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1 Introduction

Let A € R™*? p € R™, and ¢ € R™. In this paper, one of our main concerns is the computational
complexity of solving linear programming (LP) problems with data (A4, b,¢) in a way that the number of
arithmetic operations is bounded by polynomial functions determined only by A.

For t € R, poly(t) denotes a polynomial function of ¢. For « € Z, we define
size(a) := [log (Jo| + 1)] + 1;

for A € Zm*",
size(A) := Zsize(azj).
1)

When A € Z™>" b € Z™, ¢ € Z", Tardos [22] proved that the existence of an algorithm for LP which
performs only polynomially many elementary arithmetic operations in size(A4, b, ¢) implies the existence
of an algorithm for LP which performs only poly(size(A4)) elementary arithmetic operations. (Her results
also apply in the more general case 4 € Q™*" b€ Q™, ¢ € Q7, also see [23] for network flow problems.)

Tardos’ proof is constructive in the sense that it shows how to use any polynomial time algorithm for
LP as a subroutine to achieve the goal of solving LP problems in poly(size(A)) time complexity. However,
the proof requires calling the subroutine (the LP solver with
poly(size(A, b, ¢)) time complexity), polynomially many times using modified data so that the sizes of the
modified LP instances can be bounded by poly(size(A)).

Later Vavasis and Ye [29], in another seminal paper (with many new insights), proposed a new kind
of interior-point algorithm and proved that their algorithm can solve LP problems with data A € R™*"
beR™ ¢cR™ in O (n3'5 (log x(A) + log(n)) loglog )Z(A)) interior-point iterations. Also, see Adler and
Beling’s [1] paper which is more specialized than the Vavasis-Ye paper since it is concerned with the
polynomial-time LP algorithms over the algebraic numbers. When specialized to integer (or rational)
data, Vavasis-Ye result gives another proof of Tardos’ theorem (using y(A) = 20(12€(4))—gee Section 2).
So, in this sense, Vavasis-Ye result generalizes Tardos’ theorem to LP problems with data 4 € R™*"™,
b e R” ¢ € R" Vavasis-Ye proof is even “more constructive” in the sense that their algorithm is a
specialized algorithm designed for such a purpose, and need not be called many times (except to guess
an upper bound for x(A)—accounted for in the above quoted iteration bound by the loglog y(A) term;
also see [15]).

One advantage of Vavasis-Ye algorithm is that it has the potential of becoming a practical algorithm.
However, theoretically speaking, Vavasis and Ye left open the question of whether conventional polynomial
time interior-point algorithms (or perhaps some others) can be adapted in a scheme more directly related
to Tardos’ to solve the LP problems with data A € R™*” b € R™, ¢ € R" in polynomially many
elementary arithmetic operations where the polynomial bound depends only on the (properly defined)
“size” of A € R™*" In fact, Vavasis and Ye [29] state that

“Tardos uses the assumption of integer data in a fairly central way: an important tool in [22] is the
operation of rounding down to the nearest integer. It is not clear how to generalize the rounding
operation to noninteger data.”

For example, let A € Z™*" ¢ € Z™. Then if d is an extreme ray of {& € R® : Az = 0,2 > 0} such
that ¢’d < 0, then we know that there exists an integral extreme ray d in the above cone such that
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c’'d < (—1). Of course, such arguments do not directly apply in general when the entries of A4 and ¢ are
real numbers. When A and ¢ have only rational entries, the data can be multiplied by a large enough
(but not too large) integer such that the new scaled data contain only integers. This again ensures a
notion of a “unit” to round to, even after a normalization of the integral d such that 2?21 d; =1, s0
that the arguments similar to the above still work (e.g., after such a normalization, ¢’'d < —1/A(A),
where A(A) denotes the largest absolute value of a subdeterminant of A). In addition to this, a few other
obstacles arise in an attempt to obtain such a generalization of Tardos’ theorem and proof to the real
number model.

In this paper, we overcome these obstacles, and generalize Tardos’ theorem and a significant part of
her proof to the case when A € R™*" h € R™, ¢ € R™ Our results also generalize Vavasis and Ye’s
result in the sense that in our scheme almost any polynomial time LP algorithm can be adapted, whereas
their result uses a new, specialized algorithm.

Before we describe the generalization of Tardos’ theorem, we review and clarify (with many new
results) relationships amongst various complexity and condition measures such as x(A4), x(A), the con-
dition number of (AAT) denoted by x(AAT), Hoffman’s bound (or the Lipschitz bound) for systems of
linear inequalities, Ye’s complexity measure for LP (also known as the smallest large variable bound),
A(A) and the smallest nonzero absolute value of a subdeterminant of A, denoted J(A4). Special emphasis
is put on establishing various fundamental properties of y, which becomes one of the central tools in the
last section when we deal with generalization of Tardos’ result. While our proof of the generalization
of her theorem is very similar to hers, a key part of the proof which makes it work in the real number
case, is the generalization of the rounding operation to noninteger data (in the sense of choosing an
appropriate “unit” for the data at hand). For this, we rely heavily on those fundamental properties of
X mentioned above. We first perform our analysis on deciding the feasibility of a system of inequalities,
and then use the resulting algorithm as a subroutine to solve the whole primal-dual LP problem. In both
cases, we solve the original problem by solving a sequence of polynomially many “nicer” or smaller LP
problems, each of which has integral right hand side vector (and cost vector, in the latter case) whose size
is bounded by a polynomial function of our complexity measures. This is one of the fundamental tools for
eliminating the dependence on b and ¢ in the overall complexity bound of the algorithms. Solving these
“nicer” LP problems gives us important information about the structure of the optimal solutions of the
main LP problem in terms of the linear algebraic structures of the input data. For example, “there exists
an optimal solution at which the jth inequality is tight” or “at all optimal solutions, the jth inequality is
strictly satisfied.” Such information helps us reduce the dimensions of the problem at hand; but, it also
requires us to analyze the complexity measures for the subproblems.

The sizes of all the integers making up the right hand side and objective vectors of these “nicer” LP

problems are bounded above by a polynomial function of n and the logarithm of (%). Many are also

bounded by a polynomial function of n and log x(A4).

As mentioned, we need to use an LP solver as a subroutine in our proof of Tardos’ theorem. While
any polynomial time LP solver can be used, we describe a very useful formulation — the homogeneous
self-dual form — in Section 5. The complexity of running an interior-point algorithm (with a certain
termination rule) on such a form can be expressed in terms of Ye’s complexity measure, which becomes
convenient in our complexity analysis.

This paper is organized as follows. In Section 2, we review definitions and characterizations of some
complexity measures which are relevant to our stated interest in this paper. We also present some new
results in this section. Section 3 includes the Cauchy-Binet formula and an application of it to obtain a
bound on the condition number of (4AT). In Section 4, we discuss Hoffman’s Theorem and relate the
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Hoffman constant to x(A). In Section 5, we discuss Ye’s complexity measure for LP problems and relate
it to the Hoffman constant. Also in Section b, we show that the number of iterations of many primal-dual
interior-point algorithms to solve LP problems with data (A, ¥b,¢), with arbitrary A and special b and
¢, can be bounded by a polynomial function of n and logarithms of certain complexity measures. We
review a sensitivity bound result of Cook, Gerards, Schrijver, Tardos [3] in Section 6 and establish various
variants of it based on the complexity measures y(A4) and x(A). Section 7 contains our main result — a
generalization of Tardos” Theorem — based on the results obtained in the preceding sections. We conclude
with a very brief discussion of the special cases when A is integral and totally unimodular.

2 Complexity and Condition Measures: y and Y

We denote by N (A), the null-space of A; R(A) denotes the range (or column-space) of A. We assume
A # 0,7 > m > 3. Recall the definitions:

[|A]l, = Hnlllax [[Az||p, for 1 < p < oo,
z||p=1 - -
Al = DD Ay

i=1j=1

It is not hard to show that

m

AL = @a;ng;miju (1)
Ml = max 3143 2)
]:

We have the following well-known matrix norm inequalities:

All2 < [[Allr < VallAll2, (3)
1
ﬁllAlloo < [[4]]2 < vml[A]]co, (4)
1
—=IAll: < [|A]]2 < V[l Al (5)
Jm

We also have the submultiplicative property for p-norms, 1 < p < co. For all A € R™*" C € R"*4, we
have

1AC < 1Al 1C]lp- (6)
For the rest of the paper, the 2-norm is assumed when norms are mentioned, unless stated otherwise.
We assume throughout this section that A has full row rank. Define
Y(A) :=sup{||AT(ADAT)"'AD||: D € D},

where D is the set of all positive definite n x n diagonal matrices. Note that Y(RA) = x(A4) for all
nonsingular B € R™*™, In fact, x(A) depends only on the pair of orthogonal subspaces, N'(A4) and
R(AT). So, it can be defined on subspaces instead. Note that for all D € D,

[AT]| = [[AT(ADAT) T ADAT|| < AT (ADAT) T AD]| - [|AT]].
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Hence ||AT(ADAT)=1AD|| > 1, and thus x(4) > 1.

Similarly we define

x(A) :=sup{|[(ADAT)"'AD||: D € D}.
Note that both x(A) and x(A) are finite. Also,

[AT(ADAT)™ AD|| < [|AT]] - [(ADAT)~'AD],
[(ADAT)"'AD|| < [[(AAT) 7 A|| - [[AT(ADAT) T AD).
Therefore, we have
1 e VE(AAT)X(A)
WX(A) < x(4) < [(AAT) 7 Alx(4) = ST/ (7)
where x(R) := ||R|| - ||R™!||, the condition number of R, for any nonsingular matrix R. Note that if

m = n, then k(AAT) = [[A|* - |A7H]? = (| Allx(4))*.

An equivalent way to define these parameters is in terms of weighted least squares:

AT
Y(4) = {H i ﬂ” : ¥ minimizes ||D1/2(ATy—c) | for somecER",DED},
c
x(4) = sup{||||y|||| : y minimizes || Dl/Z(ATy—c) | for somecER",DED}.
c

Let us define, for 1 < o, 5 < o0,
p%ﬁ(A) = 1nf{||x - y”ﬁ v eX,y€ Yoc}a

where X := {D¢ : £ € N(A),D € (D)}, Y, := {y : v € R(AT), |[7|la = 1}, and cl(D) denotes the
closure of the set D, that is, the set of nonnegative diagonal matrices. Note that ps g(-) > 0. If we have
[[-1ls < ¢|| ||« then pag(-) < ¢, as 0 € X. In particular, pa,o(-) < 1. Also note that the definition of
pa,s(A) depends only on R(AT) and its orthogonal complement A (A). Gonzaga and Lara [8] prove that
when o = 8 = 2, the subspaces N (A) and R(AT) can be interchanged in the definition of ps g(4). In
the following, we denote p, o simply by p,. We are mostly interested in p,, which we denote simply by

p-

All vector p-norms are equivalent, that is, given «, 8 such that 1 < «, 8 < oo, there exist positive
1, ¢ such that ¢q| - ||o < || |ls < ¢2]| - ||a- This property also applies to pa,s:

Proposition 2.1 Suppose 1 < «a, 8,7, < 00, and ¢1,¢3,dy,dz > 0 such that di|| - || < |+ |ls < d2]| - ||
and ca| - [ly <||-llg < eall - |ly- Then

1152 () < pap() < cadaps ().

Proof
Note that psg(A) = inf{||z — y||g : # € X,y € Y5} is attained, by say, Z and y. Let y* := §/||¢||o. Then
y* €Y,, and we have

llylls 1
> 0, 3(A) = —pa.s(A4).
27, " B(4) 5" B(4)

*

E
[19l]a

pop(A) = [z = ylls = ||l
E



COMPLEXITY MEASURES FOR LP 6

By considering the infimum in p, g(A), similarly we have po g(A) > dips,g(A). Combining the above,
we have dypas(4) < paa(A) < dapas(A). By using sl < |- [ls < czll - |, we have
1d1psy (+) < pa,p(c) < cadaps (). o

In particular, we have

%p«) < pool) < VPLL). (8)

The following is a well-known fact.

