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Abstract

In this paper, we give an exact expression for Clarke generalized Jacobian of the projection
onto symmetric cones, which generalizes and unifies the existing related results on second-
order cones and the cones of symmetric positive semi-definite matrices over the reals. Our
characterization of the Clarke generalized Jacobian exposes a connection to rank-one matri-
ces.
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1 Introduction

This paper focuses on Clarke generalized Jacobian of the projection onto symmetric cones. First,
we recall some basic concepts. Let ̥ : Ω ⊆ X → Y be a locally Lipschitz function on an open set
Ω, where X and Y are two finite dimensional inner product spaces over the field R. Let ∇̥(x)
denote the derivative of ̥ at x if ̥ is differentiable at x. The Clarke generalized Jacobian of
̥ at x is defined by ∂̥(x) := conv{∂B̥(x)}, where ∂B̥(x) := {limx̄→x,x̄∈D̥

∇̥(x̄)} is the
B-subdifferential of ̥ at x, and D̥ is the set of points of Ω where ̥ is differentiable. We
assume that the reader is familiar with the concepts of (strong) semismoothness, and refer to
[4, 5, 14, 15, 16] for details.

It is well-known that the scalar-valued function g : R → R+ with g(t) = t+ := max{0, t} is
strongly semismooth and its Clarke generalized Jacobian is specified by t+/t if t 6= 0 and the
interval [0, 1] if t = 0. Note that the projection onto an arbitrary closed convex set is Lipschitz
continuous. In the case of second-order cone, we know that the projection operator is strongly
semismooth, see, e.g., [2, 3, 8]. In particular, Hayashi, Yamashita and Fukushima [8] gave
an explicit representation for Clarke generalized Jacobian of the projection onto second-order
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cones. Malick and Sendov [12] studied the differentiability properties of the projection onto cone
of positive semi-definite matrices and worked out its Clarke generalized Jacobian. Recently, Sun
and Sun [19] showed that the projection onto symmetric cones, which include the nonnegative
orthant, the cone of symmetric positive semi-definite matrices and the second-order cone as
special cases, is strongly semismooth everywhere. Kong, Sun and Xiu [11] studied the Clarke
generalized Jacobian of the projection onto symmetric cones and gave its upper bound and lower
bound. Meng, Sun and Zhao [13] studied the Clarke generalized Jacobian of the projection onto
nonempty closed convex sets and showed that any element V in its Clarke generalized Jacobian
is self-adjoint and V � V 2 (see Proposition 1 of [13] for details).

One of the areas where projection operator is widely applied is the area of complementarity
problems, see, e.g., [5]. Also, projection operator is a fundamental ingredient of many algorithms
for solving convex optimization problems (see for instance the survey by Bauschke and Borwein
[1] and the references therein). Our work is in the setting of symmetric cones which unifies
and generalizes the special cases of second-order cones, cones of Hermitian positive semi-definite
matrices over reals, complex numbers, quaternions as well as the direct sums of any subset of
these cones.

Motivated by all of the work cited above, we aim to give the exact expression of the Clarke
generalized Jacobian of the projection onto symmetric cones x+ (or ΠK(x), see Section 2). Our
result generalizes corresponding results of [8] and [12] (from second-order cones and positive
semi-definite cones respectively) to symmetric cones. Interesting enough, the expression of the
Clarke generalized Jacobian of x+ is linked to rank-one matrices. This allows us to obtain the
formulae of operators x− and |x| in a similar manner.

This paper is organized as follows. In the next section, we establish the preliminaries and
study the relationship among all the Jordan frames of an element. We also introduce the matrix
representation of the Jacobian operator of x+. In Section 3, we present the exact expression of
the Clarke generalized Jacobian of the projection operator x+ by studying its B-subdifferential.
In Section 4, we investigate the relationships among B-subdifferentials of x+, x− and |x|.

2 Preliminaries

2.1 Euclidean Jordan algebras

We give a brief introduction to Euclidean Jordan algebras. More comprehensive introduction
to the area can be found in Koecher’s lecture notes [10] and in the monograph by Faraut and
Korányi [6].

A Euclidean Jordan algebra is a triple (J , 〈·, ·〉, ◦) (V for short), where (J , 〈·, ·〉) is a n-
dimensional inner product space over R and (x, y) 7→ x ◦ y : J × J → J is a bilinear mapping
which satisfies the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ J ,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J where x2 := x ◦ x,
(iii) 〈x ◦ y,w〉 = 〈x, y ◦ w〉 for all x, y,w ∈ J .

We call x◦y the Jordan product of x and y. In general, (x◦y)◦w 6= x◦(y◦w) for all x, y,w ∈ J . We
assume that there exists an element e (called the identity element) such that x◦e = e◦x = x for
all x ∈ J . Given a Euclidean Jordan algebra V, define the set of squares as K := {x2 : x ∈ J }.
By Theorem III 2.1 in [6], K is the symmetric cone, i.e., K is a closed, convex, homogeneous
and self-dual cone. For x ∈ J , the degree of x denoted by deg(x) is the smallest positive
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integer k such that the set {e, x, x2, · · · , xk} is linearly dependent. The rank of V is defined as
max{deg(x) : x ∈ J }. In this paper, r will denote the rank of the underlying Euclidean Jordan
algebra. An element c ∈ J is an idempotent if c2 = c 6= 0, which is also primitive if it cannot be
written as a sum of two idempotents. A complete system of orthogonal idempotents is a finite
set {c1, c2, · · · , ck} of idempotents where ci ◦ cj = 0 for all i 6= j, and c1 + c2 + · · · + ck = e. A
Jordan frame is a complete system of orthogonal primitive idempotents in V.

We now review two spectral decomposition theorems for the elements in a Euclidean Jordan
algebra.

