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Abstract

We consider a revenue management model for pricing a product line with several customer
segments under the assumption that customers’ product choices are determined entirely by their
reservation prices. We highlight key mathematical properties of the maximum utility model and
formulate it as a mixed-integer programming problem, design heuristics and valid cuts. We further
present extensions of the models to deal with various practical issues arising in applications. Our
computational experiments with real data from the tourism sector as well as with the randomly
generated data show the effectiveness of our approach.

1 Introduction

Suppose a company has m different product lines and market analysis tells them that there are n
distinct customer segments, where customers of a given segment have the “same” purchasing behavior.
A key revenue management problem is to determine optimal prices for each product to maximize total
revenue, given the customer choice behavior. There are multitudes of models for customer choice
behavior [20], but this paper focuses solely on those based on reservation prices.

Let Rij denote the reservation price of Segment i for Product j, i = 1, . . . , n, j = 1, . . . ,m, which
reflects how much customers of Segment i are willing and able to spend on Product j. If the price of
Product j is set to $πj , then the utility or surplus (we will use these terms interchangeably throughout
the paper) of Segment i for Product j is the difference between the reservation price and the price,
i.e., Rij − πj. If there are competitors in the market, then we would need to consider the utility of
each segment for the competitors’ product as well. Let CSi denote the maximum surplus of Segment
i across all competitor products. We will assume that Rij and CSi are nonnegative for all i and j
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without loss of generality. Finally, we assume that reservation prices are the same for every customer
in a given segment and each segment pays the same price for each product. Customer choice models
based on reservation prices assume that customer purchasing behavior can be fully determined by
their reservation price and the price of products.

Even in a reservation price framework, there are several different models for customer choice
behavior in the literature [4, 5, 11, 14]. It is often assumed that a segment will only consider purchasing
a product with positive utility, but there are ambiguities regarding choice between multiple products
with positive utility. This paper is largely inspired by [4], where they study the maximum utility or
envy free pricing model of customer choice behavior. In this model, we assume that a customer segment
will purchase the product with the largest surplus. In [9], the authors present a linear mixed-integer
programming formulation for bundle pricing using a similar framework as [4]. It is shown that the
maximum utility problem is NP-hard [5] as well as APX -hard [8]. Maximum utility pricing models
are also related to bilevel pricing problems. For the latter, see for instance [6]. In the current paper, we
treat Rij values as part of the data for our optimization problems; however, in practical applications
(including our own) one can only get partial information that is reliable about Rijs. So, one requires
techniques for “filling-in” the missing entries Rij based on the existing ones. A popular approach is
that of conjoint analysis, see for instance [13]. There are many other useful ways of modeling the
customer behaviour. In stochastic models, the probability of a customer segment buying Product j
can be modeled as a multinomial logit model which treats the price of Product j, price sensitivity
and the reservation price of the customer segment as parameters (see for instance, [12]). For further
exposure to multinomial logit models, see [1] and the references therein.

In this paper, we present a mixed-integer linear programming formulation for the maximum utility
model (similar to [9]), offer further mathematical insight to the model, expand on the heuristics
proposed in [4], present several effective mixed-integer cuts, and illustrate computational results using
CPLEX and our heuristic. The purpose of this paper is not to argue that this customer choice model
is better than others, nor claim that one should use pricing models based on reservation prices. Our
goal is to present mathematical programming and algorithmic approaches to solving these problems
efficiently.

The structure of the paper is as follows: Section 2 describes the maximum utility pricing model,
presents several mixed-integer optimization formulations and illustrates special mathematical prop-
erties of the problem. Section 3 presents heuristics for finding “good” feasible solutions and Section
4 illustrates several valid inequalities for the mixed-integer programming problem. Section 5 extends
the formulation and heuristic algorithms to consider capacity constraints for each product and Section
6 illustrates the results of the computational experiments of our heuristic and CPLEX on randomly
generated and real data. Finally, Section 7 summarizes our findings and describes our current and
future research.

2 Maximum Utility Model

In the maximum utility or the envy-free pricing model, the assumption is that the customer will choose
the product that maximizes his or her utility, given the price of all the products. Thus, if πj is the
price of Product j, j = 1, . . . ,m, then Segment i will buy Product j only if:

j = argmax
k=1,...,m

{Rik − πk}
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and
Rij − πj ≥ CSi.

We further make the following assumptions:

(A.1) Unit Demand: Each customer segment buys at most one type of product and each customer
buys at most one unit of a product.

(A.2) Non-Differentiated Pricing: Every customer segment pays the same price for each product.

(A.3) Static Competition: Competitors do not react to our prices, thus CSi is a constant and not a
function of πj.

(A.4) Tie-Breaking: To eliminate the case of ties in the maximum surplus product and to make the
maximum utility model more robust under small changes to Rij, we further assume that the
surplus of the product chosen by customer Segment i must be larger than the surplus of any
other product by at least some pre-determined amount δi > 0. That is, Segment i buys Product
j if and only if

Rij − πj ≥ Rik − πk + δi, ∀k 6= j (1)

and
Rij − πj ≥ CSi + δi. (2)

We call δi the utility tolerance for customer Segment i.

The first three assumptions are quite common in many revenue management models. However,
the last assumption (A.4) seems to be uncommon in the literature. We felt that such an assumption
was needed to be more confident about the applicability of the mathematical model in the real world.
Without the usage of such positive δi, any time our company’s price ties the price of another company
(in terms of the customers’ utility) as the best price, we would be declaring that our company wins
all of these customers (in the corresponding segment) and collects the associated revenue. Another
situation is when two or more of our own products are in a tie (in terms of the underlying utilities) for
the best price for a customer segment. Without the usage of δi, an optimal solution of the mathematical
model will assign all of the customers in that segment to the product with the highest price. Some
revenue management models assume this as a tie-breaking rule, e.g., the so-called MAX-PRICE model
assumes that the customer will choose the product with the highest price in case of a tie in the utilities
(see for instance the RANK-PRICING model of [17]). While this may be true for some customers,
this seems unrealistic to us as a sweeping assumption for many applications.

For large values of δi, our models may be too conservative; however, because of the uncertainty in
the data (e.g., reservation prices and competitor surplus), it would be wise to be more conservative in
modeling the revenue management problem. Thus, the δi parameter builds in robustness to our model
by protecting the solution against data perturbations. For example, suppose Segment i buys Product
j in our solution (thus the prices satisfy Eq. (1)), but the Rij decreases by ǫ or Rik increases by ǫ for
some other Product k. As long as ǫ ≤ δi, Product j will still be the maximum surplus product for
Segment i.

A more ambitious modification of our assumptions would assign different δi’s to better represent
the preferences of customer Segment i among the various products available. Namely, we would
stipulate that for Product j to be chosen by customer Segment i, the surplus of Product j must be at
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least δijk > 0 larger than that of Product k, for every k ∈ {0, 1, . . . ,m}\{j}, where index 0 represents
the competitors’ product with the largest surplus. Note that δijk is not necessarily the same as δikj.
In this paper, we only use δi.

Our models can easily handle linear constraints on production limits. Therefore, we do not need
to make any assumptions on the supply being unlimited or limited (see Section 5).

2.1 Basic Optimization Models

We now introduce our mathematical programming formulation of the maximum utility model. Let
our decision variables be as follows:

θij :=

{

1, if Customer Segment i buys Product j,

0, otherwise,

πj := Price of Product j.

Eqs.(1) and (2) can then be modeled as:

(Rij − πj)θij ≥ (Rik + δi)θij − πk, ∀k 6= j,

and
(Rij − πj)θij ≥ (CSi + δi)θij, ∀j,

respectively.

Incorporating the unit demand assumption, and denoting by Ni the number of customers in Seg-
ment i, the problem can be modeled as the following nonlinear mixed-integer programming problem:

max

n∑

i=1

m∑

j=1

Niπjθij, (3)

s.t. (Rij − πj)θij ≥ (Rik + δi)θij − πk,∀j,∀k 6= j,∀i,

(Rij − πj)θij ≥ (CSi + δi)θij ,∀j,∀i,
m∑

j=1

θij ≤ 1,∀i,

θij ∈ {0, 1},∀i, j,

πj ≥ 0,∀j.

To linearize the above model, we introduce a continuous auxiliary variable pij such that

pij =

{

πj, if θij = 1,

0, otherwise.

This can be enforced by the constraints

pij ≥ 0, (4)

pij ≤ Rijθij,

pij ≤ πj,

pij ≥ πj − R̄j(1− θij),
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where
R̄j := max

i
{Rij}.

In MIP formulations that we consider, smaller constants R̄j lead to tighter LP relaxations. For
example, [9] used a constant maxi,j{Rij} instead of our R̄j (clearly, our choice is no worse than
theirs).

The corresponding linearized model is:

max

n∑

i=1

m∑

j=1

Nipij, (5)

s.t. Rijθij − pij ≥ (Rik + δi)θij − πk,∀j,∀k 6= j,∀i,

Rijθij − pij ≥ (CSi + δi)θij,∀j,∀i,
m∑

j=1

θij ≤ 1,∀i,

pij ≤ πj ,∀i, j,

pij ≥ πj − R̄j(1− θij),∀i, j,

θij ∈ {0, 1},∀i, j,

πj, pij ≥ 0,∀i, j.

The second set of constraints in (5) implies pij ≤ (Rij − CSi − δi)θij ≤ Rijθij, thus the second set of
constraints in (4) is not necessary.

Proposition 2.1. Optimization problems (3) and (5) are equivalent in the following sense. For every
choice of the data (Rij ≥ 0,∀i, j;CSi, δi,Ni,∀i), both problems (3) and (5) have optimal solutions.
Moreover, the set of optimal assignments (θij values), the set of optimal prices for those products that
are bought by some customers (πj values for j ∈ B := {j : θij = 1, for some i}), and the optimal
objective values of (3) and (5) are the same.

Proof. Firstly, since Rij ≥ 0, setting θij := 0, ∀i, j, and πj := 0, ∀j gives a feasible solution to
(3). In addition, setting pij := 0, ∀i, j, gives a feasible solution to (5). Thus, both (3) and (5)
have feasible solutions. Secondly, for each choice of θ ∈ {0, 1}n×m, both (3) and (5) become LP
problems (in variables π and (π, p) respectively). Since it is easy to see that for every choice of
θ ∈ {0, 1}n×m satisfying

∑m
j=1 θij ≤ 1, the objective values of both LP problems are bounded above

by (
∑n

i=1 Ni) maxi,j {Rij}, by the Fundamental Theorem of LP, each of the resulting LP problem is
either infeasible or has optimal solutions. We deduce that both optimization problems (3) and (5)
have optimal solutions (these solutions can be found by solving the resulting LP problems for each
choice of θ ∈ {0, 1}n×m satisfying

∑m
j=1 θij ≤ 1, and by picking the solution with the best objective

value).

Let (θ̄, π̄) be an optimal solution of (3). Then in (5), set θ̃ := θ̄, Cj := {i : θ̄ij = 1}, B := {j : Cj 6=
∅},

π̃j :=

{

π̄j, if j ∈ B,

0, otherwise,
p̃ij :=

{

π̄j , if i ∈ Cj,

0, otherwise.
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Then, (θ̃, π̃, p̃) is feasible in (5) with objective value:

n∑

i=1

Ni

m∑

j=1

p̃ij =

n∑

i=1

Ni

∑

j:i∈Cj

p̃ij =

n∑

i=1

Ni

∑

j:i∈Cj

π̄j = obj. value of (θ̄, π̄) in (3).

Next, let (θ̃, π̃, p̃) be an optimal solution of (5). Let Cj := {i : θ̃ij = 1}, B := {j : Cj 6= ∅}. Using the
second, fourth, fifth group of constraints in (5) and pij ≥ 0, we note that

p̃ij =

{

π̃j, if i ∈ Cj,

0, otherwise.

So, we let θ̄ := θ̃ and

π̄j :=

{

π̃j, if j ∈ B,

0, otherwise.

Then (θ̄, π̄) is feasible in (3); moreover, its objective value is:

n∑

i=1

Ni

m∑

j=1

π̄j θ̄ij =

n∑

i=1

Ni

∑

j:i∈Cj

π̃j =

n∑

i=1

Ni

m∑

j=1

p̃ij = obj. value of (θ̃, π̃, p̃) in (5).

Therefore, for the optimization problems (3) and (5), their optimal objective values, as well as the
sets of optimal assignments and the sets of optimal prices (for those products that are bought) are
the same.

Note that, we can preprocess the data such that Rij ← max(0, Rij − CSi − δi) and CSi ← 0
without changing the above problem. We will work with this preprocessed data for the remainder of
the paper.

