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Abstract. We study a weighted generalization of the fractional cut-covering problem, which we relate
to the maximum cut problem via antiblocker and gauge duality. This relationship allows us to introduce
a semidefinite programming (SDP) relaxation whose solutions may be rounded into fractional cut covers
by sampling via the random hyperplane technique. We then provide a 1/αGW-approximation algorithm
for the weighted fractional cut-covering problem, where αGW ≈ 0.878 is the approximation factor of the
celebrated Goemans–Williamson algorithm for the maximum cut problem. Nearly optimal solutions of the
SDPs in our duality framework allow one to consider instances of the maximum cut and the fractional
cut-covering problems as primal-dual pairs, where cuts and fractional cut covers simultaneously certify
each other’s approximation quality. We exploit this relationship to introduce new combinatorial certificates
for both problems, as well as a randomized polynomial-time algorithm for producing such certificates.
In particular, we show how the Goemans–Williamson algorithm implicitly approximates a weighted instance
of the fractional cut-covering problem, and how our new algorithm explicitly approximates a weighted instance
of the maximum cut problem. We conclude by discussing the role played by geometric representations of
graphs in our results, and by proving our algorithms and analyses to be optimal in several aspects.

1. Introduction

Let G = (V,E) be a simple graph. For every S ⊆ V , the cut with shore S is the set δ(S) ⊆ E of edges
which have precisely one vertex in S. For every nonnegative vector z ∈ RE

+ indexed by the edges, the fractional
cut-covering number of (G, z) is

(1) fcc(G, z) := min
{
1

Ty : y ∈ RP(V )
+ ,

∑
S⊆V

yS1δ(S) ≥ z
}
,

where the power set of V is denoted by P(V ), the incidence vector of T ⊆ U is 1T ∈ {0, 1}U , and the vector
of all-ones is 1. When z is integer-valued, the integer solutions of (1) correspond to multisets of cuts which
cover each edge e ∈ E at least ze times, thus explaining the name “fractional cut-covering”. The unweighted
version of this graph parameter — i.e., fcc(G) := fcc(G,1) — is used by Šámal [42] to prove non-existence of
cut-continuous functions between certain graphs. Such functions are maps between the edge sets of graphs
that arise in the study of certain graph flow conjectures [14]. A fractional cut cover of (G, z) is a feasible
solution of (1).

For every w ∈ RE
+, the maximum weight of a cut of (G,w) is

(2) mc(G,w) := max{wT
1δ(S) : S ⊆ V }.

As larger cuts intuitively give rise to smaller covers, this suggests a combinatorial relationship between (2)
and (1). The problem of computing mc(G,w) is known as the maximum cut problem, and it is one of Karp’s
original NP-hard problems [29]. Goemans and Williamson’s approximation algorithm [21] for this problem is
one of the most celebrated applications of semidefinite programming. We denote by SV the Euclidean space
of real symmetric V × V matrices, and by SV

+ ⊆ SV the cone of positive semidefinite matrices, i.e., the set of
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symmetric matrices with nonnegative eigenvalues. The Laplacian of G is the linear function LG : RE → RV ×V

defined by

(3) LG(w) :=
∑
ij∈E

wij(ei − ej)(ei − ej)T ∈ RV ×V for each w ∈ RE ,

where { ei : i ∈ V } ⊆ {0, 1}V are the canonical basis vectors. The trace inner product of A,B ∈ RV ×V is
⟨A,B⟩ := Tr(ATB). The linear function diag : RV ×V → RV extracts the diagonal of a square matrix, and its
adjoint Diag : RV → RV ×V builds a diagonal matrix from its argument such that Diag(x)ii = xi for every
i ∈ V . Write X ⪰ Y or Y ⪯ X for symmetric matrices X and Y if X − Y is positive semidefinite. Goemans
and Williamson’s approximation algorithm implies that the optimal value of the semidefinite program (SDP)

η(G,w) := max{ ⟨ 1
4LG(w), Y ⟩ : Y ∈ SV

+, diag(Y ) = 1}(4a)
= min{ ρ : ρ ∈ R+, x ∈ RV , ρ ≥ 1

Tx, Diag(x) ⪰ 1
4LG(w)}(4b)

satisfies

(5) αGWη(G,w) ≤ mc(G,w) ≤ η(G,w) for each w ∈ RE
+,

where

(6) αGW := min
0<θ≤π

2
π

θ

1− cos θ ≈ 0.878

is the approximation factor. Equation (4b) follows from SDP Strong Duality, since both primal and dual
SDPs have Slater points.

The norm of a vector u ∈ Rd is ∥u∥ :=
√
uTu. For a fixed real number t ≥ 1, a vector t-coloring of G is a

function f : V → Rd assigning a unit-norm vector f(i) ∈ Rd to each i ∈ V such that (t− 1)f(i)Tf(j) ≤ −1
for every ij ∈ E. Vector colorings were first introduced in [27]. The smallest value t for which a graph has a
vector t-coloring is called the vector chromatic number of G, denoted by χvec(G). Šámal [41, Theorem 5.2]
defined a map from fractional cut covers to vector colorings, thus proving that G has a vector t-coloring such
that

(7) 2
(

1− 1
t

)
≤ fcc(G).

Neto and Ben-Ameur [39, Proposition 17] tightened the relationship between fractional cut covers and vector
colorings by showing that

(8) fcc(G) ≤ π

arccos(1/(1− t))
for every vector t-coloring of G such that t > 1. Assume E ≠ ∅, so t ≥ 2, and set ζ := 1/(1− t), so ζ ∈ [−1, 0).
Then (6) implies that

(9) π

arccos(1/(1− t)) = π

arccos(ζ) = π

2
1− ζ

arccos(ζ)
2

1− ζ ≤
1

αGW

2
1− ζ = 1

αGW
2
(

1− 1
t

)
.

Putting it all together, [39] combines (7), (8), (9), and monotonicity of x 7→ (1− 1/x) to conclude that

(10) 2
(

1− 1
χvec(G)

)
≤ fcc(G) ≤ 1

αGW
2
(

1− 1
χvec(G)

)
.

As [39, Corollary 4] points out, the inequalities in (10) provide a polynomial-time computable approximation
for the unweighted number fcc(G), since χvec(G) is the optimal value of an SDP which can be approximated
to any given precision in polynomial time.

We invite the reader to compare (5) and (10). Both describe constant-factor approximations that are
computable from the optimal values of SDPs, and furthermore, both approximation factors are αGW. This
work exploits and extends the ideas underlying (10). For every z ∈ RE

+, define

(11) η◦(G, z) := min{µ : µ ∈ R+, Y ∈ SV
+, diag(Y ) = µ1, 1

4L
∗
G(Y ) ≥ z}

where L∗
G : RV ×V → RE is the adjoint of the Laplacian, i.e.,

(12)
(
L∗

G(Y )
)

ij
= Yii + Yjj − Yij − Yji for each Y ∈ RV ×V and ij ∈ E.
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If y is a fractional cut cover for (G, z), then (µ, Y ) :=
(
1

Ty,
∑

S⊆V yS(1 − 21S)(1 − 21S)T) is feasible for
the SDP (11). If f : V → Rd is a vector t-coloring for some t > 1, we may define µ := 2(1 − 1/t) and
Y ∈ SV

+ by Yij := µf(i)Tf(j) for every i, j ∈ V . Then diag(Y ) = µ1 and 1
4L

∗
G(Y ) ≥ 1, as 1

4
(
L∗

G(Y )
)

ij
=

1
2µ(1− f(i)Tf(j)) ≥ 1

2µ
(
1 + 1

t−1
)

= 1 for every ij ∈ E. In this manner, the feasible solutions for (11) capture
the geometry of vector colorings which enables (10). Using η◦, we strengthen (10) to all nonnegative weights:

(13) η◦(G, z) ≤ fcc(G, z) ≤ 1
αGW

η◦(G, z) for each z ∈ RE
+.

This weighted generalization of (10) stands as the proper fractional cut-covering analogue to (5) for the
maximum cut problem.

The similarity between (5) and (13) is the starting point of this work, whose main contributions include:
(i) pinpointing the relationship between the maximum cut problem (2) and the fractional cut-covering

number (1) to gauge and antiblocker duality [18, 19];
(ii) introducing (11) as the dual parameter to (4a), immediately obtaining that (13) is equivalent to (5)

via a precisely defined bound conversion procedure [7, Sections 6 and 7];
(iii) describing a randomized approximation algorithm, dual to the Goemans–Williamson algorithm, which

rounds any nearly optimal solution of the SDP (11) to a (1/αGW)-approximately optimal fractional
cut cover of (G, z) with very sparse support;

(iv) pairing instances of the maximum cut and fractional cut-covering problems so that one can obtain
approximately optimal solutions for both instances by solving a single SDP, and so that their
approximate optimality can be certified by a simultaneous, (mostly) combinatorial certificate;

(v) showing our algorithms to be best possible in several aspects;
(vi) clarifying the role played by geometric representation of graphs in the aforementioned results.

Our algorithms run in polynomial time in the real-number machine model (see [9]) with access to two additional
oracles: one computing Cholesky factorizations and one sampling from a standard normal distribution. These
assumptions streamline our arguments while still building towards a strongly polynomial-time implementation
on a probabilistic Turing machine. The access to a Cholesky factorization oracle amounts to assuming exact
square root computation. For our purposes, efficient algorithms that lead to rational approximations of the
square-root are sufficient, since the probabilistic nature of our algorithms and the slacks in our analyses make
our algorithms and analyses robust to small enough precision errors. In particular, our situation is different
than assuming sum of square-roots problem can be solved in polynomial time. (For related complexity issues,
see, for instance, [1] and references therein.) The access to an oracle sampling numbers from a standard
normal distribution encapsulates a yet subtler issue. As even the representation of continuously supported
random variables on Turing machines poses a nontrivial question, our oracle assumption decouples our
analyses from implementation details that are beyond the scope of this paper.

1.1. Organization of the Text. In order to facilitate reading, we unveil these results in increasing order
of abstraction. We start at Section 2 by exhibiting a novel randomized approximation algorithm for the
weighted fractional cut covering problem. The connection between η and η◦ is the main theme of Section 3.
In Section 3.1 we express the relationship between both optimization problems via antiblocker [18, 19] and
gauge duality [7]. We then show how computing either one of the parameters η or η◦ implicitly computes
the other parameter, and how this can be leveraged to provide simultaneous combinatorial certificates for
the approximate optimality of certain cuts and fractional cut covers. The existential results for certificates
we prove in Section 3.3 are refined into efficient algorithms in Section 3.4. We recover the role played by vector
colorings in this introduction by relating our approach to geometric representations of graphs in Section 4.
Section 5 discusses possible improvements to our approximation algorithms by collecting noteworthy instances
of our optimization problems: either instances where simpler approaches lead to degenerate behavior, or
instances which show our bounds to be tight.

1.2. Notation. For each n ∈ N, denote as usual [n] := {1, . . . , n}. The set of nonnegative real numbers is
denoted by R+, and the set of positive real numbers is R++. Let U be a finite set. We denote by RU the
real vector space indexed by entries in U . For each i ∈ U , we denote by ei ∈ {0, 1}U the i-th canonical basis
vector. The 1-norm of a vector z ∈ RU is ∥z∥1 :=

∑
i∈U |zi|, the ∞-norm of z is ∥z∥∞ := max{ |zi| : i ∈ U},

and the support of z is supp(z) := { i ∈ U : zi ̸= 0}.
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2. A Randomized Rounding Algorithm for Weighted Fractional Cut Covering

Let V be a finite set. The set

EV := {Y ∈ SV
+ : diag(Y ) = 1}

is commonly referred to as the elliptope. We adopt (extended) Minkowski set operations and write µEV :=
{Y ∈ SV

+ : diag(Y ) = µ1} for every µ ∈ R, and REV := {µY : µ ∈ R, Y ∈ EV } for each R ⊆ R. For every
Y ∈ R+EV and nonzero h ∈ RV , define

(14) GW(Y, h) := { i ∈ V : eT
i Y

1/2h ≥ 0},

where Y 1/2 is the unique positive semidefinite square root of Y . Equation (14) describes a possible implemen-
tation of the random hyperplane technique used by Goemans and Williamson [21] to sample a shore of a cut.
Let (Ω,Σ,P) be a probability space and let the random variable h : Ω→ RV be a uniformly distributed unit
vector. For every Y ∈ R++EV , we denote by GW(Y ) : Ω→ P(V ) the random variable given by

GW(Y ) : ω ∈ Ω 7→ GW(Y, h(ω)) ⊆ V,

which samples shores. It is proved in [21] that

(15) P
(
ij ∈ δ(GW(Y ))

)
= arccos(Yij)

π
for every ij ∈ E and Y ∈ EV .

Algorithm 1 leverages the connection between the elliptope and probability distributions on P(V ) given
by GW. We will exploit semidefinite programming to produce a matrix Y ∈ R++EV from which we sample a
fractional cut cover in (randomized) polynomial time by repeated sampling from GW(Y ). This section is
devoted to proving correctness of Algorithm 1: namely, that it produces an approximately optimal fractional
cut cover with high probability in polynomial time.

The algorithm works roughly as follows. First it creates a new weight vector ẑ from the input weight vector
z ∈ RE

+ by rounding up the edge weights that are too small relative to ∥z∥∞. Then it obtains a nearly optimal
solution (µ, Y ) for the SDP relaxation (11), which is used to sample cuts δ(GW(Y )). The rounding up of
the weights ensures that every edge has a significant probability of being in the random cut δ(GW(Y )).
The algorithm builds a fractional cut cover by using this sampling procedure T times independently, obtaining
a vector of support size T , which is then scaled. The parameter T is defined in the range Θ(ln(|V |)) so that
it is large enough to guarantee that we obtain a fractional cut cover with high probability. Our pseudocode
abstracts away the important work of carefully choosing data structures: in particular, one needs to exploit
the sparse nature of the fractional cut cover produced in its representation.

Neto and Ben-Ameur [39, Section 4] already scale the probability distribution on P(V ) given by GW(Z)
to define a fractional cut cover from some Z ∈ SV

+ arising from a vector coloring. Our novel formulation (11)
allow us to place this construction in the weighted setting with Proposition 1.

Proposition 1. Let G = (V,E) be a graph and let z ∈ RE
+. Let (µ, Y ) be feasible for (11). Set y ∈ RP(V ) by

(16) yS := µ

αGW
P(GW(Y ) = S) for every S ⊆ V.

Then y is a fractional cut cover for (G, z) with objective value 1Ty = 1
αGW

µ. In particular,

(17) zij ≤
µ

αGW
P(ij ∈ δ(GW(Y ))) for every ij ∈ E.

Proof. We may assume that µ > 0. Set Ȳ := µ−1Y ∈ EV . By the definition in (14), we have that
GW(Y, h) = GW(Ȳ , h) for every h ∈ RV , which implies that GW(Y ) = GW(Ȳ ). Let ij ∈ E. Since Ȳ ∈ EV ,
we have that Ȳij ∈ [−1, 1]. If zij = 0, then (17) holds trivially. Assume that zij > 0. Since diag(Ȳ ) = 1,
we get from (12) that

0 < zij ≤ 1
4
(
L∗

G(Y )
)

ij
= µ 1

4
(
L∗

G(Ȳ )
)

ij
= µ 1

2 (1− Ȳij).
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Algorithm 1 SDP-based randomized approximation algorithm for fcc
Parameters: a constant approximation factor β ∈ (0, αGW) parameterizes the algorithm ApproxFccβ .

As in (27) and (28), define the following constants in terms of β:

τ := 1− β

αGW
∈ (0, 1), σ := ε := γ := τ

3 ∈ (0, 1
3 ), and C := 81

√
2π/τ5/2.

Input: a graph G = (V,E) and edge weights z ∈ RE
+

Output: ApproxFccβ(G, z) returns a fractional cut cover of (G, z) with high probability with objective
value bounded above by 1

β fcc(G, z) and support size bounded above by T := ⌈C ln(|V |)⌉, as in (28)
1 procedure ApproxFccβ(G, z)
2 (V,E)← G

3 ẑe ← max(ze,
1
2ε∥z∥∞) for each e ∈ E ▷ Round up z

4 Find a feasible (µ, Y ) for η◦(G, ẑ) in (11) with objective value µ ≤ η◦(G, ẑ) + σ∥z∥∞

5 y ← 0 ∈ RP(V )
+

6 repeat T times
7 S ← GW(Y ) ▷ Sample a shore S ⊆ V via the random hyperplane technique
8 yS ← yS + 1
9 end

10 return µ

(1− γ)αGW

1
T
y

11 end procedure

Thus Ȳij < 1, so arccos(Ȳij) > 0, and P
(
ij ∈ δ(GW(Ȳ ))

)
> 0 by (15). Hence

zij ≤ µ 1
2 (1− Ȳij) = µ

π

2
1− Ȳij

arccos(Ȳij)
P
(
ij ∈ δ(GW(Ȳ ))

)
by (15)

≤ µ 1
αGW

P
(
ij ∈ δ(GW(Ȳ ))

)
by (6)

=
∑

S⊆V :
ij∈δ(S)

µ

αGW
P(GW(Ȳ ) = S) =

∑
S⊆V :
ij∈δ(S)

yS =
(∑

S⊆V

yS1δ(S)

)
ij
.

As this holds for every ij ∈ E for which zij > 0, we conclude that y is a fractional cut cover for (G, z) with
objective value 1Ty = 1

αGW
µ, and (17) holds. □

Corollary 2. Let G = (V,E) be a graph. Then

(13) η◦(G, z) ≤ fcc(G, z) ≤ 1
αGW

η◦(G, z) for each z ∈ RE
+.

