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Abstract. We study the computational e�ciency of approaches, based on Hilbert’s Nullstel-
lensatz, which use systems of linear equations for detecting non-colorability of graphs having large
girth and chromatic number. We show that for every non-k-colorable graph with n vertices and
girth g > 4k, the algorithm is required to solve systems of size at least n⌦(g) in order to detect its
non-k-colorability.
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1. Introduction. The use of algebraic geometry methods in combinatorial op-
timization has increased in popularity over the last couple of decades. The ability to
reformulate hard optimization problems using simple multivariate polynomial formu-
lations can be quite appealing. Especially, because these formulations can often be
relaxed to obtain computationally tractable approximations to a hard combinatorial
optimization problem. Popular examples of this are hierarchy based approaches such
as the Balas-Ceria-Cornuéjols, Sherali-Adams, Lovász-Schrijver and Sum of Squares,
or Lasserre relaxations for optimization problems (see for instance [5, 11]), where lin-
ear programming and semidefinite programming problems are used as building blocks
to construct tighter and tighter relaxations to the optimization problem.

Another algebraic approach for combinatorial problems, implicit in the work of
Beame et al. [9] and later proposed by De Loera et al. [16] and Margulies [29],
uses Hilbert’s Nullstellensatz to create a hierarchy of relaxations based on systems
of linear equations. More concretely, one first formulates (the decision version of) a
combinatorial problem using a system of polynomial equations

(1.1) f1(x) = f2(x) = · · · = fm(x) = 0,

for polynomials fi 2 K[x1, . . . , xn] on n � 1 variables over some field K. This is
done in a way that the system (1.1) has a solution over the algebraic closure K if
and only if the combinatorial problem has a solution. By Hilbert’s Nullstellensatz
(see for instance [13]), the problem does not have a solution if and only if there exist
polynomials r1, . . . , rm 2 K[x1, . . . , xn], which we call Nullstellensatz Certificates, such
that

(1.2) r1(x)f1(x) + · · ·+ rm(x)fm(x) = 1.

One may also call the whole equation (1.2) the certificate, but here, we require the
satisfaction of the equation as a part of our definition. This way, our treatment is
also compatible with the mathematical optimization literature.
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Although the Nullstellensatz has been used to obtain interesting results in combi-
natorics (see [2]), a crucial observation made by De Loera et al. is that the existence
Nullstellensatz Certificates r1, . . . , rm of degree at most d, can be determined using
a system of linear equations over K. This allows us to use a hierarchy of sys-
tems of linear equations to solve the combinatorial problem. For general systems
of polynomial equations, the maximum degree of the Nullstellensatz Certificates can
be exponential in n and m. However, for systems based on combinatorial problems
with a special structure, the maximum degree of the certificates can be small, which
makes the method potentially computationally attractive, as solving systems of linear
equations is usually significantly faster than solving linear or semidefinite programs
of comparable size.

In a series of papers, De Loera et al. [16, 15, 17] studied the Nullstellensatz
approach for several combinatorial problems, with special attention given to graph
coloring. Recall that for a graph G = (V,E) and an integer k � 2, the graph G is
k-colorable if it is possible to assign k colors to its vertices in a way that no pair of
adjacent vertices have the same color. The polynomial formulation they used for the
k-coloring problem, due to Bayer [6], is given by the system

(BCOL)

pu(x) := xk
u � 1 = 0, 8u 2 V,

quv(x) :=
xk
u � xk

v

xu � xv
= 0, 8{u, v} 2 E.

The computational experiments of De Loera et al. showed the potential appli-
cations of the Nullstellensatz method in detecting non-3-colorability of graphs. They
were able to solve known hard instances, such as the Mizuno and Nishihara [32] fam-
ilies, of non-3-colorable graphs with up to a thousand of vertices over F2. In fact, no
graph needing a Nullstellensatz Certificate of degree larger than four was encountered
at the time. This was quite surprising, given the fact that unless P = NP, families of
graphs needing large Nullstellesatz Certificates must exist. There are also connections
to constraint satisfaction problems and there exist “low-degree” reductions between
k-colorability and constraint satisfaction problems (see [4] and the references therein).

The problem of finding non-k-colorable graphs needing large certificates was set-
tled recently by Lauria and Nordström [24]. Their proof consisted of a nifty Polyno-
mial Calculus (PC) reduction from the Functional Pigeonhole Principle (FPHP) to
Graph Coloring. Since lower bounds for the degrees of PC proofs for special instances
of FPHP had already been shown in [31], the result follows for k-colorability as well,
implying the need of large Nullstellensatz Certificates for those instances. The non-k-
colorable graphs found in [24] yield asymptotically tight results in the sense that their
family of graphs on O(k4n) vertices of degree O(k2) need certificates whose degrees
are ⌦(n), see [24, Theorem 3.6].

Despite these results, it is still wide open to determine the intrinsic combinato-
rial properties of non-k-colorable graphs which require them to have small (or large)
Nullstellensatz Certificates. For instance, De Loera et al. [15] fully characterized
all non-3-colorable graphs having a Nullstellensatz Certificate of degree one over F2.
However, it is still an open question to characterize all non-3-colorable graphs needing
certificate of degree at most four over F2. The only related result we know is due to
Li, Lowenstein and Omar [26], who showed that no 4-critical graph with at most 12
vertices has a Nullstellensatz Certificate of degree larger than four over F2.

In order to understand this problem further, it is natural to study families of
graphs that are hard for coloring problems, such as the instances studied in [32]

This manuscript is for review purposes only.



GRAPHS WITH LARGE GIRTH AND THE NULLSTELLENSATZ 3

among others. One novel example of these are graphs with large girth, the length of
the shortest cycle in the graph. A classical result of Erdős [19] establishes the existence
of graphs having arbitrarily large girth and chromatic number. These graphs locally
look like trees. Thus, it is “easy” to color them locally, however a global understanding
of the graph is needed in order to determine their chromatic number.

Explicit examples of graphs with large girth and chromatic number can be found
in [27, 28] and more recently in [3]. Most of the known explicit examples of k-colorable
graphs having large girth are also fairly large in size. In fact, if we denote by n(g, k)
the number vertices of the smallest graph having chromatic number k and girth g, it
is known that (see [20] for lower bound and [30] for upper bound)

(1.3)
2(k � 2)(g�1)/2 � 2

k � 3
 n(g, k)  9gk6g+1.

In particular, the sizes of these graphs are exponential in their girth. In this article,
we show how to exploit the local structure of this family of graphs to prove that non-
k-colorable graphs with large girth also need large Nullstellensatz Certificates. More
concretely, we show the following.

Theorem 1.1. Let G = (V,E) be a graph with chromatic number �(G) = k + 1
and girth g > 4k. Then, for every non-negative integer d satisfying

(1.4) d+ k � 1 <
g

4k
,

G has no Nullstellensatz Certificates of degree at most d for the system (BCOL).

We follow a similar approach to the work of Razborov [33], Aleknovich and
Razborov [1] (later expanded in [31]) for boolean systems. A key idea is to under-
stand the principal ideal of subsystems of (BCOL) corresponding to local subgraphs.
For graphs with large girth, small enough subgraphs are forests, whence k-colorable
for k � 2. In particular, no Nullstellensatz Certificate exists for their corresponding
subsystems. This can be witnessed by what we call a Dual Nullstellensatz Certificate
of the subsystem, which is constructed using information from the standard monomi-
als of the ideal generated by the polynomials in the subsystem. These “local” dual
certificates are then patched to create a “global” dual certificate for the whole system,
thus proving that the system does not admit a Nullstellensatz Certificate of certain
degree.

We should point out that, while being partly inspired by the work in [1] and [31],
our work does not seem to be a direct consequence of these studies. Besides them
being applicable to Boolean systems only, one key component in their result requires
the polynomial-variable incidence graph (or a clustering of it, as shown in [31]) of the
system of polynomial equations to be a “good enough” expander. However, large girth
alone does not seem to imply good expansion properties of the polynomial-variable
incidence graph (or a clustering of this) for Bayer’s polynomial system. In any case,
if these properties were to carry over, we would still need to adjust the proofs in [31]
to apply for more general set of systems of polynomial equations or use a di↵erent
encoding for the graph coloring problem using Boolean systems, such as the one used
in [24].

