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Abstract. We provide a primal-dual framework for randomized approximation algorithms utilizing
semidefinite programming (SDP) relaxations. Our framework pairs a continuum of APX-complete
problems including MaxCut, Max2Sat, MaxDicut, and more generally, Max-Boolean Constraint Sat-
isfaction and MaxQ (maximization of a positive semidefinite quadratic form over the hypercube) with
new APX-complete problems which are stated as convex optimization problems with exponentially
many variables. These new dual counterparts, based on what we call Grothendieck covers, range
from fractional cut covering problems (for MaxCut) to tensor sign covering problems (for MaxQ).
For each of these problem pairs, our framework transforms the randomized approximation algorithms
with the best known approximation factors for the primal problems to randomized approximation
algorithms for their dual counterparts with reciprocal approximation factors which are tight with
respect to the Unique Games Conjecture. For each APX-complete pair, our algorithms solve a single
SDP relaxation and generate feasible solutions for both problems which also provide approximate
optimality certificates for each other. Our work utilizes techniques from areas of randomized
approximation algorithms, convex optimization, spectral sparsification, as well as Chernoff-type
concentration results for random matrices.
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1. Introduction

Some of the most impressive successes for randomized approximation algorithms, utilizing semidef-
inite programming relaxations, have been on problems such as MaxCut [GW95], Max2Sat [LLZ02],
and MaxDicut [Bra+23]. We define APX-complete duals for such problems, which involve what
we call Grothendieck covers. Then, we design a primal-dual framework of randomized approxima-
tion algorithms for a wide range of problems, including maximum Boolean constraint satisfaction
problems (CSPs) paired with their APX-complete duals, which we call Boolean CSP covering
problems. Our focus is on 2-CSPs, where each constraint has at most 2 literals; this includes the
MaxCut, the Max2Sat, and the MaxDicut problems. For each of these APX-complete problems,
our framework transforms the randomized approximation algorithms for the primal problem to
randomized approximation algorithms for their (also APX-complete) duals while preserving the
approximation factor. In particular, it allows us to recover the same best known approximation
factors for the new problems. For example, we provide a randomized (1/0.874)-approximation
algorithm for weighted fractional dicut covers. Although the new problems have exponentially
many variables, the covers produced have small support and their approximation quality relies on
symmetric Grothendieck inequalities; see [FL20]. Our algorithms and analyses utilize Chernoff-type
concentration results and spectral sparsification.

We further describe how each APX-complete instance can be paired with a dual APX-complete
instance by solving a single semidefinite program, unlike in usual scenarios where the dual is built
syntactically from the primal. The SDP solutions yield, via a randomized sampling algorithm, primal
and dual feasible solutions along with a simultaneous certificate of the approximation quality of
both solutions. Note that such a certificate has two primal-dual pairs involved: one pair intractable,
and the other pair tractable. E.g., (i) MaxDicut and weighted fractional dicut cover, (ii) the SDP
relaxation of MaxDicut and its SDP dual.

Let D = (V,A) be a digraph. For each U ⊆ V , define δout(U) as the set of arcs leaving U . A dicut
is the set δout(U) for some U ⊆ V . For arc weights w ∈ RA

+, the maximum dicut number of (D,w) is

md(D,w) := max{wT
1δout(U) : U ∈ P(V )},

where 1δout(U) ∈ {0, 1}A is the incidence vector of δout(U) and P(V ) denotes the power set of V .
The vector of all-ones is 1. The dual problem we consider is fractionally covering the arcs by dicuts:
for arc weights z ∈ RA

+, the fractional dicut-covering number of (D, z) is

fdc(D, z) := min
{
1

Ty : y ∈ RP(V )
+ ,

∑
U⊆V

yU1δout(U) ≥ z

}
.

[Bra+23] obtained a randomized αBHPZ-approximation for the maximum dicut problem, where
αBHPZ ≈ 0.87446. Our framework yields the following result.

Theorem 1 (Fractional Dicut Covering Theorem). Fix β ∈ (0, αBHPZ). There is a randomized
polynomial-time algorithm that, given a digraph D = (V,A) and z ∈ RA

+, computes w ∈ RA
+ and

returns U ⊆ V and y ∈ RP(V )
+ with support size |supp(y)| = O(log|V |) such that

∑
S⊆V yS1δout(S) ≥

z holds with high probability (w.h.p.),

1
Ty ≤ 1

β fdc(D, z), and wT
1δout(U) ≥ βmd(D,w).

Moreover, our algorithm returns a simultaneous certificate that each of U and y is within a factor
of β of the respective optimal value.

Remark 2 (Primal-Dual Symmetry). Our results also allow one to start from an instance (D,w)
of the primal problem (i.e., MaxDicut) and the algorithm computes a dual instance (D, z) of the
fractional dicut-covering problem, along with β-approximate solutions for both and a simultaneous
certificate. Analogous claims also apply to Theorems 3 and 4.
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Let (C , w) be an instance of the maximum 2-satisfiability problem, i.e., C is a set of disjunctive
2-clauses on two variables from x1, . . . , xn, and w ∈ RC

+ is a nonnegative weight vector. Thus, each
element of C has the form xi ∨ xj , xi ∨ xj , or xi ∨ xj . Let A := {false, true}n be the set of all
possible assignments for (x1, . . . , xn). For an assignment a ∈ A , define valC (a) ∈ {0, 1}C as the
binary vector indexed by C such that (valC (a))C = 1 if C is satisfied by a, and 0 otherwise. The
goal is to find an assignment a ∈ A that maximizes the inner product ⟨w, valC (a)⟩. Denote

max2sat(C , w) := max{ ⟨w, valC (a)⟩ : a ∈ A }.
The dual problem we consider is fractionally covering the clauses by assignments: for weights z ∈ RC

+,
the fractional 2-sat covering number of (C , z) is

frac-2sat-cover(C , z) := min
{
1

Ty : y ∈ RA
+ ,

∑
a∈A

ya valC (a) ≥ z

}
.

[LLZ02] provide a randomized αLLZ-approximation algorithm for Max2Sat, where αLLZ ≈ 0.9401.
Our framework yields the following result.

Theorem 3 (Fractional 2-Sat Covering Theorem). Fix β ∈ (0, αLLZ). There is a randomized
polynomial-time algorithm that, given a set C of disjunctive 2-clauses on n variables and z ∈ RC

+,
computes w ∈ RC

+ and returns an assignment a ∈ A and y ∈ RA
+ with |supp(y)| = O(logn) such

that
∑

a∈A ya valC (a) ≥ z holds w.h.p.,

1
Ty ≤ 1

β frac-2sat-cover(C , z), and ⟨w, valC (a)⟩ ≥ βmax2sat(C , w).

Moreover, our algorithm returns a simultaneous certificate that each of a and y is within a factor
of β of the respective optimal value.

Our results are general enough to include all forms of Boolean 2-CSPs. A Boolean 2-CSP is a
CSP where the variables x1, . . . , xn take on Boolean values (i.e., true or false) and each constraint
involves only two variables. Formally, we specify a Boolean constraint satisfaction problem using a set
P of binary predicate templates, i.e., functions from {false, true}2 to {false, true}. We assume
throughout that the constant false function is not in P. Let (C , w) be an instance of the (Boolean)
maximum 2-CSP problem, i.e., each element of C is a function that sends x ∈ {false, true}n to
f(xi, xj) for some f ∈ P and i, j ∈ [n] := {1, . . . , n}, and w ∈ RC

+. We refer to an element of C as a
P-constraint or just as a constraint. The maximum P-satisfiability number of (C , w) is

max-P-sat(C , w) := max{ ⟨w, valC (a)⟩ : a ∈ A }.
The dual problem is: for every z ∈ RC

+, the fractional P-constraint covering number of (C , z) is

frac-P-cover(C , z) := min
{
1

Ty : y ∈ RA
+ ,

∑
a∈A

ya valC (a) ≥ z

}
.

By choosing distinct sets P one can formulate various interesting problems. By setting P := {x1∨x2},
we recover the MaxDicut problem via max-P-sat and the fractional dicut-covering problem via
frac-P-cover. Our Max2Sat results are recovered with P := {x1 ∨ x2, x1 ∨ x2, x1 ∨ x2}. Using these
choices, Theorems 1 and 3 are special cases a more general result from our framework, which we
state next. The approximation factor αΞ that appears in the statement will be defined shortly
in (4); a self-contained version of the result will be stated later as Theorem 17.

Theorem 4 (Fractional P-Covering Theorem). Let P be a set of predicates in two Boolean
variables. Fix β ∈ (0, αΞ). There is a randomized polynomial-time algorithm that, given a set C of
P-constraints on n variables and z ∈ RC

+, computes w ∈ RC
+ and returns an assignment a ∈ A and

y ∈ RA
+ with |supp(y)| = O(logn) such that

∑
a∈A ya valC (a) ≥ z holds w.h.p.,

1
Ty ≤ 1

β frac-P-cover(C , z), and ⟨w, valC (a)⟩ ≥ βmax-P-sat(C , w).
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Moreover, our algorithm returns a simultaneous certificate that each of a and y is within a factor
of β of the respective optimal value.

Our framework builds on works by Goemans and Williamson [GW95], Grothendieck [Gro53],
and Nesterov [Nes98], involving approximation results. [GW95; Nes98] both tackle the problem of
solving max{ sT

UWsU : U ∈ P(V )}, where the V × V matrix W belongs to the positive semidefinite
cone SV

+ and sU := 21U − 1 ∈ {±1}V is the signed incidence vector of U ⊆ V . We introduce
a parameterization for both the domain cone of matrices W and the allowed subsets U of V .
Throughout V denotes a finite set and let D,K ⊆ SV be closed convex cones, where SV is the
space of symmetric V -by-V matrices. Let F(D) := {U ⊆ V : sUs

T
U ∈ D} encode the feasible/allowed

subsets of V . Our primal problem involves maximization of a quadratic form:
(1) maxqD,K(W ) := max{ sT

UWsU : U ∈ F(D)}, for every W ∈ K.
Let aff(K) denote the smallest affine space containing K. For each Z in the dual cone K∗ :=
{X ∈ aff(K) : ⟨X,Y ⟩ ≥ 0 for each Y ∈ K} (where we use the trace inner product), a vector y ∈
RF(D)

+ is a tensor sign cover for Z if
∑

U∈F(D) yUsUs
T
U ⪰K̂∗ Z, where as usual the notation A ⪰K̂∗ B

means A − B ∈ K̂∗. Here, we are denoting by K̂∗ := {X ∈ Sn : ⟨X,Y ⟩ ≥ 0 for each Y ∈ K} the
dual cone to K in the potentially larger space of symmetric matrices Sn — see Appendix A. Our
dual problem is to find a tensor sign cover y that minimizes 1Ty:

fevcD,K(Z) := min
{
1

Ty : y ∈ RF(D)
+ ,

∑
U∈F(D)

yUsUs
T
U ⪰K̂∗ Z

}
, for every Z ∈ K∗.(2)

The notation ‘fevc’ refers to fractional elliptope vertex cover. Recall that the elliptope is the
set EV := {Y ∈ SV

+ : diag(Y ) = 1}, where diag : SV → RV extracts the diagonal, and its vertices
are { sUs

T
U : U ∈ P(V )}; see [LP95]. By fixing D and varying K, it is clear that maxqD,K always

attributes the same value for an input matrix, whereas fevcD,K defines a continuum of relaxations,
affecting feasibility via the constraint

∑
U∈F(D) yUsUs

T
U ⪰K̂∗ Z on the tensor sign covers. The smaller

K is, the weaker the constraint on the tensor sign cover becomes.
Theorems 1 and 3 describe SDP-based approximation algorithms for fractional covering problems.

