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Abstract

This survey paper is intended for the graduate students and researchers who are interested in
Operations Research, have solid understanding of linear optimization but are not familiar with
Semidefinite Programming (SDP). Here, I provide a very gentle introduction to SDP, some entry
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applications which may be attractive to such audience and in turn motivate them to learn more
about semidefinite optimization.
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1 Introduction, Motivation and Some Definitions

Linear optimization is one of the most fundamental tools in operations research. This is so, not only in
the theory and mathematics of operations research but also in applications. Semidefinite Optimization
can be seen as a very powerful and elegant generalization of linear optimization.

Linear optimization has had tremendous success since the birth of operations research. We have
gotten very good at formulating real-world problems as Linear Programming (LP) problems when
justified, and the improvements in software/hardware combinations (but especially in software due to
the advances in LP theory) made it possible to solve very large LP problems routinely. LP problems
of the largest size that we can solve on our lap-top computers today would have been considered
completely out of reach three decades ago (on any computer available back then). Due to the fast
advances in science and technology and rapid distribution of newly acquired knowledge as well as very
wide accessibility of this knowledge, we see nowadays that those in charge of main decision making
functions in many applications (manufacturing, service, government, etc.) are more and more willing
to utilize sophisticated operations research techniques. This situation allows for not only LP but also
other tools such as integer programming, mixed integer programming, nonlinear programming to find
wider and wider acceptance by practitioners.

Since the late 1980’s and the early 1990’s, as the modern interior-point revolution was sweeping
through the optimization community, Semidefinite Optimization began emerging as the next funda-
mental tool in operations research. At the time of this writing, there is a wide array of algorithms,
freely available software and wide array of scientific papers on the theory and applications of Semidef-
inite Optimization. While there are many parallels between the “history of LP” and “history and
expected future of SDP,” there are also some very significant differences.

Consider a typical Linear Programming problem. Let A ∈ Rm×n represent the given coefficient
matrix and assume that the objective function vector c ∈ Rn and the right-hand-side vector b ∈ Rm

are also given. Our primal problem, written in a standard equality form is (we will refer to it as (LP )):

min cT x

Ax = b,

x ≥ 0.

Its dual (LD) is defined to be

max bT y

AT y + s = c,

s ≥ 0.

We denote by Sn, the space of n-by-n symmetric matrices with real entries. X ∈ Sn is called
positive semidefinite if

hT Xh ≥ 0,∀h ∈ Rn.
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We denote by λj(X) the eigenvalues of X. Note that every eigenvalue of every X ∈ Sn is real. We
index the eigenvalues so that

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

We have

Proposition 1.1. Let X ∈ Sn. Then, the following are equivalent:

(a) X is positive semidefinite;

(b) λj(X) ≥ 0,∀j ∈ {1, 2, . . . , n};

(c) there exists B ∈ Rn×n such that X = BBT ;

(d) for every nonempty J ⊆ {1, 2, . . . , n}, det(XJ ) ≥ 0, where XJ := [Xij : i, j ∈ J ] .

We denote the set of positive semidefinite matrices by Sn
+. We call the submatrices of X described

in part (d) of the above proposition, symmetric minors of X. X ∈ Sn is called positive definite if

hT Xh > 0,∀h ∈ Rn \ {0}.

In the next result, we give characterizations of positive definiteness analogous to those in Proposition
1.1.

Proposition 1.2. Let X ∈ Sn. Then, the following are equivalent:

(a) X is positive definite;

(b) λj(X) > 0,∀j ∈ {1, 2, . . . , n};

(c) there exists B ∈ Rn×n nonsingular, such that X = BBT ;

(d) for every Jk := {1, 2, . . . , k}, k ∈ {1, 2, . . . , n}, det(XJ ) > 0.

We denote the set of symmetric positive definite matrices over reals by Sn
++. Using Proposition

1.1 part (c) and Proposition 1.2 part (c), we deduce

Sn
++ =

{

X ∈ Sn
+ : X is nonsingular

}

.

For U, V ∈ Sn, we write U � V to mean (U − V ) ∈ Sn
+ and U ≻ V to mean (U − V ) ∈ Sn

++.

Another fact about the positive semidefinite matrices that is useful in modeling SDP problems is
the Schur Complement Lemma:

Lemma 1.1. Let X ∈ Sn, U ∈ Rn×m and T ∈ Sm
++. Then

M :=

[

T UT

U X

]

� 0, ⇐⇒
(

X − UT−1UT
)

� 0.
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We call the matrix
(

X − UT−1UT
)

, the Schur Complement of T in M in the above notation.

Note that in our standard form (LP ) and (LD), the constraints x ≥ 0, s ≥ 0 mean that x and s
lie in Rn

+ which is a convex cone (that is, for every positive scalar α, and for every element x of the
set, αx is also in the set and, for every pair of elements u, v of the set, (u + v) also lies in the set). In
particular, this convex cone is just a direct sum of nonnegative rays:

Rn
+ = R+ ⊕ R+ ⊕ · · · ⊕ R+.

Replacing R+ by more general convex cones (which contain R+ as a special case) we can generalize
(LP ). In SDP, we replace R+ by S

ni

+ for some ni ≥ 1. (Note that for ni = 1, we have S
ni

+ = R+.) Thus,
in this more general optimization problem we write our variable x as a symmetric matrix (possibly
with a block diagonal structure) and replace the constraint “x ≥ 0” by

X ∈ Sn1

+ ⊕ Sn2

+ ⊕ · · · ⊕ Snr

+ .

Clearly, setting n1 := n2 := · · · := nr := 1 and r := n takes us back to (LP ) as a special case.

Another very interesting special case is given by the cone:

SOn :=

{(

x0

x

)

∈ R ⊕ Rn : x0 ≥ ‖x‖2

}

.