Theorem 2.1 (Spectral Decomposition Type I (Theorem III.1.1, [6])) Let V be a Euclidean
Jordan algebra. Then for x ∈ J there exist unique real numbers µ1(x), µ2(x), · · · , µr̄(x), all
distinct, and a unique complete system of orthogonal idempotents {b1, b2, · · · , br̄} such that

x = µ1(x)b1 + · · · + µr̄(x)br̄.

Theorem 2.2 (Spectral Decomposition Type II (Theorem III.1.2, [6])) Let V be a Euclidean
Jordan algebra with rank r. Then for x ∈ J there exist a Jordan frame {c1, c2, · · · , cr} and real
numbers λ1(x), λ2(x), · · · , λr(x) such that

x = λ1(x)c1 + λ2(x)c2 + · · · + λr(x)cr. (2.1)

The numbers λi(x) (i = 1, 2, · · · , r) are the eigenvalues of x. We call (2.1) the spectral decom-
position (or the spectral expansion) of x.

Note that the above {b1, b2, · · · , br̄} and {c1, c2, · · · , cr} depend on x. We do not write this
dependence explicitly for the sake of simplicity in notation. Let C(x) be the set consisting of
all Jordan frames in the spectral decomposition of x. Let the spectrum σ(x) be the set of all
eigenvalues of x. Then σ(x) = {µ1(x), µ2(x), · · · , µr̄(x)} and for each µi(x) ∈ σ(x), denoting
Ni(x) := {j : λj(x) = µi(x)} we have bi =

∑

j∈Ni(x) cj .

Let g : R → R be a real-valued function. Define the vector-valued function G : J → J as

G(x) :=

r
∑

j=1

g(λj(x))cj(x) = g(λ1(x))c1(x) + g(λ2(x))c2(x) + · · · + g(λr(x))cr(x), (2.2)

which is a Löwner operator. In particular, letting t+ := max{0, t}, t− := min{0, t} and noting
|t| = t+ − t− (t ∈ R), respectively, we define

ΠK(x) := x+ :=

r
∑

i=1

(λi(x))+ci(x), x− :=

r
∑

i=1

(λi(x))−ci(x) and |x| :=

r
∑

i=1

|λi(x)|ci(x).

Note that z ∈ K (z ∈ int(K)) if and only if λi(z) ≥ 0 (λi(z) > 0) (∀i ∈ {1, 2, · · · , r}), where
int(K) denotes the interior of K. It is easy to verify that

x+ ∈ K, x = x+ + x−, and |x| = x+ − x−.

In other words, x+ is the projection of x onto K.

For each x ∈ J , we define the Lyapunov transformation L(x) : J → J by L(x)y = x ◦ y for
all y ∈ J , which is a symmetric self-adjoint operator in the sense that 〈L(x)y,w〉 = 〈y,L(x)w〉
for all y,w ∈ J . The operator Q(x) := 2L2(x) − L(x2) is called the quadratic representation of
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x. We say two elements x, y ∈ J operator commute if L(x)L(y) = L(y)L(x). By Lemma X.2.2
in [6], two elements x, y operator commute if and only if they share a common Jordan frame.

Next, we recall the Peirce decomposition on the space J . Let c ∈ J be a nonzero idempotent.
Then J is the orthogonal direct sum of J(c, 0), J(c, 1

2 ) and J(c, 1), where

J(c, ε) := {z ∈ J : c ◦ z = εz}, ε ∈

{

0,
1

2
, 1

}

.

This is called the Peirce decomposition of J with respect to the nonzero idempotent c. Fix a
Jordan frame {c1, c2, · · · , cr}. Defining the following subspaces for i, j ∈ {1, 2, · · · , r},

Jii := {x ∈ J : x ◦ ci = x} and Jij :=

{

x ∈ J : x ◦ ci =
1

2
x = x ◦ cj

}

, i 6= j,

we have Jii = J (ci, 1) and Jij = J (ci, 1/2)∩J (cj , 1/2) = Jji. We state the Peirce decomposition
theorem as follows. For more detail, see [6].

Theorem 2.3 (Theorem IV.2.1, [6]) Let {c1, c2, · · · , cr} be a given Jordan frame in a Euclidean
Jordan algebra V of rank r. Then J is the orthogonal direct sum of spaces Jij (i ≤ j). Further-
more,

(i) Jij ◦ Jij ⊆ Jii + Jjj;

(ii) Jij ◦ Jjk ⊆ Jik, if i 6= k;

(iii) Jij ◦ Jkl = {0}, if {i, j} ∩ {k, l} = Ø.

In a n-dimensional Euclidean Jordan algebra V of rank r, by Corollary IV.2.6 of [6], we have
dim(Jij) = dim(Jkl) =: n̄ for i, j, k, l ∈ {1, 2, · · · , r} such that i 6= j, k 6= l. Then

n = r +
n̄

2
r(r − 1). (2.3)

For a given Jordan frame {c1, c2, · · · , cr} and i, j ∈ {1, 2, · · · , r}, let Cij(x) be the orthogonal
projection operator onto subspace Jij . Then, by Theorem 2.3, we have

Cjj(x) = Q(cj) and Cij(x) = 4L(ci)L(cj) = 4L(cj)L(ci) = Cji(x), i, j ∈ {1, 2, · · · , r}, (2.4)

and the orthogonal projection operators {Cij(x) : i, j ∈ {1, 2, · · · , r}} satisfy

Cij(x) = C∗
ij(x), Cij(x)2 = Cij(x), Cij(x)Ckl(x) = 0 if {i, j} 6= {k, l}, i, j, k, l ∈ {1, 2, · · · , r}

and
∑

1≤i≤j≤r

Cij(x) = I,

where C∗
ij(x) is the adjoint operator of Cij(x) and I is the identity operator. Furthermore,

we have the following spectral decomposition theorem for L(x), L(x2) and Q(x). For a more
detailed exposition, see [10, 19].

