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COMPLEXITY MEASURES FOR LP 21 Introdu
tionLet A 2 Rm�n, b 2 Rm, and 
 2 Rn: In this paper, one of our main 
on
erns is the 
omputational
omplexity of solving linear programming (LP) problems with data (A; b; 
) in a way that the number ofarithmeti
 operations is bounded by polynomial fun
tions determined only by A.For t 2 R+, poly(t) denotes a polynomial fun
tion of t. For � 2Z, we de�nesize(�) := dlog (j�j+ 1)e+ 1;for A 2Zm�n, size(A) :=Xi;j size(aij):When A 2Zm�n, b 2 Zm, 
 2 Zn, Tardos [22℄ proved that the existen
e of an algorithm for LP whi
hperforms only polynomially many elementary arithmeti
 operations in size(A; b; 
) implies the existen
eof an algorithm for LP whi
h performs only poly(size(A)) elementary arithmeti
 operations. (Her resultsalso apply in the more general 
ase A 2 Qm�n, b 2 Qm, 
 2 Qn, also see [23℄ for network 
ow problems.)Tardos' proof is 
onstru
tive in the sense that it shows how to use any polynomial time algorithm forLP as a subroutine to a
hieve the goal of solving LP problems in poly(size(A)) time 
omplexity. However,the proof requires 
alling the subroutine (the LP solver withpoly(size(A; b; 
)) time 
omplexity), polynomiallymany times using modi�ed data so that the sizes of themodi�ed LP instan
es 
an be bounded by poly(size(A)).Later Vavasis and Ye [29℄, in another seminal paper (with many new insights), proposed a new kindof interior-point algorithm and proved that their algorithm 
an solve LP problems with data A 2 Rm�n,b 2 Rm, 
 2 Rn, in O �n3:5 (log ��(A) + log(n)) log log ��(A)� interior-point iterations. Also, see Adler andBeling's [1℄ paper whi
h is more spe
ialized than the Vavasis-Ye paper sin
e it is 
on
erned with thepolynomial-time LP algorithms over the algebrai
 numbers. When spe
ialized to integer (or rational)data, Vavasis-Ye result gives another proof of Tardos' theorem (using ��(A) = 2O(size(A))|see Se
tion 2).So, in this sense, Vavasis-Ye result generalizes Tardos' theorem to LP problems with data A 2 Rm�n,b 2 Rm, 
 2 Rn. Vavasis-Ye proof is even \more 
onstru
tive" in the sense that their algorithm is aspe
ialized algorithm designed for su
h a purpose, and need not be 
alled many times (ex
ept to guessan upper bound for ��(A)|a

ounted for in the above quoted iteration bound by the log log ��(A) term;also see [15℄).One advantage of Vavasis-Ye algorithm is that it has the potential of be
oming a pra
ti
al algorithm.However, theoreti
ally speaking, Vavasis and Ye left open the question of whether 
onventional polynomialtime interior-point algorithms (or perhaps some others) 
an be adapted in a s
heme more dire
tly relatedto Tardos' to solve the LP problems with data A 2 Rm�n, b 2 Rm, 
 2 Rn in polynomially manyelementary arithmeti
 operations where the polynomial bound depends only on the (properly de�ned)\size" of A 2 Rm�n. In fa
t, Vavasis and Ye [29℄ state that\Tardos uses the assumption of integer data in a fairly 
entral way: an important tool in [22℄ is theoperation of rounding down to the nearest integer. It is not 
lear how to generalize the roundingoperation to noninteger data."For example, let A 2 Zm�n, 
 2 Zn. Then if d is an extreme ray of fx 2 Rn : Ax = 0; x � 0g su
hthat 
Td < 0, then we know that there exists an integral extreme ray d in the above 
one su
h that
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Td � (�1). Of 
ourse, su
h arguments do not dire
tly apply in general when the entries of A and 
 arereal numbers. When A and 
 have only rational entries, the data 
an be multiplied by a large enough(but not too large) integer su
h that the new s
aled data 
ontain only integers. This again ensures anotion of a \unit" to round to, even after a normalization of the integral d su
h that Pnj=1 dj = 1, sothat the arguments similar to the above still work (e.g., after su
h a normalization, 
T d � �1=�(A),where �(A) denotes the largest absolute value of a subdeterminant of A). In addition to this, a few otherobsta
les arise in an attempt to obtain su
h a generalization of Tardos' theorem and proof to the realnumber model.In this paper, we over
ome these obsta
les, and generalize Tardos' theorem and a signi�
ant part ofher proof to the 
ase when A 2 Rm�n, b 2 Rm, 
 2 Rn. Our results also generalize Vavasis and Ye'sresult in the sense that in our s
heme almost any polynomial time LP algorithm 
an be adapted, whereastheir result uses a new, spe
ialized algorithm.Before we des
ribe the generalization of Tardos' theorem, we review and 
larify (with many newresults) relationships amongst various 
omplexity and 
ondition measures su
h as �(A), ��(A), the 
on-dition number of (AAT ) denoted by �(AAT ), Ho�man's bound (or the Lips
hitz bound) for systems oflinear inequalities, Ye's 
omplexity measure for LP (also known as the smallest large variable bound),�(A) and the smallest nonzero absolute value of a subdeterminant of A, denoted Æ(A): Spe
ial emphasisis put on establishing various fundamental properties of ��, whi
h be
omes one of the 
entral tools in thelast se
tion when we deal with generalization of Tardos' result. While our proof of the generalizationof her theorem is very similar to hers, a key part of the proof whi
h makes it work in the real number
ase, is the generalization of the rounding operation to noninteger data (in the sense of 
hoosing anappropriate \unit" for the data at hand). For this, we rely heavily on those fundamental properties of�� mentioned above. We �rst perform our analysis on de
iding the feasibility of a system of inequalities,and then use the resulting algorithm as a subroutine to solve the whole primal-dual LP problem. In both
ases, we solve the original problem by solving a sequen
e of polynomially many \ni
er" or smaller LPproblems, ea
h of whi
h has integral right hand side ve
tor (and 
ost ve
tor, in the latter 
ase) whose sizeis bounded by a polynomial fun
tion of our 
omplexity measures. This is one of the fundamental tools foreliminating the dependen
e on b and 
 in the overall 
omplexity bound of the algorithms. Solving these\ni
er" LP problems gives us important information about the stru
ture of the optimal solutions of themain LP problem in terms of the linear algebrai
 stru
tures of the input data. For example, \there existsan optimal solution at whi
h the jth inequality is tight" or \at all optimal solutions, the jth inequality isstri
tly satis�ed." Su
h information helps us redu
e the dimensions of the problem at hand; but, it alsorequires us to analyze the 
omplexity measures for the subproblems.The sizes of all the integers making up the right hand side and obje
tive ve
tors of these \ni
er" LPproblems are bounded above by a polynomial fun
tion of n and the logarithm of ��(A)Æ(A) �. Many are alsobounded by a polynomial fun
tion of n and log ��(A).As mentioned, we need to use an LP solver as a subroutine in our proof of Tardos' theorem. Whileany polynomial time LP solver 
an be used, we des
ribe a very useful formulation { the homogeneousself-dual form { in Se
tion 5. The 
omplexity of running an interior-point algorithm (with a 
ertaintermination rule) on su
h a form 
an be expressed in terms of Ye's 
omplexity measure, whi
h be
omes
onvenient in our 
omplexity analysis.This paper is organized as follows. In Se
tion 2, we review de�nitions and 
hara
terizations of some
omplexity measures whi
h are relevant to our stated interest in this paper. We also present some newresults in this se
tion. Se
tion 3 in
ludes the Cau
hy-Binet formula and an appli
ation of it to obtain abound on the 
ondition number of (AAT ). In Se
tion 4, we dis
uss Ho�man's Theorem and relate the
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onstant to �(A). In Se
tion 5, we dis
uss Ye's 
omplexity measure for LP problems and relateit to the Ho�man 
onstant. Also in Se
tion 5, we show that the number of iterations of many primal-dualinterior-point algorithms to solve LP problems with data (A; b; 
), with arbitrary A and spe
ial b and
, 
an be bounded by a polynomial fun
tion of n and logarithms of 
ertain 
omplexity measures. Wereview a sensitivity bound result of Cook, Gerards, S
hrijver, Tardos [3℄ in Se
tion 6 and establish variousvariants of it based on the 
omplexity measures �(A) and ��(A). Se
tion 7 
ontains our main result { ageneralization of Tardos' Theorem { based on the results obtained in the pre
eding se
tions. We 
on
ludewith a very brief dis
ussion of the spe
ial 
ases when A is integral and totally unimodular.2 Complexity and Condition Measures: � and ��We denote by N (A), the null-spa
e of A; R(A) denotes the range (or 
olumn-spa
e) of A. We assumeA 6= 0; n > m � 3. Re
all the de�nitions:kAkp := maxkxkp=1 kAxkp; for 1 � p � 1;kAkF := vuut mXi=1 nXj=1 jAijj2:It is not hard to show that kAk1 = max1�j�n mXi=1 jAijj; (1)kAk1 = max1�i�m nXj=1 jAijj: (2)We have the following well-known matrix norm inequalities:kAk2 � kAkF � pnkAk2; (3)1pnkAk1 � kAk2 � pmkAk1; (4)1pmkAk1 � kAk2 � pnkAk1; (5)We also have the submultipli
ative property for p-norms, 1 � p � 1. For all A 2 Rm�n; C 2 Rn�q, wehave kACkp � kAkpkCkp: (6)For the rest of the paper, the 2-norm is assumed when norms are mentioned, unless stated otherwise.We assume throughout this se
tion that A has full row rank. De�ne��(A) := supfkAT (ADAT )�1ADk : D 2 Dg;where D is the set of all positive de�nite n � n diagonal matri
es. Note that ��(RA) = ��(A) for allnonsingular R 2 Rm�m. In fa
t, ��(A) depends only on the pair of orthogonal subspa
es, N (A) andR(AT ). So, it 
an be de�ned on subspa
es instead. Note that for all D 2 D,kATk = kAT (ADAT )�1ADAT k � kAT (ADAT )�1ADk � kATk:
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e kAT (ADAT )�1ADk � 1, and thus ��(A) � 1.Similarly we de�ne �(A) := supfk(ADAT )�1ADk : D 2 Dg:Note that both ��(A) and �(A) are �nite. Also,kAT (ADAT )�1ADk � kATk � k(ADAT )�1ADk;k(ADAT )�1ADk � k(AAT )�1Ak � kAT (ADAT )�1ADk:Therefore, we have 1kAk ��(A) � �(A) � k(AAT )�1Ak��(A) = p�(AAT )��(A)kAk ; (7)where �(R) := kRk � kR�1k, the 
ondition number of R, for any nonsingular matrix R. Note that ifm = n, then �(AAT ) = kAk2 � kA�1k2 = (kAk�(A))2.An equivalent way to de�ne these parameters is in terms of weighted least squares:��(A) = sup�k ATy kk 
 k : y minimizes k D1=2(ATy � 
) k for some 
 2 Rn; D 2 D� ;�(A) = sup�k y kk 
 k : y minimizes k D1=2(AT y � 
) k for some 
 2 Rn; D 2 D� :Let us de�ne, for 1 � �; � � 1;��;�(A) := inffkx� yk� : x 2 X; y 2 Y�g;where X := fD� : � 2 N (A); D 2 
l(D)g; Y� := f
 : 
 2 R(AT ); k
k� = 1g, and 
l(D) denotes the
losure of the set D, that is, the set of nonnegative diagonal matri
es. Note that ��;�(�) > 0. If we havek � k� � 
k � k�; then ��;�(�) � 
, as 0 2 X. In parti
ular, ��;�(�) � 1. Also note that the de�nition of��;�(A) depends only on R(AT ) and its orthogonal 
omplement N (A). Gonzaga and Lara [8℄ prove thatwhen � = � = 2, the subspa
es N (A) and R(AT ) 
an be inter
hanged in the de�nition of ��;�(A). Inthe following, we denote ��;� simply by ��. We are mostly interested in �2, whi
h we denote simply by�. All ve
tor p-norms are equivalent, that is, given �; � su
h that 1 � �; � � 1, there exist positive
1; 
2 su
h that 
1k � k� � k � k� � 
2k � k�. This property also applies to ��;�:Proposition 2.1 Suppose 1 � �; �; 
; Æ � 1, and 
1; 
2; d1; d2 > 0 su
h that d1k � k� � k � kÆ � d2k � k�and 
1k � k
 � k � k� � 
2k � k
 . Then
1d1�Æ;
 (�) � ��;�(�) � 
2d2�Æ;
 (�):ProofNote that �Æ;�(A) = inf fkx� yk� : x 2 X; y 2 YÆg is attained, by say, �x and �y. Let y� := �y=k�yk�. Theny� 2 Y�, and we have�Æ;� (A) = k�x� �yk� = k�yk� 



 �xk�yk� � y�



� � k�ykÆd2 ��;�(A) = 1d2��;�(A):