Instead, we found that understanding the structure of the principal ideal of local
subsystems, as it is done in [33] for systems arising from the Pigeonhole Principle,
was critical and it allowed us to further understand the behavior of the Nullstellensatz
and Polynomial Calculus proof systems for graph coloring in general.

This manuscript is for review purposes only.



4 J. ROMERO, L. TUNÇEL

2. Notation and Preliminaries. For a positive integer n, let [n] be the set
{1, . . . , n}. Let K be an algebraically closed field and let K[x1, . . . , xn] be the ring
of polynomials with coe�cients in K. Monomials in K[x1, . . . , xn] are denoted using
multi-index notation x↵ := x↵1

1 · · ·x↵n
n where ↵ := (↵1, . . . ,↵n) is a non-negative

integer vector. The degree of the monomial x↵ is defined as

|↵| := ↵1 + · · ·+↵n

and the support of ↵, denoted by supp(↵), is the set of indices i 2 [n] such that
↵i > 0. For a non-negative integer d, the set K[x1, . . . , xn]d denotes the vector space
of polynomials of degree at most d, i.e., the set of polynomials f 2 K[x1, . . . , xn] that
can be written as

(2.1) f(x) =
X

|↵|d

f↵x
↵

for some scalars f↵ 2 K. The support of f , denoted by supp(f) is the set of multi-
indices ↵ such that f↵ 6= 0.

Division algorithms over K[x1, . . . , xn] are possible once a monomial ordering has
been established. Some commonly used monomial orderings are

1. The Lexicographic Order (LEX). For any pair of monomials x↵ and x� we
write x↵ �LEX x� if there exists a positive integer i 2 [n] such that ↵j = �j

for all j < i and ↵i < �i.
2. The Graded Lexicographic Order (GLEX). For any pair of monomials x↵ and

x� we write x↵ �GLEX x� if either |↵| < |�|, or |↵| = |�| and x↵ �LEX x�.
Unless stated otherwise, in this article we will use the graded lexicographic order
(GLEX) and we set �:=�GLEX . For a given polynomial f 2 K[x1, . . . , xn], its leading
monomial, denoted by LM(f), is the largest (in GLEX order) monomial in the support
of f .

Given a finite set of polynomials F := {f1, . . . , fm} ✓ K[x1, . . . , xn], the ideal
generated by F is the set

(2.2) hF i := {r1f1 + · · ·+ rmfm : ri 2 K[x1, . . . , xn]}.

The variety defined by F , denoted by V(F ), is the set of solutions to the system

(2.3) f1(x) = f2(x) = · · · = fm(x) = 0.

The following notion will be used quite often in this article.

Definition 2.1. Let I of K[x1, . . . , xn] be an ideal. We denote by LM(I) the set
of all leading monomials of polynomials in I. If x↵ 2 LM(I), then we say that the
monomial x↵ is reducible modulo the ideal I, otherwise we say that the monomial
is irreducible modulo I.
Recall that a Gröbner basis of I is a set of polynomials {g1, . . . , gr} such that I =
hg1, . . . , gri and

hLM(I)i = hLM(g1), . . . , LM(gr)i.
In particular, a monomial x↵ is reducible modulo the ideal I if and only if x↵ is
divisible by LM(gi) for some i 2 [r]. The following notion is also key in this article.

Definition 2.2. Let I be an ideal and let f 2 K[x1, . . . , xn] be any polynomial.
Let g1, . . . , gr be a Gröbner Basis of I. The reduction (or, normal form) of f modulo
I is the remainder of the division of f by the basis g1, . . . , gr, i.e., it is the unique
polynomial �I(f) 2 K[x1, . . . , xn] such that
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1. f = g + �I(f) for some g 2 I, and
2. no monomial in �I(f) is reducible modulo I.

Hilbert’s Nullstellensatz [22, 35, 13], in its most basic form, is the statement that
V(F ) = ; if and only if 1 2 hF i. In other words, the system (2.3) has no solution if
and only if

(2.4) r1(x)f1(x) + · · ·+ rm(x)fm(x) = 1

for some polynomials r1, . . . , rm 2 K[x1, . . . , xn]. In particular, we say that the poly-
nomials r1, . . . , rm in (2.4) form a Nullstellensatz Certificate of degree d if each polyno-
mial ri has degree at most d. A crucial observation is that Nullstellensatz Certificates
of degree d can be found by solving a system of linear equations as easily seen from
(2.4). Indeed, such system is found by considering each ri in (2.4) with variable coef-
ficients and then equating the resulting polynomial with the constant polynomial 1.
Let us denote this system of equations by

(2.5) AF,dy = bF,d.

It is a result of Kollár [23] that if the system (2.3) is infeasible, then there exists a
Nullstellensatz Certificate of degree dK := max(3, dmax)min(n,m) where dmax is the
largest degree of the polynomials in F . However, in order for the algorithm to detect
feasibility, a system of size

⇥

 
4dK

d1/2K

!

should be solved. Since dK is exponential in n, the system ends up being doubly
exponential in the number of variables. There are some cases where such size can be
reduced. For instance, if the polynomials in F have no common root at infinity, a
theorem of Lazard [25] allows us to reduce Kollár’s bound to dL := n · (dmax � 1).
Thus, feasibility can be checked by solving a linear system of size singly exponential
in the number of variables.

2.1. Graph Coloring and Subgraph Ideals. Let G = (V,E) be a graph with
vertex set V = [n] for some n 2 Z+. All graphs in this article are simple, finite
and undirected. A graph is said to be k-colorable if there exists a map  : V ! [k]
such that (u) 6= (v) for all edges uv 2 E. The minimum k 2 Z+ for which G is
k-colorable is called the chromatic number of G and we denote this number by �(G).
Recall, the girth of G is the length of the shortest cycle in G.

Let K be a field of characteristic not dividing k. For a vertex u 2 V and edge
vw 2 E, let pu(x) and qvw(x) be the polynomials defined in Bayer’s formulation:

(BCOL)

pu(x) := xk
u � 1 = 0, 8u 2 V,

quv(x) :=
xk
u � xk

v

xu � xv
= 0, 8{u, v} 2 E.

Notice that the graph G is k-colorable if and only if (BCOL) has a solution: the
first set of polynomial equations tells us that we aim to color the graph with k-roots
of unity and the second set of polynomial equations encode the fact that no pair of
adjacent vertices can be assigned the same k-th root of unity. Indeed, if xu = xv = ⇣
for some root of unity ⇣ 2 K then

(2.6)
quv(x)|xu=xv=⇣ = xk�1

u + xk�2
u xv + · · ·+ xux

k�2
v + xk�1

v |xu=xv=⇣ ,

= k · ⇣k�1 6= 0,
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as the characteristic of K does not divide k. Let IV,k be the ideal generated by the
polynomials pu with u 2 V . Consider the quotient ring RV,k := K[xu : u 2 V ]/IV,k,
i.e., the set of all congruence classes of polynomials modulo the ideal IV,k. Then,
every polynomial f is congruent with the polynomial

f(x) ⌘
X

↵2ZV
k

c↵x
↵ mod IV,k,

for some c↵ 2 K and ↵ 2 ZV
k , where Zk is the set of integers modulo k. Such a

representation exhibits the fact that RV,k is a finite dimensional vector space, which
is isomorphic to the space of functions ↵ 7! c↵ mapping ZV

k to K.
Given a subset of edges F ✓ E, we let IF be the ideal of RV,k generated by the

polynomials quv with uv 2 F . Since the polynomials xk
u � 1 are square free, the ideal

IF is radical (see [14, Proposition 2.7]). Thus, we have that f 2 IF if and only if
f(a) = 0 for every valid k-coloring a = (aw)w2V (F ) of the graph induced by F , that
is akw = 1 for all w 2 V (F ) and av 6= aw for all vw 2 F .