Proof. As mentioned after (12), the first inequality holds since (µ, Y ) :=
(
1

Ty,
∑

S⊆V yS(1−21S)(1−21S)T)
is feasible for the SDP (11), for every fractional cut cover y for (G, z). The second inequality in (13) follows
directly from Proposition 1. □

Remark 3. We will define in (18) below the random variable capturing the repeated sampling behavior
of Algorithm 1. One might question the purpose of employing a randomized approach when Proposition 1
defines a precise solution with a guaranteed approximation factor to the optimal value. We provide two
compelling reasons: in Proposition 1,

(i) it is a challenging task to compute the probabilities P(GW(Y ) = S) in (16): while the marginal
probability P(ij ∈ δ(GW(Y ))) is determined by (15), computing P(GW(Y ) = S) requires joint
probabilities for all the vertices in the shore S;

(ii) the fractional cut cover y obtained may have exponential support size: indeed there are instances
(e.g., the complete graph with uniform weights) for which there exist optimal solutions for (11) that
result in a vector y given as in (16) with exponential support size; see Appendix B.
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The randomized procedure helps to address these two issues.

As [39] is only concerned with approximating the value fcc(G), as opposed to computing a fractional cut
cover, the randomized algorithms in their Section 4 do not address the issues in Remark 3. One may interpret
their results as using Proposition 1 to say that feasible solutions to (11) are an implicit representation of a
fractional cut cover.

Proposition 1 and Carathéodory’s theorem imply that, given a matrix Y and a real number µ feasible
for (11), there exists a fractional cut cover with polynomial support size and objective value bounded above
by (1/αGW)µ. The randomized approach below will in fact produce a feasible solution whose support size is
O(ln(n)), a reduction of two orders of magnitude compared to the fractional cut cover from Proposition 1.

Let T ∈ N \ {0} and let γ ∈ (0, 1). Let G = (V,E) be a graph, and let Y ∈ SV and µ ∈ R+ be such that
Y ∈ µEV . Let S1, . . . , ST ⊆ V be independent, identically distributed random shores sampled by GW(Y ).
Define

(18) AT,γ(G, Y ) := (F , y), where F := {S1, . . . , ST } ⊆ P(V ) and y := µ

(1− γ)αGW

1
T

T∑
t=1

eSt
∈ RF

+.

Informally, AT,γ(G, Y ) produces a (scaled version of a) sparse surrogate for the probability distribution
of GW(Y ). It is immediate that

(19) 1
Ty = 1

αGW

1
1− γ µ and |F| ≤ T.

The parameter γ regulates the deviation from the objective value obtained in Proposition 1, while T needs to
be chosen large enough so that concentration results imply that the desired level of accuracy is achieved with
high probability.

Let G = (V,E) be a graph. Šámal [41, Theorem 5.2] uses Chernoff’s bound to show that, by sampling
sufficiently many cuts, one can obtain a fractional cut cover for (G,1). Proposition 4 improves on this work,
by providing an explicit bound on the actual number of cuts that suffices in the general weighted setting.
We will use that, for every x ∈ [−1, 1] and y ∈ [0, 2],

(20) if x ≤ 1− y then arccos(x) ≥
√

2y.

This follows from monotonicity of arccos, and the inequality arccos(1− y) ≥
√

2y for each y ∈ [0, 2].

Proposition 4. Let ξ, κ, γ ∈ R be such that 0 < ξ ≤ 1 ≤ κ and 0 < γ < 1. Let G = (V,E) be a graph on n
vertices, and let z ∈ RE

+ be nonzero. Let (µ, Y ) be feasible in (11). Let T ≥
⌈
3π( κ

ξ )1/2 1
γ2 ln(n)

⌉
be an integer

and set (F , y) := AT,γ(G, Y ). If

µ ≤ κ∥z∥∞(21a)
and

z ≥ ξ∥z∥∞1,(21b)

then

(22) P
(∑

S∈F
yS1δ(S) ≥ z

)
≥ 1− 1

n
.

Proof. Let S1, . . . , ST be random shores defined as in (18). For every ij ∈ E, set Xij := |{ t ∈ [T ] : ij ∈ δ(St)}|
and pij := P(ij ∈ δ(GW(Y ))). By construction, for each ij ∈ E, the random variable Xij has binomial
distribution on T trials with success probability pij and(∑

S∈F
yS1δ(S)

)
ij

= µ

(1− γ)αGW

1
T
Xij .

By (17), we have that pij ≥ αGW
µ zij and so the expected value is E(Xij) ≥ T αGW

µ zij . Thus, in order to
prove (22), it suffices to show that P(∃e ∈ E, Xe ≤ (1− γ)E(Xe)) ≤ 1/n.

Set Ȳ := µ−1Y and let ij ∈ E. Using z ̸= 0, (21b), (21a), feasibility of (µ, Y ) in (11), and (12), we obtain
2ξ
κ

= 2ξ∥z∥∞

κ∥z∥∞
≤ 2zij

κ∥z∥∞
≤ 2zij

µ
≤ 1

2L
∗
G(Ȳ )ij = 1− Ȳij .
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Hence Ȳij ≤ 1− 2ξ
κ . Using (15) and (20) we see that

pij = arccos(Ȳij)
π

≥ 2
π

√
ξ

κ
.

By Chernoff’s bound,

P
(
Xij ≤ (1− γ)E(Xij)

)
≤ exp

(
−γ

2E(Xij)
2

)
= exp

(
−γ

2Tpij

2

)
≤ exp

(
−γ

2T

π

√
ξ

κ

)
.

Hence, by union bound and the lower bound on T ,

P
(
∃e ∈ E, Xe ≤ (1− γ)E(Xe)

)
≤ n2 exp

(
−γ

2T

π

√
ξ

κ

)
≤ exp

(
2 ln(n)− 3πκ1/2 ln(n)

ξ1/2γ2
γ2

π

√
ξ

κ

)
= 1
n
. □

Remark 5. When applying Proposition 4, it is apparent that (21b) is the most stringent condition. Indeed,
the other requirements can be satisfied by a nearly optimal solution to the SDP in (11). On the other
hand, (21b) restricts the applicability of our procedure to certain well-behaved values of z. This is not an
artifact of our analysis, but an unavoidable consequence of the repeated sampling approach. Appendix A
shows that, for every ε ∈ (0, 2), there exists an instance (G, z) which has an optimal solution (µ̄, Ȳ ) for (11)
such that there is an edge ij with

P
(
ij ∈ δ(GW(Ȳ ))

)
= arccos(1− 2ε+ ε2/2)

π
,

which can be made arbitrarily small. This, in turn, increases the number of samples needed to produce a
cut cover, i.e., a set of cuts whose union is the whole edge set of the graph. Theorem 6 solves this issue by
perturbing the edge weights z to a vector ẑ that satisfies (21b).

Let G = (V,E) be a graph. We will use that
η◦(G, z0) ≤ η◦(G, z1), for every z0, z1 ∈ RE

+ such that z0 ≤ z1,(23)
η◦(G, z0 + z1) ≤ η◦(G, z0) + η◦(G, z1) for every z0, z1 ∈ RE

+, and(24)
∥z∥∞ ≤ η◦(G, z) for every z ∈ RE

+.(25)

These facts follow from SDP Strong Duality: if z ∈ RE
+, then

η◦(G, z) = min
{
µ : µ ∈ R+, Y ∈ SV

+, diag(Y ) = µ1, 1
4L

∗
G(Y ) ≥ z

}
(26a)

= max
{
zTw : w ∈ RE

+, x ∈ RV , 1
4LG(w) ⪯ Diag(x), 1Tx ≤ 1

}
.(26b)

The optimization problems (26a) and (26b) form a primal-dual pair of SDPs. Note that (µ̊, Y̊ ) :=
(2∥z∥∞, 2∥z∥∞I) and (ẘ, x̊) := (0, |V |−1

1) are relaxed Slater points of (26a), and (26b), respectively, so SDP
Strong Duality ensures both problems have optimal solutions attaining a common optimal value; see, e.g., [37,
Theorem 7.1.2]. The proofs of (23) and (24) are immediate from (26a) and (26b), respectively. To prove (25),
let z ∈ RE

+ and note that, for every ij ∈ E,

2 Diag(ei + ej)− LG(eij) = 2(eie
T
i + eje

T
j )− (ei − ej)(ei − ej)T = (ei + ej)(ei + ej)T ∈ SV

+.

Hence, for every ij ∈ E, the pair (w̄, x̄) := (eij ,
1
2 (ei + ej)) is feasible in (26b) for (G, z). Thus (25) holds.

Theorem 6. Let β ∈ (0, αGW) and set

(27) τ := 1− β

αGW
∈ (0, 1) and C := 81

√
2π/τ5/2.

There exists a randomized polynomial-time algorithm which takes as input a graph G = (V,E) on n vertices
and a vector z ∈ RE

+ and outputs (F , y), where F ⊆ P(V ) and y ∈ RF
+ are such that

P
(∑

S∈F
yS1δ(S) ≥ z

)
≥ 1− 1

n
, 1

Ty ≤ 1
β

fcc(G, z), and |F| ≤ ⌈C ln(n)⌉ = O(ln(n)).

That is, with high probability, y is a 1
β -approximately optimal solution for (1) with logarithmic support size.
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Proof. We start by setting up the constants that will be used in the proof (and in Algorithm 1). Set

(28) σ := ε := γ := τ

3 ∈ (0, 1
3 ) and T :=

⌈
C ln(n)

⌉
,

as in the preamble to Algorithm 1. The constants σ, ε, and γ are chosen so that

(29) 1− γ
1 + ε+ σ

αGW =
( 1− τ/3

1 + 2τ/3

)
αGW =

(
1− τ

1 + 2τ/3

)
αGW ≥ (1− τ)αGW = β.

It is simple to verify that Algorithm 1 works if z = 0, so we may assume that z ̸= 0. We define ẑ by rounding
up entries that are smaller than 1

2ε∥z∥∞. Set ẑ ∈ RE
+ by ẑij := max{zij ,

1
2ε∥z∥∞} for every ij ∈ E. (Note

that this is done in Line 3 of Algorithm 1.)
Let (µ, Y ) be a feasible solution for η◦(G, ẑ) in (11) with objective value

(30) µ ≤ η◦(G, ẑ) + σ∥z∥∞ = η◦(G, ẑ) + σ∥ẑ∥∞.

Note that this appears in Line 4 in Algorithm 1. Such a nearly optimal solution (µ, Y ) can be computed in
polynomial time due to the existence of strict Slater points for the SDPs in (26); see Appendix C.

We now move to the final and randomized part of Algorithm 1. Set (F , y) := AT,γ(G, Y ). Note that y is
the solution produced by Algorithm 1. To finish the proof, we will show that y is a fractional cut cover for
(G, z) with probability at least 1− 1

n , and it has support size at most ⌈C ln(n)⌉ and objective value at most
(1/β) fcc(G, z).

We will apply Proposition 4 to show that y is a fractional cut cover for (G, ẑ) with probability at least
1− 1

n . Since ẑ ≥ z, this implies that y is a fractional cut cover for (G, z) with probability at least 1− 1
n . Set

ξ := ε/2 = τ/6 and κ := 3, and recall the definition of γ in (28). By construction, (21b) holds. Note that

T = ⌈C ln(n)⌉ =
⌈

81
√

2π
τ5/2 ln(n)

⌉
=
⌈

3π
(

18
τ

)1/2(3
τ

)2
ln(n)

⌉
=
⌈

3π
(
κ

ξ

)1/2( 1
γ

)2
ln(n)

⌉
,

so the lower bound on T from Proposition 4 is met. We will check that µ ≤ κ∥ẑ∥∞, that is, that (21a) holds.
We claim that
(31) η◦(G,1) ≤ 2.
This follows from feasibility of (µ̄, Ȳ ) := (2, 2I) in (11) for (G,1), as 1

4L
∗
G(I) = 1

21 by (12). Hence, (30), (23), (31),
and σ < 1 imply

µ ≤ η◦(G, ẑ) + σ∥ẑ∥∞ ≤ η◦(G, ∥ẑ∥∞1) + σ∥ẑ∥∞ = (η◦(G,1) + σ)∥ẑ∥∞ ≤ 3∥ẑ∥∞,

so Proposition 4 applies.
The support size of y is |F| ≤ T = ⌈C ln(n)⌉ by (19). Finally, we bound 1

Ty:

1
Ty = 1

αGW

1
1− γ µ by (19)

≤ 1
αGW

1
1− γ (η◦(G, ẑ) + σ∥ẑ∥∞) by (30)

≤ 1
αGW

1
1− γ

(
η◦(G, z + 1

2ε∥ẑ∥∞1) + σ∥ẑ∥∞
)

by (23), as ẑ ≤ z + 1
2ε∥ẑ∥∞1

≤ 1
αGW

1
1− γ

(
η◦(G, z) + 1

2ε∥ẑ∥∞η
◦(G,1) + σ∥ẑ∥∞

)
by (24)

≤ 1
αGW

1
1− γ

(
η◦(G, z) + ε ∥ẑ∥∞ + σ∥ẑ∥∞

)
by (31)

= 1
αGW

1
1− γ

(
η◦(G, z) + (ε+ σ)∥z∥∞

)
since ∥z∥∞ = ∥ẑ∥∞

≤ 1
αGW

1 + ε+ σ

1− γ η◦(G, z) by (25)

≤ 1
β
η◦(G, z) by (29). □

Corollary 7. Let β ∈ (0, αGW), and set τ ∈ (0, 1) and C ∈ R++ as in (27). For every graph G = (V,E) and
z ∈ RE

+, there exists a fractional cut cover y ∈ RP(V )
+ with |supp(y)| ≤ ⌈C lnn⌉ and 1

Ty ≤ (1/β) fcc(G, z).
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Problem SDP Solution
Properties

Rounding
Procedure

Rounding
Analysis Algorithm

Fractional Cut-Covering Proposition 1 (18) Proposition 4 Theorem 6
Simultaneous Certificates Proposition 16

(65) Proposition 22
Proposition 24

Maximum Cut Certificates Theorem 19 Theorem 25
Fractional Cut-Covering Certificates Theorem 20 Theorem 26

Figure 1. Section 3 produces solutions accompanied by certificates of their approximate
optimality. These developments parallel Section 2: we exploit the properties of optimal
solutions to SDP relaxations in a rounding procedure. As an auxiliary step, we study
simultaneous approximate solutions to both problems.

Proof. Immediate from Theorem 6. □

3. A Primal-Dual Extension of the Goemans–Williamson Algorithm
With Certificates of Approximate Optimality

Section 2 describes an approximation algorithm for the fractional cut-covering problem. The work
of Goemans and Williamson is so ubiquitous in our reasoning that one may claim Algorithm 1 to be
“dual” to the algorithm described in [21]. This language suggests a primal-dual approach, where cuts and
fractional cut covers simultaneously certify each other’s (approximate) optimality via a suitable notion of
“weak duality”. This section provides randomized polynomial-time algorithms exploiting this idea. Fix a
desired approximation factor β ∈ (0, αGW). Given a fractional cut-covering instance, we produce a fractional
cut cover whose (1/β)-approximate optimality is certified by a maximum cut instance with one of its
β-approximately optimal solutions. Symmetrically, the input may be a maximum cut instance, and the
algorithm then produces a β-approximately optimal cut and certifies it via a fractional cut-covering instance
with one of its (1/β)-approximately optimal solutions. The alignment of subtopics between this section and
Section 2 are highlighted by Figure 1.
3.1. Gauge Duality. This subsection presents the gauge duality theory that permeates and forms the
foundational basis for our results. In this manner, this subsection places our work within the literature and
equips readers with a theoretical framework that can lead to new results.

Proposition 8. Let G = (V,E) be a graph. The functions mc(G, ·) and fcc(G, ·) satisfy
mc(G,w) = max{wTz : z ∈ RE

+, fcc(G, z) ≤ 1} for every w ∈ RE
+,(32a)

fcc(G, z) = max{ zTw : w ∈ RE
+, mc(G,w) ≤ 1} for every z ∈ RE

+,(32b)
wTz ≤ mc(G,w) fcc(G, z) for every w, z ∈ RE

+.(32c)
The functions η(G, ·) and η◦(G, ·) satisfy

η(G,w) = max{wTz : z ∈ RE
+, η

◦(G, z) ≤ 1}, for every w ∈ RE
+,(33a)

η◦(G, z) = max{ zTw : w ∈ RE
+, η(G,w) ≤ 1}, for every z ∈ RE

+,(33b)
wTz ≤ η(G,w)η◦(G, z) for every w, z ∈ RE

+.(33c)

Remark 9. The striking similarities between (32) and (33) underscore the existence of a theoretical framework
that explains this phenomenon, rather than being a fortunate coincidence. It turns out that the functions
mc(G, ·), fcc(G, ·), η(G, ·), and η◦(G, ·) are positive definite monotone gauges, which we shall define presently.
Furthermore, mc(G, ·) and fcc(G, ·) form a dual pair, as do η(G, ·) and η◦(G, ·).

Proof of Proposition 8. Equation (32b) follows directly from Linear Programming Strong Duality, as

fcc(G, z) = min
{
1

Ty : y ∈ RP(V )
+ ,

∑
S⊆V

yS1δ(S) ≥ z
}

= max{ zTw : w ∈ RE
+, ∀S ⊆ V, wT

1δ(S) ≤ 1}
= max{ zTw : w ∈ RE

+, mc(G,w) ≤ 1},
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and (32c) is then straightforward. Next, we show that (32a) holds. We have that
mc(G,w) = max{wT

1δ(S) : S ⊆ V }

≤ max
{
wTz : z ∈ RE

+, y ∈ RP(V )
+ , 1Ty ≤ 1, z ≤

∑
S⊆V

yS1δ(S)

}
take (z, y) := (1δ(S), eS)

= max{wTz : z ∈ RE
+, fcc(G, z) ≤ 1} by (1)

≤ mc(G,w) by (32c).

The proof of (33) follows a similar structure. For every w ∈ RE
+, equation (33b) follows from SDP Strong

Duality via (4) and (26b). The Cauchy-Schwarz inequality in (33c) then follows from (33b). Finally, (33a)
follows, since

η(G,w) = max{wT( 1
4L

∗
G(Y )

)
: Y ∈ SV

+, diag(Y ) = 1} by (4a)
≤ max{wTz : z ∈ RE

+, z ≤ 1
4L

∗
G(Y ), Y ∈ SV

+, diag(Y ) = 1}

= max{wTz : z ∈ RE
+, η

◦(G, z) ≤ 1} by (11)
≤ η(G,w) by (33c). □

In the following discussion, we will elaborate on the above concepts along with their associated im-
plications. Let E be a finite set, and let ϕ : RE

+ → R+ be a function such that ϕ(0) = 0. We say that
• ϕ is positive definite if ϕ(x) > 0 for every nonzero x ∈ RE

+;
• ϕ is monotone whenever x ≤ y implies ϕ(x) ≤ ϕ(y) for every x, y ∈ RE

+;
• ϕ is positively homogeneous if ϕ(αx) = αϕ(x) for every x ∈ RE

+ and α ∈ R++;
• ϕ is a gauge if it is convex and positively homogeneous.