COMPLEXITY MEASURES FOR LP 6By 
onsidering the in�mum in ��;�(A), similarly we have ��;�(A) � d1�Æ;�(A). Combining the above,we have d1�Æ;�(A) � ��;�(A) � d2�Æ;�(A). By using 
1k � k
 � k � k� � 
2k � k
 , we have
1d1�Æ;
 (�) � ��;�(�) � 
2d2�Æ;
 (�). 2In parti
ular, we have 1pn�(�) � �1(�) � pn�(�): (8)The following is a well-known fa
t.Proposition 2.2 (Stewart [21℄) ��(A) = 1=�(A):A basis of A is a set of indi
es B � f1; : : : ; ng su
h that jBj = m and the 
olumns of AB are linearlyindependent. We denote the set of all bases of A by B(A).Proposition 2.3 (Vavasis and Ye [29℄, Todd, Tun�
el and Ye [24℄)��(A) = maxfkA�1B Ak : B 2 B(A)g:Here, \�" is proven in [29℄ and \�" is proven in [24℄. It is known and not hard to show that ananalogous 
hara
terization for �(A) also exists:�(A) = maxfkA�1B k : B 2 B(A)g: (9)Using the above proposition, we prove that �� 
annot in
rease if any 
olumn is removed.Proposition 2.4 Suppose ~A is obtained by removing a 
olumn a 2 Rm from A 2 Rm�n. We have thefollowing:� If rank( ~A) = m, then ��( ~A) � ��(A).� If rank( ~A) � m � 1, then let �A be obtained by removing any dependent row from ~A. We haverank( �A) = m� 1 and ��( �A) = ��(A).ProofIf rank( ~A) = m, we have ��( ~A) = k ~A�1B ~Ak; for some basis B of ~A� k[ ~A�1B ~Aj ~A�1B a℄k = k ~A�1B Ak � ��(A):We used the fa
t that B is also a basis of A. Now, 
onsider the 
ase where rank( ~A) � m � 1. Withoutloss of generality, assume a is the last 
olumn of A. Then by row redu
tion, there exists a nonsingularG 2 Rm�m su
h that GA = G[ ~Aja℄ =  A0 00T 1 ! ;



COMPLEXITY MEASURES FOR LP 7for some A0 2 R(m�1)�(n�1) having full row rank (hen
e, rank( �A) = m � 1). ThenR( �AT ) = R( ~AT ) = R((G ~A)T ) = R(A0T );and hen
e N ( �A) = N (A0). So, ��( �A) = ��(A0). Now, sin
e every basis of GAmust in
lude the last 
olumn,��(GA) = 




 (A0B)�1 00T 1 ! A0 00T 1 !




 ; for some basis B of A0= 




 (A0B)�1A0 00T 1 !




 = maxfk (A0B)�1A0k; 1g � ��(A0):The proof of ��(A0) � ��(GA) is similar. Therefore, we have��( �A) = ��(A0) = ��(GA) = ��(A): 2Consider A 2 Qm�n. Let L denote the total number of bits required to store A. We have thefollowing.Proposition 2.5 (Vavasis and Ye [29℄)If A 2 Qm�n, ��(A) and �(A) are both bounded by 2O(L).Kha
hiyan [14℄ proved that approximating �(A) within a fa
tor of 2poly(n) is NP-hard. Similarly,approximating ��(A) within a fa
tor of 2poly(n) is also NP-hard [25℄.The following observation is due to O'Leary [17℄. Naturally, for � 2 R, sign(�) is either +; 0; or �depending on the sign of �.Proposition 2.6 (O'Leary [17℄)Considering J; 
; � as the variables, we have��;�(A) = min k
Jk�subje
t to sign(
j) = sign(�j); j 62 Jk
k� = 1;
 2 R(AT );� 2 N (A);J � f1; 2; : : :; ng; J 6= ;:Consider the matrix: AC :=  A 0C C ! ;where C is an n�n invertible matrix. Obviously AC also has full row rank. We have the following result.



COMPLEXITY MEASURES FOR LP 8Proposition 2.7 (Ho [11℄) ��(AC ) = p2��(A):ProofIt is easy to see that N (AC ) = ( ��� ! : � 2 N (A)) andR(ATC ) = ( 
 + yy ! : 
 2 R(AT ); y 2 <n) :We will prove that �(A) = p2�(AC ) using the 
hara
terization of � in Proposition 2.6 with R(AT )and N (A) inter
hanged (whi
h we 
an do sin
e we are working with the 2-norms). Let us denote thisminimization problem as Q(A).1. �(A) � p2�(AC )Let (��; 
�; J�) be an optimal solution of Q(A). We now de�ne a y� that satis�es 
ertain sign
onditions. If j 2 J�, let y�j be su
h that sign(���j ) = sign(y�j ). Therefore sign(��j ) 6= sign(
�j + y�j ).Now if j 62 J�, we 
an let y�j be su
h that sign(���j ) = sign(y�j ), and sign(��j ) = sign(
�j + y�j ), byensuring jy�j j is small enough. Thus, the 3-tuple 1p2  ����� ! ; 
� + y�y� ! ; J�!is feasible for Q(AC). Therefore, p2�(AC ) � k��J�k = �(A).2. �(A) � p2�(AC )Let   ����� ! ; 
� + y�y� ! ; J�!be an optimal solution of Q(AC). LetĴ := fj 2 f1; : : : ; ng : sign(��j ) 6= sign(
�j )g:Sin
e �� is orthogonal to 
�, and �� 6= 0, there must exist j su
h that sign(��j ) 6= sign(
�j ). Hen
eĴ 6= ;. The 3-tuple (p2��; 
�; Ĵ) is feasible for Q(A), and therefore �(A) � p2k��̂Jk. Now takeany j 2 Ĵ . Sin
e sign(��j ) 6= sign(
�j ), there does not exist a yj whi
h satis�es both sign(��j ) =sign(
�j + yj) and sign(���j ) = sign(yj) at the same time. Hen
e, at least one of j or n+ j is in J�.Therefore we have 1p2�(A) � k��̂Jk � 




 ����� !J�




 = �(AC): 2Using a proof similar to the above or using Proposition 2.3, we easily prove the following fa
t.



COMPLEXITY MEASURES FOR LP 9Proposition 2.8 (Ho [11℄) �� ([Aj � A℄) = p2��(A):Re
all that the singular values of A are the square roots of the eigenvalues of the matrix ATA. Thelargest singular value of A is simply kAk2. Let �min(A) denote the smallest nonzero singular value of A.We have the following 
onne
tion to �(A).Proposition 2.9 (Stewart [21℄ and O'Leary [17℄)Let the 
olumns of U 2 Rn�m form an orthonormal basis for R(AT ). Then�(A) = min;6=I�f1;:::;ng�min(UI );where UI denotes the submatrix formed from a set I of rows of U .First, Stewart proved \�", next O'Leary proved \�". A nonzero x 2 N (A) (with nonzero entries inpositions fi1; : : : ; ipg � f1; : : : ; ng) is said to de�ne a minimal linear dependen
e amongst the 
olumns ofA if for every subset I of size at most (p � 1) of fi1; : : : ; ipg, the 
olumns of A indexed by I are linearlyindependent. We have the following proposition due to Vavasis.Proposition 2.10 (Vavasis [28℄)Let x 2 N (A) be a nonzero ve
tor de�ning a minimal linear dependen
e amongst the 
olumns of A. Wehave minfjxjj : xj 6= 0gmaxfjxjj : xj 6= 0g � �(A):We now give a new proof that is di�erent from Vavasis'.ProofLet k and l be su
h that minfjxjj : xj 6= 0g = jxkj = l. Let us denote the jth 
olumn of A as Aj, forall j 2 f1; : : : ; ng. Then there exists J � f1; : : : ; ng n fkg su
h that AJxJ = �lAk, where xJ 
ontainspre
isely the nonzero entries of x other than xk. Sin
e x de�nes a minimal linear dependen
e, the 
olumnsof AJ must be linearly independent. So we 
an extend J to a basis B of A to get ABxB = �lAk. Now,kxk1 = kxBk1 � kxBk = lkA�1B Akk � lkA�1B Ak � l��(A):In other words, ��(A) � kxk1l ;or equivalently, �(A) � lkxk1 = minfjxjj : xj 6= 0gmaxfjxjj : xj 6= 0g : 2Using these arguments, it is not hard to show that the same result holds for any extreme ray x of the
one fx : Ax = 0; x � 0g.



COMPLEXITY MEASURES FOR LP 10Corollary 2.11 Suppose fd 2 Rn : Ad = 0; eTd = 1; d � 0g is not empty. Then, it is 
ompa
t and everyextreme point �d of it has the property minf �dj : �dj 6= 0g � �(A)n :ProofCompa
tness of the set is 
lear. Every extreme point 
orresponds to an extreme ray (and hen
e abasi
 feasible dire
tion) of fx : Ax = 0; x � 0g. For every basi
 feasible dire
tion �x, we identify thesmallest nonzero 
omponent �xk �rst, and then B 2 B(A) su
h that all other nonzero 
omponents of �xare determined by the system of equations ABxB = ��xkAk:Then, as in the proof of Proposition 2.10, we get k�xk1 � �xk ��(A): Letting �d := �x=(eT �x), we see thatminf �dj : �dj 6= 0g � �xk�xk [m��(A) + 1℄ � 1n��(A) = �(A)n :We used the fa
ts that n � (m + 1) and ��(A) � 1: 2Re
all that �(A) and Æ(A) denote the maximum and minimum (respe
tively) of the absolute valuesof the determinants of all the nonsingular square submatri
es of A. We have the following relationshipamong �1;�(A) and Æ(A), proven via exploitation of the sign pattern 
hara
terization and Cramer'sRule.Proposition 2.12 (Tun�
el [27℄) �1(A) � Æ(A)m�(A) :ProofRe
all the de�nition�1(A) := inffkDx� yk1 : D 2 
l(D); x 2 N (A); y 2 R(AT ); kyk1 = 1g:Clearly here we 
an restri
t x to be in fx 2 N (A) : kxk � 1g. Let f(Dk; xk; yk)g be a sequen
e of feasiblesolutions su
h that kDkxk�ykk1 
onverges to �1(A). Sin
e fxkg and fykg are in 
ompa
t feasible sets,we may assume f(xk; yk)g 
onverges to, say, (x�; y�). Let J� be the set of indi
es su
h that the signs of x�and y� disagree. Note that J� 6= ; be
ause otherwise we 
an 
hoose D 2 
l(D) su
h that Dx� � y� = 0,
ontradi
ting the fa
t that �1(A) > 0. Note that for the pair (x�; y�), a best D� is su
h thatD�ii = 8><>: 0; i 2 J�;1; i 62 J�; x�i = 0;y�ix�i ; i 62 J�; x�i 6= 0:So �1(A) = ky�J�k1, and therefore�1(A) = minfkyJ�k1 : y 2 R(AT ); kyk1 = 1; sign(y) = sign(y�)g:



COMPLEXITY MEASURES FOR LP 11Then it is easy to see that1�1(A) = maxfkyk1 : y 2 R(AT ); sign(y) = sign(y�); kyJ�k1 � 1g= maxfkATwk1 : sign(ATw) = sign(y�); k(ATw)J�k1 � 1g:Let w� be a maximizer of this expression,� := minfj(ATw�)j j : (ATw�)j 6= 0g;F (sign(y�); J�) := 8>>><>>>:w : (ATw)j � �; if sign(y�j ) = 1;(ATw)j = 0; if sign(y�j ) = 0;(ATw)j � ��; if sign(y�j ) = �1;(ATw)j � 1; if j 2 J� 9>>>=>>>; :Then 1�1(A) = maxfkATwk1 : w 2 F (sign(y�); J�)g = maxfaTw : w 2 F (sign(y�); J�)g;where a is a 
olumn of A (or its negation) su
h that aTw� = kATwk1. Equivalently this is the optimalvalue of the LP: (P ) max �w 2 F (sign(y�); J�);aTw � � � 0:Suppose the feasible region of (P ) 
ontains a line. So there exist (w; �) and (d; t) 6= 0 su
h that w+ kd 2F (sign(y�); J�) and aT (w + kd) � � + kt, for all k 2 R. So ATd = 0. If d 6= 0, then it 
ontradi
tsthat fa
t that A has full row rank. So d = 0 and t 6= 0. But then aTw = aT (w + kd) � � + kt for allk 2 R also gives a 
ontradi
tion. So the feasible region of (P ) is pointed, and hen
e 
ontains an optimalbasi
 feasible solution. Let f(�) be the ve
tor representing the right-hand-side values in the de�nition ofF (sign(y�); J�) (entries of f(�) are 0,1,�;��). Then using Cramer's Rule, we have1�1(A) = ��������������� subdet264  ATATJ� ! f(�)aT 0 375subdet264  ATATJ� ! 0aT �1 375 ��������������� � m�(A)Æ(A) :Here, we used that fa
t that � � 1; be
ause 0 6= k(ATw�)J�k1 � 1 (as otherwise, it would 
ontradi
t�1(A) > 0). 2In fa
t, the above was originally stated for A 2 Zm�n in [27℄, in whi
h 
ase we have �1(A) �1=(m�(A)).Proposition 2.5 is a 
onsequen
e of Proposition 2.12 and (8). Indeed,��(A) = 1�(A) � pn�1(A) � pnm�(A)Æ(A) : (10)