Proposition 2.2 (Stewart [21])
X(4) = 1/p(A).

A basis of A is a set of indices B C {1,...,n} such that |B| = m and the columns of Ag are linearly
independent. We denote the set of all bases of A by B(A).

Proposition 2.3 (Vavasis and Ye [29], Todd, Tuncel and Ye [24])
Y(4) = max{[|A51A] : B € B(A4)}.

Here, “>” is proven in [29] and “<” is proven in [24]. Tt is known and not hard to show that an
analogous characterization for x(A) also exists:

X(4) = max{[|[A5'[| : B € B(A)}. (9)

Using the above proposition, we prove that y cannot increase if any column is removed.

Proposition 2.4 Suppose A is obtained by removing a column a € R™ from A € R™X", We have the
following:

. Ifrank(fi) = m, then )Z(fi) < x(A). R
e Ifrank(A) < m — 1, then let A be obtained by removing any dependent row from A. We have

rank(A4) = m — 1 and x(A) = x(A4).

Proof

If rank(A) = m, we have

||fi§1fi||, for some basis B of A
A5 AR ) = 1451 Al < x(4).

X(A)

IA

We used the fact that B is also a basis of A. Now, consider the case where rank(A4) < m — 1. Without
loss of generality, assume a is the last column of A. Then by row reduction, there exists a nonsingular

G € R™*™M guch that
- A0
GA = G[Ala] = (OT ) ),
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for some A’ € R(M=1x("=1) having full row rank (hence, rank(A) = m — 1). Then
R(AT) = R(AT) = R((GA)T) = R(A™),

and hence N (A) = A(A’). So, x(A) = x(A4’). Now, since every basis of G A must include the last column,

(A5)7" 0 A0
07 1 07 1
(Ap)~hA" 0
07 1

The proof of x(A') < x(GA) is similar. Therefore, we have

X(GA)

, Tor some basis B of A’

= max{|| (4%) 7" A, 1} < X(A').

X(4) = x(4) = x(GA) = x(4).

Consider A € Q™M*". Let L denote the total number of bits required to store A. We have the
following.

Proposition 2.5 (Vavasis and Ye [29])
If AeQm*", x(A4) and x(A) are both bounded by 20(L)

Khachiyan [14] proved that approximating x(A) within a factor of 2POly(?) 5 NP-hard. Similarly,

approximating y(A4) within a factor of 2POlY(7) is also NP-hard [25].

The following observation is due to O’Leary [17]. Naturally, for o € R, sign(«) is either +,0, or —
depending on the sign of «.

Proposition 2.6 (O’Leary [17])
Considering J,~,& as the variables, we have

pa,3(A) = min l17.1ls
subject to sign(y;) = sign(§;),j &€ J
e =1,
v € R(AT)v
£ e N4,
J C {L,2,....n},J#0.

Consider the matrix:

A 0
Ao =
C (CC)’

where C'is an n x n invertible matrix. Obviously A also has full row rank. We have the following result.
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Proposition 2.7 (Ho [11])
X(Ac) = V2x(4).

Proof
It is easy to see that

N(Ac)

{( _i ) :§€./V(A)} and
{(VZy):yeR@Fyyew}.

We will prove that p(A) = v/2p(A¢) using the characterization of p in Proposition 2.6 with R(AT)
and N (A) interchanged (which we can do since we are working with the 2-norms). Let us denote this
minimization problem as Q(A).

R(AL)

L. p(4) > V2p(Ac)
Let (£*,~*,J*) be an optimal solution of Q(A4). We now define a y* that satisfies certain sign
conditions. If j € J*, let y; be such that sign(—¢7) = sign(y}). Therefore sign(£7) # sign(v; +yj).
Now if j ¢ J*, we can let y; be such that sign(—¢7) = sign(y;), and sign(&7) = sign(v] + y;), by
ensuring |y} | is small enough. Thus, the 3-tuple

L f* 7*‘1'3/* *
() 007) )

= p(A).

() ))

be an optimal solution of Q(A¢). Let

Ji= € {L,...,n) tsign(&]) # sign(v]))-

Since {* is orthogonal to v*, and £ # 0, there must exist j such that sign(£;) # sign(v;). Hence
J # §. The 3-tuple (ﬁf*,'y*,j) is feasible for Q(A), and therefore p(4) < \/§||§;|| Now take

any j € J. Since sign(£7) # sign(v;), there does not exist a y; which satisfies both sign(¢}) =
sign(v; +y;) and sign(—¢7) = sign(y;) at the same time. Hence, at least one of j or n+j isin J*.

TheI’efOI’e we haVe
( ) 7
5 *

is feasible for Q(Ac). Therefore, v/2p(Ac) < ||€5.

2. p(A) < v2p(Ac)
Let

p(A) < I < = p(Ac).

L
V2

Using a proof similar to the above or using Proposition 2.3, we easily prove the following fact.
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Proposition 2.8 (Ho [11])
X ([A] = 4]) = Vax(A).

Recall that the singular values of A are the square roots of the eigenvalues of the matrix A7 A. The
largest singular value of A is simply ||A4]||2. Let omin(A) denote the smallest nonzero singular value of A.
We have the following connection to p(A).

Proposition 2.9 (Stewart [21] and O’Leary [17])
Let the columns of U € R™ ™ form an orthonormal basis for R(AT). Then

p(A)

= min omin(U1),
PAIC{1,...,n}

where Ur denotes the submatriz formed from a set I of rows of U.

First, Stewart proved “<”, next O’Leary proved “>". A nonzero z € N(A) (with nonzero entries in
positions {i1,...,4,} C{1,...,n}) is said to define a minimal linear dependence amongst the columns of
A if for every subset I of size at most (p — 1) of {41,...,4,}, the columns of A indexed by I are linearly
independent. We have the following proposition due to Vavasis.

Proposition 2.10 (Vavasis [28])
Let © € N(A) be a nonzero vector defining a minimal linear dependence amongst the columns of A. We
have

min{|z;| : z; # 0}
o] oy £ 0] =

We now give a new proof that is different from Vavasis’.

Proof

Let k and { be such that min{|z;| : #; # 0} = |zx| = [. Let us denote the jth column of A as A;, for
all j € {1,...,n}. Then there exists J C {1,...,n}\ {k} such that Ayz; = +lAy, where x; contains
precisely the nonzero entries of # other than z;. Since x defines a minimal linear dependence, the columns
of A; must be linearly independent. So we can extend J to a basis B of A to get Agpxp = +£lAg. Now,

2llee = llenlleo < llzsll = A" Akl < A5 Al < IX(A).

In other words,
[1#]]co

l b

x(A) >

or equivalently,
p(4) < l _ mm{|xj|:xj;é0}‘
|l#lloc  max{|a;|: x; # 0}

Using these arguments, it is not hard to show that the same result holds for any extreme ray « of the
cone {z: Az = 0,2 > 0}.
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Corollary 2.11 Suppose {d € R" : Ad =0, el'd=1,d >0} is not empty. Then, it is compact and every
extreme point d of it has the property
- - A
min{d; : d; 0} > o )

n

Proof

Compactness of the set is clear. Every extreme point corresponds to an extreme ray (and hence a
basic feasible direction) of {z : Az = 0,2 > 0}. For every basic feasible direction #, we identify the
smallest nonzero component #j, first, and then B € B(A4) such that all other nonzero components of #
are determined by the system of equations

Apxp = —Z, AL.
Then, as in the proof of Proposition 2.10, we get ||#||co < Zxx(A). Letting d := #/(e” &), we see that

min{d; : d; 0} > Zx [my(4) + 1] Z ny(4)  n

We used the facts that n > (m + 1) and x(4) > 1. O

Recall that A(A4) and §(A) denote the maximum and minimum (respectively) of the absolute values
of the determinants of all the nonsingular square submatrices of A. We have the following relationship
among pe., A(A) and §(A), proven via exploitation of the sign pattern characterization and Cramer’s

Rule.

Proposition 2.12 (Tuncel [27])

Proof
Recall the definition

pro(A) := inf{[| Dz — yl|oc : D € (D), z € N(A),y € R(AT), lyllc = 1}.

Clearly here we can restrict = to be in {z € N'(A) : ||z|| < 1}. Let {(D*, 2", y*)} be a sequence of feasible
solutions such that || D*z* — y*||., converges to p..(A). Since {z*} and {y*} are in compact feasible sets,
we may assume {(z", y*)} converges to, say, (z*,y*). Let J* be the set of indices such that the signs of =*
and y* disagree. Note that J* # @) because otherwise we can choose D € cl(D) such that Dz* — y* = 0,
contradicting the fact that po, (4) > 0. Note that for the pair (z*,y*), a best D* is such that

0, 1€.J",
Di=<¢ 1, ¢¢J,x;=0,
v

Yig el 0.

S0 peo(A) = ||y}

ooy and therefore

o LY E R(AT), llylleoc = 1,sign(y) = sign(y™)}.

peo (A) = min]ly-
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Then it is easy to see that

P max{[|yl[es : y € R(AT),sign(y) = sign(y"), [lys- [l <1}

= max{]|Awll.. : sign(A”w) = sign(y"), (47 w) -

o <1}

Let w* be a maximizer of this expression,

¢ = minf|(ATw) s (47w # 0,
(ATw)j > ¢, if sign(y;f) =1,
AT i — if sl ) =
F(sign(y®),J") = w: ( Tw)] 0, 1 s%gn(y]) 0,
(A" w); < —e, if ﬂgn(y}f) =-1,
(ATw); <1, e

Then

1
m = max{||ATw||o : w € F(sign(y*), J*)} = max{a’w : w € F(sign(y*), J*)},
where a is a column of A (or its negation) such that a’w* = ||ATw||o.. Equivalently this is the optimal
value of the LP:
(P) max n
w € F(sign(y*),J*),
a’w — n > 0.

Suppose the feasible region of (P) contains a line. So there exist (w,7n) and (d,t) # 0 such that w+ kd €
F(sign(y*), J*) and a®(w + kd) > 5 + kt, for all k € R. So ATd = 0. If d # 0, then it contradicts
that fact that A has full row rank. So d = 0 and t # 0. But then a’w = a¥ (w + kd) > n + kt for all
k € R also gives a contradiction. So the feasible region of (P) is pointed, and hence contains an optimal
basic feasible solution. Let f(e) be the vector representing the right-hand-side values in the definition of
F(sign(y*), J*) (entries of f(e) are 0,1,¢, —¢). Then using Cramer’s Rule, we have

AT
subdet ( A% ) /()
1 a’ 0 < mA(A)
poo(A) ( AT ) 0 - a4)
subdet AT,
a’ -1

Here, we used that fact that ¢ < 1; because 0 # ||[(ATw*)j+||co < 1 (as otherwise, it would contradict
Poo(A) > 0). O

In fact, the above was originally stated for A € Z™*" in [27], in which case we have pg(4) >
1/(mA(A)).

Proposition 2.5 is a consequence of Proposition 2.12 and (8). Indeed,
A

R R A
X(4) = o(4) < o () < \/ﬁmm (10)

~—
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Therefore, for A € Q™M*",

log(x(4)) < log <%> + log(m) + %log(n) =0(L).

Directly utilizing equation (9) and Proposition 2.3, we also bound x and x in terms of A/J in the
following two propositions.

Proposition 2.13

) < m
Proof

Suppose B € B(A) maximizes (9). Let y be such that ||y|]| = 1 and ||A§1|| = ||A§1y||. Let x € R™ such
that Agez = y. Then by Cramer’s rule, for each i € {1,...,m},

| bt (LApli) A A
So,
—1)2 _ 2 2 A(4)?
IA5" = [le]|” < m 5012
Therefore, "
_1 A(A
x(4) =457 < A
O
Proposition 2.14
YA) < Vom(n—m) + 1 %.