Clearly, the existence of a Nullstellensatz Certificate of degree d for (BCOL)
guarantees the existence of polynomials ruv for uv 2 E of degree at most d such that

(2.7)
X

uv2E

ruv(x)quv(x) ⌘ 1 mod IV,k.

Therefore, in order to find lower bounds for Nullstellensatz Certificates, it is enough
to show that there are no polynomials ruv of degree at most d in RV,k satisfying (2.7).
This in turn can be certified using the following lemma. In the lemma, eu 2 ZV

k with
u 2 V denote the standard vectors of ZV

k .

Lemma 2.3 (See also Theorem 3 in [10]). Let G = (V,E) be a graph. Suppose
there exists some vector � = (�↵)↵2ZV

k ,|↵|d+k�1 with entries in K such that

(DCOL)

P
r2Zk

�↵+r(eu�ev)�ev = 0, 8↵ 2 ZV
k , |↵|  d, uv 2 E,

�0 = 1.

Then, (BCOL) does not have a Nullstellensatz Certificate of degree d, or lower.

Proof. Consider the linear subspace N(E, d) ✓ RV,k of all polynomials which can
be written in the form X

uv2E

ruvquv

for some ruv 2 RV,k of degree at most d. Clearly, N(E, d) is spanned by all polyno-
mials of the form

x↵quv(x) =
k�1X

r=0

x↵xk�1�r
u xr

v, 8|↵|  d, 8{u, v} 2 E.

Then, 1 /2 N(E, d) if and only if there exists a linear functional � : RV,k ! K such
that �(1) = 1 and �(f) = 0 for every f 2 N(E, d). This last equation is equivalent to
the equations

�(x↵quv(x)) =
k�1X

r=0

�(x↵xk�1�r
u xr

v) = 0 8↵ 2 ZV
k , |↵|  d, 8{u, v} 2 E.
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Using the fact that RV,k is spanned by monomials x↵ with ↵ 2 ZV
k and setting

�↵ := �(x↵), we can further rewrite the above equation as

P
r2Zk

�↵+r(eu�ev)�ev = 0, 8↵ 2 ZV
k , |↵|  d, {u, v} 2 E.

The statement follows.

Definition 2.4. In matrix notation, let ÂE,d� = ĉE,d be the system (DCOL).
Any solution � to this system is called a Dual Nullstellensatz Certificate of degree
d.

Remark 2.5. In the context of proof complexity, Buss and Pitassi ([7], [10]) call
the solutions to the dual system (DCOL) designs.

Remark 2.6. Notice that the columns of ÂE,d are indexed by monomials of degree

at most d+ k � 1. Hence, we can view each row of ÂE,d as a polynomial in RV,k.

3. Polynomial Calculus and Related Work. A study of lower bounds for
Nullstellensatz Certificates has already appeared in the context of Propositional Proof
Systems in a paper by Beame et al. [9]. Lower bounds were found for systems
of polynomial equations derived from the Modular Counting Principle and the Pi-
geonhole Principle [8]. Later, Clegg et al. [12] worked with a stronger proof sys-
tem that is now called Polynomial Calculus (PC). In this system, given polynomials
f1, . . . , fm 2 K[x1, . . . , xn], the goal is to find a proof of the statement 1 2 hf1, . . . , fmi
using a sequence of polynomials p1, . . . , pt, such that pt = 1 and every pi in the se-
quence is either

1. one of the f1, . . . , fm, or
2. the linear combination ↵p + �q of some previous polynomials p, q in the se-

quence and ↵,� 2 K, or
3. the product xj · p of one previous polynomial p in the sequence and any

variable xj with j 2 [n].
It is not hard to see that the largest degree of the polynomials in the sequence is

always smaller than or equal to the degree of a Nullstellensatz Certificate (times the
maximum of the degrees of the polynomials fi). Thus, lower bounds for the degrees
of PC refutations are lower bounds for the degrees of Nullstellensatz Certificates. The
converse it is not necessarily true. In fact, Clegg et al. [12] showed an exponential
separation between these two for some systems of polynomial equations derived from
the House-sitting Principle, a generalization of the pigeonhole principle.

Notice that lower bounds for the degrees of PC refutations can be found by
constructing an operator � : K[x1, . . . , xn]d ! K[x1, . . . , xn]d such that

a. �(1) = 1,
b. �(fi) = 0 for all i 2 [m], and
c. for every x↵ of degree less than d and every j 2 [n]

�(xjx
↵) = �(xj · �(x↵)).

Such � implies that no PC refutation of degree d exists (see [33]). This is precisely
how the bounds in [33], [1], [31] and ultimately the bounds in the present article are
built. The idea is to define the operator � in a local fashion: each monomial x↵ is
assigned a subset F↵ of the polynomials f1, . . . , fm and then �(x↵) is defined to be
the reduction of x↵ modulo the ideal hF↵i. Clearly, since we want � to satisfy the
properties a. to c. above, the sets F↵ should be chosen carefully.

For instance, for Boolean systems, Aleknovich and Razborov [1] construct the
sets F↵ using expandability properties of the polynomial-variable incidence graph.
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Mikša and Nordström [31] use a similar construction using a suitable clustering of
the polynomial-variable incidence graph. In our setup, the sets F↵ will correspond to
suitable sub-forests that we construct using the non-k-colorability and large girth of
our graphs (what we call essential graphs in the section below).

4. Large Girth and Nullstellensatz Certificates. Throughout this section
G = (V,E) will denote a graph with chromatic number �(G) = k + 1 for some k � 3
and girth g � 3. As before, let us identify the vertex set of G with the set [n] and let
us consider the ring RV,k = K[x1, . . . , xn]/IV,k.

Our goal is to show that G does not have a Nullstellensatz Certificate of degree
d ⌧ g. As stated in Lemma 2.3 and Definition 2.4, this can be achieved by finding a
Dual Nullstellensatz Certificate � = (�↵)|↵|d+k�1 satisfying the system

(4.1) ÂE,d · � = ĉE,d.

The goal of this section is to exploit the sparsity of G to show that such � can be
defined locally. More concretely, for each ↵ 2 ZV

k of degree at most d+ k � 1 we will
associate a subgraph H↵ = (U↵, F↵) of G, which we call the essential graph of ↵ (see
Definition 4.12). As we will see, the graphs H↵ encode the local reducibility of x↵,
i.e., x↵ will be reducible modulo IF↵ if and only if it is reducible modulo IF for every
F ◆ F↵ not “too large”. Moreover, the sparsity of G will guarantee that each H↵ is
k-colorable, so that the sub-system of linear equations

(4.2) ÂF↵,d · µ = ĉF↵,d

has a “local” solution µ(↵) = (µ(↵)
� )|�|d+k�1 for each ↵. Finally, by the reducibility

property of H↵, we will see that the local solutions µ(↵) for each ↵ can be patched
together to obtain a global solution � for (4.1), hence implying the non-existence of
a Nullstellensatz Certificate of degree d.

4.1. Orderings and Essential Graphs. Each bijection from [n] to the vertices
of G induces a monomial order � of RV,k, namely the Graded Lexicographic Order
(GLEX) where

xn � xn�1 � · · · � x1.

Notice that smaller indices correspond to larger (in GLEX order) variables. Given
an edge {u, v} 2 E with u < v, we say that v is a child of u and that u is a parent
of v. Also, paths P = u1u2 . . . ut in G satisfying u1 < u2 < · · · < ut will be called
index-increasing paths. If there exists an index-increasing path from u to v, we say
that v is a descendant of u.

Definition 4.1. Let x↵ be a monomial with ↵ 2 ZV
k . The descendant graph

of x↵ is the subgraph H(0)
↵ = (U (0)

↵ , F (0)
↵ ) of G induced by the vertices in the support

of ↵ and their descendants.