COMPLEXITY MEASURES FOR LP 12Therefore, for A 2 Qm�n,log(��(A)) � log��(A)Æ(A) �+ log(m) + 12 log(n) = O(L):Dire
tly utilizing equation (9) and Proposition 2.3, we also bound � and �� in terms of �=Æ in thefollowing two propositions.Proposition 2.13 �(A) � m�(A)Æ(A) :ProofSuppose B 2 B(A) maximizes (9). Let y be su
h that kyk = 1 and kA�1B k = kA�1B yk. Let x 2 Rm su
hthat ABx = y. Then by Cramer's rule, for ea
h i 2 f1; : : : ;mg,jxij = jsubdet([ABjy℄)jj det(AB)j � kyk1�(A)Æ(A) � pm�(A)Æ(A) :So, kA�1B k2 = kxk2 � m2�(A)2Æ(A)2 :Therefore, �(A) = kA�1B k � m�(A)Æ(A) : 2Proposition 2.14 ��(A) �pm(n �m) + 1 �(A)Æ(A) :ProofSuppose B 2 B(A) maximizes the expression in Proposition 2.3. Let fy1; : : : ; yn�mg be the 
olumns ofA that are not in AB . Let xl 2 Rm su
h that ABxl = yl, for all l 2 f1; : : : ; n� mg. Then by Cramer'srule, for ea
h i 2 f1; : : : ;mg, jxlij = j det(C)jj det(AB)j � �(A)Æ(A) ;for some m � m submatrix C of A. So, denoting the maximum eigenvalue of a matrix by �max(�), wehave kA�1B Ak2 = k[Ijx1j � � � jxn�m℄k2 = �max[I + x1(x1)T + � � �+ xn�m(xn�m)T ℄� 1 + (x1)Tx1 + � � �+ (xn�m)Txn�m� 1 +m(n �m)�(A)2Æ(A)2 � [m(n�m) + 1℄�(A)2Æ(A)2 :



COMPLEXITY MEASURES FOR LP 13Therefore, ��(A) = kA�1B Ak �pm(n �m) + 1�(A)Æ(A) : 2Fa
ts similar to those given in last three propositions 
an also be obtained by employing the Cau
hy-Binet Formula. This goes ba
k at least to Dikin [4℄. (For a histori
al a

ount and related results, seeForsgren [7℄ and the referen
es therein.)3 Cau
hy-Binet Formula and the Condition Number of AATRe
all that B(A) denotes the set of all bases of A. We represent ea
h basis B of A as a m-subset of theset of numbers from the natural numbering of the 
olumns of A.Proposition 3.1 (Cau
hy-Binet Formula)Let A; ~A 2 Rm�n with full row rank. Thendet(A ~AT ) = XB2B(A)\B( ~A)det(AB) det( ~AB):Using this, we 
an prove the following relationship among �, � and Æ.Proposition 3.2 Suppose A 2 Rm�n has full row rank. Then�(AAT ) � m3=2nm+1�(A)4Æ(A)2 :ProofWe have jAijj � �(A) for all i; j, and hen
e by (3),kAAT k = kAk2 � kAk2F � mn�(A)2:On the other hand, k(AAT )�1k � pmk(AAT )�1k1 � m3=2�(AAT )det(AAT ) :Now, by Proposition 3.1,�(AAT ) = det(AI;�ATJ;�) (for some sets I; J � f1; : : : ;mg; jIj = jJ j)= XB2B(AI;�)\B(AJ;�) det(AI;�B) det(AJ;�B)� �nm��(A)2 � nm�(A)2m ;



COMPLEXITY MEASURES FOR LP 14and det(AAT ) =PB2B(A) det(AB)2 � Æ(A)2. Therefore,�(AAT ) = kAATk � k(AAT )�1k � m3=2nm+1�(A)4Æ(A)2 : 24 Ho�man's Bound and �For a ve
tor u 2 Rn, let pos(u) 2 Rn be su
h that (pos(u))j := maxfuj; 0g for ea
h j 2 f1; : : : ; ng. Thefollowing result gives an upper bound on the distan
e of a point to a polyhedron, in terms of its violationof the 
onstraints de�ning the polyhedron.Theorem 4.1 (Ho�man [12℄)Let A 2 Rm�n (not ne
essarily full row rank) and let k � k� and k � k� be norms on Rm and onRn, respe
tively. Then there exists a s
alar K�;�(A), su
h that for every 
 2 Rn for whi
h the setfy 2 Rm : AT y � 
g 6= ;, and for every y0 2 Rm,miny:AT y�
 k y � y0 k�� K�;�(A) k pos(ATy0 � 
) k� :The 
oeÆ
ient K�;�(A) is sometimes 
alled a Lips
hitz bound of A. For a norm k � k on Rn, let k � k�be the dual norm de�ned by k v k�:= maxfvTx : x 2 Rn; k x k� 1g;for ea
h v 2 Rn. Note that for p-norms (1 � p � 1), we have k � k�p = k � kq, where q is su
h thatp�1 + q�1 = 1. In parti
ular, k � k�2 = k � k2. Let ext(S) denote the set of extreme points of a set S. Wehave the following geometri
 representation of the Lips
hitz bound.Proposition 4.2 (G�uler, Ho�man and Rothblum [9℄)Theorem 4.1 holds with K�;�(A) := maxfk v k��: v 2 ext(V�(A))g; where V�(A) := fv 2 Rn : v � 0; kAv k��� 1g.WewriteK2(A) := K2;2(A) for allA. There is also a representation of the Lips
hitz bound via singularvalues. For any E 2 Rn�m. Let U (E) be the set of subsets of f1; : : : ; ng for whi
h the 
orrespondingrows of E are linearly independent. Let U�(E) be the maximal elements in U (E).Proposition 4.3 (G�uler, Ho�man and Rothblum [9℄)K2(A) � maxJ2U�(AT ) 1�min(ATJ ) :



COMPLEXITY MEASURES FOR LP 15Note that minJ2U�(AT ) �min(ATJ ) = min;6=J�f1;:::;ng �min(ATJ ): To prove this, �rst note that \�" is
lear. Take A 2 Rm�n with rank, say, r. Take any nonempty J � f1; : : : ; ng. Let �i(E) denote the ithlargest singular value of any matrix E, and k := rank(ATJ ). Then �min(ATJ ) = �k(ATJ ). Let I � J besu
h that rank(ATI ) = k = jIj. Then by the interla
ing property of singular values, �k(ATI ) � �k(ATJ ).Let M 2 U�(AT ) be su
h that I �M . Then�min(ATM ) = �r(ATM ) � �k(ATI ) � �min(ATJ );where we used the interla
ing property again in the �rst inequality above. Therefore,maxJ2U�(AT ) 1�min(ATJ ) = max;6=J�f1;:::;ng 1�min(ATJ ) :The next proposition gives a 
onne
tion between K2 and �� via singular values.Proposition 4.4 Suppose A 2 Rm�n has full row rank. ThenkAkK2(A) � ��(A):ProofConsider the singular value de
omposition of A. Let A = UDV T , where U 2 Rm�m is orthogonal, D 2Rm�n is diagonal (with singular values �1; : : : ; �m of A on the diagonal, in that order), and V 2 Rn�n isorthogonal as well. Suppose V = [v1j � � � jvn℄, i.e., fv1; : : : ; vng are the 
olumns of V . Let �V := [v1j � � � jvm℄and � := Diag(�1; : : : ; �m). Then A = U��V T : Sin
e A has full row rank, �1; : : : ; �m > 0, and hen
e �is invertible. We have AT = �V�UT , and �V = ATU��1. So R(AT ) = R( �V ), and �V has orthonormal
olumns. By Propositions 2.9 and 4.3,K2( �V T ) � maxI2U�( �V ) 1�min( �VI) = max;6=I�f1;:::;ng 1�min( �VI ) = ��(A):Now it remains to show kAkK2(A) � K2( �V T ). Note thatkATyk2 = yTU��V T �V �UTy = k�UT yk2:Therefore, kAk = kATk = maxkyk=1 kAT yk = k�UTk = kU�k:Now we 
onsider the relationship between K2(A) and K2( �V T ). Suppose K2(A) = kv̂k, where v̂ is anextreme point of V2(A). Let �v := kAkv̂. We will prove that �v is an extreme point of V2( �V T ). Suppose�v = �w + (1� �)z, where � 2 (0; 1), and w; z 2 V2( �V T ). Thenv̂ = � wkAk + (1� �) zkAk :Sin
e w 2 V2( �V T ), w � 0 and therefore w=kAk � 0. Also,



A� wkAk�



 = 1kAkkU���1UTAwk � 1kAkkU�kk�V Twk � 1:



COMPLEXITY MEASURES FOR LP 16So w=kAk 2 V2(A), and similarly so does z=kAk. Therefore, w = z, implying that �v is an extreme pointof V2( �V T ). Now, kAkK2(A) = kAkkv̂k = k�vk � K2( �V T ) � ��(A): 2As a 
orollary, sin
e ��(A) � kAk�(A), we have K2(A) � �(A). During the review of our paper, webe
ame aware of [33℄. Note that the relation K2(A) � �(A) implies Theorem 3.6 from [33℄ whi
h statesthat Theorem 4.1 holds with K�;�(A) repla
ed by �(A), when � = � = 2 and A has full row rank. AlsoLemmas 3.3, 3.4 and 3.5 of [33℄ follow from equation (9) and the fa
t that whenever fx : Ax = b; x � 0gis nonempty, it 
ontains a basi
 feasible solution.We also note that, by Proposition 2.12, we haveK2(A) � m�(A)kAkÆ(A) :Let G be the set of diagonal matri
es in Rn�n with diagonal entries from f1;�1g. Take G 2G. Then kAGk = kAk. Also for any diagonal matrix D 2 Rn�n; k(AG)T (AGD(AG)T )�1AGDk =kAT (ADAT )�1ADk, and hen
e ��(AG) = ��(A). (Similarly, �(AG) = �(A).) Therefore, we havemaxG2G K2(AG) � ��(A)kAk � �(A): (11)Also, �(AG) = �(A) and Æ(AG) = Æ(A). So we also havemaxG2G K2(AG) � m�(A)kAkÆ(A) :We now 
hara
terize the extreme points of V1(A). Re
all thatV1(A) = 8><>:v 2 Rn : 0B� A�A�I 1CA v � 0B� ee0 1CA9>=>; ;whi
h is a polyhedron, and the 
onstraint matrix in the above des
ription has full 
olumn rank. LetJ � f1; : : : ; ng su
h that jJ j � m. Then we pi
k I1; I2 � f1; : : : ;mg su
h that I1 \ I2 = ; andjI1j+ jI2j = jJ j. Assume that the matrix  AI1 ;J�AI2 ;J !is nonsingular. Here AI1;J denotes the submatrix of A with rows indexed by I1 and 
olumns indexed byJ . Let x 2 Rn be su
h that xj = 0 if j 62 J and AI1;J�AI2;J !xJ =  ee ! :



COMPLEXITY MEASURES FOR LP 17If x 2 V1(A), then x is an extreme point of V1(A). Vi
e versa, any given x 2 ext(V1(A)) must satisfy theabove for some J; I1 and I2. So using Cramer's rule, for ea
h j 2 J ,xj = �����subdet AI1;J e�AI2;J e !����������det AI1;J�AI2 ;J !����� � jJ j�(A)Æ(A) � m�(A)Æ(A) :So, K1(A) = kxk1 � m�(A)Æ(A) ; and K1;1(A) = kxk1 � m2�(A)Æ(A) :Therefore, we have maxG2G K1(AG) � m�(A)Æ(A) ; and maxG2G K1;1(AG) � m2�(A)Æ(A) :In fa
t, the extreme points of V1(AG) 
an be 
hara
terized in a similar way. The only di�eren
e isthat we require x to satisfy the sign pattern given by G, instead of x � 0. Now, we give another proofof the impli
ation K2(AG) � �(A); 8G 2 G of (11). We use the following 
hara
terization of K2(A) forthis purpose.Lemma 4.5K2(A) = max�kA�1B A
k : 
 2 R(AT ); B 2 B(A); kA
k = 1; 
B � �A�1B AN
N	 :ProofNote thatK2(A) = max�kvk : v 2 ext(V2(A)) \ �� � 
 : � � 
; � 2 N (A); 
 2 R(AT ); kA
k = 1		 :Let 
 2 R(AT ) su
h that kA
k = 1; also let B 2 B(A) su
h that 
B � �A�1B AN
N and kA�1B A
kis equal to the maximum value in the statement of the lemma. De�ne � 2 Rn as follows. �N := 
N ;�B := �A�1B AN
N : Thus, we have � 2 N (A), � � 
. Next, we 
laim v := (� � 
) 2 ext(V2(A)): Supposenot. Then, there exist v(1); v(2) 2 V2(A) su
h that 12 �v(1) + v(2)� = � � 
, v(1) 6= v(2): We immediatelyhave v(1)N = v(2)N = 0: Thus, 1 = kABvBk � 12kABv(1)B k+ 12kABv(2)B k � 1whi
h implies kABvBk = kABv(1)B k = kABv(2)B k = 1:Therefore (sin
e vB = 12v(1)B + 12v(2)B ), by the 
hara
terization of the equality 
ase in the Cau
hy-S
hwarzinequality, we must have ABvB = ABv(1)B = ABv(2)B . Sin
e v(1)B 6= v(2)B , AB must be singular, we arrivedat a 
ontradi
tion. In addition to (� � 
) being an extreme point of V2(A), we havek� � 
k = kA�1B AN
N + 
Bk = kA�1B A
k:



COMPLEXITY MEASURES FOR LP 18Therefore, K2(A) � max�kA�1B A
k : 
 2 R(AT ); B 2 B(A); kA
k = 1; 
B � �A�1B AN
N	 ;as desired.To prove the reversed inequality, we let � 2 N (A), 
 2 R(AT ) su
h that kA
k = 1, � � 
, (� � 
) 2ext (V2(A)) and k� � 
k = K2(A): Let J � f1; 2; : : : ; ng be su
h that �J = 
J and � �J > 
 �J . Then sin
e(� � 
) is in ext (V2(A)), we must have rank(A �J ) = j �J j � m (otherwise, we 
an �nd �� 2 N (A �J )nf0g su
hthat ~�j := ( 0 if j 2 J��j if j =2 J ;now ~� 2 N (A) and for small enough � > 0, (�+�~��
) and (���~��
) 2 V2(A), a 
ontradi
tion). Complete�J to a basis B of A. Then �N = 
N and AB�B = �AN
N : The latter implies �B = �A�1B AN
N : Thus,K2(A) = k� � 
k = k�B � 
Bk = kA�1B AN
N + 
Bk = kA�1B A
k:Hen
e yielding the desired inequalityK2(A) � max�kA�1B A
k : 
 2 R(AT ); B 2 B(A); kA
k = 1; 
B � �A�1B AN
N	 : 2Theorem 4.6 maxG2G K2(AG) � �(A):ProofBy Lemma 4.5,K2(A) = maxfkA�1B A
k : 
 2 R(AT ); B 2 B(A); kA
k = 1; 
B � �A�1B AN
Ng:So, maxG2G K(AG) � maxfkA�1B AG
k : 
 2 R(GAT ); B 2 B(AG); kAG
k = 1; G 2 Gg= maxfkA�1B AG
k : G
 2 R(AT ); B 2 B(A); kAG
k = 1; G 2 Gg= maxfkA�1B A
k : 
 2 R(AT ); B 2 B(A); kA
k = 1g= maxfkA�1B Axk : x 2 Rn; B 2 B(A); kAxk = 1g= maxfkA�1B yk : B 2 B(A); kyk = 1g= maxfkA�1B k : B 2 B(A)g = �(A): 2We note that the inequality above may be stri
t. Otherwise, using (11) we would have had ��(A) =kAk�(A) whi
h is 
learly false in general |take for instan
e A := �1 0 10 1 1�.



