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Abstract. We study infeasible-start primal-dual interior-point methods for convex optimiza-

tion problems given in a typically natural form we denote as Domain-Driven formulation. Our

algorithms extend many advantages of primal-dual interior-point techniques available for conic

formulations, such as the current best complexity bounds, and more robust certificates of ap-

proximate optimality, unboundedness, and infeasibility, to Domain-Driven formulations. The

complexity results are new for the infeasible-start setup used, even in the case of linear program-

ming. In addition to complexity results, our algorithms aim for expanding the applications of,

and software for interior-point methods to wider classes of problems beyond optimization over

symmetric cones.

1. Introduction

In this article, a convex optimization problem is minimizing a convex function over a convex

set in a finite dimensional Euclidean space. Convex optimization’s powerful and elegant theory

has been coupled with faster and more reliable numerical linear algebra software and powerful

computers to spread its applications over many fields such as (1) data science: machine learning,

compressed sensing (see [9, 21, 13, 2]), (2) engineering: control theory, signal processing, circuit

design (see [8, 4, 6, 1]), (3) relaxation and randomization: provable bounds and robust heuristics

for hard nonconvex problems (see [46]), and (4) robust optimization (see [5, 3]). Development of

modern interior-point methods has had a huge impact on the popularity of convex optimization.

Modern theory of interior-point methods, with polynomial iteration complexity, started with

Karmarkar’s revolutionary paper [25] in 1984 and then extended from linear optimization to

general convex optimization problems by Nesterov and Nemirovskii [37] in the late 1980’s. The

literature on this topic has become extensive and many different approaches have been proposed

since then. In this article, we are interested in the modern primal-dual interior-point techniques.
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[33] has a detailed discussion about the advantages of primal-dual techniques over purely primal

ones, for example, in designing long-step algorithms.

The focus of research for primal-dual algorithms has been mostly on conic formulations (where

minimization is over the intersection of an affine subspace and a convex cone), see for example

[36, 34, 41, 39, 40, 47, 30, 45]. Following this research, in many settings, the state-of-the-art

for utilizing primal-dual interior-point methods is to reformulate the given convex optimization

problem as a conic optimization problem (see [33] or [37]-Section 5.1). This usually requires

the introduction of additional variables and constraints (that are artificial in the context of the

original problem). However, the applications and software for conic optimization itself have not

gone much beyond optimization over symmetric (self-scaled) cones; more specifically linear pro-

gramming (LP), second-order cone programming (SOCP), and semidefinite programming (SDP).

Some of the desired properties of optimization over symmetric cones have been extended to general

conic optimization [45, 35, 44, 31]. While the conic reformulation implies that, under reasonable

assumptions, all convex optimization problems enjoy the same iteration complexity bounds, there

is a gap (remained unchanged for many years) between the efficiency and robustness of the soft-

ware we have for optimization over symmetric cones and many other classes of problems. In the

feasible-start1 setup, [33] demonstrated that not all advantages of the primal-dual interior-point

techniques are intrinsically related to conic formulation. In this article, we expand this conclusion

to the more challenging and practical infeasible-start scenario. Specifically, we design and ana-

lyze infeasible-start primal-dual algorithms for problems given in a typically natural form (can

be a conic formulation or not or an arbitrary mixture of both) that not only have comparable

theoretical performance to the current best algorithms for conic formulations, but also have been

used to create practical software. Let us define our setup:

Definition 1.1. A convex optimization problem is said to be in the Domain-Driven setup if it is

in the form

inf
x
{〈c, x〉 : Ax ∈ D},(1)

where x 7→ Ax : Rn → Rm is a linear embedding, with A and c ∈ Rn are given, and D ⊂ Rm is

a convex set given as the closure of the domain of a ϑ-self-concordant (s.c.) barrier Φ.

A s.c. barrier (rigorously defined in Appendix A) is a convex function whose second derivative

regulates its third and first derivatives. Every open convex set is the domain of a s.c. barrier

[37]. Thus, in principle, every convex optimization problem can be treated in the Domain-Driven

setup. In applications, the restrictive part of Definition 1.1 is that a “computable”2 s.c. barrier is

not necessarily available for a general convex set. However, for many interesting convex sets (each

1Where a pair of points in the relative interior of the primal and dual feasible regions are given.
2Computable means we can evaluate the function and its first and second derivatives at a reasonable cost.
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of which allows us to handle a class of convex optimization problems), we know how to construct

an efficient s.c. barrier. Specifically, the feasible region of many classes of problems that arise in

practice is the direct sum of small dimensional convex sets with known, computable s.c. barriers.

In the case of linear programming, for example, consider the 1-dimensional set {z ∈ R : z ≥ β}
for β ∈ R. It is well-known that − ln(z−β) is a s.c. barrier for this set. Using this simple function

and the fact that if convex sets D1 and D2 have s.c. barriers f1 and f2, respectively, then f1 +f2 is

a s.c. barrier for the direct sum of D1 and D2, we can construct a s.c. barrier for any polyhedron;

for A ∈ Rm×n and b ∈ Rm, a s.c. barrier for

{x ∈ Rn : Ax ≤ b} = {x ∈ Rn : Ax ∈ D},

where D := b−Rm+ , is −∑m
i=1 ln(bi− a>i x), where a>i is the ith row of A. This discussion for LP

exemplifies the fact that knowing a s.c. barrier for small dimensional convex sets combined with

the direct sum operator lets us solve problems with an arbitrarily large number of variables and

constraints (of the same type).

The power of the Domain-Driven setup is further accentuated when we consider the possibility

of direct summing (or alternatively, intersecting) convex sets of different types. In the following,

we show many set constraints/functions as the building blocks of a problem in the Domain-Driven

setup. We start by showing that the Domain-Driven setup covers the popular optimization over

symmetric cones. Many of these s.c. functions can be found in Nesterov and Nemirovski’s seminal

book [37].

LP, SOCP, and SDP: optimization over symmetric cones is a special case of the Domain-Driven

setup. Table 1 shows the constraints that specify D and a s.c. barrier associated with the convex

set defined by the constraint. For example, if our problem has a constraint of the form a>x ≤ β

Table 1. LP, SOCP, and SDP constraints and the corresponding s.c. barriers. Sn is the

set of n-by-n symmetric matrices and A � B for A,B ∈ Sn means B − A is positive

semidefinite.

constraint s.c. barrier Φ

LP z ≤ β, z, β ∈ R, − ln(β − z)
SOCP ‖z‖ ≤ t, z ∈ Rn, t ∈ R, − ln(t2 − z>z)
SDP Z � B, Z,B ∈ Sn − ln(det(B − Z))

for a ∈ Rn, β ∈ R, the convex set defined by this constraint is the set of x ∈ Rn such that

a>x ∈ {z : z ≤ β}.
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Direct sum of 2-dimensional sets: The Domain-Driven setup allows inequalities of the form

∑̀

i=1

αifi(a
>
i x+ βi) + g>x+ γ ≤ 0, ai, g ∈ Rn, βi, γ ∈ R, i ∈ {1, . . . , `},(2)

where αi ≥ 0 and fi(x), i ∈ {1, . . . , `}, can be any univariate convex function whose epigraph

is a 2-dimensional set equipped with a known s.c. barrier. Three popular examples are given in

Table 2, and several more can be found in [37]. The fact that constraints of the form (2) fit into

the Domain-Driven setup is implied by the following relation:
{
x :
∑`

i=1 αifi(a
>
i x+ βi) + g>x+ γ ≤ 0

}

=
{
x : ∃u ∈ R` such that

∑`
i=1 αiui + g>x+ γ ≤ 0, fi(a

>
i x+ βi) ≤ ui, ∀i

}
.

(3)

Note that Geometric Programming [7] and Entropy Programming [14] with vast applications in

engineering are constructed with constraints of the form (2) when fi(z) = ez for i ∈ {1, . . . , `}
and fi(z) = z ln(z) for i ∈ {1, . . . , `}, respectively.

Table 2. Some 2-dimensional convex sets and their s.c. barriers.

set (z, t) s.c. barrier Φ(z, t)

1 ez ≤ t − ln(ln(t)− z)− ln(t)

2 z ln(z) ≤ t, z > 0 − ln(t− z ln(z))− ln(z)

3 |z|p ≤ t, p ≥ 1 − ln(t
2
p − z2)− 2 ln(t)

Epigraph of matrix norm, minimizing nuclear norm: Assume that we have constraints of

the form

Z − UU> � 0, where Z = Z0 +
∑̀

i=1

xiZi, U = U0 +
∑̀

i=1

xiUi.(4)

Zi, i ∈ {0, . . . , `}, are m-by-m symmetric matrices, and Ui, i ∈ {0, . . . , `}, are m-by-n matrices.

Using the Schur complement theorem, we can reformulate (4) as an SDP constraint with size

m+ n. However, the set {(Z,U) : Z − UU> � 0} accepts the following s.c. barrier:

Φ(Z,U) := − ln(det(Z − UU>)).(5)

In the cases that m � n, the parameter of the s.c. barrier (responsible for worst-case iteration

complexity bounds (see Appendix A)) for (5) is much smaller than the one we need for the SDP

reformulation, which can make a huge difference both in theory and applications.

A special application for constraints of the form (4) arises in minimizing the nuclear norm.

The nuclear norm of a matrix Z is ‖Z‖∗ := Tr
(
(ZZ>)1/2

)
. The dual norm of ‖ · ‖∗ is the 2-norm
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‖ · ‖ of a matrix. It can be shown that the following optimization problems are a primal-dual pair

[43].

(PN ) minX ‖X‖∗
s.t. AX = b.

(DN ) maxz 〈b, z〉
s.t. ‖A∗z‖ ≤ 1,

(6)

where A is a linear transformation on matrices and A∗ is its adjoint. In machine learning and

compressed sensing, (PN ) is a very popular relaxation of the problem of minimizing rank(X)

subject to AX = b. The dual problem (DN ) is a special case of (4) where Z = I and U = A∗z.

It can be shown that solving (DN ) by our primal-dual techniques immediately gives us a solution

for (PN ).

Compatibility of s.c. barriers, epigraph of quantum entropy and quantum relative

entropy: Another useful theoretical tool for constructing s.c. functions and barriers is the com-

patibility result, see Chapter 5 of [37] and Theorem 9.1.1 of [32]. Recently, such an approach

was used [18, 17] to construct a s.c. barrier for the epigraph of quantum entropy. Consider a

function f : R → R ∪ {+∞} and let X ∈ Hn be a Hermitian matrix (with entries from C) with

a spectral decomposition X = UDiag(λ1, . . . , λn)U∗, where Diag returns a diagonal matrix with

the given entries on its diagonal and U∗ is the conjugate transpose of a unitary matrix U . Then,

F : Hn → R ∪ {+∞} is defined as

F (X) := Tr(UDiag(f(λ1), . . . , f(λn))U∗).

Study of such matrix functions go back to the work of Löwner as well as Von-Neumann (see [12],

[27], and the references therein). It is proved in [18] (and it follows from the above-mentioned

compatibility result) that if f is continuously differentiable with a matrix monotone derivative

on R+, then the function

Φ(t,X) := − ln(t− F (X))− ln det(X)

is a s.c. barrier for the epigraph of F (X) in Sn+. For f(x) := x ln(x), the function F (X) is

called quantum entropy. In this case, Φ(t,X) can be seen as a lift for the s.c. barrier we gave

in Table 2 for the entropy function. Optimization of quantum entropy and its extension relative

quantum entropy have many recent applications [10, 11]. The authors in [15, 16] approximate

these problems by SDP. We can handle convex optimization problems involving quantum entropy

in the Domain-Driven setup by the above s.c. barrier.

Combination of all the above examples: Assume that we have ` problems in the Domain-

Driven setup, with corresponding sets D1, . . . , D`, and corresponding s.c. barriers Φ1, . . . ,Φ`.

Now, let D := D1 ⊕ · · · ⊕ D`. Then, Φ := Φ1 + · · · + Φ` is a s.c. barrier for D (see Subsection

A.2), and (1) for D is also in the Domain-Driven setup.

1.1. Contributions of this paper. Although the terminology Domain-Driven is new, the con-

cept was proposed in [33], then named cone-free. The underlying algorithms were feasible-start
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primal-dual algorithms for problems in the Domain-Driven setup. In theory of convex optimiza-

tion, having a theory of feasible-start algorithms is sufficient for many purposes. In applications

of convex optimization as well as in software, infeasible-start algorithms are essential. For the

infeasible-start setup, the most common approach is (1) conic reformulation, (2) using homo-

geneous self-dual embedding type algorithms (see for example [41]). However, software and

applications of modern conic optimization itself has not gone much beyond optimization over

symmetric cones. There are other types of algorithms such as Nesterov and Nemirovski’s which

approximately follow multi-parameter surfaces of analytic centers [38]. These algorithms seem

too complicated to directly result in a practical code. [20, 22] are some recent developments on

infeasible-start interior-point algorithms for convex and nonconvex optimization that are related

to our approach. For infeasible-start algorithms that solve a Newton system at every iteration,

we can consider two extremes based on the number of artificial variables. At one extreme (see

[28, 29, 26, 48, 49]), there is no artificial variable and the systems we solve at every iteration

are similar to the ones we solve in the feasible-start case with a perturbed right-hand-side. At

the other extreme are the homogeneous self-dual embedding type algorithms [47, 41] where we

have artificial variables and homogenization variables. Our infeasible-start approach is in the

middle, closer to the first group as we add only one artificial variable, but do not impose an

explicit homogenization (moreover, we tie our artificial variable to our central path parameter).

Our complexity results here are new for this approach, even in the case of LP.

We introduce a notion of duality gap for the Domain-Driven setup and define an infeasible-

start primal-dual central path (Section 2). Then, in Section 3 we design our path-following

algorithms and in Section 4 we give the analysis that yields the current best iteration complexity

bounds for solving the problem. By solving, we mean determining the status of a given problem (as

being unbounded, infeasible, having optimal solutions, etc.) and providing suitable approximate

certificates for the status. Several cases of ill-conditioning can happen for a given problem. In

order to evaluate the performance of any algorithm in determining the status of a problem in

the Domain-Driven setup, we need to carefully categorize these statuses. This has been done

preliminarily in [24] and will be presented in subsequent works. In this paper, we briefly discuss

how to interpret the outcome of the algorithms and elaborate on the case of strict primal and

dual feasibility. The different patterns that can be detected by our algorithms and the iteration

complexity bounds for them are comparable to the current best results available for infeasible-start

conic optimization, which to the best of our knowledge is mostly in the work of Nesterov-Todd-

Ye [41]. The algorithms we design make up the foundation of a new code DDS (Domain-Driven

Solver).

