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Abstract

We study Lovász and Schrijver’s hieararchy of relaxations based on positive
semidefiniteness constraints derived from the fractional stable set polytope.
We show that there are graphsG for which a single application of the underly-
ing operator, N+, to the fractional stable set polytope gives a nonpolyhedral
convex relaxation of the stable set polytope. We also show that none of the
current best combinatorial characterizations of these relaxations obtained by
a single application of the N+ operator is exact.
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1. Introduction

Lovász and Schrijver [6] proposed an elegant, general framework to con-
struct the convex hull of 0, 1 points in a given polytope P inside a hypercube,
say [0, 1]n. Such methods are called Lift-and-Project Methods. Among the
methods proposed by Lovász and Schrijver [6], we can mention N(·) and
N+(·); the latter is the focus of this paper.
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The behaviour of these operators N(·) and N+(·) has been of particular
interest when P is the fractional stable set polytope of a graph, given by

FRAC(G) :=
{
x ∈ [0, 1]V (G) : xu + xv ≤ 1, ∀ {u, v} ∈ E(G)

}
,

where V (G), E(G) denote the node set and the edge set of a graph G, re-
spectively. For every graph G, STAB(G) denotes the convex hull of incidence
vectors of stable sets in G. It is elementary to show that STAB(G) is the con-
vex hull of integer points in FRAC(G). In general, FRAC(G) 6= STAB(G)
unless G is bipartite.

Let Sn denote the space of n-by-n symmetric matrices with real entries.
Then, given a graph G,

M(G) :=
{
Y ∈ S{0}∪V (G) : Y e0 = diag(Y ),

Y ev ∈ cone(FRAC(G)),∀v ∈ V (G),

Y (e0 − ev) ∈ cone(FRAC(G)),∀v ∈ V (G)} .

In the above, 0 is the special homogenizing index, ei is the ith unit vector,
and

cone(FRAC(G)) :=

{(
x0
x

)
∈ R{0}∪V (G) : xu + xv ≤ x0, ∀ {u, v} ∈ E(G),

0 ≤ xv ≤ x0, ∀v ∈ V (G)} .

Projecting this lifting back to the space of STAB(G) results in

N(G) :=

{
x ∈ [0, 1]V (G) :

(
x0
x

)
= Y e0, for some Y ∈M(G)

}
.

Let Sn+ denote the space of n-by-n symmetric positive semidefinite (PSD)
matrices with real entries. Then

M+(G) := M(G) ∩ S{0}∪V (G)
+

yields the tighter relaxation

N+(G) :=

{
x ∈ [0, 1]V (G) :

(
x0
x

)
= Y e0, for some Y ∈M+(G)

}
.

If TH(G) denotes the theta body of G (see Lovász [3] and [5]) and CLQ(G)
the polytope defined by the clique constraints that are valid for STAB(G),
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it is known that TH(G) ⊆ CLQ(G) [3]. In [6], the authors gave a PSD
representation for TH(G) that seems close to the definition of M+(G):

TH(G) =
{
x ∈ [0, 1]V (G) :

(
x0
x

)
= Y e0, Yij = 0,∀{i, j} ∈ E(G),

Y e0 = diag(Y ), Y ∈ S{0}∪V (G)
+

}
.

Using that result, we define

T̂H(G) :=
{
x ∈ [0, 1]V (G) :

(
x0
x

)
= Y e0, (1)

Y ev ∈ cone(FRAC(G)), ∀v ∈ V (G),

Y e0 = diag(Y ), Y ∈ S{0}∪V (G)
+

}
.

Clearly, N+(G) ⊆ T̂H(G) ⊆ TH(G).
Lovász and Schrijver [6] proved that for every graph G, N(G) = OC(G),

where OC(G) denotes the polytope defined by intersecting FRAC(G) with
all the odd-cycle inequalities that are valid for STAB(G). To the best of our
knowledge, no analogous characterization has been discovered for N+(G).