Covering problems, in general, proved to be difficult for tractable SDP relaxations. For some
negative results on various SDP relaxations of vertex cover problem, see for instance [Ben+11;
Geo+10; KG98]. In those settings, the SDP relaxations considered fail to improve on their much
simpler LP-based counterparts, in terms of the approximation ratio. Thus, it is noteworthy that
in our framework we obtain randomized approximation algorithms that are tight under the UGC.
Another interesting feature of our results is that our conic covering problems have an exponential
number of variables (and computing their optimal values is NP-hard) but we still are able to treat
these covering problems algorithmically, in polynomial time, and obtain approximately optimal
sparse covers.

Throughout the paper, we assume that D,K ⊆ Sn := S[n] are closed convex cones such that the
following conditions hold:

(3)
D ⊆ Sn

+, K ⊆ D∗, int(cone(CUTD)) ̸= ∅,
{0} ≠ K has a strictly feasible point,

where CUTD := conv{ sUs
T
U : U ⊆ [n], sUs

T
U ⊆ D}, conv is the convex hull, cone denotes the gener-

ated convex cone containing 0, and int takes the interior. We refer the reader to Appendix A for the
definition of strictly feasible point. Set E(D) := E [n] ∩D. A randomized rounding algorithm Ξ for D is
an indexed set Ξ = (ΞY )Y ∈E(D) of matrix-valued random variables sampled from { sUs

T
U : U ∈ F(D)}.

Define
(4) αD,K,Ξ := inf

Y ∈E(D)
max{α ∈ R+ : E[ΞY ] ⪰K̂∗ αY },
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which we call the rounding constant for (D,K,Ξ). We shall drop the pair D,K whenever they can
be inferred by context; in particular, the rounding constant αD,K,Ξ may appear as αΞ . We define
a Grothendieck cover for Z ∈ K∗ as a tensor sign cover y for Z such that 1Ty ≤ (1/αΞ) fevc(Z).
Our algorithms produce tensor sign covers y with approximation factor β arbitrarily close to αΞ ;
we also call such vectors Grothendieck covers.

We show how to pair instances of the problems maxq and fevc so that, given an instance
W ∈ K of maxq, we obtain an instance Z ∈ K∗ of fevc and we approximately solve both instances
simultaneously and provide a certificate for the approximation factor of both solutions. We do the
same by starting with an instance of fevc. Note from (2) that feasible solutions can have exponential
support size. The solutions produced by our algorithm have sparse support, with the bound on the
support size varying according to geometric properties of the cone K. For the case that K ⊆ Sn

+,
we rely on spectral sparsification results for positive semidefinite matrices from [BSS12; CHS15].

Our main results are the outcome of our framework powered by primal-dual conic relaxations,
randomized rounding algorithms together with generalized Chernoff concentration results, and
spectral sparsifications methods. We state our main results in Theorem 5 and Remark 6. They
output objects called β-certificates (see Definition 9), where β is an approximation factor, which
are formed by feasible solutions for both problems, together with a simultaneous certificate of their
approximation quality.

Theorem 5 (Main Semidefinite Theorem). Assume that K ⊆ Sn
+, and let Ξ be a randomized

rounding algorithm for D. Fix β ∈ (0, αΞ). There exists a randomized polynomial-time algorithm
that, given an instance Z ∈ K∗ of fevc as input, computes an instance W ∈ K of maxq and a
β-certificate for (W,Z) with high probability. Dually, there exists a randomized polynomial-time
algorithm that, given an instance W ∈ K of maxq as input, computes an instance Z ∈ K∗ of fevc
and a β-certificate for (W,Z) with high probability. Both algorithms take at most O(n2 log(n))
samples from Ξ, and produce covers with O(n) support. If K = Sn

+, then O(n logn) samples suffice.

Remark 6 (Main Polyhedral Theorem). We state in Theorem 16 our other main result, which is
similar to Theorem 5, however, with a slightly different assumption on the cone K and it obtains
better support size. The cone K is the image A(Rd

+) for a linear map A : Rd → Sn, and the support
size obtained is O(log(n) + log(d)). Theorem 4 shall follow from this result.

Additional Related Work. In addition to the above cited references, here we mention some
additional related work. In the continuum of the APX-complete duals, the one for MaxCut, called
fractional cut-covering problem, was previously studied: first, in the special case that z = 1,
i.e. unweighted graphs, see [NB19; Šám06]; then, in general (arbitrary nonnegative weights z),
see [Ben+23]. We vastly generalize the results of [Ben+23] while keeping all the desired properties.
Their results apply to the pair MaxCut and fractional cut covering, which is a single pair of
APX-complete problems in the wide swath of APX-complete problem pairs covered here.

Part of the unification and generalization of the primal problems we consider was proposed
earlier [FL20]. Their generalization is similar to the way we use the convex cone K and the
generalized Grothendieck constant. However, our framework is more general than that of [FL20]
in two ways: (i) we consider, as an additional generalization, a set of convex cones D restricting
the feasible region of the primal problem (this additional generalization helps us achieve the best
approximation ratios for the duals of Max Boolean 2-CSPs); (ii) for every primal APX-complete
problem in our generalized domain we associate a dual conic covering problem and provide randomized
approximation algorithms which provide approximate solutions to both problems.

Part of our development of the underlying theory leading to the APX-complete duals is best
explained via gauge duality [Fre87] and its interplay with conic duality. A closely related concept is
antiblocking duality theory [Ful71; Ful72]. The corresponding conic generalization of antiblocking
duality appeared previously in [Tin74].
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2. Framework for Generalized Cuts and Tensor Sign Covers and Certificates

This section introduces our framework along with its theoretical foundations. Recall the assump-
tions (3). We define relaxations for maxqD,K and fevcD,K: for every W ∈ K, set

νD,K(W ) := max{ ⟨W,Y ⟩ : Y ∈ D, diag(Y ) = 1}(5a)
= min{ ρ : ρ ∈ R+, x ∈ Rn, Diag(x) ⪰D∗ W, ρ ≥ 1

Tx},(5b)
and, for every Z ∈ K∗,

ν◦
D,K(Z) := min{µ : µ ∈ R+, Y ∈ D, diag(Y ) = µ1, Y ⪰K̂∗ Z}(6a)

= max{ ⟨W,Z⟩ : W ∈ K, x ∈ Rn, W ⪯D∗ Diag(x), 1Tx ≤ 1}.(6b)
Our algorithms rely on solving these relaxations and then sampling using the feasible solutions found.
We show the following relation between maxq, fevc, ν, and ν◦, and the rounding constant αΞ :

Theorem 7. Let Ξ be a randomized rounding algorithm for D. We have that
αΞ · ν(W ) ≤ maxq(W ) ≤ ν(W ) for every W ∈ K;(7)

ν◦(Z) ≤ fevc(Z) ≤ 1
αΞ

· ν◦(Z) for every Z ∈ K∗.(8)

Proof. Note that sT
UWsU = ⟨W, sUs

T
U ⟩ ≤ ν(W ) for every U ⊆ [n], so the second inequality

in (7) holds. Let Y be a feasible solution of (5a). Since ΞY has finite support, we have that
E[ΞY ] =

∑
U⊆[n] P(ΞY = sUs

T
U )sUs

T
U , which implies

(9) E[ΞY ] ∈ conv({ sUs
T
U : U ∈ F(D)}) = CUTD .

Thus (7) follows from (5a), as maxq(W ) ≥ ⟨W,E[ΞY ]⟩ ≥ αΞ⟨W,Y ⟩. Similarly, for every y ∈ RF(D)
+

feasible in (2), we have that
∑

S∈F(D) yUsUs
T
U ∈ D is feasible in (6a) with the same objective value,

so the first inequality in (8) holds. It is immediate from (4) that for every Y ∈ E(D), if µY ⪰K̂∗ Z,
then µE[ΞY ] ⪰K̂∗ αΞZ, so fevc(Z) ≤ µ/αΞ . Hence (8) follows from (6a). □

We remark that (7) and (8) are equivalent by gauge duality; see Appendix A for more details.
Our discussion so far has focused exclusively on the matrix space. Indeed, the definition (4)

of αΞ , as well as the concentration results we will exploit are naturally expressed in this context.
Yet, applications may require results on other spaces. For example, an approximation algorithm
for the fractional dicut covering problem on a digraph D = (V,A) is about weights in RA

+. In
our setting, this mapping between vectors and matrices is built into the cone K. This is natural,
as the cone K is central to the covering constraint of (2). Let A : Rd → Sn be a linear map.
We assume throughout the paper that A(w) :=

∑
i∈[d]wiAi for nonzero A1, . . . , Ad ∈ Sn. Set

K := A(Rd
+) =

{ ∑
i∈[d]wiAi : w ∈ Rd

+
}
. We have that, for every X,Y ∈ Sn,

(10) X ⪯K̂∗ Y if and only if ⟨Ai, X⟩ ≤ ⟨Ai, Y ⟩ for every i ∈ [d].

One can succinctly encode the finite set of linear inequalities above with the adjoint linear map
A∗ : Sn → Rd, thus obtaining that X ⪯K̂∗ Y holds if and only if A∗(X) ≤ A∗(Y ). This is similar to
what is done in the entropy maximization setting; see, e.g., [SV14]. In particular, the linear map A∗

recovers relevant marginal probabilities when working with random matrices. With this setup, we
move to Rd

+ by defining, for every w ∈ Rd
+ and z ∈ Rd

+,
maxqD,A(w) := maxqD,K(A(w)), fevcD,A(z) := min{ fevcD,K(Z) : Z ∈ K∗, A∗(Z) ≥ z},

νD,A(w) := νD,K(A(w)), ν◦
D,A(z) := min{ ν◦

D,K(Z) : Z ∈ K∗, A∗(Z) ≥ z};
see Theorem 22 in Appendix B for details. We highlight that

ν◦
D,A(z) = max{ zTw : w ∈ Rd

+, x ∈ Rn, A(w) ⪯D∗ Diag(x), 1Tx ≤ 1}(11a)
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= min{µ : µ ∈ R+, Y ∈ D, diag(Y ) = µ1, A∗(Y ) ≥ z}.(11b)

Hence, given z ∈ Rd
+ as input, one can compute Z ∈ K∗ such that ν◦

D,A(z) = ν◦
D,K(Z), as well as

solving (6a) for said Z, by solving a single convex optimization problem, namely (11b). In this way,
we can both “lift” the vector w ∈ Rd

+ to the matrix A(w) ∈ K, and z ∈ Rd
+ to the matrix Z ∈ K∗,

with no extra algorithmic cost.
Next we discuss how to simultaneously certify the approximation quality for instances W ∈ K of

maxq and Z ∈ K∗ of fevc. A key observation is that
(12) maxq(W ) · fevc(Z) ≥ ⟨W,Z⟩ for every W ∈ K and Z ∈ K∗,
which holds since ⟨W,Z⟩ ≤

∑
U∈F(D) yU ⟨W, sUs

T
U ⟩ ≤ maxq(W )1Ty for every feasible solution

y ∈ RF(D)
+ to (2). In the context of gauge duality, (12) serves as a weak duality result. Assumptions (3)

can be used to provide a strong duality result: for every W ∈ K there exists Z ∈ K∗ such that
equality holds in (12); and for every Z ∈ K∗ there exists W ∈ K such that equality holds in (12).
Motivated by (12), we define β-pairings and β-certificates.