This cone is known by many names in the literature: second order cone, Lorentz cone, and even
sometimes as the ice-cream cone.

First notice that

SOn := cl

{(

x0

x

)

∈ R ⊕ Rn : x0 > ‖x‖2

}

,

where cl(·) denotes the closure. Secondly, using the Schur Complement Lemma, we see that
(

x0

x

)

∈ SOn ⇐⇒
[

x0 xT

x x0I

]

� 0.

Let An : Rn+1 → Sn+1 denote the linear operator satisfying

An

(

x0

x

)

=

[

x0 xT

x x0I

]

.

Then,
(

x(1), x(2), . . . , x(r)
)

∈ SOn1 ⊕ SOn2 ⊕ · · · ⊕ SOnr

iff
(

An1

(

x(1)
)

,An2

(

x(2)
)

, . . . ,Anr

(

x(r)
))

∈ Sn1+1
+ ⊕ Sn2+1

+ ⊕ · · · ⊕ Snr+1
+ .

Thus, we arrived at the Second Order Cone Programming (SOCP) problems and showed how SOCP
is a special case of SDP. The cones SOn and Sn

+ belong to a family of extremely well-behaved convex
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cones called symmetric cones. (From this family, SOn and Sn
+ are the only two with wide applications

in Operations Research so far, the next one in line is the cone of hermitian positive semidefinite
matrices with complex entries.) For further information on the algebraic and analytic structure of
symmetric cones, see Faraut and Korányi [20].

From now on, we will usually write X ∈ Sn
+, X � 0, etc.; however, depending on the context we

might mean

X ∈ Sn1

+ ⊕ Sn2

+ ⊕ · · · ⊕ Snr

+ , where n1 + n2 + · · · + nr = n.

For our general discussions, we will represent the data for SDP by C,A1, A2, . . . , Am ∈ Sn and b ∈ Rm

such that our primal SDP is

(P ) inf 〈C,X〉
〈Ai,X〉 = bi, ∀i ∈ {1, 2, . . . ,m}

X � 0.

In the above optimization problem, the inner product is the trace inner product. I.e., for U, V ∈ Rn×n,

〈U, V 〉 := Tr
(

UT V
)

.

We define the dual of (P ) as

(D) sup bT y
m
∑

i=1

yiAi � C.

Or, equivalently

(D) sup bT y
m
∑

i=1

yiAi + S = C,

S � 0.

In Section 2, we mention some generalizations of duality theorems from LP to SDP setting. In
Section 3, we briefly explain a basic complexity result for SDP based on interior-point methods.
The remaining sections (Sections 4–12) are geared towards making connection to SDP from various
application areas. For a more detailed introduction to the applications of SDP, the reader might want
to start with the following references: Alizadeh [2], Ben-Tal and Nemirovskii [7], Boyd et al. [13],
Boyd and Vandenberghe [14], Goemans [21, 22], Nesterov and Nemirovskii [48], Todd [69], Tunçel [70]
and the Handbook of SDP [75].

2 A Whiff of Duality Theory

Well-known weak duality relation easily generalizes to the SDP setting under our definitions.
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Theorem 2.1. (Weak Duality Theorem) Let A1, A2, . . . , Am, C ∈ Sn and b ∈ Rm be given.

1. For every X feasible in (P ) and every (y, S) feasible in (D), we have

〈C,X〉 − bT y = 〈X,S〉 ≥ 0.

2. If X is feasible in (P ), (y, S) is feasible in (D) and 〈C,X〉 = bT y, then X is optimal in (P ) and
(y, S) is optimal in (D).

Unlike linear programming, (P ) having an optimal solution does not guarantee the same for its
dual (D). In particular,

• (P ) and (D) both having optimal solutions does not guarantee that their optimum objective
values are the same.

• Optimum objective value of (P ) being finite does not guarantee that it is attained.

There are many approaches to remedy these situations. See Borwein and Wolkowicz [12], Ramana
[56], Ramana, Tunçel and Wolkowicz [57], Tunçel [71], Pataki [51], Polik and Terlaky [55], Tunçel and
Wolkowicz [72], Wolkowicz [74].

We will cover a relatively simple and elegant approach involving interior points with respect to
the cone constraints (or strictly feasible points). X̄ ∈ Sn

++ such that A(X̄) = b is called a Slater point
of (P ). Similarly, feasible solutions (ȳ, S̄) of (D) with the property that S̄ ∈ Sn

++ (or equivalently
∑m

i=1 yiAi ≺ C) are called Slater points of (D).

If such feasible points exist for both (P ) and its dual (D) then as far as the statements of the main
duality theorems are concerned, we are back to an LP-like situation:

Theorem 2.2. (Strong Duality Theorem) Suppose (P ) and (D) both have Slater points. Then (P )
and (D) both have optimal solutions and their optimum objective values coincide.

Now, let us consider Farkas’ Lemma for the LP setting:

Lemma 2.1. Let A ∈ Rm×n, b ∈ Rm be given. Then exactly one of the following systems has a
solution:

(I) Ax = b, x ≥ 0;

(II) AT y ≤ 0, bT y > 0.

In many ways, Farkas’ Lemma is essentially equivalent to LP (strong) duality theorems. Therefore,
it should not be a big surprise to us that generalizations of Farkas’ Lemma to the SDP setting involve
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some additional work and/or modifications of the original statements (more than a straight-forward
translations of the terms).

Let A1, A2, . . . , Am ∈ Sn and b ∈ Rm be given. We say that the system

{〈Ai,X〉 = bi,∀i ∈ {1, 2, . . . ,m}; X � 0}

is almost feasible, if for every ǫ > 0, there exists b̄ ∈ Rm such that ‖b − b̄‖2 < ǫ and
{

〈Ai,X〉 = b̄i,∀i ∈ {1, 2, . . . ,m}; X � 0
}

is feasible.