We may consider aggregating the first set of constraints to reduce the number of constraints.
Summing them over all j, j 6= k, gives us:

∑

j 6=k

(Rijθij − pij) ≥ (Rik + δi)




∑

j 6=k

θij



− (m− 1)πk, ∀k,∀i

which can be further strengthened to

∑

j 6=k

(Rijθij − pij) ≥ (Rik + δi)




∑

j 6=k

θij



− πk, ∀k,∀i. (6)

In terms of the LP relaxation, the relative strength of the original versus the aggregated constraint is
not clear. Let P1 be the feasible region of the LP relaxation of (5) and P2 be that of (5) with its first
set of constraints replaced by (6). We find that P1 * P2 and P2 * P1 as the following example shows.
Suppose n = 2, m = 3 and the reservation prices are

Rij Product 1 Product 2 Product 3

Segment 1 800 500 700

Segment 2 600 900 600

6



and δ1 := δ2 := δ := 1. To show that P1 * P2, note that the point θ12 = 0.5, θ13 = 0.5, p12 = 249.5,
p13 = 349.5, π1 = 400, π2 = 250, and π3 = 350 (all other variables equal 0) is contained in P1

but not contained in P2 since it violates
∑

j 6=1(R1jθ1j − p1j) ≥ (R11 + δ)(
∑

j 6=1 θ1j) − π1. To show
that P2 * P1, note that the point θ11 = 0.284, θ13 = 0.716, θ22 = 1, p11 = 227.5, π1 = 227.5, and
π3 = 199.3 (all other variables equal 0) is contained in P2 but not contained in P1 since it violates
R11θ11 − p11 ≥ (R12 + δ)θ11 − π2.

However, our computational experiments showed that the formulation (5) with its first set of
constraints replaced by (6) resulted in shorter total computation time in general than the original
formulation (5) and the MIP with (6) added to (5). (See, Appendix B.) Thus, for the remainder of
the paper, we consider the following mixed-integer optimization formulation of the maximum utility
model:

max

n∑

i=1

m∑

j=1

Nipij, (7)

s.t.
∑

j 6=k

(Rijθij − pij) ≥ (Rik + δi)(
∑

j 6=k

θij)− πk, ∀k,∀i,

Rijθij − pij ≥ 0, ∀j,∀i,
m∑

j=1

θij ≤ 1, ∀i,

pij ≤ πj, ∀i, j,

pij ≥ πj − R̄j(1− θij), ∀i, j,

θij ∈ {0, 1}, ∀i, j,

πj, pij ≥ 0, ∀i, j.

2.2 Price Setting Subproblem

If the optimal values of the binary variables θij are given for Model (7), then the problem of finding
the corresponding optimal prices πj breaks down into a shortest path problem. This property was
also noted by [4] in their pricing model.

Again, suppose we know what product type each customer segment chooses (i.e., θij is given).
Then, we know that pij = πj if θij = 1 and pij = 0 otherwise. Let Cj be the set of customer segments
who buy Product j, i.e.,

Cj = {i : θij = 1}

and let Mj be the total number of customers buying Product j, i.e.,

Mj =
∑

i∈Cj

Ni.

Also, let B be the set of products that are bought, i.e.,

B = {j : Cj 6= ∅} .
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Model (7) simplifies to the following LP problem with decision variables πj:

max

m∑

j=1

Mjπj , (8)

s.t. Rij − πj ≥ Rik − πk + δi, ∀j ∈ B,∀k ∈ {1, . . . ,m} \ {j},∀i ∈ Cj,

Rij − πj ≥ 0, ∀j ∈ B,∀i ∈ Cj

πj ≥ 0, ∀i, j,

which further simplifies to

max
m∑

j=1

Mjπj, (9)

s.t. πj − πk ≤ min
i∈Cj

{Rij −Rik − δi} , ∀j ∈ B,∀k ∈ {1, . . . ,m} \ {j},

πj ≤ min
i∈Cj

{Rij} , ∀j ∈ B.

We remove the nonnegativity constraint for πj since it would be enforced in the optimal solution.

The dual of LP (9) is:

min
∑

j,k

rjkxjk +
∑

j

γjwj ,

s.t.
∑

k 6=j

xjk −
∑

k 6=j

xkj + wj = Mj, ∀j ∈ B,

∑

k 6=j

xkj = 0, ∀j /∈ B

xjk, wj ≥ 0, ∀j, k,

where
rjk := min

i∈Cj

{Rij −Rik − δi}

and
γj := min

i∈Cj

{Rij} .

The last set of equality constraints and the nonnegativity constraints imply that

xkj = 0, ∀j /∈ B;

thus, we remove all xkj, j /∈ B from the formulation.

By adding a single redundant constraint, the above model becomes:

min
∑

j,k

rjkxjk +
∑

j

γjwj, (10)

s.t.
∑

k 6=j

xjk −
∑

k 6=j

xkj + wj = Mj , ∀j ∈ B,

−
∑

j

wj = −
∑

j

Mj,

xjk, wj ≥ 0, ∀j ∈ B, k ∈ B,
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which corresponds to a formulation of |B| shortest path problems in the digraph of Figure 1, where
there is a node for each Product j ∈ B, an auxiliary node 0, an arc connecting nodes j to k for
all j, k ∈ B with cost rjk, and an arc connecting every node j ∈ B to node 0 with cost γj . Thus,
the optimal price of Product j is the length of the shortest path from node j to node 0. Note that
γj answers the question “among all segments who bought Product j what is the utility of the most
critical segment?” By the “most critical segment” we mean those customers that we would lose first
when we increase the price of Product j. For the other arcs in the network, note that if xjk = 1 (the
arc is on the shortest path) then by complementary slackness theorem, rjk represents the difference
πj − πk.

1

2

 m

j

...
...

0

Figure 1: Underlying digraph of (10), assuming all j are in B.

Based on the above network structure, we have

Properties 2.1. The following are some properties of Model (7) and its solutions:

(a) The segment assignments Cj,∀j correspond to feasible assignments in (7) if and only if the
resulting network of (10) has no negative cost cycle.

(b) There exist optimal prices that are integral if all the data are integral.

(c) In every optimal solution, there exists at least one Product k such that πk = γk = min
i∈Ck

{Rik}.

(d) Suppose that i∗ ∈ C1 in an optimal solution and Ri∗1 ≤ Ri1,∀i. Then, in that optimal solution,
π1 = Ri∗1.

The proofs are in Appendix A.

2.3 Special Cases

Although the maximum utility problem is APX -Hard in general [8], there are some special cases in
which the problem can be solved in polynomial time.
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n = 1 Case
The simplest special case is when n = 1. Suppose Segment 1 is the sole segment. In the LP relaxation
of Model (7), the constraint for θ1j corresponds to a simplex and the objective function is such that
it wants to maximize the value of p1j and thus θ1j corresponding to the maximum R1j . Thus, the
optimal solution in the LP relaxation is θ1j∗ = 1 where j∗ = arg maxj R1j , which is clearly an integer
optimal solution.

n ≤ m Case
Extending the n = 1 case where n ≤ m, the LP relaxation of (7) will result in an integer solution
if the maximum reservation product for each customer segment is distinct across all segments and
this reservation price is larger than all other reservation prices for that product by at least δi. The
following is a formal statement of this property:

Lemma 2.1. For n ≤ m, the LP relaxation of (7) provides the integer optimal solution if each Segment
i (i = 1, . . . , n) can be assigned to a Product ji where:

1. Riji
≥ Rik, ∀k ∈ {1, . . . ,m},

2. ji 6= jℓ, ∀i, ℓ ∈ {1, . . . , n}, i 6= ℓ,

3. Riji
≥ Rℓji

+ δi, ∀i, ℓ ∈ {1, . . . , n}, i 6= ℓ.

Proof Sketch. Given the properties in the lemma, it is easy to check that an optimal solution of the
LP relaxation is:

π∗
ji

= Riji
, θ∗iji

= 1, θ∗ik = 0, p∗iji
= π∗

ji
, p∗ik = 0, ∀i ∈ {1, . . . , n},∀k 6= ji,

π∗
k = max

i
Rik, ∀k 6= ji,∀i ∈ {1, . . . , n}.

Clearly, the above solution is integral and thus corresponds to an integer optimal solution of (7) (see
the appendix for a complete proof).

m = 1 Case
Although the formulation given by (7) will not generally result in an integral LP relaxation when
m = 1, this special case of the problem can be formulated as an alternative LP problem. From Section
2.2, we know that the solution when m = 1 corresponds to a shortest path problem with one arc.
Thus, the price is determined by which customer segments purchase the product.

Suppose Product 1 is the sole product on the market. Then the price π1 is mini∈C1
{Ri1}. Let

R[i]1 be the ith order statistic of Ri1, i = 1, . . . , n, i.e., R[1]1 ≤ R[2]1 ≤ · · · ≤ R[n]1. Then the maximum
utility problem can be formulated as follows:

max
n∑

i=1

(
n∑

ℓ=i

Nℓ

)

R[i]1zi, (11)

s.t.
n∑

i=1

zi = 1,

zi ≥ 0, i = 1, . . . , n,

which clearly gives an integer solution zi∗ = 1 where i∗ = arg maxi(
∑n

ℓ=i Nℓ)R[i]1.
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m ≤ n Case
The LP in the m = 1 case can lead to an optimal solution for m > 1 and m ≤ n in very special cases.
Suppose C∗

j is the set of customer segments that buy Product j (11). If there are no overlaps among
C∗

j (for different j), then it corresponds to the optimal assignment for Model (7).

Lemma 2.2. Suppose C∗
j is the set of segments that buy Product j in the solution of (11) and

C∗
j

⋂
C∗

k = ∅,∀j, k ∈ {1, . . . ,m}, j 6= k. Then C∗
j is the optimal segment-product assignment of (7) for

δi ≤ minj=1,...,m{minl∈C∗
j
{Rlj} − Rij}, where this upper bound is strictly positive. Furthermore, the

optimal prices are π∗
j = mini∈C∗

j
Rij .

The proof is in the appendix.

3 Heuristics

The network substructure in Model (7) motivates heuristics that first find an assignment of customer
segments to products (i.e., determine the Cj ’s) then find the corresponding prices by solving |B|
shortest path problems modeled by (10). For the remainder of this section, we will assume that δi = 0
∀i, unless otherwise stated. A simple heuristic, which we call Maximum Reservation Price Heuristic
(MaxR), is as follows:

Maximum Reservation Price Heuristic (MaxR)

1: Set Cj = {i : j = arg maxk{Rik}},∀j.
2: Solve shortest path problems on the network defined by Cj,∀j.

Note that in the above heuristic, Cj = ∅ if Product j does not have the maximum Rij for any i. If
δi = 0 ∀i, the main advantage of MaxR is that it is guaranteed to produce a feasible product-segment
assignment for the price setting subproblem (9) since all of the arc costs in the shortest path network
(10) will be nonnegative (this may not be the case for δi > 0). In addition, this heuristic is guaranteed
to produce the optimal solution in certain cases.

Lemma 3.1. Suppose that δi = 0 for all i ∈ {1, 2, . . . , n} and the conditions in Lemma 2.1 are
satisfied. Then, MaxR produces an optimal solution.

Proof. This follows easily from the proof of Lemma 2.1.

However, there are clearly several weaknesses to the above heuristic. One such weakness is that
it requires every segment to buy a product, which may be sub-optimal. For example, suppose n = 2,
m = 2, N1 = 1, and N2 = 1 with the reservation prices given by the table below:

Rij Product 1 Product 2

Segment 1 100 99

Segment 2 1 2
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The optimal solution is to assign Segment 1 to Product 1 and Segment 2 to buy nothing with the total
revenue of 100. However, the heuristic will assign Segment 1 to Product 1 and Segment 2 to Product
2, thus Model (10) will set π1 = 3 and π2 = 2, resulting in a total revenue of 5. It is apparent from
the reservation prices that Segment 2 is not a profitable segment and we should not cater to them.
This does not mean that we should apply differentiated pricing (it means that the price of Product
2, π2 should be set high, say 99, without worrying about whether customers in Segment 2 will or will
not buy it).

To counteract the weaknesses of the MaxR heuristic, we can perform sequences of local reassign-
ments and segment deletions (i.e., have a segment not purchase any product) to improve the feasible so-
lution, as done in [4]. Specifically, given a feasible segment-product assignment C := {C1, C2, . . . , Cm}
and its corresponding optimal spanning tree solution from (10), we reassign a segment that constrains
the price of its product to its parent product in the spanning tree. Such reassignments always guar-
antee a feasible product-segment assignment and the prices of the products can only increase. We call
this extension the Dobson-Kalish Reassignment Heuristic:

Dobson-Kalish Reassignment Heuristic

Require: a feasible product-segment assignment and its corresponding optimal spanning tree solution
from solving (10) (e.g., via MaxR heuristic)

1: repeat
2: for all products/nodes j where Cj 6= ∅ do
3: Suppose arc (j, k) is in the spanning tree solution.
4: if k 6= 0 then
5: For every i∗ such that i∗ = arg mini∈Cj

{Rij − Rik}, reassign Segment i∗ to product/node
k.

6: else
7: For every i∗ such that i∗ = arg mini∈Cj

Rij, delete Segment i∗ (i.e., Segment i∗ buys no
products).