Definition 8. Let β ∈ (0, 1]. A β-pairing on (D,K) is a pair (W,Z) ∈ K × K∗ such that there exist
ρ, µ ∈ R+ with

(13) ⟨W,Z⟩ (13a)= ρµ and βρµ
(13b)
≤ maxqD,K(W )µ

(13c)
≤ ρµ

(13d)
≤ ρ fevcD,K(Z)

(13e)
≤ 1

β
ρµ.

If K = A(Rd
+) for a linear map A : Rd → Sn, we say that (w, z) ∈ Rd

+ ×Rd
+ is a β-pairing if (A(w), Z)

is a β-pairing for some Z ∈ K∗ such that A∗(Z) ≥ z. We define an exact pairing on (D,K) to be a
1-pairing on (D,K).

Note that, for nonzero ρ and µ, this definition implies that βρ ≤ maxq(W ) ≤ ρ and µ ≤ fevc(Z) ≤
(1/β)µ. Thus, the definition of β-pairing establishes the idea of simultaneous approximations.
We need objects which algorithmically certify that a pair (W,Z) is a β-pairing. For this, we use an
analogue of (12) for our relaxations:
(14) ν(W ) · ν◦(Z) ≥ ⟨W,Z⟩ for every W ∈ K and Z ∈ K∗.
Similar to (12), inequality (14) follows from (5a) and (6a). The advantage of (14) over (12) is that
the quantities here are computable in polynomial time, and by Theorem 7, they are closely related
to the quantities in (12).

Definition 9. A β-certificate for (W,Z) ∈ K × K∗ is a tuple (ρ, µ, U, y, x) such that
ρ, µ ∈ R+ are such that ρµ = ⟨W,Z⟩,(15.i)
U ∈ F(D) is such that sT

UWsU ≥ βρ,(15.ii)

y ∈ RF(D)
+ is such that

∑
U ′∈F(D)yU ′sU ′sT

U ′ ⪰K̂∗ Z and 1
Ty ≤ 1

βµ, and(15.iii)

x ∈ Rn is such that ρ ≥ 1
Tx and Diag(x) ⪰D∗ W.(15.iv)

If K = A(Rd
+) for a linear map A : Rd → Sn, we say that (ρ, µ, U, y, x) is a β-certificate for

(w, z) ∈ Rd
+ × Rd

+ if (ρ, µ, U, y, x) is a β-certificate for (A(w), Z) for some Z ∈ K∗ with A∗(Z) ≥ z.

Proposition 10. If there exists a β-certificate for (W,Z), then (W,Z) is a β-pairing.

Proof. (13a), (13b), and (13e) follow immediately from (15.i), (15.ii), and (15.iii), resp. The
connecting part maxq(W )µ ≤ ρµ ≤ ρ fevc(Z) is a combination of two notions of duality: conic
duality (via (5)) and conic gauge duality (via (12)). Item (15.iv) provides a feasible solution to (5b),
which implies maxq(W ) ≤ ν(W ) ≤ ρ. Hence

maxq(W )µ ≤ ρµ
(15.i)= ⟨W,Z⟩

(12)
≤ maxq(W ) · fevc(Z) ≤ ρ fevc(Z). □



GENERALIZED CUTS AND GROTHENDIECK COVERS 7

3. Generalized Rounding Framework and Sparsification

Let Ξ be a randomized rounding algorithm for D, and let Y ∈ E(D). One can roughly see from (9)
that sampling from ΞY provides a feasible solution for fevc, as well as a feasible solution for maxq
in expectation. However, such a solution may have exponential support size. Moreover, even in
well-studied special cases like the Goemans and Williamson algorithm, it is not known how to
compute the marginal probabilities exactly to obtain an expression for E[ΞY ].

We show how to obtain a Grothendieck cover by repeated sampling from a randomized rounding
algorithm so that we have polynomial support size and the approximation ratio can be controlled
with high probability. We first treat the polyhedral case.
Proposition 11. Let ε, γ ∈ (0, 1). Let K := A(Rd

+) for a linear map A : Rd → Sn. Let X : Ω → K be
a random matrix such that A∗(E[X]) ≥ ε1. Let (Xt)t∈[T ] be i.i.d. random variables sampled from X.
There is ψε,γ ∈ Θ(1) such that, if T ≥ ψε,γ(log(d) + log(n)), then 1

T

∑
t∈[T ]Xt ⪰K̂∗ (1 − γ)E[X] with

probability at least 1 − 1/n.
The main argument in the proof of Proposition 11, which appears in Appendix C, relies on

Chernoff’s bound for each generating ray of the cone, followed by union bound on those rays.
Proposition 12. Let ε, γ ∈ (0, 1). Let K := A(Rd

+) for a linear map A : Rd → Sn. Let Ξ be a
randomized rounding algorithm for D. Let Y ∈ E(D) be such that A∗(Y ) ≥ ε1. There exists a
randomized polynomial-time algorithm producing a Grothendieck cover y ∈ RF(D)

+ for Y w.h.p. such
that the algorithm performs at most T := O(log(d) + log(n)) samples from ΞY , the support size
|supp(y)| is at most T and 1

Ty ≤ ((1 − γ)αΞ)−1.
Beyond polyhedral cones, we present a rounding algorithm under the assumption that K ⊆ Sn

+.
In this case, we leverage matrix Chernoff bounds to ensure correctness of our algorithms with high
probability. We refer the reader to Appendix C for a complete proof. The result is an application of
[Tro15, Corollary 6.2.1], which exploits results arising from a Matrix Chernoff bound with respect
to the positive semidefinite (Löwner) order. We denote by ∥X∥ := max{|λmax(X)|, |λmin(X)|} the
spectral norm on Sn.
Proposition 13. Let X be a random matrix in Sn such that ∥X∥ ≤ ρ almost surely, and set
σ2 := ∥E[X2]∥. Let (Xt)t∈[T ] be i.i.d. random variables sampled from X. There is ψγ = Θ(1) such
that, if T ≥ ψγ max{σ2, ρ} log(n), then E[X] − γI ⪯ 1

T

∑
t∈[T ]Xt ⪯ E[X] + γI holds w.h.p..

The tensor sign covers we can obtain by directly applying Proposition 13 have polynomial support
size. To guarantee linear support size, we rely on the following spectral sparsification result:
Proposition 14 ([CHS15, Corollary 10]). Let Z ∈ Sn

+. Let A1, A2 . . . , Am ∈ Sn
+ and c ∈ Rm

+ .
Suppose that the semidefinite program min

{
cTy : y ∈ Rm

+ ,
∑m

i=1 yiAi ⪰ Z
}

has a feasible solution y∗.
Let ζ ∈ (0, 1). There is a deterministic polynomial-time algorithm that, given y∗, and the matrices
A1, A2 . . . , Am and Z as input, computes a feasible solution ȳ with at most O(n/ζ2) nonzero entries
and cTȳ ≤ (1 + ζ)cTy∗.

Thus, we obtain the following result, which is proved in Appendix C.
Proposition 15. Let γ, ε, ζ ∈ (0, 1). Let K ⊆ Sn

+. Let Ξ be a randomized rounding algorithm for D.
Let Y ∈ E(D) be such that Y ⪰ εI. There exists a randomized polynomial time algorithm producing
a Grothendieck cover y ∈ RF(D)

+ for Y w.h.p. such that the algorithm performs at most O(n2 log(n))
samples from ΞY , the support size |supp(y)| is O(n/ζ2) and 1

Ty ≤ (1 + ζ)((1 − γ)αΞ)−1.

4. Simultaneous Approximation Algorithms

The last ingredient of our algorithms is to ensure the feasible solutions behave well with respect to
our sampling results. Both Propositions 12 and 15 require a numeric bound ε on how interior to the
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cone the feasible solutions are: either by requiring Y ⪰ εI or A∗(Y ) ≥ ε1. These assumptions are
necessary: [Ben+23] exhibits instances of the fractional cut-covering problem and optimal solutions
to the SDP relaxation that require, in expectation, exponentially many samples to ensure feasibility.
For a fixed element of K∗ which is “central” enough, we define perturbed versions of (5) and (6)
whose feasible regions exclude these ill-behaved matrices. For concreteness, we assume that

(16) I ∈ cone{ sUs
T
U : U ∈ F(D)} ⊆ D,

which can be easily verified in the examples we will work with.
We now describe one of the algorithms in Theorem 5. Let Ξ be a randomized rounding algorithm

for D. Let β ∈ (0, αΞ). Assume we are given an instance Z ∈ K∗ of fevc as input. Then
(1) nearly solve the perturbed version of (6) to compute (µ, Y ) ∈ R+ × D and (W,x) ∈ K × Rn;
(2) sample O(n2 logn) times from ΞY to obtain a Grothendieck cover y ∈ RF(D)

+ for Z;
(3) apply Proposition 14 to reduce the support size of y to O(n);
(4) choose U that maximizes sT

U ′WsU ′ among all U ′ ∈ supp(y);
(5) output W and the β-certificate (1, µ, U, y, x).

(Steps (1)–(3) involve errors terms that are chosen small enough to guarantee our desired approx-
imation factor β.) Proposition 15 proves the correctness of steps (2) and (3). This is where we
crucially exploit K ⊆ Sn

+, so that concentration and sparsification results developed for positive
semidefinite matrices can be translated to the cone K∗. That (4) will define a set U which is part of
the β-certificate follows from y being a good enough estimate: we have that βρ ≤ sT

UWsU since

ρµ = ⟨W,Z⟩ ≤
∑

U ′∈F(D)
yU ′⟨W, sU ′sT

U ′⟩ ≤ ⟨W, sUs
T
U ⟩1Ty ≤

(
sT

UWsU

) 1
β
µ.

Appendix D has the precise proofs.
The algorithm sketched above highlights an important part of our framework. For a given instance

Z ∈ K∗ of fevc, we obtain from the SDP solutions to (6) an instance W ∈ K of maxq, and we then
certify the pair (W,Z). This mapping among instances is something we now make explicit. Define
HD,K :=

{
(Z,W ) ∈ K × K∗ : ⟨W,Z⟩ = νD,K(W ) · ν◦

D,K(Z)
}
. One may prove that

H =
{

(W,Z) ∈ K × K∗ :
∃(µ, Y ) feasible in (6a) for Z,
∃(ρ, x) feasible in (5b) for W,

and ⟨W,Z⟩ = ρµ

}
.(17)

We invite the reader to compare the RHS of (17) with the feasible regions of (5) and (6). One
may see solving either SDP as fixing one side of the pair of instances and obtaining the other;
i.e., as computing an element of Z(W ) := {Z ∈ K∗ : (W,Z) ∈ H} when given W ∈ K as input, or
computing an element of W(Z) := {W ∈ K : (W,Z) ∈ H} when given Z ∈ K∗ as input. In both
cases, by solving a single (primal-dual pair of) SDP we obtain an element of H and the objects (ρ, x)
and (µ, Y ) which witness the membership.

We now address Remark 6, in which the cone K is polyhedral and not necessarily contained in Sn
+.

Here, we do not require the use of sparsification, as the cover produced is already (very) sparse.