Theorem 2.4 (Theorem 3.1, [19]) Let x ∈ J and
∑r

j=1 λj(x)cj(x) denote its spectral decom-

position with λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x). Then, the symmetric operators L(x), L(x2) and
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Q(x) have the spectral decompositions:

L(x) =
r
∑

j=1

λj(x)Cjj(x) +
∑

1≤j<l≤r

1

2
(λj(x) + λl(x))Cjl(x),

L(x2) =
r
∑

j=1

λ2
j (x)Cjj(x) +

∑

1≤j<l≤r

1

2
(λ2

j (x) + λ2
l (x))Cjl(x),

Q(x) =

r
∑

j=1

λ2
j (x)Cjj(x) +

∑

1≤j<l≤r

λj(x)λl(x)Cjl(x).

Moreover, the spectra σ(L(x)), σ(L(x2)) and σ(Q(x)), respectively, consist of all distinct num-
bers 1

2(λj(x) + λl(x)), 1
2(λ2

j (x) + λ2
l (x)), and λj(x)λl(x) for all j, l ∈ {1, 2, · · · , r}.

In the end of this subsection, we characterize a cone Kℑ (see (2.5) below) with respect to
x, which plays a key role in establishing the connection between ∂BΠK(x) and ∂BΠKℑ

(0) (see
Theorem 3.3). Let x =

∑r
j=1 λj(x)cj =

∑r̄
i=1 µi(x)bi with λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) and

µ1(x) > µ2(x) > · · · > µr̄(x). In what follows, let ℵ(x) := {i : λi(x) < 0}, ℑ(x) := {i : λi(x) =
0} and ℘(x) := {i : λi(x) > 0}. For the sake of simplicity, let ℵ := ℵ(x), ℑ := ℑ(x) and
℘ := ℘(x). Thus ℵ ∪ ℑ ∪ ℘ = {1, 2, · · · , r}. Set

bℑ :=
∑

j∈ℑ

cj .

By Theorem 2.1 and the argument after Theorem 2.2, bℑ = bi where the subscript i is specified
by µi(x) = 0. It follows that bℑ is uniquely defined by x. In other words, for any Jordan frame
{c̄1, · · · , c̄r} ∈ C(x),

∑

j∈ℑ c̄j = bℑ. Therefore, we can define a subspace

Jℑ := J(bℑ, 1) := {w ∈ J : w ◦ bℑ = w}.

By Lemma 20 in [7], it follows that

Jℑ = span
{

c|℘|+1, c|℘|+2, · · · , c|℘|+|ℑ|

}

+
∑

|℘|+1≤j<k≤|℘|+|ℑ|

Jjk.

Then we can verify by direct calculation that Jℑ is also a Euclidean Jordan algebra with its
identity element bℑ. Observe that bℑ :=

∑

j∈ℑ cj and {cj : j ∈ ℑ} is a complete system of
orthogonal idempotents. Thus, {cj : j ∈ ℑ} forms a Jordan frame in Jℑ and the rank of Jℑ is
|ℑ|. This leads us to define the cone of its squares as

Kℑ := {w2 : w ∈ Jℑ}. (2.5)

Therefore, it is well-defined that ΠKℑ
: Jℑ → Jℑ is the projection onto the symmetric cone Kℑ.

We can also define a cone by the finite set {cj : j ∈ ℑ}. Thus, we arrive at another cone
associated with x, denoted by

K(x, 0) :=
⋃

{c1,···,cr}∈C(x)

Cone{cj : j ∈ ℑ}. (2.6)

An interesting question occurs: what is the difference between the cones Kℑ and K(x, 0)?
Clearly, when x = 0, Kℑ = K(0, 0)(= K). The following proposition states that they are always
equal to each other.
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Proposition 2.5 Let x =
∑r

j=1 λj(x)cj with λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) and bℑ =
∑

j∈ℑ cj .
Let Kℑ and K(x, 0) be defined by (2.5) and (2.6), respectively. Then we have

Kℑ = K(x, 0) =
⋃

{c1,···,cr}∈C(x)

Cone{cj : j ∈ ℑ} (2.7)

and bℑ is the identity element in the above symmetric cone.

Proof. It is clear that K(x, 0) ⊆ Kℑ and bℑ is the identity element in Kℑ.
We now prove Kℑ ⊆ K(x, 0). Let y ∈ Kℑ. Then, by the argument before (2.5), there exists

a Jordan frame in Jℑ, say, {e1, e2, · · · , e|ℑ|}, such that y = y1e1 +y2e2 + · · ·+y|ℑ|e|ℑ| with yi ≥ 0.
Clearly, elements e1, e2, · · · , e|ℑ| belong to K and their sum is bℑ. We next show that, for any
Jordan frame {ci : i ∈ {1, · · · , r}} ∈ C(x), we can replace {c|℘|+1, · · · , c|℘|+|ℑ|} by {e1, · · · , e|ℑ|}
to get an element in C(x); I.e.,

{c1, · · · , c|℘|, e1, · · · , e|ℑ|, c|℘|+|ℑ|+1, · · · , cr} ∈ C(x). (2.8)

In fact, by the above definitions, we have

ck ◦ bℑ = 0, for all k ∈ {1, · · · , |℘|, |℘| + |ℑ| + 1, · · · , r}.

Then 〈ck, bℑ〉 = 0. By bℑ = e1 + · · · + e|ℑ|, it follows that 〈ck, bℑ〉 =
∑|ℑ|

i=1〈ck, ei〉 = 0. Since
ck, ei ∈ K, 〈ck, ei〉 ≥ 0. It then follows 〈ck, ei〉 = 0. By Proposition 6 in [7], we have

ck ◦ ei = 0, for all k ∈ {1, · · · , |℘|, |℘| + |ℑ| + 1, · · · , r}, i ∈ {1, · · · , |ℑ|}.

This proves (2.8). Then Cone{ej : j ∈ {1, · · · , |ℑ|}} ⊆ K(x, 0), and therefore y ∈ K(x, 0). �

The above proof yields the following interesting fact which is a decomposition result on
Jordan frames determined by x.