The following lemmas show that due to the sparsity and (k + 1)-colorability of G,
there is an ordering for which the descendant graphs of low degree monomials are
forests.

Lemma 4.2. There exists a labelling of the vertex set V such that every index-
increasing path of G has length at most k.

Proof. Consider any (k+1)-coloring of the graph G, say with colors 1, 2, . . . , k+1.
Label the vertices of G in a way such that the inequality u < v holds for every vertex
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u in color class i and every v in color class j where i < j. Formally, this can be done
as follows. First, let ni � 0 be the number of vertices in the color class i 2 [k+1] and
set n0 = 0. Then, assign to each vertex in the color class i 2 [k+ 1] a unique label in
the set 8

<

:

i�1X

j=0

nj + 1, . . . ,
iX

j=0

nj

9
=

; .

Since there are only k+1 colors, no index-increasing path will have length larger than
k.

Lemma 4.3. Let G = (V,E) be a graph with chromatic number k + 1 and girth
g > 2k. Order the vertices of G according to Lemma 4.2. Let x↵ be a monomial of
degree at most |↵| < g

2k � 1. Then, the descendant graph of x↵ is a forest.

Proof. Suppose for the sake of a contradiction that H(0)
↵ has a cycle C ✓ F (0)

↵ .
Let us partition the cycle C into index-increasing paths P1, . . . , Ps and let v1, . . . , vs
be the vertices with the smallest index on each of these paths. Notice that the set
U := {v1, . . . , vs} has at least s

2 vertices. Since the length of each path Pi is at most

k, we have that g  |C|  ks, thus |U | � |C|
2k .

Let u 2 V be a vertex in the support of ↵ and let U(u) be the set of descendants
of u that lie in U . Since G has girth g > 2k and has no index-increasing path of
length larger than k, any pair of vertices vi, vj 2 U(u) lie at distance at least g � 2k

in C. In particular, |U(u)|  |C|
g�2k .

Now, take any set of t vertices u1, . . . , ut in the support of ↵ such that

U =
t[

i=1

U(ut).

Then,

|C|
2k

 |U | 
tX

i=1

|U(ui)|  t
|C|

g � 2k
=) g

2k
� 1  t  |↵|.

From now on, we will assume that the vertices of G are ordered as in Lemma 4.2,
so that the descendant graphs of monomials of low degree are always sub-forests of
G. The following lemma is the core of our argument.

Lemma 4.4. Let x↵ be a monomial and let H = (U,F ) be its descendant graph.
Suppose that no pair of vertices in di↵erent connected components of H have common
or adjacent parents in G. Then, for every sub-forest H 0 = (U 0, F 0) of G containing
H, the monomial x↵ is reducible modulo IF 0 if and only if it is reducible modulo IF .
Proof. Let x↵, H and H 0 be as in the statement. Clearly, if x↵ is reducible modulo IF
then it is reducible modulo IF 0 as F ✓ F 0. Thus, let us assume that x↵ is reducible
modulo IF 0 .

Let H⇤ = (U⇤, F ⇤) be a connected component of the graph H 0 \H. Since H is a
forest, there is at most one edge from H⇤ to each component of H. Suppose that H⇤

is connected to ` � 1 components of H and let u⇤
1, . . . , u

⇤
` 2 U⇤ and u1, . . . , u` 2 U be

such that uiu⇤
i 2 F 0 for each i 2 [`]. Then, by our hypothesis on H, for all i 2 [`] we

have u⇤
i < ui and no pair of the vertices u⇤

i , u
⇤
j or u⇤

i , uj are adjacent for i 6= j.
Let H 00 = (U 00, F 00) be the graph obtained from H 0 after the deletion of the

graph H⇤. Our goal is to show that x↵ is reducible modulo the ideal IF 00 . Thus,
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Hi

H
⇤

ui

u
⇤
i

Hj
u
⇤
j

uj

Fig. 1. The graph of Lemma 4.4

by successively repeating this procedure with each of the remaining components of
H 0 \H, the reducibility of x↵ modulo IF follows.

Since x↵ is reducible modulo IF 0 , it is the leading term of a polynomial f of the
form

(4.3) f(x) =
X

u0v02F 00

ru0v0(x)qu0v0(x)+
X̀

i=1

ru⇤
i ui(x)qu⇤

i ui(x) +
X

u0v02F⇤

ru0v0(x)qu0v0(x)

| {z }
:=p(x)

,

for some polynomials ru0v0 with u0v0 2 F 0 of degree at most d. We will show that
it is possible to transform f into a polynomial f̃ 2 IF 00 whose leading monomial is
x↵. We do this by analyzing the degrees of the xu⇤

i
variables appearing in f for each

i 2 [`]. The reason behind such analysis is motivated by the following claim.

Claim 4.5. Let f 2 IF 0 be as above. Suppose that for each i 2 [`] the xu⇤
i
-degree

of f is at most k � 3. Then, x↵ is reducible modulo IF 00 .

Proof. Since H⇤ is a tree, it is 2-colorable. In particular, we can pick a partial
coloring b := (bw)w2U⇤\{u⇤

1 ,...,u
⇤
`} of H⇤ such that the neighbors of each u⇤

i have the
same color.

Consider the polynomial f |b obtained from f after the evaluation of the partial
coloring b. Notice that the leading term of f |b is still x↵ as no vertex of H⇤ appears
in the support of ↵. We claim that f |b 2 IF 00 . Indeed, consider any coloring a :=
(au00)u002U 00 ofH 00 where each au00 is a k-th root of unity and let f |a,b be the polynomial
obtained from f |b after the evaluation of a. Then, f |a,b is a polynomial containing
only xu⇤

i
variables and it vanishes on any coloring of H 0 that agrees with a and b.

Now, the partial coloring induced by a and b colors the neighbors of each vertex u⇤
i

with at most two colors. Thus, at least k � 2 colors are available for each vertex u⇤
i

to extend the partial coloring to a full coloring of H 0 and obtain a root of f |a,b. Since
the xu⇤

i
-degree of f |a,b is at most k� 3 for each i 2 [`], this implies that f |a,b = 0 and

the result follows.

From the above claim, it is enough to reduce the xu⇤
i
-degree of the polynomial f

for each i 2 [`]. We start with the following simplification.
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Claim 4.6. We may assume that the polynomial p, defined in equation (4.3), and
the polynomials ru0v0 with u0v0 2 F 00 have xu⇤

i
-degree at most k � 2 for every i 2 [`].

In particular, this property holds for f as well.

Proof. Let us fix any index i 2 [`]. If a term of the form c · xk�1
u⇤
i

x� appears in

some ru0v0 with u0, v0 2 F 00, then we replace such a term by the polynomial c · [xk�1
u⇤
i

�
qu⇤

i ui(x)] · x� in ru0v0 and add the polynomial c · qu0v0(x) · x� to ru⇤
i ui . This way, we

obtain a representation of f such that all the ru0v0 have xu⇤
i
degree at most k � 2.

Next, we replace any appearance of xk�1
u⇤
i

in the terms of p(x) with the polynomial

xk�1
u⇤
i

� qu⇤
i ui(x). The resulting polynomial is still in the ideal generated by the poly-

nomials qu⇤
i ui(x) with i 2 [`] and qu0v0 with u0v0 2 F ⇤. Moreover, since the leading

term of qu⇤
i ui(x) is xk�1

u⇤
i

, then the new monomials appearing are smaller than x↵ in

the GLEX order. Indeed, no monomial of p of the form xk�1
u⇤
i

· x� can cancel out with

a term of
P

u0v02F 00 ru0v0(x)qu0v0(x) as we have reduced the xu⇤
i
-degree of each ru0v0

with {u0, v0} 2 F 00. Thus, such monomials would appear in f as well, implying that
xk�1
u⇤
i

· x� � x↵ and as a consequence, every term in [xk�1
u⇤
i

� qu⇤
i ui(x)] · x� is smaller

than x↵ in the GLEX order as well.