Theorem 16 (Main Polyhedral Theorem). Let K := A(Rd
+) for a linear map A : Rd → Sn.

Assume (16) and that A∗(I) ≥ κ1 for some positive κ ∈ R. Let Ξ be a randomized rounding
algorithm for D. Fix β ∈ (0, αΞ). There exists a randomized polynomial-time algorithm that, given
an instance z ∈ Rd

+ of fevc as input, computes an instance w ∈ Rd
+ of maxq and a β-certificate for

(w, z). Dually, there exists a randomized polynomial-time algorithm that, given an instance w ∈ Rd
+

of maxq as input, computes an instance z ∈ Rd
+ of fevc and a β-certificate for (w, z). Both algorithms

output covers whose support size is bounded by C · (log(d) + log(n)), where C := C(κ, αΞ , β) is
independent of d and n.
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5. Boolean 2-CSP

Let U ⊆ {0} ∪ [n] with 0 ∈ U . Let x : [n] → {false, true} be defined such that xi = true if and
only if i ∈ U \ {0}. Let i, j ∈ [n]. For any predicate P , we let [P ] ∈ {0, 1} be 1 if the predicate P is
true, and 0 otherwise. Appendix E defines matrices ∆±i,±j ∈ S{0}∪[n] such that

[xi ∧ xj ] = 1
4⟨∆−i,−j , sUs

T
U ⟩, [xi ∧ xj ] = 1

4⟨∆−i,+j , sUs
T
U ⟩,

[xi ∧ xj ] = 1
4⟨∆+i,−j , sUs

T
U ⟩, [xi ∧ xj ] = 1

4⟨∆+i,+j , sUs
T
U ⟩.

By decomposing a predicate as a disjunction of conjunctions, one can write any Boolean function
on two variables as a sum of these matrices. Thus, for any set C of constraints on two variables,
one can define a linear map A : RC → S{0}∪[n] such that
(18) ⟨A(ef ), sUs

T
U ⟩ = [f(x)] for every f ∈ C ;

here, ef := 1{f} ∈ {0, 1}C is a canonical basis vector. With this particular linear map A, we say
that K is the polyhedral cone defined by C if K = A(RC

+). The definitions are made so that
(19) E[ΞY ] ⪰K̂∗ αY if and only if P(f(x) = true) ≥ α⟨A(ef ), Y ⟩ for every f ∈ C ,

where x ∈ A is obtained from ΞY in the following way: let U ⊆ {0} ∪ [n] be such that 0 ∈ U
and sUs

T
U was sampled from ΞY , and define x ∈ A by xi = true if and only if i ∈ U \ {0}.

If we set ∆n := conv(
⋃

i,j∈[n]{∆±i,±j}), it is immediate that K ⊆ cone(∆n). The set D∆ :=
S{0}∪[n]

+ ∩
( ⋃

i,j∈[n]{∆±i,±j}
)∗ has been studied — see e.g., [LLZ02; Rag08] —, and these additional

inequalities are referred to as triangle inequalities. Since CUTD∆ = conv{ sUs
T
U : U ⊆ {0} ∪ [n]}

(see Appendix E) we have that D∗
∆ = S{0}∪[n]

+ + cone(∆n). This then ensures that (3) holds for D∆
and the polyhedral cone K defined by C .

Theorem 17 (Fractional P-Covering Theorem). Let P be a set of predicates in two Boolean
variables. For every n ∈ N, let Ξn be a randomized rounding algorithm for D∆ ⊆ Sn+1. Let

α ≤ inf
{
αD∆,K,Ξn

: C set of P-constraints on n variables,
K polyhedral cone defined by C .

}
,

and fix β ∈ (0, α). There exists a randomized polynomial-time algorithm that, given an instance
(C , z) of frac-P-cover as input, computes w ∈ RC

+ and a β-certificate for (w, z). Dually, there exists
a polynomial-time randomized algorithm that, given an instance (C , w) of max-P-sat as input,
computes z ∈ RC

+ and a β-certificate for (w, z). Both algorithms take at most O(logn) samples
from Ξn and produce covers with O(logn) support size.

Proof of Theorem 17. Set D := D∆ and let A : RC → S{0}∪[n] be as in (18). From (55) we have
that (16) holds. Since A∗(sUs

T
U ) = valC (x), using that 2−nI =

∑
{ s{0}∪Us

T
{0}∪U : U ⊆ [n]}, we see

that A∗(I) computes the marginal probability of satisfying each constraint by uniformly sampling
an assignment in A . As the constant false function is not in P, any constraint is satisfied by
at least 1/4 of the assignments. Hence A∗(I) ≥ 1

41. Note that since |P| ≤ 16, we have that
log(|C |) = O(logn). Theorem 16 then ensures we can compute β-certificates (ρ, µ, U, y, x) with
|supp(y)| = O(log(|C |) + log(n)) = O(log(n)). □

Proof of Theorem 1. Set P := {x1 ∧ x2}. For every digraph D = (V,A), each arc uv can be
mapped to a constraint xu ∧ xv. Hence, there exists C such that md(D,w) = max-P-sat(C , w) and
fdc(C , z) = frac-P-cover(C , z) for every w ∈ RA

+ and z ∈ RA
+. [Bra+23] — see formulation after

Proposition 2.4. — define Ξ such that
⟨E[ΞY ], 1

4∆+u,−v⟩ ≥ αBHPZ⟨Y, 1
4∆+u,−v⟩ for every arc uv ∈ A and Y ∈ E(D).

Thus E[ΞY ] ⪰K̂∗ αBHPZY , so Theorem 17 finishes the proof. □
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Proof of Theorem 3. Let ΞY = sUs
T
U where U = {0} ∪ { i ∈ [n] : xi = true} for x ∈ A being

sampled from the algorithm defined by Lewin, Livnat, and Zwick [LLZ02]. Then

⟨E[ΞY ], 1
4(∆−i,+j + ∆+i,−j + ∆+i,+j)⟩ = P(xi ∨ xj) def. of Ξ and ∆

≥ αLLZ⟨Y, 1
4(3 + Y0i + Y0j + Yij)⟩ by [LLZ02]

= αLLZ⟨Y, 1
4(∆−i,+j + ∆+i,−j + ∆+i,+j)⟩.

The mismatch between the expression in the second line and the expression in [LLZ02, Section 5]
arises from our modelling imposing x0 = true, whereas [LLZ02] impose x0 = false. The case for
constraints xi ∨ xj , xi ∨ xj , and xi ∨ xj is analogous. As this holds for every constraint, we have
that E[ΞY ] ⪰K̂∗ αLLZY , where K is the polyhedral cone defined by C . Thus αLLZ ≤ αD,K,Ξ and
Theorem 17 implies the statement. □

6. Concluding Remarks and Future Directions

Despite its generality, our framework still captures several best possible and best known results.
A first aspect concerns the approximation constants of the algorithms presented. We refer to

(20) ϱD,K := min
{ maxqD,K(W )

νD,K(W ) : W ∈ K
}

= min
{

ν◦
D,K(Z)

fevcD,K(Z) : Z ∈ K∗
}

as the integrality ratio of (D,K). Equality between the two expressions above follows from gauge
duality. One may see that ϱD,K is the largest β such that every (W,Z) ∈ H(D,K) is a β-pairing.
Positivity of ϱD,K is a corollary of all norms on a finite-dimensional vector space being equivalent. It
is more interesting then to consider families I of triples (D,K,Ξ) where Ξ is a randomized rounding
algorithm for D. Theorem 7 implies that
(21) ϱI := inf{ ϱD,K : (D,K,Ξ) ∈ I} ≥ inf{αD,K,Ξ : (D,K,Ξ) ∈ I} =: αI .

For example, if I encodes all the cones arising from instances of the maximum cut problem, to say
that ϱI ≥ αGW is to say we have a αGW-approximation algorithm for the maximum cut problem, and
a 1/αGW-approximation algorithm for the fractional cut covering problem. Equality in (21) indicates
that no better approximation algorithm can be obtained without strengthening the formulation
(by changing D) or restricting the input instances (by changing K). Whenever I arises from instances
related to a specific 2-CSP, Raghavendra [Rag08, Corollary 1.5] shows that the triangle inequalities
(i.e., D∆) are enough, as there exists a randomized rounding algorithm ensuring equality in (21).
It is also known that 2/π = inf{ ϱSn

+,Sn
+

: n ∈ N} [AN06; FL20; Gro53; Kri77]. In this way, the
algorithms in Theorems 5 and 17 all have tight analyses.

One formulation of the “equivalence between separation and optimization” proved by Grötschel,
Lovász, and Schrijver [GLS81] is that one can compute a positive definite monotone gauge whenever
one can compute its dual. In this way, whenever νD,K is the best polynomial-time computable
approximation to maxqD,K under the Unique Games Conjecture [Kho+07] (and assuming P ̸= NP),
the same immediately holds for ν◦

D,K and fevcD,K. In particular, [Rag08] shows that, assuming the
UGC, it is NP-hard to obtain any approximation algorithm for a Boolean 2-CSP with approximation
factor better than ϱD∆,K. Thus, the UGC implies that Theorem 17 is best possible unless P = NP.

The support size bounds in Theorems 17 and 5 are asymptotically tight. If K = Sn
+, it is

immediate that any feasible y in (6a) for Z = I has |supp(y)| ≥ n. Hence the O(n) support size in
Theorem 5 is best possible. [Ben+23] argues that |supp(y)| ≥ log(χ(G)) for every graph G = (V,E)
whenever K = LG(RE

+), where LG(w) :=
∑

ij∈E wij(ei − ej)(ei − ej)T is the Laplacian of G. Hence
the O(logn) support size in Theorem 17 is also best possible.

Tightly related to the support size of the solutions we produce, is the number of samples
necessary to ensure a good enough cover with high probability. Although Theorem 5 shows that
O(n2 logn) samples suffice when K ⊆ Sn

+, in specific cones we exploited conic concentration bounds
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in Propositions 11 and 24 to obtain better sampling bounds. It is conceivable that other families of
cones also admit better bounds. E.g., [SZ22] offers conic concentration for hyperbolicity cones.

Three of the natural generalizations of our framework not discussed here are:
(i) extension to the complex field and Hermitian matrices,
(ii) extension of the intractable pairs defined by exponentially many constraints and exponentially

many variables to a semi-infinite setting (infinitely many constraints in the intractable primal
and infinitely many variables in the intractable gauge dual),

(iii) extension to handle general CSPs.
The first two generalizations allow the treatment of many applications in continuous mathematics
and engineering, including some applications in robust optimization and system and control theory.
The underlying theoretical results include as a special case the Extended Matrix Cube Theorem
[BNR03].
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Appendix A. maxq and fevc, and their Conic Relaxations

We denote by aff(S) the affine hull of the set S ⊆ Sn, which is the intersection of all affine
subspaces of Sn containing S. Define the dual cone of S ⊆ Sn as

S∗ := {X ∈ aff(S) : ⟨Y,X⟩ ≥ 0 for all Y ∈ S}.
For full-dimensional convex sets, our definition matches the usual definition of dual cone. In general,
the dual of a set is taken in its affine hull, analogous to how the relative interior is taken with respect
to the topology induced in the affine hull of the set. This becomes most relevant as (3) allows for
cones K which are not full dimensional. Although for a convex cone K ⊆ Sn the set aff(K∗) may
be strictly smaller than aff(K) — and hence K∗∗ may not be K —, if K is a pointed cone, then
K∗∗ = K.