Proof

Suppose B € B(A) maximizes the expression in Proposition 2.3. Let {y',...,y"~™} be the columns of
A that are not in Ag. Let #' € R™ such that Az’ =, forall{ € {1,...,n — m}. Then by Cramer’s
rule, for each i € {1,...,m},

det(C)] _ A)

|det(Ap)| — d(A)°

for some m x m submatrix C' of A. So, denoting the maximum eigenvalue of a matrix by Amax(-), we
have

!
;| =

1A AR = ([t " = AT+ 2 (@) 4 27 (@]
S 1+(x1)Tx1_|_‘__+(xn—m)Tl,n—m
2 2
< l1+m(n-— m)A(A) < [m(n—m) + 1]A(A) .

a(4)?
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Therefore,

) = A A < Vil —m 4 15

Facts similar to those given in last three propositions can also be obtained by employing the Cauchy-
Binet Formula. This goes back at least to Dikin [4]. (For a historical account and related results, see
Forsgren [7] and the references therein.)

3 Cauchy-Binet Formula and the Condition Number of AA”

Recall that B(A) denotes the set of all bases of A. We represent each basis B of A as a m-subset of the
set of numbers from the natural numbering of the columns of A.

Proposition 3.1 (Cauchy-Binet Formula)
Let A, A € R™X™ with full row rank. Then

det(AAT) = > det(Ap)det(Ap).
BeB(A)NB(A)

Using this, we can prove the following relationship among x, A and 6.

Proposition 3.2 Suppose A € R™*™ has full row rank. Then

A(4)*

T 3/2, m41
K(AAY) <m**n S(A)

Proof
We have |A;;] < A(A4) for all ¢, j, and hence by (3),

[AAT]] = [JA]]* < [JA[ff < mnA(4)%.

On the other hand,

S/ZA(AAT)

AATY Y| < AATY Y| < )

(A7) < Vi) < Pem

Now, by Proposition 3.1,

A(AAT) = det(AL*Ag*) (for some sets I,J C {1,...,m},|I|=1|J|)
= > det(Ag,. ) det(Asx )
BEB(AI)*)OB(AJ)*)
nm™A(A)?

IA
N
3
N
B
b
e
IA
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and det(AAT) = Y Bes(a) det(Ap)? > (A)2. Therefore,

m3/2nm+1A(A)4

R(AAT) = |[AAT]| - [|(AAT) 7| < S{AY

4 Hoffman’s Bound and y

For a vector u € R", let pos(u) € R™ be such that (pos(u)); := max{u;,0} for each j € {1,...,n}. The
following result gives an upper bound on the distance of a point to a polyhedron, in terms of its violation
of the constraints defining the polyhedron.

Theorem 4.1 (Hoffman [12])

Let A € R”*" (not necessarily full row rank) and let || - ||o and || - ||z be norms on R™ and on
R", respectively. Then there exists a scalar K, g(A), such that for every ¢ € R™ for which the set
{yeR™: ATy < c} # 0, and for every y' € R™,

. ! i T 1
poiin vy =9 lla< Ka,p(A) || pos(A™y" —¢) ||s -

The coefficient K, g(A) is sometimes called a Lipschitz bound of A. For anorm || - || on R™, let || - ||*
be the dual norm defined by

o 7= max{e” e s 2 € B, || 2 [I< 1),

for each v € R™. Note that for p-norms (1 < p < o), we have || ||5 = || - ||;, where ¢ is such that
p~1 4+ ¢~1 = 1. In particular, || - ||3 = || - ||2. Let ext(S) denote the set of extreme points of a set S. We
have the following geometric representation of the Lipschitz bound.

Proposition 4.2 (Giiler, Hoffman and Rothblum [9])
Theorem 4.1 holds with Ko (A) := max{|| v [[5: v € ext(Vo(A))}, where Vo (A) := {v € R" : v > 0, ||
A< 1},

We write K5(A) := K 2(A) for all A. There is also a representation of the Lipschitz bound via singular
values. For any E € R"™™. Let U(F) be the set of subsets of {1,...,n} for which the corresponding
rows of F are linearly independent. Let U*(F) be the maximal elements in U(F).

Proposition 4.3 (Giiler, Hoffman and Rothblum [9])

1
Ko(A) < _—
DA S B (A7)
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Note that minjep+(am) omin(AY) = ming2ycy1,....n} omin(A}). To prove this, first note that “>” is
clear. Take A € R™*" with rank, say, r. Take any nonempty J C {1,...,n}. Let o;(E) denote the ith
largest singular value of any matrix F, and k := rank(AY). Then omin(AY) = ox(AL). Let I C J be
such that rank(A%) = k = |I|. Then by the interlacing property of singular values, ot (AT) < oy (AT).
Let M € U*(A”T) be such that I C M. Then

Tmin(Aly) = 07 (Aly) < 0% (A]) < Tmin(A]),

where we used the interlacing property again in the first inequality above. Therefore,

1 1
JEIUI}*a(Ji(‘T) O-min(A;) B (D#Jg}{??.(..,n} O-min(A;) ‘

The next proposition gives a connection between Ky and x via singular values.

Proposition 4.4 Suppose A € R™*™ has full row rank. Then

K3(4) < X(A).

Proof

Consider the singular value decomposition of A. Let A = UDV7T, where U € R™*™ is orthogonal, D €
R™>" ig diagonal (with singular values o4, ..., 0., of A on the diagonal, in that order), and V € R"*" is
orthogonal as well. Suppose V = [vy] -+ - |v,], i.e., {v1,...,v,} are the columns of V. Let V := [vy] -+ |v;]
and ¥ := Diag(oy,...,0m). Then A = UZVT. Since A has full row rank, o1,...,0, > 0, and hence ¥
is invertible. We have AT = VXUT and V = ATUS'. So R(AT) = R(V), and V has orthonormal
columns. By Propositions 2.9 and 4.3,

1 1

Ko(VT) < - L ).
‘2( ) - IEI[I}*&()%) O-min(VI) (D#Ig?f( n} O-mln(VI) X( )

Now it remains to show ||A||K2(A) < K2(VT). Note that
|ATY|? =" USVTVEUTy = ||SUT |2
Therefore,

Al = ll47] = lmllaﬁllATyll = 1= = US|

Now we consider the relationship between K3(A) and K3(VT). Suppose Kz(A) = ||9]|, where 9 is an
extreme point of Va(A). Let v := |[A]|o. We will prove that v is an extreme point of Va(VT). Suppose
v = Aw + (1 — A}z, where X € (0,1), and w, z € Va(VT). Then

w z
B= A+ (1 - A) =
14l 14l

Since w € Vo(VT), w > 0 and therefore w/||A|| > 0. Also,

A< >H IUEEUT Aw|| < —[|[US|||[VF w|| < 1.
H 14l Al IIAII
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So w/||A]| € V2(A), and similarly so does z/||Al|. Therefore, w = z, implying that v is an extreme point
of Va(VT). Now,

[A[[K2(4) = [|Al]|o]] = []o]] < K>(VT) < x(A).

As a corollary, since y(4) < ||A]|x(A4), we have K3(A) < x(A4). During the review of our paper, we
became aware of [33]. Note that the relation K3(A4) < x(A) implies Theorem 3.6 from [33] which states
that Theorem 4.1 holds with I, g(A) replaced by x(A), when o = 8 = 2 and A has full row rank. Also
Lemmas 3.3, 3.4 and 3.5 of [33] follow from equation (9) and the fact that whenever {x : Az = b,z > 0}
is nonempty, it contains a basic feasible solution.

We also note that, by Proposition 2.12, we have

o mA
) < sy

Let G be the set of diagonal matrices in R"*" with diagonal entries from {1,—1}. Take G €
G. Then ||[AG]|| = ||A||. Also for any diagonal matrix D € R™*" |[(AG)T(AGD(AG)T)"1AGD| =
|AT(ADAT)=1AD||, and hence Y(AG) = x(A). (Similarly, x(AG) = x(A).) Therefore, we have
(4)

max K3(AG) < TR x(4). (11)

=<

Also, A(AG) = A(A) and 6(AG) = 6(A). So we also have

. mA(A)
a9 = Ty

We now characterize the extreme points of V;(A4). Recall that

A e
Vid)=<veR": | —A4 [v<| e ,
-1

which is a polyhedron, and the constraint matrix in the above description has full column rank. Let
J C {1,...,n} such that |J| < m. Then we pick I1,Is C {1,...,m} such that Iy NI, = § and
|I1] + | 12| = |J|. Assume that the matrix
AIhJ
_AI27J

is nonsingular. Here Ay, ; denotes the submatrix of A with rows indexed by I; and columns indexed by
J. Let 2 € R be such that z; = 0if j ¢ J and

AIhJ €
xy = .
—AI27J g €
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If z € V1(A), then # is an extreme point of V1 (A). Vice versa, any given z € ext(V1(A4)) must satisfy the
above for some J, I} and I;. So using Cramer’s rule, for each j € J,

subdet An,g e
—Ar,,; e < IAM) _ mA4)

=T5(4) < a(a)

So,

3(A4)

Therefore, we have
. mA(A) . mZA(A)
e K AG) < ST and ipal e (46) < T

In fact, the extreme points of V3 (AG) can be characterized in a similar way. The only difference is
that we require = to satisfy the sign pattern given by G, instead of # > 0. Now, we give another proof
of the implication K3(AG) < x(4), VG € G of (11). We use the following characterization of K5(A) for
this purpose.

Lemma 4.5

Ky(A) = max {||A5'A9|| : v € R(AT), B € B(A), ||47]| = 1,9 < —Ap'Anvn ] .

Proof
Note that

Ky(A) = max {[Jo]| s v €ext(Va(A)) N{€ -7 £> 7,6 € N(A),y e R(AT), |49 = 1}}.

Let v € R(AT) such that ||Ay|| = 1; also let B € B(A) such that y5 < —Az'Anyy and ||A5"AY]|
is equal to the maximum value in the statement of the lemma. Define & € R” as follows. &y := v,
&g = —AE;lAN'yN. Thus, we have £ € N (A), £ > v. Next, we claim v := (£ — ) € ext(V(A)). Suppose
not. Then, there exist vV, v(2) ¢ V2(A) such that % (v(l) + 0(2)) =&—~, oM + v(?). We immediately

have vg\}) = vg\%) = 0. Thus,

1 1
1= | 4pvs]| < 5llApog |+ Gll4pvg’l < 1

which implies
[Apos|| = [|[Apos) || = |Apv|| = 1.

Therefore (since vp = %vg) + %vg)), by the characterization of the equality case in the Cauchy-Schwarz

inequality, we must have Agvg = Ap vg) = Ap vg). Since vg) + vg), Ap must be singular, we arrived

at a contradiction. In addition to (£ — ) being an extreme point of V;3(A4), we have

1€ =71l = 145" Anyw + 75l = A5 A7)
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Therefore,
Ky(A) > max {||A5 49| : v € R(A"), B € B(A),||Ay]| = L,y < —A5'Anyn },
as desired.

To prove the reversed inequality, we let & € N(A), v € R(AT) such that ||[Ay]| =1, & > v, (€ —7) €
ext (Va(A)) and || — || = Kq(A). Let J C {1,2,...,n} be such that £; = vy; and {5 > 7. Then since
(€ —7) is in ext (Va(A)), we must have rank(A5) = |J| < m (otherwise, we can find £ € A (A45)\{0} such
that
> 0 ifjeJ
=9 7 ...