Our next goal is then to further reduce the degree of the xu⇤
i
-variables. As in the

proof of Claim 4.5, we can get rid of many of the terms involving some of the vertices
of H⇤ by using a partial coloring b = (bw)w2U⇤\{u⇤

1 ,...,u
⇤
`} that colors all the neighbors

in H⇤ of each u⇤
i with the same color. Let us denote the color used by the neighbors

of u⇤
i by ⇣i 2 K for each i 2 [`]. Then, by evaluating the partial coloring b on the

polynomial f , we obtain a new polynomial f̃ whose leading monomial is still x↵. We
can write f̃ as

f̃(x) =
X

u0v02F 00

r̃u0v0(x)qu0v0(x) +
X̀

i=1

r̃u⇤
i ui(x)qu⇤

i ui(x) +
X̀

i=1

r̃i(x)qu⇤
i ui(xu⇤

i
, ⇣i),

=
X

u0v02F 00

r̃u0v0(x)qu0v0(x) +
X̀

i=1

⇥
r̃u⇤

i ui(x)qu⇤
i ui(x) + r̃i(x)qu⇤

i ui(xu⇤
i
, ⇣i)

⇤

| {z }
:=p̃(x)

,

for some polynomials r̃u0v0 and r̃i of degree at most d. Notice that we have used the
fact that all the neighbors in H⇤ of each u⇤

i have been assigned the color ⇣i, so that
if w 2 U⇤ is a neighbor of u⇤

i , then

qu⇤
i w

(x)|b =
k�1X

r=0

xr
u⇤
i
⇣k�1�r
i = qu⇤

i ui(xu⇤
i
, ⇣i).

Now, for each i 2 [`] let us define the polynomial ti(xu⇤
i
, xui) given by the equation

(4.4)

ti(xu⇤
i
, xui) :=

qu⇤
i ui(xu⇤

i
, xui)� qu⇤

i ui(xu⇤
i
, ⇣i)

(xui � ⇣i)
,

= xk�2
u⇤
i

(xui � ⇣i)

(xui � ⇣i)
+ xk�3

u⇤
i

(x2
ui

� ⇣2i )

(xui � ⇣i)
+ · · ·+

(xk�1
ui

� ⇣k�1
i )

(xui � ⇣i)
.

We see that the leading monomial of ti(xu⇤
i
, xui) is x

k�2
u⇤
i

. Moreover, for any k-th root
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of unity ⇣ 6= ⇣i, the ideal generated by ti(xu⇤
i
, ⇣) satisfies the equation

(4.5) hti(xu⇤
i
, ⇣)i = hqu⇤

i ui(xu⇤
i
, ⇣i), qu⇤

i ui(xu⇤
i
, ⇣)i.

Which can be seen from the fact that ti(xu⇤
i
, ⇣) is nothing but the product of the

monomials (xu⇤
i
� ⌫) where ⌫ ranges across all roots of unity di↵erent to ⇣ and ⇣i.

We will successively reduce the xu⇤
i
-degree of f̃ to k � 3 using the polynomials

ti(xu⇤
i
, ⇣) for each i 2 [`]. First, set f (0) := f̃ , p(0) := p̃ and r(0)u0v0 := ru0v0 for

{u0v0} 2 F 00. Then, for each i 2 [`] and {u0v0} 2 F 00 write

p(i�1)(x) = xk�2
u⇤
i

s(i�1)(x) + other terms with xu⇤
i
-degree < k � 2,

r(i�1)
u0v0 (x) = xk�2

u⇤
i

r(i�1,0)
u0v0 (x) + other terms with xu⇤

i
-degree < k � 2,

and define the polynomials

p(i)(x) := p(i�1)(x)� ti(x)s
(i�1)(x),

r(i)u0,v0(x) := r(i�1)
u0v0 (x)� ti(x)r

(i�1,0)
u0v0 (x),

f (i)(x) :=
X

u0v02F 00

r(i)u0,v0(x)qu0v0(x) + p(i)(x).

Notice that the degree of each r(i)u0v0 is at most d. Moreover, we have the following:

Claim 4.7. For every i 2 [`], the leading monomial of f (i) is x↵.

Proof. We prove this by induction on i with the case i = 0 being trivial. Now,
suppose that the leading term of f (i�1) is x↵. Since the polynomials qu0v0 are free of
xu⇤

i
-variables for {u0v0} 2 F 00, we can write

f (i�1)(x) =
X

u0v02F 00

r(i�1)
u0v0 (x)qu0v0(x) + p(i�1)(x),

=
X

u0v02F 00

⇣
xk�2
u⇤
i

r(i�1,0)
u0v0 (x) + · · ·

⌘
qu0v0(x) +

⇣
xk�2
u⇤
i

s(i�1)(x) + · · ·
⌘
,

= xk�2
u⇤
i

 
X

u0v02F 00

r(i�1,0)
u0v0 (x)qu0v0(x) + s(i�1)(x)

!
+ · · · ,

where the three dots consist of terms with xu⇤
i
-degree less than k � 2, all of them

smaller than x↵ in GLEX order. However, by the definition of f (i) we have

f (i)(x) = f (i�1)(x)� ti(x)

 
X

u0v02F 00

r(i�1,0)
u0v0 (x)qu0v0(x) + s(i�1)(x)

!
,

= (xk�2
u⇤
i

� ti(x))

 
X

u0v02F 00

r(i�1,0)
u0v0 (x)qu0v0(x) + s(i�1)(x)

!
+ · · · .

In other words, f (i) is obtained by replacing any appearance of the monomial xk�2
u⇤
i

in f (i�1) with the polynomial (xk�2
u⇤
i

� ti(x)). This operation does not a↵ect x↵ as no
vertex in H⇤ is in the support of ↵. Moreover, since the leading term of ti is precisely
xk�2
u⇤
i

, the new monomials appearing in f (i) are smaller than x↵ in GLEX order.
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Claim 4.8. p(`)(x) = 0.

Proof. Let a := (aw)w2U 00 be any sequence with akw = 1 for all w 2 U 00 and for
every i 2 [`] let p(i)|a be the polynomial obtained after the evaluation xw = aw for all
w 2 U 00. Let us first show that for every i 2 {0, 1, . . . , `� 1} we have

(4.6) p(i)|a 2 hqu⇤
juj (xu⇤

j
, auj ), qu⇤

juj (xu⇤
j
, ⇣j) : j 2 {i+ 1, . . . , `}i.

Indeed, for i = 0 the statement holds from the definition of the polynomial p(0).
Thus, suppose that the statement holds for p(i�1). In particular, from the definition
of p(i) we have that

p(i)|a 2 hti(xu⇤
i
, aui), qu⇤

juj (xu⇤
j
, auj ), qu⇤

juj (xu⇤
j
, ⇣j) : j 2 {i, . . . , `}i

and the xu⇤
i
-degree of p(i)|a is at most k�3. Let c = (cu⇤

j
)j>i be any vanishing point of

the ideal described in the statement (4.6), in other words each cu⇤
j
is any root of unity

di↵erent from aui and ⇣i. Let p(i)|a,c be the polynomial obtained after the evaluation
by c, so that

p(i)|a,c 2 hti(xu⇤
i
, aui), qu⇤

i uj (xu⇤
i
, aui), qu⇤

i ui(xu⇤
i
, ⇣i)i.

In particular, the polynomial p(i)|a,c only depends on the variables xu⇤
i
and it has

degree at most k � 3. Moreover, this polynomial has at least k � 2 roots. Indeed, we
have that

(4.7)

ti(xu⇤
i
, aui) =

Y

⇣k=1,⇣ /2{⇣i,aui}

(xu⇤
i
� ⇣),

qu⇤
i uj (xu⇤

i
, aui) =

Y

⇣k=1,⇣ /2{aui}

(xu⇤
i
� ⇣),

qu⇤
i uj (xu⇤

i
, ⇣i) =

Y

⇣k=1,⇣ /2{⇣i}

(xu⇤
i
� ⇣).