Let D,K ⊆ Sn be closed convex cones. Recall that CUTD := conv{ sUs
T
U : U ⊆ V, sUs

T
U ∈ D}.

Assume
D ⊆ Sn

+,(22a)
K ⊆ D∗,(22b)

int(CUTD) ̸= ∅,(22c)

K = K̂ ∩ Null(L) and ∃X̊ ∈ int(K̂) \ {0} s.t. L(X̊) = 0,(22d)

where K̂ ⊆ Sn is a closed convex cone and L : Sn → Rk is a linear map for some k ∈ N. Under these
assumptions, we have that
(23) K is pointed and ri(K) \ {0} ≠ ∅.
Note that D∗ is pointed, since int(D) ̸= ∅ by (22c). As D∗ ⊇ K by (22b), we conclude K is pointed.
The second part follows from (22d), as X̊ ̸= 0 and Null(L) is the smallest affine subspace of Sn

containing K.
Let D,K be closed convex cones such that (22) holds, and let L : Sn → Rk and K̂ be the linear

transformation and cone appearing in (22d), respectively. We write

(24) K̂∗ := K̂∗ + Im(L∗) ⊆ Sn.

If we denote by P : Sn → Sn the orthogonal projector onto aff(K) = Null(L), then

(25) K∗ = P (K̂∗).

This relationship motivates the notation in (24): it shows that K̂∗ is a lifting of the cone K∗. In our
setting, we will have aff(K) as the instance space, where the inputs to our gauges arise from, and Sn

as the lifted space where optimization is performed. In this way, both K∗ and its lifting K̂∗ appear
throughout our developments. From (24) we have that K̂∗ ⊇ Im(L∗) = Null(L)⊥ = aff(K)⊥. Hence

(26) aff(K)⊥ ⊆ K̂∗.

From (22b), (22d), and (24) we have that

(27) D ⊆ K̂∗.

Since K is pointed by (23), we have that
(28) K∗∗ = K.
Finally, the orthogonal projector gives a convenient map from D to K∗, since
(29) Y ⪰K̂∗ P (Y ) ∈ K∗ for every Y ∈ D.

Indeed, for every Y ∈ D we have that P (Y ) ∈ K∗, as P (D) ⊆ P (K̂∗) = K∗ by (25) and (27).
Moreover, Y − P (Y ) ∈ Null(L)⊥ = Im(L∗) ⊆ K̂∗ by (24), so (29) holds.
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Recall the definitions of maxqD,K, fevcD,K, νD,K, and ν◦
D,K, along with conic dual formulations,

for each W ∈ K and Z ∈ K∗:
maxqD,K(W ) := max{ sT

UWsU : U ∈ F(D)},(30)

fevcD,K(Z) := min
{
1

Ty : y ∈ RF(D)
+ ,

∑
U∈F(D)

yUsUs
T
U ⪰K̂∗ Z

}
(31a)

= max
{

⟨Z,X⟩ : X ∈ K, ⟨sUs
T
U , X⟩ ≤ 1 for every U ∈ F(D)

}
;(31b)

νD,K(W ) := max{ ⟨W,Y ⟩ : Y ∈ D, diag(Y ) = 1}(32a)
= min{1Tx : x ∈ Rn, Diag(x) ⪰D∗ W},(32b)

ν◦
D,K(Z) := min{µ : µ ∈ R+, Y ∈ D, diag(Y ) = µ1, Y ⪰K̂∗ Z}(33a)

= max{ ⟨Z,X⟩ : X ∈ K, x ∈ Rn, Diag(x) ⪰D∗ X, 1Tx ≤ 1}.(33b)

Our arguments rely on standard results on Conic Programming Duality — see, e.g., [Nem24,
Chapter 7]. In particular, a strictly feasible solution to an optimization problem is a feasible solution
where every conic constraint is satisfied by a point in the interior of the relevant cone. By (22c),
there exists
(34) ẙ ∈ RF(D)

+ such that
∑

S∈F(D)
ẙUsUs

T
U =: Y̊ ∈ int(D) and diag(Y̊ ) = 1.

We may assume that ẙ > 0. Note that αY̊ − Z = α(Y̊ − 1
αZ) ∈ int(D) ⊆ int(K̂∗) for large enough

α ∈ R++. Hence (31a) has a strictly feasible solution. From (22d) one may reformulate (31b) into
an equivalent problem with a strictly feasible solution. Conic Programming Strong Duality [Nem24,
Theorem 7.2] implies equality and attainment in (31). Similarly, note that Y̊ is a strictly feasible
solution to (32a), whereas x̊ := 2λmax(W )1 is a strictly feasible solution for (32b), as Sn

+ ⊆ D∗

by (22a). Once again, Strong Duality ensures equality and attainment in (32). A positive multiple
of (1, Y̊ ) is a strictly feasible point to (33a). Let X̊ ∈ K be as in (22d). Without loss of generality,
assume that λmax(X̊) < 1. Then ( 1

2n1,
1

2nX̊) is a strictly feasible solution to (33b). Hence equality
and attainment holds in (33).

We will look at these functions through the lens of conic gauges, which are defined as follows:

Definition 18 (Conic Gauges). Let E be an Euclidean space. Let K ⊆ E be a closed convex cone.
A function φ : K → R+ is a gauge if φ is positively homogeneous, sublinear, and φ(0) = 0. The
gauge φ is positive definite if φ(x) > 0 for each nonzero x ∈ K, and φ is monotone if 0 ⪯K x ⪯K y
implies φ(x) ≤ φ(y).

Definition 19. Let φ : K → R+ be a positive definite monotone gauge. The dual of φ is the positive
definite monotone gauge φ◦ : K∗ → R+ defined by
(35) φ◦(y) := max{ ⟨y, x⟩ : x ∈ K, φ(x) ≤ 1} for each y ∈ K∗.

Let ϕ : K → R+ be a positive definite monotone gauge. Whenever K∗∗ = K, — in particular
whenever (22) holds — one can prove that ϕ◦◦ = ϕ. We show that maxqD,K, fevcD,K, νD,K, and ν◦

D,K
are positive definite monotone gauges and how they are related.

Theorem 20. Let D,K ⊆ Sn be closed convex cones such that (22) holds. Then
(i) maxqD,K and fevcD,K are positive definite monotone gauges, dual to each other;
(ii) νD,K and ν◦

D,K are positive definite monotone gauges, dual to each other;

(iii) maxqD,K ≤ νD,K and ν◦
D,K ≤ fevcD,K .
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Proof. The fact that maxqD,K and νD,K are gauges follows directly from their definitions in (30)
and (32a). The monotonicity of maxqD,K and νD,K is a direct consequence of (22b). Next we show
that maxqD,K is positive definite. Let ẙ ∈ F(D) and Y̊ ∈ int(D) be as in (34). Then

0 < ⟨Y̊ ,W ⟩ =
∑

U∈F(D)
ẙU ⟨sUs

T
U ,W ⟩ for every nonzero W ∈ K ⊆ D∗.

Thus there exists U ∈ F(D) such that maxqD,K(W ) ≥ sT
UWsU > 0. This implies that maxqD,K is

positive definite. Since

maxqD,K(W ) = max{ sT
UWsU : U ∈ F(D)} ≤ max{ ⟨W,Y ⟩ : Y ∈ D, diag(Y ) = 1} = νD,K(W ),

it follows that νD,K is positive definite. Thus, maxqD,K and νD,K are positive definite monotone
gauges such that maxqD,K ≤ νD,K.

The fact that fevcD,K and ν◦
D,K are gauges follows directly from (31b) and (33b). We now

prove fevcD,K to be monotone. Let P : Sn → Sn denote the orthogonal projector onto aff(K). Let
Z0, Z1 ∈ K∗ be such that Z0 ⪯K∗ Z1. Let y ∈ RF(D)

+ be such that
∑

U∈F(D) yUsUs
T
U ⪰K̂∗ Z1. By (25),

P

( ∑
U∈F(D)

yUsUs
T
U

)
⪰K∗ P (Z1) = Z1 ⪰K∗ Z0 = P (Z0).

By (25), there exists Ŷ ∈ K̂∗ such that P
(∑

U∈F(D) yUsUs
T
U −Z0

)
= P (Ŷ ). Since Null(P ) = aff(K)⊥,

from (26) we conclude ∑
U∈F(D)

yUsUs
T
U − Z0 − Ŷ ∈ aff(K)⊥ ⊆ K̂∗,

which ensures ∑
U∈F(D)

yUsUs
T
U ⪰K̂∗ Z0 + Ŷ ⪰K̂∗ Z0.

Hence, by (31a), we have that fevcD,K(Z0) ≤ fevcD,K(Z1). Similarly, let Y ∈ D and µ ∈ R+ be
such that diag(Y ) = µ1 and Y ⪰K̂∗ Z1. Then (25) implies P (Y ) ⪰K∗ Z1 ⪰K∗ Z0 = P (Z0), so
P (Y − Z0) = P (X̂) for some X̂ ∈ K̂∗ by (25). Hence Y − Z0 − X̂ ∈ aff(K)⊥ ⊆ K̂∗ by (26), and
hence

Y ⪰K̂∗ Z0 + X̂ ⪰K̂∗ Z0.

From (33a) we conclude ν◦
D,K is monotone.

By (23), there exists X̊ ∈ ri(K) \ {0}. Then νD,K(X̊) > 0, and hence we may assume νD,K(X̊) = 1.
We claim that

(36) ⟨Z, X̊⟩ > 0 for every nonzero Z ∈ K∗.

Note that this implies via (33b) that ν◦
D,K(Z) ≥ ⟨Z, X̊⟩ > 0 for every nonzero Z ∈ K∗, so ν◦

D,K is
positive definite. We now prove (36). Let Ŷ ∈ K̂∗ and let P : Sn → Sn be the orthogonal projector
onto aff(K). Assume that P (Ŷ ) ̸= 0. By (25), it suffices to prove ⟨P (Ŷ ), X̊⟩ > 0. Let ε ∈ (0, 1).
Note that X̊ − εP (Ŷ ) ∈ aff(K), since (1 − ε)−1X̊ ∈ K and −P (Ŷ ) ∈ aff(K), so

X̊ − εP (Ŷ ) = (1 − ε)
( 1

1 − ε
X̊

)
+ ε(−P (Ŷ )) ∈ aff(K).

Since X̊ ∈ ri(K), there exists ε̄ > 0 such that X̊ − ε̄P (Ŷ ) ∈ K. Using that ⟨X̊, Ŷ ⟩ = ⟨P (X̊), Ŷ ⟩ =
⟨X̊, P (Ŷ )⟩ and ⟨P (Ŷ ), Ŷ ⟩ = ⟨P (Ŷ ), P (Ŷ )⟩, we use (25) to conclude

0 ≤ ⟨X̊ − ε̄P (Ŷ ), Ŷ ⟩ = ⟨X̊, Ŷ ⟩ − ε̄⟨P (Ŷ ), Ŷ ⟩ = ⟨X̊, P (Ŷ )⟩ − ε̄⟨P (Ŷ ), P (Ŷ )⟩,
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so (36) holds. Since

fevcD,K(Z) = min
{
1

Ty : y ∈ RF(D)
+ ,

∑
U∈F(D)

yUsUs
T
U ⪰K̂∗ Z

}

≥ min
{
µ ∈ R+ : Y ∈ D, diag(Y ) = µ1, Y ⪰K̂∗ Z

}
= ν◦

D,K(Z).

it follows that fevcD,K is positive definite. Thus, fevcD,K and ν◦
D,K are positive definite monotone

gauges such that fevcD,K ≥ ν◦
D,K.