Let ANTI-HOLE(G) denote the polytope defined by all the anti-hole con-
straints that are valid for STAB(G) and let WHEEL(G) denote the polytope
defined by all the wheel constraints that are valid for STAB(G) (for the
underlying inequalities, see for instance [6]).

Given any graph G, let us define

LS(G) := OC(G) ∩ ANTI-HOLE(G) ∩WHEEL(G) ∩ CLQ(G).

The following theorem follows from the results in [6]:

Theorem 1.1. For every graph G,

N+(G) ⊆ LS(G) ∩ TH(G).

The inclusion in the statement of Theorem 1.1 above may be strict. This
gives one of the motivations for the current paper: Find a sharper description
of N+(G) analogous to the partial description in Theorem 1.1. Full charac-
terizations analogous to Theorem 1.1 may be helpful in analyzing relaxations,
approximation ratios and integrality gaps.
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Note that LS(G) may have exponentially many facets and TH(G) may
need uncountably many defining linear inequalities. Moreover, it is known
that TH(G) is a polyhedron if and only if G is a perfect graph, (see for
instance [3]) but for N+(G), no such characterization has been obtained yet.
To the best of our knowledge, no graph with nonpolyhedral N+(G) is known.
The closest existing results in the literature about the nonpolyhedrality of
the relaxation obtained by the N+ operator can be found in Bianchi’s Ph.D.
Thesis [1]. It was proved there that when the N+ operator is applied to
the relaxation of the matching polytope described by the nonnegativity and
degree constraints, the resulting tighter relaxation can be nonpolyhedral.
The second motivation of the current work is: to show that N+(G) may not
be a polyhedron.

Let us present one of the main technical tools used by Lovász and Schrijver
[6] in proving Theorem 1.1. Given a graph G = (V,E) and a node v, we
denote by G	 v the graph obtained after the destruction of node v, that is
the subgraph of G obtained after deleting v and its adjacent nodes in G. If
aTx ≤ b is a valid inequality for STAB(G), we denote by Ga its support graph,
that is, the subgraph of G induced by the nodes with positive coefficients in
the inequality.

Lemma 1.2 ([6]). Let G = (V,E) and
∑
i∈V

aixi ≤ b be a valid inequality for

STAB(G). If, for every v ∈ V (Ga),∑
i∈V (Ga	v)

aixi ≤ b− av (2)

is a valid inequality for FRAC(Ga	 v), then
∑
i∈V

aixi ≤ b is a valid inequality

for N+(G).

It is well known that all the odd-cycle, anti-hole, wheel and clique con-
straints that are valid for STAB(G), satisfy the sufficient conditions given
in lemma above. However, there are examples of graphs G for which not
every valid inequality of N+(G) satisfies these conditions. Hence, the third
motivation for the current paper is: to improve (strengthen) the technical tool
provided by Lemma 1.2.

We start towards these goals by considering the following questions:

Q.1. Is there a stronger relaxation of N+(G) than the one presented in The-
orem 1.1? (Here, we are seeking a stronger relaxation which has an
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elegant, explicit description, analogous to the one given in Theorem
1.1.)

Q.2. Is N+(G) polyhedral for every G?

Q.3. Which valid inequalities for N+(G) do not satisfy the sufficient condi-
tion in Lemma 1.2?

In sections 2, 3 and 4 we provide answers to questions Q.1, Q.2 and Q.3,
respectively.

2. A stronger relaxation of N+(G)

A graph is called near-bipartite [8] if after the destruction of any node,
the resulting graph is bipartite.

Therefore, by Lemma 1.2, every valid inequality for STAB(G) with near-
bipartite support graph is also valid for N+(G). In particular, if G is near-
bipartite then N+(G) = STAB(G). However there are near-bipartite graphs
G for which STAB(G) do not coincide with LS(G). Consider as graph G the

anti-web W
3

11 in Figure 2.

Figure 1: The antiweb W
3

11.

