again leading to a contradiction. Therefore, there exists «
such that g, € K*, and we are done. ]

Next, we observe that FDCness and strong tangential exposedness are not affected
by addition or removal of subspaces.

PROPOSITION 2.6. Let K = C'+ L, where L is a linear subspace and C' is a closed
convex cone such that span C C L. Then the following statements are true.

(i) The cone K is strongly tangentially exposed if and only if C is;

(ii) The cone K is FDC if and only if C is.

Proof. For any x € K and its unique projection p onto C we have
Tangent(z; K) = Tangent(p; K); Tangent(z; E) = Tangent(p; E) VE < K

moreover, observing that the faces of C' and K are in bijective correspondence with
each other (F <1 C if and only if F 4+ L < K), and that

Tangent(z; K) = Tangent(p; C') + L,
Tangent(x; F' + L) = Tangent(p; ') + L VF <C,
span(F + L) = span(F)+ L VF <C,

we obtain (i) directly from the definition of tangential exposure.
Proof of (ii) likewise follows from the definitions and fundamental properties. O
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12 V. ROSHCHINA AND L. TUNCEL

Now, we are ready to prove our sufficient condition for FDCness.

THEOREM 2.7 (Sufficient condition). If a closed convex cone K C R™ is strongly
tangentially exposed, then it is facially dual complete.

Proof. We will prove the statement by induction in the dimension n of the under-
lying space R™. Observe that for n = 1 the statement is trivial: all three possible, at
most one-dimensional, nonempty, closed convex cones are both strongly tangentially
exposed and facially dual complete.

Assume now that every closed convex cone of dimension at most (n — 1) that
is strongly tangentially exposed is also FDC. We will prove the statement for n-
dimensional closed convex cones. Let K C R™ be a strongly tangentially exposed
closed convex cone. To prove that K is FDC, by Proposition 1.4 it suffices to show
that for all F < K, with L := span F', for every v € F* N L, we have u € I, K*.

Let w € F* N L, we may assume u is not zero, and define

E:={zxe€F: (uz)=0}.

Observe that E<F'<1K, since u defines a supporting hyperplane to F' at origin, and any
sub-face of a face is also a face (see Proposition 1.2), if E = {0}, the result follows from
Proposition 2.5. Otherwise dim E > 1. Let « € relint E' and consider Tangent(z; K)
and Tangent(z; F'). Observe that span E C Tangent(z; F') C Tangent(z; K), so that
our cones decompose into a direct sum:

Tangent(z; K) = C + span E,

where C' C (span E)*. Notice that since dim E > 1, we have dimC < n — 1.

By Proposition 2.4, the cone Tangent(x; K) inherits strong tangential exposedness
property from K. Applying Proposition 2.6 (i) to Tangent(z; K) and C, we deduce
that C' is strongly tangentially exposed as well, and since the dimension of C' is less
than n, it is FDC by the induction hypothesis. Applying Proposition 2.6 (ii) to
Tangent(z; K) and C, we deduce that Tangent(z; K) is facially dual complete.

We consider two cases based on whether Tangent(x; F) is a face of Tangent(z; K)
or not.

Case 1: Tangent(z; F') is a face of Tangent(x; K). Then from the FDCness of
Tangent(x; K) there exists g € (Tangent(x; K))* C K* such that with
L = span Tangent(z; F') = span F, u = II, g, and we are done.

Case 2: Tangent(z; F') is not a face of Tangent(x; K). Then consider the minimal
face G < Tangent(x; K) that contains Tangent(z; F'). By the property of minimal
faces in Proposition 1.2 (iii) we have

relint [Tangent(x; F)] Nrelint G # 0,

and therefore
{relint span [Tangent(x; F)]} Nrelint G # 0.

Applying Proposition 1.1 to [span Tangent(z; F')] and G, we have
(2.4) {[span Tangent(z; F)] N G}* = G* + [Tangent(z; F)] " .
From the strong tangential exposure assumption we have

Tangent(x; F') = Tangent(x; K) N span Tangent(x; F),
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and since Tangent(z; F') C G C Tangent(x; K), this yields
(2.5) [span Tangent(x; F')] N G = Tangent(x; F').
From (2.4) and (2.5) we have:
(2.6) [Tangent(z; F)]* = G* + [Tangent (z; F)] " .
Furthermore, since G* is closed, and [span G|+ C G*, we have
G* = G* Nspan G + [span G]™*.
Using this observation together with [span G]* C [Tangent(z; F)]*, we obtain from
2.6
0 [Tangent(z; F)]* = G* N span G + [Tangent(x; F)|© .