& ifj¢d;

now fe N(A) and for small enough € > 0, (f—i—eé—'y) and (f—eé—'y) € V3(A), a contradiction). Complete
J to a basis B of A. Then éx = vy and Apép = —An~yn. The latter implies £ = —AE;lAN'yN. Thus,

K5(A) = [[€ =7l = I8 — 8]l = 145" A v + 78]l = [|A5 49|
Hence yielding the desired inequality

K5(A) < max {[|A5" Ay|| : v € R(AT), B € B(A), [|A9]| = 1,y5 < A5 Ann}

O
Theorem 4.6
Iéléié([&g(AG) < x(A).
Proof
By Lemma 4.5,
I5(A) = max{||[A5" A5]| 1 v € R(AT), B € B(A), [|[ 4] = 1,75 < A5 Anyn }-
So,
max K (AG) < max{||A5 ' AGH|| : v € R(GAT), B € B(AG), ||AGH|| = 1,G € G}
= max{||[A5'AGH|| : Gy € R(AT), B € B(4),||AGH|| = 1,G € G}
= max{[|[A5' A : v € R(AT), B € B(A),[|47]] = 1}
= max{||Az'Az||: x € R", B € B(A), ||Az|| = 1}
= max{||[A5 "yl : B € B(4), |lyll = 1}
= max{[|[45']| : B € B(4)} = x(4).
O

We note that the inequality above may be strict. Otherwise, using (11) we would have had x(4) =

[|A]|x(A) which is clearly false in general —take for instance 4 := <(1) ? 1)
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5 Ye’s Complexity Measure for LP and Hoffman’s Bound

We are going to look at two more complexity measures,  and symm. These complexity measures relate
closely to the symmetry of certain geometric objects of the LP problem. Let us consider the LP problem
in the following primal form:

(P) min T
subject to Ax = b
r € R’_IL_,
and the corresponding dual form:
(D) max Ty

subject to ATy + s = ¢
Yy € R™
s € }R’_IL_

where c € R™, be R™, A ¢ R™*",

Under the assumption that both (P) and (D) have feasible solutions, Ye [31] first defines a complexity
measure for each of the problems (P) and (D):

p = min max z;
7 JEB zeopt(pP) 7
p := min max s;.
7 JEN scopt(D) /
Then, Ye [31] defines the complexity measure of the primal dual pair as the minimum of the two:

n(P, D) = min{np,np},

where opt(P) and opt(D) denote the sets of optimal solutions of (P) and (D) respectively, and (B, N)
denotes the strict complementarity partition.

Let us study these measures for feasibility problems over polyhedra expressed in Karmarkar’s ([13])
standard form:

Pi={z:Ar=0¢"2=12>0}.

(This form is relevant in Subsection 5.1 as well.) We assume A to have full row rank and no zero columns
because, without loss of generality, we can always eliminate the variables that correspond to zero columns
in A. Let S := A(A) and (hence) St = R(AT). (P) and its dual can now be written as a primal-dual
pair of feasibility problems. See Vavasis and Ye [30] and [26].

(FP) x € S, (FD) s € St
lzlli = 1, sl =1,
x > 0. s > 0.

(F'D) is the dual of (F'P) in the sense that every feasible solution to the dual problem of maximizing 0
over the constraints defined by (F P), corresponds to a feasible solution of (F D), except for s = 0 which
does not correspond to a feasible solution in (F D). In this setting, even though (F P) is always bounded,
(F' D) can still be infeasible (for example, 4 :=[1,—1]).
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When (F P) is feasible, there exists a pair (z, s) such that z € S, 2y = 0,25 > 0,5 € S*, sy > 0,55 =
0, where [B, N] is the corresponding strict complementarity partition with B nonempty. Furthermore,
all feasible solutions of (F P) and (F D) must satisfy zxy = 0 and sp = 0. We allow B or N to be empty.
The condition B # ) is equivalent to (F P) being feasible. Similarly, N # {} is equivalent to (F D) being
feasible.

Since the problems (FP) and (F D) are written in terms of the subspaces S and S*, let us redefine
Ye’s measures accordingly. For any subspace C, define C'(1) := {z € C': ||#||1 = 1}. Let

n(S) = i NAX T

1 — : .
UCR S ?éljlvlseslfl(?;fszosj’
n(A) = min{n(S),n(5)}.

We define 7(S) to be 1, when (F P) is infeasible (similarly, n(S*t) is 1 if (F D) is infeasible). Notice
that all of 5(S),n(S*) and n(A) are positive for all A. 7(S) measures some kind of symmetry of the
columns vectors of Ap about the origin. The set {Apzp : ||zp||l1 = 1,25 > 0} is the set of all convex
combinations of the columns of Ap. Therefore {# € S(1) : # > 0} corresponds to the coefficients when
0 is written as convex combinations of the columns of Ap, and hence 1 measures their sizes. If the
columns of Ap are perfectly symmetric about the origin, n(S) would be 1/2. And if the columns are
highly asymmetric, n(S) would be much smaller than 1/2.

The following results give dual descriptions for 5(S) and 7(St). For v € R, J € {1,2,...,n}, let

—00 itvy <0,
b = .
maxv; otherwise,
jed
_ +00 itvy >0,
v = . .
J minv; otherwise.
Jjed

Proposition 5.1 (Tuncel [26])
Suppose {e; 1 j€{1,2,...,n}} NS =0 and B# (. Then

n(S) = min{~vh vy € ST 0<vE < 1,98 — 75 = 1}

Proposition 5.2 (Tuncel [26])
Suppose {ej 17 € {1,2,...,n}} NSt =0 and N #£ 0. Then

n(S*) = min{¢} : £ € 5,0 <&f < L&h -5 =1

Note that under our assumptions, we always have {e; : j € {1,2,...,n}} NS = 0 because A has
no zero columns. Also, the condition B # @ is equivalent to (F P) being feasible. Similarly, N # @ is
equivalent to (F D) being feasible.

Recently, Epelman [5], Epelman and Freund [6] presented another complexity measure based on A.
Let H(Ap) :={Apxp : xp > 0,||xp|l1 = 1}. That is, H(Ap) is the convex hull of the column vectors of
AB. Let

symm(A) := max{t : —tv € H(Ap) for all v € H(Ap)}.
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Note that a generalized version of this measure has been used before by Renegar [18] to estimate com-
plexity for convex optimization problems.

It is clear that symm(A) measures precisely the degree of symmetry of H(Ap) about the origin in
R™ (A € R™*™). When H(Ap) is centrally symmetric (about the origin), symm(A4) = 1.

Proposition 5.3 (Epelman [5], Epelman and Freund [6])

symm(A)

1+ symm(A) = n(5)-

The above proposition gives an explicit relation between the two complexity measures, 1(S) and
symm(A). Since the function #/(1 + ) is strictly increasing on (0, 1], n(S) also measures the degree of
symmetry of H(Ap) about the origin. In fact, by combining Proposition 5.1 and Proposition 5.3, we get
the following.

Corollary 5.4 (Ho [11])
+
symm(A4) = min —Py—?.
v€S*tllvell=1  vp

We can state similar results for 7(St). Let us define H € R(=m)X" t5 he a full row rank matrix
obtained by deleting linearly dependent rows from Py := I — AT (AAT)~ 14,

Corollary 5.5 (Ho [11]) Suppose (FD) is feasible and {e; : j € {1,2,...,n}} NSt = 0. Then

symm(H)

1+ symm(H) = (S

Similarly, we can combine Proposition 5.2 and Corollary 5.5.

Corollary 5.6 (Ho [11]) Suppose (FD) is feasible and {e; : j € {1,2,...,n}} NSt = 0. Then

+
symm(H) = min —5—117.
ceslenll=1 &y

We now look at a relationship between the complexity measures n(A) and p(A4). We call AG a signing
of A, where G € G and G is the set of diagonal matrices in R™*"™ with diagonal entries from {1, —1}.
Note that x(AG) = x(A).

Define n(A4) := aniIgN](AG). We have the following fact.
- €

Proposition 5.7 (Todd, Tungel and Ye [2{])

1

ﬁQ(A) < p(A4) < np(A).



COMPLEXITY MEASURES FOR LP 22

The second inequality above can be obtained easily from the results of Vavasis and Ye [30] and
Gonzaga and Lara [8]. The first inequality can be proved using Propositions 2.6 and 5.1. The second
author [26] showed that in general, n may carry no information about p. Indeed, suppose the columns
of A define an almost centrally symmetric polytope. Then there is a signing of A such that the new
polytope is highly asymmetric and therefore has a very small 5 value, which in turn implies a very small
p value. This suggests that x¥ may not be a good complexity measure as it tends to grossly overestimate
the complexity of interior-point algorithms. FEven though x(A) grossly overestimates the amount of
computational work to solve LP problems with data (A, ¥b,¢), it has been useful in estimating the work
for LP problems having A as the coefficient matrix, with arbitrary b and ¢ and arbitrary orientation of

inequalities. Also, A(A)/d(A) has a similar role.

Proposition 5.7 shows that ﬁ behaves like 1(A) or like n(AG), where G is “the worst signing
of A” in this context. Notice that Theorem 4.6 relates Hoffman’s bound to x(4) in a similar way. Tt
shows that x(A) is at least K3(AG), where G is “the worst signing of A” in this latter context. Since
n(S) is essentially symm(A) and we have noticed the above parallel, we give below a brief geometric
interpretation of K o, in a special but illustrative case. Note that the essential difference between n and
K is that of formulation. They both measure similar quantities; considering the problem (D), K works
in the y-space and 7 in the s-space. See the next section for similar situations between y and .

Let us now look at K, g(A) more closely. For this brief discussion, we assume that V,,(4) is bounded.
This is true if and only if {v : Av = 0,v > 0,v # 0} = {}, if and only if there exists y € R™ such that
ATy >0, by LP duality theory. Under this assumption,

Ka,p(A)

max{[[o]|5 1 v > 0, || Av][5 < 1}
= max{[jo[[5 : v > 0, || Av[| = 1}

= max{ ell tv >0 Av;é()}
Aol " =
Also v = 0 if and only if Av = 0. Hence,

% = min HAUU:& 0> 0,v#0
Ka,p(A) Gl
= min{[[Av[[3 s 0 > 0, [Jo[[5 = 1}

For the case a = 1, 8 = oo, we have

1
m = min{||Av||cc : v > 0,eTv =1}.

This is precisely the co-norm distance of the origin of R to the convex hull of the column vectors of
A. Since we assume that V; is bounded, 0 is not in this convex hull. On the other hand,

1

T = min{t : [|[Av]|e <t,v > 0,eTv =1}

A
min{t:( A)v—i—teZO,eTvzl,vZO}.

This is an LP problem. So by LP duality theory,

1
K1,00(A)

= max{n: [AT| - AT]y+ne < 0,eTy =1,y > 0}
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= max{smallest entry of [~AT|AT]y:eTy =1,y > 0}.

In other words, it is the maximum of the smallest entry of any vector in the convex hull of the rows of A
and their negations.

5.1 Linear Programming Solver Subroutine

In Section 7, we generalize Tardos’ scheme. To do so, we need to solve LP problems with the following

data. Define
e (G )

]5 . 2[log(2(2m+n)3/2(2mn+l))] 2q and ]’5 . 2[log(2(2m+n)3/2(2mn+1))] 2(} (12)

Let p be a positive integer power of two and p < p. We will not have any restriction on the entries of A,
except that we want A to have full row rank (easily ensured). The rest of the data, b and ¢, for the LP
solver subroutine will be restricted to the following two cases.

(i) We set [ := [(p—l— D, (p+1)% ..., (p+ 1)”]T, and b:= Al. We have ¢ € Z" such that ||¢||ec < P.
(il) We have b € Z™, ¢ € Z" such that ||b]|c < p and ||¢||cc < P

In this subsection, we assume that b and ¢ satisfy at least one of (i) and (ii). We also need the following
function of A in our estimations.

Definition 5.8 Let A := [A|l]. For every B € B(A) (N is the complement of B) consider the smallest
absolute value of nonzero entries of

Aélu, Vu e Z™ such that ||u]|oc < P,
Aélﬂw, Yw € Z", with entries from (p+1),(p+1)%,...,(p+ 1),
where p is a positive integer power of two and p < p,
[—A%AE;TH] v, Vv € Z"t™ such that ||v||e < p.
Also consider the entries of the vectors for the same construction in which A is replaced by
A= [AT) - AT - 1].

These generate a finite collection of positive real numbers depending only on A. We call the minimum of
all these numbers 65(A).

Note that 0 < §s(A4) < 1 for all A € R™>" If 4 € Z™*" then d;(A4) > 1/A(A).