If ϕ : RE
+ → R+ is a positive definite monotone gauge, we define its dual ϕ◦ : RE

+ → R+ by

(34) ϕ◦(z) := max{ zTw : w ∈ RE
+, ϕ(w) ≤ 1} for every z ∈ RE

+.

It is routine to check that ϕ◦ is a positive definite monotone gauge. One can also exploit a hyperplane
separation theorem to show that ϕ◦◦ = ϕ.

Corollary 10. Let G = (V,E) be a graph. Then the functions mc(G, ·) and η(G, ·) are positive definite
monotone gauges, and their duals are fcc(G, ·) and η◦(G, ·), respectively.

Proof. This follows directly from Proposition 8. □

We have already exploited the properties of positive definite monotone gauges throughout our work:
recall (23) and (24), for example, which state monotonicity and convexity of η◦(G, ·), respectively. More
importantly, gauge duality immediately establishes a bound conversion procedure [7, Section 6] on which this
work is based. Recall (5) and (13):

αGWη(G,w) ≤ mc(G,w) ≤ η(G,w) for each w ∈ RE
+,(5)

η◦(G, z) ≤ fcc(G, z) ≤ 1
αGW

η◦(G, z) for each z ∈ RE
+.(13)

The relationship between these inequalities are instances of the following result.

Proposition 11. Let E be a finite set, and let ϕ, ψ : RE
+ → R+ be positive definite monotone gauges. Let

α, β ∈ R++. Then the following are equivalent:
αψ(w) ≤ ϕ(w) ≤ βψ(w) for every w ∈ RE

+;
1
βψ

◦(z) ≤ ϕ◦(z) ≤ 1
αψ

◦(z) for every z ∈ RE
+.

Proof. Since ϕ◦, ψ◦ : RE
+ → R+ are positive definite monotone gauges and ϕ◦◦ = ϕ and ψ◦◦ = ψ, it suffices to

show that

(35) if ϕ(w) ≤ βψ(w) for every w ∈ RE
+, then 1

β
ψ◦(z) ≤ ϕ◦(z) for every z ∈ RE

+.

This follows from the fact that, for every z ∈ RE
+,

ϕ◦(z) = max{ zTw : w ∈ RE
+, ϕ(w) ≤ 1} and 1

βψ
◦(z) = max{ zTw : w ∈ RE

+, βψ(w) ≤ 1}. □
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From a geometric viewpoint, positive definite monotone gauges are deeply related to convex corners. Let
E be a finite set. The lower-comprehensive hull of C ⊆ RE

+ is defined by lc(C) := { z ∈ RE
+ : ∃x ∈ C, z ≤ x},

and C is lower comprehensive if lc(C) = C. A convex corner is a lower-comprehensive compact convex set
C ⊆ RE

+ with nonempty interior.
Every positive definite monotone gauge ϕ : RE

+ → R+ is associated to a convex corner

(36) Cϕ := {x ∈ RE
+ : ϕ◦(x) ≤ 1}

which satisfies
ϕ(w) = max{wTx : x ∈ Cϕ} for each w ∈ RE

+.

The antiblocker of C ⊆ RE
+ is defined by abl(C) := { y ∈ RE

+ : ∀x ∈ C, yTx ≤ 1}. From these definitions and
the fact that ϕ◦◦ = ϕ, it is clear that Cϕ◦ = abl(Cϕ). This correspondence allows one to recast gauge duality
results in terms of antiblocking duality [18, 19].

Let G = (V,E) be a graph. Define the cut polytope of G as
CUT(G) := conv{1δ(S) : S ⊆ V } ⊆ RE ,(37a)

where conv(·) denotes the convex hull, and define its semidefinite relaxation as
CUTSDP(G) := { 1

4L
∗
G(Y ) : Y ∈ EV } ⊆ RE .(37b)

The convex corners associated to mc(G, ·), fcc(G, ·), η(G, ·), and η◦(G, ·) as in (36) are the following:
Cmc(G,·) = lc(CUT(G)) and Cfcc(G,·) = abl(CUT(G)),(38)
Cη(G,·) = lc(CUTSDP(G)) and Cη◦(G,·) = abl(CUTSDP(G)).(39)

Basic convex analysis shows that studying fcc(G, ·) for all weights z ∈ RE
+ corresponds to studying the whole

boundary structure of Cfcc(G,·), not just in the direction z = 1. The set lc(CUT(G)) above has appeared
previously in the literature as the bipartite subgraph polytope of G; see, e.g., [24].

Moreover, the inequalities in (5) and (13) can be interpreted as the following set inclusions, respectively:
αGW lc(CUTSDP(G)) ⊆ lc(CUT(G)) ⊆ lc(CUTSDP(G)),(40a)

abl(CUTSDP(G)) ⊆ abl(CUT(G)) ⊆ 1
αGW

abl(CUTSDP(G)).(40b)

We refer the reader to [7, Sections 2–7] or [6, Sections 4.1–4.3] for an in-depth discussion about gauge duality,
with elementary proofs of the aforementioned results. One may regard gauge duality as a manifestation of
convex duality. For example, Freund [16] formulates pairs of primal and dual gauge optimization problems,
and proves a strong duality result using a hyperplane separation theorem. In this form, gauge duality has
received a lot of attention in the optimization community recently; see [3, 17]. We remark that the work of
Grötschel, Lovász, and Schrijver [23, Corollary 3.5], together with the remark that (4a) defines a positive
definite monotone gauge, immediately implies that one can approximate the optimal value of (11) to any
given precision in polynomial time. The algorithm in Section 2 refines this by showing that, beyond the
polynomial-time computable lower bound to the value of the fractional cut-covering number, one has a suitable
approximation algorithm leveraging the work of Goemans and Williamson [21] that actually constructs an
approximately optimal fractional cut cover.

3.2. β-pairings. Let G = (V,E) be a graph. For every vector w ∈ RE
+, one has an instance (G,w) of the

maximum cut problem. Similarly, for every vector z ∈ RE
+, one has an instance (G, z) of the fractional

cut-covering problem. From a computational complexity point of view, it is remarkable how (32c) relates
the optimal values mc(G,w) and fcc(G, z). It is natural then to try to find pairs (w, z) ∈ RE

+ × RE
+ which

mutually certify the optimality of each other. That such pairs exist is a consequence of (32). As we are
interested in approximation algorithms, we then parameterize this relationship between instances by a real
number β ∈ (0, 1], interpreted as an approximation factor.

Definition 12. Let G = (V,E) be a graph and let β ∈ (0, 1]. A β-pairing on G is a pair (w, z) ∈ RE
+ × RE

+
such that there exist ρ, µ ∈ R+, such that ρ = 0 = µ if and only if w = 0 = z, and

(41) wTz
(41a)= ρµ and βρµ

(41b)
≤ mc(G,w)µ

(41c)
≤ ρµ

(41d)
≤ ρ fcc(G, z)

(41e)
≤ 1

β
ρµ.

We define an exact pairing on G to be a 1-pairing on G.
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When ρ > 0 and µ > 0, which we regard as the “typical” case, we may restate (41) as

wTz
(41a)= ρµ, βρ

(41b)
≤ mc(G,w)

(41c)
≤ ρ, and µ

(41d)
≤ fcc(G, z)

(41e)
≤ 1

βµ.

The definition is made to accommodate the case 0 ∈ {ρ, µ}. The nonzero conditions on ρ and µ are meant
only to avoid “spurious” β-pairings. In fact, one can easily check that, in Definition 12,

ρ = 0 if and only if w = 0 and µ = 0 if and only if z = 0.
Let G = (V,E) be a graph, and let w, z ∈ RE

+. If we take ρ := η(G,w) and µ := η◦(G, z), Proposition 11
states that (41b) and (41c) are the “dual inequalities” to (41e) and (41d), respectively. Definition 12 abstracts
some of the concepts from positive definite monotone gauges mentioned in Section 3.1, while preserving the
relevant duality. Definition 12 also shifts the focus to the relation established between w and z, which is
crucial to our certification approach. Note that for an exact pairing (w, z), the above solutions are optimal
with a precise relationship:

wTz = mc(G,w) fcc(G, z), mc(G,w) = ρ, and fcc(G, z) = µ.

While the definition of a β-pairing captures the notion of simultaneous β-approximations of the numbers
mc(G,w) and fcc(G, z), it is important to consider which objects might certify that a pair (w, z) ∈ RE

+ × RE
+

is indeed a β-pairing for a fixed β ∈ (0, 1]. The lower bound (41b) on the maximum cut value and the upper
bound (41e) on the fractional cut-covering value in (41) can be naturally certified by (the shore of) a cut and
a fractional cut cover, respectively. However, certifying the upper bound (41c) on mc(G,w) and the lower
bound (41d) on fcc(G, z), i.e., mc(G,w)µ ≤ ρµ ≤ ρ fcc(G, z), poses a more complex question. We achieve
this certification by using semidefinite programming weak duality. Since mc(G,w) ≤ η(G,w), we have that
(42) mc(G,w) ≤ ρ for each feasible solution (ρ, x) of (4b).
From the viewpoint of η(G,w) as a semidefinite relaxation for mc(G,w), it is very natural to regard x as (the
key part of) a feasible solution for its dual SDP (4b). However, the vector x ∈ RV also has a combinatorial
interpretation. Direct computation using (12) shows that

L∗
G(1S1

T
S) = 1δ(S) for each S ⊆ V ,(43a)

L∗
G(1hT) = L∗

G(h1T) = 0 for each h ∈ RV .(43b)

Thus, the inequality 1
4LG(w) ⪯ Diag(x) from (4b) implies the middle inequality in:

(44) wT
1δ(S) = ⟨ 1

4LG(w), (1− 21S)(1− 21S)T⟩ ≤ ⟨Diag(x), (1− 21S)(1− 21S)T⟩ = 1
Tx ≤ ρ.

This shows that, while the semidefinite inequality 1
4LG(w) ⪯ Diag(x) just used may look at a first glance not

quite combinatorial, the only property used in the proof of (44) is the more combinatorial-looking
(45) ⟨ 1

4LG(w), hhT⟩ ≤ ⟨Diag(x), hhT⟩ for each h ∈ {±1}V .

Hence, any certificate for the inequality 1
4LG(w) ⪯ Diag(x) certifies the inequality in (45) for arbitrary

h ∈ RV , and in particular for each h ∈ {±1}V , i.e., for each h ∈ RV of the form 1 − 21S for some S ⊆ V .
Certifying a richer family of inequalities can be seen as dual to solving a relaxation of mc(G,w). Finally,
the semidefinite inequality 1

4LG(w) ⪯ Diag(x) can be certified by providing an LDLT factorization (that is,
a square-root-free Cholesky decomposition) of the positive semidefinite matrix Diag(x)− 1

4LG(w). With (44)
we have showed how to certify mc(G,w) ≤ ρ; it remains to discuss certification of fcc(G, z) ≥ µ. However, as
we shall prove in the upcoming results, the latter inequality can be certified by the same objects that certify
the former inequality for appropriately paired edge weights w and z. Such a simultaneous certification is a
key aspect of our work. We have now gathered all the ingredients we need to define certificates for β-pairings.

Definition 13. Let G = (V,E) be a graph and let β ∈ (0, 1]. Let (w, z) ∈ RE
+ × RE

+. A β-certificate for
(w, z) is a tuple (ρ, µ, S, y, x) such that ρ = 0 = µ if and only if w = 0 = z, and

ρ, µ ∈ R+ are such that ρµ = wTz,(46.i)
S ⊆ V is such that wT

1δ(S) ≥ βρ,(46.ii)

y ∈ RP(V )
+ is such that

∑
U⊆V yU1δ(U) ≥ z and 1

Ty ≤ 1
βµ, and(46.iii)

x ∈ RV is such that ρ ≥ 1
Tx and Diag(x) ⪰ 1

4LG(w).(46.iv)
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Remark 14. Recalling the discussion preceding Definition 12, note how items (46.i), (46.ii), and (46.iii)
are the natural certificates for the inequalities (41a), (41b), and (41e), respectively. Whereas we work with
an SDP certificate in (46.iv), this setup opens the possibility of using other techniques which upper bound
the maximum value of the weighted maximum cut problem. Concretely, one could substitute (46.iv) by
appropriate certificates arising from [26, 45], for example.

Next, we prove that a β-certificate for (w, z) does indeed certify that (w, z) is a β-pairing.

Proposition 15. Let G = (V,E) be a graph and let β ∈ (0, 1]. Let (w, z) ∈ RE
+ × RE

+. If there exists a
β-certificate for (w, z), then (w, z) is a β-pairing.

Proof. Let (ρ, µ, S, y, x) be a β-certificate for (w, z). Item (46.i) proves (41a). One has

βρµ ≤ µwT
1δ(S) ≤ µmc(G,w)

by (46.ii). This proves (41b). Similarly,

ρ fcc(G, z) ≤ ρ1Ty ≤ 1
β ρµ

by (46.iii). This proves (41e).
So far we have only used feasible solutions for mc(G,w) and fcc(G, z) to obtain bounds for the optimal

values. Finally, (46.iv) shows that (42) applies, so

mc(G,w)µ
(42)
≤ ρµ

(46.i)= wTz
(32c)
≤ mc(G,w) fcc(G, z)

(42)
≤ ρ fcc(G, z),

thus proving (41c) and (41d). □

3.3. Existence of αGW-Certificates. Having motivated the definition of β-certificates as objects simultane-
ously proving approximate optimality for the maximum cut and fractional cut-covering problems, a next
step would be to determine conditions on a β-pairing (w, z) ∈ RE

+ × RE
+ that guarantee the existence of a

β-certificate for (w, z). Set

(47) H(G) := { (w, z) ∈ RE
+ × RE

+ : wTz = η(G,w)η◦(G, z)}.
We now expand (47) into a more convenient characterization. Recalling (4b) and (11),

η(G,w) = min
{
ρ : ρ ∈ R+, x ∈ RV , ρ ≥ 1

Tx, Diag(x) ⪰ 1
4LG(w)

}
,(4b)

η◦(G, z) = min
{
µ : µ ∈ R+, Y ∈ SV

+, diag(Y ) = µ1, 1
4L

∗
G(Y ) ≥ z

}
,(11)

we claim that

(48) H(G) =

 (w, z) ∈ RE
+ × RE

+ :
∃(ρ, x) feasible for (4b) for (G,w),
∃(µ, Y ) feasible for (11) for (G, z),

and wTz ≥ ρµ

.
For each (w, z) ∈ H(G), we shall refer to pairs (ρ, x) and (µ, Y ) assumed to exist as in the RHS of (48),
as witnesses of the membership (w, z) ∈ H(G). To prove ‘⊆’ in (48), it suffices to choose as witnesses an
optimal solution (ρ, x) for (4b) and an optimal solution (µ, Y ) for (11). Next we prove ‘⊇’. Note that,

(49) if (ρ, x) and (µ, Y ) witness the membership (w, z) ∈ H(G), then ρµ = wTz = ⟨ 1
4LG(w), Y ⟩,

since ρµ ≤ wTz ≤ wT( 1
4L

∗
G(Y )

)
= ⟨ 1

4LG(w), Y ⟩ ≤ ⟨Diag(x), Y ⟩ = µ1Tx ≤ ρµ, so equality holds throughout.
In particular, we further have that η(G,w) ≤ ρ and η◦(G, z) ≤ µ, so equality holds in both cases by (33c).
Thus, ‘⊇’ is proved in (48). To see the connection between (48) and Definition 13, note that in the Goemans–
Williamson approximation algorithm for the maximum cut problem and in our approximation algorithm
for the fractional cut-covering problem, a crucial step is obtaining a matrix Y ∈ SV

+ that is feasible in the
semidefinite relaxation, which is then used in the sampling of shores. In this way, the matrix Y encodes both
the shore in (46.ii) and the fractional cut cover in (46.iii) featured in β-certificates.

In this subsection, we present two main results. The first result (stated in Proposition 16) is that there is an
αGW-certificate for every nonzero (w, z) ∈ H(G); in particular, by Proposition 15, every nonzero (w, z) ∈ H(G)
is an αGW-pairing. The second result (stated in Proposition 17) shows that, given an instance (G,w) of the
maximum cut problem, we have that (w, z) ∈ H(G) for z ∈ RE

+ if and only if z is in the convex cone generated
by the optimal solutions of a certain formulation for η(G,w). Symmetrically, given an instance (G, z) of the



14 N. BENEDETTO PROENÇA, M.K. DE CARLI SILVA, C.M. SATO, AND L. TUNÇEL

fractional cut-covering problem, we have that (w, z) ∈ H(G) for w ∈ RE
+ if and only if w is in the convex cone

generated by the optimal solutions of a certain formulation for η◦(G, z).
Let G = (V,E) be a graph and let z ∈ RE

+. Goemans and Williamson’s analysis [21] implies that

(50) if (µ, Y ) is feasible for (11) and µ > 0, then E
(
wT

1δ(GW(Y ))
)
≥ αGW

µ
⟨ 1

4LG(w), Y ⟩.

Now we show the existence of an αGW-certificate for every nonzero pair (w, z) ∈ H(G).

Proposition 16. Let G = (V,E) be a graph. For every (w, z) ∈ H(G) such that w ̸= 0 ̸= z, there exists an
αGW-certificate (ρ, µ, S, y, x) for (w, z) such that ρ ̸= 0 ̸= µ. In particular, (w, z) is an αGW-pairing.