By our choice of x we have u € [Tangent(z; F')]*, hence, u is the orthogonal projection
of some g € G* Nspan G onto span Tangent(z; F).

Since G is a face of Tangent(x; K), and Tangent(x; K) is FDC, we can now find
a point ¢’ in (Tangent(z; K))* C K* that projects onto spanG as g.

Now g is the orthogonal projection of ¢’ € K* onto span G, and u is the orthogonal
projection of g onto span F' C span G. Hence u = Ilspan £(¢’) € Mgpan pK*. 0

The sufficient condition for FDCness is not necessary, as is evident from the next
example.

EXAMPLE 3. Let K = cone{C x {1}} C R*, where C C R? is a closed convez set,
C := conv{y1, 72},

v (t) = (cost,sint, 1), t € [0,7/2], v2(t) = (cost,sint, —1) t € [0, 7.
The set C is shown in Fig. 8. Observe that the set C is tangentially (and fa-

(1,0,1) A®
a8

Fia. 8. Construction of Example 3: A facially exposed set may have a tangent that is not
facially exposed

cially) exposed. However, strong tangential exposure fails for this set. In particular,
Tangent(Z; C), where T = (0, 1,1) is not facially exposed (see its Mathematica render-
ing in the first image of Fig. 9), and hence it is not tangentially exposed either. At
the same time this cone is facially dual complete. In this case we only need to check
the identity Mspan r(F++ K*) = F*Nspan F for the faces of K that correspond to the
top and bottom faces of C, and for both cases the relevant projections are the comic
hulls of three dimensional sets shown in the last two images in Fig. 9. We provide all
relevant technical computations in the Appendix.
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14 V. ROSHCHINA AND L. TUNCEL

Fic. 9. Tangent cone of the cone from Example 8 at T := (0,1,1). This tangent cone is
not facially exposed and the right-most pictures illustrate two closed convex sets whose conic hulls
represent the projections of the dual cones on the relevant subspaces.

3. Conclusion. We provided tighter, geometric, primal characterizations of fa-
cial dual completeness of regular convex cones via tangential exposure property and
strong tangential exposure property. In Figure 10 we present a schematic summary
of our results. Each bubble in the figure corresponds to a property of convex cones
(facial exposedness, facial dual completeness, etc.). A solid arrow from one bubble to
another bubble illustrates the fact that the former property implies the latter (labels
on solid arrows indicate where such a result was proved first; if the implication is
trivial, the solid arrow has no label). A dashed arrow which is blocked indicates that
proving the underlying implication is impossible (dashed, blocked arrows are labeled
by a corresponding example proving this claim).

Our results provide geometric tools for checking FDCness directly on the primal
cone. However, we do not provide any provably efficient algorithmic tools for checking
these properties. A related problem is whether Ramana’s Extended Lagrange-Slater
Dual (ELSD) construction [23] can be extended to tangentially exposed cones. Some
sufficient conditions for generalizing this construction were discussed in [29] and a
geometric extension of ELSD to FDC cones was established in [19]. The cone of
positive semidefinite matrices as well as any regular convex cone that can be expressed
as the intersection of some positive semidefinite cone and a linear subspace is strongly
tangentially exposed. Also, there are strongly tangentially exposed regular convex
cones that are not semi-algebraic sets. The problems of characterizing the set of
tangentially exposed convex cones and characterizing the set of strongly tangentially
exposed convex cones are left for future research.

As a by-product of our approach, we have introduced some new notions of expo-
sure for faces of closed convex sets:

(i) tangentially exposed convex sets

(ii) convex sets with facially exposed tangent cones

(iii) convex sets with every lexicographic tangent cone facially exposed

(iv) strongly tangentially exposed convex sets.

We can also apply these notions to the polars of convex sets. Also, we can ask for
characterizations of closed convex sets C' such that C and C° have a specific property
(or a specific pair of the properties) from the above list.