The LP problems with b and ¢ described as above (in (i) and (ii)) depend only on A. As we show in this

subsection, many algorithms can be adapted to solve such LP problems in poly (n, | log(ds(A))], log (%))
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elementary arithmetic operations. In particular, we show that such polynomial bounds can be satis-
fied by employing almost any primal-dual interior-point algorithm with (mild centrality properties and)
polynomial-time complexity in the Turing Machine Model. Consider the homogeneous self-dual linear
programming problem (HSDLP):

min (n+1)0
0 A —b b— Ae Y = 0
subject to —A 0 ¢ e v > 0
b7 —cT 0 efet+1 T > 0 ’
(Ae — )T (c—e)T —(Tec+1) 0 0 = —(n+1)
y free,
x > 0
T > 0,
0 free.

Note that (HSDLP) is self-dual, and that & = 0 at every optimal solution of (HSDLP). Let us
define the surplus variables for the inequalities above:

s = —ATy+7c+0(e—c),
v o= by —cTe40(lc+1).

Then j := 0,% 1= ¢,5 := e,7 := 1,1 := 1,0 := 1 is feasible in (HSDLP). TFor various facts on such
formulations, see the book by Roos, Terlaky and Vial [19].

Theorem 5.9 (Ye, Todd and Mizuno[32])
Let (y*, 2%, 7%,0" = 0,s*,9") be a strictly self-complementary solution for (HSDLP). Then,

1. (P) has a solution if and only ™ > 0. In this case, */7* is an optimal solution for (P) and
(y* /7%, 8" /T*) is an optimal solution for (D),

2. if 7 =0, then o~ > 0, which implies that ¢" x* —bT y* < 0, that is, at least one of ¢ x* and —bT y*
is strictly less than zero. If ¢f'x* < 0, then (D) is infeasible; if —bTy* < 0, then (P) is infeasible;
if both cT'z* < 0 and —bTy* < 0, then both (P) and (D) are infeasible.

Consider the setting at the very beginning of Section 5. Assume both (P) and (D) have feasible
solutions. Let {(x(k), s(k))}, k € Z4 denote the iterates of a primal-dual interior-point algorithm (with
feasible iterates). Giiler and Ye [10] proved that the mild, wide neighborhood condition (or centrality
condition)

; (%) (*)
min; §x; 'S,
‘7{—‘7‘7} > Q<l> (13)

(z0)) T 5k) n

guarantees that every limit point of { (l‘(k), s(k))} is a strictly complementary pair. Mehrotra and Ye [16]
and Ye [31] showed how to make such polynomial-time primal-dual interior-point algorithms terminate

in O (v/n [log(n(P, D)|) iterations.
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Results of Ye-Todd-Mizuno [32] and Ye [31] also show how to terminate primal-dual interior-point
algorithms (those converging to a strictly complementary pair) after O(y/n|log(n(HSDLP))|) iterations.
We denoted by n(HSDLP), Ye’s complexity measure applied to the problem (HSDLP). Since the
problem is self-dual, the notation is consistent.

Next, we will estimate n(HSDLP). The optimal value of (HSDLP) is 0. Therefore, we can represent
the set of optimal solutions of (HSDLP) as (FHSDLP):

Ar = 71b,

ATy+s = re,

Vy—cts = o,
elet+els+r+v = n+1,

z, 8,1, > 0.
By the last equation and the nonnegativity constraints, we have
0<n(HSDLP) <n+ 1.

It remains to bound n(HSDLP) from below and away from zero. We want to maximize each restricted
variable (say z; for some j) subject to (FHSDLP). We will split the analysis into three exhaustive cases:

1. (P) and (D) both have feasible solutions,
2.(a) (D) is infeasible,
2.(b) (P) is infeasible.

As mentioned before, we will assume that b and ¢ satisfy (i) or (ii), and we will differentiate the analysis
of these two cases, whenever necessary.

Case 1.: (P) and (D) both have feasible solutions

Every solution of (FHSDLP) satisfies ¢ = b7y — ¢’z = 0, by LP weak duality and the constraint
¢ > 0. Also, there exists a solution of (FHSDLP) with 7 > 0. Let (Z,y, s) be a basic primal-dual pair
of optimal solutions for (P) and (D). So for some B € B(A), we have

Zp = AR'b, sy = en — AR A e,
where N :={1,...,n}\ B. For case (i), we have
'z = ||zl < vml|zp| = Vml| A" All| < Vml|AG A - (1]l < Vamx(A)(p+1)"
For case (ii), we have

i _ _ i A(4) IR
o < VA < VAR B < (0 < S <5< )

where the fourth inequality uses Proposition 2.13. Similarly,
e"s < lewlli + 14N A5 enlli < Vax(A)llelh < n*2x(A)p.

Let
_ n+1

T Tz 4 eTs+ 17
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Then (7y, 7%, 75, 7,1 := 0) is a solution of (FHSDLP). Hence,

_ n+1 n+1
max T>T > > .
(y,2,5,7,3)E(FHSDLP) = vamx(A)(p+ )" + n32y(A)p+ 1 = 3n3/2y(A)(p+ 1)"

v

Let [B’, N'] be the (unique) strict complementarity partition (restricted to just the indices z, or s)
for (HSDLP). Let j € B’. Then there exists a basic primal-dual pair of optimal solutions for (P) and
(D), (#,y,35), corresponding to some new basis B, such that Z; > 0. Then all the above arguments apply
with this new B. Since #; = (A3'b); > ds(A), we have

e (n+1)ds(A)
max T Z TE; Z — - .
(y,,5,7,0)E(FHSDLP) 3713/2X(A)(p+ 1)n

Similarly, for each j € N, there exists § corresponding to some basis B such that 5; > 0. Then j € N
and

_ - B
5 = ([—A%ABTM] [ -

) > (55(A).

Hence, we have

(n+1)d5(A)

. > —a . > .
o Snsoun ™ 2 7 2 T O
Therefore, since d5(A4) < 1,
1)ds(A
n(HSDLP) > — D34

in this case.
Case 2.(a): (D) is infeasible

Every solution of (FHSDLP) satisfies 7 = 0, because if (y, z, s, 7,) is a solution such that r > 0,
then (y/r,s/7) is a feasible solution of (D). On the other hand, by Farkas’ lemma,

min{c’z : Az = 0,7 =1,2 >0} <0.

Let # be a basic optimal solution of this problem. So for some B € B(A4) and k € {1,...,n}\ B such
that Z; # 0, we have ApZp = —AxZy and £; = 0 for all j ¢ BU {k}. It is easy to see that

(n+ 1)z —(n+ l)cTi‘
<0, 0,0, === | € (FHSDLP).

Note that 1 = eTz = 2, — i‘keTAglAk, which implies

1

= >0
1 —eT A5 Ay

T
Now, 1 —eT A5 Ay < 1+ A5 Al < 1+ VAmllAZ Adl| < 1+ /Ay (A). So,

o= chAFM A G4
1—eTAZ A, = 14 /mx(A)

0< —c’

7= |tz = |ex@r + ch(—AZ Apzy)| (14)
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Also, —c'z < p (since z > 0 and ez = 1). So,

i —(n+1)c"z (n+1)%(4)
(wasr)e(FESDLP) . =  1—cTz = (14 /mx(A))(p+1)

Let j € B’ where [B’, N'] is, as before, the (unique) strict complementarity partition (restricted to
just the subvectors z and s) for (HSDLP). Let & be a maximizer of

max{z; : Ax = 0,e’z = 1,2 > 0}.

Note that #; > n(N(A4)) > n(A). Also |¢T#| < p. Let

&= (1++/mx(A))z
Now, by (14), ¢I'# < 0. So,

<0 (ntDa o =ntl) Tj) € (FHSDLP).

TeTy — Ty

Note that —c?'# < (1 + /my(A))p + ds(A) < (1 +/mx(A))p+ 1 and 'z < 2 4+ \/my(A). Therefore,

max x;

Now let j € N’. Consider the problem
max{s; : s € R(AT),eTs = 1,5 > 0}.

First note that if this problem is infeasible, then every solution of (FHSDLP) satisfies s = 0 and hence
N’ is empty; and we are done. So we assume the problem has a feasible solution and because the feasible
set is compact, the maximum is attained by some basic solution, say §, corresponding to some basis
B € B(A). Note that 5; > n(R(AT)) > n(A). We (again) let N := {1,...,n}\ B. Let § be the unique
vector in R™ such that AT§ = —5. For case (i), we let [ € R" be as in the assumption given before. For
case (ii), we let [ € R™ be such that {p := Aélb and {y := 0. In both cases, we have Al = b and

WVg=1"AT5=-1"s.

For case (i), it is clear that |{5] < (p+ 1)". This is also true for case (ii) because

73] = |lpspl=(A5"'0) 55| <|lA5"0|| - I35l < x(A)V/m - ||bl|ec |55
< Vmpx(4) < m*p <%> <P <+,

where we use Proposition 2.13 and the fact that n > 3. If {75 < 0, then

<(n+1)g G N O Vi

FHSDLP).
75 15 113 >€( SDLP)

We then have
(n+1)5;

1-1T

(n + 1)n(4)
P+1)r+1

S

max s; —

,8,T e(FHSDLP S
(y7 19 ’¢}) ( )

v



COMPLEXITY MEASURES FOR LP 28

If IT5 > 0, then we can easily show that

—(n+1)(TB)y (n+ )75z —(n+1)(cTz)5
< Ts—cTzx L U/ A S A T: Tz ,0,0 E(FHSDLP)

Now, using the fact that —c”z < p, we have

—(n+ (" 2)5; (n+ 1)ds(A)n(A)
s —cTz = (L+vmx(A)[(p+ )" +p]

max 85

Case 2.(b): (P) is infeasible

Note that this case does not apply to case (i), since by construction, Al = b,/ > 0, and therefore (P)
must have a feasible solution. So we only need to consider case (ii).

Every solution of (FHSDLP) satisfies 7 = 0, because if (y, z, s, 7,) is a solution such that r > 0,
then z/7 is a feasible solution of (P). On the other hand, by Farkas’ lemma,

max{bly: ATy <0,el ATy =1} > 0.
Let s = —ATy. Then as before, we have b7y = —ITs. So the above problem can be rewritten as
max{—ITs:5s e R(AT),eTs = 1,5 > 0}.

Now let D € R{(»=7)%7 he such that the rows are precisely a basis of A'(4). We know R(DT) = N'(A)
and V(D) = R(AT). In particular, y(D) = y(A), which we will use later on. Therefore, the above
problem can be further rewritten as

max{—{Ts:Ds =0,e's =1,5 > 0}.
Let s be a basic optimal solution of this problem. So for some N € B(D) and k € {1,...,n}\ N such

that 5, # 0, we have Dysy = —Dg5; and 5; = 0 for all j ¢ N U{k}. Let y be the unique vector in R™
such that ATy = —5. It is easy to see that

(n+1)7  (n+1)35 (n+1)b77
<1—|—bTy’ 71_1_ng7 ’ 1—|—ng 3 E(FHSDLP)
Note that 1 =e”'s = 5, — s D' Dy, which implies

1

= >0.
1 —eT Dy Dy,

Sk
Now,

1— e Dy Dy <1+ ||DY' Dills < 14+ v — m|| Dy Dy|| < 14 v/ — mx(D) = 14+ v/n — mx(A).

Since the choice of B in the definition of { (for case (ii) in case 2(a)) does not affect the previous arguments,
we can redefine [ using B := {1,...,n} \ N. It is not hard to see that B € B(A4). So we have

05 (A
0 < 75 = Is| = [(555] = |(A5"D) 5] = (A5 D)elsi > — 2

2 T (A 15)
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Also, b7y = —IT5 < (p+ 1)*, as we have shown before. So,

i (n+ Dby (n +1)ds (A)
(s r)e(FHSDLP) - — 1467y = (14+/n—mx(A) [(p+1)" +1]

Recall that [B’, N'] denotes, as in the previous cases, the (unique) strict complementarity partition
(restricted to the subvectors z and s) for (HSDLP). Now let j € N'. Let § be a maximizer of

max{s; : s € R(AT),eTs = 1,5 > 0}.
Note that 5; > n(A), and T3] < (p+1)". Let
$:=(p+ 1" (14 vn—mx(4))5+ ds(A4)s.