Thus, any k-th root of unity ⇣ di↵erent from ⇣i and aui makes the polynomials
ti(xu⇤

i
, aui), qu⇤

i uj (xu⇤
i
, aui) and qu⇤

i ui(xu⇤
i
, ⇣i) vanish. Since the point c was arbitrary,

the statement (4.6) is proven for i.
From the above and by the definition of p(`) we conclude that

p(`)|a(x) 2 ht`(xu⇤
`
, au`), qu⇤

`u`(xu⇤
`
, au`), qu⇤

`u`(xu⇤
`
, ⇣`)i.

Since the xu⇤
`
-degree of p(`) is at most k�3, via a similar argument, we conclude that

p(`)|a vanishes for every possible a and the result follows.

Claims 4.7 and 4.8 show that x↵ is the leading monomial of the polynomial

f (`)(x) =
X

u0v02F 00

r(`)u0,v0(x)qu0v0(x) 2 IF 00 .

In other words, x↵ is reducible modulo the ideal IF 00 and the proof of Lemma 4.4
follows.
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5 6 7 8 9 10

2
3 4

1

Fig. 2. The graph of Example 4.10

Remark 4.9. We have shown an even stronger result. Under the hypothesis of
Lemma 4.4, if x↵ is the leading term of a polynomial of the form

P
uv2F 0 ru0v0qu0v0

where the polynomials ru0v0 all have degree at most d, then x↵ is the leading term of
a polynomial of the form

P
uv2F (0)

↵
r̃u0v0qu0v0 where each r̃u0v0 has degree at most d as

well.

As the following example shows, Lemma 4.4 might not be true when the connected
components of the descendant graph of x↵ have common or adjacent parents. So, this
assumption cannot be relaxed without changing the rest of the statement.

Example 4.10. Let k = 3 and consider the tree G = (V,E) depicted in Figure
2. Consider the monomial x↵ := x2

5x6x7x2
8x9, we claim that x↵ is reducible modulo

IE , but it is irreducible modulo IF for any proper subset of edges F ( E. Indeed,
consider the polynomials

f1(x) = (x8 � x9)(x8 � x10)(x9 � x10),

f2(x) = (x5 � x7)(x6 � x7)(x7 � x8),

f3(x) = (x5 � x6)

Notice that the leading term of the product f := f1f2f3 is x↵. We claim that f
vanishes on all possible colorings of G. Indeed, let a := (av)v2V be any coloring of
the graph G where each av is a 3-rd root of unity. If f1(a) 6= 0, then a8, a9 and a10
are pairwise distinct. Since 4 is adjacent to both 9 and 10, this also implies that
a4 = a8 and that a3 6= a4. If in addition f2(a) 6= 0 then a7 6= a8 and both a5 and a6
are di↵erent from a7. Since 3 is adjacent to both 7 and 8 and a4 = a8, this implies
that a5, a6 2 {a3, a4}. Thus, we conclude that a5 = a6 and f3(a) = 0. Otherwise,
a2, a3 and a4 would be pairwise distinct, which cannot happen as all of them have a
neighbor in common. This shows the reducibility of x↵ modulo IE .

By the symmetry of the graph G and the way we have enumerated its vertices,
it is not hard to see that the irreducibility of x↵ modulo IF for any F ( E follows
from the following claim.

Claim 4.11. x↵ is irreducible modulo IF for every set of the form F = E \{u, v}
with

{u, v} 2 {{1, 4}, {2, 6}, {3, 8}, {4, 10}}.
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The claim above can be verified with aid of a computer algebra system such as
Macaulay2 [21] by calculating a Gröbner basis of each of the four ideals IF above.
The details have been included in Appendix A.

The above example motivates the following definition:

Definition 4.12. Let x↵ be a monomial in RV,k. The essential graph of x↵ is
the subgraph H↵ := (U↵, F↵) of G constructed as follows:

1. Initially, set H↵ := H(0)
↵ to be the descendant graph of x↵.

2. Let U⇤ ✓ U↵ be the set of parents of the vertices in U↵. If a pair of vertices
u, v 2 U↵ with parents u⇤, v⇤ 2 U⇤ satisfies either u⇤ = v⇤ or u⇤v⇤ 2 E, then
we add the vertices u⇤, v⇤ to U↵ along with all of their descendants. Then,
we update F↵ to be the graph induced by this new set U↵.

3. We repeat step 2. until no pair of connected components of H↵ have common
or adjacent parents.

Example 4.13. Consider the graph G = (V,E) of Example 4.10 and the monomial
x↵ := x2

5x6x7x2
8x9. Then, the descendant graph H0

↵ consist of all the leaves of the tree
G, whereas the essential graph H↵ is the entire graph G. Recall that x↵ is irreducible
modulo IF for every proper subset of edges F ( E, while being reducible modulo IE .

The following corollaries show that for low degree monomials in a large girth
graph, the reducibility of the monomial is fully captured by its essential graph. This
extension is needed as not all descendant graphs of low degree monomials may satisfy
the conditions of Lemma 4.4, as illustrated by the examples above.

Corollary 4.14. Let G be as above and let ↵ be a multi-index of degree at most
d. Suppose that 2d < g

2k � 1, then the essential graph of x↵ is a forest.

Proof. Set initially x� := x↵. At each step of the construction of H↵, if parents
u⇤ and v⇤ with u⇤  v⇤ are added to the graph, then update x� := x�xu⇤ . Thus, at
the end of the construction of H↵, the descendant graph of x� equals H↵.

Now, at each step in the construction of H↵ we are reducing its number of con-
nected components. Thus, the degree of x� at the end of the construction is at most

2d. By Lemma 4.3, H↵ = H(0)
� is a forest.

Corollary 4.15. Let x↵ be a monomial whose essential graph H↵ is a forest
and let H 0 = (U 0, F 0) be a larger forest containing H↵. Then, x↵ is reducible modulo
IF↵ if and only if it is reducible modulo IF 0 .

Proof. The proof of this corollary follows in the same way as the proof of Lemma
4.4.

5. Main Theorem. Before going into the proof of Theorem 1.1, let us recall
some basic notation. For every subset of edges F ✓ E let us denote by

(5.1) ÂF,d� = ĉF,d

the system of linear equations (DCOL) for the graph induced by F . Notice that the
system (5.1) has a solution for every d � 0 whenever F is k-colorable. In particular,
this holds whenever F is a forest.

By looking at the system (DCOL), one sees that the columns of ÂF,d can be
indexed by monomials x↵ with ↵ 2 ZV

k of degree at most d+ k � 1. We will assume
that these columns are ordered using the GLEX order from left to right, where the
largest monomials are the left most columns in ÃF,d.
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As it is custom in linear programming, let us call a set of monomials B a basis
of ÂF,d if the corresponding columns of ÂF,d form a basis for its column space. If
the system (5.1) has a solution, every basis B induces a corresponding basic solution,
namely by setting �↵ = 0 for all x↵ /2 B and solving the resultant system of equations
with a unique solution.

Lemma 5.1. For every set of edges F ✓ E, let BF,d be the set of leading mono-
mials of polynomials of the form

P
uv2F ruvquv where each ruv has degree at most d.

If the system 5.1 has a solution, then BF,d [ {1} is a basis for the matrix ÂF,d.

Proof. Using the indexing on the columns described above, we can identify each
row of ÂF,d with a polynomial in RV,k. In fact, these polynomials are either the
constant polynomial 1 or polynomials of the form

x↵quv(x), |↵|  d, {u, v} 2 F.

Thus, the row space of ÂF,d corresponds precisely with the space of polynomials of
the form

P
uv2F ruv(x)quv(x) where each ruv has degree at most d. Let R be the

row-reduced echelon form of ÃF,d and let B be the basis corresponding to the leading
ones of R. We claim that B = BF,d [ {1}. Indeed, since we have ordered the columns
using the GLEX order, the leading terms of polynomials in the non-zero rows of R
correspond to principal ones of R and B ✓ BF,d [ {1}. Conversely, since the system
5.1 has a solution and �0 = 1 is the only equation in the system with non-zero on the
right hand side if, 1 2 B should be a principal one of R. Now, if x↵ is the leading
monomial of a polynomial f in the row-span of ÂF,d, then we should be able to write
f as a linear combination of polynomials represented by rows of R. However, in such
a linear combination, no cancellation of leading ones can occur and the leading term
of f is a monomial in B.