Appendix A. Technical details for Examples 2 and 3. The goal of this
section is to demonstrate that the cones in Examples 2 and 3 satisfy the claimed
properties. We use a substantial number of technical results which are listed below
and precede the main statements (Propositions A.12 and A.13). In some of the proofs
we only provide the ideas behind the computations, so that the tedious technical
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Theorem 2.7 Pataki [18

Strongly
tangentially
exposed

Facially exposed

along with every

_______ properly minimal
face of each F*

Facially dual
complete

Example 3

_.*" Example 2 Example 1 NN .

-------{>><

Tangentially }~ Proposition 2.2 ..

exposed

Facially exposed

Example 1

F1c. 10. A schematic summary of main results of this paper and their relation to other prior
results.

details can be reconstructed using the basic tools of linear algebra and real analysis.

PRrROPOSITION A.1. Suppose that E = F NG, where F' and G are exposed faces of
a closed convex set C C R™. Then E is an exposed face of C.

Proof. Since both F' and G are exposed, there exist pp, pg € R™ such that

Argmax(pp,x) = F, Argmax(pg,x) = G.
zeC zeC

Denote
mp = I;leaé(<pp,l’>, me = r;ggg(pa x).

Let pg := pr + pg. We have
(pE,7) = (PF,7) + (PG, x) <mp +mg Ve C\ (FNG);

(pe,7) = (pF, ) + (pa, ) =mp +mg VreE=FNG.

Hence,
Argmax(pg,z) = E,
zeC
and therefore F is an exposed face of C. 0

PROPOSITION A.2. Let C be a compact convex set with a nonempty interior, and
let H be a collection of half-spaces that contain C. If for every point on the boundary
of C there is at least one half-space H € H whose boundary hyperplane contains this

point, then
c=()H
HeH

Proof. Assume the contrary, i.e. the conditions of the proposition are satisfied,
but there is a point x € (()ycyy H) \ C. Since int C' # 0, there is some y € int C.
The line segment [x,y] intersects the boundary of C' at a unique point z € (z,y)
(see [8, Remark 2.1.7]). For some H € H there is a boundary hyperplane that contains
z. The half-space must have y in its interior, hence z ¢ H, and therefore x ¢ (4 H,
a contradiction.
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16 V. ROSHCHINA AND L. TUNCEL

ProPOSITION A.3. Let F be a collection of proper faces of a compact convex set
C C R, intC # 0. If there exists a homeomorphism ¢ from the union U of the
relative interiors of the sets in F,

U= U relint
FeF

to the Euclidean sphere So, then the collection F contains all nonempty proper faces

of C.

Proof. Tt is not difficult to construct a homeomorphism 1 between the boundary
of C' and the unit sphere. This can be done by choosing an arbitrary point ¢ € int C
and identifying each point u on the boundary of C' with the point p = (v —c¢)/|lu—¢||.
This mapping is continuous, and since the intersection of the ray ¢ + conep with
the boundary of C' is unique (see [8, Remark 2.1.7]), it is also a bijection, hence the
mapping v is indeed a homeomorphism.

We can compose the inverse of the homeomorphism ¢ (from the assumption) with
1) to obtain another homeomorphism 1) o ¢! that maps the unit sphere to its subset.
If there exists a point on the boundary of C that is not in U, then the set

»(¢7(S2))

is a proper subset of the sphere. This is impossible by the standard argument involv-
ing the stereographic projection and Borsuk-Ulam Theorem: if such homeomorphism
existed, it is easy to construct another homeomorphism between the sphere and the
Euclidean subspace of the same dimension by rotating the sphere and considering
the stereographic projection. Being a homeomorphism, this is a continuous map-
ping, which by Borsuk-Ulam Theorem has to have coincident images of two antipodal
points. 0

PROPOSITION A.4. Let C' be a compact convex set in R™ and let K be its lifting
to R"*1 K := cone{C x {1}}. The set C is facially (tangentially) exposed if and only
if K is.

Proof. The facial exposure part was proven in [27, Proposition 3.2]. The tangen-

tial exposure can be shown in a similar fashion, using the face correspondence given
in [27, Proposition 3.1]. d

ProOPOSITION A.5. If a closed conver set C C R™ is facially exposed, then all
zero- and one-dimensional faces of C are tangentially exposed, i.e.