It is known that the rank constraint,
∑

v∈V (G) xv ≤ α(G), is needed in the

description of STAB(G) [9]; but it is neither one of the inequalities of LS(G),
nor implied by them. This motivates the definition of a new polyhedral
relaxation of N+(G). For this purpose, let us recall that if G′ is a node-
induced subgraph of G (G′ := G[U ] where U ⊆ V ), then

STAB(G) ⊆ STAB(G′)⊕ [0, 1]V (G)\V (G′).
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For the sake of simplicity, using the above context, we consider STAB(G′) as
a subset of STAB(G).

If NB denotes the class of all near-bipartite graphs, given a graph G, we
define

NB(G) :=
⋂

G′=G[U ],U⊆V ;G′∈NB

STAB(G′).

It is clear that if G is near-bipartite then STAB(G) = NB(G). However, there
are other classes of graphs for which this condition holds, perfect graphs and
t-perfect graphs (i.e., a graph G for which STAB(G) = OC(G)) are examples
of this kind.

From the definition of NB(G) and Lemma 1.2, it is clear that N+(G) ⊆
NB(G). Since complete graphs, odd holes, odd antiholes and wheels are
near-bipartite graphs, we have

NB(G) ⊆ LS(G)

and the inclusion is strict (recall the graph W
3

11). Then, we have a stronger
relaxation of N+(G) analogous to the one given in Theorem 1.1.

Lemma 2.1. For every graph G, N+(G) ⊆ NB(G) ∩ TH(G).

Actually, in the following sections we analyze how tight the above relax-
ation of N+(G) is.

3. A graph G with nonpolyhedral N+(G)

As we have already mentioned, TH(G) is polyhedral if only if G is a
perfect graph, and in this case TH(G) = STAB(G). In addition, if G is
perfect then N+(G) is polyhedral, but it is known that it is not the only
class of graphs for which this condition holds; near-bipartite, t-perfect and
all graphs for which STAB(G) coincides with NB(G) are graphs for which
N+(G) is a polyhedron.

In what follows, we use similar techniques as the ones used in [1] in order
to prove that there exists an 8-node graph G for which N+(G) is nonpolyhe-
dral.

Let Ĝ be the graph in Figure 3. Using results in [7] we know that

STAB(Ĝ) = CLQ(Ĝ) ∩ {x ∈ RV (G) :
8∑
i=1

xi ≤ 2}. (3)
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We prove that a two dimensional cross-section of the compact convex re-
laxation N+(Ĝ) has a nonlinear piece on its boundary, by considering some
“symmetric” points in N+(Ĝ). In order to do so, for every pair of nonnegative
numbers α and β, let z ∈ R8 such that

zi :=

{
α if i ∈ {1, 2, 3, 4} ,
β if i ∈ {5, 6, 7, 8} .

(4)

Figure 2: The graph Ĝ.

Since N+(Ĝ) ⊆ TH(Ĝ) ⊆ CLQ(Ĝ), every z defined by (4) which belongs
to N+(Ĝ) must satisfy the nonnegativity and clique constraints, i.e.,

2α + β ≤ 1, α + 2β ≤ 1, 4β ≤ 1, α ≥ 0, β ≥ 0.

It is easy to check that the inequality α + 2β ≤ 1 can be deduced from
the other inequalities, leading us to the following definition:

Definition 3.1. Given nonnegative numbers α and β, we say that z ∈ R8

defined in (4) is an αβ-point and we write z (α, β), if α and β satisfy

2α + β ≤ 1 and 4β ≤ 1. (5)

The main result of this section is that the convex set of αβ-points in
N+(Ĝ) is not a polyhedron. In order to prove it, we characterize the set of
αβ-points in N+(Ĝ).

Let us begin by considering an appropriate matrix Y ∈ M+(Ĝ) for such
an αβ-point.
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Definition 3.2. For nonnegative numbers α and β, let z be as defined in (4).
If λα and λβ are nonnegative numbers, we define Y (z;λα, λβ) the symmetric
matrix satisfying:

1. the diagonal and the zeroth column are equal to (1, z)T ∈ R9,

2. for each {i, j} ∈ E(Ĝ), [Y (z;λα, λβ)]ij := 0,

3. for each {i, j} /∈ E(Ĝ) and i 6= 0, j 6= 0,

[Y (z;λα, λβ)]ij :=

{
λα if zi = zj = α, i 6= j,
λβ if zi = α, zj = β.