It is immediate from (31b) that maxq◦
D,K = fevcD,K. We have that

(37) νD,K(W ) = max{ ⟨W,Z⟩ : Z ∈ K∗, ν◦
D,K(Z) ≤ 1} for every W ∈ K.

Moreover,

max{ ⟨W,Y ⟩ : Y ∈ D, diag(Y ) = 1}
= max{ ⟨W,P (Y )⟩ : Y ∈ D, diag(Y ) = 1} since W ∈ K ⊆ Null(L)
≤ max{ ⟨W,Z⟩ : Z ∈ K∗, Y ∈ D, diag(Y ) = 1, Y ⪰K̂∗ Z} by (29)

≤ max{ ⟨W,Y ⟩ : Y ∈ D, diag(Y ) = 1}. since W ∈ K ⊆ K̂

Hence equality holds throughout, which implies (37) via (33a). □

Appendix B. Polyhedral Cones

Let A : Rd → Sn be a linear map, and set K := A(Rd
+). We have that (22d) always hold. Indeed,

we may write
A(Rd

+) = {X ∈ Sn : L(X) = 0, B(X) ≥ 0}

with L : Sn → Rk and B : Sn → Rℓ linear transformations such that there exists X̊ ∈ Sn such
that L(X) = 0 and B(X) > 0. Since K̂ := {X ∈ Sn : B(X) ≥ 0} has nonempty interior, we have
that (22d) holds. Note further that Null(L) = Im(A). We further have that

(38) X ⪰K̂∗ Y if and only if A∗(X) ≥ A∗(Y ) for every X, Y ∈ Sn.

Proposition 21. Let D,K be closed convex cones such that (22) holds, where K := A(Rd
+) for a

linear map A : Rd → Sn such that A(ei) ̸= 0 for each i ∈ [d]. If w ∈ Rd
+ is such that A(w) = 0, then

w = 0.

Proof. If there exists nonzero w ∈ Rd
+ and such that A(w) = 0, then K is not pointed, contradict-

ing (23). □

Theorem 22. Let D,K ⊆ Sn be closed convex cones such that (22) holds, where K := A(Rd
+) for a

linear map A : Rd → Sn such that A(ei) ̸= 0 for each i ∈ [d]. Then νD,A : Rd
+ → R defined by

(39) νD,A(w) := νD,K(A(w)) for every w ∈ Rd
+

is a positive definite monotone gauge, and its dual is the positive definite monotone gauge

(40)
ν◦
D,A(z) = min{ ν◦

D,K(Z) : Z ∈ K∗, A∗(Z) ≥ z}
= min{µ : µ ∈ R+, Y ∈ D, diag(Y ) = µ1, A∗(Y ) ≥ z}

for every z ∈ Rd
+. Similarly, maxqD,A : Rd

+ → R defined by

(41) maxqD,A(w) := maxqD,K(A(w)) for every w ∈ Rd
+
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is a positive definite monotone gauge, and its dual is the positive definite monotone gauge

(42)
fevcD,A(z) = min{ fevcD,K(Z) : Z ∈ K∗, A∗(Z) ≥ z}

= min
{
1

Ty : y ∈ RF(D)
+ ,

∑
U∈F(D)

yU A∗(sUs
T
U ) ≥ z

}

for every z ∈ Rd
+.

Proof. We first prove (39) to be a positive definite monotone gauge. As the composition of the
gauge νD,K with a linear function, it is immediate that νD,A is a gauge. If 0 ≤ w ≤ v, then
0 ⪯K A(w) ⪯K A(v), so monotonicity of νD,A follows from the monotonicity part of Theorem 20,
item (ii). Let w ∈ Rd

+ be such that νD,A(w) = 0. Then νD,K(A(w)) = 0, so Theorem 20 implies that
A(w) = 0. Hence w = 0 by Proposition 21. Thus νD,A is a positive definite monotone gauge. Hence

ν◦
D,A(z) = max{ zTw : w ∈ Rd

+, νD,A(w) ≤ 1}

= max{ zTw : w ∈ Rd
+, νD,K(A(w)) ≤ 1}

= max{ zTw : w ∈ Rd
+, x ∈ Rn, Diag(x) ⪰D∗ A(w), 1Tx ≤ 1}

= min{µ : µ ∈ R+, Y ∈ D, diag(Y ) = µ1, A∗(Y ) ≥ z}.

Let α > 0 be such that λmax(A(α1)) < 1. Then (ẘ, x̊) := ( α
2n1,

1
2n1) is strictly feasible in the

second to last optimization problem, since Diag(̊x) − A(ẘ) = 1
2nI − α

2nA(1) ∈ int(Sn
+) ⊆ int(D∗)

and 1
Tx̊ < 1. For Y̊ as in (34), since Y̊ ∈ int(D) ⊆ int(K̂∗), we have that A∗(Y ) > 0 from (38), and

thus A∗(αY̊ ) − z = α(A∗(Y̊ ) − 1
αz) > 0 for α ∈ R+ big enough. Thus the last optimization problem

is also strictly feasible. Hence

ν◦
D,A(z) = min{µ : µ ∈ R+, Y ∈ D, diag(Y ) = µ1, A∗(Y ) ≥ z}

= min{µ : µ ∈ R+, Y ∈ D, Z ∈ K∗, diag(Y ) = µ1, Y ⪰K̂∗ Z, A∗(Z) ≥ z}
= min{ ν◦

D,K(Z) : Z ∈ K∗, A∗(Z) ≥ z}.

The second equation holds because (µ, Y ) 7→ (µ, Y, P (Y )) and (µ, Y, Z) 7→ (µ, Y ) map feasible
solutions between both problems while preserving objective value by (29).

That (41) is a positive definite monotone gauge follows from Theorem 20 and Proposition 21 as
above. Hence

maxq◦
D,A(z)

= max{ zTw : w ∈ Rd
+, maxqD,K(A(w)) ≤ 1}

= max{ zTw : w ∈ Rd
+, ⟨w,A∗(sUs

T
U )⟩ ≤ 1 for every U ∈ F(D)}

= min
{
1

Ty : y ∈ RF(D)
+ ,

∑
U∈F(D)

yU A∗(sUs
T
U ) ≥ z

}
by LP Strong Duality

= min
{
1

Ty : Z ∈ K∗, y ∈ RF(D)
+ ,

∑
U∈F(D)

yUsUs
T
U ⪰K̂∗ Z, A∗(Z) ≥ z

}
by (29) and (38)

= min{ fevc(Z) : Z ∈ K∗, A∗(Z) ≥ z}. by (31a) □

Appendix C. Concentration Results

In this section we prove the concentration results in Section 3. First we prove the results
concerning the polyhedral case.
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Proof of Proposition 11. Set S :=
∑

t∈[T ]Xt. Also, define xt := A∗(Xt) for every t ∈ [T ], and set
s := A∗(S). We also denote x := A∗(X), where X is the random matrix in the statement. Then, by
linearity of expectation,

E[s] = TE[x] = TE[A∗(X)] = TA∗(E[X]) ≥ Tε1.

Let i ∈ [d]. Chernoff’s bound and the previous inequality imply that

P
(
si ≤ (1 − γ)E[s]i

)
≤ exp

(
−γ2E[s]i

2

)
≤ exp

(
−γ2ε

2 T

)
.

Hence, by the union bound,

P(∃i ∈ [d], si ≤ (1 − γ)E[s]i) ≤ d exp
(

−γ2ε

2 T

)
≤ exp

(
log(d) − γ2ε

2
2(log(d) + log(n))

γ2ε

)
= 1
n
.

Thus with probability at least 1 − 1/n we have that s ≥ (1 − γ)E[s]. By (38), this event holds if
and only if S ⪰K̂∗ (1 − γ)E[S]. □

Proof of Proposition 12. Both (10) and (4) imply that A∗(E[ΞY ]) ≥ αΞA∗(Y ) ≥ αΞε1. Proposi-
tion 11 implies that, with probability at least 1 − 1/n,

1
T

∑
t∈[T ]

(ΞY )t ⪰K̂∗ (1 − γ)E[ΞY ] ⪰K̂∗ (1 − γ)αΞY.

Hence y ∈ RF(D)
+ defined by (1 − γ)αΞ · yU := 1

T |{ t ∈ [T ] : (ΞY )t = sUs
T
U }| for every U ∈ F(D)

satisfies the desired properties. □

One case we treat separately is when K = Sn
+. For this case, we use the following result by Tropp:

Proposition 23 (see [Tro12, Theorem 1.1]). Let {Xt : t ∈ T} be independent random matrices in
Sn. Let ρ ∈ R be such that

0 ⪯ Xt ⪯ ρI almost surely for every t ∈ T.

Set S :=
∑

t∈T Xt. Then for every γ ∈ (0, 1),

P(λmin(S) ≤ (1 − γ)λmin(ES)) ≤ n exp
(

−γ2

2
λmin(ES)

ρ

)
.

Proposition 23 weakens the upper bound from [Tro12, Theorem 1.1] using that
exp(−γ)

(1 − γ)1−γ
≤ exp

(
−γ2

2

)
,

which follows from (
1 − γ

2

)
γ

1 − γ
= γ +

∞∑
k=2

γk

2 ≥ γ +
∞∑

k=2

γk

k
= log

( 1
1 − γ

)
.

We prove the following result.

Proposition 24. Let γ ∈ (0, 1), let τ, ρ ∈ R+, and let Ȳ ∈ Sn
++. Let X : Ω → Sn be a random

matrix such that
0 ⪯ X ⪯ ρȲ almost surely, and τ Ȳ ⪯ E[X].

Let (Xt)t∈[T ] be independent identically distributed random variables sampled from X, for any

(43) T ≥
⌈ 4ρ
γ2τ

log(2n)
⌉
.
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Then, with probability at least 1 − 1/2n,
1
T

∑
t∈[T ]

Xt ⪰ (1 − γ)τ Ȳ .

Proof. For every t ∈ [T ], set Yt := Ȳ −1/2XtȲ
−1/2. Then

0 ⪯ Yt = Ȳ −1/2XtȲ
−1/2 ⪯ ρȲ −1/2Ȳ Ȳ −1/2 = ρI

for every t ∈ [T ] almost surely. Set Q :=
∑

t∈[T ] Yt. Since E[X] ⪰ τ Ȳ ,

E[Q] = E
[ ∑

t∈[T ]
Yt

]
=

∑
t∈[T ]

Ȳ −1/2E[Xt]Ȳ −1/2 ⪰ TτI,

which implies that λmin(E[Q]) ≥ Tτ . Hence

1 − P
( 1
T

∑
t∈[T ]

Xt ⪰ (1 − γ)τ Ȳ
)

= 1 − P(Q ⪰ T (1 − γ)τI)

≤ 1 − P(Q ⪰ (1 − γ)λmin(E[Q])I) as λmin(E[Q]) ≥ Tτ

≤ P(λmin(Q) ≤ (1 − γ)λmin(E[Q]))

≤ 2n exp
(

−γ2λmin(E[Q])
2ρ

)
by Proposition 23

≤ 2n exp
(

−γ2τ

2ρ T
)

as λmin(E[Q]) ≥ Tτ

≤ exp
(

log(2n) − γ2τ

2ρ
4ρ log(2n)

γ2τ

)
= 1

2n. by (43) □

For the more general case when K ⊆ Sn
+, we use the following result by Tropp which requires a

bound on the spectral norm of the random matrix and uses its second moment:

Theorem 25 (see [Tro15, Corollary 6.2.1]). Let T ∈ N be nonzero. Let X be a random matrix in
Sn such that ∥X∥ ≤ ρ almost surely. Let (Xt)t∈[T ] be i.i.d. random variables sampled from X. Set
σ2 := ∥E[X2]∥, set M := E[X], and set

E := 1
T

T∑
t=1

Xt.