(A.1) span(F — x) N Tangent(x; C') = Tangent(z; F) Yz € F, VF, dimF <2.

Proof. Observe that all zero-dimensional faces are tangentially exposed due to
the triviality of the relevant linear span, so we only need to prove the statement for
one-dimensional faces.

Assume that there exists a face [u,v], u # v of a closed facially exposed set C
such that [u,v] is not tangentially exposed.

This means that there exists x € [u, v] that violates (A.1). Observe that z ¢ (u,v),
as for the points in the relative interior of the interval we have Tangent(zx; [u,v]) =
span(u — ), and property (A.1) holds trivially. Without loss of generality we assume
that x = .

There exists a sequence {xy} such that x — u, z € C,

T —U

D = Tos =] — p € (Tangent(z; C') Nspan{v — u}) \ Tangent(u; F).
T —U
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Observe that from p ¢ Tangent(u; F') = cone{v — u}, p € span{v — u}, [|p|]| = 1 we

deduce that
U—v

b= .
[u — o
Since {u} is an exposed face of C, there exists a normal ¢ € R™ such that

(q,u) > (q,z) VaxeC.

We therefore have

,p) = lim —— <0,
(@,p) = Jim =
and on the other hand
<q7 U — U>
,p) = —= >0,
(¢:p) TEPR
a contradiction. 0

PROPOSITION A.6. Let F' be a two-dimensional face of a three-dimensional com-
pact convex set C. If for each x € F and each q € Normal(x; F) Nspan(F — z) there
exists a corresponding normal h € Normal(x; C) that projects onto the linear span of
F —x as q, then F is tangentially exposed.

Proof. Suppose that F' is not tangentially exposed. This implies that there exists
x € F and a sequence {xy}, v — x, 2 € C such that

T — T

Dk — p € (Tangent(z; C') Nspan(F — z)) \ Tangent(z; F).

E

Since p € span(F —x)\ Tangent(z; F'), there must be a normal ¢ € Normal(z; F')N
span(F — x) such that (p,q) < 0.
If there is a normal h € Normal(z; C') such that

Hspan F(h) =4q,

then for sufficiently large k
(xp —x, h) <0,

which is impossible. O

PROPOSITION A.7. Given the representation for our set C as
C={z: (p,x) < dy,t €T},
its lifting is
K =A{z: {(pt,—dy),x) <0,t €T},
and the dual cone of the lifting is
K* = clcone{(ps, —d;) : t € T}.

Proof. Straightforward from the definitions. ]

PROPOSITION A.8. Let L be a linear subspace and let C' be a closed convex set.
The set L + C is closed iff the projection of C onto L is closed.

This manuscript is for review purposes only.
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18 V. ROSHCHINA AND L. TUNCEL

Proof. First assume that II;,(C) is closed. Consider any sequence {zx} such that
x € (LY + C) for all k € N and zp — 2. Then Iy (x;) — I (Z) € UL (C) by our
assumption. Hence there exists § € C such that II1(Z) = II1 (7). We have
T =1L(T) + (Z - 1L(7) =M (H) + (- UL(7)) =y + (1L(y) —y) + (7 — 1L (2)),

eL+ cLt

hence, Z € C + L*.
Now assume that C' + L+ is closed and let {3} be such that z;, € II1(C) for all
k € N and z;, — Z. For every k € N there is some y; € C such that xp = Iy (yx). We
hence have
ok =Yp + (xk — ye) = Yo + Alyr) —yx) € C+ L.

Since C + L* is closed, we have & = 5+ z with § € C, 2 € L. Then z = I (7) €
I (C), so . (C) is closed. 0

PROPOSITION A.9. Let K C R™ be a cone, and assume that K is facially exposed.
Then for every F <1 K such that F = cone{p1,pa}, where p1,ps € R™ are linearly
independent, the set K* + F1 is closed.