COMPLEXITY MEASURES FOR LP 195 Ye's Complexity Measure for LP and Ho�man's BoundWe are going to look at two more 
omplexity measures, � and symm. These 
omplexity measures relate
losely to the symmetry of 
ertain geometri
 obje
ts of the LP problem. Let us 
onsider the LP problemin the following primal form: (P ) min 
Txsubje
t to Ax = bx 2 Rn+;and the 
orresponding dual form:(D) max bT ysubje
t to AT y + s = 
y 2 Rms 2 Rn+where 
 2 Rn, b 2 Rm, A 2 Rm�n.Under the assumption that both (P ) and (D) have feasible solutions, Ye [31℄ �rst de�nes a 
omplexitymeasure for ea
h of the problems (P ) and (D):�P := minj2B maxx2opt(P ) xj;�D := minj2N maxs2opt(D) sj :Then, Ye [31℄ de�nes the 
omplexity measure of the primal dual pair as the minimum of the two:�(P;D) := minf�P ; �Dg;where opt(P ) and opt(D) denote the sets of optimal solutions of (P ) and (D) respe
tively, and (B;N )denotes the stri
t 
omplementarity partition.Let us study these measures for feasibility problems over polyhedra expressed in Karmarkar's ([13℄)standard form: P := fx : Ax = 0; eTx = 1; x � 0g:(This form is relevant in Subse
tion 5.1 as well.) We assume A to have full row rank and no zero 
olumnsbe
ause, without loss of generality, we 
an always eliminate the variables that 
orrespond to zero 
olumnsin A. Let S := N (A) and (hen
e) S? = R(AT ). (P ) and its dual 
an now be written as a primal-dualpair of feasibility problems. See Vavasis and Ye [30℄ and [26℄.(FP ) x 2 S; (FD) s 2 S?;kxk1 = 1; ksk1 = 1;x � 0: s � 0:(FD) is the dual of (FP ) in the sense that every feasible solution to the dual problem of maximizing 0over the 
onstraints de�ned by (FP ), 
orresponds to a feasible solution of (FD), ex
ept for s = 0 whi
hdoes not 
orrespond to a feasible solution in (FD). In this setting, even though (FP ) is always bounded,(FD) 
an still be infeasible (for example, A := [1;�1℄).



COMPLEXITY MEASURES FOR LP 20When (FP ) is feasible, there exists a pair (x; s) su
h that x 2 S; xN = 0; xB > 0; s 2 S?; sN > 0; sB =0, where [B;N ℄ is the 
orresponding stri
t 
omplementarity partition with B nonempty. Furthermore,all feasible solutions of (FP ) and (FD) must satisfy xN = 0 and sB = 0. We allow B or N to be empty.The 
ondition B 6= ; is equivalent to (FP ) being feasible. Similarly, N 6= ; is equivalent to (FD) beingfeasible.Sin
e the problems (FP ) and (FD) are written in terms of the subspa
es S and S?, let us rede�neYe's measures a

ordingly. For any subspa
e C, de�ne C(1) := fx 2 C : kxk1 = 1g. Let�(S) := minj2B maxx2S(1);x�0xj;�(S?) := minj2N maxs2S?(1);s�0 sj ;�(A) := minf�(S); �(S?)g:We de�ne �(S) to be 1, when (FP ) is infeasible (similarly, �(S?) is 1 if (FD) is infeasible). Noti
ethat all of �(S); �(S?) and �(A) are positive for all A. �(S) measures some kind of symmetry of the
olumns ve
tors of AB about the origin. The set fABxB : kxBk1 = 1; xB � 0g is the set of all 
onvex
ombinations of the 
olumns of AB . Therefore fx 2 S(1) : x � 0g 
orresponds to the 
oeÆ
ients when0 is written as 
onvex 
ombinations of the 
olumns of AB, and hen
e � measures their sizes. If the
olumns of AB are perfe
tly symmetri
 about the origin, �(S) would be 1=2. And if the 
olumns arehighly asymmetri
, �(S) would be mu
h smaller than 1=2.The following results give dual des
riptions for �(S) and �(S?). For v 2 Rn; J 2 f1; 2; : : : ; ng, letv+J := ( �1 if vJ � 0,maxj2J vj otherwise,v�J := ( +1 if vJ � 0,minj2J vj otherwise.Proposition 5.1 (Tun�
el [26℄)Suppose fej : j 2 f1; 2; : : : ; ngg \ S = ; and B 6= ;. Then�(S) = minf
+B : 
 2 S?; 0 < 
+B < 1; 
+B � 
�B = 1g:Proposition 5.2 (Tun�
el [26℄)Suppose fej : j 2 f1; 2; : : : ; ngg \ S? = ; and N 6= ;. Then�(S?) = minf�+N : � 2 S; 0 < �+N < 1; �+N � ��N = 1g:Note that under our assumptions, we always have fej : j 2 f1; 2; : : :; ngg \ S = ; be
ause A hasno zero 
olumns. Also, the 
ondition B 6= ; is equivalent to (FP ) being feasible. Similarly, N 6= ; isequivalent to (FD) being feasible.Re
ently, Epelman [5℄, Epelman and Freund [6℄ presented another 
omplexity measure based on A.Let H(AB) := fABxB : xB � 0; kxBk1 = 1g: That is, H(AB ) is the 
onvex hull of the 
olumn ve
tors ofAB . Let symm(A) := maxft : �tv 2 H(AB) for all v 2 H(AB)g:



COMPLEXITY MEASURES FOR LP 21Note that a generalized version of this measure has been used before by Renegar [18℄ to estimate 
om-plexity for 
onvex optimization problems.It is 
lear that symm(A) measures pre
isely the degree of symmetry of H(AB ) about the origin inRm (A 2 Rm�n). When H(AB) is 
entrally symmetri
 (about the origin), symm(A) = 1.Proposition 5.3 (Epelman [5℄, Epelman and Freund [6℄)symm(A)1 + symm(A) = �(S):The above proposition gives an expli
it relation between the two 
omplexity measures, �(S) andsymm(A). Sin
e the fun
tion x=(1 + x) is stri
tly in
reasing on (0; 1℄, �(S) also measures the degree ofsymmetry of H(AB) about the origin. In fa
t, by 
ombining Proposition 5.1 and Proposition 5.3, we getthe following.Corollary 5.4 (Ho [11℄) symm(A) = min
2S?;k
Bk=1�
+B
�B :We 
an state similar results for �(S?). Let us de�ne H 2 R(n�m)�n to be a full row rank matrixobtained by deleting linearly dependent rows from PA := I � AT (AAT )�1A.Corollary 5.5 (Ho [11℄) Suppose (FD) is feasible and fej : j 2 f1; 2; : : :; ngg \ S? = ;. Thensymm(H)1 + symm(H) = �(S?):Similarly, we 
an 
ombine Proposition 5.2 and Corollary 5.5.Corollary 5.6 (Ho [11℄) Suppose (FD) is feasible and fej : j 2 f1; 2; : : :; ngg \ S? = ;. Thensymm(H) = min�2S;k�Nk=1��+N��N :We now look at a relationship between the 
omplexity measures �(A) and �(A). We 
all AG a signingof A, where G 2 G and G is the set of diagonal matri
es in Rn�n with diagonal entries from f1;�1g.Note that ��(AG) = ��(A).De�ne �(A) := minG2G �(AG). We have the following fa
t.Proposition 5.7 (Todd, Tun�
el and Ye [24℄)1pn�(A) � �(A) � �(A):
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ond inequality above 
an be obtained easily from the results of Vavasis and Ye [30℄ andGonzaga and Lara [8℄. The �rst inequality 
an be proved using Propositions 2.6 and 5.1. The se
ondauthor [26℄ showed that in general, � may 
arry no information about �. Indeed, suppose the 
olumnsof A de�ne an almost 
entrally symmetri
 polytope. Then there is a signing of A su
h that the newpolytope is highly asymmetri
 and therefore has a very small � value, whi
h in turn implies a very small� value. This suggests that �� may not be a good 
omplexity measure as it tends to grossly overestimatethe 
omplexity of interior-point algorithms. Even though ��(A) grossly overestimates the amount of
omputational work to solve LP problems with data (A; b; 
), it has been useful in estimating the workfor LP problems having A as the 
oeÆ
ient matrix, with arbitrary b and 
 and arbitrary orientation ofinequalities. Also, �(A)=Æ(A) has a similar role.Proposition 5.7 shows that 1��(A) behaves like �(A) or like �(AG), where G is \the worst signingof A" in this 
ontext. Noti
e that Theorem 4.6 relates Ho�man's bound to �(A) in a similar way. Itshows that �(A) is at least K2(AG), where G is \the worst signing of A" in this latter 
ontext. Sin
e�(S) is essentially symm(A) and we have noti
ed the above parallel, we give below a brief geometri
interpretation of K1;1, in a spe
ial but illustrative 
ase. Note that the essential di�eren
e between � andK is that of formulation. They both measure similar quantities; 
onsidering the problem (D), K worksin the y-spa
e and � in the s-spa
e. See the next se
tion for similar situations between � and ��.Let us now look at K�;�(A) more 
losely. For this brief dis
ussion, we assume that V�(A) is bounded.This is true if and only if fv : Av = 0; v � 0; v 6= 0g = ;, if and only if there exists y 2 Rm su
h thatATy > 0, by LP duality theory. Under this assumption,K�;�(A) = maxfkvk�� : v � 0; kAvk�� � 1g= maxfkvk�� : v � 0; kAvk�� = 1g= max� kvk��kAvk�� : v � 0; Av 6= 0� :Also v = 0 if and only if Av = 0. Hen
e,1K�;�(A) = min(kAvk��kvk�� : v � 0; v 6= 0)= minfkAvk�� : v � 0; kvk�� = 1g:For the 
ase � = 1; � =1, we have1K1;1(A) = minfkAvk1 : v � 0; eTv = 1g:This is pre
isely the 1-norm distan
e of the origin of Rm to the 
onvex hull of the 
olumn ve
tors ofA. Sin
e we assume that V1 is bounded, 0 is not in this 
onvex hull. On the other hand,1K1;1(A) = minft : kAvk1 � t; v � 0; eTv = 1g= min(t :  A�A ! v + te � 0; eTv = 1; v � 0) :This is an LP problem. So by LP duality theory,1K1;1(A) = maxf� : [AT j � AT ℄y + �e � 0; eTy = 1; y � 0g