Proposition 2.6 Let x =
∑r

j=1 λj(x)cj =
∑r̄

i=1 µi(x)bi. Then for any Jordan frame {c1, · · · , cr}
in C(x), the set {cj : λj(x) = µi(x)} is a Jordan frame in J(bi, 1), and a Jordan frame in each
J(bi, 1) (i ∈ {1, · · · , r̄}), say, Cbi

, is a subset of some Jordan frame in C(x). Moreover, the union
of Cb1 , · · · , Cbr̄

forms a Jordan frame in C(x).

2.2 Matrix Representation of ∇G(x)

Let G(x) be given by (2.2). Suppose that g is differentiable at τi, i ∈ {1, 2, · · · , r}. Define the
first divided difference g[1] of g at τ := (τ1, τ2, · · · , τr)

T ∈ Rr as the r × r symmetric matrix with
the ij-th entry (g[1](τ))ij (i, j ∈ {1, 2, · · · , r}) given by

[τi, τj]g :=







g(τi)−g(τj)
τi−τj

if τi 6= τj ,

g′(τi) if τi = τj .

Based on Theorem 3.2 of [19], Kong, Sun and Xiu [11] introduced the following Jacobian prop-
erties of the Löwner operator G(·).

Theorem 2.7 (Theorem 2.8 of [11]) Let x =
∑r

j=1 λj(x)cj =
∑r̄

i=1 µi(x)bi(x). Then, G(·) is
(continuously) differentiable at x if and only if for each j ∈ {1, 2, · · · , r}, g is (continuously)
differentiable at λj(x). In this case, the Jacobian ∇G(x) is given by

∇G(x) = 2

r
∑

i,j=1

[λi(x), λj(x)]gL(ci)L(cj) −

r
∑

i=1

g′(λi(x))L(ci), (2.9)
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or equivalently

∇G(x) = 2

r̄
∑

i6=j,i,j=1

[µi(x), µj(x)]gL(bi(x))L(bj(x)) +

r̄
∑

i=1

g′(µi(x))Q(bi(x)). (2.10)

Furthermore, ∇G(x) is a symmetric linear operator from J into itself.

Suppose that Löwner operator G(·) is (continuously) differentiable at x =
∑r

j=1 λj(x)cj with
λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x). For a given Jordan frame {c1, c2, · · · , cr}, let

L :=







L(c1)
...

L(cr)







be an operator vector with respect to {c1, c2, · · · , cr}. Denote L∗ := (L∗(c1), · · · ,L
∗(cr)), where

L∗(ci) is the adjoint operator of L(ci). Since L(ci) is self-adjoint, we have

L∗ = (L∗(c1), · · · ,L
∗(cr)) = (L(c1), · · · ,L(cr)) .

For the real r × r matrix Λ(x) := ([λi(x), λj(x)]g)r×r
, we define

L∗Λ(x)L :=

r
∑

i,j=1

[λi(x), λj(x)]gL(ci)L(cj).

Similarly, for the r-vector d(x) = (g′(λ1(x)), · · · , g′(λr(x)))T , define

d∗(x)L :=
r
∑

i=1

g′(λi(x))L(ci).

Thus, by (2.9), we can give a matrix representation of the Jacobian ∇G(x) as follows:

∇G(x) = 2L∗Λ(x)L − d∗(x)L. (2.11)

In particular, consider the metric projection ΠK(·) at x =
∑r

j=1 λj(x)cj . Note that t = 0 is
the unique point where g = t+ is not smooth but strongly semismooth. Thus if ℑ = Ø, i.e.,
x is nonsingular, ΠK(·) is continuously differentiable at x. In this case, from (2.11), we write
∇ΠK(x) as

∇ΠK(x) = 2L∗Λ(x)L − d∗(x)L

where Λ(x) is a symmetric matrix of the form

Λ(x) =

(

E|℘|×|℘| Γ

ΓT 0|ℵ|×|ℵ|

)

(2.12)

with E|℘|×|℘| being the all ones |℘| × |℘| matrix, the |℘| × |ℵ| matrix Γ =
(

λi(x)
λi(x)−λj (x)

)

|℘|×|ℵ|
,

and the vector d(x) =
(

1T
|℘|, 0

T
|ℵ|

)T

. Throughout this paper, En1×n2
denotes the n1 ×n2 all ones

matrix.
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3 Clarke Generalized Jacobian of ΠK

This section deals with the Clarke generalized Jacobian of ΠK . This is influenced by the recent
work [8, 9, 12] in the special settings of second-order cones and positive semi-definite cones,
where Kanzow, Ferenczi and Fukushima [9] gave an expression for the B-subdifferential of the
projection onto second-order cones, Hayashi, Yamashita and Fukushima [8] gave an explicit
representation for Clarke generalized Jacobian of the projection onto second-order cones; Malick
and Sendov [12] worked out the Clarke generalized Jacobian of the projection onto the cone of
symmetric positive semi-definite matrices. We generalize the above results to symmetric cones.
For this purpose, we mainly look at the B-subdifferential of ΠK . First, we establish our notation.

For a given Jordan frame {c1, c2, · · · , cr}, we define

∂
{c1,···,cr}
B ΠK(x) :=

{

lim
h→0,x+h∈DΠK

∇ΠK(x + h) : h ∈ span{c1, c2, · · · , cr}, lim
h→0

∇ΠK(x + h) exists

}

.