8: end if
9: Resolve the shortest path problem on the new network and record change in the objective

value.
10: Restore the original network.
11: end for
12: Perform the reassignment that resulted in the maximum increase in the objective value. Resolve

shortest path problems and update the optimal spanning tree.
13: until no reassignment improves the objective value.

Figure 2 illustrates this heuristic on an example with four products.

Lemma 3.2. When δi = 0 for every i, each reassignment in the Reassignment Heuristic results in a
feasible product-segment assignment.

Proof. We will establish the feasibility of the assignment by producing a feasible solution of (9). In
particular, we will show that the old solution, call it π̄, stays feasible for (9) under the new assignment.
Suppose Segment i∗, i∗ ∈ Cu, is being reassigned. If the parent of u is node 0, then i∗ is deleted and the
corresponding product-segment assignment is clearly feasible. Otherwise, suppose node v is the parent
of u and i∗ is the unique arg-minimizer of mini∈Cu{Riu−Riv}. In the shortest path formulation (10),
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Figure 2: Illustration of the Dobson-Kalish Reassignment Heuristic. The figure shows the opti-
mal spanning tree of a feasible product-segment assignment with four products. Suppose i∗ =
arg mini∈C4

{Ri4 −Ri3}. Then i∗ can be reassigned to Product 3.

xuv > 0; thus, by complimentary slackness, the constraint Ri∗u − πu ≥ Ri∗v − πv of (8) is active (i.e.,
both Product u and v offer the maximum utility for Segment i∗). Let us denote the new assignment
by C′ := {C ′

1, C
′
2, . . . , C

′
m}. Then,

C ′
u = Cu \ {i

∗}, C ′
v = Cv ∪ {i

∗}, C ′
j = Cj ,∀j ∈ {1, 2, . . . ,m} \ {u, v}.

Consider Problem (9) for the new assignment given by C′. Recall that B := {j : Cj 6= ∅}. Then π̄
clearly satisfies all the constraints for every j ∈ B \ {v} and for every k ∈ B. It suffices to verify the
remaining two constraints:

min
i∈C′

v

{Riv −Riu} = min







Ri∗v −Ri∗u
︸ ︷︷ ︸

=π̄v−π̄u

, min
i∈Cv

{Riv −Riu}
︸ ︷︷ ︸

≥π̄v−π̄u







≥ π̄v − π̄u,

min
i∈C′

v

{Riv} = min







Ri∗v
︸︷︷︸

≥π̄v

, min
i∈Cv

{Riv}
︸ ︷︷ ︸

≥π̄v







≥ π̄v,

where we used the fact that Segment i∗ had a positive surplus for Product u, hence

Ri∗v = π̄v + (Ri∗u − π̄u)
︸ ︷︷ ︸

≥0

.

Therefore, the old prices {π̄j} are still feasible with respect to the reassignment
{

C ′
j

}

. This argument

also applies in the case when there are multiple minimizers of mini∈Cu{Riu − Riv} and all of the
corresponding segments are reassigned to v.

Lemma 3.3. When δi = 0 for every i, if Segment i∗ is reassigned from Product u to Product v in the
Dobson-Kalish Reassignment Heuristic, then the prices of Product u and its children in the spanning
tree may increase while all other prices remain the same.
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Proof. First note that the only arc costs that can change after the reassignment are:

• arcs leaving node v (whose costs may decrease or stay the same), and

• arcs leaving node u (whose costs may increase or stay the same).

Thus, if the length of the shortest path to node 0 were to decrease, then the new path would have to
go through node v.

Now we show that the shortest path from node v to node 0 will not change. Suppose for the sake
of contradiction that the shortest path from v does change and it includes the arc (v, h). Let π̄v be
the length of the shortest path from node v to node 0 in the original network. First let us assume that
v 6= 0. We know that the shortest path from h to 0 remains the same, otherwise it must go through
v and thus form a cycle, contradicting Lemma 3.2. Thus, our claim implies π̄v > π̄h + Ri∗v − Ri∗h.
However, we know that in the old network Ri∗u− π̄u = Ri∗v− π̄v and Ri∗u− π̄u ≥ Ri∗h− π̄h, giving us
π̄v ≤ π̄h + Ri∗v −Ri∗h which contradicts our claim. Furthermore, the length of the shortest path from
v to node 0 does not change. Suppose that the shortest path of the original network included the arc
(v, ℓ) with cost rvℓ (again, rvℓ = mini∈Cv{Riv − Riℓ}). Since the shortest path network included the
arc (u, v), this implies that rvℓ +ruv ≤ ruℓ, i.e., rvℓ +(Ri∗u−Ri∗v) ≤ mini∈Cu{Riu−Riℓ} ≤ Ri∗u−Ri∗ℓ.
Thus, rvℓ ≤ Ri∗v−Ri∗ℓ, so the cost of (v, ℓ) does not change when Segment i∗ is moved to node v. Now
let us assume ℓ = 0, and suppose for the sake of contradiction that π̄v = γv = mini∈Cv{Riv} > Ri∗v.
However, we know that π̄u = π̄v + Ri∗u − Ri∗v ≤ Ri∗u from the upper bound constraints in (9), thus
π̄v ≤ Ri∗v. Thus, the cost of arc (v, ℓ) does not change. Similar arguments hold for the case where
v = 0.

Thus, the shortest path from node v to node 0 remains the same. From this, we know that all
shortest paths that did not go through u will remain the same.

This result is also useful from an implementation perspective. In implementing the heuristic,
we solved the shortest path problem using the Bellman-Ford-Moore algorithm. When we reassign a
customer segment from node/product u to node/product v, we only need to update the shortest paths
of node/product u and its children, speeding up the total computational time.

In [4], the authors claim that the Dobson-Kalish Reassignment Heuristic runs in polynomial time,
namely O(m4n) where m is the number of products and n is the number of customers. To show this
result, a key claim that they make is “Each segment can be reassigned a maximum of m times before
it is eliminated (assigned to 0)”. However, we show in the following counter-example that this is not
the case. Let m = 2 and n = 14. Consider a problem instance with the following reservation prices
and segment sizes (Table 1):
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Segment Ri1 Ri2 Ni

1 0 1 1

2 ǫ 1 + ǫ 1

3 4 5 1

4 4 + 5ǫ 5 + 5ǫ 1

5 8 9 1

6 8 + 9ǫ 9 + 9ǫ 1

7 12 13 90

8 5 2 1

9 5 + 5ǫ 2 + 5ǫ 1

10 9 6 1

11 9 + 9ǫ 6 + 9ǫ 1

12 13 10 1

13 13 + 13ǫ 10 + 13ǫ 90

14 101 100 10

Table 1: A bad example for Dobson-Kalish Reassignment Heuristic

where we set ǫ = 1
100 . In this example, MaxR will initially assign Segments 1 through 7 to Product

2, and the rest to Product 1. In the Reassignment Heuristic, Segment 14 would move from Product
1 to 2. Then Segment 1 would be deleted, followed by Segment 2 being deleted, at which point
Segment 14 moves back to Product 1. Then Segment 8 would be deleted, then followed by Segment 9
being deleted, at which point Segment 14 moves from Product 1 to Product 2. This process repeats,
where Segment 14 moves to Product v, then two Segments of Product v are deleted, then Segment 14
moves back to the other Product, until only Segment 7, 13 and 14 remains. Segment 14 is ultimately
reassigned a total of six times in the Dobson-Kalish Reassignment Heuristic, thus, the claim made in
[4] is false.

At this time, there is no clear polynomial bound on the running time of the heuristic and it may
be that the algorithm takes exponential time in the worst-case. We leave further analysis for a future
work.

However, the heuristic appears to make very few reassignments in practice. Table 2 shows the
running time of the Dobson-Kalish heuristic on randomly generated reservation prices, the same data
used in our more extensive computational experiments shown in Section 6. It is interesting to note that
given n constant, the number of reassignments appear to decrease as m increases (excluding m = 2
and m = 5). This may be due to the property stated in Lemma 3.1, where the randomly generated
reservation prices are more likely to have the special property of Lemma 3.1 when n≪ m. Thus, the
MaxR heuristic may be more likely to yield a good solution when n≪ m, as a result, requiring fewer
reassignments.

Table 3 shows the effect of initializing the branch-and-bound procedure with the Dobson-Kalish
Reassignment Heuristic solution. We solved the MIP (7) and set a time limit of one hour. The column
labeled “without” is the MIP result with CPLEX defaults and the column labeled “with” is the
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n m # Reassignments Time (CPU secs)

2 2 0 0.000

2 5 0 0.000

2 10 0 0.000

2 20 0 0.000

2 40 0 0.000

2 60 0 0.000

2 80 0 0.000

2 100 0 0.000

5 2 0 0.000

5 5 0 0.004

5 10 0 0.004

5 20 0 0.000

5 40 0 0.000

5 60 0 0.000

5 80 0 0.000

5 100 0 0.000

10 2 1 0.004

10 5 2 0.000

10 10 1 0.000

10 20 0 0.000

10 40 0 0.000

10 60 0 0.000

10 80 0 0.004

10 100 0 0.000

20 2 0 0.000

20 5 2 0.000

20 10 2 0.000

20 20 3 0.000

20 40 0 0.000

20 60 0 0.004

20 80 0 0.004

20 100 0 0.000

n m # Reassignments Time (CPU secs)

40 2 2 0.000

40 5 5 0.000

40 10 6 0.004

40 20 4 0.004

40 40 1 0.004

40 60 1 0.008

40 80 0 0.004

40 100 0 0.004

60 2 1 0.000

60 5 8 0.000

60 10 9 0.008

60 20 5 0.008

60 40 8 0.024

60 60 5 0.024

60 80 5 0.032

60 100 4 0.032

80 2 5 0.000

80 5 2 0.000

80 10 31 0.028

80 20 13 0.028

80 40 9 0.032

80 60 8 0.044

80 80 5 0.040

80 100 7 0.072

100 2 2 0.000

100 5 10 0.004

100 10 21 0.020

100 20 29 0.060

100 40 11 0.048

100 60 14 0.104

100 80 18 0.164

100 100 5 0.064

Table 2: Number of reassignments and running time (in CPU seconds) of the Dobson-Kalish Reas-
signment Heuristic on randomly generated reservation prices.
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Branch-and-Bound Nodes Time (CPU sec) Best Feasible ObjVal DK

n m without with without with without with ObjVal

10 5 54 45 0.11 0.10 5,563,941 5,563,941 5,538,951

10 20 0 0 0.11 0.11 6,462,579 6,462,579 6,411,532

10 60 0 0 1.04 1.08 6,535,702 6,535,702 6,535,702

10 100 0 0 3.74 3.91 6,189,501 6,189,501 6,189,501

20 5 396 283 1.18 0.94 11,408,143 11,408,143 11,408,143

20 20 281 281 2.32 2.27 12,619,821 12,619,821 12,569,173

20 60 1 1 3.26 3.40 12,535,858 12,535,858 12,524,341

20 100 0 0 12.19 12.88 13,042,924 13,042,924 13,042,924

40 5 458,801 587,676 3600.00 3600.00 21,203,889 21,203,889 21,203,889

40 20 254,801 235,301 3600.00 3600.00 24,428,264 24,428,264 24,339,805

40 60 25 25 11.56 11.46 26,914,470 26,914,470 26,889,864

40 100 51 51 38.98 40.79 25,350,493 25,350,493 25,344,259

60 5 282,647 289,701 3600.00 3600.00 30,718,212 30,718,212 30,668,313

60 20 53,357 66,501 3600.00 3600.00 37,953,896 37,953,896 37,846,041

60 60 28,301 45,701 3600.00 3600.00 38,848,221 38,848,221 38,840,190

60 100 24,101 25,981 3600.00 3600.00 40,591,695 40,591,695 40,577,937

100 5 173,901 161,547 3600.00 3600.00 52,002,035 52,047,301 50,410,990

100 20 41,015 39,001 3600.00 3600.00 58,890,675 59,713,318 59,707,018

100 60 8,778 10,301 3600.00 3600.00 65,731,774 65,848,403 65,813,404

100 100 11,459 7,223 3600.00 3600.00 67,219,374 67,215,991 67,168,897

Table 3: Effect of initializing the branch-and-bound procedure with and without the Dobson-Kalish
Reassignment Heuristic solution with a one hour time limit on CPLEX. The column “without”/“with”
corresponds to solving (7) without/with feeding CPLEX the heuristic solution as an initial feasible
solution.
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result when the Dobson-Kalish Reassignment Heuristic solution is given as an initial feasible solution.
“Best Feasible ObjVal” is the best objective value that CPLEX found within the time limit. “DK
ObjVal” is the objective value returned by the Dobson-Kalish Reassignment Heuristic solution. In
some instances, starting with the heuristic solution results in fewer branch-and-bound nodes. For the
ten instances where CPLEX could not prove optimality within one hour, starting with the heuristic
solution yielded better objective values in three of the cases and even resulted in a worse solution in
one case. Thus, it appears that this heuristic sometimes succeeds in finding a “good” feasible solution
efficiently, but proving optimality is still difficult. To improve the latter situation, we explore various
valid inequalities in Section 4.