Part of the strength and elegance of the interior-point machinery for conic optimization comes

from the fact that convex cones accept s.c. barriers that are logarithmically-homogenous (LH).

Figure 1 shows the relation between various classes of s.c. functions. LF conjugate of a LH s.c.
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Self-concordant	(s.c.)		functions		

s.c.	barriers		 LF	conjugate	of	
s.c.	barriers	

									LH	
s.c.	barriers		

Figure 1. A diagram that shows the relationships among various classes of self-

concordant functions (see Appendix B for various examples).

barrier is also a LH s.c. barrier; an important property that we loose for a general s.c. barrier.

However, importantly, the LF conjugate of a s.c. barrier has more properties than an arbitrary s.c.

function. Another contribution of this article is that in the design and analysis of our algorithms,

we vastly exploit this property, which has not been considered at this level of detail in the

literature.

1.2. Assumptions and notations. To design our primal-dual algorithms for the Domain-

Driven setup, we make some assumptions. First, we assume that the kernel of A is {0} in

Definition 1.1; otherwise we can update A to a matrix Ā whose columns form a basis for imgA

(image of A) and then update c and Φ accordingly (see subsection A.2 for stability of s.c. bar-

riers under affine maps). We also assume that the Legendre-Fenchel (LF) conjugate Φ∗ of Φ is

given. Even though restricting, such assumptions are unavoidable in the context of primal-dual

techniques. Also, for many classes of problems, including the above examples, Φ∗ is computable.

The domain of Φ∗ is the interior of a cone D∗ defined as (see (142)):

D∗ = {y : 〈y, h〉 ≤ 0, ∀h ∈ rec(D)},(7)

where rec(D) is the recession cone of D defined in (143). Consider an Euclidean vector space E
with dual space E∗ and a scalar product 〈·, ·〉. For a self-adjoint positive definite linear transfor-

mation B : E→ E∗, we define a conjugate pair of Euclidean norms as:

‖x‖B := [〈Bx, x〉]1/2 ,
‖s‖∗B := max{〈s, y〉 : ‖y‖B ≤ 1} = ‖s‖B−1 =

[
〈s,B−1s〉

]1/2
.(8)

Note that (8) immediately gives us a general Cauchy-Schwarz (CS) inequality:

〈s, x〉 ≤ ‖x‖B‖s‖∗B, ∀x ∈ E, ∀s ∈ E∗.(9)



8 KARIMI and TUNÇEL

For simplicity, we use abbreviations RHS and LHS for right-hand-side and left-hand-side, respec-

tively.

2. Duality gap for Domain-Driven setup and central path

Considering the support function of D,

δ∗(y|D) := sup{〈y, z〉 : z ∈ D},(10)

we define the duality gap as:

Definition 2.1. For every point x ∈ Rn such that Ax ∈ D and every point y ∈ D∗ such that

A>y = −c, the duality gap is defined as:

〈c, x〉+ δ∗(y|D).(11)

Duality gap must be easily computable and support function is not generally easy to calculate.

However, the following theorem shows that we can estimate the support function within any

desired accuracy using the fact that Φ∗ is the LF conjugate of a s.c. barrier.

Theorem 2.1 (Theorem 2.4.2 of [37]). Assume that Φ is a ϑ-s.c. barrier on D and let Φ∗ be the

LF conjugate of Φ with domain D∗. Then, the support function of D satisfies

δ∗(y|D)− ϑ

k
≤ 〈Φ′∗(ky), y〉 ≤ δ∗(y|D), y ∈ D∗, ∀k > 0.(12)

The following lemma shows that duality gap is well-defined and zero duality gap is a guarantee

for optimality:

Lemma 2.1. For every point x ∈ Rn such that Ax ∈ D and every point y ∈ D∗ such that

A>y = −c, we have

〈c, x〉+ δ∗(y|D) ≥ 0.(13)

Moreover, if the equality holds above for a pair (x̂, ŷ) with Ax̂ ∈ D and ŷ ∈ D∗, A>ŷ = −c, then

x̂ is an optimal solution of (1).

Proof. Let x and y be as above. Then,

〈c, x〉 =︸︷︷︸
A>y=−c

−〈A>y, x〉 = −〈y,Ax〉 ≥︸︷︷︸
Ax∈D, y∈D∗

−δ∗(y|D).

Thus, 〈c, x〉 + δ∗(y|D) ≥ 0, as desired. If equality holds for (x̂, ŷ), then for every x such that

Ax ∈ D, we have

〈c, x̂〉 =︸︷︷︸
(13) holds with equality

−δ∗(ŷ|D) ≤︸︷︷︸
(10)

−〈ŷ, Ax〉 = 〈−A>ŷ, x〉 =︸︷︷︸
A>ŷ=−c

〈c, x〉.
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Therefore, x̂ is an optimal solution for (1). �

Corollary 2.1. Assume that there exist a sequence {zk} ∈ intD such that zk → Ax̂ ∈ D, and a

sequence {yk} ∈ intD∗ such that yk → ŷ ∈ D∗ and A>ŷ = −c. If

lim
k

(
〈c, xk〉+ 〈yk,Φ′∗(kyk)〉

)
= 0,

then x̂ is an optimal solution of (1).

Proof. We use Theorem 2.1 to approximate the support function and then apply Lemma 2.1. �

2.1. Primal-dual infeasible-start central path. Our algorithms are infeasible-start, which

means we do not require a feasible point from the user to start the algorithm. To introduce our

infeasible-start central path, we start with a feasible start central path, called cone-free in [33],

which is defined by the set of solutions to:

(a) Ax ∈ intD,

(b) A>y = −τc, y ∈ intD∗,

(c) y = Φ′(Ax),

(14)

where τ > 0 is the parameter of the path. It is proved in [33] that under strict primal-dual

feasibility (there exists x̂ such that Ax̂ ∈ intD and ŷ ∈ intD∗ such that A>ŷ = −c), the system

(14) has a unique solution (x(τ), y(τ)) for every τ > 0 and x(τ) converges to a solution of (1)

when τ → +∞. Note that we can also prove this by our notion of duality gap and using Theorem

2.1.

Let us see how to modify (14) for an infeasible-start algorithm. We assume that we can choose

a point z0 ∈ intD and then we define y0 := Φ′(z0) ∈ intD∗. We modify the primal and dual

feasibility parts of (14) as follows:

(a) Ax+ 1
τ z

0 ∈ intD, τ > 0,

(b) A>y = A>y0 − (τ − 1)c, y ∈ intD∗,
(15)

where (x0 := 0, τ0 := 1, y0), is feasible for this system, and when τ → +∞, we get a pair of

primal-dual feasible points in the limit. Let us give a name to the set of points that satisfy (15):

QDD :=

{
(x, τ, y) : Ax+

1

τ
z0 ∈ intD, τ > 0, A>y −A>y0 = −(τ − 1)c, y ∈ intD∗

}
.(16)

Our goal is to design infeasible-start primal-dual algorithms as robust as the best ones for the

conic setup, which as far as we know, are the homogenous self-dual embedding type algorithms

proposed in [41]. For the primal-dual conic setup, the duality gap for the modified problem in

[41] has the following two crucial properties when the parameter of the path tends to +∞:

(1) it tends to zero if the problem is solvable,
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x1

x2

1

⌧

D

z̄0 ẑ0

�
(x1, x2, 1) : Ax + z0 2 D

 

Unique	feasible-start	central	path.		

Different	central	paths	for	different	
choices	of	the	starting	point.	

µ = 1

µ = +1

Figure 2. A problem in the Domain-Driven setup with D ⊂ R2, A := I. The infeasible-

start and the unique feasible-start central paths projected onto the primal space are shown.

(2) it tends to +∞ if primal or dual is infeasible.

To enforce such a property for the Domain-Driven setup, we treat τ as a variable (artificial

variable) and add another parameter µ which plays the role of the parameter for the central

path. Figure 2 schematically shows the primal-dual central paths.

Let us fix ξ > 1 and define:

z0 := any vector in int(D), y0 := Φ′(z0), yτ,0 := −〈y0, z0〉 − ξϑ.(17)

The following theorem defines our central path.

Theorem 2.2. Consider the convex set D ⊂ Rm equipped with a ϑ-s.c. barrier Φ and let Φ∗ be

its LF conjugate with domain intD∗. Then, for every set of starting points defined in (17), the

system

(a) Ax+ 1
τ z

0 ∈ intD, τ > 0,

(b) A>y −A>y0 = −(τ − 1)c, y ∈ intD∗,

(c) y = µ
τ Φ′

(
Ax+ 1

τ z
0
)
,

(d) 〈c, x〉+ 1
τ 〈y,Ax+ 1

τ z
0〉 = −ϑξµ

τ2 +
−yτ,0
τ ,

(18)

has a unique solution (x(µ), τ(µ), y(µ)) for every µ > 0.

We denote the solution set of (18) for µ > 0 by the Domain-Driven primal-dual central path.

Note that for µ0 = 1, the point (x, τ, y) = (0, 1, y0) satisfies all the equations in (18). In view of
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the definition of the central path, for all the points (x, τ, y) ∈ QDD, we define

µ(x, τ, y) := τ
ξϑ [−yτ,0 − τ〈c, x〉 − 〈y,Ax+ 1

τ z
0〉],

= − 1
ξϑ

[
〈y, z0〉+ τ(yτ,0 + 〈y,Ax〉) + τ2〈c, x〉

]

= − 1
ξϑ

[
〈y, z0〉+ τ(yτ,0 + 〈c, x〉+ 〈y0, Ax〉)

]
, using (18)-(b).

(19)

The formula in the second line is a quadratic in terms of τ . However, when we use the dual

feasibility condition, we get the third formula that is linear in τ . In other words, the dual

feasibility condition removes one of the roots. Assume that both the primal and dual are strictly

feasible and we choose z0 = 0, Ax0 ∈ intD, and y0 such that A>y0 = −c. Then, the last equation

of (19) reduces to µ = τ and (18) reduces to the cone-free setup in (14).

Proof of Theorem 2.2. Consider the function Φ( zτ ) − ξϑ ln(τ) that we prove in Lemma A.2 is a

s.c. function. The LF conjugate of this function, as a function of (y, yτ ), is also a s.c. function

(Appendix A) and is calculated from the following formula:

max
γ>0

[Φ∗(γy) + yτγ + ξϑ ln γ] .(20)

The gradient of Φ( zτ )− ξϑ ln(τ) is



1
τΦ′( zτ )

− 1
τ2 〈Φ′( zτ ), z〉 − ξϑ

τ


 .(21)

By substituting (18)-(c) in (18)-(d) and reordering the terms, we can show that for every µ > 0,

the solution set of (18) corresponds to the solution set of the following system

 y

yτ


 = µ




1
τΦ′( zτ )

− 1
τ2 〈Φ′( zτ ), z〉 − ξϑ

τ


 ,

z = τAx+ z0,

A>y = A>y0 − (τ − 1)c,

yτ = yτ,0 + τ〈c, x〉.

(22)

Consider the following function:

Φ
(
z
τ

)
− ξϑ ln(τ) + maxγ>0 [Φ∗(γy) + yτγ + ξϑ ln γ]− 1

µ (〈y, z〉+ τyτ )

≥ Φ
(
z
τ

)
− ξϑ ln τ + Φ∗(γy) + yτγ + ξϑ ln γ − 1

µ (〈y, z〉+ τyτ ) , ∀γ > 0,
(23)

where the last inequality trivially holds because of the max function. Let us substitute γ := τ
µ ,

then by using the Fenchel-Young inequality (Theorem A.1)

Φ
(z
τ

)
+ Φ∗

(
τy

µ

)
≥ 〈τy

µ
,
z

τ
〉 =

1

µ
〈y, z〉,
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we can continue (23) as

≥ 1

µ
〈y, z〉+

1

µ
τyτ − ξϑ lnµ− 1

µ
(〈y, z〉+ τyτ ) = −ξϑ lnµ.(24)

Hence, the function is bounded from below for every µ > 0. Fix µ > 0 and consider the

optimization problem

min Φ
(
z
τ

)
− ξϑ ln(τ) + maxγ>0 [Φ∗(γy) + yτγ + ξϑ ln γ]− 1

µ (〈y, z〉+ τyτ )

s.t. Fz = Fz0,

A>y = A>y0 − (τ − 1)c,

yτ = yτ,0 + 〈cA, z − z0〉,

(25)

where F is a matrix whose rows form a basis for the kernel of A> and cA is any vector such

that A>cA = c. We have A>y = A>y0 − (τ − 1)c iff there exists a vector v such that y =

y0 − (τ − 1)cA − F>v, so over the feasible region of (25) we have

〈y, z〉+ τyτ = 〈y0 − (τ − 1)cA − F>v, z〉+ τyτ,0 + τ〈cA, z − z0〉
= 〈y0 + cA, z〉 − 〈v, Fz0〉+ τyτ,0 − τ〈cA, z0〉,
= 〈y0 + cA, z〉+ 〈y, z0〉+ τyτ,0 − 〈y0 + cA, z

0〉,
(26)

which is linear in (z, τ, y, yτ ). Therefore, the objective function in (25) is the summation of a

s.c. function, its LF conjugate and another term that we showed is linear on the feasible region.

Hence, by property SC-1 of s.c. functions in Appendix A, the objective function is a s.c. function.

Therefore, (25) is minimizing a non-degenerate s.c. function that is bounded from below and

so attains its unique minimizer (z̄, τ̄ , ȳ, ȳτ ) by property SC-4 of s.c. functions in Appendix A.