COMPLEXITY MEASURES FOR LP 23= maxfsmallest entry of [�AT jAT ℄y : eT y = 1; y � 0g:In other words, it is the maximum of the smallest entry of any ve
tor in the 
onvex hull of the rows of Aand their negations.5.1 Linear Programming Solver SubroutineIn Se
tion 7, we generalize Tardos' s
heme. To do so, we need to solve LP problems with the followingdata. De�ne �q := max�2�log��(A)Æ(A) �� ; n� ; ~q := �q2;�p := 2dlog(2(2m+n)3=2(2mn+1))e2�q and ~p := 2dlog(2(2m+n)3=2(2mn+1))e2~q: (12)Let p be a positive integer power of two and p � ~p. We will not have any restri
tion on the entries of A,ex
ept that we want A to have full row rank (easily ensured). The rest of the data, b and 
, for the LPsolver subroutine will be restri
ted to the following two 
ases.(i) We set l := �(p + 1); (p+ 1)2; : : : ; (p+ 1)n�T , and b := Al. We have 
 2Zn su
h that k
k1 � ~p.(ii) We have b 2Zm, 
 2Zn su
h that kbk1 � ~p and k
k1 � ~p.In this subse
tion, we assume that b and 
 satisfy at least one of (i) and (ii). We also need the followingfun
tion of A in our estimations.De�nition 5.8 Let �A := [AjI℄ : For every B 2 B( �A) (N is the 
omplement of B) 
onsider the smallestabsolute value of nonzero entries of�A�1B u; 8u 2Zm su
h that kuk1 � ~p;�A�1B �Aw; 8w 2Zn; with entries from (p+ 1); (p+ 1)2; : : : ; (p+ 1)n;where p is a positive integer power of two and p � ~p;�� �ATN �A�TB jI� v; 8 v 2Zn+m; su
h that kvk1 � ~p:Also 
onsider the entries of the ve
tors for the same 
onstru
tion in whi
h �A is repla
ed by~A := �AT j � AT j � I� :These generate a �nite 
olle
tion of positive real numbers depending only on A. We 
all the minimum ofall these numbers ÆÆ(A).Note that 0 < ÆÆ(A) � 1 for all A 2 Rm�n. If A 2Zm�n then ÆÆ(A) � 1=�(A).The LP problems with b and 
 des
ribed as above (in (i) and (ii)) depend only on A. As we show in thissubse
tion, many algorithms 
an be adapted to solve su
h LP problems in poly�n; j log(ÆÆ(A))j; log��(A)Æ(A) ��
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 operations. In parti
ular, we show that su
h polynomial bounds 
an be satis-�ed by employing almost any primal-dual interior-point algorithm with (mild 
entrality properties and)polynomial-time 
omplexity in the Turing Ma
hine Model. Consider the homogeneous self-dual linearprogramming problem (HSDLP ):min (n+ 1)�subje
t to 0BBB� 0 A �b b� Ae�AT 0 
 e� 
bT �
T 0 eT 
+ 1(Ae � b)T (
 � e)T �(eT 
+ 1) 0 1CCCA0BBB� yx�� 1CCCA =��= 0BBB� 000�(n+ 1) 1CCCA ;y free;x � 0;� � 0;� free:Note that (HSDLP ) is self-dual, and that � = 0 at every optimal solution of (HSDLP ). Let usde�ne the surplus variables for the inequalities above:s := �AT y + �
+ �(e � 
); := bTy � 
Tx+ �(eT 
+ 1):Then �y := 0; �x := e; �s := e; �� := 1; � := 1; �� := 1 is feasible in (HSDLP ). For various fa
ts on su
hformulations, see the book by Roos, Terlaky and Vial [19℄.Theorem 5.9 (Ye, Todd and Mizuno[32℄)Let (y�; x�; ��; �� = 0; s�;  �) be a stri
tly self-
omplementary solution for (HSDLP ). Then,1. (P ) has a solution if and only �� > 0. In this 
ase, x�=�� is an optimal solution for (P ) and(y�=��; s�=��) is an optimal solution for (D),2. if �� = 0, then  � > 0, whi
h implies that 
Tx�� bT y� < 0, that is, at least one of 
Tx� and �bTy�is stri
tly less than zero. If 
Tx� < 0, then (D) is infeasible; if �bTy� < 0, then (P ) is infeasible;if both 
Tx� < 0 and �bTy� < 0, then both (P ) and (D) are infeasible.Consider the setting at the very beginning of Se
tion 5. Assume both (P ) and (D) have feasiblesolutions. Let ��x(k); s(k)�	, k 2Z+ denote the iterates of a primal-dual interior-point algorithm (withfeasible iterates). G�uler and Ye [10℄ proved that the mild, wide neighborhood 
ondition (or 
entrality
ondition) minj nx(k)j s(k)j o�x(k)�T s(k) � 
�1n� (13)guarantees that every limit point of ��x(k); s(k)�	 is a stri
tly 
omplementary pair. Mehrotra and Ye [16℄and Ye [31℄ showed how to make su
h polynomial-time primal-dual interior-point algorithms terminatein O (pn jlog(�(P;D)j) iterations.



COMPLEXITY MEASURES FOR LP 25Results of Ye-Todd-Mizuno [32℄ and Ye [31℄ also show how to terminate primal-dual interior-pointalgorithms (those 
onverging to a stri
tly 
omplementary pair) after O(pnj log(�(HSDLP ))j) iterations.We denoted by �(HSDLP ), Ye's 
omplexity measure applied to the problem (HSDLP ). Sin
e theproblem is self-dual, the notation is 
onsistent.Next, we will estimate �(HSDLP ). The optimal value of (HSDLP ) is 0. Therefore, we 
an representthe set of optimal solutions of (HSDLP ) as (FHSDLP ):Ax = �b;AT y + s = �
;bT y � 
Tx =  ;eTx+ eT s + � +  = n+ 1;x; s; �;  � 0:By the last equation and the nonnegativity 
onstraints, we have0 < �(HSDLP ) � n+ 1:It remains to bound �(HSDLP ) from below and away from zero. We want to maximize ea
h restri
tedvariable (say xj for some j) subje
t to (FHSDLP ). We will split the analysis into three exhaustive 
ases:1. (P ) and (D) both have feasible solutions,2.(a) (D) is infeasible,2.(b) (P ) is infeasible.As mentioned before, we will assume that b and 
 satisfy (i) or (ii), and we will di�erentiate the analysisof these two 
ases, whenever ne
essary.Case 1.: (P ) and (D) both have feasible solutionsEvery solution of (FHSDLP ) satis�es  = bTy � 
Tx = 0, by LP weak duality and the 
onstraint � 0. Also, there exists a solution of (FHSDLP ) with � > 0. Let (�x; �y; �s) be a basi
 primal-dual pairof optimal solutions for (P ) and (D). So for some B 2 B(A), we have�xB = A�1B b; �sN = 
N � ATNA�TB 
B;where N := f1; : : : ; ng nB. For 
ase (i), we haveeT �x = k�xBk1 � pmk�xBk = pmkA�1B Alk � pmkA�1B Ak � klk � pnm��(A)(~p+ 1)n:For 
ase (ii), we haveeT �x � pmkA�1B bk � pmkA�1B k � kbk � m�(A)~p � m2~p�(A)Æ(A) � ~p3 � pnm��(A)(~p + 1)n;where the fourth inequality uses Proposition 2.13. Similarly,eT �s � k
Nk1 + kATNA�TB 
Bk1 � pn��(A)k
k1 � n3=2��(A)~p:Let �� := n+ 1eT �x+ eT �s + 1 :



COMPLEXITY MEASURES FOR LP 26Then (�� �y; �� �x; ���s; ��; � := 0) is a solution of (FHSDLP ). Hen
e,max(y;x;s;�; )2(FHSDLP ) � � �� � n+ 1pnm��(A)(~p + 1)n + n3=2��(A)~p+ 1 � n+ 13n3=2��(A)(~p+ 1)n :Let [B0; N 0℄ be the (unique) stri
t 
omplementarity partition (restri
ted to just the indi
es x, or s)for (HSDLP ). Let j 2 B0. Then there exists a basi
 primal-dual pair of optimal solutions for (P ) and(D), (�x; �y; �s), 
orresponding to some new basis B, su
h that �xj > 0. Then all the above arguments applywith this new B. Sin
e �xj = (A�1B b)j � ÆÆ(A), we havemax(y;x;s;�; )2(FHSDLP )xj � �� �xj � (n+ 1)ÆÆ(A)3n3=2��(A)(~p+ 1)n :Similarly, for ea
h j 2 N 0, there exists �s 
orresponding to some basis B su
h that �sj > 0. Then j 2 Nand �sj =  [�ATNA�TB jI℄" 
B
N #!j � ÆÆ(A):Hen
e, we have max(y;x;s;�; )2(FHSDLP ) sj � ���sj � (n+ 1)ÆÆ(A)3n3=2��(A)(~p+ 1)n :Therefore, sin
e ÆÆ(A) � 1, �(HSDLP ) � (n + 1)ÆÆ(A)3n3=2��(A)(~p + 1)nin this 
ase.Case 2.(a): (D) is infeasibleEvery solution of (FHSDLP ) satis�es � = 0, be
ause if (y; x; s; �;  ) is a solution su
h that � > 0,then (y=�; s=� ) is a feasible solution of (D). On the other hand, by Farkas' lemma,minf
Tx : Ax = 0; eTx = 1; x � 0g < 0:Let �x be a basi
 optimal solution of this problem. So for some B 2 B(A) and k 2 f1; : : : ; ng n B su
hthat �xk 6= 0, we have AB �xB = �Ak�xk and �xj = 0 for all j 62 B [ fkg. It is easy to see that�0; (n+ 1)�x1� 
T �x ; 0; 0; �(n + 1)
T �x1� 
T �x � 2 (FHSDLP ):Note that 1 = eT �x = �xk � �xkeTA�1B Ak, whi
h implies�xk = 11� eTA�1B Ak > 0:Now, 1� eTA�1B Ak � 1 + kA�1B Akk1 � 1 +pmkA�1B Akk � 1 +pm��(A). So,0 < �
T �x = j
T �xj = j
k�xk + 
TB(�A�1B Ak�xk)j = j
k � 
TBA�1B Akj1� eTA�1B Ak � ÆÆ(A)1 +pm��(A) : (14)
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T �x � ~p (sin
e �x � 0 and eT �x = 1). So,max(y;x;s;�; )2(FHSDLP ) � �(n+ 1)
T �x1� 
T �x � (n+ 1)ÆÆ(A)(1 +pm��(A))(~p + 1) :Let j 2 B0 where [B0; N 0℄ is, as before, the (unique) stri
t 
omplementarity partition (restri
ted tojust the subve
tors x and s) for (HSDLP ). Let ~x be a maximizer ofmaxfxj : Ax = 0; eTx = 1; x � 0g:Note that ~xj � �(N (A)) � �(A). Also j
T ~xj � ~p. Letx̂ := (1 +pm��(A))�x+ ÆÆ(A)~p ~x:Now, by (14), 
T x̂ � 0. So,�0; (n+ 1)x̂eT x̂� 
T x̂ ; 0; 0; �(n+ 1)
T x̂eT x̂� 
T x̂ � 2 (FHSDLP ):Note that �
T x̂ � (1 +pm��(A))~p + ÆÆ(A) � (1 +pm��(A))~p+ 1 and eT x̂ � 2 +pm��(A): Therefore,max(y;x;s;�; )2(FHSDLP )xj � (n + 1)x̂jeT x̂� 
T x̂ � (n+ 1)ÆÆ(A)�(A)~p [(1 +pm��(A))(~p + 1) + 2℄ :Now let j 2 N 0. Consider the problemmaxfsj : s 2 R(AT ); eT s = 1; s � 0g:First note that if this problem is infeasible, then every solution of (FHSDLP ) satis�es s = 0 and hen
eN 0 is empty; and we are done. So we assume the problem has a feasible solution and be
ause the feasibleset is 
ompa
t, the maximum is attained by some basi
 solution, say ~s, 
orresponding to some basisB 2 B(A). Note that ~sj � �(R(AT )) � �(A). We (again) let N := f1; : : : ; ng n B. Let ~y be the uniqueve
tor in Rm su
h that AT ~y = �~s. For 
ase (i), we let l 2 Rn be as in the assumption given before. For
ase (ii), we let l 2 Rn be su
h that lB := A�1B b and lN := 0. In both 
ases, we have Al = b andbT ~y = lTAT ~y = �lT ~s:For 
ase (i), it is 
lear that jlT ~sj � (~p+ 1)n. This is also true for 
ase (ii) be
ausejlT ~sj = jlTB~sB j = j(A�1B b)T ~sB j � kA�1B bk � k~sBk � �(A)pm � kbk1k~sBk1� pm~p�(A) � m3=2~p��(A)Æ(A) � � ~p3 � (~p + 1)n;where we use Proposition 2.13 and the fa
t that n � 3. If lT ~s � 0, then� (n+ 1)~y1� lT ~s ; 0; (n+ 1)~s1� lT ~s ; 0; �(n + 1)lT ~s1� lT ~s � 2 (FHSDLP ):We then have max(y;x;s;�; )2(FHSDLP ) sj � (n+ 1)~sj1� lT ~s � (n+ 1)�(A)(~p + 1)n + 1 :