Then for all γ ≥ 0,

P(∥E −M∥ ≥ γ) ≤ 2n exp
(

−T γ2/2
σ2 + 2ργ/3

)
.

Using Theorem 25, we are ready to prove our general concentration result.

Proof of Proposition 13. If σ2 ≥ (2/3)ργ, then

−T

2
γ2

σ2 + (2/3)γρ ≤ −T

4
γ2

σ2 ≤ −8σ2 log(2n)
γ2

γ2

4σ2 = −2 log(2n).

On the other hand, if σ2 ≤ (2/3)ργ, then

−T

2
γ2

σ2 + (2/3)γρ ≤ −T

4
γ2

(2/3)γρ ≤ −16ρ log(2n)
3γ

3γ
8ρ = −2 log(2n).

Theorem 25 implies

P
(∥∥∥∥ 1
T

∑
t∈[T ]

Xt − E[X]
∥∥∥∥ ≥ γ

)
≤ 2n exp

(
−T

2
γ2

σ2 + (2/3)ργ

)
≤ 2n exp(−2 log(2n)) = 1

2n. □
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Finally, we prove Proposition 15 by combining Proposition 13 with Proposition 14.

Proof of Proposition 15. Set Z := Y −1/2ΞY Y
−1/2. For every U ⊆ [n],

∥Y −1/2sUs
T
UY

−1/2∥ = ⟨sUs
T
U , Y

−1⟩ and ∥(Y −1/2sUs
T
UY

−1/2)2∥ = ⟨sUs
T
U , Y

−1⟩2.

Thus
maxq(Y −1) ≥ ∥Z∥ and maxq(Y −1)2I ⪰ Z2 almost surely.

Set σ2 := (n/ε)2 and ρ := n/ε. As Y ⪰ εI, we have that Y −1 ⪯ (1/ε)I, so maxq(Y −1) ≤ n/ε. Since
n ≥ 1 ≥ (2/3)γαΞε, we have that

T ≥
⌈ 8

(γεαΞ)2n
2 log(2n)

⌉
≥ 8

(γαΞ)2
n2

ε2 log(2n) = 8σ2 log(2n)
(γαΞ)2 ≥ 16

3
n

ε

1
γαΞ

log(2n) = 16ρ log(2n)
3γαΞ

.

Let {Zt : t ∈ [T ]} be i.i.d. random variables sampled from Z. Proposition 13 implies that

Y −1/2E[ΞY ]Y −1/2 − γαΞI ⪯ Y −1/2
( 1
T

∑
t∈[T ]

Zt

)
Y −1/2

with probability at least 1 − 1/(2n). Assume that this event holds. Let y ∈ RF(D)
+ be defined by

yU := 1
T |{ t ∈ [T ] : Zt = sUs

T
U }|. Then 1

Ty = 1 and∑
U∈F(D)

yUsUs
T
U = 1

T

∑
t∈[T ]

Zt ⪰ E[ΞY ] − αΞγY.

Proposition 14 implies we can compute in polynomial time ỹ ∈ RF(D)
+ with support size |supp(ỹ)| ∈

O(n/ζ2), such that 1Tỹ ≤ 1 + ζ, and
∑

U∈F(D) ỹUsUs
T
U ⪰ E[ΞY ] − αΞγY . As K ⊆ Sn

+, we have that
Sn

+ ⊆ K̂∗, so by (4) we obtain∑
U∈F(D)

ỹUsUs
T
U ⪰K̂∗ E[ΞY ] − γαΞY ⪰K̂∗ αΞY − γαΞY = (1 − γ)αΞY. □

Appendix D. Algorithmic Simultaneous Certificates

Let D,K ⊆ Sn be cones such that (22) holds. Let ε ∈ (0, 1). Set, for every W ∈ K,

νε,D,K(W ) := (1 − ε)νD,K(W ) + ε⟨I,W ⟩(44a)
= min

{
ρ : ρ ∈ R+, x ∈ Rn, ρ ≥ (1 − ε)1Tx+ ε⟨I,W ⟩, Diag(x) ⪰D∗ W

}
.(44b)

For every Z ∈ K∗, set

ν◦
ε,D,K(Z) = max{ ⟨Z,W ⟩ : x ∈ Rn, W ∈ K, W ⪯D∗ Diag(x), (1 − ε)1Tx+ ε⟨I,W ⟩ ≤ 1}(45a)

= min{µ : µ ∈ R+, Y ∈ Sn, Y ⪰D µεI, Y ⪰K̂∗ Z, diag(Y ) = µ1}.(45b)

One may check that νε,D,K and ν◦
ε,D,K are positive definite monotone gauges, dual to each other. Let

σ ∈ (0, 1) and set

(46) Hε,σ(D,K) :=

 (W,Z) ∈ K × K∗ :
∃(µ, Y ) feasible for (45b) for Z,
∃(ρ, x) feasible for (44b) for W,

and ⟨W,Z⟩ ≥ (1 − σ)ρµ

.
One may check that

(47)
if (ρ, x) and (µ, Y ) witness the membership (W,Z) ∈ Hε,σ(D,K), then

(1 − σ)ρµ ≤ ⟨W,Z⟩ ≤ ρµ.
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Theorem 26. Let ε ∈ [0, 1). Then,
(1 − ε)ν(W ) ≤ νε(W ) ≤ ν(W ), for each W ∈ K,(48a)

ν◦(Z) ≤ ν◦
ε (Z) ≤ 1

1 − ε
ν◦(Z), for each Z ∈ K∗.(48b)

Proof. We have that (1 − ε)ν(W ) ≤ νε(W ) since νε(W ) = (1 − ε)ν(W ) + ε⟨I,W ⟩ and ⟨I,W ⟩ ≥ 0
by (16) since W ∈ K ⊆ D∗.

We have that ν(W ) ≥ ⟨I,W ⟩ by (16). Therefore, νε(W ) = (1 − ε)ν(W ) + εTr(W ) ≤ ν(W ).
Equation (48b) holds by duality. □

Let D,K ⊆ Sn be closed convex cones such that (3) holds, where K is the polyhedral cone defined
by A : Rd → Sn. Assume that (16) holds. Set
(49) νε,D,A(w) := νε,D,K(A(w)) for every w ∈ Rd

+.

Then, for every z ∈ Rd
+,

(50)
ν◦

ε,K,A(z) = min{µ ∈ R+ : Y ⪰D εµI, diag(Y ) = µ1, A∗(Y ) ≥ z}

= max{ zTw : w ∈ Rd
+, x ∈ Rn, (1 − ε)1Tx+ εTr(A(w)) ≤ 1, Diag(x) ⪰D∗ A(w)}.

Let (µ̊, Y̊ ) be as in (34). Since I ∈ D ⊆ K∗ by (16) and (22), it follows from (10) that A∗(I) ≥ 0.
Hence

A∗((1 − ε)Y̊ + εµ̊I) ≥ (1 − ε)A∗(Y̊ ) > 0.
We thus conclude that (1 − ε)Y̊ + εµ̊I is strictly feasible in the first optimization problem in (50).
The second problem in (50) is also strictly feasible, as one can see by setting (ẘ, x̊) := ( α

3n1,
1

3n1)
for α ∈ R++ such that λmax(A(α1)) < 1. Hence the second equality in (50) and attainment of both
problems follow from Strong Duality. For the first equality in (50), note that
ν◦

ε (z)
= min{ ν◦

ε (Z) : Z ∈ K∗, A∗(Z) ≥ z}
= min{µ ∈ R+ : Z ∈ K∗, A∗(Z) ≥ z, Y ∈ Sn, Y ⪰D εµI, Y ⪰K̂∗ Z, diag(Y ) = µ1} by (45b)
≥ min{µ ∈ R+ : Y ∈ Sn, Y ⪰D εµI, diag(Y ) = µ1, A∗(Y ) ≥ z},

as Y ⪰K̂∗ Z implies A∗(Y ) ≥ A∗(Z) by (38). Equality follows from (29) and A∗(Y ) = A∗(P (Y ))
for every Y ∈ Sn, where P : Sn → Sn is the orthogonal projector on aff(K).

Proposition 27. Let D,K ⊆ Sn be closed convex cones such that (3) holds, where K := A(Rd
+) for

a linear map A : Rd → Sn. Assume that (16) holds. Let z ∈ Rd
+. If (µ, Y ) and (w, x) are feasible

solutions to (50) such that
(1 − σ)µ ≤ zTw ≤ µ,

then
(1, x) and (µ, Y ) witness the membership (A(w), Y ) ∈ Hε,σ(D,K).

Proof. It is immediate that (1, x) is feasible in (44b) for W := A(w). It is also clear that (µ, Y ) is
feasible in (45b) for Z := Y . The proof follows from

(1 − σ)µ ≤ wTz ≤ ⟨w,A∗(Y )⟩ = ⟨A(w), Y ⟩. □

Proposition 28. Let ε, σ, ζ ∈ [0, 1). Let D,K ⊆ Sn be such that (3) holds. Let W,Z ∈ Sn be
nonzero. Let (ρ̄, x) and (µ̄, Y ) witness the membership (W,Z) ∈ Hε,σ(D,K). Set ρ := (1 − ε)−1ρ̄

and µ := ρ−1⟨Z,W ⟩. Let p ∈ RF(D)
+ be such that 1Tp ≤ 1 + ζ and∑

U∈F(D)
pUsUs

T
U ⪰K̂∗

1
µ̄
Y.
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Set β := (1 − ε)(1 − σ)/(1 + ζ). Then

sT
V WsV ≥ βρ and Z ⪯K̂∗

1
β

∑
U∈F(D)

pUsUs
T
U

for V := arg max{ sTWsU : U ∈ supp(p)}.

Proof. Set V := arg max{ sT
UWsU : U ∈ supp(p)}. Then

⟨sV s
T
V ,W ⟩ ≥

∑
U∈F(D)

pU

1Tp
⟨sUs

T
U ,W ⟩

≥ 1
µ̄1Tp

⟨Y,W ⟩

≥ 1
µ̄1Tp

⟨Z,W ⟩ by (45b)

≥ 1 − σ

1Tp
ρ̄ by (46)

= (1 − σ)(1 − ε)
1Tp

ρ

≥ (1 − σ)(1 − ε)
1 + ζ

ρ.

Moreover,
µ = ρ−1⟨Z,W ⟩ ≥ ρ−1(1 − σ)ρ̄µ̄ = (1 − σ)(1 − ε)µ̄.