Now, we are ready to describe a generalization of Farkas’ Lemma to the SDP setting.

Lemma 2.2. Let A1, A2, . . . , Am ∈ Sn, b ∈ Rm be given. Then exactly one of the following two
statements holds:

(I) 〈Ai,X〉 = bi, ∀i ∈ {1, 2, . . . ,m}, X � 0 is almost feasible;

(II) there exists y ∈ Rm such that

m
∑

i=1

yiAi � 0, bT y > 0.

3 A Glimpse of Theory of Algorithms for Convex Optimization

Currently the most popular algorithms to solve SDPs are interior-point algorithms. These algorithms
start with X(0) ≻ 0, S(0) ≻ 0 and some suitable y(0) ∈ Rm and generate a sequence

{

X(k), y(k), S(k)
}

approaching the set of optimal solutions of (P ) and (D) (if they exist, and if there is no duality gap).
Note that neither X(0) nor

(

y(0), S(0)
)

is required to be feasible.

Next, we give a sample convergence theorem to give the reader some understanding of what it
means to “solve” SDPs in the nicer case that X(0) and

(

y(0), S(0)
)

are feasible in their respective
problems. See for instance, Nesterov and Todd [49], Tunçel [70], Ye [76].

Theorem 3.1. Let X(0) feasible in (P ) and
(

y(0), S(0)
)

feasible in (D) be given such that X(0) ∈ Sn
++

and S(0) ∈ Sn
++ and

n ln

(

〈X(0), S(0)〉
n

)

− ln
(

det
(

X(0)
))

− ln
(

det
(

S(0)
))

≤ √
n ln

(

1

ǫ

)

, for some ǫ ∈ (0, 1).

Then, there exist many interior-point algorithms which deliver in O
(√

n ln
(

1
ǫ

))

iterations X̄ feasible
in (P ),

(

ȳ, S̄
)

feasible in (D) such that

〈X̄, S̄〉 ≤ ǫ〈X(0), S(0)〉.

In the above, ǫ can be (and should be) chosen by the user. The technical condition in the statement
of the theorem measures the distance (roughly speaking) from the initial point

(

X(0), y(0), S(0)
)

to the
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boundary of the corresponding feasible regions. It really measures the distance to the so-called central
path (or more precisely the distance to the most central point with the same duality gap—at this most
central point the measure takes the value zero, and is positive elsewhere; as we approach the boundary
while keeping the duality gap constant, the measure tends to +∞).

We can use different epsilons, e.g., ǫ1 for the “proximity-to-the-central-path measure” above and
ǫ2 for the duality gap condition on the final solution

(

X̄, ȳ, S̄
)

. Then the iteration complexity of the
algorithms can be upperbounded by

O

(√
n

(

ln

(

1

ǫ1

)

+ ln

(

1

ǫ2

)))

.

Each iteration involves solution of linear systems of equations with dimensions O(n2). Forming the
linear systems usually require nontrivial linear algebra which should be done very carefully balancing
the issues of sparsity, speed, memory requirements and accuracy. (These can vary wildly from one
application to the next.)

Theoretically speaking, convergence theorems based on ellipsoid method and some first-order meth-
ods are generally stronger in the sense that they are based on black box type models (e.g., polynomial-
time separation oracles). See for instance Nemirovskii and Yudin [43] and Tunçel [70].

Generally speaking, interior-point methods are second order methods, and in practice, for a given
instance, if we can perform one iteration of the interior-point algorithm in a reasonable time, then it
usually means that we can solve the problem at hand to a decent accuracy in a reasonable time.

If an iteration of the interior-point algorithm is too expensive for the given application and we do
not require a lot of accuracy, then first-order methods might be a perfect fit for the application at
hand. See Nesterov [44, 45, 46, 47], Nemirovskii [42].

4 Objective Function: Maximize a Linear Function or the Determi-

nant?

We defined the SDP problem as optimizing a linear function of a matrix variable subject to finitely
many linear equations, inequalities and semidefiniteness constraints. However, in many applications,
we would like to find the most central solution. Here, the term central is usually defined by a strictly
convex barrier function. By barrier, we mean it is the kind of function which takes finite values in
the interior of the cone and whose values tend to +∞ along every sequence in the interior of the cone
converging to a point on the boundary of the cone (for instance the function − ln(det(X)) for the cone
of positive semidefinite matrices). A typical example is the problem of the form:

min − ln(det(X))

A(X) = b,

X ≻ 0,
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or of the form:
min − ln(det(S))

A∗(y) + S = C,

S ≻ 0.

In this survey paper, we also mention convex optimization problems of the above type. Even though
strictly speaking they are not SDPs, they can be written as SDPs (the epigraph of the objective
function, − ln(det(·)), can be represented as the feasible region of an SDP). Moreover, the most
popular algorithms used to solve such problems are closely related to those that solve SDPs.

We do not rewrite the above convex optimization problems as SDPs, because currently, in almost all
applications, it is better to solve them directly in the above form without using the SDP representation
of the epigraph of − ln(det(·)).

5 Scheduling

Scheduling is such an important part of Operations Research that almost all leading university pro-
grams in Operations Research have a whole course dedicated solely to it. Here, we will mention
an application to one family of parallel machine scheduling problems (many others exist). Namely,
Rm / / Fw that is, minimizing the total weighted flow time in a very basic, parallel, unrelated ma-
chine environment. We have m parallel machines and n independent jobs that can be performed on
any of the machines. The given data (which is assumed to be deterministic) are

pij the processing time of job j on machine i,∀i ∈ {1, 2, . . . ,m},∀j ∈ {1, 2, . . . , n}

and the weights

wj, j ∈ {1, 2, . . . , n}.
All jobs are available for processing at time 0. Preemption is not allowed and we assume that the
machines do not fail during the course of the schedule. Given a feasible schedule, let Cj denote the
completion time of job j in the given schedule. Then the objective function value of this schedule is
given by

Fw =
n
∑

j=1

wjCj.