We claim that (z̄, τ̄ , ȳ, ȳτ ) satisfies the first equality of (22). Assume that 1
µ(ŷ, ŷτ ) is the image

of (z̄, τ̄) under the map (21). Then, we can check that (z̄, τ̄ , ŷ, ŷτ ) also satisfies the optimality

conditions and by uniqueness, we have (ŷ, ŷτ ) = (ȳ, ȳτ ). To conclude the proof, F z̄ = Fz0 implies

that there exists a unique x̄ such that z̄ = τ̄Ax̄+ z0. Therefore, (x̄, τ̄ , ȳ) is a solution of (22) and

so (18) for the fixed µ. Uniqueness follows from the fact that, by using Fenchel-Young inequality

(Theorem A.1), the system (22) implies optimality for (25). �

Let us finish this section by a discussion that why following the central path defined above

solves the problem for us. First we prove the following key lemma:

Lemma 2.2. Let (x, τ, y) ∈ QDD, µ = µ(x, τ, y), and ŷ := y
τ . Then,

−yτ,0
τ
− ξµϑ+ µκ

√
ϑ

τ2
≤ 〈c, x〉+ δ∗(ŷ|D) ≤ −yτ,0

τ
− (ξ − 1)µϑ− µκ

√
ϑ

τ2
,(27)

where

κ :=

∥∥∥∥Ax+
1

τ
z0 − Φ′∗

(
τ

µ
y

)∥∥∥∥
[Φ′′∗ ( τ

µ
y)]−1

.(28)
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Proof. By applying Theorem 2.1 to k := τ2

µ and ŷ we get

〈ŷ,Φ′∗
(
τy

µ

)
〉 ≤ δ∗(ŷ|D) ≤ 〈ŷ,Φ′∗

(
τy

µ

)
〉+

µϑ

τ2
.(29)

Note that by adding and subtracting a term we have

〈ŷ,Φ′∗
(
τy

µ

)
〉 = 〈ŷ,Φ′∗

(
τy

µ

)
−
(
Ax+

1

τ
z0

)
〉+ 〈ŷ, Ax+

1

τ
z0〉.(30)

Now by using the fact that ‖ τyµ ‖Φ′′∗ ( τ
µ
y) ≤

√
ϑ (property (144)), definition of κ, and using CS

inequality (9) we get

−µκ
τ2

√
ϑ ≤ 〈ŷ,Φ′∗

(
τy

µ

)
−
(
Ax+

1

τ
z0

)
〉 ≤ µκ

τ2

√
ϑ.(31)

By substituting (31) in (30) and the result in (29) we get

〈ŷ, Ax+
1

τ
z0〉 − µκ

τ2

√
ϑ ≤ δ∗(ŷ|D) ≤ 〈ŷ, Ax+

1

τ
z0〉+

µκ

τ2

√
ϑ+

µϑ

τ2
.(32)

The result of the lemma follows if we substitute for 〈ŷ, Ax+ 1
τ z

0〉 from the definition of µ in the

first line of (19). �

2.2. Brief interpretation of outcomes of the algorithm. A given problem may have one

of several possible statuses. Just in terms of primal feasibility, when the problem is feasible, we

can have strict feasibility (imgA ∩ intD 6= ∅) or otherwise weak feasibility. When the problem is

infeasible, we can have weak infeasibility (an arbitrarily small perturbation makes it feasible), or

otherwise strict infeasibility. The same analysis also applies to dual feasibility. Next, we discuss

what can be said in two of the possible cases about the problem based on the value of τ , using

Lemma 2.2:

(i) limµ→+∞ τ = +∞ such that µ
τ2 tends to zero: Then x converges to a point x̂ that

satisfies Ax̂ ∈ D and y
τ converges to a point ŷ ∈ D∗ that satisfies A>ŷ = −c. Moreover,

Lemma 2.2 implies that the duality gap 〈c, x̂〉+ δ∗(ŷ|D) is zero. Therefore, by Lemma 2.1,

x̂ is an optimal solution of the problem.

(ii) τ stays bounded when µ→ +∞: In this case, Lemma 2.1 shows that 〈c, x〉+ δ∗ (y/τ |D)

tends to −∞. If 〈c, x〉 tends to −∞, ignoring the pathological cases, we can argue that

the problem is unbounded. If 〈c, x〉 stays bounded, then Lemma 2.1 implies that ȳ :=

limµ→+∞
τy
µ satisfies δ∗(ȳ|D) < 0 and we also have A>ȳ = 0. Such a ȳ implies primal

infeasibility; otherwise, if there exists Ax̄ ∈ D, then we have the following contradiction.

0 > δ∗(ȳ|D) ≥︸︷︷︸
definition of δ∗(ȳ|D)

〈ȳ, Ax̄〉 = 〈A>ȳ, x̄〉 = 0.
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Now the question is which statuses make the above cases happen? and what is the behavior of

(x, τ, y) when µ tends to +∞? Answering these questions requires scrutinizing the geometry of

the primal and dual problems and a careful categorization of the possible statuses. Part of this

has been done in [24] and a complete study comes in a subsequent article. For example, it is

proved in [24] that if the problem is strictly primal and dual feasible (and in a weaker sense if

it is just solvable), there exists a parameter ω > 0 (depending on the geometry of the problem)

such that τ ≥ ωµ for all the points close to the central path. This implies that the first of

the above cases happens when µ → +∞ and our algorithms return an optimal solution. Also

different infeasibility and unboundedness statuses are defined in [24] and it is shown that, ignoring

pathological scenarios, the second of the above cases happens and we can extract (approximate

and under some conditions exact) certificates of infeasibility or unboundedness out of (x, τ, y)

when µ→ +∞.

3. Algorithms

In the previous section, we defined our infeasible-start primal-dual central path, parameterized

with µ. In this section, we express a predictor-corrector path-following algorithm that efficiently

follows the path to µ = +∞. To define neighborhoods of the central path, we need a notion of

proximity. For a point (x, τ, y) ∈ QDD, defined in (16), we define a proximity measure as

Ωµ(x, τ, y) := Φ

(
Ax+

1

τ
z0

)
+ Φ∗

(
τy

µ

)
− τ

µ
〈y,Ax+

1

τ
z0〉,

µ := µ(x, τ, y), as defined in (19).(33)

Throughout the paper, we may drop the arguments of Φ and Φ∗ (and also their gradients and

Hessians) for simplicity, i.e., Φ := Φ
(
Ax+ 1

τ z
0
)

and Φ∗ := Φ∗

(
τ
µy
)

.

Remark 3.1. The proximity measure used for the feasible-start case [33] is

Φ(Ax) + Φ∗(y)− 〈y,Ax〉.(34)

Even though this proximity measure and (33) have similar structures (indeed for z0 = 0 and

τ = µ, we recover (34)), τ and µ bring nonlinearity into the arguments of Φ and Φ∗ in (33).

Theorem 3.1. For every (x, τ, y) ∈ QDD and µ > 0 we have Ωµ(x, τ, y) ≥ 0. Moreover,

Ωµ(x, τ, y) = 0 with µ = µ(x, τ, y) iff (x, τ, y) is on the central path for parameter µ(x, τ, y).

Proof. Both parts of the theorem are implied by Fenchel-Young inequality (Theorem A.1) and

the definition of the central path. �
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Now, we can state a predictor-corrector algorithm. Note that we choose different step sizes

for x and for (τ, y), i.e., for a search direction (dx, dτ , dy), the updates are

x+ := x+ α1dx, τ+ := τ + α2dτ , y+ := y + α2dy.(35)

Framework for Predictor-Corrector Algorithms

Input: A ∈ Rm×n, c ∈ Rn, neighborhood parameters δ1, δ2 ∈ (0, 1) such that δ1 < δ2, desired

tolerance tol ∈ (0, 1). Access to gradient and Hessian oracles for a ϑ-s.c. barrier Φ such that

ϑ ≥ 1 and domΦ = intD, and its LF conjugate Φ∗, z
0 ∈ intD.

Initialization: k := 0, y0 := Φ′(z0), x0 := 0, τ0 := 1, and µ0 := µ(x0, τ0, y
0).

while (the stopping criteria are not met)

if (Ωµk(xk, τk, y
k) > δ1)

Calculate the corrector search direction (dx, dτ , dy), choose (α1, α2) ∈ R2
+, and

apply the update in (35) to get (xk+1, τk+1, y
k+1), such that Ωµk(xk+1, τk+1, y

k+1)

is smaller than Ωµk(xk, τk, y
k) by a “large enough” amount. Define µk+1 := µk.

if (Ωµk(xk, τk, y
k) ≤ δ1)

Calculate the predictor search direction (dx, dτ , dy), choose (α1, α2) ∈ R2
+,

and apply the update in (35) to get (xk+1, τk+1, y
k+1), such that µk+1 :=

µ(xk+1, τk+1, y
k+1) is larger than µk by a “large enough” amount, while

Ωµk+1
(xk+1, τk+1, y

k+1) ≤ δ2.

k ← k + 1.

end while

The best choices for (α1, α2) are achieved by a plane search. However, for simplicity of the

analysis, it is enough to choose α1 := α2
τ+α2dτ

, where α2 is chosen such that τ + α2dτ > 0. Then,

our search space becomes 1-dimensional and we can choose α2 large enough to get the desired

complexity bounds.

Next, we discuss how to calculate the search directions and choose the step lengths. The

Dikin ellipsoid property SC-2 in Appendix A is perhaps the most fundamental property of s.c.

functions. This elegant property implies that we can move all the way to the boundary of Dikin

ellipsoid and stay feasible. A challenge in our Domain-Driven setup is the nonlinear way that τ

is combined with x and y, for example in the proximity measure (33). What typically appears in

a primal-dual proximity measure in the literature is that the summation of the s.c. barrier and

its LF conjugate is composed with an affine function of the variables, which makes the algorithm

and analysis easier. The positive definite matrix that defines the Dikin ellipsoid for our algorithm
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has a special form that controls the nonlinear displacements in the arguments of Φ and Φ∗ in the

proximity measure.

Let us define H̄(x, τ) as follows (with u := Ax+ 1
τ z

0)

H̄(x, τ) :=




1

τ2
Φ′′ (u)

︸ ︷︷ ︸
=:H

−1

τ2
Φ′′ (u)u− 1

τ2
Φ′ (u)

︸ ︷︷ ︸
=:h[−1

τ2 Φ′′ (u)u− 1
τ2 Φ′ (u)

]> 2

τ2
〈Φ′ (u) , u〉+

1

τ2
〈u,Φ′′ (u)u〉+

ξϑ

τ2︸ ︷︷ ︸
=:ζ



.(36)

One can easily verify that for every (d, dτ ) ∈ Rm ⊕ R we have

H̄(x, τ)[(d, dτ ), (d, dτ )] =

∥∥∥∥
d

τ
− dτ

τ
u

∥∥∥∥
2

Φ′′(u)

− 2dτ
τ

[
d

τ
− dτ

τ
u

]>
Φ′(u) + ξ

d2
τ

τ2
ϑ.(37)

By using the definition of s.c barriers (133) for the second term in the RHS of (37), we have
[∥∥∥∥
d

τ
− dτ

τ
u

∥∥∥∥
Φ′′(u)

−
∣∣∣∣
dτ
τ

∣∣∣∣
√
ϑ

]2

+ (ξ − 1)
d2
τ

τ2
ϑ ≤ H̄(x, τ)[(d, dτ ), (d, dτ )],(38)

which shows that H̄(x, τ) is a positive definite matrix for every ξ > 1.

Remark 3.2. If we replace u with z
τ in (36), we get the Hessian for the function Φ

(
z
τ

)
+ξϑ ln(τ),

which is a s.c. function (see Lemma A.2).

H̄(x, τ) is positive definite for ξ > 1 and so invertible. Considering the definition of H, h, and

ζ in (36), by substitution, one can directly verify that for every (w,wτ ) ∈ Rm ⊕ R, we have

 w

wτ



>


 H h

h> ζ





−1 
 w

wτ


 = 〈w,H−1w〉+ η

(
〈w,H−1h〉 − wτ

)2
,

H−1h = −u− [Φ′′]−1Φ′, η =
τ2

ξϑ− 〈Φ′, [Φ′′]−1Φ′〉 .(39)

Note that η ≥ 0 by using ξ > 1 and property (134). The following key lemma, which we prove

later, shows that when we are close to the central path, H̄(x, τ) is under control.

Lemma 3.1. For every ε̄ ∈ (0, 1), there exist ε > 0 depending on ξ such that for every pair

(x, τ, y) ∈ QDD and µ > 0 with Ωµ(x, τ, y) ≤ ε, we have

(1− ε̄)2H̄(x(µ), τ(µ)) � H̄(x, τ) � 1

(1− ε̄)2
H̄(x(µ), τ(µ)).(40)

Let F be a matrix whose rows give a basis for the kernel of A> and let cA be any vector

such that A>cA = c. We define a block matrix U that comes up frequently in our discussion and
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contains the linear transformations we need, and also the vector r0 that is used in the RHS of

our systems:

U :=




A 0 0

0 1 0

0 −cA −F>

c> 0 0



, r0 :=




−A>y0 − c
−yτ,0 + 〈cA, z0〉

Fz0


 .(41)

At a current point (x, τ, y), both the predictor and corrector steps are derived by solving the

system

U>


 H̄(x, τ) 0

0
[
Ĥ(x, τ, y)

]−1




︸ ︷︷ ︸
H(H̄,Ĥ)

U




d̄x

dτ

dv


 = rRHS ,

dx := d̄x − dτx, dy := −dτ cA − F>dv,(42)

where Ĥ(x, τ, y) is a positive definite matrix that we elaborate more on later. For both the

predictor and corrector steps, we discuss the choice of Ĥ(x, τ, y) and rRHS in (42).

3.1. Predictor step. An efficient predictor search direction must increase µ by a large rate and

at the same time let us take a long enough step. We first give the choices of Ĥ(x, τ, y) and rRHS

for the system in (42) and then justify them. For the RHS vector we choose rRHS := r0/µ2,

where r0 defined in (41). We have different choices for Ĥ(x, τ, y) to attain our desired properties

(such as a low complexity bound). We express a sufficient condition and discuss two choices that

satisfy the condition. We will see that to achieve enough increase in µ at every predictor step, it

is sufficient that for every ε̄ ∈ (0, 1), there exists a choice of ε in Lemma 3.1 such that

(1− ε̄)2
[
H̄(x(µ), τ(µ))

]−1 � µ2
[
Ĥ(x, τ, y)

]−1
� 1

(1− ε̄)2

[
H̄(x(µ), τ(µ))

]−1
,(43)

for every point (x, τ, y) ∈ QDD with Ωµ(x, τ, y) ≤ ε.
Remark 3.3. In view of (40), one obvious choice for Ĥ(x, τ, y) is Ĥ(x, τ, y) := µ2H̄(x, τ).