Hence
Z ⪯K̂∗ Y by (45b)

⪯K̂∗ µ̄
∑

U∈F(D)
pUsUs

T
U

⪯K̂∗
µ

(1 − σ)(1 − ε)
∑

U∈F(D)
pUsUs

T
U

⪯K̂∗ µ
1 + ζ

(1 − σ)(1 − ε)
∑

U∈F(D)
pUsUs

T
U . □

Proposition 29. Let ε, σ, γ ∈ (0, 1). Let D,K ⊆ Sn be closed convex cones such that (3) holds,
where K := A(Rd

+) for a linear map A : Rd → Sn. Assume (16) and that
(51) A∗(I) ≥ κ1,

for some κ ∈ R++. Let Ξ be a randomized rounding algorithm for D. Set β := αΞ(1−γ)(1−σ)(1−ε).
Let (W,Z) ∈ Hε,σ(D,K) be such that W ̸= 0 ̸= Z. Let (ρ̄, x) and (µ̄, Y ) witness the membership
(W,Z) ∈ Hε,σ(D,K). There exists a randomized polynomial-time algorithm that takes (ρ̄, x) and
(µ̄, Y ) as input and outputs a β-certificate (ρ, µ, y, U, x) for (W,Z) with high probability, and such
that

|supp(y)| ≤
⌈2(log(d) + log(n))

κεαΞγ2

⌉
almost surely.

In particular, (W,Z) is a β-pairing.

Proof. Note that ρ̄, µ̄ > 0 as W ̸= 0 ̸= Z. Set ρ := (1 − ε)−1ρ̄ and µ := (1/ρ)⟨W,Z⟩. Note that (15.i)
holds trivially. We also have (15.iv), since Diag(x) ⪰D∗ W and

ρ = ρ̄

1 − ε
≥ 1

1 − ε

(
(1 − ε)1Tx+ εTr(W )

)
≥ 1

Tx
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as I ∈ D by (16) and D ⊆ K̂∗ by (27).
We now prove (15.iii). Set Ȳ := µ̄−1Y . Since (µ̄, Y ) is feasible in (45b) and D ⊆ K̂∗, we have

that Ȳ ⪰K̂∗ εI. Thus A∗(Ȳ ) ≥ εA∗(I) ≥ εκ1 by (10) and (51). Proposition 12 ensures that one
can compute ȳ ∈ RF(D)

+ such that, with probability at least 1 − 1/n,

(52) 1
(1 − γ)

1
αΞ

∑
U∈F(D)

ȳUsUs
T
U ⪰K̂∗

1
µ̄
Y.

Setting p := (αΞ(1 − γ))−1ȳ and ζ := 0, Proposition 28 finishes the proof. □

Proof of Theorem 16. Set τ := 1 − β/αΞ , and σ := γ := ε := τ/3. If we are given w ∈ Rd
+ as input,

nearly solve (44a) with W := A(w) and set z := A∗(Y ) and Z := Y . If we are given z ∈ Rd
+,

nearly solve (50) and set Z := Y . In both cases, we obtain (A(w), Z) ∈ Hε,σ(D,K) such that
A∗(Z) ≥ z, as well as the appropriate witnesses of this membership. By definition, it suffices to
obtain a β-certificate for (A(w), Z). Proposition 29 implies one can compute, in polynomial time, a
β̂-certificate (ρ, µ, U, y, x) for (A(w), Z) with β̂ = αΞ(1 − γ)(1 − σ)(1 − ε). Since 0 < τ < 1 ≤ 9, we
have that

β̂ = αΞ

(
1 − τ

3

)3
= αΞ

(
1 − τ + 1

3τ
2 − 1

27τ
3
)

≥ αΞ(1 − τ) = β.

This implies that (ρ, µ, U, y, x) is a β-certificate. By Proposition 29, we have that

|supp(y)| ≤
⌈ 2
κεαΞγ2 (log(d) + log(n))

⌉
=

⌈ 54
καΞτ3 (log(d) + log(n))

⌉
. □

Proposition 30. Let ε, σ, γ, ζ ∈ (0, 1). Let D,K ⊆ Sn be such that (3) holds, and assume that
K ⊆ Sn

+. Let Ξ be a randomized rounding algorithm for D. Set β := αΞ(1 − γ)(1 −σ)(1 − ε)/(1 + ζ).
Let (W,Z) ∈ Hε,σ(D,K) be such that W ̸= 0 ̸= Z. Let (ρ̄, x) and (µ̄, Y ) witness the membership
(W,Z) ∈ Hε,σ(D,K). There exists a polynomial time algorithm that takes (ρ̄, x) and (µ̄, Y ) as
input and outputs a β-certificate (ρ, µ, y, U, x) with high probability. Almost surely, we have that
|supp(y)| ∈ O(n/ζ2) and that the algorithm takes at most⌈8n2 log(2n)

(εαΞγ)2

⌉
,

samples from Ξµ̄−1Y . In particular, (W,Z) is a β-pairing.

Proof. Let (W,Z) ∈ Hε,σ(D,K). Let (ρ̄, x) and (µ̄, Y ) witness the membership (W,Z) ∈ Hε,σ(D,K).
Note that ρ̄, µ̄ > 0 as W ̸= 0 ̸= Z. Set ρ := (1 − ε)−1ρ̄ and µ := ρ−1⟨Z,W ⟩. Then (15.i) holds
trivially. We also have (15.iv), since Diag(x) ⪰D∗ W and

ρ = ρ̄

1 − ε
≥ 1

1 − ε
((1 − ε)1Tx+ εTr(W )) ≥ 1

Tx,

as I ∈ D by (16) and D ⊆ K∗ by (3).
We now prove (15.iii). Set Ȳ := µ̄−1Y . Since (µ̄, Y ) is feasible in (45b) and D ⊆ K̂∗, we have

that Ȳ ⪰K̂∗ εI. Proposition 15 ensures one can compute, in polynomial time, ȳ ∈ RF(D)
+ such that

1
Tȳ ≤ 1 + ζ and |supp(ȳ)| ∈ O(n/ζ2), and with probability at least 1 − 1/(2n),∑

U∈F(D)
yUsUs

T
U ⪰K̂∗ (1 − γ)αΞ Ȳ .

Assume this event holds, and set p := (αΞ(1 − γ))−1y. Proposition 28 finishes the proof. □
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Proposition 31. Let ξ, γ be such that ξ ∈ (0, 1] and γ ∈ (0, 1). Let Ξ be a randomized rounding
algorithm for D. Let Z ∈ Sn

+. Let (µ, Y ) be feasible in (6a) with µ > 0. Let T ≥
⌈

2π
γ2ξ

log(2n)
⌉
, and

let (Xt)t∈[T ] be i.i.d. random variables sampled from ΞY . If

Y ≻ 0 and sT
UY

−1sU ≤ 1
ξµ

for every U ⊆ [n] with P(ΞY = U) > 0,(53)

then

P
(

µ

(1 − γ)T
∑

t∈[T ]
Xt ⪰ αΞZ

)
≥ 1 − 1

2n.

Proof. Set Ȳ := µ−1Y . Since µ > 0 and diag(Y ) = µ1, we have that Ȳ ≻ 0 and diag(Ȳ ) = 1. Note
that

(54) λmax(Ȳ −1/2sUs
T
U Ȳ

−1/2) = µsT
UY

−1sU ≤ µ
1
µξ

≤ 1
ξ
.

Hence 0 ⪯ ΞY ⪯ 1
ξ Ȳ almost surely. From (4), we may apply Proposition 24 with ρ := 1/ξ and

τ := αN = 2/π to conclude that with

T ≥
⌈ 4ρ
γ2τ

log(2n)
⌉

=
⌈ 4
γ2ξαN

log(2n)
⌉

=
⌈ 2π
γ2ξ

log(2n)
⌉

we have that 1
T

∑
t∈[T ]Xt ⪰ (1 − γ)αΞ Ȳ with probability at least 1 − 1/(2n). The result follows

from (µ, Y ) being feasible in (6a). □

Proof of Theorem 5. Set τ := 1 − β/αΞ , and set γ := σ := ε := τ/4. Set ζ := τ/(4 − τ), so
(1 + ζ)−1 = 1 − τ/4. By nearly solving either (44a) or (45), depending on whether W ∈ K
or Z ∈ K∗ was given as input, one can compute (ρ̄, x) and (µ̄, Y ) witnessing the membership
(W,Z) ∈ Hε,σ(D,K). Proposition 30 ensures one can compute, in randomized polynomial time, a
β̂-certificate (ρ, µ, U, y, x) for (W,Z) with high probability, where β̂ = (1 − τ/4)4. Since the function
x 7→ (1 − x/4)4 is convex, it overestimates 1 − x, which is its best linear approximation at x := 0.
Hence

β̂ = αΞ(1 − τ/4)4 ≥ αΞ(1 − τ) = β.

Thus (ρ, µ, U, y, x) is a β-certificate. Note that ζ is independent of n, so from Proposition 30 we can
conclude that |supp(y)| ∈ O(n), the hidden constant depending only on β. Similarly, since ε and γ
do not depend on n either, we have that the algorithm takes at most⌈ 8

(εαΞγ)2n
2 log(2n)

⌉
=

⌈ 2048
α2

Ξτ
4n

2 log(2n)
⌉

∈ O(n2 log(n))

samples from Ξ, the hidden constant depending only on β.
Now assume K = Sn

+. It is immediate that (3) holds. Set Ȳ := µ̄−1Y . We have that Ȳ ⪰ εI, so
Ȳ −1 ⪯ 1

εI. Hence sT
U Ȳ

−1sU ≤ n/ε for every U ⊆ [n], so (53) holds for ξ := ε/n. Propositions 31
and 28 imply that we can compute, with high probability, a β̂-certificate (ρ, µ, U, ȳ, x) for (W,Z)
with ⌈ 2π

ξγ2 log(2n)
⌉

=
⌈ 2π
εγ2n log(2n)

⌉
=

⌈128π
τ3 n log(2n)

⌉
samples from GW. Since τ is independent of n, Proposition 14 implies that we can sparsify ȳ ∈ RF(D)

+ ,
which potentially has support O(n logn), into y ∈ RF(D)

+ with |supp(y)| ∈ O(n). □
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Appendix E. Boolean 2-CSP

Let i, j ∈ [n]. Define the following matrices in S{0}∪[n]:
∆−i,−j := 1

2((e0 − ei)(e0 − ej)T + (e0 − ej)(e0 − ei)T),
∆−i,+j := 1

2((e0 − ei)(e0 + ej)T + (e0 + ej)(e0 − ei)T),
∆+i,−j := 1

2((e0 + ei)(e0 − ej)T + (e0 − ej)(e0 + ei)T),
∆+i,+j := 1

2((e0 + ei)(e0 + ej)T + (e0 + ej)(e0 + ei)T).

Direct computation shows that, for every B ∈ R{0,...,n}×{0,...,n},
⟨∆−i,−j , B

TB⟩ = ⟨B(e0 − ei), B(e0 − ei)⟩, ⟨∆−i,+j , B
TB⟩ = ⟨B(e0 − ei), B(e0 + ei)⟩

⟨∆+i,−j , B
TB⟩ = ⟨B(e0 + ei), B(e0 − ei)⟩, ⟨∆+i,+j , B

TB⟩ = ⟨B(e0 + ei), B(e0 + ei)⟩.
It is then routine to check that
(55) conv{ sUs

T
U : U ⊆ {0} ∪ [n]} ∩ D∆ = conv{ sUs

T
U : U ⊆ {0} ∪ [n]} = CUTD∆ .
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