For a given integer t ∈ {0, 1, · · · , |ℑ|} we define a r-vector dt(x) by

dt(x) :=









1|℘|
1t

0|ℑ|−t

0|ℵ|









=

(

1|℘|+t

0r−|℘|−t

)

, (3.1)

and a set of r × r matrices Λt(x) by

Λt(x) :=











E|℘|×|℘| E|℘|×|ℑ| Γ|℘|×|ℵ|

E|ℑ|×|℘| Λ0 0|ℑ|×|ℵ|

ΓT
|℘|×|ℵ| 0|ℵ|×|ℑ| 0|ℵ|×|ℵ|



 : Λ0 =

(

E Λ00

ΛT
00 0

)

,Λ00 ∈ Λ(t, |ℑ|)







, (3.2)

where Γ|℘|×|ℵ| is a given matrix by the ij-entry Γij = λi(x)
λi(x)−λj(x) (i ∈ ℘, j ∈ ℵ), and Λ(t, |ℑ|) is

a set of t × (|ℑ| − t) matrices (θij)t×(|ℑ|−t) (the rows are indexed by |℘| + 1, |℘| + 2, · · · , |℘| + t,
and the columns by |℘| + t + 1, |℘| + t + 2, · · · , |℘| + |ℑ|) specified by

Λ(t, |ℑ|) :=
{

(θij)t×(|ℑ|−t) ∈ [0, 1]t×(|ℑ|−t) : θij satisfy (a) and (b) below
}

(a) θi,|℘|+t+1 ≥ θi,|℘|+t+2 ≥ · · · ≥ θi,|℘|+|ℑ| (i ∈ {|℘| + 1, |℘| + 2, · · · , |℘| + t}) ,
θ|℘|+1,j ≥ θ|℘|+2,j ≥ · · · ≥ θ|℘|+t,j (j ∈ {|℘| + t + 1, |℘| + t + 2, · · · , |℘| + |ℑ|});

(b)
(

1
θij

− 1
)

t×(|ℑ|−t)
is a matrix of rank at most one.

Clearly, when x = 0, we have a r-vector

dt(0) := dt :=

(

1t

0r−t

)

, (3.3)

and a set of r × r matrices

Λt(0) := Λt :=

{(

Et×t Λt×(r−t)

ΛT
t×(r−t) 0(r−t)×(r−t)

)

: Λt×(r−t) ∈ Λ(t, r)

}

, (3.4)

where Λ(t, r) is a set of t × (r − t) matrices (θij)t×(r−t) (the rows are indexed by 1, 2, · · · , t, and
the columns by t + 1, t + 2, · · · , r) specified by

Λ(t, r) :=
{

(θij)t×(r−t) ∈ [0, 1]t×(r−t) : θij satisfy (a′) and (b′) below
}
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(a′) θi,t+1 ≥ θi,t+2 ≥ · · · ≥ θi,r (i ∈ {1, 2, · · · , t}),
θ1j ≥ θ2j ≥ · · · ≥ θtj (j ∈ {t + 1, t + 2, · · · , r});

(b′)
(

1
θij

− 1
)

t×(r−t)
is a matrix of rank at most one.

We are now ready to give the formula for the Clarke generalized Jacobian of ΠK(x) by its
B-subdifferential. Our next result generalizes Lemma 2.6 of [9] (for B-subdifferential), Theorem
3.7 of [12] and Proposition 4.8 of [8] (for Clarke generalized Jacobian).

Theorem 3.1 The B-subdifferential of ΠK(·) at x is given by

∂BΠK(x) =
⋃

{c1,···,cr}∈C(x)

|ℑ|
⋃

t=0

{2L∗Λt(x)L − d∗t (x)L}

where dt(x) and Λt(x) are specified by (3.1) and (3.2), respectively. Furthermore, the Clarke
generalized Jacobian of ΠK(·) at x is

∂ΠK(x) = conv {∂BΠK(x)} = conv







⋃

{c1,···,cr}∈C(x)

|ℑ|
⋃

t=0

{2L∗Λt(x)L − d∗t (x)L}







.

Proof. First we prove ∂BΠK(x) ⊇
⋃

{c1,···,cr}∈C(x)

⋃|ℑ|
t=0 {2L

∗Λt(x)L − d∗t (x)L}. Without loss
of generality, fix a Jordan frame {c1, · · · , cr} ∈ C(x). For any arbitrary but given integer t ∈
{0, 1, · · · , |ℑ|}, set V := 2L∗At(x)L − d∗t (x)L where At(x) ∈ Λt(x) and dt(x) is given by (3.1).
We need only to show that V ∈ ∂BΠK(x). For this purpose, it suffices to demonstrate that
there exists a vector h =

∑r
i=1 λi(h)ci such that

V = lim
h→0,x+h∈DΠK

∇ΠK(x + h).

Let At(x) = (θij)r×r. We define ςij := 1
θij

− 1 for i ∈ {|℘| + 1, · · · , |℘| + t} and j ∈ {|℘| + t +

1, · · · , |℘| + |ℑ|}, then Bt×(|ℑ|−t) := (ςij)t×(|ℑ|−t) can be written as

Bt×(|ℑ|−t) =







π|℘|+1
...

π|℘|+t







(

π|℘|+t+1, · · · , π|℘|+|ℑ|

)

,

where πi ∈ [0,+∞], π|℘|+1 ≤ π|℘|+2 ≤ · · · ≤ π|℘|+t and π|℘|+t+1 ≤ π|℘|+t+2 ≤ · · · ≤ π|℘|+|ℑ|.
Taking

λi(h) =











































































0 if 1 ≤ i ≤ |℘|,

ρ if πi = 0, |℘| < i ≤ |℘| + t,

1
πi

ρ2 if πi 6= 0,+∞, |℘| < i ≤ |℘| + t,

ρ3 if πi = +∞, |℘| < i ≤ |℘| + t,

−ρ3 if πi = 0, |℘| + t < i ≤ |℘| + |ℑ|,

−πiρ
2 if πi 6= 0,+∞, |℘| + t < i ≤ |℘| + |ℑ|,

−ρ if πi = +∞, |℘| + t < i ≤ |℘| + |ℑ|,

0 if |℘| + |ℑ| < i ≤ r,
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we have x + h =
∑r

i=1 λi(x + h)ci =
∑r

i=1[λi(x) + λi(h)]ci and for sufficiently small ρ ∈ (0, 1),

λ1(x + h) ≥ · · · ≥ λ|℘|+t(x + h) > 0 > λ|℘|+t+1(x + h) ≥ · · · ≥ λr(x + h).