Another choice is one that yields the predictor direction for the primal-dual conic setup given in

[34, 41]. More explicitly, if we reformulate our problem in the Domain-Driven setup as a conic

optimization problem (see [33] or [37]-Section 5.1), then the predictor step calculated in [34, 41]

can be achieved by (41) for a special choice of Ĥ:

[
Ĥ(x, τ, y)

]−1
:=


 G+ η∗h∗h

>
∗ −η∗h∗

−η∗h>∗ η∗


 ,

G := τ̄2Φ′′∗(τ̄ y), h∗ := −Φ′∗(τ̄ y)− τ̄Φ′′∗(τ̄ y)y, 1/η∗ :=
ξϑ

τ̄2
− 〈y,Φ′′∗(τ̄ y)y〉,(44)
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where

τ̄ := argmaxτ {Φ∗(τy) + yττ + ξϑ ln τ} .(45)

To check that (44) satisfies condition (43) for every ε̄ ∈ (0, 1) for a right choice of ε, we can use

the arguments in [34, 41], or the fact that Φ
(
z
τ

)
+ ξϑ ln(τ) is a s.c. function, Lemma 3.1, and

the properties of LF conjugates. Calculating τ̄ can be done efficiently, since evaluating the RHS

of (45) is equivalent to minimizing a s.c. function.

Let us justify our predictor step. If we choose α1 = α2
τ+α2dτ

(assuming τ + α2dτ > 0) for the

updates in (35), then by using the third line of (19) for µ, we have

µ(x+, τ+, y+)− µ(x, τ, y)

= −1
ξϑ

[
α2〈dy, z0〉+ α2dτyτ,0 + 〈c+A>y0, α2dτx+ (τ + α2dτ )α1dx〉

]

= −α2
ξϑ

(
〈dy, z0〉+ dτyτ,0 + 〈c+A>y0, dτx+ dx〉

)
, substituting α1 = α2

τ+α2dτ
,

= α2
ξϑ

(
〈dv, Fz0〉+ dτ (〈cA, z0〉 − yτ,0)− 〈c+A>y0, d̄x〉

)
, substituting dx and dy from (42),

= α2
ξϑ [d̄>x dτ d>v ]r0, for r0 defined in (41).

(46)

Let d> := [d̄>x dτ d>v ], then we see that the Dikin ellipsoid type constraint d>U>H(H̄, Ĥ)Ud ≤ 1

guarantees the feasibility of new iterates with respect to the domains of the underlying s.c.

functions. The search direction in (42) is, up to some scaling, the solution of the following

optimization problem

max 〈d, r0〉
s.t. d>U>H(H̄, Ĥ)Ud ≤ 1,

(47)

which can be seen as maximizing the linear function of (46) in a trust region.

3.2. Corrector step. After doing a predictor step to increase µ, we need to perform corrector

steps to come back into the small neighborhood. Note that our proximity measure Ωµ(x, τ, y)

is not a convex function and to decrease it we use a quasi-Newton like step. In most of the

literature on this topic, for example papers [34, 41, 33], the corrector step is simply minimizing

a s.c. function that can be done efficiently by taking damped Newton steps (Appendix A, SC-3).

Even though our proximity measure is not a s.c. function and we cannot directly use damped

Newton steps, Φ and Φ∗ are 1-s.c. functions and we can exploit their properties. We first define

the corrector step and then explain our choice. The corrector search direction is the solution of

(42) with

Ĥ := µ2H̄, rRHS := −(U>ψc + βr0), β := −〈r
0, [U>H(H̄, µ2H̄)U ]−1U>ψc〉
〈r0, [U>H(H̄, µ2H̄)U ]−1r0〉 ,(48)
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where r0 is defined in (41) and

ψc :=




1
τΦ′

− 1
τ 〈Φ′, Ax+ 1

τ z
0〉+ 1

µ〈y,Φ′∗〉+ 1
µ(yτ,0 + τ〈c, x〉)

τ
µΦ′∗
τ
µ



.(49)

Remark 3.4. If we choose α1 = α2
τ+α2dτ

(assuming τ+α2dτ > 0) for the updates in (35), then (46)

holds. The parameters in (48) are chosen so that the solution of (42) satisfies [d̄>x dτ d>v ]r0 = 0

and thus, we automatically have µ(x+, τ+, y+) = µ(x, τ, y) in the corrector step.

The following lemma justifies our corrector search direction.

Lemma 3.2. Consider a choice of rRHS and Ĥ(x, τ, y) such that for the solution of (42) and

the updates in (35) with α1 = α2
τ+α2dτ

we have µ(x+, τ+, y+) = µ(x, τ, y). Then,

ρ(D(α2)) ≤ Ωµ(x+, τ+, y+)− Ωµ(x, τ, y)− α2

[
d̄>x dτ d>v

]
U>ψc

+
α2

2dτ
τ(τ+α2dτ )〈Φ′, Ad̄x − dτ

(
Ax+ 1

τ z
0
)
〉 − α2

2dτ
µ

(
〈dy,Φ′∗〉+ 〈c, d̄x〉

)

≤ ρ (−D(α2)) ,

D(α2) := α2
τ+α2dτ

∥∥Ad̄x − dτ
(
Ax+ 1

τ z
0
)∥∥

Φ′′
+ α2

∥∥∥dτy+(τ+α2dτ )dy
µ

∥∥∥
Φ′′∗
,

(50)

where ψc is defined in (49) and ρ is defined in (118).

Proof. (50) is derived by substituting for Ωµ from (33) and then using both bounds in (125) for

the 1-s.c. function f(u,w) = Φ(u)+Φ∗(w). We just need to explicitly calculate the displacements

in the arguments of Φ and Φ∗. By the hypothesis, µ+ := µ(x+, τ+, y+) = µ. First we have

Ax+ + 1
τ+ z

0 −Ax− 1
τ z

0 = α1Adx − α2dτ
τ(τ+α2dτ )z

0

= α2
τ+α2dτ

[
Adx − dτ

τ z
0
]
, using α1 = α2

τ+α2dτ
,

= α2
τ+α2dτ

[
Ad̄x − dτ

(
Ax+ 1

τ z
0
)]
, using dx = d̄x − dτx.

(51)

For displacement in the argument of Φ∗, we have

τ+y+

µ+
− τy

µ
=
α2dτy + α2τdy + α2

2dτdy
µ

.

As an intermediate step, similar to (51), by substituting α1 = α2
τ+α2dτ

and dx = d̄x−dτx, we have

τ+x+ = (τ + α2dτ )(x+ α1dx) = τx+ α2d̄x.(52)

Then, by using µ+ = µ and the first line of (19), and then substituting (52), we have

−〈 τ+y+

µ+ , Ax+ + 1
τ+ z

0〉+ 〈 τyµ , Ax+ 1
τ z

0〉 = − τ+

µ [−yτ,0 − τ+〈c, x+〉] + τ
µ [−yτ,0 − τ〈c, x〉]

= α2
µ [dτyτ,0 + τ〈c, d̄x〉+ dτ 〈c, τx+ α2d̄x〉].
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We can verify by direct substitution that

U>ψc =




1
τA
>Φ′ + 1

µτc

− 1
τ 〈Φ′, Ax+ 1

τ z
0〉+ 1

µ〈y − τcA,Φ′∗〉+ 1
µ(yτ,0 + τ〈c, x〉)

− τ
µFΦ′∗


 .(53)

If we also use the equality F>dv = −dy − dτ cA, then we have

[
d̄>x dτ d>v

]
U>ψc =

1

τ
〈Φ′, Ad̄x − dτ

(
Ax+

1

τ
z0

)
〉+

τ

µ
〈c, d̄x〉

+
dτ
µ
〈y,Φ′∗〉+

τ

µ
〈dy,Φ′∗〉+

dτ
µ

(yτ,0 + τ〈c, x〉).(54)

By substituting all the above equations we get (50). �

In view of (46), µ+ = µ is equivalent to 〈d, r0〉 = 0 for d> :=
[
d̄>x dτ d>v

]
. The corrector

search direction in (48) is, up to some scaling, the optimal solution of

min 〈d, U>ψc〉

s.t. 〈d, r0〉 = 0

d>U>H(H̄, µ2H̄)Ud ≤ 1.

(55)

Before a concrete analysis, to intuitively justify this search direction using (50), note that our

goal is to minimize Ωµ(x+, τ+, y+)−Ωµ(x, τ, y). The coefficient of 〈d, U>ψc〉 is α2, whereas all the

other terms are (almost) proportional to α2
2. Therefore, we can look at α2〈d, U>ψc〉 as the first

order approximation of Ωµ(x+, τ+, y+)− Ωµ(x, τ, y) that we minimize in (55) in a trust region.

Remark 3.5. What we prove for the corrector step above is enough for the purposes of obtaining

the desired complexity results. However, corrector steps in most of the other papers in this context

(such as [34, 41, 33]) is simply minimizing a s.c. function and have the stronger property of

quadratic convergence for the points close enough to the central path (see property (127)-(c)).

Proving asymptotic quadratic convergence for a suitable variant of our algorithm is a future goal.

4. Analysis of the algorithms

In this section, we analyze the predictor and corrector steps we defined in the previous section.

This analysis lets us modify the framework for primal-dual algorithms in Section 3 to achieve

the current best iteration complexity bounds. This modification and the main theorem about it

come in Section 4.3. The following lemma shows how to bound the proximity measure (33) based

on the local norm defined by the current primal and dual iterates:
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Lemma 4.1. (a) Assume that f(x) is an a-s.c. function and let f∗(y) be its LF conjugate. Then,

for every x and y in the domains of f and f∗ we have

ρ (r) ≤ f(x) + f∗(y)− 〈y, x〉 ≤ ρ (−r) ,(56)

where r := a−1/2‖y − f ′(x)‖[f ′′(x)]−1 and ρ is defined in (118).

(b) Moreover, assume that there exist x̂ and ŷ in the domains of f and f∗ respectively such that

ŷ = f ′(x̂) and 〈x− x̂, y − ŷ〉 = 0. Then,

ρ(r) + ρ(s) ≤ f(x) + f∗(y)− 〈y, x〉 ≤ ρ(−r) + ρ(−s),(57)

where r := a−1/2‖x− x̂‖f ′′(x̂) and s := a−1/2‖y − ŷ‖f ′′∗ (ŷ).

Proof. (a) By writing the second inequality in (125) for f∗ at two points y and f ′(x), we have

f∗(y) ≤ f∗(f ′(x)) + 〈f ′∗(f ′(x)), y − f ′(x)〉+ ρ(−a−1/2‖y − f ′(x)‖f ′′∗ (f ′(x))).

To get the RHS inequality in (56), we substitute f ′∗(f
′(x)) = x and f ′′∗ (f ′(x)) = [f ′′(x)]−1 from

(131), and f∗(f
′(x)) + f(x) = 〈f ′(x), x〉 from Theorem A.1. The LHS inequality can be similarly

proved by using the first inequality in (125).

(b) We write the property (125) for f at x and x̂ and for f∗ at y and ŷ, and add them together. �

Corollary 4.1. For every (x, τ, y) ∈ QDD, we have

ρ

(∥∥∥∥
τy

µ
− Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

)
≤ Ωµ(x, τ, y) ≤ ρ

(
−
∥∥∥∥
τy

µ
− Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

)
,(58)

where µ := µ(x, τ, y) and u := Ax+ 1
τ z

0.

As we explained before, matrix H̄ in (36) defines Dikin ellipsoid type properties that are

crucial in our analysis. To elaborate more, in both the predictor and corrector steps, we have a

vector d> := [d̄>x dτ d>v ] as the solution of (42) which satisfies d>U>H(H̄, µ2H̄)Ud ≤ q for H
defined in (42) and a scalar q. Let us define

f := Ud = U




d̄x

dτ

dv


 =︸︷︷︸

(41)




Ad̄x

dτ

−dτ cA − F>dv
〈c, d̄x〉




=︸︷︷︸
(42)




Ad̄x

dτ

dy

〈c, d̄x〉



.

Using (38) and (39), f>H(H̄, µ2H̄)f ≤ q yields
[∥∥∥∥
Ad̄x
τ
− dτ

τ

(
Ax+

1

τ
z0

)∥∥∥∥
Φ′′
−
∣∣∣∣
dτ
τ

∣∣∣∣
√
ϑ

]2

+ (ξ − 1)
d2
τ

τ2
ϑ

+
τ2

µ2
〈dy, [Φ′′]−1dy〉+

[
〈 τdyµ , [Φ′′]−1Φ′〉+ τ

µ(〈dy, Ax+ 1
τ z

0〉+ 〈c, d̄x〉)
]2

ξϑ− 〈Φ′, [Φ′′]−1Φ′〉 ≤ q.(59)
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We can break down (59) into several useful bounds for our analysis. First, clearly

(ξ − 1)
d2
τ

τ2
ϑ ≤ q ⇒

(
dτ
τ

)2

≤ q

(ξ − 1)ϑ
.(60)

Using (59) and (60), we get

1

τ

∥∥∥∥Ad̄x − dτ
(
Ax+

1

τ
z0

)∥∥∥∥
Φ′′
≤ √q +

∣∣∣∣
dτ
τ

∣∣∣∣
√
ϑ ≤︸︷︷︸

(60)

(
1 +

√
1

ξ − 1

)√
q.(61)

(61) gives a bound on the displacement in Ax+ 1
τ z

0 as shown in (51). Also from (59) we get

τ2

µ2
〈dy, [Φ′′]−1dy〉 ≤ q.(62)

Let us see how to use these bounds in the analysis of the predictor and corrector steps.

4.1. Predictor step. Let us first show how the predictor step increases µ. For analyzing this,

we prove a result about the structure of U defined in (41). We start with a lemma:

Lemma 4.2. Assume that H is a symmetric positive definite matrix and U is a matrix of proper

size with linearly independent columns. Then, for any given vector f of proper size, we have

f>U
(
U>HU

)−1
U>f = f>H−1f − f>H−1U⊥

> (
U⊥H−1U⊥

>)−1
U⊥H−1f,(63)

where U⊥ is a matrix whose rows form a basis for the kernel of U>.