Among all feasible schedules, we want to find the one with minimum flow time (Fw).

The first fact I would like to mention about this problem is that it is NP-hard even when there
are only two machines (i.e., m = 2). See for instance, Bruno, Coffman and Sethi [15], Lenstra, Rinooy
Kan and Brucker [32], as well as Pinedo [53] and the references therein. The single machine special
case (m = 1) has a very well-known O(n log(n)) algorithm (known as Smith’s rule [66]), sort the jobs
with respect to WSPT:

w[1]

p[1]
≥

w[2]

p[2]
≥ · · · ≥

w[n]

p[n]
.
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Since the problem is NP-hard, we will focus on polynomial-time approximation algorithms. First,
let us consider a special case of Rm / / Fw in terms of the machine environment. Instead of working
with m unrelated machines, suppose that all of our m machines are identical. That is, we have the
problem: Pm / / Fw. This special case is still NP-hard. However, a very simple and extremely fast
heuristic, list scheduling with a list in WSPT order yields a 1

2

(

1 +
√

2
)

-approximation algorithm, a
result of Kawaguchi and Kyan [26].

Now, we are ready to go over an algorithm proposed by Skutella [65] which uses Semidefinite
Optimization (more precisely speaking, it is a very special case of it, only one second order cone
constraint away from linear programming). Let us split the construction of an optimal schedule for
Rm / / Fw into two stages:

1. Find an optimal assignment of the jobs to the machines;

2. given some optimal assignment of the jobs to the machines, construct an optimal schedule.

By Smith’s rule, the second stage can be easily implemented in O(n log(n)) time. Therefore, it
suffices to focus on finding an optimal assignment. Moreover, it is not hard to imagine that “approx-
imately optimal” assignments would yield “near optimal” schedules under the above scheme.

Let

xij :=

{

1, if job j is assigned to machine i;

0, otherwise.

We write x as a mn vector as follows. For each machine i ∈ {1, 2, . . . ,m}, order the elements of xij

with respect to WSPT, break the ties by the initial indexing of the jobs. This gives a total order. Let

hij := wjpij, ∀i ∈ {1, 2, . . . ,m},∀j ∈ {1, 2, . . . , n}.

We order the elements of vector h ∈ Rmn with respect to the total order described above. We denote
the underlying order for machine i by

· →i ·

so that job j precedes job k on machine i, in this order iff

j →i k.

We also define H ∈ Smn as follows

H(i,j),(k,ℓ) :=











wℓpij, if i = k and j →i ℓ;

wjpiℓ, if i = k and ℓ →i j;

0, otherwise.
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It is clear that the matrix (H + Diag(h)) is block diagonal with m blocks (one for each machine).
Moreover, it is easy to establish (using elementary row/column operations) that the determinant of
the ith block is

wnpi1

m
∏

i=1

(w1pi2 − w2pi1)(w2pi3 − w3pi2) · · · (wn−1pin − wnpi,n−1).

Note that the symmetric minors of these blocks also have their determinants expressed by this formula.
By construction, for each i, we have

(w1pi2 − w2pi1) ≥ 0, (w2pi3 − w3pi2) ≥ 0, · · · , (wn−1pin − wnpi,n−1) ≥ 0.

Therefore, (recalling Proposition 1.1) we conclude the following observation of Skutella:

Lemma 5.1. Let h and H be as given above. Then

H + Diag(h) � 0.

Let B ∈ Rn×n be such that BBT = H + Diag(h) (since (H + Diag(h)) � 0, such B exists—use
for instance a Cholesky or LDLT decomposition). Now, consider the following convex optimization
problem:

min z

‖BT x‖2
2 + hT x − 2z ≤ 0,

hT x − z ≤ 0,

ēT x:j = 1, ∀j ∈ {1, 2, . . . , n},
x ∈ Rnm

+ .

In the above, we used MATLAB-like notation to refer to the parts of x vector corresponding to
different jobs and we denoted by ē the vector of all ones of appropriate size. Note that the above
optimization problem can be expressed as a conic convex optimization problem in the form of our
generic primal problem where all the cone constraints are nonnegativity constraints except one which
is a second order cone constraint.

In many applications of SDP, the real application problem we are dealing with is approximated
by a SDP. For instance, we have a combinatorial optimization problem and we work with an SDP
relaxation. So, let (P ) be such a relaxation and let z denote the optimum value of the real application.
Then any feasible solution X̄ of (P ) gives us

〈C, X̄〉 ≤ z.

If we manage to use X̄ to generate a feasible solution of the real problem, denoting the objective
function value of the generated feasible solution by ẑ, we have

〈C, X̄〉 ≤ z ≤ ẑ.
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Skutella proves that an approximately optimal solution of the above second order cone optimization
problem can be used in a simple randomized rounding scheme to obtain a polynomial-time approxi-
mation algorithm with a good approximation ratio. In particular, de-randomizing such an algorithm
Skutella obtains:

Theorem 5.1. (Skutella [65]) Solving the above second order cone optimization problem approximately
and using the derandomized rounding algorithm on the approximately optimal solution, we can obtain
in polynomial time, a feasible schedule for the given instance of Rm / / Fw whose objective function
value is within a factor of 3

2 of the optimal objective value.

6 Facility Location and Data Mining

Facility Location has been one of the fundamental topics in operations research since the birth of the
discipline. More recently, another area Data Mining emerged as a very important and fundamen-
tal topic. The latter is due to the tremendous increase in information gathering-storing-processing
capabilities.

From an optimization viewpoint these two fundamental topics (even though one is classical and
the other is modern) share the same structure at a very basic level. Let us consider the following basic
problems.