Based on our assumptions (A.1)–(A.4), any π ∈ Rm
+ defines a corresponding product-segment

assignment C = {C1, C2, . . . , Cm} uniquely when δi > 0,∀i. Let us denote such an assignment by
C(π). Then, by construction, the assignment C(π) is feasible.

Once a feasible assignment C is given, we can easily compute the corresponding “optimal prices”
by solving the shortest path problem on the underlying network. We denote these “optimal prices”
by Π(C). For the convenience of our design of heuristics, we would like to define the mapping Π :
{0, 1}mn → Rm so that it produces an m-vector. For those products u for which Cu = ∅, we set πu to
the “highest price” that does not change C. That is, we need

πu > min
i
{Riu −Riji

+ πji
+ δi} ,

where ji denotes the Product j such that i ∈ Cj . Note that even if Ci 6= ∅, for every i, it is rarely the
case that for an arbitrary π ∈ Rm

+ , Π (C(π)) = π.

Utilizing the above observation, we generalize the MaxR Heuristic to deal with positive δi (we
can also generalize the reassignment heuristic). Following the rough idea of the MaxR Heuristic, we
try to assign segments to products by maximizing the corresponding Rij subject to maintaining the
nonnegativity of the weights of all the arcs in the network representation.

Generalized Maximum Reservation Price Heuristic (GenMaxR)

1: Set Cj := ∅, for every j; I := ∅.
2: repeat
3: Find i∗ ∈ {1, 2, . . . , n} \ I and u ∈ {1, 2, . . . ,m} such that Ri∗u is the maximum among all Rij

such that assigning Segment i∗ to Product u maintains the nonnegativity of all weights on all
the arcs.

4: if no such i∗, u exist, then
5: solve the shortest path problems on the network defined by the current assignment {Cj} to

determine the prices and STOP.
6: else
7: I := I

⋃
{i∗}, Cu := Cu

⋃
{i∗}.

8: end if
9: until Maximum number of iterations.

4 Valid Inequalities

Even with good feasible integer solutions, our experiments show that some problem instances are still
intractable due to the weak lower bounds produced by the LP relaxations (e.g., see Table 3 in Section
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3). Thus, the key to improving the branch-and-bound procedure would be to generate good cutting
planes for the LP relaxation of (7). The following are some valid inequalities for the mixed-integer
programming problem.

4.1 Lower Bound Inequalities

These cuts use the fact that there exists a non-trivial lower bound for product prices.

Lemma 4.1. Let πj, θij , pij , i = 1, . . . , n, and, j = 1, . . . ,m be optimal for (7). Then πj ≥ ℓj ,
∀j = 1, . . . ,m, where

ℓj := min
i=1,...,n

{Rij} .

Proof. From Property 2.1 (c), we know that there exist k such that πk = mini∈Ck
{Rik} where Ck is

the set of customer segments who buy Product k. Suppose i∗ = arg mini∈Ck
{Rik}. Clearly, πk ≥ ℓk.

For all other feasible πj where j 6= k, we have

Ri∗k − πk ≥ Ri∗j − πj + δi∗ , ∀j 6= k

⇒ 0 ≥ Ri∗j − πj + δi∗ , ∀j 6= k

⇒ πj ≥ Ri∗j + δi∗ ≥ ℓj, ∀j 6= k,

which concludes the proof.

From Lemma 4.1, we get the following valid inequalities:

pij ≥

(

min
l=1,...,n

Rlj

)

θij, ∀i = 1, . . . , n; j = 1, . . . ,m. (12)

4.2 Negative Cost Cycle Inequalities

The following set of constraints eliminate negative 2-cycles in the underlying network in the solution
of (7):

θij + θlk ≤ 1, ∀i, l,∀j, k, such that (Rij −Rik − δi) + (Rlk −Rlj − δl) < 0. (13)

Clearly, the Formulation (7) prevents negative cost cycles in the resulting network (10), but there are
instances where the LP relaxation violates the above valid inequality.

In general, we cannot hope to generate negative k-cycles efficiently since for large k, the problem
of determining the existence of such a cycle is NP-complete. However, given a network, there are
many algorithms which will efficiently retrieve many negative cycles of various lengths.

One approach is, after we solve the current LP relaxation of our MIP, we focus on the θ part of
the optimal solution. Let G(θ, ǫ) denote the graph constructed by assuming that for every θij ≥ ǫ,
customer Segment i buys Product j. On this graph we run algorithms such as Barahona-Tardos
modification [2] of Weintraub’s [21] to retrieve some negative cost cycles in polynomial-time, and add
the resulting inequalities on θij to our current MIP formulation. We might want to start with ǫ = 1/2
and gradually halve it if not enough negative cycle inequalities are generated.
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We implemented another approach: For each node, we grew a path of negative total cost, making
sure that every time we add an arc to the path, the current cost of the path remained negative. We
extracted a negative cost cycle by using the Bellman-Ford-Moore algorithm.

4.3 Flow Cuts

Flow cuts [7, 16] are relevant cuts for (7) and are frequently generated automatically by CPLEX’s
mixed-integer programming solver [10]. There are also recent approaches based on lift-and-project
constructions, see [3]. Let bi = maxj {Rij} and aij = Rij for i = 1, . . . , n and j = 1, . . . ,m. From (7),
we know that ∀i = 1, . . . , n,

m∑

j=1

pij ≤ bi, and pij ≤ aijθij, ∀j,

are valid inequalities for feasible mixed-integer solutions. We call the set Si ⊂ {1, . . . ,m} a cover if
∑

j∈Si
aij > bi, and let the associated surplus be λi =

∑

j∈Si
aij − bi. Applying the theory for flow

cuts (see [15, 22, 7, 16]), we have the following valid inequality for (7):
∑

j∈Si

S

Li

pij +
∑

j∈Si

(aij − λi)+(1− θij) ≤ bi +
∑

j∈Li

(āij − λ)θij , ∀i, (14)

where Si is a cover, Li := {1, 2, . . . ,m} \ Si, āij := max{max
k∈Si

aik, aij}, and (x)+ := max{0, x}.

4.4 First-Order Inter-Segment Inequalities

One of the weaknesses in the original formulation is that pij’s do not interact directly with each other
across different segments. The variables πj are essentially the only variables linking the constraints
of different segments. The following “inter-segment inequalities” are valid inequalities that link θ
variables of different segments in the same constraint.

Proposition 4.1. Suppose δi = 0,∀i,

R1j −R2j > R1k −R2k,∀j ∈ {1, 2, . . . ,m} \ {k}, and R2k ≥ R1k. (15)

Then the inequality
θ2k ≥ θ1k (16)

is valid for the feasible region of (7).

Proof. If θ1k = 0 then the inequality θ2k ≥ θ1k is clearly valid. So, we may assume θ1k = 1. Then

πj ≥ R1j −R1k + πk,∀j ∈ {1, 2, . . . ,m}.

Since R1j −R2j > R1k −R2k,∀j ∈ {1, 2, . . . ,m} \ {k}, we conclude

πj > R2j −R2k + πk,∀j ∈ {1, 2, . . . ,m},

i.e., Product k has the largest surplus for customer Segment 2. Since R2k ≥ R1k and R1k−πk ≥ 0 (we
assumed θ1k = 1), we have R2k ≥ πk, i.e., the surplus is nonnegative for Segment 2 as well. Therefore,
θ2k = 1.
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An algorithm to generate these inequalities easily follows: Form the vectors (R1· −Ri·) for each
i ∈ {2, 3, . . . , n}, and let

ki := argmin {R1j −Rij : j ∈ {1, 2, . . . , n}} ,

ki := argmax {R1j −Rij : j ∈ {1, 2, . . . , n}} .

If the argmin above is unique and Riki
≥ R1ki

then include the inequality

θiki
≥ θ1ki

in the MIP formulation. If the argmax above is unique and R1ki
≥ Riki

then include the inequality

θiki
≤ θ1ki

in the MIP formulation.

A few other remarks are in order. Firstly, we have at most n(n − 1) inequalities of this type.
Secondly, if some of the strict inequalities in (15) are equations, we can still generate a similar valid
inequality; but the resulting inequality would involve more than two θij variables. Finally, we can
easily generalize the above cut to positive δi and to higher-order inter-segment inequalities.

4.5 Other Valid Inequalities

The following are other valid inequalities specific to the problem.

With the original formulation, it is possible that the LP relaxation will result in pij larger than
Rlj with θij and θlj both strictly positive. The following is a valid inequality that attempts to cut
such fractional solutions:

pij ≤ Rljθlj + Rij(1− θlj), ∀i 6= l,∀j. (17)

Another observation is that if Segment i buys Product j and Rlj > Rij , then Segment l must buy
a product (as opposed to buying nothing). The following inequality reflects this property:

m∑

k=1

θlk ≥ θij, if Rij < Rlj , ∀i 6= l,∀j. (18)

5 Product Capacity

In all of our discussions thus far, we have assumed that there are no capacity limits for our products.
However, this is an unrealistic assumption for products such as airline seats and hotel rooms. Further-
more, in some cases, companies may want to penalize against under-shooting a capacity. For example,
if there is a large fixed cost or initial investment for Product j, the company may sacrifice revenue
and decrease its price to ensure that all of the product is sold. We call such products risk products.

Let us assume that the company can sell up to Capj units of Product j, Capj ≥ 0, j = 1, . . . ,m.
Incorporating the capacity constraint to (7) is straightforward. We simply enforce the following linear
constraint:

n∑

i=1

Niθij ≤ Capj, ∀j. (19)
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If Product j is a risk product, then let sj be the slack of the above constraint and add −ℓjsj to the
objective function where ℓj ≥ 0 is a user-defined penalty for undershooting the capacity.

In some applications, overshooting the capacity slightly (at least during the planning stages) is
allowed or even desired (e.g., the airline seats). To incorporate such features and to penalize them
appropriately, we can utilize a goal programming approach (for a recent treatment of goal program-
ming, see [18]). We can treat Capj as the goal and use the nonnegative variables s−j and s+

j to denote
the amounts of negative and positive deviations from this goal. Then we still have a linear equation:

n∑

i=1

Niθij + s−j − s+
j = Capj, ∀j.

Given uj > 0, the unit cost of overshooting the capacity constraint for product j, we include the terms
−ℓjs

−
j − ujs

+
j in the objective function.

The heuristics for the maximum utility model, discussed in Section 3, can incorporate capacity
constraints as well. Suppose the heuristic produces a product-segment assignment that overshoots the
capacity for Product j. Then πj can be increased until a segment switches to another product that
gives them higher surplus. Thus, πj will be increased until enough segments switch to another product
so that the capacity constraint for Product j is met. If on the other hand, Product j is a risk product
and its capacity was under utilized, then we may consider decreasing πj until enough segments switch
to Product j.

6 Computational Experiments

We tested the Dobson-Kalish Reassignment heuristic and our mixed-integer programming formulations
of the maximum utility problem on randomly generated and real data sets, with δi = 0,∀i. On an SGI
Altix 3800 with 64 Intel Itanium-2 processors each running at 1.3GHz and 122GB of RAM running
SuSE Linux with SGI ProPack 4, we serially ran our implementation of the Dobson-Kalish heuristic
against each test case and used the solutions obtained therefrom as initial feasible solutions for a run
of the CPLEX 10.0 mixed-integer programming solver. The Dobson-Kalish code was implemented in
C++ and compiled with gcc 4.1.0. The Dobson-Kalish pass was permitted to run to completion (see
Table 2 for running time), while the MIP solver was terminated after three hours of execution (except
this, CPLEX was run with default parameters).

6.1 Randomly Generated Data

For n = 2, 5, 10, 20, 40, 60, 80, 100 and m = 2, 5, 10, 20, 40, 60, 80, 100, we generated one random dense
test case. In these random test cases, each Rij is a random integer chosen from a uniform distribution
on the integers between 512 and 1023, inclusive, and each Ni is a random integer between 500 and 799,
inclusive. All of our computational experiments were run with CSi = 0 for each customer segment i.
The results are shown in Tables 4 to 7.

We present the results of solving the MIP formulation (7) with CPLEX. All experiments included
the lower bound inequalities (12) and the valid inequalities (17). The results under the column “inter”
are obtained using the model that also includes the first-order inter-segment inequalities (16). The
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results under the column “cycle” include the negative cycle inequalities of Section 4.2 instead. The
results under the column “both” include both sets of inequalities. The results under the column “nei-
ther” include neither inequalities. None of the other inequalities of Section 4 significantly strengthened
the bounds in the branch-and-bound procedure.