Let ¢ be the unique vector in R™ such that A”§ = —3. Now, by (15), 175 <0. Sowe have by = —175 > 0.
Therefore,

(n+1)y (n+1)8 (n+1)b"y
FHSDLP).
<6T§—|—ng)’ TeTs 40Ty U eTs 40Ty € (FHS )

Now,
75 < (4 D)1+ V= my(A) + (5 )™
Therefore,
(13 (n+ 105 (4)n(4)
TS5+ b7y T (pH )+ BFH D)) (I + VR —my(A)+ B+ + 1

max 85

If B’ is empty, then we are done. Otherwise, let j € B’. Consider the problem
max{z; : Ax = 0,e’z = 1,2 > 0}.

Let z be a basic optimal solution of this problem such that ApZp = —2Z;A;, where we called the
corresponding basis B. First, we have ; > n(S) > n(A) by definitions. Also, [Tz < p. If ¢T'Z < 0, then

< (n+1)& 0.0 (n+ 1)z

Tl =TT 1—cTz

>e(FH5DLPy

If ¢T% > 0, then

<(n+1)(cTi‘)y (n+1)(b"y)z (n+1)(CT5)5’0’0> € (FHSDLP).

ry+clz ' bly+clz 7 bly+clz
Using #ﬁ@)ﬂf‘) <b'y < (p+1)" and ¢I's < p, we conclude
N e i N L I 1 R
(y,2,8,70)e(FHSDLP) ° Vry+cTc  —[(p+1)" + 5] (14 vn — my(A))

The above lower bound on z; also applies in the case that c’# < 0. We proved the following fact.

Theorem 5.10 Consider feasible-start primal-dual interior-point algorithms satisfying condition (13)
above and have been proven to run in polynomial time, with O(\/n|log(n(P, D)|) iteration complexity.
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Every such algorithm when applied to (HSDLP) with the staring point y := 0,7 :=e,5:=¢,T 1= 1,7 1=
1,0 := 1, terminates correctly in

A(A
0 <\/ﬁ <| log(d5(A))| + nlog <ﬁ> + nlog(n)>>
iterations.
Here we used Propositions 5.7 and 2.14 to see that

1 1 5(A)

A S Jmiom 1 A@)

n(A) > p(4) =

and so conclude that

og(n(4)] < 0 (1og(n) +10 (537 ).

The last inequality above can also be obtained directly from the definition of n(A) by utilizing the
techniques in Section 2. Note that the above theorem stays valid if we replace A by any submatrix of it.
This is one of the reasons why in Definition 5.8, we chose A as [A|I], rather than just A. Each iteration
can be performed in O(n?) elementary arithmetic operations.

6 Sensitivity Analysis, Hoffman’s Bound, y, y, A, and 6.

Given an LP max{b”y :7ATy < ¢}, we are interested in the change in the set of optimal solutions as the
vector ¢ is varied. Let A(A) denote the maximum of the absolute values of the entries of C~! over all
nonsingular submatrices C' of A.

Proposition 6.1 (Cook, Gerards, Schrijver, Tardos [3], [20])

Suppose A € R™*™ (not necessarily full row rank), ¢,¢’ € R™, and b € R™, such that both LP problems
max{b’y : ATy < ¢} and max{bTy : ATy < ¢’} have optimal solutions. Then for every optimal solution
g of max{bTy : ATy < ¢}, there exists an optimal solution § of max{by: ATy < ¢'} with

19 = ¥ lleo <mA(A)[le = €[]
Note that A(A) < A(A)/d(A) for all A, by Cramer’s Rule. In particular, if A € Z™%" then

A(A) < A(A). In fact, Cook et al. state the above proposition in [3] for integral A, and A(A) above is
replaced by A(A).

We define, for A with full row rank,
X1(A) == max{|[A5 [l : B € B(A)},
and

Y1(A) :=max{||A53"A||, : B € B(A4)}.

Using almost exactly the same arguments as in the above proof, together with Proposition 2.3, we
can give an alternative sensitivity bound in terms of y(A).
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Corollary 6.2 If the A in Proposition 6.1 has full row rank, then

19— 7l < xa(A)lle = [|oo-
Following the proof of Cook et al. we also have the following useful theorem in terms of y(A).

Theorem 6.3 Let A € R™*" rank(4) = m, ¢,¢/ € R", and b € R™, such that both LP problems
max{b’y : ATy +s =c,s > 0} and max{b’y : ATy +s = ¢/, s > 0} have optimal solutions. Then for
every optimal solution (y,5) of the former problem, there exists an optimal solution (y§',5') of the latter
problem with

15 = 5'llec < (X1(A4) + Dlle = ¢/l] oo

Proof

We first show the inequality for the special case b = 0. Then we use the special case to establish the
theorem. Assume for now that b = 0. Suppose for a contradiction that there exists (y, 5) feasible for the
first problem such that no feasible solution (¥, s') of the latter problem satisfies

15 = 8llec < (Xa(A) + Dlle = ¢/lloo-

Then the system
ATy—i—szc/,sS 54+ pe,—s < —5+4pe,s >0,
where p:= (x1(A) + 1)||c = ¢/||oo, has no solution. By Farkas’ lemma, there exist x € R™, u,v € R} such
that
Ar =0,z +u—v>0,(c) T2+ 5" (u—v)+ peTu+elv) <0.
Note that if u = v = 0, then the above x proves that the system {ATy 4+ s = ¢/,s > 0} is infeasible, a
contradiction. Therefore, u + v # 0. Let
u v

v
letofla” " fJu ol

so that ||u + 9||1 = 1. Let Z be a basic optimal solution of
min{ (¢ 'z : Ax = 0,2 > —(u — v)}.

Note that this problem has a feasible solution (for example, 2/||u+ v||1). Also it is bounded, because
otherwise there exists d € R’} such that d # 0, Ad = 0, (¢")Td < 0 which implies that {ATy+s = ¢/, s > 0}
is infeasible, a contradiction. Note that # = & — (4 — v), where, for some B € B(A),

ip=Az'A(u—v) > 0,ix = 0.
Thus,
12/ < Nl#l]x + |7 = ol < |45 A = o)l + lla + ]l < [|A5 Al + 1 < X1 (A) + 1.

This gives a contradiction since

0 > () <7Hufv||l>+sT(u—v)+p
> ()Te+5"(u—7v)+p
> ()'e—(c—ATg) z+p
= (=c)Te+p
> —le = el +p
> —(X1(4) + Dlfe = fJoc +p = 0.
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So there exists (y, §') feasible in the second system of the theorem such that
15 = 5'llec < (X1(A4) + Dlle = ¢/l] oo
This completes the proof for the special case b = 0.

Now, consider the general case. Let (g, s, Z) be an optimal solution of
max{bTy: ATy +s=1c,s>0}
and its dual. Let J := {j : 5; = 0}. Let (y*, s*) be an optimal solution of
max{bTy: ATy +s=¢,s5>0}.
We have, by complementary slackness, z; = 0 for all j € J, and so
Aszy;=10b,25; > 0.

Also,
AJy=cy >y —leg = cylloce > ATy" — e = ¢/|[oce.

We proved that
ATy < e, ATy <|le = |lwe = ATy

Also the system
ATy <, —ATy < -AJy"

has a feasible solution (for example, y*). Therefore, by applying the first part of the proof (with b = 0)
to these two systems of inequalities, we conclude that there exists (¢, ') such that

ATy 45 =¢,—ATy <-ATy*, 5 >0,

and

15 = 8llee < (a([Al = AsD) + Dlle = ¢/l co.

Note that
by =25 ATy > b ATy =Ty

Therefore, (3, 5') is an optimal solution of max{b%y : ATy + s =¢',s > 0}. We have (trivially, from (1))
X1([A] = As]) = xa(A).

We conclude
lI5 = "lloe < (x1(A) + Dle = /[l

and this completes the proof. a

Using (5), we easily have the following facts.

Corollary 6.4 Under the same assumptions as in Theorem 6.3, we have
17— 7 lloo < Vmx(A)]le — €[]

and

15 = 5llee < (Vmx(4) + Dlle = ¢/l]co.-
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Note that converting norms inside the proof of Theorem 6.3 would also give the same constant for the
bound in terms of x; however, for v, we would have to resort to Proposition 2.8, leading to an unnecessary
factor of v/2 in the upper bound.

For the LP problems in the primal form, we define
Xeo(A) := maX{HAE;lAHOO :BeB(A)}

and prove by the above techniques the following fact.

Theorem 6.5 Suppose A € R™*" has full row rank, ¢ € R™ and [,I" € R™ such that both LP problems
min{c'z : Az = 0,2 > —I} and min{c'z : Ax = 0,2 > —I'} have optimal solution(s). Then for every
optimal solution T of the former problem, there exists an optimal solution T’ of the latter problem with

12 = #'lloo < (oo (A) +2) - [l = ]]co-

7 Tardos’ Theorem

Tardos [22] shows that any LP problem max{b”y : ATy < ¢} (with integer or rational data) can be solved
in at most poly(size(A4)) elementary arithmetic operations on numbers of size polynomially bounded by
size(A, b,c). Here we extend her ideas to the case of real number data. The following proofs are very
similar to Tardos’, and Schrijver’s presentation in [20].

7.1 Assumptions

Tardos [22] works with integer (can also easily handle rational numbers) data and the Turing Machine
Model. So, not only the number of arithmetic operations but also the sizes of the numbers in intermediate
steps are to be bounded by polynomial functions of the input size. In this section, we work with real
numbers and utilize Blum-Shub-Smale (BSS) Model (see the book by Blum, Cucker, Shub and Smale
[2]). Our final complexity bounds involve complexity measures of the input other than the dimension n.
Therefore, to unify the approaches of Vavasis-Ye and Tardos, we introduce below some integers to the
complexity model. The sizes of the integers are polynomially bounded in terms of the sizes of the integers
closest to our complexity measures. We allow comparison of real numbers to such integers in O(1) time.
As a result, determining the “ceiling” of a real number arising from the input data in polynomially many
steps of BSS model becomes a polynomial operation for our purposes in this paper. For simplicity, we
assume that we can compute the ceiling of such real numbers in O(1) time and consider this operation
an elementary operation.

Here are some other assumptions that we will make:

1. A € R™X™ has full row rank.

2. We can solve the LP problems of the form (D) : max{bTy : ATy < ¢}, where ¢ € {-1,0,1}",
be{—1,0,1}™, in at most poly(n,log(x(A4))) elementary arithmetic operations.
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As we noted before in various settings, Assumption 1 can be made without loss of generality, and is
assumed throughout Section 7. Also note that Assumption 2 holds for the Vavasis-Ye algorithm. It is
possible that there exists simpler algorithms than Vavasis-Ye’s (and with better complexity bounds) for
LP problems with the above-mentioned special data.

In this section, we first do our analysis under Assumption 2. This will lay down most of the main
ideas and main technical tools needed. Using these, we then show that removing Assumption 2 is possible
by utilizing the results of Subsection 5.1.

Proposition 7.1 Suppose Assumption 2 holds. Then we can solve (D), where c € R™\ {0},5 € R™\ {0},

mn at most el
_ Cllco
poly <n, log(x(A)), log <7>>

ming; £ |¢;]|

elementary arithmetic operations.

Proof
The feasible set {ATy < ¢} can be rewritten as {C ATy < Cc}, where C' € R"X" diagonal, such that for
all j € {1,...,n},
Vlel, i e #0,
Cij = :
1/llef|oes  ife; = 0.

Now the problem max{bTy : CATy < Ce} is equivalent to max{(Bb)Tw : CATBw < C¢}, where
w:= B~ly and B € R™*™, diagonal, such that for all i € {1,...,m},

B ) Yl b £ 0,
" 1/|[bl|ess i i = 0.