Basic k-Facility Location: We have customers (or main sale-stores/warehouses) located at the
points a(1), a(2), . . . , a(n) ∈ Rd. We would like to optimally determine the location of k factories (to be
opened) to minimize the total costs (or maximize the total profit).

Basic Clustering: We have data points a(1), a(2), . . . , a(n) ∈ Rd. We would like to optimally deter-
mine the allocation of these points to k sets to minimize the proximity of points to each other within
the same cluster.

In the basic clustering problems, the points a(1), a(2), . . . , a(n) usually represent quantitative coun-
terparts of features of each item with respect to certain attributes. The goal is to separate the points
into k mutually disjoint groups with respect to their similarities in these quantitative scores. The
points assigned to the same cluster should correspond to the items that have the same characteris-
tics and the points assigned to different clusters should have some significant dissimilarities in some
attributes.

One way to attack this clustering problem is to assign a center z(i) for each cluster i, design a
suitable measure of distance ‖a(j) − z(i)‖ and minimize a total cost function based on these distances.

In the basic k-facility location problem, the objective is very similar to the above situation. We
want to decide on the location of factories (centers) z(i), i ∈ {1, 2, . . . , k} under a suitable measure
of distance ‖a(j) − z(i)‖ (note that the distance function corresponding to the pair i, j may involve
quantities to be shipped in addition to the cost of shipping) and minimize a total cost function based
on these distance functions.
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For the rest of the section, we will use the data mining terminology. For connections to facility
location problems and some interesting computational experiments, see for instance, Zvereva [77].
Similar problems also arise in the exciting application area of image segmentation.

Suppose we chose some functions fjℓ to measure the closeness of pairs of points. E.g., a popular
choice is to have

f(a(j), a(ℓ)) := exp

(

−‖a(j) − a(ℓ)‖2

σ

)

,

for some positive σ. Note that in this particular example, the function fjℓ is the same function for all
pairs. Then one defines the affinity matrix W ∈ Sn as

Wjℓ := f(a(j), a(ℓ)),∀j, ℓ.

With these notations, Peng and Wei [52] work with the following SDP relaxation for the underlying
clustering problem:

inf 〈W, I − X〉
Xē = ē,

〈I,X〉 = k,

X ≥ 0,

X � 0.

Note that in the above SDP problem every entry of the variable matrix X is required to be nonnegative.

This is a relaxation, because X does not have to have every one of its entries 0,1 (this could be
enforced by a constraint X2 = X; but then we no longer have an SDP). At the price of increasing the
complexity of the relaxation, we can tighten it further. One idea may be to add the constraint

[

I X

X X

]

� 0.

The latter is equivalent to X2 � X (Schur complement of I in the above block matrix; we used Lemma
1.1). Now, notice that X � I is already implied by the SDP relaxation. Suppose X ≻ 0. Apply the
automorphism X1/2 · X1/2 to both sides of X � I. Then we deduce

X2 � X ⇐⇒ X � I.

Note that the constraints

Xē = ē, X ≥ 0, X � 0

already imply X � I. Therefore, adding the constraint

[

I X

X X

]

� 0 does not help tighten the

relaxation.



14 TUNÇEL

Another approach to data mining tries to classify the given points a(1), a(2), . . . , a(n) by utilizing
minimum volume ellipsoids, see Shioda and Tunçel [64]. In such an approach, we try to classify points
into k clusters such that a global measure of the volumes of the k minimum volume ellipsoids is
minimized. An interesting objective function yielding such a global measure is

−
k
∑

i=1

ln(det(X(i))),

where X(i) is the positive definite matrix determining the size and shape of the minimum volume
ellipsoid containing all points assigned to cluster i. Or, one might prefer an objective function of the
form

−
k
∑

i=1

wi ln(det(X(i))),

for given positive weights wi. A much needed subroutine in attacking these problems is an algorithm
which takes a set of points as input and returns the minimum volume ellipsoid containing all these
given points. Unlike the main clustering problem, for the latter problem we have many efficient
algorithms; moreover, the problem can be formulated as:

min − ln(det(X))
(

a(j)
)T

Xa(j) − 2
(

A(j)
)T

u + z ≤ 1, ∀j ∈ {1, 2, . . . , n};
[

z uT

u X

]

≻ 0.

Now suppose we are interested in finding a good and simple inner-approximation to the feasible
region of an LP problem. Suppose that the feasible region of the LP is bounded and is given as

P := {x ∈ Rd : Ax ≤ b},

where a(1), a(2), . . . , a(m) denote the columns of A. Then the problem of finding the maximum volume
ellipsoid contained in P can be solved by solving the following determinant maximization problem:

min − ln(det(X))

‖Xa(i)‖2 +
(

a(i)
)T

u ≤ bi, for all i ∈ {1, 2, . . . ,m}
X � 0, u ∈ Rd.

Another typical example is from Optimal Experiment Design:

min − ln(det(X))

X −∑n
i=1 uih

(i)
(

h(i)
)T

= 0,

ēT u = 1,

u ∈ Rn
+, X � 0,
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where h(i) ∈ Rd are test vectors (n > d and
{

h(i) : i ∈ {1, 2, . . . , n}
}

contains a basis) and the objective
function tries to minimize the determinant of the error covariance matrix of the experiment.

Instead, if we prefer to minimize the norm of the error covariance matrix, then the objective
function would be:

inf λ1(X
−1).

Adding a new variable z ∈ R, this latter problem becomes an SDP:

sup z

zI −∑n
i=1 uih

(i)
(

h(i)
)T � 0,

ēT u = 1,

u ∈ Rn
+.

For further details and many other similar applications, see Vandenberghe, Boyd and Wu [73] and the
references therein.