Proof. As H is symmetric positive definite and U has linearly independent columns, the system

U>HUg = U>f has a unique solution g. By definition of U⊥, there exists w such that HUg =

f + U⊥
>
w. Multiplying both sides by H−1 gives us Ug = H−1f + H−1U⊥

>
w. To calculate

w, we multiply both sides of the last equation from the left by U⊥. Note that U⊥U = 0 and

U⊥H−1U⊥
>

is invertible. If we solve for w and substitute it in Ug = H−1f +H−1U⊥
>
w, we get

Ug = H−1f −H−1U⊥
> (

U⊥H−1U⊥
>)−1

U⊥H−1f.(64)

If we multiply both sides of (64) from the left by f> and substitute g = (U>HU)−1U>f , we get

(63). �

We are interested in matrix U ∈ R(2m+2)×(m+1) we defined in (41), which has a very special

structure. For this U , one option for U⊥, defined in Lemma 4.2, is

U⊥ =




0 c A> 0

−cA 0 0 1

−F 0 0 0


 .(65)



Primal-Dual Interior-Point Methods for Domain-Driven Formulations: Algorithms 23

If we compare U and U⊥, we see that the rows of U is a permutation of the columns of U⊥.

Explicitly

U⊥ = U>P, P :=


 0 Im+1

Im+1 0


 .(66)

We have the following lemma:

Lemma 4.3. Let H̄ be a symmetric positive definite matrix and µ > 0. Assume the setup of

Lemma 4.2 where H and f have the form

H :=


 H̄ 0

0 1
µ2 H̄

−1


 , f :=


 f1

f2


 ,(67)

such that f1 and f2 further satisfy f1 = µH̄f2 or f1 = −µH̄f2. Also assume that (66) holds for

U and U⊥. Then,

f>U
(
U>HU

)−1
U>f =

1

2
f>H−1f.(68)

Proof. We can verify that H−1 = µ2PHP for P defined in (66). Using this and (66), for the

second term in the RHS of (63) we have

f>H−1U⊥
> (

U⊥H−1U⊥
>)−1

U⊥H−1f = µ2


 f2

f1



>

HU
(
U>HU

)−1
U>H


 f2

f1


 .(69)

Using f1 = µH̄f2 or f1 = −µH̄f2, (69) equals f>U
(
U>HU

)−1
U>f and so (63) reduces to

(68). �

Let us see how Lemma 4.3 is useful for our setup. We define

ψp :=


 f1

f2


 , f1 :=




1
τΦ′

− 1
τ 〈Φ′, Ax+ 1

τ z
0〉 − ξϑ

τ


 , f2 :=




τ
µ

(
Ax+ 1

τ z
0
)

τ
µ


 .(70)

For matrix H̄ defined in (36), we can directly verify

1

µ




1
τΦ′

− 1
τ 〈Φ′, Ax+ 1

τ z
0〉 − ξϑ

τ


 = −H̄




τ
µ

(
Ax+ 1

τ z
0
)

τ
µ


 .(71)

Therefore, f1 = −µH̄f2 and so (68) holds for our setup. Now, we prove the following lemma:

Lemma 4.4. Consider H defined in (42) and ψp defined in (70) for a point (x, τ, y) ∈ QDD.

Then, we have

〈U>ψp,
[
U>H

(
H̄, µ2H̄

)
U
]−1

U>ψp〉 = ξϑ.(72)
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Proof. (71) confirms that f1 = −µH̄f2, so we have equation (68). Hence, we need to show that

(ψp)>H−1ψp = 2ξϑ to get our result. This holds since by direct verification we have

−µ




1
τΦ′

− 1
τ 〈Φ′, Ax+ 1

τ z
0〉 − ξϑ

τ



> 


τ
µ

(
Ax+ 1

τ z
0
)

τ
µ


 = ξϑ,(73)

and (ψp)>H−1ψp, by using (71), is exactly the summation of two terms like (73). �

Now we are ready to prove the following main proposition about how the predictor step

increases µ.

Proposition 4.1. Assume that (x, τ, y) ∈ QDD and conditions (40) and (43) hold. Let our

search direction be the solution of (42) with rRHS = r0/µ2 and any Ĥ that satisfies (43). Let

α2 > 0 be such that τ +α2dτ > 0 and choose α1 = α2
τ+α2dτ

. Then, for the updates in (35) we have

(1− ε̄)2α2 ≤ µ(x+, τ+, y+)− µ(x, τ, y) ≤ α2

(1− ε̄)2
.(74)

Proof. A key to the proof is that on the central path we have U>ψp(µ) = − 1
µr

0, where ψp is

defined in (70) and r0 is defined in (42). This can be directly verified by using (18) and (19)

for the points on the central path. By starting from (46) for µ(x+, τ+, y+) − µ(x, τ, y), we can

continue

µ(x+, τ+, y+)− µ(x, τ, y)

= α2
ξϑ [d̄>x dτ d>v ]r0

= α2
ξϑ

1
µ2 〈r0, [U>H(H̄, Ĥ)U ]−1r0〉, using (42),

= α2
ξϑ 〈U>ψp(µ), [U>H(H̄, Ĥ)U ]−1U>ψp(µ)〉, using U>ψp(µ) = − 1

µr
0.

(75)

We get the desired result by using conditions (40) and (43) and then utilizing Lemma 4.4 for the

points on the central path. �

Proposition 4.1 implies that the amount of increase in µ depends directly on α2. Therefore,

we need to show how large α2 can be chosen in the predictor step.

Lemma 4.5. Assume that (x, τ, y) ∈ QDD and conditions (40) and (43) hold. Then, (59) holds

with q := 1
(1−ε̄)6

ξϑ
µ2 for the solution of (42) with rRHS = r0/µ2 and any Ĥ that satisfies (43).
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Proof. Let us define f = Ud for d the solution of (42). Then, by using (40) and (43), we have

f>H(H̄, µ2H̄)f = 1
µ4 〈
[
U>H(H̄, Ĥ)U

]−1
r0, (U>H(H̄, µ2H̄)U)

[
U>H(H̄, Ĥ)U

]−1
r0〉

≤ 1
(1−ε̄)4µ4 〈r0,

[
U>H(H̄, Ĥ)U

]−1
r0〉, using (40) and (43),

≤ 1
(1−ε̄)6µ4 〈r0,

[
U>H

(
H̄(µ), µ2H̄(µ)

)
U
]−1

r0〉, using (40),

=
〈U>ψp(µ),[U>H(H̄(µ),µ2H̄(µ))U]

−1
U>ψp(µ)〉

(1−ε̄)6µ2 , using U>ψp(µ) = − 1
µr

0,

= 1
(1−ε̄)6µ2 ξϑ, using Lemma 4.4.

(76)

�

We want to control the change in Ωµ(x, τ, y) by using Corollary 4.1. In view of this, by adding

and subtracting some terms, we have (with µ+ := µ(x+, τ+, y+))
(
τ+y+

µ+
− Φ′

(
u+
))
−
(
τy

µ
− Φ′ (u)

)
=

(
τ+

µ+
− τ

µ

)
y +

τ+

µ+
α2dy −

(
Φ′
(
u+
)
− Φ′ (u)

)
.(77)

Let us give a bound on the local norm defined by Φ′′ on the three terms in (77). Note that using

Proposition 4.1, we have
∣∣∣∣
τ+

µ+
− τ

µ

∣∣∣∣ =

∣∣∣∣
τ + α2dτ
µ+

− τ

µ

∣∣∣∣ =

∣∣∣∣
α2µdτ − τ(µ+ − µ)

µµ+

∣∣∣∣ ≤ α2

(∣∣∣∣
dτ
τ

∣∣∣∣+

∣∣∣∣
1

µ(1− ε̄)2

∣∣∣∣
)
τ

µ
.(78)

Ωµ(x, τ, y) ≤ δ1 and (58) imply that
∥∥∥ τyµ − Φ′ (u)

∥∥∥
[Φ′′(u)]−1

≤ σ(δ1), where σ is defined in (119).

Then, by using (131) and property (124) for Φ∗, assuming σ(δ1) < 1 we have

[Φ′′(u)]−1 = Φ′′∗(Φ
′(u)) � 1

(1− σ(δ1))2
Φ′′∗

(
τy

µ

)
.(79)

Using (78) and (79), we can bound the local norm of the first term in the RHS of (77) as
∣∣∣ τ+

µ+ − τ
µ

∣∣∣ ‖y‖[Φ′′(u)]−1 ≤ α2
1−σ(δ1)

(∣∣dτ
τ

∣∣+
∣∣∣ 1
µ(1−ε̄)2

∣∣∣
) ∥∥∥ τµy

∥∥∥
Φ′′∗

≤
(∣∣dτ

τ

∣∣+
∣∣∣ 1
µ(1−ε̄)2

∣∣∣
)

α2
1−σ(δ1)

√
ϑ, using (144).

(80)

For the second term in the RHS of (77) we have

τ+

µ+α2‖dy‖[Φ′′(u)]−1 ≤
[
1 + α2

(∣∣dτ
τ

∣∣+
∣∣∣ 1
µ(1−ε̄)2

∣∣∣
)]
α2

∥∥∥ τµdy
∥∥∥

[Φ′′(u)]−1
, using (78),

≤
[
1 + α2

(∣∣dτ
τ

∣∣+
∣∣∣ 1
µ(1−ε̄)2

∣∣∣
)]
α2
√
q, using (62).

(81)

For the third term, first by using (51) and substituting the bound in (61) we have

∥∥u+ − u
∥∥

Φ′′
≤ 1

1 + α2(dτ/τ)

(
1 +

√
1

ξ − 1

)
α2
√
q

︸ ︷︷ ︸
=:δ̄

.(82)
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If we choose α2 such that δ̄ < 1, then, by Lemma A.1, we have

∥∥Φ′
(
u+
)
− Φ′ (u)

∥∥
[Φ′′(u)]−1 ≤

δ̄

1− δ̄ .(83)

Putting together the above bounds, we can prove the following main result:

Proposition 4.2. Assume that 0.2 > δ2 > 4δ1 > 0 and for a point (x, τ, y) ∈ QDD we have

Ωµ(x, τ, y) ≤ δ1. Let the predictor step be calculated from (42) with rRHS = r0/µ2 and any Ĥ

that satisfies (43). Then, there exists a positive constant κ1 depending on δ1, δ2, and ξ such that

we can choose α2 large enough to satisfy

α2 ≥
κ1√
ϑ
µ,(84)

and α1 := α2
τ+α2dτ

for the update of (35) while Ωµ(x+, τ+, y+) ≤ δ2.

Proof. We choose α2 to make sure that δ̄ defined in (82) satisfies δ̄ ≤ 1/4. To achieve this, we

first assume that α2|dτ/τ | ≤ 1/2, and then in view of (82) we choose 2(1+1/
√
ξ − 1)α2

√
q ≤ 1/4.

If we substitute the value of q = 1
(1−ε̄)6

ξϑ
µ2 defined in Lemma 4.5 and also use the bound in (60),

the following inequality guarantees δ̄ ≤ 1/4:

α2

√
ϑ

µ
≤ min

{√
ξ − 1

ξ

(1− ε̄)3

2
,

1

8(1 + 1/
√
ξ − 1)

√
ξ

(1− ε̄)3

}

︸ ︷︷ ︸
=:κ1,1

.(85)

Consider the bound we have for the proximity measure in Corollary 4.1. Assuming that δ̄ defined

in (82) satisfies δ̄ ≤ 1/4, by using property (124), we have
∥∥∥ τ+y+

µ+ − Φ′ (u+)
∥∥∥
∗

Φ′′(u+)
≤ 4

3

∥∥∥ τ+y+

µ+ − Φ′ (u+)
∥∥∥
∗

Φ′′(u)

≤ 4
3

∥∥∥ τ+y+

µ+ − Φ′ (u+)− τy
µ + Φ′ (u)

∥∥∥
∗

Φ′′(u)
+ 4

3

∥∥∥ τyµ − Φ′ (u)
∥∥∥
∗

Φ′′(u)

≤ 4
3

∥∥∥ τ+y+

µ+ − Φ′ (u+)− τy
µ + Φ′ (u)

∥∥∥
∗

Φ′′(u)
+ 4

3σ(δ1),

(86)

where σ(·) is the inverse of ρ(·) defined in (119). Similarly, we define the inverse of ρ(−·) as σ̄(·).
To satisfy Ωµ(x+, τ+, y+) ≤ δ2, in view of Corollary 4.1 and using (86), a sufficient condition is

∥∥∥∥
τ+y+

µ+
− Φ′

(
u+
)
− τy

µ
+ Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

≤ 3

4
σ̄(δ2)− σ(δ1).(87)

For this analysis, we need to choose δ1 and δ2 such that 3
4 σ̄(δ2) > σ(δ1). One way to force

this is choosing 0.2 > δ2 > 4δ1. To verify this, in view of inequality (120), we can check that

δ2 ≥ ρ(−4
3(
√
δ2/2 + δ2/4)) for δ2 ∈ (0, 0.2) and then apply σ̄ to both sides. We have split the

term inside the norm in the LHS of (87) into three terms in (77) and bounded the local norm

for each of them. We add the bounds in (80), (81), and (83). Then, by substituting q = 1
(1−ε̄)6

ξϑ
µ2



Primal-Dual Interior-Point Methods for Domain-Driven Formulations: Algorithms 27

and the bound in (60), and considering δ̄ ≤ 1/4 and α2|dτ/τ | ≤ 1/2, we can bound the LHS of

(87) from above by



(√
ξ
ξ−1

1
(1−ε̄)3 + 1

(1−ε̄)2

)

1− σ(δ1)
+ 2

√
ξ

(1− ε̄)3
+

8

3

(
1 +

√
1

ξ − 1

) √
ξ

(1− ε̄)3




︸ ︷︷ ︸
=:1/κ1,2

α2

√
ϑ

µ .
(88)

Note that for (81), the term inside the bracket is bounded from above by 2 using the fact that

we force (80) to be smaller than 1. Therefore, if we choose

α2

√
ϑ

µ
= κ1 := min

{
κ1,1, κ1,2

(
3

4
σ̄(δ2)− σ(δ1)

)}
,

then Ωµ(x+, τ+, y+) ≤ δ2 holds, which concludes the proof. �

To complete the whole discussion, we need to prove Lemma 3.1. Let us start with the following

lemma:

Lemma 4.6. For every set of points (z, τ, y, yτ , µ) such that u := z
τ ∈ D, y ∈ D∗, µ > 0, and

yτ + 1
τ 〈y, z〉+ µξϑ

τ = 0, we have
∥∥∥ τyµ − Φ′ (u)

∥∥∥
[Φ′′(u)]−1

≤ β ≤
√

ξ
ξ−1

∥∥∥ τyµ − Φ′ (u)
∥∥∥

[Φ′′(u)]−1
,(89)

where

β(z, τ, y, yτ , µ) :=

∥∥∥∥∥∥
1
µ


 y

yτ


−




1
τΦ′(u)

− 1
τ 〈Φ′(u), u〉 − ξϑ

τ



∥∥∥∥∥∥

[H̄(u,τ)]−1

,(90)

for H̄(u, τ) defined in (36) as a function of u and τ .