It is easy to verify that x + h ∈ DΠK
and

lim
h→0

∇ΠK(x + h) = 2L∗At(x)L − d∗t (x)L.

Hence V ∈ ∂BΠK(x).

We next prove that ∂BΠK(x) ⊆
⋃

{c1,···,cr}∈C(x)

⋃r
t=0{2L

∗Λt(x)L − d∗t (x)L}. Let W ∈
∂BΠK(x). Then there is a vector h := h(W ) ∈ J such that W = limh→0,x+h∈DΠK

∇ΠK(x + h).

For the above h ∈ J , let x + h =:
∑r

j=1 λj(x + h)cj(x + h) with λ1(x + h) ≥ λ2(x + h) ≥ · · · ≥
λr(x + h). In the sense of set convergence (see [17]), we have

lim sup
h→0,x+h∈DΠk

{(c1(x + h), · · · , cr(x + h))} ⊆ C(x).

Let us pick {c1, · · · , cr} ∈ lim sup{c1(x + h), · · · , cr(x + h)}. Clearly,

lim
h→0,x+h∈DΠk

λ(x + h) = λ(x),

where λ(x + h) := (λ1(x + h), · · · , λr(x + h))T and none of λi(x + h) is zero. Suppose that

ℵ(x + h), ℘(x + h) are given and t := |℘(x + h)| − |℘|. Then dt(x) =
(

1T
|℘|+t

, 0T
r−|℘|−t

)T

. Set

Λt(x + h) :=





E|℘|×|℘| E|℘|×|ℑ| Γ|℘|×|ℵ|(h)

E|ℑ|×|℘| Λ̃ 0|ℑ|×|ℵ|

ΓT
|℘|×|ℵ|(h) 0|ℵ|×|ℑ| 0|ℵ|×|ℵ|



 with Λ̃ :=

(

Et×t Λ̃12

Λ̃T
12 0(|ℵ|−t)×(|ℵ|−t)

)

,

where Γ|℘|×|ℵ|(h) =
(

λi(x+h)
λi(x+h)−λj(x+h)

)

|℘|×|ℵ|
(i ∈ ℘, j ∈ ℵ) and Λ̃12 =

(

Λ̃ij

)

t×(|ℑ|−t)
with Λ̃ij =

λi(x+h)
λi(x+h)−λj(x+h) (i ∈ {|℘| + 1, · · · , |℘| + t}, j ∈ {|℘| + t + 1, · · · , |℘| + |ℑ|}). If limh→0 Λ̃12 exists,

then direct calculation yields

Θt(x) := lim
h→0

Λt(x+h) =





E|℘|×|℘| E|℘|×|ℑ| Γ|℘|×|ℵ|

E|ℑ|×|℘| Λ 0|ℑ|×|ℵ|

ΓT
|℘|×|ℵ| 0|ℵ|×|ℑ| 0|ℵ|×|ℵ|



 with Λ =

(

Et×t Λ12

ΛT
12 0(|ℵ|−t)×(|ℵ|−t)

)

,

where Λ := limh→0 Λ̃ and Λ12 := limh→0 Λ̃12 = (θij)t×(|ℑ|−t) with θij = limh→0
λi(x+h)

λi(x+h)−λj(x+h) (i ∈

{|℘| + 1, · · · , |℘| + t}, j ∈ {|℘| + t + 1, · · · , |℘| + |ℑ|}). Observing that

λ|℘|+1(h) ≥ λ|℘|+2(h) ≥ · · · ≥ λ|℘|+t(h) > 0

and
0 < −λ|℘|+t+1(h) ≤ −λ|℘|+t+2(h) ≤ · · · ≤ −λ|℘|+|ℑ|(h),

we easily show θij ∈ [0, 1] and (a). In order to prove (b), let

ςij := lim
h→0

−λj(x + h)

λi(x + h)
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for i ∈ {|℘| + 1, · · · , |℘| + t}, j ∈ {|℘| + t + 1, · · · , |℘| + |ℑ|}. Then,

θij =
1

1 + ςij
or equivalently ςij =

1

θij
− 1. (3.5)

Note that θij ∈ [0, 1] implies ςij ∈ [0,+∞] and θij = 0 ⇔ ςij = ∞, θij = 1 ⇔ ςij = 0. Define
B := (ςij)t×(|ℑ|−t). Then, it is easy to see that

B = lim
h→0









1
λ|℘|+1(h)

...
1

λ|℘|+t(h)









(

−λ|℘|+t+1(h), · · · ,−λ|℘|+|ℑ|(h)
)

.

This establishes (b), and hence Θt(x) ∈ Λt(x). The existence of limh→0,x+h∈DΠK
∇ΠK(x + h)

means that limh→0 Λ̃12(h) exists. This proves W = 2L∗Θt(x)L−d∗t (x)L ∈ {2L∗Λt(x)L−d∗t (x)L},
as desired. �

From the above proof, we also obtain that for a given Jordan frame {c1, c2, · · · , cr} ∈ C(x)

∂
{c1,···,cr}
B ΠK(x) =

|ℑ|
⋃

t=0

{2L∗Λt(x)L − d∗t (x)L}.

Note that when x = 0 the above result becomes the following, which provides a formula for
B-subdifferential of the projection onto symmetric cone ΠK(·) at the origin.

Corollary 3.2 The B-subdifferential of ΠK(·) at 0 is

∂BΠK(0) =
⋃

{c1,···,cr}∈C(0)

r
⋃

t=0

{2L∗ΛtL − d∗tL},

where dt and Λt are given by (3.3) and (3.4), respectively. Furthermore, the Clarke generalized
Jacobian of ΠK(·) at 0 is

∂ΠK(0) = conv (∂BΠK(0)) = conv







⋃

{c1,···,cr}∈C(0)

r
⋃

t=0

{2L∗ΛtL − d∗tL}







.