The above models for optimal experiment design are called single-response models. In practice,
there are many applications requiring multiple (and possibly correlated) measurements of responses.
Such models are called multi-response models. For an extension of the above SDP approach to multi-
response models, see Atashgah and Seifi [4].

7 Max Cut and VLSI Design

Given a simple undirected graph G with node set V and edge set E, any subset U of the node set
define a cut in the graph. The shores of the cut defined by U are: U and V \U . The set of edges that
go between the two shores of a cut are the edges that are cut (we denote this set of edges by δ(U)
which is equal to δ(V \ U) since the graph is undirected).

We may be interested in the maximum cardinality cut in a graph; i.e., maximizing |δ(U)| where
U ⊆ V . Or, more generally, given a weight function (on the edges of G) w ∈ RE, we define the weight
of a cut U by

∑

e∈δ(U)

we

and ask for a cut in G of maximum weight. We just defined the Max Cut problem.

This problem has been very extensively studied in Combinatorial Optimization. A very compre-
hensive reference is the book by Deza and Laurent [18].

Classical applications of Max Cut problem to VLSI circuit design go back at least to Chen et al.
[16] and Pinter [54]. For a good exposure, see Barahona [6].
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Max Cut problem played a quite special role in SDP. The techniques used on it (including those
based on SDP) become well-known tools in Combinatorial Optimization, Theoretical Computer Sci-
ence and many other areas outside Continuous Optimization. The breakthrough result of Goemans
and Williamson [23] was the key. Let W ∈ SV represent the weights w:

Wij :=

{

wij , if {i, j} ∈ E;

0, otherwise.

Then the following is an SDP relaxation of Max Cut:

max −1
4〈W,X〉

(

+1
4〈W, ēēT 〉

)

diag(X) = ē,

X � 0,

where we wrote the constant term in the objective function in parentheses and diag(X) denotes the
vector formed by the diagonal entries of X: X11,X22, . . . . The dual of this SDP was studied before

min ēT y
(

+1
4〈W, ēēT 〉

)

Diag(y) − S = −1
4W,

y ∈ RV , S � 0.

(In the above, Diag(y) denotes the diagonal matrix in SV with diagonal entries: y1, y2, . . . , y|V |.)
However, until Goemans-Williamson result utilizing the above SDP pair, the best approximation result
for Max Cut was essentially a 1

2 -approximation algorithm. Goemans-Williamson proved that using an
approximately optimal solution X̄ of the above primal SDP, and a random hyperplane technique, their
algorithm rounds positive semidefinite matrix X̄ to a cut U in G with the property that the expected
weight of the generated cut U is at least 0.87856 times the weight of the Max Cut in G.

Find B ∈ R|V |×d (here, d ≤ |V |) such that BBT = X̄ . Then focus on the columns of BT :

BT =:
[

b(1), b(2), . . . , b(|V |)
]

.

Now, here is the randomization (Random Hyperplane Technique). We pick randomly, using the
uniform distribution on the unit hypersphere in Rd ({h ∈ Rd : ‖h‖2 = 1}) a vector u. Then, we define

U := {i ∈ V : uT b(i) ≥ 0}.
Goemans and Williamson [23] proved that the expected total weight of this cut U is at least

0.87856.(weight of the max. cut).

After a de-randomization of this randomized algorithm, their results led to the following theorem.

Theorem 7.1. Let G = (V,E) with w ∈ QE
+ (rational, nonnegative weights on the edges) be given.

Then a cut in G of weight at least

0.87856.(weight of the max. cut)

can be computed in polynomial-time.
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8 Information and Communication Theory, Geometric Representa-

tions of Graphs, Lovász’ ϑ-function

Suppose we have two groups communicating via a noisy channel using an alphabet. We further assume
that noise can only cause confusion among certain pairs of letters and these are known by us. (E.g.,
letter a may be only confused with letters g, o and u; letter b may only be confused with letters d, k, l
and o.) Notice that we can easily (and naturally) represent these confusion causing pairs by a simple
undirected graph G with node set V and edge set E as follows: For every letter in the alphabet, we
create a node in the graph G, and we connect nodes u and v by an edge if the letters corresponding
to the nodes u, v ∈ V can be confused with each other.

Now, let us consider the problem of finding the maximum number of letters that can be transmitted
without confusion. This problem is equivalent to the problem of finding a maximum cardinality subset
S of V in the graph G such that for every u, v ∈ S, {u, v} /∈ E. The latter problem is the maximum
cardinality stable set problem and has been studied extensively in combinatorial optimization and
graph theory literature. While this is good news, the bad news is that it is NP-hard. We denote by
α(G) the cardinality of the largest stable set (also called the stability number of G) in G.

In the above setting of the communication problem, a very interesting parameter of the communi-
cation channel is its Shannon Capacity. This quantity can be defined using the graph G, a fundamental
graph product operation and the concept of the stability number of a graph.

Given two graphs G = (V,E) and H = (W,F ) we define their strong product as follows:

• create |V | × |W | nodes in |V | rows and |W | columns;

• for each column, create a copy of G;

• for each row, create a copy of H;

• focus on nodes (i, u) and (j, v) with i 6= j and u 6= v; connect these two nodes if {i, j} ∈ E and
{u, v} ∈ F .

Now, we denote the strong product of G with itself by G2. It should be clear from the definition
of G2 that α(G2) is the maximum number of words of length two so that for every pair of words
there exists at least one i (among these two positions) such that the ith letters are different and they
cannot be confused with each other. Continuing this way, we define Gk and we deduce that α(Gk)
determines the maximum number of k-letter words that can be used in this communication model
without confusion. Then the Shannon Capacity of G is

Θ(G) := lim
k→∞

[

α
(

Gk
)]1/k

.