Proof. Since K is facially exposed, the faces E; = FNspan p; and Fy = FNspan po
are exposed. Therefore, there are normals hy, ho € R™ such that

(A.2) (hiypi) =0, (hiyz) <0 Ve K\ E;, ie{l,2}.
Observe that hy, ho ¢ F+ (since they expose proper faces of F'). Hence,
gi = gpan r(hi) #0 Vi e {1,2}.
Moreover,
(A.3) (9i,pi) = (9i — hi,pi) + (hi, pi) = 0 Vi € {1,2}, a
since g; — h; € F+, and
(giyx) = (hyyz) <0 Vax € F\ E;, i€ {1,2}.
Observe that an x € span F' can be represented as
T = ap; + Bpa, a, B eR,
with a, 8 > 0 if and only if z € F. We have from (A.3)

(z,91) = a(p1,91) + B{p2, 91) = Bp2,91), (T,92) = (p1,92) + B(p2, g2) = a(p1, ga)-

It follows from these relations that o > 0 if and only if (z,¢g1) < 0 and 8 > 0 if and
only if (x, gs) < 0. We have the representation

F={zeR": (z,01) <0, (x,92) <0} NspanF.
For the dual face we have
F* = —clcone{g1, 92} + Ft=- cone{g1, g2} + Ft,
hence, for any y € F* we have

y = —ag1 — Bg2 +u,
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where a, 3 € R, and u € F+. We can rewrite this as
y=—agr — g2 +u=—ahy — Bhy + (a(hy — g1) + B(ha — g2) + u),

where a(hy —g1)+B(ha—go)+u € F*, and since hy, hy € —K*, we havey € K*+F*.
By the arbitrariness of y this yields F* C K*+ F*. Together with F* = cl(K* + F*)
this yields K* + F+ = cl(K* + F4).

PRrOPOSITION A.10 (Pataki criterion). If a face F' <1 K is such that all proper
minimal faces of F* are exposed, then F+ + K* is closed.

Proof. This follows directly from Theorem 2 and the proof of Theorem 3 in [18].0

PropPoOSITION A.11. Let S C R™ be such that S is compact and can be strictly
separated from zero. Then cone S is a closed convexr cone.

Proof. If cone S is not closed, then there must be a sequence {yi} such that
yr € K for all k € N and y — y ¢ K. Therefore for each k € N we have

Pk Pk
yk:ZO/j;sz, ZO/I;:L aiZOViG{L--ka}a Pk§n+1
i=1 =1

PROPOSITION A.12 (Properties of the cone K from Example 2). Let K :=
cone{C x {1}}, where C := conv{yi,v2}, 71(s) = (—s,—s%,—53), s € [0,1] and
Yo(t) = (—t,t2,0), t € [0,1/3(2 + V/7)]. The closed convex cone K is
facially exposed;
tangentially exposed;
not strongly tangentially exposed;

not FDC.

Proof. To verify that K is facially and tangentially exposed by Proposition A.4
it is sufficient to show that C satisfies these properties.

To show facial exposure, first consider the parametric families of compact
convex sets

Fii(s) = [0,7(s)], s € (0,1],  Fra(s) = [11(s),72(0(s))], s € (0,1],
where ¢(s) = 1/3(2 4+ V/7)s, and

Fy = conv{0,71(1),72(¢(1))},  Fo = conv{yz}.

To show that these sets are exposed one- and two-dimensional faces of C'| it is sufficient
to demonstrate that for each of these faces there exists a corresponding exposing
hyperplane. This is a straightforward exercise in analysis, which we omit for brevity.

It is evident that y; U s C ext C, since all points in y; U o are subfaces of the
higher dimensional faces listed above. All these zero-dimensional faces are exposed
by Proposition A.1.

It is evident from the diagram in Fig. 11 that the relative interiors of all faces that
we came across so far can be mapped homeomorphically to a sphere, therefore, by
Proposition A.3, there are no proper faces of the set C other than the listed exposed
faces.

Tangential exposure needs to be verified for two-dimensional faces only due to
Proposition A.5. We only have two such faces, F; and F5.
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0

bzl
7(1) 72(p(1))

0

Fic. 11. Boundary of C identified with the unit sphere

For the triangular face F; observe that all of its one-dimensional faces are exposed,
hence the relevant normals project onto the normals at the points on these faces in
the two-dimensional span of the face. The normals at the corner points are obtained
as the convex hulls of these projections.

For the top face Fo = conv v the selection of the normals and the verification of
the projections is a straightforward technical exercise.