Tables 4 and 5 show the total number of branch-and-bound nodes explored and the total running
time in CPU seconds up to the three hour time limit. Table 6 shows the relative gap between the
objective value of the Dobson-Kalish solution and the best lower bound (i.e., the best feasible objective
value) found by CPLEX. In Table 7, the column “DK vs Best UB” illustrates the relative gap between
the objective value of the Dobson-Kalish solution and the best upper bound found by CPLEX and
the column “Best LB vs Best UB” illustrates the relative gap between the best lower bound and the
best upper bound found by CPLEX (i.e., the MIP optimality gap). The results are not shown for
n ≤ 20 since all those instances solved to optimality within the time limit, thus the best lower bound
and upper bound were equal (to a factor of 10−6), and the “DK vs Best UB” would be the same as
the values in Table 6 and “Best LB vs Best UB” would be 0.

The MIP formulation for “none”, which is the MIP (7) with valid inequalities (12) and (17), has
2nm + m columns (nm of which correspond to binary variables), 5nm + n(n − 1)m + n rows, and
2m2n + 9nm + 2n(n− 1)m non-zero elements. The size of the formulation for each problem instance
after the CPLEX presolve are reported in Tables 8 and 9. Presolve was able to reduce the problem
size for these particular data sets but not significantly.

Results

From Table 4, we see that all instances with n ≤ 20 solved to optimality within three hours, most
of them solving at the root node (after the CPLEX generated its default cuts). There seems to
be no significant difference in using or not using the inter-segment and negative cycle inequalities,
except for (n,m) = (20, 2) and (20, 5) where the cuts do appear to help. It does appear that the
negative cycle inequalities do decrease the number of nodes required to prove optimality (e.g., for
(n,m) = (10, 5), (20, 2), (20, 5), (20, 10), (20, 20)) but the total computation time was higher than that
for “inter”. Although we are dynamically separating the negative cycle inequalities, the addition of
the inequalities lead to larger subproblems and thus longer per node computation time.

Table 5 illustrates a more significant impact of the cuts. The instance (n,m) = (40, 5) highlights
this, where “neither” could not solve the problem to provable optimality in three hours but “both”
solved it to optimality in about 20 minutes. The instances (n,m) = (60, 2), (80,2), and (100,2)
also highlight the advantages of having cuts since the implementation with cuts required significantly
fewer branch-and-bound nodes to prove optimality. Once again, it appears that the negative cost
cycle inequalities are effective in tightening the bounds but consequently slow down the per node
running time. Thus, “inter” often dominates with respect to solution time. The larger problem sizes
illustrate the tradeoff between improving bounds with cuts and increased per node computation time.
For example, when n = 100, the difference in the number of nodes that CPLEX explored in three
hours is lower when cuts are included, especially with negative cost cycle inequalities.

Table 6 shows that the Dobson-Kalish solution finds good feasible solutions in a fraction of a second
(see Table 2 for the running times). Except for (n,m) = (5, 10), (80, 2), (80, 5), (100, 5), the heuristic
found a solution within 1% of the best feasible solution found by CPLEX.
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Number of Nodes Time (CPU sec)

n m neither inter cycle both neither inter cycle both

2 2 0 0 0 0 0.00 0.00 0.00 0.00

2 5 0 0 0 0 0.00 0.01 0.00 0.00

2 10 0 0 0 0 0.01 0.01 0.01 0.01

2 20 0 0 0 0 0.02 0.02 0.02 0.02

2 40 0 0 0 0 0.06 0.06 0.06 0.06

2 60 0 0 0 0 0.14 0.14 0.14 0.15

2 80 0 0 0 0 0.25 0.25 0.26 0.26

2 100 0 0 0 0 0.41 0.42 0.42 0.43

5 2 0 0 0 0 0.01 0.00 0.01 0.00

5 5 0 0 0 0 0.01 0.01 0.01 0.02

5 10 57 62 61 65 0.11 0.12 0.16 0.18

5 20 0 0 0 0 0.07 0.07 0.07 0.08

5 40 0 0 0 0 0.33 0.32 0.34 0.35

5 60 0 0 0 0 0.44 0.44 0.45 0.45

5 80 0 0 0 0 0.96 0.96 1.00 1.00

5 100 0 0 0 0 1.15 1.15 1.18 1.18

10 2 0 0 0 0 0.07 0.08 0.06 0.08

10 5 21 38 16 16 0.16 0.21 0.18 0.21

10 10 12 18 12 18 0.23 0.27 0.27 0.32

10 20 0 0 0 0 0.17 0.19 0.19 0.20

10 40 0 0 0 0 0.56 0.57 0.59 0.61

10 60 0 0 0 0 1.32 1.35 1.43 1.42

10 80 0 0 0 0 2.98 3.09 3.55 3.50

10 100 0 0 0 0 4.40 4.46 4.75 4.73

20 2 51 27 20 23 0.67 0.65 0.60 0.66

20 5 162 94 128 60 1.98 1.92 2.74 2.26

20 10 392 376 253 286 4.74 4.68 8.15 8.06

20 20 458 459 219 219 5.92 6.29 8.94 9.20

20 40 214 214 229 229 7.54 8.06 22.35 22.77

20 60 1 1 1 1 5.95 6.04 7.32 7.42

20 80 0 0 0 0 5.45 5.85 6.56 6.66

20 100 0 0 0 0 9.63 9.97 11.82 11.64

Table 4: Number of branch-and-bound nodes and total running time on randomly generated data for n = 2
to 20. n is the number of customer segments and m is the number of products. “neither” is the result of
solving (7) with (12) and (17). “inter” and “cycle” are the same as “neither” but with first-order inter-segment
inequalities (16) and negative cost cycle inequalities, respectively. “both” is the combination of “inter” and
“cycle”.
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Number of Nodes Time (CPU sec)

n m neither inter cycle both neither inter cycle both

40 2 157 93 56 68 4.05 5.14 4.32 4.87

40 5 759,774 659,612 91,554 19,616 10800.00 6392.82 6432.44 882.34

40 10 220,501 447,671 46,459 49,541 10800.00 10800.00 10800.00 10800.00

40 20 336,701 269,771 58,788 57,832 10800.00 10800.00 10800.00 10800.00

40 40 90 90 80 81 26.43 28.84 62.38 65.89

40 60 29 22 29 26 24.48 25.98 59.34 58.52

40 80 3,234 2,327 2,287 2,726 558.53 431.21 3151.82 3722.86

40 100 52 89 52 89 72.67 80.41 210.88 305.09

60 2 12,860 744 967 294 141.57 25.45 40.83 19.13

60 5 271,132 245,601 40,269 60,975 10800.00 10800.00 10800.00 10800.00

60 10 111,232 131,772 17,697 16,247 10800.00 10800.00 10800.00 10800.00

60 20 83,790 67,500 11,056 9,419 10800.00 10800.00 10800.00 10800.00

60 40 56,901 53,901 4,901 5,624 10800.00 10800.00 10800.00 10800.00

60 60 40,842 37,939 3,645 3,401 10800.00 10800.00 10800.00 10800.00

60 80 33,478 29,564 2,117 2,121 10800.00 10800.00 10800.00 10800.00

60 100 19,921 18,820 1,209 1,130 10800.00 10800.00 10800.00 10800.00

80 2 66,306 1,636 3,933 455 1375.45 83.96 241.03 50.25

80 5 99,801 63,906 17,741 20,790 10800.00 10800.00 10800.00 10800.00

80 10 48,753 31,401 7,204 6,089 10800.00 10800.00 10800.00 10800.00

80 20 22,601 19,411 3,389 2,642 10800.00 10800.00 10800.00 10800.00

80 40 15,210 28,101 1,640 1,528 10800.00 10800.00 10800.00 10800.00

80 60 16,426 13,609 1,260 1,414 10800.00 10800.00 10800.00 10800.00

80 80 1,802 1,082 691 610 1497.25 1279.04 6409.94 5996.34

80 100 14,058 12,831 481 490 10800.00 10800.00 10800.00 10800.00

100 2 239,908 1,990 5,778 836 6212.91 179.00 651.92 111.93

100 5 40,545 35,375 8,288 8,274 10800.00 10800.00 10800.00 10800.00

100 10 28,001 16,916 3,721 3,604 10800.00 10800.00 10800.00 10800.00

100 20 15,101 12,501 952 1,184 10800.00 10800.00 10800.00 10800.00

100 40 8,911 8,629 853 873 10800.00 10800.00 10800.00 10800.00

100 60 5,441 4,368 319 252 10800.00 10800.00 10800.00 10800.00

100 80 4,331 3,440 152 162 10800.00 10800.00 10800.00 10800.00

100 100 7,051 7,011 165 128 10800.00 10800.00 10800.00 10800.00

Table 5: Number of branch-and-bound nodes and total running time on randomly generated data for
n = 40 to 100. n is the number of customer segments and m is the number of products. “neither” is the
result of solving (7) with (12) and (17). “inter” and “cycle” are the same as “neither” but with first-order
inter-segment inequalities (16) and negative cost cycle inequalities, respectively. “both” is the combination of
“inter” and “cycle”.
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DK vs Best LB DK vs Best LB

n m neither inter cycle both n m neither inter cycle both

2 2 0.00 0.00 0.00 0.00 40 2 0.39 0.39 0.39 0.39

2 5 0.00 0.00 0.00 0.00 40 5 0.00 0.00 0.00 0.00

2 10 0.00 0.00 0.00 0.00 40 10 0.39 0.39 0.39 0.39

2 20 0.00 0.00 0.00 0.00 40 20 0.36 0.36 0.36 0.36

2 40 0.00 0.00 0.00 0.00 40 40 0.06 0.06 0.06 0.06

2 60 0.00 0.00 0.00 0.00 40 60 0.09 0.09 0.09 0.09

2 80 0.00 0.00 0.00 0.00 40 80 0.12 0.12 0.12 0.12

2 100 0.00 0.00 0.00 0.00 40 100 0.03 0.03 0.03 0.03

5 2 0.00 0.00 0.00 0.00 60 2 0.00 0.00 0.00 0.00

5 5 0.00 0.00 0.00 0.00 60 5 0.03 0.16 0.03 0.16

5 10 1.14 1.14 1.14 1.14 60 10 0.19 0.28 0.19 0.00

5 20 0.00 0.00 0.00 0.00 60 20 0.28 0.28 0.28 0.28

5 40 0.00 0.00 0.00 0.00 60 40 0.24 0.24 0.00 0.22

5 60 0.00 0.00 0.00 0.00 60 60 0.02 0.02 0.01 0.02

5 80 0.00 0.00 0.00 0.00 60 80 0.05 0.05 0.05 0.05

5 100 0.00 0.00 0.00 0.00 60 100 0.03 0.03 0.03 0.03

10 2 0.00 0.00 0.00 0.00 80 2 4.31 4.31 4.31 4.31

10 5 0.45 0.45 0.45 0.45 80 5 1.28 1.28 0.38 0.38

10 10 0.27 0.27 0.27 0.27 80 10 0.40 0.40 0.00 0.00

10 20 0.79 0.79 0.79 0.79 80 20 0.15 0.08 0.00 0.00

10 40 0.00 0.00 0.00 0.00 80 40 0.05 0.08 0.00 0.00

10 60 0.00 0.00 0.00 0.00 80 60 0.13 0.13 0.11 0.10

10 80 0.09 0.09 0.09 0.09 80 80 0.04 0.04 0.04 0.04

10 100 0.00 0.00 0.00 0.00 80 100 0.12 0.12 0.07 0.09

20 2 0.00 0.00 0.00 0.00 100 2 0.62 0.62 0.62 0.62

20 5 0.00 0.00 0.00 0.00 100 5 2.47 2.47 2.16 2.52

20 10 0.00 0.00 0.00 0.00 100 10 0.61 0.60 0.00 0.24

20 20 0.40 0.40 0.40 0.40 100 20 0.06 0.24 0.00 0.00

20 40 0.04 0.04 0.04 0.04 100 40 0.03 0.03 0.00 0.00

20 60 0.09 0.09 0.09 0.09 100 60 0.03 0.03 0.00 0.00

20 80 0.04 0.04 0.04 0.04 100 80 0.12 0.06 0.05 0.07

20 100 0.00 0.00 0.00 0.00 100 100 0.08 0.08 0.03 0.01

Table 6: Relative gap between the objective value of Dobson-Kalish heuristic and the best feasible objective
value found by CPLEX within the three hour time limit on randomly generated data. n is the number of
customer segments and m is the number of products. “neither” is the result of solving (7) with (12) and (17).
“inter” and “cycle” are the same as “neither” but with first-order inter-segment inequalities (16) and negative
cost cycle inequalities, respectively. “both” is the combination of “inter” and “cycle”.