COMPLEXITY MEASURES FOR LP 28If lT ~s > 0, then we 
an easily show that��(n + 1)(
T �x)~ylT ~s � 
T �x ; (n+ 1)(lT ~s)�xlT ~s � 
T �x ; �(n+ 1)(
T �x)~slT ~s� 
T �x ; 0; 0� 2 (FHSDLP ):Now, using the fa
t that �
T �x � ~p, we havemax(y;x;s;�; )2(FHSDLP ) sj � �(n + 1)(
T �x)~sjlT ~s � 
T �x � (n+ 1)ÆÆ(A)�(A)(1 +pm��(A)) [(~p+ 1)n + ~p℄ :Case 2.(b): (P ) is infeasibleNote that this 
ase does not apply to 
ase (i), sin
e by 
onstru
tion, Al = b; l � 0, and therefore (P )must have a feasible solution. So we only need to 
onsider 
ase (ii).Every solution of (FHSDLP ) satis�es � = 0, be
ause if (y; x; s; �;  ) is a solution su
h that � > 0,then x=� is a feasible solution of (P ). On the other hand, by Farkas' lemma,maxfbTy : ATy � 0; eTATy = 1g > 0:Let s = �AT y. Then as before, we have bTy = �lT s. So the above problem 
an be rewritten asmaxf�lT s : s 2 R(AT ); eT s = 1; s � 0g:Now let D 2 R(n�m)�n be su
h that the rows are pre
isely a basis of N (A). We know R(DT ) = N (A)and N (D) = R(AT ). In parti
ular, ��(D) = ��(A), whi
h we will use later on. Therefore, the aboveproblem 
an be further rewritten asmaxf�lT s : Ds = 0; eTs = 1; s � 0g:Let �s be a basi
 optimal solution of this problem. So for some N 2 B(D) and k 2 f1; : : : ; ngnN su
hthat �sk 6= 0, we have DN �sN = �Dk�sk and �sj = 0 for all j 62 N [ fkg. Let �y be the unique ve
tor in Rmsu
h that AT �y = ��s. It is easy to see that� (n+ 1)�y1 + bT �y ; 0; (n+ 1)�s1 + bT �y ; 0; (n+ 1)bT �y1 + bT �y ;� 2 (FHSDLP ):Note that 1 = eT �s = �sk � �skeTD�1N Dk, whi
h implies�sk = 11� eTD�1N Dk > 0:Now,1� eTD�1N Dk � 1 + kD�1N Dkk1 � 1 +pn�mkD�1N Dkk � 1 +pn�m��(D) = 1 +pn�m��(A):Sin
e the 
hoi
e ofB in the de�nition of l (for 
ase (ii) in 
ase 2(a)) does not a�e
t the previous arguments,we 
an rede�ne l using B := f1; : : : ; ng nN . It is not hard to see that B 2 B(A). So we have0 < bT �y = jlT �sj = jlTB�sB j = j(A�1B b)T �sB j = j(A�1B b)kj�sk � ÆÆ(A)1 +pn�m��(A) : (15)



COMPLEXITY MEASURES FOR LP 29Also, bT �y = �lT �s � (~p+ 1)n, as we have shown before. So,max(y;x;s;�; )2(FHSDLP ) � (n+ 1)bT �y1 + bT �y � (n+ 1)ÆÆ(A)(1 +pn�m��(A)) [(~p+ 1)n + 1℄ :Re
all that [B0; N 0℄ denotes, as in the previous 
ases, the (unique) stri
t 
omplementarity partition(restri
ted to the subve
tors x and s) for (HSDLP ). Now let j 2 N 0. Let ~s be a maximizer ofmaxfsj : s 2 R(AT ); eT s = 1; s � 0g:Note that ~sj � �(A), and jlT ~sj � (~p + 1)n. Letŝ := (~p+ 1)n(1 +pn�m��(A))�s + ÆÆ(A)~s:Let ŷ be the unique ve
tor inRm su
h that AT ŷ = �ŝ. Now, by (15), lT ŝ � 0. So we have bT ŷ = �lT ŝ � 0.Therefore, � (n+ 1)ŷeT ŝ+ bT ŷ ; 0; (n+ 1)ŝeT ŝ+ bT ŷ ; 0; (n + 1)bT ŷeT ŝ + bT ŷ � 2 (FHSDLP ):Now, �lT ŝ � (~p+ 1)2n(1 +pn�m��(A)) + (~p+ 1)n:Therefore, max(y;x;s;�; )2(FHSDLP ) sj � (n + 1)ŝjeT ŝ + bT ŷ � (n+ 1)ÆÆ(A)�(A)[(~p+ 1)2n + (~p + 1)n℄ (1 +pn�m��(A)) + (~p+ 1)n + 1 :If B0 is empty, then we are done. Otherwise, let j 2 B0. Consider the problemmaxfxj : Ax = 0; eTx = 1; x � 0g:Let ~x be a basi
 optimal solution of this problem su
h that AB~xB = �~xjAj , where we 
alled the
orresponding basis B. First, we have ~xj � �(S) � �(A) by de�nitions. Also, j
T ~xj � ~p: If 
T ~x � 0, then�0; (n+ 1)~x1� 
T ~x ; 0; 0;� (n+ 1)
T ~x1� 
T ~x � 2 (FHSDLP ):If 
T ~x > 0, then �(n+ 1)(
T ~x)�ybT �y + 
T ~x ; (n+ 1)(bT �y)~xbT �y + 
T ~x ; (n+ 1)(
T ~x)�sbT �y + 
T ~x ; 0; 0� 2 (FHSDLP ):Using ÆÆ(A)1+pn�m��(A) � bT �y � (~p+ 1)n and 
T ~x � ~p, we 
on
ludemax(y;x;s;�; )2(FHSDLP )xj � (n + 1)(bT �y)�(A)bT �y + 
T ~x � (n+ 1)ÆÆ(A)�(A)[(~p + 1)n + ~p℄ (1 +pn�m��(A)) :The above lower bound on xj also applies in the 
ase that 
T ~x � 0. We proved the following fa
t.Theorem 5.10 Consider feasible-start primal-dual interior-point algorithms satisfying 
ondition (13)above and have been proven to run in polynomial time, with O(pn j log(�(P;D)j) iteration 
omplexity.
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h algorithm when applied to (HSDLP ) with the staring point �y := 0; �x := e; �s := e; �� := 1; � :=1; �� := 1, terminates 
orre
tly inO�pn�j log(ÆÆ(A))j+ n log��(A)Æ(A) �+ n log(n)��iterations.Here we used Propositions 5.7 and 2.14 to see that�(A) � �(A) = 1��(A) � 1pm(n�m) + 1 � Æ(A)�(A) ;and so 
on
lude that j log(�(A))j � O�log(n) + log��(A)Æ(A) �� :The last inequality above 
an also be obtained dire
tly from the de�nition of �(A) by utilizing thete
hniques in Se
tion 2. Note that the above theorem stays valid if we repla
e A by any submatrix of it.This is one of the reasons why in De�nition 5.8, we 
hose �A as [AjI℄, rather than just A. Ea
h iteration
an be performed in O(n3) elementary arithmeti
 operations.6 Sensitivity Analysis, Ho�man's Bound, �; ��;�, and Æ.Given an LP maxfbT y : ATy � 
g, we are interested in the 
hange in the set of optimal solutions as theve
tor 
 is varied. Let ��(A) denote the maximum of the absolute values of the entries of C�1 over allnonsingular submatri
es C of A.Proposition 6.1 (Cook, Gerards, S
hrijver, Tardos [3℄, [20℄)Suppose A 2 Rm�n (not ne
essarily full row rank), 
; 
0 2 Rn, and b 2 Rm, su
h that both LP problemsmaxfbTy : ATy � 
g and maxfbTy : ATy � 
0g have optimal solutions. Then for every optimal solution�y of maxfbTy : AT y � 
g, there exists an optimal solution �y0 of maxfbTy : AT y � 
0g withk�y � �y0k1 � m ��(A)k
 � 
0k1:Note that ��(A) � �(A)=Æ(A) for all A, by Cramer's Rule. In parti
ular, if A 2 Zm�n, then��(A) � �(A). In fa
t, Cook et al. state the above proposition in [3℄ for integral A, and ��(A) above isrepla
ed by �(A).We de�ne, for A with full row rank,�1(A) := maxfkA�1B k1 : B 2 B(A)g;and ��1(A) := maxfkA�1B Ak1 : B 2 B(A)g:Using almost exa
tly the same arguments as in the above proof, together with Proposition 2.3, we
an give an alternative sensitivity bound in terms of �(A).



COMPLEXITY MEASURES FOR LP 31Corollary 6.2 If the A in Proposition 6.1 has full row rank, thenk�y � �y0k1 � �1(A)k
 � 
0k1:Following the proof of Cook et al. we also have the following useful theorem in terms of ��(A).Theorem 6.3 Let A 2 Rm�n, rank(A) = m, 
; 
0 2 Rn, and b 2 Rm, su
h that both LP problemsmaxfbTy : ATy + s = 
; s � 0g and maxfbTy : ATy + s = 
0; s � 0g have optimal solutions. Then forevery optimal solution (�y; �s) of the former problem, there exists an optimal solution (�y0; �s0) of the latterproblem with k�s � �s0k1 � (��1(A) + 1)k
� 
0k1:ProofWe �rst show the inequality for the spe
ial 
ase b = 0. Then we use the spe
ial 
ase to establish thetheorem. Assume for now that b = 0. Suppose for a 
ontradi
tion that there exists (�y; �s) feasible for the�rst problem su
h that no feasible solution (�y0; �s0) of the latter problem satis�esk�s � �s0k1 � (��1(A) + 1)k
� 
0k1:Then the system AT y + s = 
0; s � �s+ pe;�s � ��s+ pe; s � 0;where p := (��1(A) + 1)k
� 
0k1, has no solution. By Farkas' lemma, there exist x 2 Rn; u; v 2 Rn+ su
hthat Ax = 0; x+ u� v � 0; (
0)Tx+ �sT (u� v) + p(eTu+ eTv) < 0:Note that if u = v = 0, then the above x proves that the system fATy + s = 
0; s � 0g is infeasible, a
ontradi
tion. Therefore, u+ v 6= 0. Let�u := uku+ vk1 ; �v := vku+ vk1 ;so that k�u+ �vk1 = 1. Let �x be a basi
 optimal solution ofminf(
0)Tx : Ax = 0; x � �(�u� �v)g:Note that this problem has a feasible solution (for example, x=ku+ vk1). Also it is bounded, be
auseotherwise there exists d 2 Rn+ su
h that d 6= 0; Ad = 0; (
0)Td < 0 whi
h implies that fAT y+s = 
0; s � 0gis infeasible, a 
ontradi
tion. Note that �x = ~x� (�u� �v), where, for some B 2 B(A),~xB = A�1B A(�u� �v) � 0; ~xN = 0:Thus, k�xk1 � k~xk1 + k�u� �vk1 � kA�1B A(�u� �v)k1 + k�u+ �vk1 � kA�1B Ak1 + 1 � ��1(A) + 1:This gives a 
ontradi
tion sin
e0 > (
0)T � xku+ vk1�+ �sT (�u� �v) + p� (
0)T �x+ �sT (�u� �v) + p� (
0)T �x� (
� AT �y)T �x+ p= (
0 � 
)T �x+ p� �k
� 
0k1k�xk1 + p� �(��1(A) + 1)k
� 
0k1 + p = 0:



COMPLEXITY MEASURES FOR LP 32So there exists (�y0; �s0) feasible in the se
ond system of the theorem su
h thatk�s � �s0k1 � (��1(A) + 1)k
� 
0k1:This 
ompletes the proof for the spe
ial 
ase b = 0.Now, 
onsider the general 
ase. Let (�y; �s; �x) be an optimal solution ofmaxfbTy : AT y + s = 
; s � 0gand its dual. Let J := fj : �sj = 0g. Let (y�; s�) be an optimal solution ofmaxfbTy : AT y + s = 
0; s � 0g:We have, by 
omplementary sla
kness, �xj = 0 for all j 62 J , and soAJ �xJ = b; �xJ � 0:Also, ATJ �y = 
J � 
0J � k
J � 
0Jk1e � ATJ y� � k
� 
0k1e:We proved that AT �y � 
;�ATJ �y � k
� 
0k1e �ATJ y�:Also the system ATy � 
0;�ATJ y � �ATJ y�has a feasible solution (for example, y�). Therefore, by applying the �rst part of the proof (with b = 0)to these two systems of inequalities, we 
on
lude that there exists (�y0; �s0) su
h thatAT �y0 + �s0 = 
0;�ATJ �y0 � �ATJ y�; �s0 � 0;and k�s � �s0k1 � (��1([Aj �AJ ℄) + 1)k
� 
0k1:Note that bT �y0 = �xTJATJ �y0 � �xTJATJ y� = bTy�:Therefore, (�y0; �s0) is an optimal solution of maxfbT y : ATy + s = 
0; s � 0g. We have (trivially, from (1))��1([Aj �AJ ℄) = ��1(A):We 
on
lude k�s� �s0k1 � (��1(A) + 1)k
� 
0k1and this 
ompletes the proof. 2Using (5), we easily have the following fa
ts.Corollary 6.4 Under the same assumptions as in Theorem 6.3, we havek�y � �y0k1 � pm�(A)k
 � 
0k1and k�s� �s0k1 � (pm��(A) + 1)k
� 
0k1:
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onverting norms inside the proof of Theorem 6.3 would also give the same 
onstant for thebound in terms of �; however, for ��, we would have to resort to Proposition 2.8, leading to an unne
essaryfa
tor of p2 in the upper bound.For the LP problems in the primal form, we de�ne��1(A) := maxfkA�1B Ak1 : B 2 B(A)gand prove by the above te
hniques the following fa
t.Theorem 6.5 Suppose A 2 Rm�n has full row rank, 
 2 Rn and l; l0 2 Rn su
h that both LP problemsminf
Tx : Ax = 0; x � �lg and minf
Tx : Ax = 0; x � �l0g have optimal solution(s). Then for everyoptimal solution �x of the former problem, there exists an optimal solution �x0 of the latter problem withk�x� �x0k1 � (��1(A) + 2) � kl � l0k1:7 Tardos' TheoremTardos [22℄ shows that any LP problem maxfbT y : AT y � 
g (with integer or rational data) 
an be solvedin at most poly(size(A)) elementary arithmeti
 operations on numbers of size polynomially bounded bysize(A; b; 
). Here we extend her ideas to the 
ase of real number data. The following proofs are verysimilar to Tardos', and S
hrijver's presentation in [20℄.7.1 AssumptionsTardos [22℄ works with integer (
an also easily handle rational numbers) data and the Turing Ma
hineModel. So, not only the number of arithmeti
 operations but also the sizes of the numbers in intermediatesteps are to be bounded by polynomial fun
tions of the input size. In this se
tion, we work with realnumbers and utilize Blum-Shub-Smale (BSS) Model (see the book by Blum, Cu
ker, Shub and Smale[2℄). Our �nal 
omplexity bounds involve 
omplexity measures of the input other than the dimension n.Therefore, to unify the approa
hes of Vavasis-Ye and Tardos, we introdu
e below some integers to the
omplexity model. The sizes of the integers are polynomially bounded in terms of the sizes of the integers
losest to our 
omplexity measures. We allow 
omparison of real numbers to su
h integers in O(1) time.As a result, determining the \
eiling" of a real number arising from the input data in polynomially manysteps of BSS model be
omes a polynomial operation for our purposes in this paper. For simpli
ity, weassume that we 
an 
ompute the 
eiling of su
h real numbers in O(1) time and 
onsider this operationan elementary operation.Here are some other assumptions that we will make:1. A 2 Rm�n has full row rank.2. We 
an solve the LP problems of the form (D) : maxfbT y : ATy � 
g, where 
 2 f�1; 0; 1gn,b 2 f�1; 0; 1gm, in at most poly(n; log(��(A))) elementary arithmeti
 operations.
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an be made without loss of generality, and isassumed throughout Se
tion 7. Also note that Assumption 2 holds for the Vavasis-Ye algorithm. It ispossible that there exists simpler algorithms than Vavasis-Ye's (and with better 
omplexity bounds) forLP problems with the above-mentioned spe
ial data.In this se
tion, we �rst do our analysis under Assumption 2. This will lay down most of the mainideas and main te
hni
al tools needed. Using these, we then show that removing Assumption 2 is possibleby utilizing the results of Subse
tion 5.1.Proposition 7.1 Suppose Assumption 2 holds. Then we 
an solve (D), where 
 2 Rnnf0g; b 2 Rmnf0g,in at most poly�n; log(��(A)); log� k
k1min
j 6=0 j
jj��elementary arithmeti
 operations.ProofThe feasible set fATy � 
g 
an be rewritten as fCAT y � C
g, where C 2 Rn�n, diagonal, su
h that forall j 2 f1; : : : ; ng, Cjj := ( 1=j
jj; if 
j 6= 0;1=k
k1; if 
j = 0:Now the problem maxfbTy : CAT y � C
g is equivalent to maxf(Bb)Tw : CATBw � C
g, wherew := B�1y and B 2 Rm�m, diagonal, su
h that for all i 2 f1; : : : ;mg,Bii := ( 1=jbij; if bi 6= 0;1=kbk1; if bi = 0:Now C
 2 f�1; 0; 1gn and Bb 2 f�1; 0; 1gm. So by Assumption 2, we 
an solve maxfbTy : AT y � 
gin at most poly(n; log(��(BAC))) elementary arithmeti
 operations. Now ��(BAC) = ��(AC) sin
e B isnonsingular. Also,k(AC)T (ACD(AC)T )�1ACDk = kCAT (A(CDC)AT )�1A(CDC)C�1k� kCk � kC�1k � kAT (A(CDC)AT )�1A(CDC)k;for all positive de�nite diagonal n � n matri
es D. Therefore,��(AC) � kCk � kC�1k � ��(A) = maxj Cjjminj Cjj ��(A) = k
k1min
j 6=0 j
jj ��(A):So we get the bound poly�n; log(��(A)); log� k
k1min
j 6=0 j
jj�� : 2
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iding the Feasibility of ATy � 
In this subse
tion, we des
ribe an iterative algorithm to determine whether AT y � 
 has a solution andif not, �nd a 
erti�
ate of its infeasibility.We �rst use Gaussian elimination to remove any redundant rows of A, to get �A. (Clearly, the givendata A has no redundant rows sin
e it has full row rank; but, this pro
edure is ne
essary beyond the �rstiteration as our A 
hanges.) As before, we 
an repla
e A by �A without 
hanging our problem. Now Ahas full row rank.Let 
0 := (I � AT (AAT )�1A)
. Then for all d 2 N (A),
0Td = 
Td� dTAT (AAT )�1A
 = 
Td:Sin
e 
0 is the orthogonal proje
tion of 
 onto N (A),fy : ATy � 
g = ; , fy : ATy � 
0g = ;:Therefore, we 
an repla
e 
 by 
0 without 
hanging our problem. Now we have 
 2 N (A).If 
 = 0, then y = 0 is a feasible solution, and we are done. So, we repla
e 
 by 
=k
k1. This does not
hange our problem sin
e the feasibility of the system is invariant under positive s
alar multipli
ation of
 (or independently A). Now we have k
k1 = 1.Suppose we are given an integer p su
h that p � 2n3=2(��(A))2. We �rst solve AT y � dp
e. If it hasno solution, then we have a d � 0 su
h that Ad = 0 and dp
eT d < 0. This d is also a 
erti�
ate of theinfeasibility of ATy � 
, sin
e (p
)Td � dp
eT d < 0, whi
h implies 
T d < 0. So we stop.Therefore, we assume we get (�y; �s) su
h thatAT �y + �s = dp
e; �s � 0: (16)Lemma 7.2 Let 
 2 N (A), 
 6= 0. Suppose (y; s) is given su
h that AT y+ s = 
. Then ksk � k
k=��(A).ProofWe use Proposition 2.6. Note that sin
e the 2-norms are used here, we 
an inter
hange R(AT ) and N (A)in Proposition 2.6, as we noted earlier. Let 
 := 
=k
k; � := ATy, andJ := fj 2 f1; : : : ; ng : sign(
j) 6= sign(�j)g:Note that J 6= ; be
ause otherwise sign(
) = sign(AT y) together with 
 2 N (A) would imply 
 = 0,a 
ontradi
tion. So (
; �; J) is a feasible solution to the minimization problem in Proposition 2.6, andhen
e k
Jk � k
k=��(A). Now, for ea
h j 2 J ,jsjj = j
j + (�(AT y)j)j = j
jj+ j(AT y)j j � j
jj;where the se
ond equality above uses the fa
t that 
j and �(AT y)j either have the same sign or at leastone of them is 0. So, ksk � ksJk � k
Jk � k
k=��(A). 2From (16), we have AT �y + �s + p
� dp
e = p
;
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e by Lemma 7.2, k�s + p
� dp
ek � kp
k��(A) � pk
k1��(A) = p��(A) :So, k�sk � p��(A) � kp
� dp
ek > p��(A) �pn;and hen
e, k�sk1 � k�skpn > ppn��(A) � 1 � 2n��(A) � 1 � n��(A): (17)Let J := fj 2 f1; : : : ; ng : �sj < k�sk1g. (We 
ould have de�ned J := fj 2 f1; : : : ; ng : �sj <n��(A)g and the following arguments would work as well. But the diÆ
ulty is we 
annot 
ompute n��(A)eÆ
iently.)Lemma 7.3 The system ATy � 
 has a feasible solution if and only if ATJ y � 
J has a feasible solution.ProofClearly, ifATy � 
 has a feasible solution, so does ATJ y � 
J sin
e the latter has possibly fewer 
onstraints.If ATy � 
 has no solution, then by Farkas' lemma, there exists d � 0 su
h that Ad = 0; 
Td < 0, and(without loss of generality) eT d = 1. We 
an assume that d is an extreme point of the 
ompa
t setfd : Ad = 0; eTd = 1; d � 0g:So, by Corollary 2.11, we have minfjdjj : dj 6= 0g � 1n��(A) :Now, dT �s = dT (dp
e � p
) + p
Td� dTAT �y < 1:For ea
h j 62 J; �sj � n��(A), and so if dj > 0, then dj�sj � 1, whi
h 
ontradi
ts dT �s < 1. Therefore, dj = 0for all j 62 J . So dJ satis�es dJ � 0; AJdJ = 0 and 
TJ dJ < 0. Hen
e by Farkas' lemma, ATJ y � 
J has nosolution. 2If ATJ y � 
J has no solution, then we have a dJ � 0 su
h that AJdJ = 0 and 
TJ dJ < 0. By insertingzero(es) to dJ , we have a d � 0 su
h that Ad = 0 and 
T d < 0. This is a 
erti�
ate of the infeasibility ofATy � 
.Therefore, we 
an repeat this algorithm with the data (AJ ; 
J ). Sin
e we remove at least one 
olumnfrom A to get AJ in ea
h iteration, the algorithm will terminate in at most n iterations.We now look at the 
omplexity of running the above algorithm. In ea
h iteration, we solveATy � dp
e.Note that kdp
ek1 = dkp
k1e = p;and mindp
je6=0 jdp
jej � 1:Therefore, by using the proof of Proposition 7.1 for the 
ase b = 0, we have proven that if Assumption 2holds, we 
an solve AT y � dp
e in at most poly(n; log(��(A)); log(p)) elementary arithmeti
 operations.Here we use Proposition 2.4 repeatedly to 
on
lude that ��(AJ ) � ��(A) in every iteration.



COMPLEXITY MEASURES FOR LP 37Proposition 7.4 Suppose Assumption 2 holds and that we are given an integer p � 2n3=2(��(A))2. Thenin at most poly(n; log(��(A)); log(p)) elementary arithmeti
 operations, we 
an determine whether AT y � 
has a solution, and if not, �nd a 
erti�
ate of its infeasibility.Similarlywe have the following result, in whi
h we use the algorithm and the analysis in Subse
tion 5.1and the relation (10).Proposition 7.5 Suppose we are given p, an integer power of 2, that is at least as large as 2n3=2(��(A))2.Then in at most poly(n; j log(ÆÆ(A))j; log(�(A)=Æ(A)); log(p)) elementary arithmeti
 operations, we 
andetermine whether AT y � 
 has a solution, and if not, �nd a 
erti�
ate of its infeasibility.7.3 Main ResultsFrom now on, we assume that 
 2 Rn n f0g, and b 2 Rm n f0g.Proposition 7.6 Suppose Assumption 2 holds, (D) is feasible and we are given an integer p � 2n3=2(��(A))2.Then in at most poly(n; log(��(A)); log(p)) elementary arithmeti
 operations, we 
an either:(i) �nd z su
h that AT z = 
, or(ii) dete
t that (D) is unbounded, or(iii) �nd an inequality aTy � 
 in AT y � 
 su
h that aTy� < 
 for some optimal solution y� of (D).ProofLet z be the (unique) minimizer of kAT z � 
k. z 
an be 
omputed by solving AAT z = A
 using a goodimplementation of Gaussian elimination, in poly(n) elementary arithmeti
 operations. Let 
0 := 
�AT z.If 
0 = 0, then we have found z that satis�es 
ondition (i) above. So we assume 
0 6= 0. Let
00 := pk
0k1 
0:Note that AT y � 
00 arises from ATy � 
 by a translation and a s
aling. Hen
e maximizing bT y overATy � 
 is equivalent to maximizing bTy over AT y � 
00 in the sense that y� is an optimal solution ofmaxfbTy : AT y � 
g if and only if (p=k
0k1)(y� � z) is an optimal solution of maxfbT y : AT y � 
00g.Also note that 
00 2 N (A); sin
e 
0 is.Now we solve the problem (D0) : maxfbT y : AT y � d
00eg. Note that (D0) is feasible sin
e (D) is andfy : ATy � 
00g � fy : ATy � d
00eg. Also, (D0) is unbounded if and only if (D) is unbounded be
auseea
h of these is true if and only if there exists d 6= 0 su
h that AT d � 0 and bTd > 0. Hen
e 
ondition(ii) is satis�ed. We 
an now assume both (D) and (D0) are bounded. Let (�y; �s) be an optimal solution of(D0). We have by (17) that k�sk1 � n��(A): Corollary 6.4 implies that there exists an optimal solution(�y0; �s0) of maxfbTy : ATy � 
00g su
h thatk�s� �s0k1 � �pm��(A) + 1� k
00 � d
00ek1 < pm��(A) + 1:Therefore, we pi
k the inequality with the largest �sj among the inequalities AT y � d
00e, and 
ondition(iii) is satis�ed.
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omplexity of solving (D0) using Proposition 7.1. We havekd
00ek1 = dk
00k1e = p:Also, d
00e 6= 0 and mind
00j e6=0 jd
00j ej � 1: So,log kd
00ek1mind
00j e6=0 jd
00j ej! � log(p+ 1);therefore, the required time bound is satis�ed. 2Proposition 7.7 Suppose Assumption 2 holds and that we are given an integer p � 2n5=2m��(A)Æ(A) �2 :Then we 
an �nd a solution of the system AT y � 
 or a 
erti�
ate of its infeasibility in at mostpoly�n; log��(A)Æ(A) � ; log(p)�elementary arithmeti
 operations.ProofLet b̂ := A �p+ 1; (p+ 1)2; � � � ; (p+ 1)n�T : We apply Proposition 7.4 to test whether (D̂) : maxfb̂Ty :ATy � 
g has a feasible solution, and if not, we obtain a 
erti�
ate of its infeasibility. Therefore,we assume that (D̂) is feasible. Sin
e (D̂) is not unbounded (by 
onstru
tion of b̂), (D̂) has optimalsolution(s).Suppose b̂ is a linear 
ombination of fewer than m 
olumns of A. Then there exists an m � (m � 1)submatrix C of A of rank m � 1, so that the matrix [Cjb̂℄ is singular. Hen
e,0 = det[Cjb̂℄= (p+ 1) det[CjA1℄ + (p+ 1)2 det[CjA2℄ + � � �+ (p+ 1)n det[CjAn℄;where Aj denotes the jth 
olumn of A. Suppose det[CjAj℄ 6= 0 for some j. Let k be the largest j su
hthat det[CjAj℄ 6= 0. Then0 = k�1Xj=1 �(p+ 1)j(� det[CjAj℄)�+ (p + 1)kj det[CjAk℄j� ��(A) k�1Xj=1(p+ 1)j + (p+ 1)kÆ(A)= ��(A)(p + 1)(p+ 1)k�1 � 1(p + 1)� 1 + (p+ 1)kÆ(A)= (p+ 1)k�Æ(A)� �(A)p �+ �(A)(p+ 1)p > 0;sin
e p � �(A)Æ(A) :
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ontradi
tion. So det[CjAj℄ = 0 for all j 2 f1; : : : ; ng, 
ontradi
ting the fa
t that A has rankm. So b̂ is not a linear 
ombination of fewer than m 
olumns of A. Therefore, (D̂) is attained at a uniqueminimal fa
e.We now apply Proposition 7.6 to (D̂). If it returns a z su
h that AT z = 
, we stop. Otherwise, wehave an inequality aT y � 
 in AT y � 
 su
h that aT y� < 
 for some optimal solution y� of (D̂). Let~A 2 Rm�(n�1) be A with the 
olumn a removed, and ~
 2 R(n�1) be 
 with the 
orresponding entry 
removed. We then solve the more relaxed problem maxfb̂T y : ~ATy � ~
g and repeat the above. Notethat ~A must have full row rank in order to apply Proposition 7.6 to the new relaxed problem. So weperform the following pro
edures to reformulate this problem. We do Gaussian elimination to eliminateany redundant row of [ ~Ajb̂℄ to get [ �Aj�b℄. Now,maxfb̂Ty : ~ATy � ~
g = minf~
T ~x : ~A~x = b̂; ~x � 0g= minf~
T ~x : �A~x = �b; ~x � 0g= maxf�bT �y : �AT �y � ~
g:It is not hard to see that the �rst problem (and hen
e all of them) has an optimal solution (so theequations above are justi�ed). Sin
e the system ~A~x = b̂ is 
onsistent, �A must have full row rank. So weapply Proposition 7.6 to the last problem above. If it returns a �z su
h that �AT �z = ~
, then ~AT z = ~
, wherez is obtained from �z by adding a zero entry in the pla
e that 
orresponds to the redundant row of ~A beingeliminated earlier. Otherwise, it returns an inequality �aT �y � ~
 in �AT �y � ~
 su
h that �aT �y� < ~
 for someoptimal solution �y�. Let y� be obtained from �y� by adding a zero entry as before. Then y� is an optimalsolution of maxfb̂Ty : ~ATy � ~
g be
ause ~AT y� = �AT �y� � ~
 and b̂Ty� = �bT �y�. Also, ~aT y� = �aT �y� < ~
.Note that for ea
h submatrix C of A, we have (using Proposition 2.14),2n3=2 (��(C))2 � 2n5=2m��(C)Æ(C) �2 � p:Hen
e p satis�es the supposition of Proposition 7.6 every time it is being 
alled.By repeatedly applying Proposition 7.6, we obtain an ordering of the inequalities in ATy � 
, say,�T1 y � 
1, �T2 y � 
2; : : : ; �Tny � 
n, su
h that for some r; 1 � r � n� 1, and some z 2 Rm:� �Tj z = 
j , for all r + 1 � j � n,� for ea
h 1 � j � r, �Tj yj < 
j for some optimal solution yj of maxfb̂Ty : �Tk y � 
k; 8k � jg.That is, we run Proposition 7.6 r times, by removing one inequality ea
h time from ATy � 
 until we�nd a z that satis�es the remaining inequalities as equalities. Sin
e the maximum is attained at a uniqueminimal fa
e, the optimal solution set 
an be written asfy : AT=y = 
=g = fy : AT=y = 
=; AT<y < 
<g;where ([AT<j
<℄; [AT=j
=℄) is a row-partition of [AT j
℄. It is easy to see that the rows of AT< are pre
iselyf�Tj : 1 � j � rg, whereas the rows of AT= are pre
isely f�Tj : r + 1 � j � ng. So AT=z = 
=, whi
himplies AT<z < 
<. Therefore, z is a feasible solution of (D̂).We now look at the 
omplexity of the above algorithm. We apply Proposition 7.4 on
e to (D̂), whi
htakes time poly(n; log(��(A)); log(p)) � poly�n; log��(A)Æ(A) � ; log(p)� ;