In general, ∂BΠK(0) 6= ∂ΠK(0).

Proof. We only need show that ∂BΠK(0) 6= ∂ΠK(0) in general. For this purpose, we look at
an example in the case of the second-order cone Λn

+ := {(x1, x
T
2 )T : x1 ≥ ‖x2‖, x1 ∈ R, x2 ∈

Rn−1} (n ≥ 2). Let {c1, c2} be a Jordan frame given by

ci =
1

2

(

1
(−1)i−1 ω

)

, for i ∈ {1, 2},

with ω being any vector in Rn−1 satisfying ‖ω‖ = 1. By direct calculation, we can derive that
∂BΠΛn

+
(0) = {0,I,T } and ∂ΠΛn

+
(0) = conv{0,I,T } where T satisfies

T = 4[0, 1]L(c1)L(c2) + Q(c1) + 0 ×Q(c2).

This means that ∂BΠK(0) 6= ∂ΠK(0) in general. �
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Applying Proposition 2.5, Theorem 3.1 and Corollary 3.2, we immediately obtain the fol-
lowing result, which states the interesting connection between ∂BΠK(x)(respectively, ∂ΠK(x))
and ∂BΠKℑ

(0)(respectively, ∂ΠKℑ
(0)). In the case of Sn, it reduces to Proposition 2.2 in [18].

Theorem 3.3 Let x =
∑r

i=1 λi(x)ci with λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x). Then V ∈ ∂BΠK(x)
(respectively, V ∈ ∂ΠK(x)) if and only if there exists a V|ℑ| ∈ ∂BΠKℑ

(0) (respectively, V|ℑ| ∈
∂ΠKℑ

(0)) such that
V = W + V|ℑ|,

where W is independent on the Jordan frame {c1, · · · , cr} and specified by

W = Q





∑

i∈℘

ci



+ 4L





∑

i∈℘

ci



L

(

∑

i∈ℑ

ci

)

+ 4
∑

i∈℘,j∈ℵ

λi(x)

λi(x) − λj(x)
L(ci)L(cj).

Proof. Let x =
∑r

i=1 λi(x)ci =
∑r̄

i=1 µi(x)bi with λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) and µ1(x) >
µ2(x) > · · · > µr̄(x), and set {c1, · · · , cr} =: {c℘, cℑ, cℵ} with c℘ :=

{

c1, · · · , c|℘|
}

, cℑ :=
{

c|℘|+1, · · · , c|℘|+|ℑ|

}

and cℵ :=
{

c|℘|+|ℑ|+1, · · · , cr

}

. By Proposition 2.5, any Jordan frame in Jℑ

is a subset of a Jordan frame in C(x), and the part cℑ of a Jordan frame {c, · · · , cr} in C(x) is a
Jordan frame in Jℑ. Let

L =





L|℘|

L|ℑ|

L|ℵ|



 ,

where

L|℘| :=







L(c1)
...

L(c|℘|)






, L|ℑ| :=







L(c|℘|+1)
...

L(c|℘|+|ℑ|)






, L|ℵ| :=







L(c|℘|+|ℑ|+1)
...

L(cr)






.

It therefore follows immediately from Theorem 3.1 and Corollary 3.2 that V ∈ ∂BΠK(x) if and
only if there exists a V|ℑ| ∈ ∂BΠKℑ

(0) such that

V = 2L∗At(x)L − d∗t (x)L, V|ℑ| = 2L∗
|ℑ|A(t, |ℑ|)L|ℑ| − d∗tL|ℑ|,

where r × r matrix At(x) ∈ Λt(x) and |ℑ| × |ℑ| matrix A(t, |ℑ|) ∈ Λ (t, |ℑ|) satisfy

At(x) =





E|℘|×|℘| E|℘|×|ℑ| Γ|℘|×|ℵ|

E|ℑ|×|℘| A(t, |ℑ|) 0|ℑ|×|ℵ|

ΓT
|℘|×|ℵ| 0|ℵ|×|ℑ| 0|ℵ|×|ℵ|



 ;

and r-vector dt(x) and |ℑ|-vector dt satisfy

dt(x) =
(

1T
|℘|, d

T
t , 0|ℵ|

)T

.

By the symmetry of L(x) and At(x), direct calculation yields

V = 2L∗At(x)L − d∗t (x)L

= 2L∗
|℘|E|℘|×|℘|L|℘| + 4L∗

|℘|E|℘|×|ℑ|L|ℑ| + 4L∗
|℘|Γ|℘|×|ℵ|L|ℵ| + 2L∗

|ℑ|A(t, |ℑ|)L|ℑ| − d∗t (x)L

=
(

2L∗
|℘|E|℘|×|℘|L|℘| − 1T

|℘|L|℘|

)

+ 4L∗
|℘|E|℘|×|ℑ|L|ℑ| + 4L∗

|℘|Γ|℘|×|ℵ|L|ℵ|
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+
(

2L∗
|ℑ|A(t, |ℑ|) − d∗tL|ℑ|

)

=



2
∑

i,j∈℘

L(ci)L(cj) −
∑

i∈℘

L(ci)



+ 4
∑

i∈℘,j∈ℑ

L(ci)L(cj)

+4
∑

i∈℘,j∈ℵ

λi(x)

λi(x) − λj(x)
L(ci)L(cj) + V|ℑ|

= Q





∑

i∈℘

ci



+ 4L





∑

i∈℘

ci



L

(

∑

i∈ℑ

ci

)

+ 4
∑

i∈℘,j∈ℵ

λi(x)

λi(x) − λj(x)
L(ci)L(cj) + V|ℑ|.