Proof. Consider the definition of H̄ in (36) and the formula for its inverse in (39). We want to

substitute w := y
µ − 1

τΦ′ (u) and wτ := yτ
µ + 1

τ 〈Φ′(u), u〉 + ξϑ
τ in (39). Note that by using the

hypothesis of the lemma, we have

wτ =
yτ
µ

+
1

τ
〈Φ′(u), u〉+

ξϑ

τ
= −〈 y

µ
− 1

τ
Φ′,

z

τ
〉.

Hence, by substituting this formula for wτ and also w in (39), we get

β2 =
∥∥∥ τyµ − Φ′ (u)

∥∥∥
2

[Φ′′(u)]−1
+

[
〈 τy
µ
−Φ′,[Φ′′]−1Φ′〉

]2
ξϑ−〈Φ′,[Φ′′]−1Φ′〉

≤
∥∥∥ τyµ − Φ′ (u)

∥∥∥
2

[Φ′′(u)]−1
+

∥∥∥ τyµ −Φ′(u)
∥∥∥2

[Φ′′(u)]−1
ϑ

(ξ−1)ϑ = ξ
ξ−1

∥∥∥ τyµ − Φ′ (u)
∥∥∥

2

[Φ′′(u)]−1
,

(91)

where for the inequality we used CS inequality and property (134) of ϑ-s.c. barriers. (91) imme-

diately gives us (89). �
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Proof of Lemma 3.1. Assume that Ωµ(x, τ, y) ≤ ε < 1, by Corollary 4.1, we have

ρ

(∥∥∥∥
τy

µ
− Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

)
≤ ε ⇒

∥∥∥∥
τy

µ
− Φ′ (u)

∥∥∥∥
[Φ′′(u)]−1

≤ σ(ε),

where σ(·), defined in (119), is the inverse of ρ(·) for nonnegative values. If we define (z, τ) :=

(τAx + z0, τ) and 1
µ(y, yτ ) := 1

µ(y, yτ,0 + τ〈c, x〉), the hypotheses of Lemma 4.6 are satisfied.

Then, we have β ≤
√

ξ
ξ−1σ(ε). In Remark 3.2, we mentioned that H̄(x, τ), with some change of

variables, is the Hessian of f := Φ
(
z
τ

)
− ξϑ ln(τ), which we proved in Lemma A.2 that is a ξ̄-s.c.

function for an absolute constant ξ̄ depending on ξ. We want to use Lemma 4.1 for f and its

conjugate at the points (z, τ) and 1
µ(y, yτ ), and the corresponding points with the same µ on the

central path. One can verify that condition of Lemma 4.1-(b) holds for these points, i.e.,

〈y − y(µ), z − z(µ)〉+ (yτ − yτ (µ))(τ − τ(µ))

= 〈A>(y − y(µ)), τx− τ(µ)x(µ)〉+ (τ − τ(µ))〈c, τx− τ(µ)x(µ)〉
= −(τ − τ(µ))〈c, τx− τ(µ)x(µ)〉+ (τ − τ(µ))〈c, τx− τ(µ)x(µ)〉 = 0.(92)

Note that the terms in the middle of both parts (a) and (b) of Lemma 4.1 are the same. If we

use the upper bound from (56) and the lower bound from (57) and ignore one term in the LHS,

we get

ρ

(
1√
ξ̄

(
H̄(x(µ), τ(µ))[z − z(µ), τ − τ(µ)]

)1/2
)
≤ ρ

(
− β√

ξ̄

)

⇒
(
H̄(x(µ), τ(µ))[z − z(µ), τ − τ(µ)]

)1/2 ≤
√
ξ̄σ

(
ρ

(
− 1√

ξ̄

√
ξ
ξ−1σ(ε)

))
.

(93)

We have σ(ε) ≤
√

2ε+ ε by (120), and for ε ≤ 0.1 we can easily verify that
√

2ε+ ε ≤
√

3ε. Also

we can verify that for t ≤ 0.6, we have ρ(−t) ≤ t2. Assume that σ(ε) is small enough to have√
ξ

ξ̄(ξ−1)
σ(ε) ≤ 0.6. Then, the RHS of (93) becomes

≤
√
ξ̄σ

(
ξ

ξ̄(ξ − 1)
σ2(ε)

)
≤ 3

√
ξ

ξ − 1

√
ε.(94)

Now we just need to use property (124) of s.c. functions for f = Φ
(
z
τ

)
− ξϑ ln(τ) to get the result

of the lemma. �

Before analyzing the corrector step, let us elaborate more on the above proof. For a point

(x, τ, y) ∈ QDD with parameter µ, let us define

d :=




τ(µ)x(µ)− τx
τ(µ)− τ
v(µ)− v


 .(95)
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We can easily verify that (using y = y0 − (τ − 1)cA − F>v):

Ud =




τ(µ)Ax(µ) + z0

τ(µ)

y(µ)

yτ,0 + τ(µ)〈c, x(µ)〉



−




τAx+ z0

τ

y

yτ,0 + τ〈c, x〉



.(96)

We want to use property (124) for r = 1/4 to change the local norm in (93); it suffices to force

3
√

ξ
ξ̄(ξ−1)

√
ε ≤ 1

4 in view of (94). Consider the proof of Lemma 3.1 and also the term for y that

we ignored in (93). Then, using (94) and the above discussion, we have

Corollary 4.2. If for a point (x, τ, y) ∈ QDD we have 3
√

ξ
ξ̄(ξ−1)

√
Ωµ(x, τ, y) ≤ 1

4 , then for d

defined in (95) we have

‖d‖U>H(H̄(x,τ),µ2H̄(x,τ))U ≤ 2 · 4

3

(
3

√
ξ

ξ − 1

√
Ωµ(x, τ, y)

)
= 8

√
ξ

ξ − 1
︸ ︷︷ ︸

=:ξ̄1

√
Ωµ(x, τ, y).(97)

This inequality gives us (59) for q = ξ̄2
1Ωµ(x, τ, y) that we break down to get the bounds we

need for the analysis of the corrector step.

4.2. Corrector step. We focus on the case that α1 = α2
τ+α2dτ

(assuming τ + α2dτ > 0) in the

updates of (35). By Remark 3.4, µ+ = µ for every α2 and so we just need to show that α2

can be chosen to get enough reduction in the proximity measure. Let dc be the corrector step

derived by solving (42) with parameters defined in (48). We argued by using (50) that the value

of 〈dc, U>ψc〉 represents the first order reduction in Ωµ. On the other hand, by using (42) and

(48), we can verify

−〈dc, U>ψc〉 =
∥∥∥U>ψc + βr0

∥∥∥
2

(U>HU)−1
.(98)

The following key lemma shows that this quantity has a large enough value:

Lemma 4.7. Let (x, τ, y) ∈ QDD. If

Ωµ(x, τ, y) ≤ 1

100
(
(ξ̄2ξ̄1)3 + ξ̄3ξ̄3

1

)2 ,(99)

where ξ̄1 = 8
√
ξ/
√
ξ − 1 is defined in (97) and

ξ̄2 := 3
√

1
ξ−1 + 7

2 ,

ξ̄3 := 1
2
√
ξ−1

(
11
2 + 5√

ξ−1

)(
3 + 2√

ξ−1

)
+ 2

ξ−1

(
1 + 1√

ξ−1

)
,

(100)
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then,

∥∥∥U>ψc + βr0
∥∥∥

(U>HU)−1
≥ 1

4ξ̄1

√
Ωµ(x, τ, y),

where β is defined in (48) and ψc is defined in (49).

Proof. −‖U>ψc+βr0‖(U>HU)−1 is the optimal objective value of (55) and we find an upper bound

for it by using a specific feasible solution. Our feasible solution is

d

‖d‖U>H(H̄,µ2H̄)U

,(101)

where d is defined in (95) and we have Corollary 4.2 for a bound on its local norm. We can

verify that (101) satisfies all the constraints. Now, we need to prove that −〈d, U>ψc〉 is large

enough. The idea of the proof is that we consider the bounds in (50) at α2 = 1 and α2 = 2, and

if −〈d, U>ψc〉 is not large enough, we get a contradiction.

For simplicity, let Ωµ := Ωµ(x, τ, y) and define
√
q = ξ̄1

√
Ωµ for ξ̄1 defined in (97). Then (59)

becomes the expansion of (97) and we have all the inequalities we extracted after Lemma 4.5,

which we use to find bounds for the terms we have in (50). For the first term of D(α2) we can

use (61). For the second term of D(α2) we use triangle inequality and we have

∥∥∥∥
dτy

µ

∥∥∥∥
Φ′′∗

=
dτ
τ

∥∥∥∥
τy

µ

∥∥∥∥
Φ′′∗

≤
√

q

ξ − 1
, using (60) and (144),(102)

and using (60) and (62), we have

∥∥∥∥
(τ + α2dτ )dy

µ

∥∥∥∥
Φ′′∗

=
(τ + α2dτ )

τ

∥∥∥∥
τdy
µ

∥∥∥∥
Φ′′∗

≤
(

1 + α2

√
q

(ξ − 1)ϑ

)√
q.(103)

If we use the CS inequality (9) for B = Φ′′ and use ‖Φ′‖[Φ′′]−1 ≤
√
ϑ (see (134)), then (60) and

(61) imply

∣∣∣∣
dτ

τ(τ + α2dτ )
〈Φ′, Ad̄x − dτ

(
Ax+

1

τ
z0

)
〉
∣∣∣∣ ≤

√
q
ξ−1

1− α2

√
q

(ξ−1)ϑ

(
1 +

√
1

ξ − 1

)√
q.(104)

We want to make the second line of the term in the middle of inequalities in (50) a quadratic in

terms of α2, while the upper and lower bounds are proportional to α3
2. To do this, we modify
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(50) by adding and subtracting some terms to all sides as:

ρ(D(α2))− 1
2(D(α2))2 + D̂(α2)

≤ Ωµ(x+, τ+, y+)− Ωµ(x, τ, y)− α2

[
d̄>x dτ d>v

]
U>ψc

+
α2

2dτ
τ2 〈Φ′, Ad̄x − dτ

(
Ax+ 1

τ z
0
)
〉 − α2

2dτ
µ

(
〈dy,Φ′∗〉+ 〈c, d̄x〉

)
− 1

2(D̄(α2))2

≤ ρ (−D(α2))− 1
2(D(α2))2 + D̂(α2),

D̄(α2) := α2
τ

∥∥Ad̄x − dτ
(
Ax+ 1

τ z
0
)∥∥

Φ′′
+ α2

∥∥∥dτy+τdy
µ

∥∥∥
Φ′′∗
,

D̂(α2) := 1
2

(
(D(α2))2 − (D̄(α2))2

)
+

α2
3d

2
τ

τ2(τ+α2dτ )
〈Φ′, Ad̄x − dτ

(
Ax+ 1

τ z
0
)
〉.

(105)

Note that by definition (118), we can verify that

ρ(−t)− t2

2
≤ t3, t2

2
− ρ(t) ≤ t3, ∀t ∈ (0, 0.8).(106)

Let us assume that 2
√

q
(ξ−1)ϑ ≤ 1

2 , then (61), (102), (103), and (104) yield that for α2 ∈ (0, 2) we

have

|D(α2)| ≤ α2ξ̄2
√
q = α2ξ̄2ξ̄1

√
Ωµ,

|D̄(α2)| ≤ α2

(
2

√
1

ξ − 1
+ 2

)
ξ̄1

√
Ωµ,

|D̂(α2)| ≤ α3
2ξ̄3ξ̄

3
1Ω3/2

µ ,(107)

where ξ̄2 nd ξ̄3 are defined in (100). For the bound on |D̂(α2)|, we also used the fact that

|D(α2)− D̄(α2)| ≤ α2
2|dτ |

(τ + α2dτ )τ

∥∥∥∥Ad̄x − dτ
(
Ax+

1

τ
z0

)∥∥∥∥
Φ′′

+ α2
2

∥∥∥∥
dτdy
µ

∥∥∥∥
Φ′′∗

.

If we have ξ̄2ξ̄1

√
Ωµ ≤ 0.8, by using (106) and (107), the middle term of (105) is squeezed between

±α3
2

(
(ξ̄2ξ̄1)3 + ξ̄3ξ̄

3
1

)
Ω

3/2
µ for α2 ∈ (0, 2). We want to choose Ωµ small enough to make the term

in the middle of (105) be squeezed between ± 1
10Ωµ for α2 = 1; it suffices to have

(
(ξ̄2ξ̄1)3 + ξ̄3ξ̄

3
1

)
Ω3/2
µ ≤ 1

10
Ωµ ⇔︸︷︷︸

for Ωµ > 0

Ωµ ≤
1

100
(
(ξ̄2ξ̄1)3 + ξ̄3ξ̄3

1

)2 .(108)

We claim that in this case, −〈d, U>ψc〉 ≥ 1
4Ωµ. If we substitute α2 = 1, then Ωµ(x+, τ+, y+) = 0

as we can verify that the point lays on the central path. Suppose for the sake of reaching a

contradiction −〈d, U>ψc〉 < 1
4Ωµ. Then, in view of (105), we must have

dτ
τ2
〈Φ′, Ad̄x − dτ

(
Ax+

1

τ
z0

)
〉 − dτ

µ

(
〈Φ′∗, dy〉+ 〈c, d̄x〉

)
− 1

2
(D̄(1))2 ≥

(
3

4
− 1

10

)
Ωµ.

We reach our contradiction when we consider α2 = 2. For α2 = 2 we have Ωµ(x+, τ+, y+) ≥ 0.