Proof. Let (w, z) ∈ H(G) be such that w ̸= 0 ̸= z. Let (ρ, x) be an optimal solution for (4b) and let (µ, Y ) be an
optimal solution for (11), so that ρ = η(G,w) > 0 and µ = η◦(G, z) > 0. Thus, wTz = η(G,w)η◦(G, z) = ρµ,
so (46.i) holds; we take β := αGW whenever referring to the items of (46) in this proof. Equation (46.iv) holds
by the feasibility of (ρ, x) for (4b). Define y ∈ RP(V ) as in (16). Equation (46.iii) follows from Proposition 1.
Since by (50) one has

E
(
wT

1δ(GW(Y ))
)
≥ αGW

µ
⟨ 1

4LG(w), Y ⟩ ≥ αGW

µ
⟨Diag(x), Y ⟩ = αGW1

Tx = αGWρ,

there exists S ⊆ V as in (46.ii). Thus, (w, z) is an αGW-pairing by Proposition 15. □

The set H(G) defines a relation between maximum cut and fractional cut-covering instances. Suppose the
starting point is an instance of one of these problems and one builds an instance for the other one so that the
pair is in H(G). This motivates the following definitions. Define

zG(w) := { z ∈ RE
+ : (w, z) ∈ H(G)} for every w ∈ RE

+,(51)
wG(z) := {w ∈ RE

+ : (w, z) ∈ H(G)} for every z ∈ RE
+.(52)

The upcoming Proposition 17, which describes the encoding of the optimal solutions to our SDPs in H(G),
is more conveniently stated using a slight variant of (4):

η(G,w) = max
{
wTz : z ∈ RE

+, Y ∈ SV
+, diag(Y ) = 1, z ≤ 1

4L
∗
G(Y )

}
(53a)

= min
{
ρ : ρ ∈ R, x ∈ RV , Diag(x) ⪰ 1

4LG(w), ρ ≥ 1
Tx
}
.(53b)

Recall (26a) and (26b):
η◦(G, z) = min

{
µ : µ ∈ R+, Y ∈ SV

+, diag(Y ) = µ1, 1
4L

∗
G(Y ) ≥ z

}
(26a)

= max
{
zTw : w ∈ RE

+, x ∈ RV , 1
4LG(w) ⪯ Diag(x), 1Tx ≤ 1

}
.(26b)

Note the various symmetries relating these SDPs. The constraint ‘Diag(x) ⪰ 1
4LG(w)’ occurs in (53b)

and (26b) and ‘ 1
4L

∗
G(Y ) ≥ z’ occurs in (53a) and (26a), although in each constraint one of w or z is a variable

in one but not in the other SDP. Additionally, the constraint ‘diag(Y ) = 1’ from (53a) appears homogenized
in (26a) with the variable µ, whereas the constraint ‘1Tx ≤ 1’ from (26b) appears homogenized in (53b) with
the variable ρ.

Let G = (V,E) be a graph. We now relate zG and wG to optimal solutions of (53a) and of (26b), resp.
For any finite set U and for any set S ⊆ RU , we denote by cone(S) the convex cone generated by S, i.e., the
smallest convex cone containing S and the origin.

Proposition 17. Let G = (V,E) be a graph. For every w ∈ RE
+,

zG(w) = cone
(
{ z ∈ RE

+ : ∃Y ∈ SV
+ s.t. (z, Y ) is optimal in (53a) for η(G,w)}

)
.(54)

Similarly, for every z ∈ RE
+,

wG(z) = cone
(
{w ∈ RE

+ : ∃x ∈ RV s.t. (w, x) is optimal in (26b) for η◦(G, z)}
)
.(55)

Proof. We first prove (54). Let w ∈ RE
+. Note that

(56) { z ∈ RE
+ : wTz = η(G,w)η◦(G, z)} = cone({ z ∈ RE

+ : η◦(G, z) ≤ 1, wTz = η(G,w)}).
Indeed, ‘⊆’ holds in (56) since η◦(G, ·) is positively homogeneous. For the proof of ‘⊇’, first note that
the LHS is clearly closed under positive scalar multiplication since η◦(G, ·) is positively homogeneous. To
see that the LHS is a convex cone, let z1, z2 be elements of the LHS. Sublinearity of η◦(G, ·) implies that
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wT(z1 + z2) = η(G,w)
(
η◦(G, z1) + η◦(G, z2)

)
≥ η(G,w)η◦(G, z1 + z2), whence equality holds by (33c), which

proves that z1 + z2 lies in the LHS. Since wTz = η(G,w) ≥ η(G,w)η◦(G, z) ≥ wTz for every z ∈ RE
+ in the

RHS of (56), by (33c), this concludes the proof of (56). We can now prove (54):

zG(w) = { z ∈ RE
+ : (w, z) ∈ H(G)} by (51)

= { z ∈ RE
+ : wTz = η(G,w)η◦(G, z)} by (47)

= cone({ z ∈ RE
+ : η◦(G, z) ≤ 1, wTz = η(G,w)}) by (56)

= cone({ z ∈ RE
+ : ∃Y ∈ SV

+, diag(Y ) = 1, 1
4L

∗
G(Y ) ≥ z, wTz = η(G,w)}) by (26a)

= cone({ z ∈ RE
+ : ∃Y ∈ SV

+ s.t. (z, Y ) is optimal in (53a) for η(G,w)}).

For (55), let z ∈ RE
+. One can prove, analogously to (56), that

(57) {w ∈ RE
+ : wTz = η(G,w)η◦(G, z)} = cone({w ∈ RE

+ : η(G,w) ≤ 1, wTz = η◦(G, z)}).

Then

wG(z) = {w ∈ RE
+ : (w, z) ∈ H(G)} by (52)

= {w ∈ RE
+ : wTz = η(G,w)η◦(G, z)} by (47)

= cone({w ∈ RE
+ : η(G,w) ≤ 1, wTz = η◦(G, z)}) by (57)

= cone({w ∈ RE
+ : ∃x ∈ RV , 1 ≥ 1

Tx, Diag(x) ⪰ 1
4LG(w), wTz = η◦(G, z)}) by (4b)

= cone({w ∈ RE
+ : ∃x ∈ RV s.t. (w, x) is optimal in (26b) for η(G,w)}). □

Remark 18. Let G = (V,E) be a graph. Proposition 17 establishes a stronger result than nonemptiness
of H(G), by showing that the projections zG(w) and wG(z) of H(G) are nontrivial convex cones for every
w, z ∈ RE

+. These cones are tightly connected to normal cones of the relevant convex corners. Recall the sets
Cη(G,·) and Cη◦(G,·) defined in (39). Fix a nonzero w ∈ RE

+, and set ρ := η(G,w) > 0. Then η(G, ρ−1w) ≤ 1,
so ρ−1w ∈ Cη◦(G,·) = abl(Cη(G,·)). Then one can show that

zG(w) = { z ∈ RE
+ : wTz = η(G,w)η◦(G, z)}

= { z ∈ RE
+ : (ρ−1w)Tz = η◦(G, z)}

= { z ∈ RE
+ : z ∈ Normal(Cη◦(G,·), ρ

−1w)},

where Normal(S, x̄) := { c ∈ RE : ∀x ∈ S, cTx̄ ≥ cTx} denotes the normal cone of S ⊆ RE at x̄ ∈ S. Thus

zG(w) = RE
+ ∩Normal

(
Cη◦(G,·), η(G,w)−1w

)
for every w ∈ RE

+ \ {0}.

Dually,

wG(z) = RE
+ ∩Normal

(
Cη(G,·), η

◦(G, z)−1z
)

for every z ∈ RE
+ \ {0}.

By combining Propositions 16 and 17, we show how to obtain αGW-certificates when the starting point is
either a maximum cut instance or a fractional cut-covering instance. In Section 3.4, we present algorithmic
versions of these results: from nearly optimal SDPs solutions and a randomized sampling procedure, we produce
a heavy cut and a light fractional cut cover.

Theorem 19. Let G = (V,E) be a graph and let w ∈ RE
+ be nonzero. Then there exist a nonzero z ∈ zG(w)

and an αGW-certificate for (w, z).

Proof. There exists an optimal solution (z̄, Ȳ ) for (53a). Thus, (w, z̄) ∈ H(G) by Proposition 17. As w ̸= 0,
we have that z̄ ̸= 0. By Proposition 16, there exists an αGW-certificate for (w, z̄). □

Theorem 20. Let G = (V,E) be a graph and let z ∈ RE
+ be nonzero. Then there exist a nonzero w ∈ wG(z)

and an αGW-certificate for (w, z).

Proof. There exists an optimal solution (w̄, x̄) for (26b). Thus, (w̄, z) ∈ H(G) by Proposition 17. As z ̸= 0,
we have that w̄ ̸= 0. By Proposition 16, there exists an αGW-certificate for (w̄, z). □
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3.4. Algorithmically Obtaining β-Certificates. Theorems 19 and 20 are pleasantly symmetric, both in
statement and in proof. However, they are not directly suitable for algorithmic use. The first issue is in the
definition of H(G) itself: as Proposition 17 states, its elements arise as optimal solutions to SDPs, whereas in
algorithms one must work with nearly optimal solutions. The second issue is that, in Proposition 16, the cut
δ(S) and the fractional cut cover y obtained have significant caveats: the shore S is not explicitly constructed
and y may have exponential support size. In particular, the same issues arising at Section 2 resurface here
again, requiring one to “thicken” edges and to settle for sparse surrogates of the probability distribution
described in Proposition 1.

Rather than parameterizing our rounding procedure as we have done in Section 2, we parameterize our
optimization problems, thus obtaining a family of geometric objects to study. Let G = (V,E) be a graph and
let ε ∈ [0, 1). For each w ∈ RE

+, define

ηε(G,w) := (1− ε)η(G,w) + ε
2∥w∥1(58a)

= min
{
ρ : ρ ∈ R+, x ∈ RV , ρ ≥ (1− ε)1Tx+ ε

21
Tw, Diag(x) ⪰ 1

4LG(w)
}
.(58b)

Then ηε(G, ·) : RE
+ → R+ is a positive definite monotone gauge, and by (34) its gauge dual can be written as

η◦
ε (G, z) = max{ zTw : w ∈ RE

+, x ∈ RV , 1
4LG(w) ⪯ Diag(x), (1− ε)1Tx+ ε

21
Tw ≤ 1}(59a)

= min{µ : µ ∈ R+, Y ∈ SV , Y ⪰ εµI, 1
4L

∗
G(Y ) ≥ z, diag(Y ) = µ1}(59b)

for every z ∈ RE
+. The equality in (59b) follows from SDP Strong Duality, as the relaxed Slater points we

exhibited in (26) remain relaxed Slater points in (59). Let σ ∈ (0, 1) and set

(60) Hε,σ(G) :=

 (w, z) ∈ RE
+ × RE

+ :
∃(ρ, x) feasible for (58b) for (G,w),
∃(µ, Y ) feasible for (59b) for (G, z),

and wTz ≥ (1− σ)ρµ

.
As for H(G), for each (w, z) ∈ Hε,σ(G), we refer to pairs (ρ, x) and (µ, Y ) assumed to exist as in the RHS
of (60), as witnesses of the membership (w, z) ∈ Hε,σ(G). Note the following approximate version of (49):

(61) if (ρ, x) and (µ, Y ) witness the membership (w, z) ∈ Hε,σ(G), then (1− σ)ρµ ≤ wTz ≤ ρµ.

This holds since

wTz ≤ wT( 1
4L

∗
G(Y )

)
= ⟨ 1

4LG(w), Y − εµI⟩+ ⟨ 1
4LG(w), εµI⟩

≤ ⟨Diag(x), Y − εµI⟩+ εµ
2 1

Tw = ((1− ε)1Tx+ ε
21

Tw)µ ≤ ρµ.

The analogue of the expression we took as definition of H(G) in (47) is

Hε,σ(G) =
{

(w, z) ∈ RE
+ × RE

+ :
∣∣∣∣ηε(G,w)η◦

ε (G, z)− wTz

ηε(G,w)η◦
ε (G, z)

∣∣∣∣ ≤ σ},
where the expression inside the absolute value is taken to be zero whenever 0 ∈ {w, z}.

Let G = (V,E) be a graph, let w, z ∈ RE
+, and let ε ∈ [0, 1). We show in Theorem 21 below that ηε(G,w)

and η◦
ε (G, z) are approximations for η(G,w) and η◦(G, z), respectively. Before that, we state two important

monotonicity properties of the Laplacian of a graph G:

v ≤ w implies LG(v) ⪯ LG(w), for every v, w ∈ RE ,(62a)
A ⪯ B implies L∗

G(A) ≤ L∗
G(B), for every A,B ∈ SV .(62b)

Both follow from the fact that LG(eij) ⪰ 0 for every ij ∈ E. This is immediate for (62a) by using the
definition of LG. For (62b), one has

(L∗
G(A))ij = ⟨L∗

G(A), eij⟩ = ⟨A,LG(eij)⟩ ≤ ⟨B,LG(eij)⟩ = ⟨L∗
G(B), eij⟩ = (L∗

G(B))ij

for every A,B ∈ SV such that A ⪯ B, and for every ij ∈ E. These results imply one of the motivating
properties of η◦

ε :

(63) if (µ, Y ) is feasible for (59b) and µ > 0, then P(ij ∈ GW(Y )) ≥
√

2ε
π

for every ij ∈ E.
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Let (µ, Y ) be feasible in (59b) such that µ > 0, and let ij ∈ E. Then µ−Yij = 1
2L

∗
G(Y )ij ≥ 1

2L
∗
G(εµI)ij = εµ

by (62b). Thus µ(1− ε) ≥ Yij . Hence (15) and (20) imply that

P(ij ∈ GW(Y )) = arccos(µ−1Yij)
π

≥
√

2ε
π

,

so (63) holds.

Theorem 21. Let G = (V,E) be a graph, and let ε ∈ [0, 1). Then, for each w, z ∈ RE
+,

(1− ε)η(G,w) ≤ ηε(G,w) ≤ η(G,w), for each w ∈ RE
+,(64a)

η◦(G, z) ≤ η◦
ε (G, z) ≤ 1

1− εη
◦(G, z), for each z ∈ RE

+.(64b)

Proof. As the identity matrix is feasible in (4a), the rightmost inequality below holds:
(1− ε)η(G,w) ≤ (1− ε)η(G,w) + ε

2∥w∥1 = (1− ε)η(G,w) + ε⟨ 1
4LG(w), I⟩ ≤ η(G,w).

Thus (64a) follows from (58a). Now (64b) follows from (64a) and Proposition 11. Alternatively, one can
prove (64b) directly. As the feasible region of (11) contains the feasible region of (59b), the first inequality
in (64b) holds. Let (µ, Y ) be feasible for (11). Set µε := µ/(1 − ε) and Yε := Y + εµεI ⪰ εµεI. Then
diag(Yε) = µ1 + εµε1 = µε1. Moreover, from (62b) and Yε ⪰ Y we obtain 1

4L
∗
G(Yε) ≥ 1

4L
∗
G(Y ) ≥ z. Thus

(µε, Yε) is feasible for (59b) with objective value µε. Hence (64b) holds. □

Let T ∈ N \ {0} and let γ ∈ (0, 1). We use the shore sampling procedure (18) defined in Section 2. Let
G = (V,E) be a graph, let µ ∈ R+, and let Y ∈ µEV . Let S1, . . . , ST ⊆ V be independent identically-
distributed random shores sampled by GW(Y ). Recall the definition in (18):

(18) AT,γ(G, Y ) = (F , y), where F = {S1, . . . , ST } ⊆ P(V ) and y = µ

(1− γ)αGW

1
T

T∑
t=1

eSt
∈ RF

+.

A shore of a sampled cut with largest weight is arg max
{
wT

1δ(S) : S ∈ F
}
. These objects give rise to the

sampling procedure in Algorithm 2, which we analyze next. Similar to Algorithm 1, the pseudocode of
Algorithm 2 abstracts away important implementation choices, including the choice of data structures.

Proposition 22. Let ε, σ, γ ∈ (0, 1). Let G = (V,E) be a graph on n vertices and let (w, z) ∈ Hε,σ(G) be
such that w ̸= 0 ̸= z. Set β := αGW(1 − γ)(1 − σ)(1 − ε). Let (ρ̄, x) and (µ̄, Y ) witness the membership
(w, z) ∈ Hε,σ(G). For each integer

T ≥
⌈ 6π

(αGWγ(1− σ)(1− ε))2ε
ln(n)

⌉
,

the randomized polynomial-time procedure AT,γ(G, Y ) satisfies the following: with probability at least
1− 2/n, we have that (ρ, µ, Smax, y, x) is a β-certificate for (w, z), where

(65)
ρ := (1− ε)−1ρ̄, µ := ρ−1wTz,

(F , y) := AT,γ(G, Y ), and Smax := arg max
{
wT

1δ(S) : S ∈ F
}
.

In particular, (w, z) is a β-pairing.

Remark 23. Alternatively, rather than sampling from GW(Y ) in the call to AT,γ in Proposition 22, using
the definition of ηε as a starting point, one may use a perturbed sampling GWε(Y ) obtained by sampling
from GW(Y ) with probability (1− ε), and by sampling uniformly among all shores with probability ε.

Proof of Proposition 22. Let (w, z) ∈ Hε,σ(G). Let (ρ̄, x) and (µ̄, Y ) witness the membership (w, z) ∈ Hε,σ(G).
Note that ρ̄, µ̄ > 0 as w ̸= 0 ̸= z. Set ρ := (1− ε)−1ρ̄ and µ := (1/ρ)wTz. Item (46.i) in the Definition 13 of
β-certificates holds trivially. We also have (46.iv), since Diag(x) ⪰ 1

4LG(w) and

ρ = ρ̄

1− ε ≥
1

1− ε

(
(1− ε)1Tx+ ε

2∥w∥1

)
≥ 1

Tx.

In particular, (ρ, x) is feasible in (4b) so
(66) mc(G,w) ≤ η(G,w) ≤ ρ.
Next we prove (46.ii) and (46.iii).
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Algorithm 2 Certification procedure
Parameters: a constant approximation factor β ∈ (0, αGW) parameterizes the algorithm Certifyβ .

As in (69) and (71), define the following constants in terms of β:

τ := 1− β

αGW
∈ (0, 1), σ := 2

3τ ∈ (0, 2/3), ε := τ

3(3− 2τ) ∈ (0, 1/3), and γ := 2τ
9− 7τ ∈ (0, 1).