Now Cec¢ € {—1,0,1}* and Bb € {—1,0,1}". So by Assumption 2, we can solve max{b’y : ATy < ¢}
in at most poly(n,log(x(BAC))) elementary arithmetic operations. Now x(BAC) = x(AC) since B is
nonsingular. Also,

I(AC)T (ACD(AC)T)"AC D|| = ||CAT (A(CDCYAT)=A(CDC)CY|
<[ICl-[le™H] - 14T (A(CDC)AT) T A(C DO,

for all positive definite diagonal n x n matrices D. Therefore,

maxj Ci ¢ 4) = llelloo

min; Cj; ming; £ |¢;]|

X(AC) <[ICl-le=H] - x(4) = X(A4).

So we get the bound

ot (o5 .o (1T,

ming; £ |¢;]|
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7.2 Deciding the Feasibility of ATy < ¢

In this subsection, we describe an iterative algorithm to determine whether ATy < ¢ has a solution and
if not, find a certificate of its infeasibility.

We first use Gaussian elimination to remove any redundant rows of A, to get A. (Clearly, the given
data A has no redundant rows since it has full row rank; but, this procedure is necessary beyond the first
iteration as our A changes.) As before, we can replace A by A without changing our problem. Now A
has full row rank.

Let ¢/ := (I — AT(AAT)~1A)c. Then for all d € N (A),
Td=c"d—d" AT(AAT) P Ac = T d.
Since ¢’ is the orthogonal projection of ¢ onto A/(A),
{y: ATy<el=0 o {y:4Ty<}=0.
Therefore, we can replace ¢ by ¢’ without changing our problem. Now we have ¢ € A/(A).

If ¢ = 0, then y = 0 is a feasible solution, and we are done. So, we replace ¢ by ¢/||¢||co. This does not
change our problem since the feasibility of the system is invariant under positive scalar multiplication of
¢ (or independently A). Now we have ||¢||c = 1.

Suppose we are given an integer p such that p > 2n3/2()Z(A))2. We first solve ATy < [pe]. If it has
no solution, then we have a d > 0 such that Ad = 0 and [pc]¥d < 0. This d is also a certificate of the
infeasibility of ATy < ¢, since (pe)Td < [pe]?'d < 0, which implies ¢!'d < 0. So we stop.

Therefore, we assume we get (¥, 5) such that

ATy +5=Tpcl,5 > 0. (16)
Lemma 7.2 Let ¢ € N(A), ¢ # 0. Suppose (y, s) is given such that ATy+s =c. Then ||s|| > ||c]|/x(A).

Proof
We use Proposition 2.6. Note that since the 2-norms are used here, we can interchange R(A”) and A/(A)
in Proposition 2.6, as we noted earlier. Let v := ¢/||¢||, € := ATy, and

J:={je{l,...,n}:sign(y;) # sign(&;)}.
Note that J # @ because otherwise sign(c) = sign(ATy) together with ¢ € A (A) would imply ¢ = 0,
a contradiction. So (v,&,J) is a feasible solution to the minimization problem in Proposition 2.6, and
hence ||es|| > ||e||/x(A). Now, for each j € J,
|51 = lej + (=(AT )] = lej| + [(ATy);] > eyl

where the second equality above uses the fact that ¢; and — (AT y); either have the same sign or at least
one of them is 0. So, [s]] > [[ssI| > llesl] > [lel/x(4). 0

From (16), we have
ATy + 5 4 pe — [pe] = pe,
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and hence by Lemma 7.2,
el o pllefls _ P
X(4) = x(4)  x(4)

|5 + pe — [pcl|| >

So,
_ p p
|Is]] > ) |lpe — [pell| > ) Vn,

and hence,
_ s
ol > Dol P

T Vi A)

Let J := {j € {1,...,n} : 5; < ||3]|c}. (We could have defined J := {j € {1,...,n} : 5 <
nx(A)} and the following arguments would work as well. But the difficulty is we cannot compute ny(A4)
efficiently.)

— 1> 20x(4) - 1 > ny(A). (17)

Lemma 7.3 The system ATy < ¢ has a feasible solution if and only ifA?y < ¢y has a feasible solution.

Proof

Clearly, if ATy < ¢ has a feasible solution, so does Afy < ¢y since the latter has possibly fewer constraints.
If ATy < ¢ has no solution, then by Farkas’ lemma, there exists d > 0 such that Ad = 0,c¢”d < 0, and
(without loss of generality) e?’d = 1. We can assume that d is an extreme point of the compact set

{d: Ad=0,eTd=1,d > 0}.

So, by Corollary 2.11, we have

Now,
d's =d" ([pc] — pe) + pctd —d" ATy < 1.
For each j & J,5; > nx(A), and so if d; > 0, then d;5; > 1, which contradicts d"s < 1. Therefore, d; =0

for all j ¢ J. So dj satisfies dy > 0, Ayd; = 0 and c?d‘] < 0. Hence by Farkas’ lemma, Afy < ¢z has no
solution. a

If Afy < ¢ has no solution, then we have a d; > 0 such that A;d; = 0 and c?d‘] < 0. By inserting
zero(es) to dj, we have a d > 0 such that Ad = 0 and ¢?'d < 0. This is a certificate of the infeasibility of
ATy <e.

Therefore, we can repeat this algorithm with the data (A, cy). Since we remove at least one column
from A to get A; in each iteration, the algorithm will terminate in at most n iterations.

We now look at the complexity of running the above algorithm. In each iteration, we solve ATy < [pc].

Note that
ITpellleo = Tllpelloc] = P,
and
i |Tpe; 1l > 1.

Therefore, by using the proof of Proposition 7.1 for the case b = 0, we have proven that if Assumption 2
holds, we can solve ATy < [pe] in at most poly(n, log(y(A)),log(p)) elementary arithmetic operations.
Here we use Proposition 2.4 repeatedly to conclude that y(A4;) < x(A) in every iteration.
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Proposition 7.4 Suppose Assumption 2 holds and that we are given an integer p > 2n3/2(x(A))2. Then
in at most poly(n,log(y(A)), log(p)) elementary arithmetic operations, we can determine whether ATy < ¢
has a solution, and if not, find a certificate of its infeasibility.

Similarly we have the following result, in which we use the algorithm and the analysis in Subsection 5.1
and the relation (10).

Proposition 7.5 Suppose we are given p, an integer power of 2, that is at least as large as 2n3/2()Z(A))2.
Then in at most poly(n, |log(ds(A))|,log(A(A)/6(A)),log(p)) elementary arithmetic operations, we can
determine whether ATy < ¢ has a solution, and if not, find a certificate of its infeasibility.

7.3 Main Results

From now on, we assume that ¢ € R\ {0}, and b € R™\ {0}.

Proposition 7.6 Suppose Assumption 2 holds, (D) is feasible and we are given an integer p > 2n3/?(y(A))2.
Then in at most poly(n,log(x(A4)),log(p)) elementary arithmetic operations, we can either:

(i) find z such that ATz = ¢, or
(ii) detect that (D) is unbounded, or
(iii) find an inequality a¥y < v in ATy < ¢ such that a¥y* < v for some optimal solution y* of (D).

Proof

Let z be the (unique) minimizer of |ATz — ¢||. 2 can be computed by solving AAT » = Ac using a good
implementation of Gaussian elimination, in poly(n) elementary arithmetic operations. Let ¢/ := ¢ — A7 2.
If ¢/ = 0, then we have found z that satisfies condition (i) above. So we assume ¢’ # 0. Let

" P /
c = C.

el

Note that ATy < ¢ arises from ATy < ¢ by a translation and a scaling. Hence maximizing b” y over
ATy < ¢ is equivalent to maximizing "y over ATy < ¢" in the sense that y* is an optimal solution of
max{bly : ATy < ¢} if and only if (p/||¢||co)(y* — 2) is an optimal solution of max{b’y : ATy < ¢"}.
Also note that ¢” € N(A), since ¢ is.

Now we solve the problem (D') : max{b'y : ATy < [¢""]}. Note that (D’) is feasible since (D) is and
{y: ATy <"} C {y: ATy < [¢"]}. Also, (D') is unbounded if and only if (D) is unbounded because
each of these is true if and only if there exists d # 0 such that ATd < 0 and 47d > 0. Hence condition
(ii) is satisfied. We can now assume both (D) and (D’) are bounded. Let (g, 5) be an optimal solution of
(D’). We have by (17) that ||5]|cc > nx(A4). Corollary 6.4 implies that there exists an optimal solution
(¢',5) of max{bTy : ATy < ¢’} such that

15— lloo < [WVimx(A) + 1] [l¢” = [ Tl]eo < vamx(A) + 1.

Therefore, we pick the inequality with the largest 5; among the inequalities ATy < [¢”"], and condition
(iii) is satisfied.
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We now look at the complexity of solving (D’) using Proposition 7.1. We have

1T lleo = Tlle"llo ] = p-

Also, [¢"] # 0 and mingen£o [ 1] > 1. So,

log (w) < log(p+ 1):

min[cﬂ #0 | |—C}/-| |

therefore, the required time bound is satisfied. a

2
Proposition 7.7 Suppose Assumption 2 holds and that we are given an integer p > 2n°%m (?J(%l) .

Then we can find a solution of the system ATy < ¢ or a certificate of its infeasibility in at most

ot (108 (22 1)

elementary arithmetic operations.

Proof

Let b:= A (p—l— L(p+1)2%--,(p+ 1)”)T. We apply Proposition 7.4 to test whether (ﬁ) : max{Z)Ty :
ATy < ¢} has a feasible solution, and if not, we obtain a certificate of its infeasibility. Therefore,
we assume that (ﬁ) is feasible. Since (ﬁ) is not unbounded (by construction of Z)), (ﬁ) has optimal
solution(s).

Suppose b is a linear combination of fewer than m columns of A. Then there exists an m X (m—1)
submatrix C' of A of rank m — 1, so that the matrix [C'|] is singular. Hence,

0 = det[C|}]
= (p+1)det[ClA] + (p+ 1)* det[C[Ao] + -+ (p+1)" det[C]4,],

where A; denotes the jth column of A. Suppose det[C|A4;] # 0 for some j. Let k be the largest j such
that det[C'|A;] # 0. Then

k-1
0 = D [+ 1) (xdet[CAD] + (p+ 1)* [ det[C] Ax]

CAA) (04 1)+ (p+ 1FE(A)

j=1

v

—(p(;i)m_—; Lyt 1)Rs(a)

= (p+ 1) <6(A) - AE;”) G AR

= —A)p+1)

>0,

since

~—

A(A
P25
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This gives a contradiction. So det[C|4;] = 0 for all j € {1,...,n}, contradicting the fact that A has rank

m. So b is not a linear combination of fewer than m columns of A. Therefore, (ﬁ) is attained at a unique
minimal face.

We now apply Proposition 7.6 to (ﬁ) If it returns a z such that ATz = ¢, we stop. Otherwise, we
have an inequality a’y < v in ATy < ¢ such that a’y* < ~ for some optimal solution y* of (ﬁ) Let
A e BmX("=1) he A with the column a removed, and é € R("~1 be ¢ with the corresponding entry -~y
removed. We then solve the more relaxed problem max{Z)Ty : ATy < ¢} and repeat the above. Note
that A must have full row rank in order to apply Proposition 7.6 to the new relaxed problem. So we
perform the following procedures to reformulate this problem. We do Gaussian elimination to eliminate
any redundant row of [A|b] to get [A]b]. Now,

max{bTy: ATy <é¢} = min{é"z: A =b,& >0}
= min{¢’7: Az = b, > 0}
= max{bly: ATy <¢é}.

It is not hard to see that the first problem (and hence all of them) has an optimal solution (so the
equations above are justified). Since the system Az =bis consistent, A must have full row rank. So we
apply Proposition 7.6 to the last problem above. If it returns a z such that A7z = ¢, then Az = ¢, where
z 1s obtained from z by adding a zero entry in the place that corresponds to the redundant row of A being
eliminated earlier. Otherwise, it returns an inequality @’y < ¥ in A7y < & such that a’ y* < ¥ for some
optimal solution y*. Let y* be obtained from y* by adding a zero entry as before. Then y* is an optimal
solution of max{Z)Ty : ATy < ¢} because ATy = ATy < ¢ and Wy =Ty, Also, aTy* = aTy* < 7.