The term in the second line of (50) is degree 2 of α2 and so becomes at least
(

12
4 − 4

10

)
Ωµ for
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α2 = 2. Then, at α2 = 2, (105) implies

−Ωµ(x, τ, y) +

(
12

4
− 4

10

)
Ωµ(x, τ, y) ≤ 8

10
Ωµ(x, τ, y),

which is a contradiction.

Now, if we consider the feasible solution (101) for the optimization problem (55) and putting

together the bounds −〈d, U>ψc〉 ≥ 1
4Ωµ and ‖d‖U>H(H̄,µ2H̄)U ≤ ξ̄1

√
Ωµ from (97), we get the

result of the lemma. We can verify that for ξ > 1, (99) implies the other bounds we used for Ωµ

in the proof, including the hypothesis of Corollary 4.2, ξ̄2ξ̄1

√
Ωµ ≤ 0.8, and 2

√
q

(ξ−1)ϑ ≤ 1
2 . �

Now we are ready to prove the main proposition for the corrector step.

Proposition 4.3. Let (x, τ, y) ∈ QDD satisfy (99). Assume that the corrector step dc is calculated

by solving (42) with parameters defined in (48), and we choose α1 = α2
τ+α2dτ

for the updates of

(35). Consider ξ̄1 and ξ̄2 defined in (97) and (100), respectively. Then, for

α2 :=
1

2(ξ̄4 + ξ̄2
2)
, ξ̄4 := 2

√
1

ξ − 1

(
1 +

√
1

ξ − 1

)
+

√
ξ + 2√
ξ − 1

,(109)

we have

Ωµ(x+, τ+, y+)− Ωµ(x, τ, y) ≤ − α2

32ξ̄2
1

.(110)

Proof. Assume that dc = [d̄>x dτ d
>
v ] is the corrector search direction. Then, by (42) and (48) we

have

(dc)>U>HUdc = ‖U>ψc + βr0‖2(U>HU)−1 .(111)

Hence, we have inequality (59) with q := ‖U>ψc+βr0‖2
(U>HU)−1 , and we already have the bounds

(61), (102), (103), and (104). Here, we use (59) to get another bound; if we consider the last

term in the LHS of (59), we get

τ

µ

∣∣∣∣〈dy, Ax+
1

τ
z0〉+ 〈c, d̄x〉

∣∣∣∣ ≤ (
√
ξ + 1)

√
ϑq.(112)
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Note that from Corollary 4.1, we have
∥∥∥ τyµ − Φ′

∥∥∥
[Φ′′]−1

≤ σ(Ωµ). Using this and (112), we have

∣∣∣dτµ
(
〈dy,Φ′∗〉+ 〈c, d̄x〉

)∣∣∣
=

∣∣∣dτµ
(
〈dy, Ax+ 1

τ z
0〉+ 〈c, d̄x〉+ 〈dy,Φ′∗ −Ax+ 1

τ z
0〉
)∣∣∣

≤
∣∣dτ
τ

∣∣
(
τ
µ

∣∣〈dy, Ax+ 1
τ z

0〉+ 〈c, d̄x〉
∣∣+ τ

µ‖dy‖[Φ′′]−1

∥∥Φ′∗ −Ax+ 1
τ z

0
∥∥

Φ′′

)

≤
√

q
(ξ−1)ϑ

(
(
√
ξ + 1)

√
ϑq + τ

µ‖dy‖[Φ′′]−1

∥∥Φ′∗ −Ax+ 1
τ z

0
∥∥

Φ′′

)
, by (60) and (112),

≤
√

q
(ξ−1)ϑ

(
(
√
ξ + 1)

√
ϑq +

√
q

σ(Ωµ)
1−σ(Ωµ)

)
, by (62) and Lemma A.1,

=
√

1
ξ−1

(
(
√
ξ + 1) +

σ(Ωµ)√
ϑ(1−σ(Ωµ))

)
q

≤
√
ξ+2√
ξ−1

q, for the case σ(Ωµ) ≤ 0.5.

(113)

We want to work with the second inequality in (50). We already have a bound for D(α2) in

(107) and we also have ρ(−t) ≤ t2 for t ∈ (0, 0.6). By substituting (104) and (113), we get

Ωµ(x+, τ+, y+)− Ωµ(x, τ, y) ≤ (−α2 + (ξ̄4 + ξ̄2
2)α2

2)‖U>ψc + βr0‖2(U>HU)−1 ,(114)

where ξ̄4 is defined in (109). If we choose α2 ≤ 1
2(ξ̄4+ξ̄2

2)
, then for the RHS we have

≤ −1

2
α2‖U>ψc + βr0‖2(U>HU)−1 ≤ −

α2

32ξ̄2
1

Ωµ,(115)

where we used the bound for ‖U>ψc + βr0‖2
(U>HU)−1 by Lemma 4.7. �

4.3. Complexity of following the path to µ = +∞. We have analyzed the predictor and

corrector search directions in Section 4. Now we can modify the statement of our predictor-

corrector algorithm to one that provably follows the path in polynomial time.

Polynomial-time Predictor-Corrector Algorithm (PtPCA)

Initialization: Choose z0 ∈ intD and set y0 := Φ′(z0). Set x0 := 0, τ0 := 1, µ0 := µ(x0, τ0, y
0),

and k = 0. Choose a constant ξ > 1 and constants 0 < 4δ1 < δ2 ≤ 1

100((ξ̄2ξ̄1)3+ξ̄3ξ̄3
1)

2 , where ξ̄1, ξ̄2,

and ξ̄3 are functions of ξ defined in (97) and (100).

while (the stopping criteria are not met)

if (Ωµk(xk, τk, y
k) > δ1)

Calculate the corrector search direction (dx, dτ , dy) by (42) with rRHS and Ĥ

defined in (48), and choose α2 as in (109) and α1 := α2
τ+α2dτ

. Apply the update

in (35) to get (xk+1, τk+1, y
k+1), and define µk+1 := µk.

if (Ωµk(xk, τk, y
k) ≤ δ1)



34 KARIMI and TUNÇEL

Calculate the predictor search direction (dx, dτ , dy) by (42) with rRHS = r0/µ2
k

and any Ĥ that satisfies (43), and choose α2 = κ1√
ϑ
µk for κ1 defined in the

proof of Proposition 4.2, and α1 := α2
τ+α2dτ

. Apply the update in (35) to get

(xk+1, τk+1, y
k+1), and define µk+1 := µ(xk+1, τk+1, y

k+1).

k ← k + 1.

end while

Note that even though the choices of δ1 and δ2 in the PtPCA, as we show in the following, gives

us the desired iteration complexity bounds, these choices are too small for practical purposes.

In practice, as we have done in the DDS code, δ1 and δ2 are chosen large enough to guarantee

long steps. To achieve long steps in practice, we should not restrict the algorithm to Dikin

ellipsoids. There are properties for classes of s.c. barriers that strengthen the Dikin ellipsoid

property to anywhere in the interior of the domain. We mention negative curvature [39, 19, 42]

and α-regularity [38] here. Negative curvature is a property for many interesting LH s.c. barriers

(see [39], [19], and [42]-Section 9.2) that lets us extend a Hessian estimation property like (124)

to effectively the whole domain of the s.c. barrier. A s.c. function is additionally α-regular if the

second derivative also controls the fourth derivative in a proper way [38]. It was shown in [38] that

many useful s.c. barriers are α-regular, such as the ones in Table 1 for LP, SOCP, and SDP, and

the ones we built for Geometric Programing and Entropy Programming. If all the s.c. barriers

given in a problem instance have one of these properties, the practical version of our algorithm is

theoretically guaranteed to take long steps (a large portion of the distance between the current

iterate and the boundary). If even one of these barriers does not have any long-step property,

this theoretical guarantee may not hold. It is possible to construct some pathological examples

on which the algorithm has to take a short step in every iteration; however, the practical version

of the algorithm generally has a chance to take long steps in most of the iterations.

Our analysis of the predictor and corrector steps implies the following theorem:

Theorem 4.1. For the polynomial-time predictor-corrector algorithm, there exists a positive con-

stant κ2 depending on ξ such that after N iterations, we get a point (x, τ, y) ∈ QDD such that

µ(x, τ, y) ≥ exp

(
κ2√
ϑ
N

)
.(116)

Proof. By Proposition 4.3, after each predictor step, we have to do at most

64(ξ̄4 + ξ̄2
2)ξ̄2

1(δ2 − δ1),
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number of corrector steps to satisfy Ωµ(x, τ, y) ≤ δ1. Also, by Propositions 4.1 and 4.2, after N̄

cycles of predictor-corrector steps, we have

µ ≥
(

1 +
κ1√
ϑ

)N̄
.

Therefore, we have (116) for κ2 = O(1)κ1. �

Theorem 4.1 is the core of several consequences about determining the statuses of the problem

in polynomial time (see [24]-Chapter 7). In this article, we briefly discuss the case where the

problem and its dual both are strictly feasible. In this case, we can define a feasibility measure σf

(which is a complexity measure) that represents how good the geometry of the feasible regions are

and the proximity of z0 and y0 to the boundaries of their respective domains (see [24]-Chapter 7

for the exact definition). Then we can prove the following theorem about the connection between

τ and µ.

Theorem 4.2 ([24]). Assume that both primal and dual are strictly feasible and for a point

(x, τ, y) ∈ QDD we have the additional property that δ∗(y|D) + yτ,0 + τ〈c, x〉 ≤ 0. Then,

τ − 1 ≥ σfµ−
1

σf
,(117)

where σf is the feasibility measure.

Note that by Lemma 2.2, the hypothesis of the above theorem holds for the points close to

the central path. Putting together the discussion we had in Subsection 2.2 and Theorem 4.1,

we conclude that when we have strict primal and dual feasibility, in O
(√

ϑ ln
(
ϑ
ε

))
number of

iterations, we obtain an ε-solution of the problem.

5. Conclusions

After introducing the Domain-Driven setup, we defined an infeasible-start primal-dual central

path and designed and analyzed algorithms that can follow this path efficiently (Theorem 4.1).

Following our discussion in Subsection 2.2, the important question is: for different statuses of

the problem, what is the behavior of (x, τ, y) when µ → +∞, and for which values of µ we can

determine the status of the problem with ε accuracy using (x, τ, y)? We answered this question

for the case of strict primal and dual feasibility, for which our algorithm can return an ε-solution

in O
(√

ϑ ln
(
ϑ
ε

))
number of iterations. This bound is the current best and is new for the type of

formulations we used for handling infeasibility, even in the special case of SDP.

Different statuses are defined in [24] for a problem in the Domain-Driven setup. Theorem

4.1 and the preliminary discussion in [24]-Chapter 7 show that our algorithms return certificates
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(heavily relying on duality) for each of these statuses in polynomial time. The iteration complexity

bounds are comparable to the current best ones we have for the conic formulations (to the best of

our knowledge mostly in [41]). The discussion on the geometry of the problem, different statuses,

and the performance of the algorithm for each of them will appear in a subsequent article. The

algorithms of this article are the base of a code, called DDS (Domain-Driven Solver), that solves

many classes of problems, including those listed in Section 1, and the list is expanding.
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Appendix A. Self-Concordant Functions

In this section, we summarize the properties of self-concordant (s.c.) functions that we use in

this paper. The properties are divided into three parts; 1) general properties of s.c. functions, 2)

s.c. barriers, and 3) Legendre-Fenchel (LF) conjugate of s.c. barriers.

We define the following function which is frequently used in the context of self-concordant

functions.

ρ(t) :=





t− ln(1 + t) = t2

2 − t3

3 + t4

4 + · · · , t ≥ −1,

+∞, t < −1.
(118)

We also need, in some sense, the inverse of this function

σ(s) := max{t : ρ(t) ≤ s}, s ≥ 0.(119)

By [33]-Lemma 2.1, we have

σ(s) ≤
√

2s+ s, ∀s ≥ 0.(120)

A.1. Self-concordant (s.c.) functions. A convex function f : E→ R ∪ {+∞} is called a-s.c.

function if its domain Q is open, f is C3 on Q and

(i) f(xi)→ +∞ for every sequence {xi} ⊂ Q that converges to a point on the boundary of Q.

(ii) There exists a positive real constant a such that

|f ′′′(x)[h, h, h]| ≤ 2a−1/2(f ′′(x)[h, h])3/2 = 2a−1/2‖h‖3f ′′(x), ∀(x ∈ Q, h ∈ E),(121)

where fk(x)[h1, . . . , hk] henceforth is the value of the kth differential of f along directions

h1, . . . , hk ∈ E.

We say that f is non-degenerate if its Hessian f ′′(x) is positive definite at some point (and then

it can be proved to be positive definite at all points) in Q.

For a a-s.c. function f and any point x in its domain, we define an important concept of the

Newton decrement of f at x as

λ(f, x) := a−1/2 max{f ′(x)[h] : h ∈ E, f ′′(x)[h, h] ≤ 1}.(122)

When f is non-degenerate, it can be shown that we have

λ(f, x) = a−1/2‖f ′(x)‖∗f ′′(x).(123)

In the following, we list some of the important properties of s.c. functions and s.c. barriers.

Properties are labeled with SC for future reference:



Primal-Dual Interior-Point Methods for Domain-Driven Formulations: Algorithms 39

SC-1 (Stability under intersections, direct sums, and affine maps) [37]-Proposition 2.1.1:

(a) Let fi, i ∈ {1, . . . ,m}, be an ai-s.c. function on E with domains Qi. Then, for real coefficients

γi ≥ 1, if Q := ∩mi=1Qi is not empty, f :=
∑m

i=1 γifi is an a-s.c. function with domain Q,

where a := min{γiai : i ∈ {1, . . . ,m}}.
(b) Let fi, i ∈ {1, . . . ,m}, be an a-s.c. function on Ei with domains Qi. Then, the function

f(x1, . . . , xm) :=
∑m

i=1 fi(x
i), defined on Q1 ⊕ · · · ⊕Qm, is an a-s.c. function.

(c) Let f be a s.c. function with domain Q and x = Ay + b be an affine mapping with image

intersecting Q, then f(Ay + b) is also a s.c. function on {y : Ay + b ∈ Q}.

From now on, we assume that f is a s.c. function with domain Q.

SC-2 (Behaviour in Dikin ellipsoid and some basic inequalities):

(a) For every point x ∈ Q, we define the Dikin ellipsoid centered at x as

W1(x) :=

{
y ∈ E :

1√
a
‖y − x‖f ′′(x) ≤ 1

}
.