To show that the second-order tangential exposure is broken (and in
fact the tangent cone is not even facially exposed), consider the tangent to the set C
at 0. We have

Tangent(0; C') = Lim sup tC = clcone{y; U~2}.

t—o00

We scale our curves for convenience to obtain
ki(s) = (—=1,—s,—5%), ka(t) = (—1,t,0).
We hence have a slice of our tangent cone given by
conv{(—s, —s%),s € [0,1], (—1,t,0),t € [0,(1)]},

see Fig. 7. It is clear that the set has an unexposed face {(0,0)}.

To show that the cone K = cone{C x {1}} is not FDC, we explicitly identify
a parametrised family of points in the sum K* 4+ F+ whose limit does not belong to
this set. Let

p(s) = (2(VT +1)s, (5 = V7),0, (VT +3)s?) .

We will show that p(s) € K* + F* for F = cone{F, x {1}}, however, p(s) — p ¢
K*+ F+.

For the first relation, observe that F- = span{(0,0,1,0)}, and therefore

4
r(s) := (0,0, ;,0) € Ft.

Hence, p(s) = q(s) + r(s), where 7(s) € F*, and we will next show that ¢(s) € K*.
We have explicitly

q(s) = (2(\ﬁ+ s, (5 —V7),—4/s, (VT + 3)82) .
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Abusing the notation and denoting by 7; the lifted version of the relevant curve,
we have

(1), q(s)) = (VT +3+42)(u—3) >0
when u # s, also for v, substituting ¢(u) = 1/3(2 + vV7)u,

(ra(p()),a(s)) = B+ VT)(u—s)*, O

which is greater than zero unless u = s. We have hence shown that the point ¢(s) is
in the dual cone.

Let

D= llilgp(S) = (Oa 5 — ﬁ7070)a
then
(B () = (VT —=5)s <0,
and hence p ¢ K*.

PROPOSITION A.13 (Properties of K from Example 3). Let K := cone{C x {1}},
where C := conv{y1,v2}, 71 (t) = (cost,sint, 1), t € [0,7/2], v2(t) = (cost,sint, —1),
t € [0,7]. The closed convex cone K is

e facially exposed;
e not strongly tangentially exposed;
e FIDC.

Proof. To prove that the cone K is facially exposed, we use the same
techniques as in the proof of Proposition A.12.
The two-dimensional faces of C are

Fy = conv{v1}, Fy=conv{ya},

Fs = conv{71(0),72(0),v2(m)}, Fu = conv{v1(0),v1(7/2),72(m)};

the one-dimensional faces are the line segments connecting v; and ~s,

F11(t) = conv{v1(t),y2(t)}, t € [0,7/2];
Fl?(t) = COHV{’yl (7(/2)3 72(t)}7 te (W/Qa ’/T];

and the remaining intersections of the two-dimensional faces,

Fig = conv{y1(0),71(7/2)}, Fia = conv{12(0),72(m)}, Fi5 = conv{y1(0),72(m)}.

It is a technical exercise to verify that the two-dimensional faces F;, i € {1,...,4}
are exposed by the hyperplanes that correspond to the following half-spaces that
contain C,

<(0707 1)> <1, <(0’07 _1)7 > <1, <(_1’ -1, 1)7 > <0, <(07 _1’0)a > <0.

This also proves that the one-dimensional faces Fi3, Fi4, F5 are exposed, by Propo-
sition A.1. The remaining families of one-dimensional faces F}1 and Fjo are exposed
by the following two families of half-spaces and relevant hyperplanes,

((cost,sint,0),-) <1 :¢€[0,7/2],
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(170)1) a (07171)
b £y

a

Y1
F;

(1707'1)
Y2 7

2

(1,0,-1) c (-1,0,-1)

F1a. 12. Boundary of C identified with the unit sphere

1 —2Si1’17')’ )< 1 —|—;in7
534 It is evident from using the same argument as in the proof of Proposition A.12
535 and invoking Proposition A.3 together with the facial topology shown in Fig. 12,
536 that the listed one- and two-dimensional faces together with their zero-dimensional

{(cosT,sin T, , T € (m/2,7].

537 intersections along the curves v, and -5 comprise all nonempty proper faces of the
538 set C'. The exposure of the zero-dimensional faces follows from Proposition A.1.