26



DK vs Best UB Best LB vs Best UB

n m neither inter cycle both neither inter cycle both

40 2 0.39 0.39 0.39 0.39 0.00 0.00 0.00 0.00

40 5 6.35 0.01 0.01 0.01 6.35 0.01 0.01 0.01

40 10 2.98 2.46 2.84 2.91 2.59 2.07 2.46 2.53

40 20 0.74 0.62 0.79 0.76 0.38 0.26 0.43 0.40

40 40 0.07 0.07 0.07 0.07 0.01 0.01 0.01 0.01

40 60 0.10 0.10 0.10 0.10 0.01 0.01 0.01 0.01

40 80 0.13 0.13 0.13 0.13 0.01 0.01 0.01 0.01

40 100 0.04 0.04 0.04 0.04 0.01 0.01 0.01 0.01

60 2 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00

60 5 8.80 6.42 6.93 3.66 8.77 6.26 6.90 3.50

60 10 5.23 5.36 5.18 5.02 5.06 5.09 5.00 5.02

60 20 1.35 1.38 1.43 1.27 1.07 1.10 1.15 0.99

60 40 0.57 0.54 0.59 0.61 0.33 0.31 0.59 0.39

60 60 0.19 0.21 0.23 0.24 0.17 0.18 0.22 0.22

60 80 0.16 0.20 0.21 0.23 0.11 0.16 0.17 0.19

60 100 0.16 0.12 0.19 0.18 0.13 0.09 0.16 0.15

80 2 4.32 4.32 4.32 4.31 0.01 0.01 0.01 0.00

80 5 9.81 8.15 8.32 6.14 8.64 6.95 7.97 5.79

80 10 5.88 5.80 5.79 5.80 5.50 5.42 5.79 5.80

80 20 3.17 3.17 3.21 3.28 3.02 3.09 3.21 3.28

80 40 0.67 0.65 0.71 0.70 0.62 0.58 0.71 0.70

80 60 0.28 0.26 0.30 0.28 0.15 0.13 0.19 0.18

80 80 0.05 0.05 0.05 0.05 0.01 0.01 0.01 0.01

80 100 0.28 0.28 0.30 0.30 0.16 0.16 0.23 0.21

100 2 0.63 0.62 0.63 0.62 0.01 0.01 0.01 0.00

100 5 14.61 12.69 13.88 11.27 12.45 10.48 11.97 8.98

100 10 7.62 7.61 7.74 7.71 7.06 7.06 7.74 7.49

100 20 6.14 6.16 6.21 6.24 6.08 5.93 6.21 6.24

100 40 0.41 0.41 0.43 0.42 0.38 0.37 0.43 0.42

100 60 0.68 0.68 0.71 0.69 0.66 0.65 0.71 0.69

100 80 0.48 0.48 0.49 0.49 0.36 0.43 0.44 0.42

100 100 0.19 0.19 0.21 0.20 0.12 0.12 0.18 0.20

Table 7: Relative gap between the objective value of Dobson-Kalish heuristic versus the best upper-bound
found by CPLEX (“DK vs Best UB”) and relative gap between the best feasible objective value versus the
best upper-bound found by CPLEX (“Best LB vs Best UB”) within the three hour time limit on randomly
generated data for n=40 to 100. n is the number of customer segments and m is the number of products.
“neither” is the result of solving (7) with (12) and (17). “inter” and “cycle” are the same as “neither” but
with first-order inter-segment inequalities (16) and negative cost cycle inequalities, respectively. “both” is the
combination of “inter” and “cycle”.
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From Formulation After CPLEX Presolve

n m ncols nrows nnz ncols nrows nnz

2 2 10 26 60 8 16 34

2 5 25 62 210 20 42 145

2 10 50 122 620 40 82 440

2 20 100 242 2,040 80 162 1,480

2 40 200 482 7,280 158 316 5,303

2 60 300 722 15,720 240 482 11,627

2 80 400 962 27,360 320 642 20,313

2 100 500 1,202 42,200 400 802 31,376

5 2 22 95 210 20 67 148

5 5 55 230 675 50 165 520

5 10 110 455 1,850 100 325 1,490

5 20 220 905 5,700 200 645 4,772

5 40 440 1,805 19,400 400 1,284 16,748

5 60 660 2,705 41,100 600 1,925 35,910

5 80 880 3,605 70,800 800 2,565 62,271

5 100 1,100 4,505 108,500 1,000 3,202 95,825

10 2 42 290 620 40 192 418

10 5 105 710 1,850 100 469 1,343

10 10 210 1,410 4,700 200 929 3,638

10 20 420 2,810 13,400 400 1,847 11,068

10 40 840 5,610 42,800 800 3,688 37,330

10 60 1,260 8,410 88,200 1,200 5,524 78,763

10 80 1,680 11,210 149,600 1,597 7,354 135,140

10 100 2,100 14,010 227,000 1,999 9,202 207,135

20 2 82 980 2,040 80 591 1,256

20 5 205 2,420 5,700 200 1,455 3,745

20 10 410 4,820 13,400 400 2,885 9,428

20 20 820 9,620 34,800 800 5,751 26,650

20 40 1,640 19,220 101,600 1,599 11,485 84,446

20 60 2,460 28,820 200,400 2,400 17,211 173,480

20 80 3,280 38,420 331,200 3,198 22,943 293,440

20 100 4,100 48,020 494,000 3,999 28,684 444,866

Table 8: Size of the mixed-integer programming problem (7) with (12) and (17) on random data.
“From Formulation” is the data-independent size calculated from the formulation (i.e., ncols=2nm+m,
nrows=5nm + n(n− 1)m + n, nnz= 2m2n + 9nm + 2n(n− 1)m) and “After CPLEX Presolve” is the
size after CPLEX preprocess.
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From Formulation After CPLEX Presolve

n m ncols nrows nnz ncols nrows nnz

40 2 162 3,560 7,280 160 1,989 4,132

40 5 405 8,840 19,400 400 4,916 11,519

40 10 810 17,640 42,800 799 9,791 26,978

40 20 1,620 35,240 101,600 1,599 19,544 69,764

40 40 3,240 70,440 267,200 3,199 39,047 202,688

40 60 4,860 105,640 496,800 4,796 58,556 398,505

40 80 6,480 140,840 790,400 6,395 78,056 657,541

40 100 8,100 176,040 1,148,000 7,998 97,598 980,150

60 2 242 7,740 15,720 240 4,189 8,612

60 5 605 19,260 41,100 600 10,376 23,305

60 10 1,210 38,460 88,200 1,199 20,693 52,550

60 20 2,420 76,860 200,400 2,398 41,325 128,838

60 40 4,840 153,660 496,800 4,798 82,589 352,796

60 60 7,260 230,460 889,200 7,197 123,851 671,805

60 80 9,680 307,260 1,377,600 9,596 165,148 1,085,911

60 100 12,100 384,060 1,962,000 11,992 206,377 1,594,735

80 2 322 13,520 27,360 320 7,182 14,676

80 5 805 33,680 70,800 798 17,834 39,071

80 10 1,610 67,280 149,600 1,600 35,599 86,122

80 20 3,220 134,480 331,200 3,199 71,070 203,895

80 40 6,440 268,880 790,400 6,396 142,113 534,875

80 60 9,660 403,280 1,377,600 9,594 213,128 992,783

80 80 12,880 537,680 2,092,800 12,792 284,115 1,577,644

80 100 16,100 672,080 2,936,000 15,992 355,143 2,289,883

100 2 402 20,900 42,200 400 10,968 22,330

100 5 1,005 52,100 108,500 999 27,280 58,825

100 10 2,010 104,100 227,000 1,997 54,448 127,556

100 20 4,020 208,100 494,000 3,999 108,835 294,972

100 40 8,040 416,100 1,148,000 7,997 217,593 748,973

100 60 12,060 624,100 1,962,000 11,992 326,295 1,361,610

100 80 16,080 832,100 2,936,000 15,990 435,028 2,133,388

100 100 20,100 1,040,100 4,070,000 19,989 543,781 3,064,337

Table 9: Size of the mixed-integer programming problem (7) with (12) and (17) on random data.
“From Formulation” is the data-independent size calculated from the formulation (i.e., ncols=2nm+m,
nrows=5nm + n(n− 1)m + n, nnz= 2m2n + 9nm + 2n(n− 1)m) and “After CPLEX Presolve” is the
size after CPLEX preprocess.

29



Most of the instances in Table 7 did not solve to provable optimality within the time limit. For
m = 2, 5, “both” succeeds in finding the solution with the smallest optimality gap. However, “neither”
and “inter” result in the smallest optimality gap for almost all other cases. This is probably because
these formulations have much faster per node computation time than formulations with the negative
cost cycle inequality, and thus are able to explore more nodes within the time limit. Interestingly,
given n constant, it appears that the optimality gap decreases as m increases. It is possible that the
Dobson-Kalish heuristic performs better when n ≪ m or the LP relaxation is tighter for n ≪ m or
both, reflecting the properties of Lemmas 2.1 and 3.1.

6.2 Real Data

We have been collaborating with a company in the tourism sector who provided us with some raw
customer purchase order data. Using some data mining and optimization techniques, we estimated
the reservation prices Rij from the raw data (see [19] for some of the details).

For a given season in their demand cycle, we clustered their customers into 3,095 segments and
classified their product line into 2274 products, i.e., n = 3095 and m = 2274 (due to a non-disclosure
agreement, we cannot provide more detailed information). Our implementation of the Dobson-Kalish
reassignment heuristic spent 4,833 seconds of CPU time and performed 462 reassignments. We ran
CPLEX on MIP formulation (7) with only the lower bound inequalities (12) due to the size of the
problem. This formulation corresponds to 14,078,334 variables (7,038,030 of them being binary),
35,193,245 constraints, and 32,058,235,114 non-zeros, independent of the data. After CPLEX pre-
solve, 23,252 variables, 42,295 constraints, and 242,533 non-zeros remained for this particular data
set; most of the reduction came from the many zero-valued reservation prices in this data. The solution
delivered by the heuristic was within 11.12% of the optimal value of the LP relaxation, and proven to
be 7.23% of the optimal MIP objective value after 10 minutes and 7.05% of the optimal MIP objective
value after seven days of running CPLEX. After one week of computation, CPLEX was unable to find
a better feasible solution than the heuristic solution.

From this large data set, we generated some smaller instances of the problem. Our goal is to
compare the performance of our approach on such data sets to see whether the performance of our
algorithm on randomly generated data of the previous subsection is significantly different. Given n and
m, we applied a simple hill-climbing heuristic to extract a reasonably dense n×m sub-matrix of the
matrix of reservation prices present in this “real” data. Specifically, for n = 2, 5, 10, 20, 40, 60, 80, 100
and m = 2, 5, 10, 20, 40, 60, 80, 100, we extracted an n × m sub-matrix of this matrix of reservation
prices and repeated the same procedure as was applied to the random data. We included the first-order
inter-segment inequalities (16) but left out the negative cycle inequalities (13) since “inter” appeared
to result in the best total running time in general.

Tables 10 and 11 illustrate the results, where n is the number of customer segments, m is the
number of products, “ncols” is the resulting number of columns after the CPLEX presolve, “nrows”
is the resulting number of rows after the CPLEX presolve, “nnz” is the resulting number of nonzero
elements after the CPLEX presolve, “Nodes” is the total number of branch-and-bound nodes explored,
“Time” is the total CPU seconds, “DKvsLB” is the relative gap between the heuristic objective value
and the best lower bound, “DKvsUB” is the relative gap between the heuristic objective value and
the best upper bound, and “LBvsUB” is the relative gap between the best lower bound and the best
upper bound. Again, CPLEX was run with a three hour time limit.
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Interestingly, the computational results on the real data are starkly different from that of the
random data. This is especially highlighted for n ≥ 20. With random data, the instances (n,m) =
(20, 10), (20, 20), (20, 40), (20, 60), (20, 80) all solved within the time limit, whereas the real data could
not. The relative gap of the heuristic solution and the final optimality gap is significantly larger with
the real data than with the random data. This may be due to the fact that it is much more likely for
randomly generated data to have the property of Lemma 2.1 (or close to it) so that the heuristic could
find strong feasible solutions and the LP relaxation would be tight. However, this is highly unlikely
for real data since it is most likely that there would be strong dependencies of the reservation prices
across customers and products.

Pre-solve succeeds in significantly reducing the size of the problem due to the existence of many
reservation prices with value 0 in these data sets. Tables 12 and 13 illustrate the size of the formulation
(7) with valid inequalities (12) and (17) on the real data sets. The data-independent size of the
MIP formulation is 2nm + m columns (nm of which are binary), 5nm + n(n − 1)m + n rows, and
2m2n+9nm+2n(n−1)m non-zero elements, but we see that CPLEX Pre-solve is able to significantly
reduce the problem size, unlike the randomly generated instances where all the reservation prices were
non-zero (see Tables 8 and 9).

6.3 Day-to-Day Updating of Optimal Prices

Our heuristic found a solution within 7.05% optimality in about an hour and a half for this large data
set above with thousands of customer segments and thousands of products. While this is impressive
given the size of the MIP formulation, in practice, we may need to recompute near-optimal prices
many times per day — either responding to the changes in the consumer market, the supplier market
or to competitor prices or products. In such operations, our framework for the Generalized Max.
Reservation Price Heuristic is useful. As the data changes, we take the most recent prices, π. Then,
C(π), with respect to the new data, results in the corresponding segment-product assignments. We
resolve the shortest path problem utilizing the most recent shortest path tree as much as possible and
re-start the Dobson-Kalish algorithm.

We test the computational requirements for updating prices on two potential scenarios:

(a) The company introduces a new product,

(b) The price of a competitor product changes.