Note that for each submatrix C' of A, we have (using Proposition 2.14),
_ A(C)\?
2032 (x(C)? < 2n°2m | =L ) <
W RO <2 (FE ) <
Hence p satisfies the supposition of Proposition 7.6 every time it is being called.

By repeatedly applying Proposition 7.6, we obtain an ordering of the inequalities in ATy < ¢, say,
aly <~y afy <7s,...,afy <+,, such that for some r,1 < r < n— 1, and some z € R™:

° ozfz:w,forallr—l—lﬁjﬁn,
e foreach 1 <j<r, oz]Tyj < ~; for some optimal solution v of max{bTy : Ozgy < v, Vk > g}

That is, we run Proposition 7.6 r times, by removing one inequality each time from ATy < ¢ until we
find a z that satisfies the remaining inequalities as equalities. Since the maximum is attained at a unique
minimal face, the optimal solution set can be written as

{y:ALy=c}={y: ALy =c_, ALy < e},

where ([AZ|c<], [AL|c=]) is a row-partition of [AT|c]. It is easy to see that the rows of AL are precisely
{oz]T : 1 < j < r}, whereas the rows of AL are precisely {oz]T :r+1<j<n}. So ALz = c_, which

implies ATz < c.. Therefore, z is a feasible solution of (ﬁ)

We now look at the complexity of the above algorithm. We apply Proposition 7.4 once to (ﬁ), which
takes time
A4)

poly(rn log(x(4)) og(0)) < poly (n.lox (51 ) loxtn)).
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by (10).

Afterwards, we apply Proposition 7.6 at most n times. At the kth time (1 < k < r 4+ 1), Proposition 7.6
takes at most poly(n,log(x (A( ))) log(p)) elementary arithmetic operations, where AM := A and for
k> 2, A®) is obtained by first removing some column of A%*~1) and then removing any redundant row.
By Proposition 2.4, we have y(A®*)) < y(A#=1) < y(4), for all k > 2, and we can again use (10). O

Theorem 7.8 If Assumption 2 holds, then we can solve the primal-dual LP problems
(P):min{c’x: Az = b,x > 0} and (D) : max{b’y : ATy < ¢}

in at most poly (n, log (?J(%l)) elementary arithmetic operations.

Proof

Suppose we are given an integer p > p, where p is defined in (12). We first describe an algorithm for
solving the given LPs, and later explain how to obtain such a p. We apply Proposition 7.7 to test if
{ATy < ¢} and {Az = b,z > 0} are feasible, where the latter is the same as

A b
A Jz<]| -b
-1 0

(To use Proposition 7.7 for the above displayed data, we apply Propositions 2.14 and 2.4 to the matrix
[AT| — AT| — I] and note that p is large enough for the application of Proposition 7.7—and the results
it uses—to this matrix too.) If one of them is infeasible, then we stop (having determined the status of
each problem). Therefore, we may assume that both (P) and (D) are feasible.

By repeated application of Proposition 7.6 (as in the proof of Proposition 7.7, and we again have
20312 ()Z(C'))2 < p, for all submatrices C' of A), we can split {ATy < ¢} into {A W < e, A{Z)y <
c¢(2)} and find a vector z, such that A{Z)z = ¢(2) and A( )y < ¢(1) for some optlmal solution y* of
max{b’y: ATy < c}. Let (l‘{l), x%;))T be a partition of any primal solution x such that l‘{l) corresponds

to A{l) and l‘g) corresponds to Ag). Hence every primal optimal solution x satisfies x(;) = 0. So,
min{c’x: Ar =b,x >0} = min{cT r(2): A@)T2) = b, x(2) > 0}
= max{bly: A( W< et

Using Proposition 7.7, we can find a feasible solution J:Z‘Z) of

A b
—A(Q) x S —b
-1 0

*

Then 0(2 J:Z‘Z) = ZTA(Z)JL‘Z‘Z) = b7z, and by LP duality, (2 is an optimal solution of min{c%;)x(g) :
A)r(2) = b, 2(3) > 0}. Let 2(;y := 0. Then z* is an optimal solution of min{c’z : Az = b,z > 0}.

Let A( Y < < ¢(3) be the subsystem of A{Z)y < ¢(2) corresponding to the positive components of J:Z‘Z). By
complementary slackness, it follows that {y : ATy < ¢, A( W= cGs )} is the set of optimal solutions of
max{bTy : ATy < ¢}. We can use Proposition 7.7 to find such a solution.
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As in the proof of Proposition 7.7, identifying the partition [A(1)|A(2)] of A takes at most

poly (n, log (?J(%l) ,log(p)) elementary arithmetic operations. Also, note that A/d values for

— — 1|, — — 1], 3] — A(s)| are all bounded by . erefore, the algorithm
AT| = AT| = 1), [AT,)| - AT | = 10, [A]As)| — A Il bounded by S, Therefore, the algorith
terminates in at most poly (n, log (%) ,log(p)) elementary arithmetic operations.

The correctness of the above algorithm is guaranteed by the assumption that p > p. Without a prior

knowledge of (%), we will use the following “log-squaring trick”. (Similar tricks have been used before
A(4)
5(4)
algorithm so that our initial p is roughly 2(2m 4 n)%/2(2mn + 1)2%7. If the algorithm fails, we replace
the current guess by its square, update p, and repeat the algorithm. We also check the output of the
above algorithm. If it concludes that (P) (or (D)) is infeasible, we use the corresponding infeasibility
certificate to ensure that (P) (or (D)) is indeed infeasible. Similarly, if the algorithm returns a primal-
dual “optimal” solution pair, we use complementary slackness conditions to ensure it is indeed optimal.
All of these can be done efficiently. If any of the output is false, we again square the most recent guess

for similar purposes; see [29].) Initially, we can guess n for the value of log ( ) and run the above

for log (%), update p, and repeat the algorithm. It is easy to show that after

loglog (%)

O | log Tog(n)

guesses, we have the current guess for p between p and p. (Here we assume that loglog (%) > 2log(n);

otherwise, our first or second guess works and no additional iterations are necessary.) Also, clearly all the
guesses for p is at most p; moreover, log(p) = O (poly (n, log (?J(%l))) . Therefore, the claimed overall
complexity bound is established. a

Note that in the proof of the above theorem, one cannot increase the size of the guess significantly
faster than we did, since the sizes of all the integers used by our algorithm must be bounded by a
polynomial function of the sizes of the complexity measures we are using.

Theorem 7.9 We can solve the primal-dual LP problems
(P):min{c’x: Az = b,x > 0} and (D) : max{b’y : ATy < ¢}

by utilizing the LP solver subroutine of Subsection 5.1 O(n?) times and therefore in at most

poly (n, | log(ds(A))], log (?J(%l)) elementary arithmetic operations.

Proof

We assume that we are given an integer p > p. (We can remove this assumption as in the proof of
Theorem 7.8, by applying a log-squaring trick.) First we check the feasibility of (P) and (D) using
Proposition 7.5 and the underlying algorithm. If any of (P), (D) is infeasible, we have the certificates of
such fact and we are done. So, we assume that both (P) and (D) have feasible solutions. Then we apply
the proof of Proposition 7.6 to (D) and have the problem

(D) : max{bTy : ATy < [¢"]}.
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Our theorem in Subsection 5.1 cannot deal with this LP problem (since the objective function of (D) is
arbitrary). We form the dual (call it (P’)) of (D') and apply the proof of Proposition 7.6 to (P’). Now,
the LP problems arising from the applications of Proposition 7.6 to (P’) all satisfy the conditions needed
in Subsection 5.1 (namely, condition (ii) of the subsection for b and ¢). So, calling this subroutine O(n)
times, as in the proof of Theorem 7.8, we can compute optimal solutions of (P’) and (D'). (At some
point, during this process, inside the proof of Theorem 7.8, the method in the proof of Proposition 7.7 is
used. This requires the LP solver subroutine to be called with data satisfying condition (i)—potentially
not satisfying condition (ii)—of Subsection 5.1.) Now, we have an optimal solution of (D') and we can
keep applying this technique in using the proof of Theorem 7.8 to solve (P) and (D). This clearly requires
no more than O(n) problems of the type (D') to be solved. Since each such problem can be solved with
O(n) calls to the LP solver subroutine, the O(n?) bound follows. a

7.4 Overall Complexity Bounds

Suppose we have an interior-point algorithm satisfying Assumption 2, with an O (no‘ (log ()Z(A)))’B)

iteration bound, for some « > 0, # > 0. Then Theorem 7.8 implies an iteration bound of

log log (?(—f)))

A(4) (
log(n)

0 [ o (557) +1og<n>r log

On the other hand, using the methods of Subsection 5.1 and Theorem 7.9, we obtain the iteration

bound
wus (3

log(n)

O | n*? <|10g(65(A))| +nlog <%> + nlog(n)> log

The above bound is not better than Vavasis-Ye’s and can be much worse in general. However, in the case
that A is totally unimodular, it becomes the same. In this very special case, we can omit the factor of
(loglog(x(A))) (caused by a log-squaring type trick) in the iteration bound of Vavasis-Ye algorithm. See,
for instance, Proposition 7.10 and the discussion following it. In the case that A is integral, the bounds
can be considered close. See below.

7.5 Integer Data and Network Flow Problems

e Integer Data:

When the data is integer, §(A4) = 1, §5(A4) > ﬁ and log(A(A)) < nlog(n) + size(A). Therefore,
we have Tardos’ theorem as a special case. Also, in this case it is very easy to get upper bounds
(whose sizes are bounded by polynomial functions of the input size) for p so that the multiplicative

oglog( 24
factor <10g <%>> in the complexity bound can be removed.

e Totally Unimodular Matrix A:

Recall that a matrix is totally unimodular if all of its square submatrices have determinants —1, 0
or 1. That is, ds(A4) = §(A) = A(A) = 1. The following is special case of Proposition 2.14.
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Proposition 7.10 (Ho [11]) Let A € R™*" be a full row rank totally unimodular matriz. Then

X(4) < /mn.

Proof
Take any basis B of A. It is elementary to show that AE;lA is also totally unimodular. Then for
all # such that ||z||]z = 1,

2 2
1Az Azl = D | DoAx i | < D0 D] Il
i=1 \j=1 i=1 \j=1
= (D (lell)? < v,

i=1

1
because Hnlllax l|z||1 = v/n when z = Te. Therefore x(A) < 4/mn by Proposition 2.3. a
zlla=1 n -

In fact we can exhibit a totally unimodular matrix A with x(A4) = ©(y/mn). Consider the complete
graph on vertices {1,...,m + 1}, with arcs 7j if i < j. Let A be its node-arc incidence matrix,
with any one row deleted. Then A is a totally unimodular m x n full row rank matrix, where
n=m(m+1)/2. Tt can be easily shown that if we choose # = e and B such that the columns of Ap
correspond to a spanning tree that is also a path, i.e., a Hamiltonian path with the correspoding
incidence matrix:

1 -1
1 -1
AB = s
1 -1
1
then (A§1A$)j = j(m —j+1). Therefore
_ =1
NI P = —y RN T)

2

Therefore, the upper bound proven in Proposition 7.10 is tight up to the order.

Note that we used above, the fact that AE;l is the all ones upper-triangular matrix. As it is well-
known, for every B € B(A), there exist permutations of the rows and the columns of Ap such that
the resulting matrix is upper-triangular. Since AE;l is also totally unimodular, it can only have
—1,0, 1 entries. Therefore, in this special setting, B € B(A), corresponding to Hamiltonian paths,
maximize || A5"||-

e Minimum Cost Flow Problems:

Consider the minimum cost flow problem with the constraints Az = b and 0 < & < u, where A is
the node-arc incidence matrix of a given directed graph with any one row deleted (so that it has full
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row rank). By introducing the slack variables v, we convert the constraints into standard equality

(-0 =
A::(f; 2)

This structure arises whenever we convert an upper bounded LP problem to the standard equality

form. Vavasis and Ye [29] prove that y(A) = O(mn). Using Propositions 2.7 and 7.10 (and the
arguments following that), we have y(A4) = O(y/mn) when A is totally unimodular.

where
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