Input: a graph G = (V,E), a pair (w, z) ∈ RE
+×RE

+ of nonzero edge weights, and witnesses (ρ̄, x) and (µ̄, Y )
of the membership of (w, z) in Hε,σ(G).

Output: Certifyβ(G, (w, z), (ρ̄, x), (µ̄, Y )) returns a β-certificate (ρ, µ, S, y, x) with high probability, where
the support of y has size bounded above by T :=

⌈ 2187π
2α2

GWτ3 ln(|V |)
⌉
, as in (70).

1 procedure Certifyβ(G, (w, z), (ρ̄, x), (µ̄, Y ))
2 F ← ∅
3 ȳ ← 0 ∈ RP(V )

+
4 repeat T times
5 S ← GW(Y ) ▷ Sample a shore S ⊆ V via the random hyperplane technique
6 F ← F ∪ {S}
7 ȳS ← ȳS + 1
8 end
9 Smax ← arg max

{
wT

1δ(S) : S ∈ F
}

10 y ← µ
(1−γ)αGW

1
T ȳ

11 ρ← (1− ε)−1ρ̄

12 µ← ρ−1wTz

13 return (ρ, µ, Smax, y, x)
14 end procedure

Let S1, . . . , ST and (F , y) be defined as in (18), so that Smax = arg max
{
wT

1δ(S) : S ∈ F
}
. We will now

prove (46.ii) for the shore Smax. More precisely, we show that wT
1δ(Smax) ≥ βρ with probability at least

1− 1/n. As (µ̄, Y ) is feasible in (59b), it is feasible in (11), so from (50) we have that

E
(
wT

1δ(GW(Y ))
)
≥ αGW

µ̄
⟨ 1

4LG(w), Y ⟩ ≥ αGW
wTz

µ̄
≥ αGW(1− σ)ρ̄ = αGW(1− σ)(1− ε)ρ,

and by (66), we can bound the range of wT
1δ(GW(Y )) as 0 ≤ wT

1δ(GW(Y )) ≤ ρ. Define Xt := wT
1δ(St)

for every t ∈ [T ]. Define S :=
∑T

t=1 Xt. The random variables X1, . . . , XT are independent and satisfy
0 ≤ Xt ≤ ρ and E(Xt) ≥ αGW(1− σ)(1− ε)ρ for each t ∈ [T ]. Using Hoeffding’s inequality,

P
(
Xt ≤ (1− γ)E(Xt) for all t ∈ [T ]

)
≤ P

(
S ≤ (1− γ)E(S)

)
≤ exp

(
−γ2E(S)2

Tρ2

)
≤ exp

(
−γ2(αGW(1− σ)(1− ε)ρT )2

Tρ2

)
= exp

(
−
(
αGWγ(1− σ)(1− ε)

)2
T

)
≤ 1/n,

since
T ≥

⌈
ln(n)

(αGWγ(1− σ)(1− ε))2

⌉
.

Thus wT
1δ(Smax) ≥ αGW(1− γ)(1− σ)(1− ε)ρ = βρ with probability at least 1− 1/n, so the proof of (46.ii)

is complete.
We now prove (46.iii). By (19),

(67) 1
Ty = 1

(1− γ)αGW
µ̄ = 1

β
(1− ε)(1− σ)µ̄ ≤ 1

β
(1− ε)w

Tz

ρ̄
= 1
β

wTz

ρ
= 1
β
µ.

Next we will use Proposition 4 to show that
∑

S∈F yS1δ(S) ≥ z with probability at least 1 − 1/n. Set
ẑ := 1

4L
∗
G(Y ). Set κ := 2/ε and ξ := ε/2. We claim that the hypotheses from Proposition 4 for ẑ are met
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by (µ̄, Y ) as well as ξ, κ, and γ. It is immediate that (µ̄, Y ) is feasible in (11) for (G, ẑ). We claim that

(68) ε

2 µ̄ ≤ ẑij ≤ µ̄ for every ij ∈ E.

By using (62b), (25), (64b), and that feasibility of (µ̄, Y ) in (59b) for (G, ẑ) implies that η◦
ε (G, ẑ) ≤ µ̄, we see

that
ε

2 µ̄1 = 1
4L

∗
G(εµ̄I) ≤ 1

4L
∗
G(Y ) = ẑ ≤ ∥ẑ∥∞1 ≤ η◦(G, ẑ)1 ≤ η◦

ε (G, ẑ)1 ≤ µ̄1.

Thus (68) holds. Condition (21a) of Proposition 4 holds by the first inequality in (68); condition (21b)
follows from noting that ε

2∥ẑ∥∞ ≤ ε
2 µ̄ ≤ ẑij for every ij ∈ E. Hence, with probability at least 1 − 1/n,

(F , y) := AT,γ(G, Y ) covers z — by covering ẑ ≥ z. Thus (67) proves (46.iii), as

T ≥
⌈

6π
γ2ε

ln(n)
⌉

=
⌈

3π
γ2

(
κ

ξ

)1/2

ln(n)
⌉
.

Hence, the probability that (ρ, µ, Smax, y, x) is not a β-certificate for (w, z) is at most 2/n. □

Proposition 24. Let β ∈ (0, αGW) and set

(69) τ := 1− β

αGW
∈ (0, 1), σ := 2

3τ ∈ (0, 2/3), and ε := τ − σ
3(1− σ) = τ

3(3− 2τ) ∈ (0, 1/3).

There exists a polynomial-time randomized algorithm that takes as input a graph G = (V,E) on n vertices,
a nonzero pair (w, z) ∈ Hε,σ(G), and objects (ρ̄, x) and (µ̄, Y ) witnessing the membership (w, z) ∈ Hε,σ(G),
and, with probability at least 1− 2/n, outputs a β-certificate (ρ, µ, Smax, y, x) for (w, z), where

(70) |supp(y)| ≤ T :=
⌈

2187π
2α2

GWτ
3 ln(n)

⌉
.

This algorithm may be implemented so that it makes:
(1) a single call to an oracle producing a Cholesky factorization of an n× n matrix;
(2) Tn calls to an oracle sampling from a standard Gaussian distribution; and
(3) O(Tn2) extra work.

Proof. Set

(71) γ := 2ε
1− ε = 2τ

9− 7τ ∈ (0, 1).

The constants σ, ε, and γ are defined so that

(1− γ)(1− σ)(1− ε) =
(

1− 2ε
1− ε

)
(1− ε)(1− σ) = (1− 3ε)(1− σ) =

(
1− τ − σ

1− σ

)
(1− σ) = 1− τ.

Thus β = αGW(1− τ) = αGW(1− γ)(1− σ)(1− ε). Moreover,

(72) ((1− ε)γ)2ε = (2ε)2ε = 4ε3 = 4
27

(
τ − σ
1− σ

)3
.

The proof is then an application of Proposition 22, since⌈
6π

(αGWγ(1− σ)(1− ε))2ε
ln(n)

⌉
=
⌈

6π
(αGW(1− σ))2

27
4

(
1− σ
τ − σ

)3
ln(n)

⌉
by (72)

=
⌈

81π
2α2

GW

1− σ
(τ − σ)3 ln(n)

⌉
≤
⌈

2187π
2α2

GW

1
τ3 ln(n)

⌉
since τ − σ = 1

3τ and σ > 0

= T.

Let B ∈ R[n]×V be a Cholesky factorization of Y , i.e., such that Y = BTB. Let Ω ∈ R[T ]×[n] have each
entry independently sampled from a standard Gaussian distribution. Algorithm 2 may be easily implemented
by computing the matrix product X := ΩB and checking the signs of the entries of X. This matrix product
can be computed in O(Tn2) time. Each row of this matrix defines a shore of a cut, and one must keep track
of which shores have appeared. Simply storing a list of the vertices in each shore allows one to compute
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the fractional cut cover y in Algorithm 2 in O(T 2n) time. Finally, computing Smax costs O(Tm). Since
T = O(logn), the matrix multiplication cost O(Tn2) dominates. □

Algorithm 3 Primal-dual randomized rounding approximation algorithm for mc, building an instance for
fcc and certificates
Parameters: a constant approximation factor β ∈ (0, αGW) parameterizes the algorithm ApproxMcFccβ .

Define the following constants in terms of β:

τ := 1− β

αGW
, σ := 2

3τ, ε := τ

3(3− 2τ) , γ := 2τ
9− 7τ , and C := 2187π

2α2
GWτ

3 .

Input: a graph G = (V,E) and nonzero edge weights w ∈ RE
+.

Output: ApproxMcFccβ(G,w) returns a nonzero z ∈ RE
+ and a β-certificate (ρ, µ, S, y, x) for (w, z)

with probability at least 1 − 2/|V |, such that |supp(y)| ≤ ⌈C ln(|V |)⌉. The algorithm runs in strongly
polynomial time.

1 procedure ApproxMcFccβ(G,w)
2 Find a feasible pair

(
Ỹ , (ρ̃, x)

)
for (4) such that ρ̃ ≤ ⟨ 1

4LG(w), Ỹ ⟩+ σ∥w∥∞.
3 µ̄← 1
4 Y ← (1− ε)Ỹ + εI

5 z ← 1
4L

∗
G(Y )

6 ρ̄← (1− ε)1Tx+ ε
2∥w∥1 ▷ Solve ηε(G,w) within σ∥w∥∞

7 return
(
z, Certifyβ(G, (w, z), (ρ̄, x), (µ̄, Y ))

)
8 end procedure

Algorithm 4 Primal-dual randomized rounding approximation algorithm for fcc, building an instance for
mc and certificates for both instances
Parameters: a constant approximation factor β ∈ (0, αGW) parameterizes the algorithm ApproxFccMcβ .

Define the following constants in terms of β:

τ := 1− β

αGW
, σ := 2

3τ, ε := τ

3(3− 2τ) , γ := 2τ
9− 7τ , and C := 2187π

2α2
GWτ

3 .

Input: a graph G = (V,E) and nonzero edge weights z ∈ RE
+.

Output: ApproxFccMcβ(G, z) returns a nonzero w ∈ RE
+ and a β-certificate (ρ, µ, S, y, x) for (w, z)

with probability at least 1 − 2/|V |, such that |supp(y)| ≤ ⌈C ln(|V |)⌉. The algorithm runs in strongly
polynomial time.

1 procedure ApproxFccMcβ(G, z)
2 Find a feasible pair (w, x), (µ̄, Y ) for (59) s.t. µ̄ ≤ zTw + σ∥z∥∞. ▷ Solve η◦

ε (G, z) within σ∥z∥∞

3 return
(
w, Certifyβ(G, (w, z), (1, x), (µ̄, Y ))

)
4 end procedure

Theorem 25. Let β ∈ (0, αGW). Set τ := 1− β/αGW and C := 2187π/(2α2
GWτ

3). There exists a randomized
polynomial-time algorithm that, given a graph G = (V,E) on n vertices and a nonzero w ∈ RE

+, computes
with probability at least 1 − 2/n a nonzero vector z ∈ RE

+ and a β-certificate (ρ, µ, S, y, x) for (w, z) such
that the support of the fractional cut cover y has size at most

⌈
C ln(n)

⌉
.

Proof. Let w ∈ RE
+ be nonzero. Define σ := 2

3τ and ε := τ/(9 − 6τ) as in Proposition 24. We follow
Algorithm 3. By (nearly) solving the primal-dual SDPs in (4), one can compute in polynomial time a feasible
solution Ỹ for (4a) and a feasible solution (ρ̃, x) for (4b) such that

ρ̃ ≤ ⟨ 1
4LG(w), Ỹ ⟩+ σ∥w∥∞.
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Set

(73) Y := (1− ε)Ỹ + εI, z := 1
4L

∗
G(Y ), ρ̄ := (1− ε)1Tx+ ε

2∥w∥1.

We claim that

(74) (ρ̄, x) and (1, Y ) witness the membership (w, z) ∈ Hε,σ(G).

It is immediate that (ρ̄, x) is feasible in (58b), whereas Y ⪰ εI implies (1, Y ) is feasible in (59b). Since
∥w∥∞ ≤ η(G,w), we can use (64a) and (58b) to see

(75) (1− ε)∥w∥∞ ≤ (1− ε)η(G,w) ≤ ηε(G,w) ≤ ρ̄.

Then

ρ̄ = (1− ε)1Tx+ ε
2∥w∥1 by (73)

≤ (1− ε)
(
⟨ 1

4LG(w), Ỹ ⟩+ σ∥w∥∞
)

+ ε
2∥w∥1 since 1Tx ≤ ρ̃ ≤ ⟨ 1

4LG(w), Ỹ ⟩+ σ∥w∥∞

= ⟨ 1
4LG(w), (1− ε)Ỹ + εI⟩+ (1− ε)σ∥w∥∞ since ε

2∥w∥1 = ⟨ 1
4LG(w), εI⟩

= wTz + (1− ε)σ∥w∥∞ by the definitions of Y and z

≤ wTz + σρ̄ by (75).

This completes the proof of (74). Moreover, as w ̸= 0, we get from (75) that ρ̄ > 0. Hence wTz ≥ (1−σ)ρ̄ > 0,
as σ < 1. Thus z ̸= 0. Proposition 24 then finishes the proof. □

Theorem 26. Let β ∈ (0, αGW). Set τ := 1− β/αGW and C := 2187π/(2α2
GWτ

3). There exists a randomized
polynomial-time algorithm that, given a graph G = (V,E) on n vertices and a nonzero z ∈ RE

+, computes
with probability at least 1− 2/n a nonzero vector w ∈ RE

+ and a β-certificate (ρ, µ, S, y, x) for (w, z) such
that the support of the fractional cut cover y has size at most

⌈
C ln(n)

⌉
.

Proof. Let z ∈ RE
+ be nonzero. Define σ := 2

3τ and ε := τ/(9 − 6τ), as in Proposition 24. We follow
Algorithm 4. By (nearly) solving the primal-dual SDPs in (59), one can compute in polynomial time a feasible
solution (w, x) for (59a) and a feasible solution (µ̄, Y ) for (59b) such that

µ̄ ≤ zTw + σ∥z∥∞.

By combining (25), (64b), and (59b), we see that

(76) ∥z∥∞ ≤ η◦(G, z) ≤ η◦
ε (G, z) ≤ µ̄.

We claim that

(77) (1, x) and (µ̄, Y ) witness the membership (w, z) ∈ Hε,σ(G).

Feasibility of (1, x) and (µ̄, Y ) in the appropriate SDPs are easily verified. Moreover, by (76), one has
µ̄ ≤ wTz + σ∥z∥∞ ≤ wTz + σµ̄. This proves (77). Moreover, as z ̸= 0, we get from (76) that µ̄ > 0. Hence
wTz ≥ µ̄(1− σ) > 0 as σ < 1. Thus w ̸= 0. Proposition 24 finishes the proof. □

Remark 27. Theorem 25 uses that the SDP (4) is nearly solvable in polynomial time. However, Theorem 26
relies on nearly solving the SDP (59), which is introduced in this work. Appendix C proves this can be done
in polynomial time.

4. Geometric Representation of Graphs

Definition 28. A hypersphere representation of a graph G = (V,E) is a map u : V → Rd for some d ∈ N such
that the map i ∈ V 7→ ∥ui∥ ∈ R is constant. Such constant is the radius of u, denoted by r(u). We denote
by H(G) the set of all hypersphere representations of G.

Let G = (V,E) be a graph, and let µ ∈ R+. Hypersphere representations of G with squared radius µ
are directly related to µEV via their Gram matrices: if u ∈ H(G) has squared radius µ and one defines a
matrix U with columns {ui}i∈V , then UTU ∈ µEV ; conversely, if X ∈ µEV , then the columns of X1/2 form a
hypersphere representation of G with squared radius µ.
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Let X ∈ µEV be the Gram matrix corresponding to a hypersphere representation u ∈ H(G). Then for
every z ∈ RE

+,

(78) L∗
G(X) ≥ z if and only if ∥ui − uj∥2 ≥ zij for every ij ∈ E.

In this way, the constraint defined by the adjoint of the Laplacian has a natural geometric interpretation.
The study of geometric representations of graphs has been very fruitful [32]. To our knowledge, geometric

representations provided the first proof that specializing the SDP in (11) to the case z = 1 recovers the
relationship with the vector chromatic number. A unit-distance representation of a graph G = (V,E) is a
hypersphere representation u : V → Rd of G such that ∥ui − uj∥2 = 1 for every ij ∈ E. The hypersphere
number of G, denoted by t(G), is the smallest squared radius of a unit-distance representation of G. Using
semidefinite programming, one can write

t(G) = inf{ r(u)2 : u ∈ H(G) such that ∥ui − uj∥2 = 1 for every ij ∈ E}
= inf{µ : µ ∈ R+, X ∈ SV

+, diag(X) = µ1, L∗
G(X) = 1}.

The only differences between this optimization problem and the problem (26) specialized to z = 1 appear
in the constraint featuring the adjoint of the Laplacian: the 1

4 factor is gone, and ‘≥’ was changed to ‘=’.
Lovász [33, p. 23] proved that

(79) 2t(G) + 1
ϑ(G)

= 1,

where ϑ denotes the Lovász theta function [34]. The similarities between the Lovász theta function ϑ and the
vector chromatic number are already discussed in the work introducing χvec [27]. In fact, χvec(G) = ϑ′(G),
where G denotes the complement of a graph and ϑ′, commonly referred to as Schrijver’s ϑ′ function, denotes
a variant of ϑ introduced independently in [36] and [43]. A natural variation of (79) that involves ϑ′ (see, e.g.,
[10, Sec. 4]) is

2t′(G) + 1
χvec(G) = 1,

where
t′(G) := inf{µ : X ∈ SV

+, diag(X) = µ1, LG(X) ≥ 1} = 1
4η

◦(G).
It is then immediate that

(80) η◦(G,1) = 2
(

1− 1
χvec(G)

)
.

Our introduction presented (10) as a motivating fact of our work. Note that (80) and Corollary 2 provide an
alternative proof of (10). Equation (80) is another manifestation of the well-known connection between the
Lovász theta function (and its variants) with the maximum cut problem — see, e.g., [11, 31].