It is easy to observe from the above definitions that

α
(

Gk
)

≥ [α(G)]k , ∀k ∈ Z++.
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This communication problem and the underlying measure, Shannon Capacity are very interesting;
however, we expressed it as a function of the stability number of Gk. So, we still need to find ways of
computing or at least approximation the stability number of graphs.

The most elementary LP relaxation is given by

max ēT x

xi + xj ≤ 1, {i, j} ∈ E,

x ∈ [0, 1]V .

The feasible region of the above LP relaxation is called the Fractional Stable Set Polytope which we
denote by FRAC(G). We denote by STAB(G) the convex hull of incidence vectors of stable sets in G.
So,

STAB(G) = conv
[

FRAC(G) ∩ {0, 1}V
]

.

A much tighter relaxation of STAB(G) is given by so-called theta body of G (see [24]). We denote
it by TH(G). TH(G) is a convex set which can be expressed as the feasible region of an SDP problem.

Namely, it is the set of x ∈ RV satisfying for some Y ∈ S
{0}∪V
+ the following constraints:

• Y e0 = Diag(Y ) =

(

1

x

)

,

• Yij = 0, ∀{i, j} ∈ E.

In the above formulation, Y is (|V | + 1)-by-(|V | + 1) and we indexed the columns and the rows of Y
by 0, 1, 2, . . . , |V |. (The first index is special, the remaining indices correspond to the nodes in G.)

An impressive result about this SDP relaxation is that it is equivalent to the convex relaxation of
STAB(G) defined by orthonormal representation constraints (see for instance [24]). Let us see what
these constraints are: {u(i) : i ∈ V } ⊂ RV is called an orthonormal representation of G if

• ‖u(i)‖2 = 1, ∀i ∈ V and,

• 〈u(i), u(j)〉 = 0, ∀{i, j} ∈ E.

So, we represent the nodes of the graph by unit vectors so that unrelated nodes with respect to E are
unrelated geometrically (i.e., orthogonal to each other). Hence, we converted the algebraic represen-
tation (by nodes and edges) of the graphs to a geometric one. Note however that in general, it is not
possible to construct G from any orthonormal representation. (Consider the set {e1, e2, . . . , en} which
gives an orthonormal representation of every graph G with n nodes.)

Now, for every c ∈ RV with ‖c‖2 = 1, the linear constraint

∑

j∈V

(

cT u(j)
)2

xj ≤ 1
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is called an orthonormal representation constraint for G and it is a valid inequality for STAB(G). In
particular, for every clique C in G, the clique inequality

∑

j∈C

xj ≤ 1

is an orthonormal representation constraint. Based on these clique inequalities, we can define the
clique polytope of G:

CLQ(G) :=







x ∈ [0, 1]V :
∑

j∈C

xj ≤ 1, ∀ cliques C in G







.

We have
STAB(G) ⊆ TH(G) ⊆ CLQ(G) ⊆ FRAC(G).

Lovász’ θ-function is
θ(G) := max

{

ēT x : x ∈ TH(G)
}

.

We can compute θ(G) by solving an SDP! Moreover, it is not difficult to prove

θ
(

Gk
)

= [θ(G)]k , ∀k ∈ Z++.

Therefore, we can sandwich the Shannon Capacity of G between the Lovász theta number and the
stability number of G:

α(G) ≤ Θ(G) ≤ θ(G), ∀ graphs G.

For a more detailed exposition to this and related results, see Knuth [27] and Lovász [36, 37].

9 Network Design, Branch-and-Bound, Sparsest Cut

Many network design problems and multi-commodity flow problems have connections to the sparsest
cut problem which is to find a subset U ⊂ V attaining the following minimum:

min
U⊂V :|U |≤ |V |

2

{ |δ(U)|
|U |

}

.

This minimum can be approximated by the optimum objective value of the following SDP problem
(up to a factor of |V |):

min
∑

{i,j}∈E (Xii + Xjj − 2Xij)

Xij + Xjk − Xik − Xjj ≤ 0, ∀i, j, k;
∑

i<j (Xii + Xjj − 2Xij) = 1,

X ∈ SV
+.
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See, Arora, Rao and Vazirani [3].

A very closely related problem is: given a constant c ∈ (0, 1), find a cut U ⊂ V which is an optimal
solution of

min
U⊂V :|U |≥c|V | and |V \U |≥c|V |

{ |δ(U)|
|U |

}

.

This problem is called the c-balanced graph separation problem which also admits a useful SDP relax-
ation similar to the one we mentioned above for the sparsest cut problem:

min 1
2

∑

{i,j}∈E (1 − Xij)

diag(X) − ē,

Xij + xjk − Xik ≤ 1, ∀i, j, k;
∑

i<j Xij = |V |(|V |−1)
2 − 2c(1 − c)|V |2,

X ∈ SV
+.

The c-balanced graph separator problem tries to separate the given graph into two pieces such
that each piece has a significant portion (that is, at least c|V |) of the nodes and the interaction

between the pieces (measured by the ratio |δ(U)|
|U | ) is minimized. Such separations are very useful in

branch-and-bound like schemes in solving various network design, graph optimization problems.

There are also many applications of SDP in the related area of graph realization which in turn
has applications in biology (e.g., molecular confirmation), structural engineering design and wireless
sensor network localization. See, for instance So and Ye [67, 68], Al-Homidan and Wolkowicz [1].

10 Portfolio Optimization, Financial Mathematics

At the time of this writing, financial mathematics in general and portfolio optimization in particular
make up some of the most popular application areas of optimization. Moreover, SOCP and SDP play
very important roles.

The basic objective functions optimize a suitable linear combination of expected return and esti-
mated risk of the portfolio. Under suitable assumptions, we can express upper bound constraints on
variance as well as short risk constraints as second order cone constraints. Also, using SDP, we can
work with constraints on the higher moments (not just the expectation and the variance) but this
usually requires larger size SDPs.