Then we have,

Lemma 3.3. Let z(α, β) be an αβ-point. Then, z ∈ N+(Ĝ) if and only if
there exist nonnegative numbers λα, λβ such that

λα + λβ ≤ α, 2λβ ≤ β, 2λβ ≤ α, (6)

3α− 1 ≤ λα, (7)

Y (z;λα, λβ) is PSD. (8)

Proof. Trivially, if z is an αβ-point and there is a PSD matrix Y (z;λα, λβ)

for which λα, λβ satisfy (6) and (7), then Y (z;λα, λβ) ∈M+(Ĝ) and z(α, β) ∈
N+(Ĝ).

Let z ∈ N+(Ĝ) and let S be the set of automorphisms of Ĝ. Given
Y ∈ M+(Ĝ) and σ ∈ S, let σ(Y ) be the matrix such that, for every i, j ∈
{0, 1, . . . , 8}, [σ(Y )]ij := Yσ(i)σ(j) where σ(0) = 0.

It is not hard to see that σ(Y ) ∈M+(Ĝ). Moreover, as M+(Ĝ) is a convex
set, defining

Y :=
1

|S|
∑
σ∈S

σ(Y ),

we have that Y ∈M+(Ĝ).

It only remains to observe that if Y ∈M+(Ĝ) and Y e0 =

(
1
z

)
then Y =

Y (z;λα, λβ) for some nonnegative values λα, λβ. The conditions (6) and (7)

follow from the facts that Y (z;λα, λβ)ei ∈ FRAC(Ĝ) and Y (z;λα, λβ)(e0 −
ei) ∈ FRAC(Ĝ), respectively.
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Observe that, by using (1), the same arguments in the above proof can
be applied to T̂H(Ĝ). Actually,

Remark 3.4. Let z(α, β) be an αβ-point. Then, z ∈ T̂H(Ĝ) if and only if
there exist nonnegative numbers λα, λβ such that conditions (6) and (8) hold.

In order to characterize the points z(α, β) in N+(Ĝ) we must handle the
PSD restriction of a matrix Y (z;λα, λβ) with λα, λβ satisfying (6) and (7).
Indeed, we have

Lemma 3.5. For nonnegative numbers α, β, λα, λβ satisfying (6), let

q(γ) := (4λ2β − αβ + 4α2β − λα β − 16αλβ β + 4αβ2 + 4λαβ
2)

+(α− 4α2 + λα − 4λ2β + β + αβ + λα β − 4 β2)γ
−(1 + α + λα + β)γ2 + γ3.

(9)

Let z be as in (4). Then, Y (z;λα, λβ) is PSD if and only if the roots of
the polynomial q are nonnegative.

Proof. The characteristic polynomial of the matrix Y (z;λα, λβ) is

p (γ) := − (α + λα − γ) (β − γ)
(
(−2λ2β + αβ − λα β)− (α− λα + β)γ + γ2

)2
q(γ).

Since the matrix Y (z;λα, λβ) is symmetric, all the roots of p(γ) are real.
Clearly, from conditions (6), the roots of (α + λα − γ) and (β − γ) are non-
negative. The roots given by the factor

(−2λ2β + αβ − λα β)− (α− λα + β)γ + γ2

are

γ3 =
1

2

(
α− λα + β −

√
α2 − 2αλα + λ2α + 8λ2β − 2αβ + 2λα β + β2

)
,

and

γ4 =
1

2

(
α− λα + β +

√
α2 − 2αλα + λ2α + 8λ2β − 2αβ + 2λα β + β2

)
.

From (6), we have α − λα + β ≥ 0. Then, proving that γ3 ≥ 0 is equivalent
to proving that:

(α− λα + β)2 −
(
α2 − 2αλα + λ2α + 8λ2β − 2αβ + 2λα β + β2

)
≥ 0.
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Or equivalently:

(α− λα − λβ) β + (β − 2λβ) λβ ≥ 0.