The optimization problems we have considered optimize different objective functions over certain hyper-
sphere representations of a graph G = (V,E). For each z ∈ RE

+, an optimal fcc representation of (G, z) is a
hypersphere representation u : V → Rd such that 1

4∥ui − uj∥2 ≥ zij for every edge ij ∈ E, and with minimal
radius among such representations. For each w ∈ RE

+, an optimal mc representation of (G,w) is a hypershere
representation u : V → Rd with radius 1 which maximizes

∑
ij∈E wij∥ui − uj∥2. Define, for every w, z ∈ RE

+,

FCCH(G, z) := arg min
{

r(u)2 : u ∈ H(G) such that 1
4∥ui − uj∥2 ≥ zij for every ij ∈ E

}
, and

MCH(G,w) := arg max
{

1
4
∑
ij∈E

wij∥ui − uj∥2 : u ∈ H(G), r(u) = 1
}
.

The connection between these two sets of optimal geometric representations, which we illustrate with Figure 2,
is captured by the following theorem.

Theorem 29. Let G = (V,E) be a graph. If w ∈ RE
+ is nonzero, then for every u ∈ MCH(G,w) there exists

z ∈ zG(w) such that
(81) (√µui)i∈V ∈ FCCH(G, z), where µ := min{ ρ ∈ R+ : ρ 1

4∥ui − uj∥2 ≥ zij for every ij ∈ E}.

Conversely, if z ∈ RE
+ is nonzero, then for every v ∈ FCCH(G, z) there exists w ∈ wG(z) such that

(82)
(
r(v)−1vi

)
i∈V
∈ MCH(G,w).
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Remark 30. Let G = (V,E) be a graph. Note that (81) describes an algorithm producing an element in
FCCH(G, z) from inputs G, w ∈ RE

+, u ∈ MCH(G,w), and z ∈ zG(w). Similarly, (82) describes an algorithm
producing an element in MCH(G,w) from inputs G, z ∈ RE

+, v ∈ FCCH(G, z), and w ∈ wG(z). If one is
given w ∈ RE

+ and an optimal mc representation u ∈ MCH(G,w) and simply wants to obtain an associated
optimal fcc representation, there is an easily computable choice of z ∈ zG(w) — namely, zij := 1

4∥ui − uj∥2

for every ij ∈ E.

Proof of Theorem 29. Let w ∈ RE
+ be nonzero, and let u ∈ MCH(G,w). Let Y ∈ EV be the Gram matrix

corresponding to u, i.e., Yij = uT
i uj for every i, j ∈ V . Since u ∈ MCH(G,w), there exists z ∈ RE

+ and
(ρ, x) ∈ R+ ×RV such that (z, Y ) and (ρ, x) are optimal solutions for the SDPs (53a) and (53b), respectively.
We will prove that v := (√µui)i∈V ∈ FCCH(G, z). From optimality of (z, Y ),

(83) r(v)2 = min{ ρ ∈ R+ : ρ 1
4∥ui − uj∥2 ≥ zij for every ij ∈ E} = min{ ρ ∈ R+ : 1

4L
∗
G(ρY ) ≥ z} = 1.

Now let ṽ ∈ H(G) be such that 1
4∥ṽi − ṽj∥2 ≥ zij for every ij ∈ E, and let Ỹ be the Gram matrix of ṽ. Since

(ρ, x) is feasible in (53b),

ρ r(ṽ)2 ≥ 1
Tx r(ṽ)2 = ⟨Diag(x), Ỹ ⟩ ≥ ⟨ 1

4LG(w), Ỹ ⟩ =
∑
ij∈E

wij
1
4∥ṽi − ṽj∥2 ≥ wTz = ρ.

As w ≠ 0, we have that ρ > 0, so r(ṽ)2 ≥ 1. As the latter inequality holds with equality at v by (83),
we conclude that v ∈ FCCH(G, z).

Let z ∈ RE
+ be nonzero, let v ∈ FCCH(G, z), and let Y be the Gram matrix of v. Since v ∈ FCCH(G, z),

there exists (w, x) ∈ RE
+ × RV such that (r(v)2, Y ) and (w, x) are optimal solutions to (26a) and (26b),

respectively. We will prove that u :=
(
r(v)−1vi

)
i∈V
∈ MCH(G,w). We claim that

(84) 1 = 1
4

∑
ij∈E

wij∥ui − uj∥2.

Indeed, by optimality of (r(v)2, Y ) and (w, x), we have that r(v)2 ≥ r(v)2
1

Tx = ⟨Y,Diag(x)⟩ ≥ ⟨Y, 1
4LG(w)⟩ ≥

zTw = r(v)2. Thus

r(v)2 = ⟨Y, 1
4LG(w)⟩ = 1

4

∑
ij∈E

wij∥vi − vj∥2 = r(v)2 1
4

∑
ij∈E

wij∥ui − uj∥2.

As z ≠ 0, we have that r(v)2 > 0, so (84) holds. Now let ũ ∈ H(G) be such that r(ũ) = 1. Let Ỹ be the
Gram matrix corresponding to ũ. Then u ∈ MCH(G,w) follows from (84), as

1
4

∑
ij∈E

wij∥ũi − ũj∥2 = ⟨Ỹ , 1
4LG(w)⟩ ≤ ⟨Ỹ ,Diag(x)⟩ = r(ũ)2

1
Tx ≤ 1 = 1

4

∑
ij∈E

wij∥ui − uj∥2. □

5. Tightness of our Results

This section discusses several aspects in which our algorithms and analyses are best possible. We collect
instances of the maximum cut and fractional cut-covering problems that justify several aspects of our
algorithms, including

(i) the need to sparsify the cut cover defined in Proposition 1,
(ii) the need to either “thicken” edges, as in Section 2, or to perturb the SDP, as in Section 3.4,
(iii) the asymptotic support size of the fractional cut cover we have obtained,
(iv) the approximation factor.

These aspects are intertwined. Item (i) motivates the use of repeated sampling. Item (ii) shows that naively
sampling cuts until a fractional cut cover is obtained takes too long for some choice of weights, and item (iii)
discusses the amount of cuts needed to be sampled. The whole algorithmic set up grounds our analysis and
guides our discussion of item (iv).
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u1

u2

u3

u4

(a) mc representation u : V → R3

v1

v2

v3

v4

(b) and its corresponding fcc representation
v : V → R3

Figure 2. Geometric equivalence between hypersphere representations illustrating Theo-
rem 29.

5.1. Sparsification of Rounded Solution. Let G = (V,E) be a graph, and let z ∈ RE
+. Let (µ, Y ) be

feasible in (11), and set

(85) y := ν̄p, where pS := P(GW(Y ) = S) for every S ⊆ V, and ν̄ := min
{
ν ∈ R+ : ν

∑
S⊆V

pS1δ(S) ≥ z
}
.

Proposition 1 implies that ν̄ ≤ µ/αGW. Via (85) we have a deterministic fractional cut cover y ∈ RP(V )
+ for

every feasible solution (µ, Y ) of (11). It is then natural to question the necessity of the repeated sampling
approach. Remark 3 mentions the difficulty of computing the vector p ∈ RP(V )

+ , and we now exhibit an
instance where y has exponential support size. One may check that (µ̄, Ȳ ) :=

(
2 − 2

n , 2I −
2
n11

T) is an
optimal solution to η◦(Kn) for every nonzero n ∈ N, certified by the dual optimal solution (w̄, x̄) :=

( 4
n21,

1
n1
)

for (26b). For every i ∈ [n], let gi be independently sampled from the standard normal distribution, and set
h := ∥g∥−1g. One can prove — see Appendix B — that
(86) supp(y) = supp(p) = {S ⊆ V : P(GW(Ȳ , h) = S) > 0} = {S ⊆ V : S ̸= ∅, S ̸= V }.

Hence, the vector y ∈ RP(V )
+ defined in (85) may have exponential support size.

5.2. Edge Thickening or SDP Perturbation. The repeated sampling approach naturally arises as a
sparsification of the probability distribution in (85). Let G = (V,E) be a graph, let z ∈ RE

+, and let (µ, Y ) be
feasible in (11). Set ŷ0 := 0. For every nonzero t ∈ N, set

(87) ŷt := ŷt−1 + eS(t) and µt := inf
{
ν ∈ R+ : ν

∑
S⊆V

(ŷt)S1δ(S) ≥ z
}
,

where each S(t) is independently sampled from GW(Y ). These objects capture what we mean by “repeated
sampling”. We claim that

(88) P
(

lim
t→∞

µtŷt = y
)

= 1,

where y ∈ RP(V )
+ is defined as in (85). In words, (88) states that almost surely, the vector y describes

the behavior of the repeated sampling approach as more samples are taken. We now prove (88). Let
B ∈ RE×P(V ) be the incidence matrix of the cuts of G, so Bx =

∑
S⊆V xS1δ(S) for every x ∈ RP(V ).

Set D :=
{
x ∈ RP(V )

+ : supp(Bx) ⊇ supp(z)
}

, and set f(x) := max{ zij/(Bx)ij : ij ∈ supp(z)} for every
x ∈ D. Observe that f is continuous on D, that p ∈ D by Proposition 1 and f(p) = ν̄, and that
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f(αx) = 1
αx for every α ∈ R++ and x ∈ D. The Strong Law of Large Numbers implies that limt→∞

1
t ŷt = p

almost surely. Assume that this event happens. For every sufficiently large t ∈ N, one has ŷt ∈ D,
as supp(Bŷt) = supp(Bp) ⊇ supp(z). Thus (88) holds, as

lim
t→∞

µtŷt = lim
t→∞

f(ŷt)ŷt = lim
t→∞

f(ŷt)t 1
t ŷt = lim

t→∞
f
( 1

t ŷt

) 1
t ŷt = f(p)p = ν̄p = y.

Proposition 31. Let ε ∈ (0, 2). There exist a graph G = (V,E), vectors w ∈ RE
+ and z ∈ RE

+, as well as
(1, x) and (µ, Y ) witnesssing (w, z) ∈ H(G) such that, for µt and ŷt defined as in (87),

E(min{ t ∈ N : µt < +∞}) ≥
(

2
√
ε

π
+O(ε3/2)

)−1
.

Proof. Let G := K3 be the complete graph on three vertices, with V (K3) = {1, 2, 3}. Set (z12, z13, z23) :=
(1, 1, ε) ∈ RE

+. Appendix A shows there exist w ∈ RE
+ and x ∈ RV such that (1, x) and (µ, Y ) witness the

membership (w, z) ∈ H(G), where µ := 4/(4− ε) and

Y := 4
4− ε

 1 ε/2− 1 ε/2− 1
ε/2− 1 1 1− 2ε+ ε2/2
ε/2− 1 1− 2ε+ ε2/2 1

 .
If t ∈ N is such that µt < +∞, then the edge 23 ∈ E was covered, and hence

E(min{ t ∈ N : µt < +∞}) ≥ 1
P({2, 3} ∈ δ(GW(Y ))) = π

arccos(1− 2ε+ ε2/2) =
(

2
√
ε

π
+O(ε3/2)

)−1
. □

Although (88) ensures repeated sampling converges to the solution in (85) almost surely, algorithmically
it is necessary to bound the number of samples one has to take. Remark 5 mentions that edges with relatively
small weights can force exponentially many samples to be taken just to enable feasibility. Proposition 31
formalizes that remark: it defines a family of instances where naively sampling from an optimal solution to
the SDP (11) may require, in expectation, exponentially (on the size of the input (G, z)) many cuts just to
output a feasible fractional cut cover. Proposition 31 also motivates the perturbed SDPs introduced in (58)
and (59), as it shows, in particular, that one cannot take ε = 0 in Proposition 24.

5.3. Asymptotic Support Size. Let G = (V,E) be a graph, let z ∈ RE
+, and set n := |V |. Proposition 4

shows that, by assuming the ratio between the largest and smallest entry of z is bounded, we can produce in
polynomial time a fractional cut cover with support size O(ln(n)). Our algorithms then perturb the input
so this hypothesis is met. The logarithmic bound may not be asymptotically improved without further
assumptions on the input. Assume that supp(z) = E. We claim that
(89) ⌈lg(χ(G))⌉ ≤ |supp(y)| for every fractional cut cover y of (G, z),
where χ(G) denotes the chromatic number of G. Since supp(z) = E, every edge must be in some cut defined
by a shore in supp(y). The minimum number of cuts necessary to cover the edges of a graph is ⌈lg(χ(G))⌉ —
see, for example, [14, Section 6]. Thus (89) holds. In particular, the bound on |supp(y)| given by Theorem 6
or Proposition 24 is asymptotically best possible for graphs such that χ(G) = Θ(|V (G)|) — in particular, for
complete graphs.

5.4. Computational Complexity of Fractional Cut Covering. Section 5.5 below addresses how the
approximation factor from our algorithms is tight. Prior to this discussion is the computational complexity
status of the problem we are attempting to solve.

Proposition 32. Let G = (V,E) be a graph, let z ∈ QE
+, and let µ ∈ Q. Consider the problem

(90) given (G, z, µ) as input, decide if fcc(G, z) ≤ µ.
This problem is in NP.

Proof. Since the set of optimal solutions to (1) is non-empty, Carathéodory’s Theorem, implies that there
exists F ⊆ P(V ) with |F| ≤ |E|+ 1 and y ∈ RF

+ such that
∑

S∈F yS1δ(S) ≥ z and 1
Ty = fcc(G, z). Further

note that y can be taken as an optimal solution of a rational LP of polynomial size (namely the RHS of (1)
restricted to the columns F). We conclude that y ∈ QF can be represented using polynomially many bits on
the size of the input [44, Corollary 10.2a]. Thus (90) is in NP in the Turing Machine model. □
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Let G = (V,E) be a graph. Grötschel, Lovász, and Schrijver [23] show that the strong optimization
problem for the class of polytopes CUT(G) is solvable if and only if it is solvable for the class of polytopes
abl(CUT(G)). This implies that the following problem is NP-hard in the Turing Machine model:

(91) given an instance (G, z) of fcc, compute w ∈ QE(G)
+ such that mc(G,w) ≤ 1 and fcc(G, z) = wTz.

In particular, [23, Section 7] proves intractability of computing the fractional chromatic number from
intractability of computing the weighted maximum clique problem — a completely analogous situation
to (91).

Our approximation algorithms rely on the fact that we have a tractable positive definite monotone gauge
η◦ which approximates fcc. Theorem 33 implies that gauges which approximate the value of the fractional
cut-covering number “too well” cannot be tractable unless P = NP.

Theorem 33. Let α ∈ (0, 1). Assume that, for every graph G = (V,E), there exists a positive definite
monotone gauge ψG : RE

+ → R+ such that

(92) ψG(z) ≤ fcc(G, z) ≤ 1
α
ψG(z) for every z ∈ RE

+.

Assume a polynomial-time algorithm for either of the following problems:
(1) Given (G, z, σ) as input, output w ∈ QE such that min{ ∥w − w0∥2 : w0 ∈ RE

+, ψ
◦
G(w0) ≤ 1} ≤ σ and

ψG(z) ≤ zTw + σ∥z∥2;
(2) Given (G, z, σ) as input, either

(a) conclude that min{ ∥z − z0∥2 : z0 ∈ RE
+, ψG(z0) ≤ 1} ≤ σ or

(b) output w ∈ QE
+ such that ψ◦

G(w) ≤ wTz + σ∥w∥2.
In both cases, the input is a graph G = (V,E), a vector z ∈ QE

+, and σ ∈ Q+. Then for every β ∈ (0, α),
there exists a polynomial-time algorithm that, given a graph G = (V,E) and w ∈ QE

+ as input, outputs q ∈ Q
such that βq ≤ mc(G,w) ≤ q.

Proof. Let G = (V,E) be a graph. Define K := { z ∈ RE
+ : ψG(z) ≤ 1}, so max{wTz : z ∈ K} = ψ◦

G(w) for
every w ∈ RE

+. Moreover, as abl(K) = {w ∈ RE
+ : ψ◦

G(w) ≤ 1}, we have that max{ zTw : w ∈ abl(K)} =
ψG(z) for every z ∈ RE

+. The weak optimization problem for abl(K) is

(93)
Given z ∈ QE

+ and σ > 0 as input, compute w̄ ∈ QE such that
min{ ∥w̄ − w∥2 : w ∈ abl(K)} ≤ σ, and
max{ zTw : w ∈ abl(K)} ≤ w̄Tz + σ∥z∥2.

Whereas [23] does not multiply σ by ∥z∥2 in the second guarantee, we can easily accomplish so by normalizing
z before using the oracle. The weak separation problem for K is

(94)
Given z̄ ∈ QE

+ and σ > 0 as input, either
conclude that min{ ∥z̄ − z∥2 : z ∈ K} ≤ σ, or
compute w ∈ QE

+ such that max{wTz : z ∈ K} ≤ wTz̄ + σ∥w∥2.

Here we have used that K is lower-comprehensive to assume that w ≥ 0; more precisely, that given any
w ∈ QE produced by the oracle, we can pick its non-negative part w+ ∈ QE

+. Items 1 and 2 correspond,
respectively, to solving the problems (93) and (94) in polynomial time. [23, Theorem 3.1] shows that, if we
can solve (94) in polynomial time, then we can solve the weak optimization problem over K in polynomial
time:

(95)
Given w ∈ QE

+ and σ > 0 as input, compute z̄ ∈ QE such that
min{ ∥z̄ − z∥∞ : z ∈ K} ≤ σ, and
max{wTz : z ∈ K} ≤ wTz̄ + σ∥w∥1.

For convenience, we have changed from the Euclidean norm to ∥ · ∥∞ and ∥ · ∥1, which we can do since
∥ · ∥∞ ≤ ∥ · ∥2 ≤

√
|E| ∥ · ∥1 and the oracle has a running time bounded by a polynomial on log(1/σ). [23,

Corollary 3.5] shows that if we can solve the weak optimization problem over abl(K) in polynomial time, we
can solve the weak optimization problem over K. Hence if we can solve (93), we can also solve (95). Thus we
assume we can solve (95) in polynomial time for every graph G.