By Remark 4.9, we can rewrite Corollary 4.15 as follows.

Corollary 5.2. Let x↵ be a monomial whose essential graph H↵ = (U↵, F↵) is
a forest and let H 0 = (U 0, F 0) be a larger forest containing H↵. Then, for any d � 0
and any x� with supp(�) ✓ U↵

x� 2 BF 0,d ) x� 2 BF↵,d.

Proof. Since supp(�) ✓ U↵, the essential graph H� of x� is a subforest of H↵.
This follows from the fact that H↵ is closed under descendants and common or ad-
jacent ancestors. In particular, H� is subforest of H 0 as well. By Corollary 4.15 and
Remark 4.9, if x� is the leading term of a polynomial of the form

P
uv2F 00 ruvquv

where each ruv has degree at most d, then x� is the leading term of a polynomial of
the form

P
uv2F�

r̃uvquv where each r̃uv has degree at most d as well.

We are ready to prove our main result.

Proof of Theorem 1.1. Let d � 0 be such that 2(d + k � 1) < g
2k � 1. Then, by

Corollary 4.14, for every monomial x↵ of degree at most d+ k� 1, its essential graph
H↵ = (U↵, F↵) is a forest. In particular, H↵ is k-colorable and the system

(5.2) ÂF↵,d · µ = ĉF↵,d

has a solution. Let µ(↵) be the basic solution of (5.2) corresponding to the basis

BF↵,d and set �↵ := µ(↵)
↵ . Notice that the essential graph of the constant polynomial
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1 has no edges, thus the system (5.2) has only one equation, namely µ0 = 1 and as
a consequence �0 = 1. We claim that � = (�↵)|↵|d+k�1 is a Dual Nullstellensatz
Certificate of degree d, i.e., � is a solution to the system

(5.3) ÂE,d · � = ĉE,d.

Indeed, let x↵ be a monomial of degree |↵|  d and let {u, v} 2 E be any edge of G.
Our goal is to show that

(5.4)
X

r2Zk

�↵+r(eu�ev)�ev = 0.

Let r 2 Zk be such that the u-th and v-th coordinates of � := ↵ + r(eu � ev) � ev
are non-zero. In other words, r is such that the support of � is maximal among
all the multi-indices appearing in (5.4). In particular, for any other r0 2 Zk and
⌘ := ↵+ r0(eu � ev)� ev we have supp(⌘) ✓ supp(�) ✓ U�.

Let R⌘ and R� be the row-reduced echelon forms of ÃF⌘,d and ÃF�,d respectively.

We claim that the rows of R⌘ are rows of R� as well. Indeed, the rows of ÃF⌘,d are

rows of ÃF�,d and as a consequence every row in R⌘ is in the row span of the rows
of R�. However, by Corollary 5.2, every column of R⌘ corresponding to a principal
one of R� is also a principal one of R⌘. Thus, each row of R⌘ cannot be obtained by
non-zero combination of two or more di↵erent rows of R�.

Since every row of R⌘ appears in R�, for every column ⌘0 of R⌘ we have µ(⌘)
⌘0 =

µ(�)
⌘0 . In particular, µ(⌘)

⌘ = µ(�)
⌘ and

X

r2Zk

�↵+r(eu�ev)�ev =
X

r2Zk

µ(↵+r(eu�ev)�ev)
↵+r(eu�ev)�ev

,

=
X

r2Zk

µ(�)
↵+r(eu�ev)�ev

= 0.

The last equation follows from the fact that µ(�) is the basic solution of (5.2) cor-
responding to the basis BF�,d and such equation appears in the system, due to the
maximality of �.

6. Concluding Remarks. In this article we have studied the behavior of the
Nullstellensatz and Polynomial Calculus approach to graph k-colorability for graphs
having large girth. We showed that as the girth of a non-k-colorable graph increases,
the degrees of the Nullstellensatz certificates must grow as well. This was obtained
by studying the structure of the principal ideals generated by polynomials in Bayer’s
formulation corresponding to sub-forests of the graph and applying a general technique
introduced by Aleknovich and Razborov [1].

In the words of Aleknovich and Razborov, informally, “everything we can infer
in small degree we can also infer locally”. This is precisely what motivated our work:
if a non-k-colorable graph G has a small Nullstellensatz Certificate, then one should
be able to detect its non-k-colorability by looking at the local structure of G. We
observed that if the essential graph of monomials of low degree were forests, then it
was possible to build dual Nullstellensatz Certificates in a local fashion. One of our
future goals is to understand whether this sparsity property of the essential graphs
can be further extended, say to essential graphs that are not trees, but other classes
of graphs such as bipartite.
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One of the reasons why the Nullstellensatz method is appealing is that the linear
systems used to find certificates of non-k-colorability using Bayer’s formulation are
quite sparse. In addition, computations over finite fields are possible and in many
cases can be carried out very e�ciently. For instance, detecting non-3-colorability
can be done by solving linear systems over F2. Thus, in principle, it may be possible
to use methods that exploit the sparseness of the system such as Coppersmith’s Block
Wiedemann or Block Lanczos Methods which work on finite field algebra. Although,
implementations of the Nullstellensatz method exist [29], to the best of our knowledge,
an implementation using the aforementioned techniques is not available to the public.

The problem of characterizing when the Nullstellensatz method e↵ectively certi-
fies non-k-colorability is wide open. For the case k = 3, De Loera et al. [15] obtained a
characterization of all non-3-colorable graphs having degree one Nullstellensatz Cer-
tificate over F2. However, we do not know what classes of non-3-colorable graphs
admit a degree four Nullstellensatz Certificate.

Problem 6.1. Characterize all non-3-colorable graphs whose Bayer’s formulation
requires a Nullstellensatz certificates of degree at most four over F2.

Even simpler questions like determining the size of the smallest degree of a Null-
stellensatz Certificate for proving the non-k-colorability of the complete graph Kk+1

is open for general k. De Loera et al. [18] obtained computational results for Kk+1

with k  10 over fields Fq with q 2 {2, 3, 5, 7}. We do not know the exact minimum
degrees for k � 8.

Problem 6.2. Let p be a prime and let k � 8 be relatively prime to p. Find the
smallest degree Nullstellensatz Certificate for proving the non-k-colorability of the
complete graph Kk+1 over Fp.

Another interesting line of research is to study how the Nullstellensatz method
behaves with respect to graph operations such as the Hajós construction and other
similar operations. Recall that any (k + 1)-critical graph G, i.e., a graph G such
that �(G) = k + 1, but �(H) < k + 1 for every proper subgraph H ✓ G, can
be obtained from Kk+1 using repeated iterations of the Hajós construction. Since
the Nullstellensatz Certificates for detecting the non-k-colorability of (k + 1)-critical
graphs are not universally bounded, the following question arises.

Problem 6.3. [26] Let G1 and G2 be (k+1)-critical graphs and let G constructed
from G1 and G2 using the Hajós Construction. What is the relationship between the
minimum degree Nullstellensatz certificates of G1, G2 and G?

Finally, it is our general belief that, if a non-k-colorable graphG has a small degree
Nullstellensatz certificate, then one should be able to detect its non-k-colorability by
looking at the local structure of the graph. Our results follow this line of reasoning by
exploiting the fact that the essential graphs of monomials of low degree were forests
for graphs of high girth to build dual certificates.

Problem 6.4. What families of graphs admit an ordering of its vertices in such a
way that the essential graphs of monomials of low degree are forests?