The last inequality holds by (6). Finally, observing that γ3 ≤ γ4, the claim
of the lemma follows.

We analyze the roots of the polynomial q defined in the previous lemma
by using the same techniques as in [1] and based on the following results:

Theorem 3.6 (Hurwitz [4]). Let q(x) = q0 + q1x + q2x
2 + . . . + qnx

n with
qi ∈ R for every i ∈ {0, . . . , n} and qn > 0. Then, all the roots of q have
negative real part if and only if the determinants:

det [q1] , det

[
q1 q0
q3 q2

]
, det

 q1 q0 0
q3 q2 q1
q5 q4 q3

 , . . . , det


q1 q0 0 . . . 0
q3 q2 q1 . . . 0
q5 q4 q3 . . . 0
...

...
...

...
q2n−1 q2n−2 q2n−3 . . . qn


are all positive. In the matrices above we let qr := 0 if r > n.

As a consequence of this theorem, we have

Corollary 3.7 ([1]). Let q (x) = q0 + q1x + q2x
2 + x3 be a polynomial with

real coefficients. Then, the roots of q have nonnegative real part if and only
if:

q0 ≤ 0, q1 ≥ 0, q2 ≤ 0 and q1q2 − q0 ≤ 0.

Observe that after applying the above result to the polynomial q in
Lemma 3.5, it yields that

−q0 = c1(λα, λβ),
q1 = c2(λα, λβ),
−q2 = 1 + α + λα + β,

−q1q2 + q0 = c3(λα, λβ),

where

c1 (λα, λβ) := −4λ2β + 16αβ λβ + (β − 4 β2)λα + αβ − 4 (α2β + αβ2),
c2 (λα, λβ) := −4λ2β + λα (1 + β) + α + β + αβ − 4 (α2 + β2),
c3 (λα, λβ) := (λα + α + β + 1) c2 (λα, λβ)− c1 (λα, λβ) .

Hence, we can state,
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Theorem 3.8. Let z(α, β) and λα, λβ satisfying (6). Then, Y (z;λα, λβ) is
PSD if and only if

c1 (α− λβ, λβ) ≥ 0, c2 (α− λβ, λβ) ≥ 0 and c3 (α− λβ, λβ) ≥ 0.

Proof. Since 1 + α + λα + β ≥ 0, Y (z;λα, λβ) is PSD if and only if

c1 (λα, λβ) ≥ 0, c2 (λα, λβ) ≥ 0, and c3 (λα, λβ) ≥ 0.

If λα, λβ satisfy (6) and we define λ′α = α−λβ, then (λ′α, λβ) also satisfy
(6) and λα ≤ λ′α. Then, it only remains to prove that the functions c1, c2
and c3 are nondecreasing with respect to λα. If we differentiate them with
respect to λα, we obtain:

• ∂c1
∂λα

= β − 4β2 = β (1− 4β) ,

• ∂c2
∂λα

= 1 + β,

• ∂c2
∂λα

= 1+2α (1− 2α + β)+2λα+2 β+2λα β+( β − 2λβ) (β + 2λβ) .

Using the facts that z is an αβ−point and inequalities in (6) hold, the func-
tions above are nonnegative and the proof is complete.

We can summarize all the results obtained so far in the following:

Corollary 3.9. Let z(α, β) be an αβ-point. Then, the following statements
are equivalent:

1. z ∈ N+(Ĝ);

2. z ∈ T̂H(Ĝ);

3. there exists 0 ≤ λβ ≤ min
{
α
2
, β
2

}
such that

c1 (α− λβ, λβ) ≥ 0, c2 (α− λβ, λβ) ≥ 0 and c3 (α− λβ, λβ) ≥ 0.

Proof. Observe that (i) trivially implies (ii). Now, let z ∈ T̂H(Ĝ), then by
Remark 3.4, there exist nonnegative numbers λα and λβ satisfying inequali-
ties (6) and condition (8). Then (iii) follows from the previous theorem.