PRIMAL-DUAL GOEMANS–WILLIAMSON FOR WEIGHTED FRACTIONAL CUT COVERS 27

From (92) and Propositions 8 and 11 we have that

(96) αψ◦
G(w) ≤ mc(G,w) ≤ ψ◦

G(w) for every w ∈ RE
+.

Let β ∈ (0, α), and set τ := 1− β/α. Set

σ := 1
4α

τ

1− τ .

Let w ∈ QE
+, and let z̄ ∈ QE be the output of the oracle in (95) for input w and σ. Note that we are not

assuming that z̄ ≥ 0. Let z0 ∈ RE
+ be such that ∥z̄ − z0∥∞ ≤ σ and ψG(z0) ≤ 1. Then

mc(G,w) ≤ ψ◦
G(w) by (96)

≤ wTz̄ + σ∥w∥1 by (95), as ψ◦
G(w) = max{wTz : z ∈ K}

≤ wTz0 + wT(z̄ − z0)+ + σ∥w∥1 since w ≥ 0 and z̄ ≤ z0 + (z̄ − z0)+

≤ wTz0 + ∥w∥1∥(z̄ − z0)+∥∞ + σ∥w∥1

≤ wTz0 + ∥w∥1∥z̄ − z0∥∞ + σ∥w∥1

≤ wTz0 + 2σ∥w∥1 since ∥z̄ − z0∥∞ ≤ σ
≤ ψ◦

G(w)ψG(z0) + 2σ∥w∥1 since z0 ≥ 0 as z0 ∈ K
≤ ψ◦

G(w) + 2σ∥w∥1 since ψG(z0) ≤ 1 as z0 ∈ K

≤ 1
α

mc(G,w) + 2σ∥w∥1 by (96)

≤
( 1
α

+ 4σ
)

mc(G,w) since 1
2∥w∥1 ≤ mc(G,w).

Since (
1
α

+ 4σ
)

mc(G,w) = 1
α

(
1 + τ

1− τ

)
mc(G,w) = 1

α(1− τ) mc(G,w) = 1
β

mc(G,w),

we have
mc(G,w) ≤ wTz̄ + σ∥w∥1 ≤

1
β

mc(G,w).

Since q := wTz̄ + σ∥w∥1 is computable from the output of (95), the proof is done. □

Let α ∈ (0, 1). Assume that for every graph G = (V,E), there exists a positive definite monotone gauge
ψG : RE

+ → R+ such that ψG(z) ≤ fcc(G, z) ≤ 1
αψG(z) for every z ∈ RE

+. Theorem 33 provides precise
statements, taking into account the finite arithmetic of Turing machines. Problem (1) in Theorem 33 can
be interpreted as the problem of computing a w ∈ RE

+ paired to the input z ∈ RE
+ via the gauge ψG.

Recalling (52), this is analogous to computing an element in w ∈ wG(z) for a given input z ∈ RE
+. In

particular, solving problem (1) implies that given z ∈ RE
+, one can compute w ∈ RE

+ such that (w, z) is an
α-pairing. Problem (2) in Theorem 33 can be interpreted as deciding if ψG(z) ≤ 1, and when that is not the
case, computing w ∈ RE

+ certifying ψG(z) > 1.

Corollary 34. Let α ∈ ( 16
17 , 1). Let ψG : RE

+ → R+ be a family of positive definite monotone gauges for every
graph G. Further assume that ψG(z) ≤ fcc(G, z) ≤ 1

αψG(z) for every graph G = (V,E) and z ∈ RE
+. Both of

the following problems are NP-hard:
(1) Given (G, z, σ) as input, output w ∈ QE such that min{ ∥w − w0∥2 : w0 ∈ RE

+, ψ
◦
G(w0) ≤ 1} ≤ σ and

ψG(z) ≤ zTw + σ∥z∥2;
(2) Given (G, z, σ) as input, either

(a) conclude that min{ ∥z − z0∥2 : z0 ∈ RE
+, ψG(z0) ≤ 1} ≤ σ or

(b) output w ∈ QE
+ such that ψ◦

G(w) ≤ wTz + σ∥w∥2.
In both cases, the input is a graph G = (V,E), a vector z ∈ QE

+, and σ ∈ Q+.

Proof. By [25, 46], it is NP-hard to compute q ∈ Q such that βq ≤ mc(G,w) ≤ q for every β ∈ ( 16
17 , 1]. The

result follows from Theorem 33. □
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Corollary 35. Let α ∈ (αGW, 1). Let ψG : RE
+ → R+ be a family of positive definite monotone gauges for

every graph G. Further assume that ψG(z) ≤ fcc(G, z) ≤ 1
αψG(z) for every graph G = (V,E) and z ∈ RE

+.
Assuming the Unique Games Conjecture, both of the following problems are NP-hard:

(1) Given (G, z, σ) as input, output w ∈ QE such that min{ ∥w − w0∥2 : w0 ∈ RE
+, ψ

◦
G(w0) ≤ 1} ≤ σ and

ψG(z) ≤ zTw + σ∥z∥2;
(2) Given (G, z, σ) as input, either

(a) conclude that min{ ∥z − z0∥2 : z0 ∈ RE
+, ψG(z0) ≤ 1} ≤ σ or

(b) output w ∈ QE
+ such that ψ◦

G(w) ≤ wTz + σ∥w∥2.
In both cases, the input is a graph G = (V,E), a vector z ∈ QE

+, and σ ∈ Q+.

Proof. By [30, Theorem 1], assuming the Unique Games Conjecture, it is NP-hard to compute q ∈ Q such
that βq ≤ mc(G,w) ≤ q with β ∈ (αGW, 1]. The result follows from Theorem 33. □

5.5. Approximation Factor. The algorithms we presented work in two steps: first they solve an SDP
relaxation, and then they employ a rounding procedure to convert nearly optimal SDP solutions into actual
combinatorial solutions — namely, (the shore of) a cut or a fractional cut cover. Each of these two stages
impacts the approximation factor. Let G = (V,E) be a graph. The integrality ratio of a maximum cut
instance (G,w) (with respect to η) is mc(G,w)/η(G,w). The integrality ratio of a fractional cut-covering
instance (G, z) (with respect to η◦) is η◦(G, z)/ fcc(G, z). In either case, the integrality ratio is a number
between 0 and 1 capturing how well the semidefinite programming relaxation approximates the actual optimal
value of the problem at hand.

Our theory ties the integrality ratios of both problems. Let G = (V,E) be a graph, and let w ∈ RE
+. Then

(97) η◦(G, z)
fcc(G, z) ≤

mc(G,w)
η(G,w) for every z ∈ zG(w).

Indeed, this follows from η(G,w)η◦(G, z) = wTz ≤ mc(G,w) fcc(G, z). In this way, the set zG(w) describes
instances (G, z) of the fractional cut covering problem with the same or worse integrality ratio. This
construction can be made algorithmic via the tools developed in Section 3. If the graph G is edge-transitive,
then one can prove that (1,1) ∈ H(G) and mc(G) fcc(G) = |E| = η(G)η◦(G). In particular, equality holds
in (97), and the cycle C5 on five vertices is a concrete example with bad integrality ratio for both problems, as

0.878 ≈ αGW ≤
η◦(C5)
fcc(C5) = mc(C5)

η(C5) ≈ 0.884,

where unweighted graph parameters are evaluated from their weighted versions with 1 as edge weights. The
integrality ratio can be arbitrarily close to αGW.

Proposition 36. For every ε > 0, there exists a graph G such that for every z ∈ zG(1),

αGW ≤
η◦(G, z)
fcc(G, z) ≤

mc(G)
η(G) ≤ αGW + ε.

Proof. Let ε > 0. Feige and Schechtman [15] prove that there exists a graph G such that
mc(G)
η(G) ≤ αGW + ε.

The result follows from Corollary 2 and (97). □

Proposition 36, despite showing that the approximation factor αGW is tight in our analysis, leaves open
the possibility that strengthening our semidefinite programming relaxations could lead to better results, even
if we keep the same rounding procedure. This is not the case, as there exist graphs in which the relaxation is
tight, but the rounding procedure still produces solutions with approximation factor as bad as αGW. We now
present such an example. Similar to the proof of Proposition 36, our result builds on what is known in the
literature, and it exploits certain simple eigenvalue bounds.

Let G = (V,E) be a graph, and let LG := LG(1) denote the unweighted Laplacian of G. It holds that

(98) η(G) ≤ |V |4 λmax(LG) and η◦(G) ≥ 4|E|
|V |

1
λmax(LG) .
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One may easily produce feasible solutions for (4b) and (26b) that prove (98). The first inequality is a
well-known bound on the maximum cut value, easily obtained from the characterization of eigenvalues in
terms of Rayleigh quotients; see, for example, [20, Lemma 13.7.4]. More generally, it holds that

η(G,w) = min
{

|V |
4 λmax(LG(w) + Diag(u)) : u ∈ RV , uT

1 = 0
}

;

this formulation was introduced in [13]. The second inequality in (98) is used — implicitly — in [41]. Let
a, b ∈ N be such that b ≤ a. Let Ham(a, b) denote the Hamming distance graph, which has as vertex set
{0, 1}a, with two vertices adjacent if they differ in at least b entries. We denote by Ham=(a, b) the exact
Hamming distance graph, which is the spanning subgraph of Ham(a, b) where two vertices are adjacent when
they differ in exactly b entries. It is known [2, 41] that

(99) if b ≤ a < 2b and b is even, then λmin
(
A(Ham=(a, b))

)
=
(
a

b

)(
1− 2b

a

)
,

where AG ∈ SV denotes the adjacency matrix of a graph G = (V,E). The interest on the smallest eigenvalue
of the adjacency matrix in both works [2, 41] stems directly from (98): since G := Ham=(a, b) is

(
a
b

)
-regular,

it follows that λmax(LG) =
(

a
b

)
− λmin(AG).

Proposition 37. For every real number β > αGW there exists a graph G = (V,E), as well as witnesses (ρ, x)
and (µ, Y ) of the membership (1,1) ∈ H(G), satisfying the following conditions. One has that η(G) = mc(G)
and η◦(G) = fcc(G). Furthermore,
(100) E

(
|δ(GW(Y ))|

)
< βmc(G) and 1

β fcc(G) < 1
Ty,

where y ∈ RP(V )
+ is defined as in (85).

Proof. By (6), there exists a rational number ζ ∈ (−1, 0) such that

(101) αGW ≤
2

1− ζ
arccos(ζ)

π
< β.

Let a ∈ N be such that b := (1− ζ) a
2 is an even natural number, so that

ζ = 1− 2b/a.
We now prove the statement holds for G := Ham=(a, b).

Let U ∈ R[a]×V (G) be defined by Ues := 2s− 1 ∈ R[a] for every s ∈ V (G) = {0, 1}[a]. We claim that
(102) (ρ, x) := ( b

a |E|,
1
2
(

a−1
b−1
)
1) and (µ, Y ) := ( a

b ,
1
bU

TU) witness the membership (1,1) ∈ H(G).

Feasibility of ( a
b ,

1
bU

TU) in (11) with z := 1 follows directly from the definition of U and G, since
(103) Yij = a

b ζ for every ij ∈ E,

whereas feasibility of (ρ, x) in (4b) with w := 1 follows from (99), since LG =
(

a
b

)
I −AG as G is

(
a
b

)
-regular.

It is immediate that ρµ = |E|. Thus, (102) is proved. We claim that
(104) (1,1) is an exact pairing.
Note that, in particular, (104) ensures that η(G) = mc(G) and η◦(G) = fcc(G). For every i ∈ [a], set
Si := { s ∈ {0, 1}a : si = 1}. One may easily check that |δ(Si)| =

(
a−1
b−1
)
2a−1 for every i ∈ [a]. By (102)

and (5), all such cuts are maximum, since

η(G) = b

a
|E| = b

a

(
a

b

)
2a−1 =

(
a− 1
b− 1

)
2a−1 = |δ(Si)| ≤ mc(G) ≤ η(G).

Now consider the fractional cut cover ȳ := 1
b

∑
i∈[a] eSi

. By definition of Ham=(a, b), each edge belongs to
b of the cuts in { δ(Si) : i ∈ [a]}, so

∑
S⊆V ȳS1δ(S) = 1. Hence (102) and (13) imply that ȳ is an optimal

fractional cut cover, as
a

b
= η◦(G) ≤ fcc(G) ≤ 1

Tȳ = a

b
.

This concludes the proof of (104). By (15), (103), and linearity of expectation,

E
(
|δ(GW(Y ))|

)
=
∑
ij∈E

P(ij ∈ δ(GW(Y ))) = arccos(ζ)
π

|E|.
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Let y, p ∈ RP(V )
+ and ν̄ ∈ R+ be defined from (µ, Y ) as in (85). Then for every ij ∈ E,

eT
ij

( ∑
S⊆V

pS1δ(S)

)
= P(ij ∈ δ(GW(Y ))) = arccos(ζ)

π

by (15). Hence ν̄ = π/ arccos(ζ). Since a/b = 2/(1− ζ), we have that
E
(
|δ(GW(Y ))|

)
mc(G) = 2

1− ζ
arccos(ζ)

π
= fcc(G)

1Ty
,

and this number is < β by (101). □

Karloff [28] studied a family of graphs closely related to the one featured in the proof of Proposition 37, using
it to bound the quality of the approximation factor obtained by Goemans and Williamson [21]. The specific
construction in our proof is a simplification of this work due to Alon and Sudakov [2]. The relevance of
Proposition 37 to our algorithms inherits several aspects of the relevance of these examples to the maximum
cut setting. Let β be a real number such that β > αGW. Proposition 37 presents an obstruction for the use of
the randomized hyperplane technique to produce β-certificates. Let G = (V,E) be a graph whose existence is
ensured by the proposition. Then G defines instances where the SDP relaxations (4a) and (11) are tight — i.e.,
the integrality ratio is one —, but where the rounding itself can be responsible for the approximation factor
αGW of the final algorithm. The first inequality in (100) states that the expected value of a cut produced
by the random hyperplane technique will be too small for the desired approximation factor β. The second
inequality in (100) does not directly translate to the setting of our algorithm, which takes finitely many
samples and outputs a surrogate for the y ∈ RP(V )

+ defined in (85). Proposition 37 and (88) do imply that,
almost surely, the objective value µt/t obtained from (87) deteriorates above 1

β fcc(G) for sufficiently large
values of t ∈ N. Note, however, that similar to how (100) allows for a finite number of samples to define a
fractional cut cover with objective value better than 1

β fcc(G), it also allows for a single cut to have objective
value better than βmc(G).

Let G = (V,E) be a graph and let w ∈ RE
+. Propositions 36 and 37 describe limitations of the approach

we chose for producing approximation algorithms for the maximum cut and fractional cut-covering problems.
The Unique Games Conjecture [30] implies that it is NP-hard to compute, given an instance (G,w) of the
maximum cut problem as input, an upper bound to mc(G,w) with a better approximation guarantee than (5).
Recall from Corollary 35 that this conjectured optimality extends to the SDP in (11) and the fractional
cut-covering problem: obtaining any better approximation factor on the objective value for Algorithm 1
would disprove the conjecture. It is the case, however, that even under UGC, our developments leave open
the possibility of an approximation algorithm for the fractional cut-covering problem which is not based on a
positive definite monotone gauge. Although the reader could see this as an invitation to develop non-convex
approximation algorithms for the weighted fractional cut-covering problem, this could also simply hint at the
existence of a (not yet developed) direct reduction from the Unique Label Cover problem to the fractional
cut-covering problem.

6. Concluding Remarks

We summarize the main contributions of this paper and discuss future directions. Key to our contributions
is precisely describing the relationship between the (weighted) maximum cut and the weighted fractional
cut-covering problems through the lens of gauge duality: the functions mc(G, ·) and fcc(G, ·) form a gauge dual
pair. Crucially, the SDP relaxation for the maximum cut problem, utilized by Goemans and Williamson [21],
and the SDP relaxation we provided for the fractional cut-covering problem share the same property: η(G, ·)
and η◦(G, ·) form a gauge dual pair (see Proposition 8). This explicit connection establishes the background
and foundation for the development of our algorithms. Gauge duality promptly yields a bound conversion
procedure, enabling us to extend the αGW approximation ratio between mc(G, ·) and η(G, ·) to a 1/αGW

approximation ratio between fcc(G, ·) and η◦(G, ·) (see Proposition 11).
The understanding of this connection organizes our efforts in algorithmic design:

(i) Optimal solutions Y ∈ SV
+ of the SDP relaxation (4a) for maximum cut are employed in [21] to sample

(the shore of) a cut by the randomized hyperplane technique, with Y as the generating parameter. We
extend this technique to the fractional cut-covering problem in two stages: initially by showing that
the marginal probabilities for the shores provide a fractional cut cover with the same approximation
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quality, and subsequently by sparsifying our cover through a polynomial-time randomized procedure
(see Propositions 1 and 4 and Theorem 6).

(ii) We address the problem of simultaneously obtaining approximate solutions for the maximum cut
and the weighted fractional cut-covering problems with certificates of approximate optimality. This
inspires our definition of the set H(G), which precisely links tightness of wTz ≤ η(G,w)η◦(G, z) in
gauge duality with the optimality of solutions for the SDP relaxations. This directly motivates the
definition of β-pairings and β-certificates, which are essential to our simultaneous certification process
(see Proposition 16, and Theorems 19 and 20).

(iii) Given the strong algorithmic focus of our work, it is crucial to deal with the fact that exact optimal
solutions for SDPs may not be computable in polynomial time. We combine the strategies from the
previous items: in Section 3.4, we introduce the set Hε,σ(G), which is a perturbed version of H(G),
and then develop a randomized approximation algorithm which requires only nearly optimal solutions
for the SDPs.

(iv) When run on a connected graph with n vertices and m edges, our algorithms rely on obtaining a
nearly optimal solution Y to an instance of the relevant SDP problems, which can be done in O(m4)
time, followed by the rounding procedure on Y , which involves a single n× n Cholesky factorization,
O(n ln(n)) samples from a standard Gaussian distributions, and O(n2 ln(n)) extra work.

(v) Section 5 addresses many aspects of our approach that are optimal. Many of them are mirror images
under gauge duality of corresponding properties for the Goemans and Williamson’s algorithm for
maximum cut (see Proposition 37).