Then we have W1(x) ⊂ Q and for every point y ∈W1(x) we can estimate the Hessian of f at

y in term of the Hessian of f at x as

(1− r)2f ′′(x) � f ′′(y) � 1

(1− r)2
f ′′(x),(124)

where r := 1√
a
‖y − x‖f ′′(x). For a proof see [37]-Theorem 2.1.1.

(b) For every point x, y ∈ Q and for r := 1√
a
‖y − x‖f ′′(x), we have

f(y) ≥ f(x) + 〈f ′(x), y − x〉+ ρ(r),

f(y) ≤ f(x) + 〈f ′(x), y − x〉+ ρ(−r),(125)

where ρ(·) is defined in (118). For a proof of this for a = 1, see [32] or [37]. The proof for

general a is similar.

SC-3 (Newton iterate): For every point x, we define the Newton direction as

Newton(x) := argminh

{
f(x) + f ′(x)[h] +

1

2
f ′′(x)[h, h]

}
.

Then, we define the damped Newton iterate of x as

x+ = x+
1

1 + λ(f, x)
Newton(x).(126)
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We have the following properties for a damped Newton step

(a) x+ ∈ Q,
(b) f(x+) ≤ f(x)− aρ(λ(f, x)),(127)

(c) λ(f, x+) ≤ 2λ2(f, x).

For parts (a) and (b), see [37]-Proposition 2.2.2. For part (c), plug in s = 1
1+λ in [37]-Theorem

2.2.1.

SC-4 (Existence of minimizer): f attains its minimizer on Q if and only if f is bounded below

on Q, and if and only if there exists x ∈ Q such that λ(f, x) < 1. For an arbitrary minimizer xf ,

we have

λ(f, x) < 1 ⇒ f(x)− f(xf ) ≤ ρ(−λ(f, x)).(128)

If f is non-degenerate, the minimizer is unique. The proof of a = 1 is in [32], and the proof for

general a is similar.

SC-6 (LF conjugate of a s.c. function): Let f : E → R ∪ {+∞} be convex. The Legendre-

Fenchel (LF) conjugate of f is defined as

f∗(y) := sup
x
{〈y, x〉 − f(x)}.(129)

f∗ is always a convex function and its domain is all the points that (129) has a bounded solution.

For a proper convex function, we have (f∗)∗ = f if and only if the epigraph of f is closed (f is a

closed convex function), see for example [23]. We use the following inequality frequently in this

paper.

Theorem A.1. (Fenchel-Young inequality) Let f : E→ R∪{+∞} be a convex function and
f∗ be its LF conjugate. For every point x in the domain of f and every y in the domain of f∗,
we have

f(x) + f∗(y) ≥ 〈y, x〉.(130)

Equality holds if and only if y ∈ ∂f(x).

Assume that f(x) is differentiable and the optimal value of (129) for ȳ is attained at x̄, then

we must have ȳ = f ′(x̄). By Theorem A.1, if both f and f∗ are twice differentiable, for every

point x in the domain of f we have

x = f ′∗(f
′(x)) ⇒ f ′′∗ (f ′(x)) = [f ′′(x)]−1.(131)

Let Q∗ be the domain of f∗; the set of all points for which the right hand side of (129) is

finite. We mentioned that Q∗ is convex and f∗ is a convex function on Q∗. It is shown in [37]-
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Section 2.4 that Q∗ = f ′(Q), f∗ is a non-degenerate s.c. function and the LF conjugate of f∗ is

exactly f .

The following lemma is also very useful:

Lemma A.1. Let f be a 1-s.c. function and x and y in its domain such that r := ‖x−y‖f ′′(x) < 1.
Then

‖f ′(x)− f ′(y)‖∗f ′′(x) ≤
r

1− r .(132)

Proof. Let us define q := y − x. Starting with the fundamental theorem of calculus, we have:

‖f ′(x)− f ′(y)‖∗f ′′(x) =
∥∥∥
∫ 1

0 f
′′(x+ tq)qdt

∥∥∥
∗

f ′′(x)
≤
∫ 1

0 ‖f ′′(x+ tq)q‖∗f ′′(x)dt

≤︸︷︷︸
(124)

∫ 1
0

1
1−‖tq‖f ′′(x)

‖f ′′(x+ tq)q‖∗f ′′(x+tq)dt

=
∫ 1

0
1

1−‖tq‖f ′′(x)
‖q‖f ′′(x+tq)dt ≤︸︷︷︸

(124)

(∫ 1
0

1
(1−tr)2dt

)
r = r

1−r .

�

A.2. Self-concordant (s.c.) barriers. For a ϑ ≥ 1, we say that a 1-s.c. function is a ϑ-s.c.

barrier for cl(Q) if we have

|f ′(x)[h]| ≤
√
ϑ‖h‖f ′′(x), ∀(x ∈ Q, h ∈ E).(133)

In view of definition (122), a non-degenerate s.c. function f is a ϑ-s.c. barrier if and only if

λ(f, x) = ‖f ′(x)‖[f ′′(x)]−1 ≤
√
ϑ, ∀x ∈ Q.(134)

If Q is a convex cone, we say f is ϑ-logarithmically-homogenous if for every x ∈ Q, we have

f(tx) = f(x)− ϑ ln(t), ∀(t > 0).(135)

SCB-1 (Stability under intersections, direct sums, and affine maps) [37]-Proposition

2.3.1:

(a) Assume that for each i ∈ {1, . . . ,m}, fi is a ϑi-s.c. barrier on E with domains Qi, and consider

real coefficients γi ≥ 1. If Q := ∩mi=1Qi is not empty, then f :=
∑m

i=1 γifi is a (
∑m

i=1 γiϑi)-s.c.

barrier on Q.

(b) Let fi, i ∈ {1, . . . ,m}, be a ϑi-s.c. barrier on Ei with domains Qi. Then, the function

f(x1, . . . , xm) :=
∑m

i=1 fi(x
i), defined on Q := Q1 ⊕ · · · ⊕ Qm, is a (

∑m
i=1 ϑi)-s.c. barrier on

Q.

(c) Let f be a ϑ-s.c. barrier with domain Q and x = Ay + b be an affine mapping with image

intersecting Q, then f(Ay + b) is also a ϑ-s.c. barrier on {y : Ay + b ∈ Q}.
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SCB-2 (Basic properties of s.c. barrier’s): Let f be a ϑ-s.c. barrier, then the following

inequalities hold for every pair x, y ∈ Q (see [37]-Proposition 2.3.2 and [32]-Chapter 3):

f ′(x)[y − x] ≤ ϑ;(136)

where, as before, f ′(x)[h] is the first order differential of f taken at x along the direction h.

SCB-3 (Non-degeneracy, attaining minimizer): f is non-degenerate if and only if Q does

not contain lines. f is bounded below if and only if Q is bounded. Then, f is non-degenerate

and attains its unique minimizer xf on Q, and we have
{
y : ‖y − xf‖f ′′(xf ) < 1

}
⊆ Q ⊆

{
y : ‖y − xf‖f ′′(xf ) < ϑ+ 2

√
ϑ
}
.(137)

Let us prove the following lemma that is useful in this paper.

Lemma A.2. Let Φ be a ϑ-s.c. barrier with domain intD ⊂ E, and ξ > 1. Then, the function
Φ
(
z
τ

)
−ξϑ ln(τ) with domain {(z, τ) : τ > 0, zτ ∈ intD} is a ξ̄-s.c. function for an absolute constant

ξ̄ depending on ξ. Moreover, its LF conjugate and also the summation of Φ
(
z
τ

)
− ξϑ ln(τ) with

its LF conjugate are also ξ̄-s.c. functions.

Proof. Consider the function Φ( zτ )− ξϑ ln(τ). First we show that the function is convex. Let us
define

g(α) := Φ

(
z + αdz
τ + αdτ

)
− ξϑ ln(τ + αdτ ).

Then, we have

g′′(0) =
1

τ2

[
〈dz −

dτ
τ
z,Φ′′

(z
τ

)(
dz −

dτ
τ
z

)
〉 − 2dτ 〈Φ′

(z
τ

)
, dz −

dτ
τ
z〉+ ξϑd2

τ

]
.

By using inequality (133) for the middle term and doing some simple algebra we get

g′′(0) ≥ 1

τ2

[∥∥∥∥dz −
dτ
τ
z

∥∥∥∥
Φ′′
− |dτ |

√
ϑ

]2

+ (ξ − 1)
d2
τ

τ2
ϑ.(138)

(138) shows that Φ( zτ )− ξϑ ln(τ) is strictly convex for every ξ > 1.

To prove that it is a s.c. function, we show that there exists an absolute constant ξ̄ depending
on ξ such that

|g′′′(0)| ≤ 2ξ̄−1/2(g′′(0))3/2.

For simplicity, let us define h := 1
τ

(
dz − dτ

τ z
)
. First, note that from (138) we have

∣∣∣∣
dτ
τ

√
ϑ

∣∣∣∣ ≤
√
g′′(0)√
ξ − 1

,

‖h‖Φ′′ ≤
√
g′′(0) +

∣∣∣∣
dτ
τ

√
ϑ

∣∣∣∣ ≤
(

1 +
1√
ξ − 1

)

︸ ︷︷ ︸
=:γ

√
g′′(0).(139)
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By expanding the expression for g′′′(0), we have

g′′′(0) = Φ′′′[h, h, h]− 6Φ′′[h, h]

(
dτ
τ

)
+ 6Φ′[h]

(
dτ
τ

)2

− 2ξϑ

(
dτ
τ

)3

.(140)

Because Φ is a 1-s.c. function, by definition in (121), we have |Φ′′′[h, h, h]| ≤ 2(Φ′′[h, h])3/2 =

2(‖h‖Φ′′)3, and because Φ is a ϑ-s.c barrier, by definition (133), we have |Φ′[h]| ≤
√
ϑ‖h‖Φ′′ .

Substituting these in (140), using the inequalities in (139) and the fact that ϑ ≥ 1, we have:

g′′′(0) ≤
(

2γ3 +
6γ2

√
ξ − 1

+
6γ

ξ − 1
+

2ξ

(ξ − 1)3/2

)
(g′′(0))3/2,(141)

where γ is defined in (139).

For the second part of the lemma for the conjugate function, see the proof of Theorem 2.4.1
in [37]. �

A.3. LF conjugate of s.c. barriers. If f is a ϑ-s.c. barrier, then f∗ is a s.c. function, but it is

not necessarily a s.c. barrier. Q∗ is either the entire E∗ if Q is bounded, or the open cone

rec∗(Q) := {s ∈ E∗ : 〈s, h〉 < 0,∀h ∈ rec(Q)},(142)

where rec(Q) is the recession cone of Q defined as

rec(Q) := {h ∈ E : x+ th ∈ Q, ∀x ∈ Q, ∀t ≥ 0}.(143)

In this article, we frequently use the fact that f∗ has some useful properties beyond those of an

arbitrary s.c. function, such as Theorem 2.1 and the following lemma:

Lemma A.3 (Theorem 2.4.2 of [37]). Assume that f is a ϑ-s.c. barrier on D and let f∗ be the
LF conjugate of f with domain D∗. Then, for every point y ∈ D∗, we have

f ′′∗ (y)[y, y] ≤ ϑ.(144)

Appendix B. Examples of s.c. functions to clarify Figure 1

It is well-known that − ln(x) is a 1-LH s.c. barrier for the cone R++ and its LF conjugate

−1 − ln(−y) is also a 1-LH s.c. barrier. Assume that f : Rn → R is a convex function with the

LF conjugate f∗. Then, we can easily verify that for every b ∈ Rn, the LF conjugate of f(x− b)
is 〈b, y〉+ f∗(y). Consider the following univariate function and its LF conjugate:

f(x) := − ln(x− 1), f∗(y) = −1 + y − ln(−y).

f(x) is a 1-s.c. barrier. f∗(y) is a s.c. function, but is not a s.c. barrier.

As it is shown in Figure 1, if a function is LH s.c. barrier, its LF conjugate is also a LH s.c.

barrier [37]. A question is: does there exist a s.c. barrier f that is not LH, while its LF conjugate
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f∗ is also a s.c. barrier, as pictorially shown in Figure 1? Note that by Subsection A.3, both domf

and domf∗ must be convex cones. The following theorem shows that the answer is yes:

Theorem B.1. Assume that f(x) is a non-degenerate ϑ-LH s.c. barrier with domain K ⊂ Rn
and let A : Rn → Rn be a linear transformation such that AK ⊆ K. Then, for every b ∈ K\{0},
the function g(x) := f(Ax+ b) + f(x) is a 2ϑ-s.c. barrier, and its LF conjugate g∗ is also a s.c.
barrier.

Proof. By the material of subsection A.2, we know that f is a 2ϑ-s.c. barrier. To show g∗ is also
a s.c. barrier, we need to prove that 〈g′∗(y), [g′′∗(y)]−1g′∗(y)〉 is bounded by an absolute constant
for every y ∈ K∗. For a given y, let x := g′∗(y), then by the properties of LF conjugate, we have

〈g′∗(y), [g′′∗(y)]−1g′∗(y)〉 = 〈x, g′′(x)x〉
= 〈Ax, f ′′(Ax+ b)Ax〉+ 〈x, f ′′(x)x〉
≤ (ϑ+ 2

√
ϑ)2〈Ax, f ′′(Ax)Ax〉+ 〈x, f ′′(x)x〉

= (ϑ+ 2
√
ϑ)2ϑ+ ϑ, [37]-eq (2.3.14).(145)

For the inequality above, we used equation [32]-(3.16) and also the fact that Ax + αb ∈ K for
all α ∈ R+ and so πAx(Ax + b) = 0, where π is the Minkowski function of K (defined in [37]-

Subsection 2.3.2 or [32]). Inequality (145) confirms that g∗ is a ((ϑ+2
√
ϑ)2ϑ+ϑ)-s.c. barrier. �

As an example, let f(x) := −∑m
i=1 ln(a>i x) for ai ∈ Rn, i ∈ {1, . . . ,m}, which is a m-LH s.c.

barrier. Then, the function g(x) := −∑m
i=1 ln(a>i x)−∑m

i=1 ln(a>i x+ 1) is a 2m-s.c. barrier that

is not LH and g∗ is also a s.c. barrier.
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