Finally, let 0 ≤ λβ ≤ min
{
α
2
, β
2

}
and set λ′α := α − λβ. By assumption,

z(α, β) satisfies (5). Then, β + 2α ≤ 1. Since λβ ≤ β/2, it follows that
λβ ≤ 1−2α or equivalently α−λβ ≥ 3α−1. Hence, λα′ and λβ satisfy (6) and

(7). Applying Theorem 3.8 and Lemma 3.3, we conclude that z ∈ N+(Ĝ).
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Although we know that TH(Ĝ) is not a polyhedron (since Ĝ is not a
perfect graph), the result in the previous corollary is not enough to conclude
the nonpolyhedrality of N+(Ĝ) since we have only proved that TH(Ĝ) and
T̂H(Ĝ) coincide with N+(Ĝ) on a two dimensional cross-section.

In order to show that N+(Ĝ) is not a polyhedron, we identify a nonlinear
piece on its boundary, by restricting to αβ-points in N+(Ĝ) \ STAB(Ĝ).
Recall that the only facet of STAB(Ĝ) that is not a clique inequality is the
full rank inequality (3). This allows us to consider only αβ-points in the set
A (see Figure 3) given by

A := {z (α, β) : 0 ≤ β ≤ 1

4
, β + 2α ≤ 1, 2α + 2β ≥ 1}.

1
4

α

β

1
2

1
4

Figure 3: The set A corresponds to the shaded region.

Now, for αβ-points in A ∩ N+(Ĝ), conditions in Corollary 3.9 can be
simplified as follows:

Lemma 3.10. Let z(α, β) ∈ A. Then, z ∈ N+(Ĝ) if and only if there exists
0 ≤ λβ ≤ β

2
satisfying c1 (α− λβ, λβ) ≥ 0.

Proof. Observe that, for every z(α, β) ∈ A, we have β ≤ α. By Corollary 3.9,
z ∈ N+(Ĝ) if and only if 0 ≤ λβ ≤ β

2
, c1 (α− λβ, λβ) ≥ 0, c2 (α− λβ, λβ) ≥ 0,

and c3 (α− λβ, λβ) ≥ 0.
For λβ ∈ [0, β

2
] we define

g(λβ) := c2 (α− λβ, λβ)− c1 (α− λβ, λβ)
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and
h(λβ) = c3 (α− λβ, λβ)− c1 (α− λβ, λβ) .

To prove the result we only need to show that g(λβ) ≥ 0 and h(λβ) ≥ 0 for
every λβ ∈ [0, β

2
]. It is not difficult to see that they are decreasing functions

for λβ ∈ [0, β
2
] and then, it is enough to prove that g

(
β
2

)
≥ 0 and h

(
β
2

)
≥ 0.

Taking into account that

g

(
β

2

)
= 2α− 4α2 +

β

2
+ 4α2β − 4β2 − 2β3

and

h

(
β

2

)
=

1

4

[
8α− 32α3 + 2β + 40α2β − 9β2 − 40αβ2 − 27β3

]
,

it can be easily checked that the minimum values of g
(
β
2

)
and h

(
β
2

)
are both

achieved at β = 1/4.
Finally, it is not hard to see that, for every α ∈ [1/4, 1/2], we have

g(1
8
) ≥ 0 and h(1

8
) ≥ 0.

We are now ready to present the main result of this section.

Theorem 3.11. Let α and β be nonnegative numbers satisfying 2α + β ≤
1 and 4β ≤ 1. An αβ-point belongs to N+(Ĝ) ∩ A if and only if β ≤
3−
√

1+8(−1+4α)2

8
.

Proof. For every λβ ∈ [0, β
2
] we define f(λβ) := c1 (α− λβ, λβ). Let z(α, β).

By Lemma 3.10, z ∈ N+(Ĝ) ∩ A if and only if there exists λβ ∈ [0, β
2
] such

that f(λβ) ≥ 0. We will prove that f is a nondecreasing function in [0, β
2
]

and then f(λβ) ≥ 0 if and only if f(β
2
) ≥ 0.