Throughout our work we have assumed the real-number machine model [9] with two extra oracles: one
sampling from a standard normal distribution, and one computing Cholesky factorizations. This second
assumption is equivalent to assuming exact computation of square roots of real positive numbers. Despite these
assumptions, our results build towards an implementation in the Turing machine model. Explicitly, the Slater
points for (59) used in Appendix C may allow one to utilize the work of de Klerk and Vallentin [12] to conclude
that both ηε and η◦

ε may be computed in polynomial time on a Turing machine. Proposition 24 identifies
the main computational steps required to round these optimal solutions, and it may be extended to the
probabilistic Turing machine model with an appropriate analysis of approximate square root computations.

The interplay of duality with probabilistic aspects that permeates this work suggests interesting avenues
for future research. Note that, essential to our approach, Goemans and Williamson’s randomized hyperplane
technique casts an optimal solution Y for (4a) as a distribution of cuts. This enables edges that do not occur
in any heavy cut to be probably covered after appropriate thickening. The SDP perturbation (59b) makes
this even more robust, since for any feasible solution (µ, Y ), sampling from GW(Y ) covers every edge with
probability at least

√
2ε/π (by (63)) and Y has full rank. The analysis in [21] for maximum cut relies on

expected values, whereas for fractional cut covers we rely on concentration inequalities (see Propositions 4
and 22). In this respect, it would be interesting to find a gauge dual analogue of the analysis in [21, Sec. 3.1],
which improves the approximation factor αGW when the maximum cut is large. A similar question can be
made about a gauge dual analogue of low-rank SDP solutions with improved approximation factors, as in [5].
One may also ask whether the techniques from [35] can be applied to derandomize our algorithms.

Further natural research directions include the use of duality in close relatives of the maximum cut
problem, such as maximum bisection problem (see, e.g., [4, 40]) and Nesterov’s generalization to quadratic
optimization problems [38]. While this paper was under review, there has been a very significant advance in
this research direction: [8] presents a generalized framework containing, among other problems, both [38]
and all Boolean constraint satisfaction problems whose constraints contain at most two variables (Boolean
2-CSPs). Beyond the maximum cut and fractional cut-covering problems, it is natural to search for and
study other pairs of combinatorial optimization problems that are linked by gauge duality. For example, the
literature has both time-honored [22] and more recent [7] publications leveraging the fact that the stability
number and the fractional chromatic number of a graph define gauges dual to each other. Specially in cases
where an approximation algorithm rounds a solution to a convex relaxation of a combinatorial problem, the
(gauge) dual combinatorial problem may be approximated utilizing the ideas within this work. On a broader
note, it seems interesting to look for further pair of problems which can be “simultaneously approximated”.
Definition 13 provides a convenient formalization of simultaneous approximation for this work, but even within
the maximum cut and fractional cut-covering context there are potentially sensible alternative definitions, as
mentioned in Remark 14.
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Appendix A. Edges with Arbitrarily Small Probability of being Covered

Proposition 38. Let ε ∈ (0, 2). Set G := K3, set β := 4/(4− ε)2, and set

w := (2− ε)β(e12 + e13) + βe23 ∈ RE(G)
+ ,(105a)

z := e12 + e13 + εe23 ∈ RE(G)
+ .(105b)

Then

(106) (1, x̄) and (µ̄, Ȳ ) witness the membership (w, z) ∈ H(G),

where

x̄ := 1
4− ε ((2− ε)e1 + e2 + e3), µ̄ := 4

4− ε , and Ȳ := µ̄

 1 ε/2− 1 ε/2− 1
ε/2− 1 1 1− 2ε+ ε2/2
ε/2− 1 1− 2ε+ ε2/2 1

 .
In particular, (µ̄, Ȳ ) is an optimal solution for the SDP (11).

Proof. It is immediate that diag(Ȳ ) = µ̄1. The direct computation

(4− ε)
4 Ȳ =

 1
ε/2− 1
ε/2− 1

 [1 ε/2− 1 ε/2− 1
]

+ (ε− ε2/4)

 0
1
−1

 [0 1 −1
]

shows that Ȳ ∈ SV
+. Moreover, from (12) we get that( 1

4L
∗
G(Ȳ )

)
13 =

( 1
4L

∗
G(Ȳ )

)
12 = 2

4− ε −
ε− 2
4− ε = 1 = z12 = z13.

Furthermore, ( 1
4L

∗
G(Ȳ )

)
23 = 2

4− ε −
2(1− 2ε+ ε2/2)

4− ε = 4ε− ε2

4− ε = ε = z23.

Thus, (µ̄, Ȳ ) is feasible in (11) for (G, z). Set u := (2− ε)e1 + e2 + e3. Moreover,
1
4LG(w) = 1

4 (2− ε)βLG(e12 + e13) + 1
4βLG(e23) by (105a)

= 1
4β

(
(2− ε)

 2 −1 −1
−1 1 0
−1 0 1

+

0 0 0
0 1 −1
0 −1 1

)

= 1
4β

4− 2ε ε− 2 ε− 2
ε− 2 3− ε −1
ε− 2 −1 3− ε


= 1

4β

(
(4− ε)

2− ε 0 0
0 1 0
0 0 1

−
(2− ε)2 2− ε 2− ε

2− ε 1 1
2− ε 1 1

)
= 1

4β
(
(4− ε) Diag(u)− uuT) by the definition of u

⪯ 1
4β(4− ε) Diag(u)

= Diag(x̄) since 4x̄ = β(4− ε)u.

Thus (1, x̄) is feasible in (4b) for (G,w) as 1Tx̄ = 1. Since

wTz = 2(2− ε)β + εβ = β(4− ε) = 4
4− ε = µ̄,

we obtain (106) from (48). Note that since (1, x̄) is feasible in (4b), then (w, x̄) is feasible in (26b). Since (11)
and (26b) form a primal-dual pair of SDPs, µ̄ = wTz implies optimality of (µ̄, Ȳ ) in (11). □
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Appendix B. SDP Solutions Defining Fractional Cut Covers with Exponential Support

Theorem 39 below presents a rigorous statement and proof regarding (86), i.e., about the exponential
support of a fractional cut cover derived from Proposition 1.

Theorem 39. Let n ≥ 3 be an integer. Set (V,E) := Kn and Ȳ := 2I − 2
n11

T ∈ SV . For every i ∈ [n], let
gi be independently sampled from the standard normal distribution, and set h := ∥g∥−1g. Then, for each
nonempty S ⊊ V ,

P
(
GW(Ȳ , h) = S

)
> 0.

Proof. Let S ⊊ V be nonempty. Set

β := min
{

2n− |S| − 1
|S| − 1 ,

n+ |S| − 1
n− |S| − 1

}
∈ R,

where we consider 1/0 to be +∞. It is straightforward to check that β > 1. For each v ∈ V , let Av be the
event that 1 < gv < β and let Bv be the event that −β < gv < −1. Since gv is sampled from the standard
normal distribution, we have that P(Av) = P(Bv) =: p is a positive constant depending only on β.

Set
D :=

(⋂
s∈S

As

)
∩
( ⋂

t∈V \S

Bt

)
.

Note that, by the independence of (gv)v∈V , we have that P(D) = pn > 0. We complete the proof by showing
that D implies that
(107) GW(Ȳ , h) = S.

We will use the fact that the sampled shore is
GW(Ȳ , h) = { i ∈ V : eT

i Ȳ
1/2h ≥ 0} = { i ∈ V : eT

i (I − 1
n11

T)h ≥ 0}

=
{
i ∈ V : hi ≥

1
Th

n

}
=
{
i ∈ V : gi ≥

1
Tg

n

}
=
{
i ∈ V : (n− 1)gi ≥

∑
v∈V \{i}

gv

}
.

(108)

Assume that D holds. We first prove ‘⊇’ in (107). Let s ∈ S. Then
1

n− 1
∑

v∈V \{s}

gv = 1
n− 1

( ∑
s′∈S\{s}

gs′ +
∑

t∈V \S

gt

)
<

1
n− 1 (β(|S| − 1)− (n− |S|)) ≤ 1 < gs,

since our choice of β ensures that β(|S| − 1) ≤ 2n− |S| − 1. Hence, s ∈ GW(Ȳ , h) by (108).
We now prove ‘⊆’ in (107). Let t ∈ V \ S. Then

1
n− 1

∑
v∈V \{t}

gv = 1
n− 1

( ∑
t′∈V \(S∪{t})

gt′ +
∑
s∈S

gs

)
>

1
n− 1 (−β(n− |S| − 1) + |S|) ≥ −1 > gt,

since our choice of β ensures that β(n− |S| − 1) ≤ n+ |S| − 1. Thus, t /∈ GW(Ȳ , h) by (108). □

Appendix C. SDP Solvers

In this section, we analyze the running time of an interior-point method (IPM) to solve the SDP (59b) to
near optimality:
(59b) η◦

ε (G, z) = min{µ : µ ∈ R+, Y ∈ SV , Y ⪰ µεI, 1
4L

∗
G(Y ) ≥ z, diag(Y ) = µ1}.

Algorithms 1 and 4 in Theorems 6 and 26, resp., rely on obtaining such nearly optimal solutions for (59b),
where the parameter ε lies in [0, 1).

For the purposes of stating the running time of IPMs, we will consider an arbitrary primal SDP in the
format

Minimize ⟨c, x⟩(109a)
subject to A(x) ⪰L∗ b,(109b)

x ∈ K,(109c)
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and its (syntactically symmetric) dual,

Maximize ⟨b, y⟩(110a)
subject to y ∈ L,(110b)

A∗(y) ⪯K∗ c,(110c)

where

K := Sn1
+ ⊕ Rn2

+ ⊕ Rn3 ⊆ Sn1 ⊕ Rn2 ⊕ Rn3 =: X(111a)
and

L := Sm1
+ ⊕ Rm2

+ ⊕ Rm3 ⊆ Sm1 ⊕ Rm2 ⊕ Rm3=: Y(111b)

for some integers n1, n2, n3,m1,m2,m3 ∈ N, the map A : X→ Y is linear, b ∈ Y, and c ∈ X. Here, the dual
cone of a cone C in Euclidean space E is C∗ := { y ∈ E : ∀x ∈ C, ⟨y, x⟩ ≥ 0}, and each of the notations a ⪰C b
and b ⪯C a, with a, b ∈ E, means that a− b ∈ C.

Note that (109c) and (111a) allow for variables composed of positive semidefinite matrices, nonnegative
vectors, and free scalar variables. Similarly, (109b) and (111b) enables one to require affine functions of the
variables to be positive semidefinite, nonnegative, or equal to zero. As an example, the SDP (59b) can be
cast in the format (109) by setting

K := S0
+ ⊕ R1

+ ⊕ SV , L := SV
+ ⊕ RE

+ ⊕ RV ,

A : µ⊕ Y ∈ R1 ⊕ SV 7→ (Y − µεI)⊕
( 1

4L
∗
G(Y )

)
⊕
(
µ1− diag(Y )

)
,

b := 0⊕ z ⊕ 0, c := 1⊕ 0.

Some IPMs proceed by producing a sequence of iterates tracking the so-called central path. We will encode
the procedure that updates an iterate to the next one by a function Ξ, so that from an iterate (xt, yt) of
primal-dual solutions, the next iterate will be Ξ(xt, yt) =: (xt+1, yt+1).

The number of iterations of IPMs so that the duality gap for a pair of solutions (xt, yt) is a δ-fraction of
the inital duality gap can be bounded by a function ψ on the initial Slater points (x0, y0) := (̊x, ẙ). Set

(112) N := n1 + n2 +m1 +m2.

For each pair (x, y) of primal-dual feasible solutions, where

x =: X1 ⊕ x2 ⊕ x3 ∈ X,
y =: Y1 ⊕ y2 ⊕ y3 ∈ Y,

and with corresponding slacks
A(x)− b =: U1 ⊕ u2 ⊕ u3 ∈ Y,
c−A∗(y) =: V1 ⊕ v2 ⊕ v3 ∈ X,

define

(113) ψ(x, y) := N ln
(

1
N

〈
X1 ⊕ x2 ⊕ Y1 ⊕ y2, V1 ⊕ v2 ⊕ U1 ⊕ u2

〉)
− ln

(
det(X1) det(V1) det(Y1) det(U1)

(∏
x2

)(∏
v2

)(∏
y2

)(∏
u2

))
,

where, for each vector a, we denote
∏
a := det(Diag(a)). The function ψ takes into account two important

factors that affect the number of required iterations: the first term in the RHS of (113) depends on the initial
duality gap

〈
X1 ⊕ x2 ⊕ Y1 ⊕ y2, V1 ⊕ v2 ⊕ U1 ⊕ u2

〉
, whereas the second term is related to the centrality of

the initial Slater point. Indeed, it is intuitive that in IPMs, a good initial point should have a reasonably
good duality gap and at the same time not being too close to the boundary of the feasible region.

The next result is adapted from [47, Theorem 4.5] for our format of SDPs:

Theorem 40. Let δ ∈ (0, 1) and let (x0, y0) be a primal-dual pair of feasible solutions for (109) and (110),
respectively, such that

ψ(x0, y0) ≤
√
N ln (1/δ) ,
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where N is defined as in (112) and ψ as in (113). Define the sequence (xt, yt)∞
t=0 by (xt+1, yt+1) := Ξ(xt, yt)

for each t ∈ N. Define the sequence (ut, vt)∞
t=0 by ut := A(xt)− b and vt := c−A∗(yt) for each t ∈ N. Then

⟨xt ⊕ ut, vt ⊕ yt⟩ ≤ δ⟨x0 ⊕ u0, v0 ⊕ y0⟩ for each t ≥ t̄ := 24
√
N ln(1/δ).

Proposition 41. Let σ ∈ (0, 2/3). There exists a polynomial-time algorithm that, given a graph G = (V,E)
with n vertices and m edges, a nonzero vector z ∈ RE

+, and a number ε ∈ [0, 1/3], computes feasible solutions
(w∗, x∗) for (59a) and (µ∗, Y ∗) for (59b) such that µ∗ ≤ zTw∗ + σ∥z∥∞. The algorithm consists of applying
an interior-point method for T := 24(n+m+ 1) ln(8/σ) iterations; each iteration encoding one application of
the function Ξ can be made to run in time O((n+m)3).

Remark 42. Note that, since σ is constant, the SDPs (59) can be nearly solved (in the sense of the σ∥z∥∞
additive error) in strongly polynomial time.

Proof of Proposition 41. First we write (59b) and its dual. We scale the cost function of (59b) by N :=
n+m+ 1, and we normalize the edge weights by setting z̄ := z/∥z∥∞:

(P) inf Nµ

subject to Y − µεI ⪰ 0,
1
4L

∗
G(Y ) ≥ z̄,

−diag(Y ) + µ1 = 0,
Y ∈ SV ,

µ ∈ R+,

(D) sup z̄Tw

subject to S ∈ SV
+,

w ∈ RE
+,

x ∈ RV ,

S + 1
4LG(w)−Diag(x) = 0,

1
Tx− εTr(S) ≤ N.

Set

µ̊ := 4, Y̊ := 4I,

ẘ := 1, x̊ := 1
2 degG +1, S̊ := I + 1

4DG + 1
4AG,

where degG : V → N is the degree function of G and DG := Diag(degG). It is straightforward to check that
Y̊ ⊕ µ̊ and S̊ ⊕ ẘ ⊕ x̊ are Slater points for (P) and (D), resp., with corresponding slacks

Ů := Y̊ − µ̊εI = 4(1− ε)I,

ů := 1
4L

∗
G(Y̊ )− z̄ = 21− z̄,

ν̊ := N − 1Tx̊+ εTr(S̊) = 1 + ε
2m+ εn.

The duality gap between Y̊ ⊕ µ̊ and S̊ ⊕ ẘ ⊕ x̊ is

µ̊ν̊ + ⟨Ů , S̊⟩+ ůTẘ = 4(1 + ε
2m+ εn) + 4(1− ε) Tr(I + 1

4DG + 1
4AG) + 21T

1− 1Tz̄

≤ 4(1 + ε
2m+ εn) + 4n+ 4m ≤ 4(1 +m/2 + n) + 4n+ 4m

≤ 8(1 +m+ n) = 8N.
(114)

We will now compute an upper bound for the value of the function ψ at Y̊ ⊕ µ̊ and S̊ ⊕ ẘ ⊕ x̊. Since we
already computed an upper bound for the duality gap in (114), we will now lower bound the determinants:

µ̊ · det(Ů) ·
(∏

ů
)
· ν̊ · det(S̊) ·

(∏
ẘ
)

= 4 · det
(
4(1− ε)I

)
·
∏

(21− z̄) · (1 + ε
2m+ εn) · det

(
I + 1

4DG + 1
4AG

)
·
∏

1

≥ 4 det
(
4(1− ε)I

)
det(I) ≥ 4n(1− ε)n,

where in the first inequality we used that ∥z̄∥∞ = 1 and I + 1
4DG + 1

4AG ⪰ I. Thus,

ψ(µ̊⊕ Y̊ , S̊ ⊕ ẘ ⊕ x̊) ≤ N ln
( 1
N

(8N)
)
− ln(4n(1− ε)n) ≤ N ln(8).

Set δ := (σ/8)
√

N ≤ min
{
σ/8, 8−

√
N
}

. By Theorem 40, after 24
√
N ln(1/δ) = O(N) iterations of Ξ, the duality

gap is at most 8δN ≤ σN . That is, we obtain Ỹ ⊕ µ̃ and S̃ ⊕ w̃ ⊕ x̃, feasible for (P) and (D), resp., such
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that Nµ̃ ≤ z̄Tw̃ +Nσ. Hence, (µ∗, Y ∗) :=
(
∥z∥∞µ̃, ∥z∥∞Ỹ

)
is feasible for (59b) and (w∗, x∗) :=

( 1
N w̃,

1
N x̃
)

is feasible for (59a), and their objective values satisfy

µ∗ = ∥z∥∞µ̃ ≤ ∥z∥∞
z̄Tw̃

N
+ σ∥z∥∞ = zTw∗ + σ∥z∥∞. □
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