Scenario (a) corresponds to incrementing m and incorporating the reservation prices for each customer
segment for this new product. In scenario (b), if the price change increases or decreases the competitor
surplus for some set of customers by ∆, then this corresponds to subtracting or adding, respectively,
∆ from/to Rij ’s for every j of these customers. For each scenario, we ran the Dobson-Kalish heuristic
on the modified data starting from the previous solution instead of starting from scratch (i.e., from
the MaxR solution).

For scenario (a), we generated new reservation prices and set the price of the new product to the
minimum price such that none of the previously purchased products would be “eliminated”. Keeping
all other prices the same, we started the heuristic with the corresponding segment-product assignment.
The heuristic required 13 reassignments and terminated in 120.4 CPU seconds.
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n m ncols nrows nnz nodes time DKvsLB DKvsUB LBvsUB

2 2 8 9 20 0 0.00 0.00 100.00 100.00

2 5 20 43 145 0 0.01 0.00 0.00 0.00

2 10 40 84 436 0 0.01 0.00 100.00 100.00

2 20 64 119 812 0 0.01 0.00 100.00 100.00

2 40 100 135 1,380 0 0.02 0.00 100.00 100.00

2 60 100 135 1,445 0 0.02 0.00 100.00 100.00

2 80 96 133 1,221 0 0.02 9.01 9.01 0.00

2 100 104 137 1,256 0 0.02 0.00 100.00 100.00

5 2 20 72 156 1 0.02 13.38 13.38 0.00

5 5 50 162 491 27 0.07 0.00 0.00 0.00

5 10 100 328 1,447 172 0.22 7.74 7.74 0.00

5 20 172 398 1,952 0 0.02 0.00 100.00 100.00

5 40 315 766 6,610 875 1.22 0.00 0.00 0.00

5 60 430 763 6,892 0 0.07 0.00 100.00 100.00

5 80 520 781 8,524 0 0.07 0.00 100.00 100.00

5 100 575 946 11,177 14 0.26 0.10 0.10 0.00

10 2 40 222 474 4 0.08 2.14 2.14 0.00

10 5 100 508 1,386 710 1.06 2.92 2.92 0.00

10 10 200 966 3,689 16,385 29.00 31.38 31.39 0.01

10 20 388 1,742 9,592 64,517 170.39 0.24 0.25 0.01

10 40 650 2,289 15,248 5,021 12.88 0.15 0.16 0.01

10 60 870 2,491 17,252 27 0.85 0.41 0.41 0.00

10 80 1,090 2,559 23,094 332 1.88 1.55 1.55 0.00

10 100 1,280 2,846 22,025 406 3.03 4.82 4.82 0.00

20 2 80 724 1,524 11 0.51 2.06 2.06 0.00

20 5 199 1,607 4,000 71,411 201.72 14.59 14.59 0.01

20 10 397 2,961 9,265 1,642,101 10,800.00 41.88 49.44 13.01

20 20 746 5,202 21,084 1,128,301 10,800.00 19.80 41.16 26.64

20 40 1,271 7,975 36,921 637,701 10,800.00 3.90 19.91 16.67

20 60 1,691 8,720 44,107 805,901 10,800.00 0.21 8.55 8.36

20 80 2,111 9,089 51,135 776,701 10,800.00 5.03 8.90 4.08

20 100 2,531 9,313 53,147 30,400 447.22 9.84 9.85 0.01

Table 10: Computational results on real data for n ≤ 20 on the MIP formulation (7) with (12),
(17) and (16) with a three hour time limit. n is the number of customer segments and m is the
number of products. “ncols”, “nrows”, “nnz” are the resulting number of columns, rows and non-zeros,
respectively, of the MIP after CPLEX pre-solve. “nodes” and “time” are the number of nodes explored
and total computation time, respectively, of CPLEX. “DKvsLB”, “DKvsUB”, and “LBvsUB” are the
relative gaps between the objective value of Dobson-Kalish heuristic versus the best feasible objective
value found by CPLEX, heuristic objective value versus the best upper bound found by CPLEX, and
the best feasible objective value versus the best upper bound found by CPLEX, respectively.
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n m ncols nrows nnz nodes time DKvsLB DKvsUB LBvsUB

40 2 160 2,565 5,280 268 5.69 0.55 0.55 0.00

40 5 393 5,438 12,336 842,353 10,674.75 38.46 38.47 0.01

40 10 756 9,917 25,442 532,301 10,800.00 33.02 49.16 24.09

40 20 1,367 16,753 49,665 354,501 10,800.00 30.45 52.40 31.56

40 40 2,338 24,543 81,474 248,901 10,800.00 18.40 39.47 25.82

40 60 3,243 29,429 101,771 246,801 10,800.00 13.21 22.70 10.93

40 80 4,093 31,669 114,097 197,279 10,800.00 6.12 16.74 11.31

40 100 4,915 32,475 121,033 207,301 10,800.00 9.40 18.04 9.53

60 2 240 5,383 10,994 1,252 29.58 0.28 0.28 0.00

60 5 586 11,638 25,417 244,401 10,800.00 20.26 34.28 17.58

60 10 1,076 20,396 47,866 162,301 10,800.00 28.42 50.21 30.44

60 20 1,957 34,618 89,235 108,701 10,800.00 18.26 44.62 32.25

60 40 3,379 49,708 140,533 66,701 10,800.00 25.62 43.97 24.66

60 60 4,703 57,387 175,213 84,131 10,800.00 25.84 45.46 26.46

60 80 5,978 62,880 190,984 74,101 10,800.00 20.41 32.57 15.28

60 100 7,220 65,693 207,378 103,882 10,800.00 2.91 20.29 17.90

80 2 320 9,252 18,790 1,789 73.08 0.32 0.33 0.01

80 5 762 20,783 44,249 141,987 10,800.00 0.00 19.45 19.45

80 10 1,389 35,571 79,705 70,508 10,800.00 29.27 46.90 24.93

80 20 2,520 57,748 138,506 37,501 10,800.00 31.62 55.90 35.51

80 40 4,389 82,533 213,557 35,001 10,800.00 28.82 49.51 29.06

80 60 6,128 95,325 254,820 32,101 10,800.00 31.17 47.63 23.92

80 80 7,825 102,420 299,197 45,271 10,800.00 18.55 41.53 28.21

80 100 9,479 107,935 310,861 32,199 10,800.00 16.71 30.34 16.37

100 2 400 14,249 28,852 9,055 408.33 0.58 0.59 0.01

100 5 946 31,649 66,667 64,437 10,800.00 21.48 36.76 19.46

100 10 1,693 53,664 116,907 35,195 10,800.00 28.97 52.45 33.05

100 20 3,065 86,886 199,515 22,229 10,800.00 31.38 55.74 35.50

100 40 5,375 121,525 295,681 16,224 10,800.00 27.85 50.01 30.72

100 60 7,542 140,487 357,700 14,001 10,800.00 23.34 42.42 24.89

100 80 9,643 151,340 397,789 18,402 10,800.00 15.47 32.46 20.11

100 100 11,707 156,940 442,429 25,513 10,800.00 16.12 34.62 22.05

Table 11: Computational results on real data for n ≥ 40 on the MIP formulation (7) with (12),
(17) and (16) with a three hour time limit. n is the number of customer segments and m is the
number of products. “ncols”, “nrows”, “nnz” are the resulting number of columns, rows and non-zeros,
respectively, of the MIP after CPLEX pre-solve. “nodes” and “time” are the number of nodes explored
and total computation time, respectively, of CPLEX. “DKvsLB”, “DKvsUB”, and “LBvsUB” are the
relative gaps between the objective value of Dobson-Kalish heuristic versus the best feasible objective
value found by CPLEX, heuristic objective value versus the best upper bound found by CPLEX, and
the best feasible objective value versus the best upper bound found by CPLEX, respectively.
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From Formulation After CPLEX Presolve

n m ncols nrows nnz ncols nrows nnz

2 2 10 26 60 8 8 18

2 5 25 62 210 20 42 143

2 10 50 122 620 40 82 432

2 20 100 242 2,040 64 118 810

2 40 200 482 7,280 100 133 1,376

2 60 300 722 15,720 100 133 1,441

2 80 400 962 27,360 96 131 1,217

2 100 500 1,202 42,200 104 135 1,252

5 2 22 95 210 20 67 146

5 5 55 230 675 50 160 487

5 10 110 455 1,850 100 319 1,429

5 20 220 905 5,700 172 379 1,914

5 40 440 1,805 19,400 315 755 6,588

5 60 660 2,705 41,100 430 749 6,864

5 80 880 3,605 70,800 520 773 8,508

5 100 1,100 4,505 108,500 575 939 11,163

10 2 42 290 620 40 192 414

10 5 105 710 1,850 100 470 1,310

10 10 210 1,410 4,700 200 930 3,617

10 20 420 2,810 13,400 388 1,690 9,488

10 40 840 5,610 42,800 650 2,250 15,170

10 60 1,260 8,410 88,200 870 2,455 17,180

10 80 1,680 11,210 149,600 1,090 2,516 23,008

10 100 2,100 14,010 227,000 1,280 2,798 21,929

20 2 82 980 2,040 80 590 1,256

20 5 205 2,420 5,700 199 1,450 3,686

20 10 410 4,820 13,400 397 2,770 8,883

20 20 820 9,620 34,800 746 5,010 20,700

20 40 1,640 19,220 101,600 1,271 7,754 36,479

20 60 2,460 28,820 200,400 1,691 8,492 43,651

20 80 3,280 38,420 331,200 2,111 8,874 50,705

20 100 4,100 48,020 494,000 2,531 9,144 52,809

Table 12: Size of the mixed-integer programming problem (7) with (12) and (17) on real data. “From
Formulation” is data-independent the size calculated from the formulation (i.e., ncols=2nm + m,
nrows=5nm + n(n− 1)m + n, nnz= 2m2n + 9nm + 2n(n− 1)m) and “After CPLEX Presolve” is the
size after CPLEX preprocess.
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From Formulation After CPLEX Presolve

n m ncols nrows nnz ncols nrows nnz

40 2 162 3,560 7,280 160 1,989 4,128

40 5 405 8,840 19,400 393 4,678 10,816

40 10 810 17,640 42,800 756 9,070 23,748

40 20 1,620 35,240 101,600 1,367 16,286 48,731

40 40 3,240 70,440 267,200 2,338 24,131 80,650

40 60 4,860 105,640 496,800 3,243 28,781 100,475

40 80 6,480 140,840 790,400 4,093 31,151 113,061

40 100 8,100 176,040 1,148,000 4,915 31,923 119,929

60 2 242 7,740 15,720 240 4,186 8,600

60 5 605 19,260 41,100 586 9,995 22,131

60 10 1,210 38,460 88,200 1,076 18,659 44,392

60 20 2,420 76,860 200,400 1,957 33,091 86,181

60 40 4,840 153,660 496,800 3,379 48,434 137,985

60 60 7,260 230,460 889,200 4,703 56,739 173,917

60 80 9,680 307,260 1,377,600 5,978 61,871 188,966

60 100 12,100 384,060 1,962,000 7,220 64,504 205,000

80 2 322 13,520 27,360 320 7,181 14,648

80 5 805 33,680 70,800 762 17,125 36,933

80 10 1,610 67,280 149,600 1,389 31,612 71,787

80 20 3,220 134,480 331,200 2,520 54,879 132,768

80 40 6,440 268,880 790,400 4,389 79,314 207,119

80 60 9,660 403,280 1,377,600 6,128 92,181 248,532

80 80 12,880 537,680 2,092,800 7,825 100,460 295,277

80 100 16,100 672,080 2,936,000 9,479 105,373 305,737

100 2 402 20,900 42,200 400 10,977 22,308

100 5 1,005 52,100 108,500 946 26,253 55,875

100 10 2,010 104,100 227,000 1,693 47,417 104,413

100 20 4,020 208,100 494,000 3,065 80,834 187,411

100 40 8,040 416,100 1,148,000 5,375 115,770 284,171

100 60 12,060 624,100 1,962,000 7,542 134,793 346,312

100 80 16,080 832,100 2,936,000 9,643 146,145 387,399

100 100 20,100 1,040,100 4,070,000 11,707 152,674 433,897

Table 13: Size of the mixed-integer programming problem (7) with (12) and (17) on real data. “From
Formulation” is the data-independent size calculated from the formulation (i.e., ncols=2nm + m,
nrows=5nm + n(n− 1)m + n, nnz= 2m2n + 9nm + 2n(n− 1)m) and “After CPLEX Presolve” is the
size after CPLEX preprocess.
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For scenario (b), we tested four of the following variations. Note that when the reservation prices
are changed by a constant across all products for a given set of segments, the previous segment-product
assignment remains feasible.

• Competitor surplus decreases by $200 for 10 customer segments. This required 6 iterations of
the Dobson-Kalish Reassignment Heuristic and terminated in 55.252 CPU seconds.