539 To prove that the cone K is FDC we begin with computing the polar cone
540 explicitly. We can do this from the half-space description obtained earlier and using
5

41 Propositions A.2 and A.7. The dual cone K* for K is

542 K° = cone{{(—cost,—sint,0,1) : ¢t € [0,7/2]},
e —1 1+si
543 {(—COST,—SiHT, Sm; , Jr;mT),TE (7r/2,7r]},
544 (0,0,-1,1),(0,0,1,1),(1,1,—-1,0),(0,1,0,0)}.
546 To check whether K is facially dual complete, it remains to consider all possible
547 sums F1 4+ K* for orthogonal complements of faces of K and see if these sets are
548 closed.
549 Notice that whenever the face F' is one-dimensional, its orthogonal complement

550 is a three-dimensional subspace. Its sum with any closed cone is closed, since the
relevant one-dimensional projection of a closed cone is closed. By Proposition A.9 all
two-dimensional faces of K also verify the closedness condition.

Due to our observation about one-dimensional faces and Proposition A.9 to prove
that the cone K = cone{C x {1}} is FDC we only need to check the closedness of
F++ K* for the three-dimensional faces of K (that correspond to the two dimensional
faces of C shown in Fig 13).

For the three-dimensional faces of K that correspond to the top and bottom faces
Fy, and Fis of the set C, we use Proposition A.8 to reduce checking that the sum
9 F+ 4+ K* is closed to checking that Mypan po K™ is closed.

To compute the projections we use a coordinate transformation that rotates the
space so that F* coincides with span(0,0,0,1). This allows us to obtain a three-
dimensional graphic representation of the projection for each case.

We use the representation K* = cone S, where

S O O ot Ot Ot Ot Ot Ot Ot Ot
SRR (o 2N RS IR I NN C NI

v o Ot ot ot Ot Ov Ot Ot Ot Ot Ot

S

S =5US5U S5,
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(-1,0,-1)

Fic. 13. Two dimensional faces of C

563

564 S1 = {(—cost,—sint,0,1) : ¢ € [0,7/2]},

i —1 14si
565 Sy = {(—COST,—sinT, sm; , —|—2sm7'),7_ € [7r/2,7r]},

S3 = {(07 0) _17 1)7 (0707 1a 1)a (17 17 _15 0)7 (Oa 17 070>7 (07 0) 07 1)}

(S0
>
-

For the top face we have the corresponding face Fj; = cone{F; x {1}} =
cone{vy; x {1}} < K, and so

span F|; = span{(1,0,1,1),(0,1,1,1),(0,0,1,1)}, Fl'lj' = span(0,0,1,—1).

568 It is a technical exercise in linear algebra to verify that U(F},) = cone S’, where
569 S" = {51, 55,55},

o
=
N

=R

Il

{{(—cost,—smt,u\/é) te [O,7r/2]}},
571 S5 :{
{

—cosT,—sinT,1/V2sin7), T € [7r/2,7r]} ,

(
(0,0,v/2), (1,1, —1/v/2), (0, 1,0), (0,0, 1/\/5)} :

[@2{e)]
N

R
Il

To show that U(FY;) is closed, we use Proposition A.11. It is easy to see that for
w = (1,1, 2), where z € (2,2v/2), we have

(w,z) >0 Vrels'.

For the bottom face Fi5 we have F|, = cone{y; x {1}}, and the relevant linear
subspaces are

span F{, = span{(1,0,1,-1),(0,1,1,-1),(0,0,1, —1)}, F{QJ' = span(0,0,1,1).

574  After computing the relevant unitary transformation U, the projection is a three
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dimensional set U(Fy,) = cone S’, where S’ = {5}, 55, 55},

S/ = {{(cost,smt,uﬁ) te [o,w/2]}},
Sy = {(cosr,sinr, 1/V?2),7 € [7r/2,7r]}7
S, = {(o,o, V2), (1, -1,1/v/2), (0, 1,0), (0,0,1/\/5)} . O

For w = (0,y, —1), where y € (0,1/1/2), it is easy to check that (w,z) < 0 for all

points in S’, and hence, by Proposition A.11 the set cone S’ is closed.

The remaining triangular faces satisfy Proposition A.10: since the triangular faces

are polyhedral, their duals are also polyhedral, and have all their proper faces exposed.

[10]
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