Recall that

f (λβ) = −4λ2β + 2αβ − 4α2β + λβ β + 16αλβ β − 8αβ2 + 4λβ β
2,

and
∂
∂λβ

f (λβ) = 4 (−2λβ + β) + β (−5 + 16α + 4β)

= 4 (−2λβ + β) + β [(−5 + 12α) + 4(α + β)] .

Observe that for z ∈ A, we have α ≥ 1
4

and 4(α + β) ≥ 2. Hence,

∂

∂λβ
f (λβ) ≥ 4 (−2λβ + β) + β(−3 + 12α).
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Thus, ∂
∂λβ

f (λβ) ≥ 0.

It only remains to verify that condition f(β
2
) ≥ 0 is equivalent to

β ≤ 1

8

(
3−

√
1 + 8 (−1 + 4α)2

)
.

By definition,

f
(
β
2

)
= 2αβ − 4α2β − 3

2
β2 + 2β3

= β
32

(
(−3 + 8β)2 − 1− 8 (−1 + 4α)2

)
;

then,

f

(
β

2

)
≥ 0 if and only if (−3 + 8β)2 ≥ 1 + 8 (−1 + 4α)2 .

Since z ∈ A, we have −3 + 8β ≤ 0 yielding

f

(
β

2

)
≥ 0 if and only if 3− 8β ≥

√
1 + 8 (−1 + 4α)2,

or equivalently,

f

(
β

2

)
≥ 0 if and only if β ≤ 1

8

(
3−

√
1 + 8 (−1 + 4α)2

)
.

The result in Theorem 3.11 allows us to establish the following:

Corollary 3.12. For any graph G having Ĝ as an induced subgraph, N+(G)
is not a polyhedron.

4. More valid inequalities for N+(Ĝ)

Let us observe that Theorem 3.11 provides an infinite family of valid
inequalities for N+(Ĝ) that do not satisfy the conditions of Lemma 1.2. Ac-
tually, we can state,

14



Theorem 4.1. For α0 ∈ (1
4
, 1
2
], let

a(α0) := 4(4α0 − 1), b(α0) :=
√

1 + 8(4α0 − 1)2 and

c(α0) := 3
2

√
1 + 8(4α0 − 1)2 + 16α0 − 9

2
.

Then,

a(α0)(x1 + x2 + x3 + x4) + b(α0)(x5 + x6 + x7 + x8) ≤ c(α0) (10)

is a valid inequality for N+(Ĝ) that does not satisfy the conditions of Lemma
1.2.

Proof. Let us observe that if there exists a point x ∈ N+(G) violating an in-
equality of the form (10), then by convexity there exists an αβ-point violating
this same inequality. Thus, it is enough to prove that

4a(α0)α + 4b(α0)β ≤ c(α0)

is valid for any αβ-point in N+(Ĝ). Indeed, this fact follows after computing
the tangent line to the function

g(α) :=
3−

√
1 + 8(4α0 − 1)2

8

at the point (α0, g(α0)) for α0 ∈ (1
4
, 1
2
] and observing that this tangent line

is exactly 4a(α0)α + 4b(α0)β = c(α0).
Finally, it is easy to check that the point x = (1, 0, 1

2
, 0, 0, 0, 1

2
, 1
2
)T ∈

FRAC(Ĝ)∩{x : x1 = 1} and violates the inequality (10) for every α0 ∈ (1
4
, 1
2
].

In other words, inequality (10) does not satisfy the conditions of Lemma 1.2
when G = Ĝ in Figure 3 and v = 1.

Also observe that by Corollary 3.9, the inequalities in (10) are valid in-
equalities for T̂H(Ĝ), for every α0 ∈ (1

4
, 1
2
].

The results presented herein lead us to wonder if every valid inequality
for N+(G) which is not valid for NB(G) is valid for T̂H(G) or, equivalently,
whether N+(G) = NB(G) ∩ T̂H(G).
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