• Competitor surplus increases by $200 for 10 customer segments. This required 2 iterations of
the Dobson-Kalish Reassignment Heuristic and terminated in 18.304 CPU seconds.

• Competitor surplus decreases by $200 for 500 customer segments. This required 36 iterations of
the Dobson-Kalish Reassignment Heuristic and terminated in 329.284 CPU seconds.

• Competitor surplus increases by $200 for 500 customer segments. This required 80 iterations of
the Dobson-Kalish Reassignment Heuristic and terminated in 737.092 CPU seconds.

We see that the approach returns near optimal prices within a matter of minutes for small changes
in the data. This indicates that our approach can be used not only in strategic optimal pricing
decisions but also in day-to-day operations and in the analysis of what-if scenarios.

7 Conclusion

This paper explored mixed-integer programming formulations of the maximum utility model, imple-
mented heuristic algorithms and developed valid inequalities to optimize computation time. As our
results illustrate, our Dobson-Kalish heuristic is very effective and efficient in practice. We also showed
that our approaches can be used to solve very large scale instances arising in the tourism sector. One
of the reasons for the large problems sizes is the large number of possible bundles (the products in
our models are actually bundles of the individual products offered by the company). Thus, the large
data instance in the computational experiments section solved optimal bundling and optimal pricing
problems together.

There are clearly many potential extensions and improvements we need to consider. As mentioned
earlier, we have yet to determine the worst-case running time of the Dobson-Kalish Reassignment
Heuristic and hammer out the details of a generalization of the Reassignment Heuristic. In addition,
the computational experiments have shown that the valid inequalities are effective in cutting off
fractional solutions, but they slowed down the total solution time. Thus, we need to improve our
dynamic separation procedure, possibly removing redundant inequalities.

Although, our motive in this paper was to explore efficient methods to solve the maximum utility
model, we conclude by showing some preliminary evidence of the advantages of optimization-based
pricing strategies. To gauge the practical impact of our approach, we tested our solution against
the actual historical sales. Under very conservative assumptions that imposed disadvantages to our
model, optimal prices given by our model led to a 23% increase in total revenue. It was also interesting
to note that our optimal prices “converted” consumers from low-end products to high-end products.
We clustered the thousands of individual products into 18 product groups of similar properties and
illustrate the results in the table below (for confidentiality purposes, the dollar figures were scaled).
The product groups 1 to 10 correspond to the mid to high-end products and the product groups 11
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to 18 correspond to the low-end products. In this particular company, managers of the lower-end
products tended to “dump” prices when sales were under expectation, thus “cannibalizing” other
products and negatively impacting the total revenue. Our initial results seem to reflect the benefit of
a more global approach to product line pricing.

Product Group Estimated Sales Actual Sales Difference

Using Our Prices

Group 1 $43,427.67 $29,947.18 $13,480.49

Group 2 $41,281.08 $28,594.49 $12,686.60

Group 3 $54,214.30 $30,667.04 $23,547.26

Group 4 $123,820.55 $67,193.30 $56,627.26

Group 5 $111,165.09 $35,125.78 $76,039.31

Group 6 $179.74 $175.21 $4.53

Group 7 $1,454.74 $422.95 $1,031.79

Group 8 $143,830.59 $79,968.27 $63,862.32

Group 9 $5,697.14 $6,606.03 -$908.90

Group 10 $116.05 $304.05 -$188.00

Group 11 $199,696.63 $191,379.68 $8,316.96

Group 12 $454.94 $226.51 $228.43

Group 13 $442.91 $1,771.83 -$1,328.92

Group 14 $1,896.87 $2,974.16 -$1,077.28

Group 15 $57,865.96 $75,279.91 -$17,413.96

Group 16 $25,489.63 $55,477.98 -$29,988.35

Group 17 $27,924.41 $41,310.23 -$13,385.82

Group 18 $50,578.27 $75,601.37 -$25,023.10

Total $889,536.58 $723,025.95 $166,510.63

Acknowledgments: We thank Maurice Cheung for a preliminary Java implementation for CPLEX
usage and Zhengzheng Zhou for her work during the very early stages of this research project.
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A Additional Proofs

Properties 2.1

Proof. (a) This follows directly from network flow theory. Also, (7) is clearly feasible (e.g. set all
variables to 0), thus the resulting network in the optimal solution will never have a negative cost
cycle.

(b) For j ∈ B, πj is the dual variable of the corresponding constraint in (10). Thus, the optimal πj

equals the shortest path from node j to node 0 in the digraph of Figure 1. Since all of the arc
costs are integral, the shortest path and thus the optimal price must also be integral. For j /∈ B,
we can set πj = maxi {Rij} which is integral.

(c) In the optimal shortest-path tree, if node/product k is the predecessor of node 0, then clearly,
πk = γk = mini∈Ck

{Rik}.

(d) The optimal πj can be found from the Bellman equation πj = min {γj,mink 6=j {rjk + πk}} . Given
i∗ ∈ C1 and Ri∗1 ≤ Ri1,∀i, π1 = min {Ri∗1, mink 6=1 {rik + πk}} . Let k0 = arg mink 6=1{rik +πk}
and the corresponding shortest path from k0 to 0 follow the nodes k0, k1, . . . , kℓ, 0 in that order.
Also, let i′ = arg mini∈Ckℓ

{Rikℓ
}.

Suppose for the sake of contradiction that Ri∗1 > r1k0
+ πk0

. Subtracting Ri′1 from both sides
gives us

Ri∗1 −Ri′1 > r1k0
+

ℓ∑

j=1

rkj−1kj
+ Ri′kℓ

−Ri′1

≥ r1k0
+

ℓ∑

j=1

rkj−1kj
+ rkℓ1 + δi′ ≥ δi′ .

We get the first inequality on the second line from the definition of rkℓ1 and since i′ ∈ Ckℓ
. The

last inequality is due to the lack of negative cost cycles. This leads to Ri∗1 > Ri′1 + δi′ , which
is a contradiction.

Lemma 2.1

Proof. We show that the following is an optimal solution for the LP relaxation of (7): π∗
ji

= Riji
, θ∗iji

=
1, θ∗ik = 0, p∗iji

= π∗
ji
, p∗ik = 0, ∀i ∈ {1, . . . , n},∀k 6= ji, π∗

k = maxi Rik, ∀k 6= ji,∀i ∈ {1, . . . , n}.

In fact the above solution is feasible for (7) and, for any feasible solution pij, θij, πj for the LP
relaxation of (7),

∑

i

Ni

∑

j

pij ≤
∑

i

Ni

∑

j

Rijθij ≤
∑

i

NiRiji




∑

j

θij



 ≤
∑

i

NiRiji
=
∑

i

Ni

∑

j

p∗ij,

where the first inequality follows from the constraints Rijθij − pij ≥ 0, ∀i,∀j, in (7), the second
inequality follows from the definition of ji, while the third inequality follows from

∑

j θij ≤ 1 for every
j.
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Lemma 2.2

Proof. Given C∗
j , let θ∗ij = 1 if i ∈ C∗

j and θ∗ij = 0 otherwise, let π∗
j := mini∈C∗

j
{Rij} and p∗ij = π∗

j θ
∗
ij.

We will show that θ∗ij, p
∗
ij and θ∗ij is feasible for (7) for δi sufficiently small since

Rij − π∗
j ≥ Rik − π∗

k + δi, for i ∈ C∗
j ,∀k 6= j.

Rij − π∗
j is nonnegative since i ∈ C∗

j , and Rik − π∗
k = Rik −minl∈C∗

k
Rlk < 0 since i /∈ C∗

k from the no
overlap condition. We need to make sure that δi ≤ minl∈C∗

k
Rlk − Rik, ∀k so that Rik − π∗

k + δi ≤ 0.
Thus, δi ≤ minj=1,...,m{minl∈C∗

j
Rlj −Rij}. The other constraints of (7) are satisfied trivially.

Let pij , θij, πj , ∀i, j, be any feasible solution to the MIP (7). Then

∑

j

(
∑

i

Nipij

)

≤
∑

j

(
∑

i

Nip
∗
ij

)

since, for every j, p∗ij, θ∗ij, ∀i, π∗
j define an optimal solution for the problem with only Product j.

Therefore π∗
j , p

∗
ij, θ

∗
ij is optimal for (7).

B Experiments with the initial formulation

Here, we present the results of a computational experiment justifying our choice of the MIP formulation
in Section 2.1. The selected results are summarized in Table 14. For the listed values of n and m,
we generated random test sets as described in Section 6.1. For the experiments in this appendix,
instead of setting all CSi = 0, each CSi is a random integer between 512 and 1023 (inclusive). As
in our other experiments, we serially ran our implementation of the Dobson-Kalish heuristic against
each test case and used the solutions obtained therefrom as initial feasible solutions for a run of the
CPLEX 10.0 mixed-integer programming solver. The Dobson-Kalish pass was permitted to run to
completion, while the MIP solver was terminated after three hours of execution (except this, CPLEX
was run with default parameters). We tested the formulations (6), (6) with inequalities (7) added
(in the table denoted by “(6)+(7)”), and the formulation (5) with its first set of constraints replaced
by (6) (in the table, denoted by (7)). For each of the three formulations, we report the relative gap
between the objective value of the Dobson-Kalish solution and the best lower bound (i.e., the best
feasible objective value) found by CPLEX (DKvsLB) as well as the relative gap between the objective
value of the Dobson-Kalish solution and the best upper bound found by CPLEX (DKvsUB). Clearly,
formulation (7) outperforms the other two formulations, in terms of the CPU time require to achieve
similar solutions (and “proofs” of their quality).
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CPLEX Execution Time DKvsLB DKvsUB

n m (6) (6) + (7) (7) (6) (6) + (7) (7) (6) (6) + (7) (7)

5 20 0.40 0.36 0.26 5.91 5.91 5.91 5.91 5.91 5.91

5 40 0.99 0.84 0.64 15.58 15.58 15.58 15.58 15.58 15.58

5 60 1.23 1.30 0.67 1.51 1.51 1.51 1.51 1.51 1.51

5 80 3.90 2.98 1.50 5.81 5.81 5.81 5.81 5.81 5.81

5 100 38.45 17.50 3.37 5.15 5.15 5.15 5.15 5.15 5.15

10 20 3.40 2.63 1.59 6.10 6.10 6.10 6.10 6.10 6.10

10 40 5.52 2.78 1.49 15.74 15.74 15.74 15.74 15.74 15.74

10 60 225.48 12.26 5.79 7.53 7.53 7.53 7.54 7.53 7.53

10 80 14.51 8.72 2.92 46.78 46.78 46.78 46.78 46.78 46.78

10 100 1454.06 40.62 9.24 1.71 1.71 1.71 1.72 1.71 1.71

20 20 361.34 24.00 11.90 13.39 13.39 13.39 13.40 13.40 13.40

20 40 10800 1564.36 415.30 2.36 2.36 2.36 14.33 2.37 2.37

20 60 10800 5206.18 1683.66 25.91 25.91 25.91 41.72 25.92 25.92

20 80 10800 10800 2965.67 19.37 19.37 19.37 32.78 22.29 19.38

20 100 10800 10800 10800 5.69 6.32 6.32 20.65 15.25 13.18

40 20 10800 10800 10800 8.59 9.75 7.13 34.99 31.30 31.55

40 40 10800 10800 10800 20.50 20.50 20.50 33.36 28.13 27.15

40 60 10800 10800 10800 8.25 8.33 8.46 30.57 26.36 25.40

40 80 10800 10800 10800 0.41 3.05 5.36 34.48 29.55 29.31

40 100 10800 10800 10800 4.55 3.32 5.84 29.95 25.52 23.58

60 20 10800 10800 10800 22.10 22.18 16.86 43.03 38.43 40.43

60 40 10800 10800 10800 5.68 4.56 8.25 35.81 31.25 30.96

60 60 10800 10800 10800 0.63 0.00 0.00 33.38 30.38 29.24

60 80 10800 10800 10800 0.00 0.00 1.63 26.87 23.66 22.89

60 100 10800 10800 10800 11.94 8.76 12.17 45.32 42.10 41.42

80 20 10800 10800 10800 7.35 8.03 8.85 37.66 32.68 33.17

80 40 10800 10800 10800 26.23 0.00 26.66 55.47 53.41 52.14

80 60 10800 10800 10800 16.17 0.00 10.78 50.12 47.63 47.24

80 80 10800 10800 10800 15.84 7.24 0.00 50.71 48.28 48.38

80 100 10800 10800 10800 0.00 0.00 0.00 39.65 38.17 36.98

100 20 10800 10800 10800 3.07 2.85 1.07 44.58 40.63 40.57

100 40 10800 10800 10800 27.65 29.29 28.30 56.41 53.67 53.35

100 60 10800 10800 10800 5.74 0.00 11.51 47.65 45.00 45.02

100 80 10800 10800 10800 0.03 0.00 0.96 40.34 38.97 37.86

100 100 10800 10800 10800 3.10 0.00 0.00 44.34 41.82 41.71

Table 14: Selected results from the experiments with initial formulations.
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