Finally, we mention some more general, future research directions related to this
work. Our techniques can be extended to a Polynomial Calculus setting. For the sake
of simplicity and wider accessibility, we stayed with the computationally attractive
setting close to linear algebra. There are at least two related directions of future
research:
(i) Consider additional complexity measures other than just the degree of the cer-
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tificates, e.g., using more intrinsic measures of size for the certificates which
can account for additional structures such as sparsity (while in some instances
allowing the maximum degree to grow).

(ii) Somewhat related to the above, many of the algebraic approaches mentioned
in the introduction, including the Nullstellensatz approach, can be enhanced
by including carefully chosen, structured, but redundant polynomial equations
in the original system (to reduce the degree or the “size” of the underlying
certificates). More ambitiously, we would want to perform such enhancement in
intermediate steps too. Such approaches may lead to more specialized algorithms
with improved performance on some special instances.

Appendix A. Proof of Claim 4.11 . In this appendix we provide computa-
tional certificates for Claim 4.11 using Macaulay2. For this, we simply have check that
the monomial x↵ = x2

5x6x7x2
8x9 is not divisible by any leading term in a Gröbner

basis of the ideals IF1 , IF2 , IF3 and IF4 , where F1 = E \ {1, 4}, F2 = E \ {2, 6},
F3 = E \ {3, 8} and F4 = E \ {4, 10}. The output provided by Macaulay2 is the
following:
(IF1) Leading Monomials for I_{F_1}

{-2} | x_4x_9 |

{-2} | x_4^2 |

{-2} | x_3x_7 |

{-2} | x_3^2 |

{-2} | x_2x_5 |

{-2} | x_2^2 |

{-2} | x_1x_2 |

{-2} | x_1^2 |

{-3} | x_9^3 |

{-3} | x_7^3 |

{-3} | x_6^3 |

{-3} | x_5^3 |

{-3} | x_1x_3x_6 |

{-3} | x_1x_3x_5 |

{-4} | x_1x_6^2x_7 |

{-4} | x_1x_5^2x_7 |

{-4} | x_1x_5^2x_6 |

(IF2) Leading Monomials for I_{F_2}

{-2} | x_4x_9 |

{-2} | x_4^2 |

{-2} | x_3x_7 |

{-2} | x_3^2 |

{-2} | x_2^2 |

{-2} | x_1x_3 |

{-2} | x_1x_2 |

{-2} | x_1^2 |

{-3} | x_9^3 |

{-3} | x_8^3 |

{-3} | x_7^3 |

{-3} | x_5^3 |

{-3} | x_2x_3x_5 |

{-3} | x_1x_4x_8 |
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{-3} | x_1x_4x_7 |

{-3} | x_1x_4x_5 |

{-4} | x_2x_4x_5x_7 |

{-4} | x_2x_3x_4x_8 |

{-4} | x_1x_8^2x_9 |

{-4} | x_1x_7^2x_9 |

{-4} | x_1x_7^2x_8 |

{-4} | x_1x_5^2x_9 |

{-4} | x_1x_5^2x_8 |

{-4} | x_1x_5^2x_7 |

{-5} | x_2x_5x_7^2x_9 |

{-5} | x_2x_4x_7^2x_8 |

{-5} | x_2x_4x_5^2x_8 |

{-5} | x_2x_3x_8^2x_9 |

{-6} | x_2x_5x_7x_8^2x_9 |

{-6} | x_2x_5^2x_8^2x_9 |

{-6} | x_2x_5^2x_7^2x_8 |

(IF3) Leading Monomials for I_{F_3}

{-2} | x_4x_9 |

{-2} | x_4^2 |

{-2} | x_3^2 |

{-2} | x_2x_5 |

{-2} | x_2^2 |

{-2} | x_1x_3 |

{-2} | x_1x_2 |

{-2} | x_1^2 |

{-3} | x_9^3 |

{-3} | x_7^3 |

{-3} | x_6^3 |

{-3} | x_5^3 |

{-3} | x_2x_3x_6 |

{-3} | x_1x_4x_7 |

{-3} | x_1x_4x_6 |

{-3} | x_1x_4x_5 |

{-4} | x_3x_4x_5x_7 |

{-4} | x_2x_3x_4x_7 |

{-4} | x_1x_7^2x_9 |

{-4} | x_1x_6^2x_9 |

{-4} | x_1x_6^2x_7 |

{-4} | x_1x_5^2x_9 |

{-4} | x_1x_5^2x_7 |

{-4} | x_1x_5^2x_6 |

{-5} | x_3x_5^2x_6x_9 |

{-5} | x_3x_4x_5^2x_6 |

{-5} | x_2x_4x_6^2x_7 |

{-5} | x_2x_3x_7^2x_9 |

{-6} | x_3x_5^2x_7^2x_9 |

{-6} | x_3x_5^2x_6x_7^2 |

{-6} | x_2x_6^2x_7^2x_9 |

{-7} | x_3x_5x_6^2x_7^2x_9 |
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(IF4) Leading Monomials for I_{F_4}

{-2} | x_4^2 |

{-2} | x_3x_7 |

{-2} | x_3^2 |

{-2} | x_2x_5 |

{-2} | x_2^2 |

{-2} | x_1x_3 |

{-2} | x_1x_2 |

{-2} | x_1^2 |

{-3} | x_8^3 |

{-3} | x_7^3 |

{-3} | x_6^3 |

{-3} | x_5^3 |

{-3} | x_2x_3x_6 |

{-3} | x_1x_4x_8 |

{-3} | x_1x_4x_7 |

{-3} | x_1x_4x_6 |

{-3} | x_1x_4x_5 |

{-4} | x_3x_4x_5x_8 |

{-4} | x_2x_4x_6x_7 |

{-4} | x_2x_3x_4x_8 |

{-4} | x_1x_7^2x_8 |

{-4} | x_1x_6^2x_8 |

{-4} | x_1x_6^2x_7 |

{-4} | x_1x_5^2x_8 |

{-4} | x_1x_5^2x_7 |

{-4} | x_1x_5^2x_6 |

{-5} | x_4x_5^2x_6x_7 |

{-5} | x_3x_4x_5^2x_6 |

{-5} | x_2x_4x_7^2x_8 |

{-5} | x_2x_4x_6^2x_8 |

{-6} | x_4x_5^2x_7^2x_8 |

{-6} | x_3x_5^2x_6x_8^2 |

{-6} | x_2x_6^2x_7^2x_8 |

{-7} | x_4x_5x_6^2x_7^2x_8 |

The code used to generate these terms is the following:
clearAll

--Number of Colors

k=3;

-- Number of Vertices

n=10;

-- Edge set of the graph (uncomment desired ideal)

E=matrix{{1,2},{1,3},{2,5},{2,6},{3,7},{3,8},{4,9},{4,10}}; --F1

--E=matrix{{1,2},{1,3},{1,4},{2,5},{3,7},{3,8},{4,9},{4,10}}; --F2

--E=matrix{{1,2},{1,3},{1,4},{2,5},{2,6},{3,7},{4,9},{4,10}}; --F3

--E=matrix{{1,2},{1,3},{1,4},{2,5},{2,6},{3,7},{3,8},{4,9}}; --F4
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--Number of edges

m=numgens target E;

-- Define the ring and Monomial Order

R=QQ[x_1..x_n, MonomialOrder=>GLex]

--Polynomials p_u

M_I=matrix{{x_1^k-1}};

for i from 1 to n do (

M_I=M_I|matrix{{x_i^k-1}};

);

--Polynomials q_uv

num = (x_(E_(0,0))^k-x_(E_(0,1))^k);

den = (x_(E_(0,0))-x_(E_(0,1)));

M_J=matrix{{num//den}};

for j from 1 to m-1 do (

num =(x_(E_(j,0))^k-x_(E_(j,1))^k);

den = (x_(E_(j,0))-x_(E_(j,1)))

mod = matrix{{num//den}};

M_J=M_J|mod;

);

--Define the ideal

ColId=ideal(M_I|M_J);

--Find a Grobner basis

G=gb(ColId);

GensG=gens G;

--Output the leading terms of the basis

transpose(leadTerm(GensG))
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