This implies that V ∈ ∂BΠK(x) if and only if there is a V|ℑ| ∈ ∂BΠKℑ
(0) such that

V = W + V|ℑ|,

where W is given as

W := Q





∑

i∈℘

ci



+ 4L





∑

i∈℘

ci



L

(

∑

i∈ℑ

ci

)

+ 4
∑

i∈℘,j∈ℵ

λi(x)

λi(x) − λj(x)
L(ci)L(cj).

Observe the following equations

∑

i∈℘

ci =
∑

i∈{i:µi>0}

bi,
∑

i∈ℑ

ci =
∑

i∈{i:µi=0}

bi,

and
∑

i∈℘,j∈ℵ

λi(x)

λi(x) − λj(x)
L(ci)L(cj) =

∑

i∈{i:µi>0},j∈{i:µi<0}

µi(x)

µi(x) − µj(x)
L(bi)L(bj).

From the fact above and the uniqueness of bi by Theorem 2.1, we obtain that W is unique and
independent on the Jordan frame {c1, · · · , cr}. By the definition of Clarke generalized Jacobian,
it holds that V ∈ ∂ΠK(x) if and only if there is a V|ℑ| ∈ ∂ΠKℑ

(0) such that V = W + V|ℑ|. We
complete the proof. �

4 B-subdifferentials of x− and |x|

Employing the same technique as in the proof of Theorem 3.1, we give below the formulae for
the B-subdifferentials of x− and |x|.

Theorem 4.1 Let ē be the all ones vector of appropriate size. The B-subdifferential of x− is
given by

∂Bx− =
⋃

{c1,···,cr}∈C(x)

|ℑ|
⋃

t=0

{2L∗(Er×r − Λt(x))L − (ē − dt(x))∗L} ,

where dt(x) and Λt(x) are specified by (3.1) and (3.2), respectively. Furthermore,

∂Bx− = I − ∂BΠK(x).
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Proof. Note that for any pair of scalars τi, τj,

(τi)− − (τj)−
τi − τj

+
(τi)+ − (τj)+

τi − τj

= 1 or
(τi)− − (τj)−

τi − τj

= 1 −
(τi)+ − (τj)+

τi − τj

.

In a similar way as in Theorem 3.1, we obtain the formula for the B-subdifferential of x−. �

Before studying the B-subdifferential of | · | at x, we need the following notation. For a given
integer t ∈ {0, 1, · · · , |ℑ|} we define a r-vector ~t(x) by

~t(x) :=









1|℘|
1t

−1|ℑ|−t

−1|ℵ|









=

(

1|℘|+t

−1r−|℘|−t

)

, (4.1)

and a set of r × r matrices Åt(x) by

Åt(x) :=











E|℘|×|℘| E|℘|×|ℑ| Υ|℘|×|ℵ|

E|ℑ|×|℘| Υ0 −E|ℑ|×|ℵ|

ΥT
|℘|×|ℵ| −E|ℵ|×|ℑ| −E|ℵ|×|ℵ|



 : Υ0 =

(

E1 Υ00

ΥT
00 −E2

)

,Υ00 ∈ Υ(t, |ℑ|)







,

(4.2)
where E1 = Et×t, E2 = E(|ℑ|−t)×(|ℑ|−t), Υ|℘|×|ℵ| is a given matrix with the ij-entry Υij =
λi(x)+λj (x)
λi(x)−λj (x) (i ∈ ℘, j ∈ ℵ), and Υ(t, |ℑ|) is a set of t × (|ℑ| − t) matrices (ξij)t×(|ℑ|−t) (the rows

are indexed by |℘|+1, |℘|+2, · · · , |℘|+ t, and the columns by |℘|+ t+1, |℘|+ t+2, · · · , |℘|+ |ℑ|)
specified by

Υ(t, |ℑ|) :=
{

(ξij)t×(|ℑ|−t) ∈ [−1, 1]t×(|ℑ|−t) : ξij satisfy (c) and (d) below
}

,

(c) ξi,|℘|+t+1 ≥ ξi,|℘|+t+2 ≥ · · · ≥ ξi,|℘|+|ℑ| (i = |℘| + 1, |℘| + 2, · · · , |℘| + t),
ξ|℘|+1,j ≥ ξ|℘|+2,j ≥ · · · ≥ ξ|℘|+t,j (j = |℘| + t + 1, |℘| + t + 2, · · · , |℘| + |ℑ|);

(d)
(

1−ξij

1+ξij

)

t×(|ℑ|−t)
is a matrix of rank at most one.

We are in a position to give a formula for the B-subdifferential of |x|.

Theorem 4.2 The B-subdifferential of |x| is given by

∂B|x| =
⋃

{c1,···,cr}∈C(x)

|ℑ|
⋃

t=0

{2L∗Åt(x)L − ~
∗
t (x)L},

where ~t(x) and Åt(x) are specified by (4.1) and (4.2), respectively.

Proof. Note that for any pair of scalars τi > τj,

|τi| − |τj |

τi − τj
=











1 if τi > τj ≥ 0,
τi+τj

τi−τj
if τi > 0 > τj,

−1 if τi ≥ 0 > τj.

In the case of τi > 0 > τj, set ξij :=
τi+τj

τi−τj
. Then

ξij =
1 −

−τj

τi

1 +
−τj

τi

, or equivalently
−τj

τi

=
1 − ξij

1 + ξij

.
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This implies that
−τj

τi
∈ [0,+∞] ⇐⇒ ξij ∈ [−1, 1].

Based on the above fact and a similar argument as in the proof of Theorem 3.1, we deduce the
claimed identity. �

Note that ∂Bx 6= ∂Bx+ + ∂Bx− and ∂B |x| 6= ∂Bx+ − ∂Bx−, although x = x+ + x− and
|x| = x+ − x−, respectively. For instance, in the case of J = R, it is easy to derive

∂Bx+ = ∂Bx− = {0, 1}, ∂Bx = 1 and ∂B |x| = {−1, 1}.

However, ∂Bx+ + ∂Bx− = {0, 1, 2} and ∂Bx+ − ∂Bx− = {−1, 0, 1}.
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