For many applications and various different approaches, see Bertsimas and Sethuraman [8], Cornuéjols
and Tütüncü [17], Lobo [34], Lobo, Fazel and Boyd [35], Li and Tunçel [33] and the references therein.
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11 Robust Optimization

In most applications of optimization, there are significant parts of the data that are subject to uncer-
tainty. Moreover, in many applications, the optimization model itself is an approximation to a real
phonemenon. Even in the simplest applications, operations researchers rely on forecasting techniques
and/or cost analysis methods to estimate unit costs, unit profits, demands, etc.

Since the birth of OR and LP theory, various approaches have been developed. Most notable ones
are:

• sensitivity analysis,

• chance-constrained optimization,

• stochastic optimization,

• and more recently Robust Optimization.

Robust optimization requires an uncertainty set U for the data space and strives for the best
solution with respect to the worst scenerio in the uncertainty set. For, example, let us consider a
given LP problem:

min cT x

Ax ≥ b.

We can use a new variable xn+1 and rewrite the LP as

min xn+1

−cT x + xn+1 ≥ 0,

Ax ≥ b.

So, without loss of generality, we may assume that the objective function of the given LP is certain
and known exactly. Thus, our uncertainty set may be assumed to be a subset of the space where the
pairs (A, b) live.

A robust solution in this context means x̃ such that

Ax̃ ≥ b, ∀(A, b) ∈ U .

I.e., x̃ is feasible for every possible realization of data in the uncertainty set U . Among all of these
robust solutions, we want the one that minimizes our objective function.

There are many reasonable choices for U which allow the resulting robust optimization problem
to be formulated as an SOCP or SDP problem (although many other choices for U lead to NP-
hard problems). See for instance: Ben-Tal and Nemirovskii [7], El Ghaoui, Oustry and Lebret [19],
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Bertsimas and Sim [10, 11, 9], Mulvey, Vanderbei and Zenios [41], Hanafizadeh and Seifi [25], Moazeni
[39], Moazeni and Tunçel [40] and the references therein.

There are many successful applications of Robust Optimization, a classical one being in the area
of Truss Topology Design (see [7]).

12 Universal Approaches with Lift-and-Project Methods

We will start with 0,1 mixed integer programming. Suppose we are given the data for the following
form of 0,1 mixed integer programming:

min cT x + dT z

Ax + Bz ≤ b,

x ∈ Rn
+,

z ∈ {0, 1}d.

Note that
z ∈ {0, 1}d ⇐⇒ z2

j − zj = 0, ∀j ∈ {1, 2, . . . , d}.
Further notice that the constraints

z2
j − zj ≤ 0, ∀j ∈ {1, 2, . . . , d}

define a convex set. So, in this quadratic formulation of the original problem, the difficult constraints
are

z2
j − zj ≥ 0, ∀j ∈ {1, 2, . . . , d}.

Now, consider the (d + 1)-by-(d + 1) symmetric matrix

Y :=

[

1 zT

z zzT

]

.

Let us refer to the first row and first column of Y by the index 0. Then the equations

diag(Y ) = Y e0

precisely state that z2
j = zj, ∀j ∈ {1, 2, . . . , d}. Moreover, these equations are linear in the matrix

variable Y . Such Y (as defined above) is always positive semidefinite; however, for Y to have the
above structure, we also need it to be of rank at most one. The latter rank constraint is indeed hard
(for instance it makes the feasible region potentially nonconvex an even disconnected). So, we will
relax this rank constraint. Let us consider a positive semidefinite Y ∈ Sd+1 such that Y00 = 1. Then
Y looks like

Y :=

[

1 zT

z Z

]

.
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By Schur Complement Lemma,
Y � 0 ⇐⇒ Z � zzT .

We ideally would like to have Z = zzT which can be equivalently written as

Z � zzT and Z � zzT .

Our SDP relaxation throws away the nonconvex constraint Z � zzT . So, we have the SDP relaxation

min cT x + dT z

Ax + Bz ≤ b,

diag(Z) = z,
[

1 zT

z Z

]

� 0,

x ∈ Rn
+.

Note that the condition Z ∈ Sd
+ is implied by the existing constraints. Moreover, Z ∈ Sd

+ implies
diag(Z) ≥ 0; hence, z ∈ Rd

+. Finally, Schur complement lemma implies z2
i ≤ zi for every i, yielding

(together with z ≥ 0) z ∈ [0, 1]d. Using the work of Balas, Ceria and Cornuéjols [5], Lovász and
Schrijver [38], and Sherali and Adams [60], we can keep strengthening the above formulation (at a
cost of large increases in the number of variables and constraints).

Let

F0 :=











[

x

z

]

∈ Rn+d :







x

z

Z






is feasible in the SDP relaxation for some Z











.

Consider for k ≥ 1,

Fk :=











[

x

z

]

∈ Rn+d :
Y :=

[

1 zT

z Z

]

� 0,diag(Z) = z,

1
zi

Y ei,
1

1−zi
Y (e0 − ei) are feasible in Fk−1 for some choice of x ∈ Rn











.

In the above definition of Fk, if zi is 0 or 1 then one of the conditions have a division by zero and we
simply ignore that condition. This is justified in our context.

Using the theory of lift-and-project methods, it is not difficult to prove that if F0 is bounded then
we need to generate at most d of these sets Fk to reach a convex formulation of the convex hull of the
original 0,1 mixed programming problem.

Lift-and-project methods have been generalized to handle problems beyond 0,1 mixed integer pro-
gramming problems. See, Sherali and Adams [59], Sherali and Alameddine [61], Sherali and Tuncbilek
[63], Kojima and Tunçel [29, 30, 28], Lasserre [31], Parrilo [50] for methods applicable to constraints
given as inequalities on polynomial functions of x and z as well as the more general setting of infinitely
many quadratic inequalities.
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