COMPLEXITY MEASURES FOR LP 40by (10).Afterwards, we apply Proposition 7.6 at most n times. At the kth time (1 � k � r + 1), Proposition 7.6takes at most poly(n; log(��(A(k))); log(p)) elementary arithmeti
 operations, where A(1) := A and fork � 2, A(k) is obtained by �rst removing some 
olumn of A(k�1), and then removing any redundant row.By Proposition 2.4, we have ��(A(k)) � ��(A(k�1)) � ��(A), for all k � 2, and we 
an again use (10). 2Theorem 7.8 If Assumption 2 holds, then we 
an solve the primal-dual LP problems(P ) : minf
Tx : Ax = b; x � 0g and (D) : maxfbTy : AT y � 
gin at most poly�n; log��(A)Æ(A) �� elementary arithmeti
 operations.ProofSuppose we are given an integer p � �p, where �p is de�ned in (12). We �rst des
ribe an algorithm forsolving the given LPs, and later explain how to obtain su
h a p. We apply Proposition 7.7 to test iffAT y � 
g and fAx = b; x � 0g are feasible, where the latter is the same as8><>:0B� A�A�I 1CAx � 0B� b�b0 1CA9>=>; :(To use Proposition 7.7 for the above displayed data, we apply Propositions 2.14 and 2.4 to the matrix[AT j � AT j � I℄ and note that �p is large enough for the appli
ation of Proposition 7.7|and the resultsit uses|to this matrix too.) If one of them is infeasible, then we stop (having determined the status ofea
h problem). Therefore, we may assume that both (P ) and (D) are feasible.By repeated appli
ation of Proposition 7.6 (as in the proof of Proposition 7.7, and we again have2n3=2 (��(C))2 � p, for all submatri
es C of A), we 
an split fATy � 
g into fAT(1)y � 
(1); AT(2)y �
(2)g and �nd a ve
tor z, su
h that AT(2)z = 
(2) and AT(1)y� < 
(1) for some optimal solution y� ofmaxfbTy : AT y � 
g. Let (xT(1); xT(2))T be a partition of any primal solution x su
h that xT(1) 
orrespondsto AT(1) and xT(2) 
orresponds to AT(2). Hen
e every primal optimal solution x satis�es x(1) = 0. So,minf
Tx : Ax = b; x � 0g = minf
T(2)x(2) : A(2)x(2) = b; x(2) � 0g= maxfbT y : AT(2)y � 
(2)g:Using Proposition 7.7, we 
an �nd a feasible solution x�(2) of8><>:0B� A(2)�A(2)�I 1CA x � 0B� b�b0 1CA9>=>; :Then 
T(2)x�(2) = zTA(2)x�(2) = bT z, and by LP duality, x�(2) is an optimal solution of minf
T(2)x(2) :A(2)x(2) = b; x(2) � 0g. Let x�(1) := 0. Then x� is an optimal solution of minf
Tx : Ax = b; x � 0g.Let AT(3)y � 
(3) be the subsystem of AT(2)y � 
(2) 
orresponding to the positive 
omponents of x�(2). By
omplementary sla
kness, it follows that fy : ATy � 
; AT(3)y = 
(3)g is the set of optimal solutions ofmaxfbTy : AT y � 
g. We 
an use Proposition 7.7 to �nd su
h a solution.



COMPLEXITY MEASURES FOR LP 41As in the proof of Proposition 7.7, identifying the partition [A(1)jA(2)℄ of A takes at mostpoly�n; log��(A)Æ(A) � ; log(p)� elementary arithmeti
 operations. Also, note that �=Æ values for[AT j � AT j � I℄; [AT(2)j � AT(2)j � I℄, [AjA(3)j � A(3)℄ are all bounded by �(A)Æ(A) . Therefore, the algorithmterminates in at most poly�n; log��(A)Æ(A) � ; log(p)� elementary arithmeti
 operations.The 
orre
tness of the above algorithm is guaranteed by the assumption that p � �p. Without a priorknowledge of ��(A)Æ(A) �, we will use the following \log-squaring tri
k". (Similar tri
ks have been used beforefor similar purposes; see [29℄.) Initially, we 
an guess n for the value of log��(A)Æ(A) � and run the abovealgorithm so that our initial p is roughly 2(2m + n)3=2(2mn + 1)22n: If the algorithm fails, we repla
ethe 
urrent guess by its square, update p, and repeat the algorithm. We also 
he
k the output of theabove algorithm. If it 
on
ludes that (P ) (or (D)) is infeasible, we use the 
orresponding infeasibility
erti�
ate to ensure that (P ) (or (D)) is indeed infeasible. Similarly, if the algorithm returns a primal-dual \optimal" solution pair, we use 
omplementary sla
kness 
onditions to ensure it is indeed optimal.All of these 
an be done eÆ
iently. If any of the output is false, we again square the most re
ent guessfor log��(A)Æ(A) �, update p, and repeat the algorithm. It is easy to show that afterO0�log0� log log��(A)Æ(A) �log(n) 1A1Aguesses, we have the 
urrent guess for p between �p and ~p. (Here we assume that log log��(A)Æ(A) � � 2 log(n);otherwise, our �rst or se
ond guess works and no additional iterations are ne
essary.) Also, 
learly all theguesses for p is at most ~p; moreover, log(~p) = O�poly�n; log��(A)Æ(A) ��� : Therefore, the 
laimed overall
omplexity bound is established. 2Note that in the proof of the above theorem, one 
annot in
rease the size of the guess signi�
antlyfaster than we did, sin
e the sizes of all the integers used by our algorithm must be bounded by apolynomial fun
tion of the sizes of the 
omplexity measures we are using.Theorem 7.9 We 
an solve the primal-dual LP problems(P ) : minf
Tx : Ax = b; x � 0g and (D) : maxfbTy : AT y � 
gby utilizing the LP solver subroutine of Subse
tion 5.1 O(n2) times and therefore in at mostpoly�n; j log(ÆÆ(A))j; log��(A)Æ(A) �� elementary arithmeti
 operations.ProofWe assume that we are given an integer p � �p. (We 
an remove this assumption as in the proof ofTheorem 7.8, by applying a log-squaring tri
k.) First we 
he
k the feasibility of (P ) and (D) usingProposition 7.5 and the underlying algorithm. If any of (P ), (D) is infeasible, we have the 
erti�
ates ofsu
h fa
t and we are done. So, we assume that both (P ) and (D) have feasible solutions. Then we applythe proof of Proposition 7.6 to (D) and have the problem(D0) : maxfbTy : ATy � d
00eg:



COMPLEXITY MEASURES FOR LP 42Our theorem in Subse
tion 5.1 
annot deal with this LP problem (sin
e the obje
tive fun
tion of (D0) isarbitrary). We form the dual (
all it (P 0)) of (D0) and apply the proof of Proposition 7.6 to (P 0). Now,the LP problems arising from the appli
ations of Proposition 7.6 to (P 0) all satisfy the 
onditions neededin Subse
tion 5.1 (namely, 
ondition (ii) of the subse
tion for b and 
). So, 
alling this subroutine O(n)times, as in the proof of Theorem 7.8, we 
an 
ompute optimal solutions of (P 0) and (D0). (At somepoint, during this pro
ess, inside the proof of Theorem 7.8, the method in the proof of Proposition 7.7 isused. This requires the LP solver subroutine to be 
alled with data satisfying 
ondition (i)|potentiallynot satisfying 
ondition (ii)|of Subse
tion 5.1.) Now, we have an optimal solution of (D0) and we 
ankeep applying this te
hnique in using the proof of Theorem 7.8 to solve (P ) and (D). This 
learly requiresno more than O(n) problems of the type (D0) to be solved. Sin
e ea
h su
h problem 
an be solved withO(n) 
alls to the LP solver subroutine, the O(n2) bound follows. 27.4 Overall Complexity BoundsSuppose we have an interior-point algorithm satisfying Assumption 2, with an O �n� (log (��(A)))��iteration bound, for some � � 0, � � 0. Then Theorem 7.8 implies an iteration bound ofO0�n1+� �log��(A)Æ(A) �+ log(n)��0�log0� log log��(A)Æ(A) �log(n) 1A1A1A :On the other hand, using the methods of Subse
tion 5.1 and Theorem 7.9, we obtain the iterationbound O0�n2:5�j log(ÆÆ(A))j + n log��(A)Æ(A) �+ n log(n)�0�log0� log log��(A)Æ(A) �log(n) 1A1A1A :The above bound is not better than Vavasis-Ye's and 
an be mu
h worse in general. However, in the 
asethat A is totally unimodular, it be
omes the same. In this very spe
ial 
ase, we 
an omit the fa
tor of(log log(��(A))) (
aused by a log-squaring type tri
k) in the iteration bound of Vavasis-Ye algorithm. See,for instan
e, Proposition 7.10 and the dis
ussion following it. In the 
ase that A is integral, the bounds
an be 
onsidered 
lose. See below.7.5 Integer Data and Network Flow Problems� Integer Data:When the data is integer, Æ(A) = 1, ÆÆ(A) � 1�(A) and log(�(A)) � n log(n) + size(A). Therefore,we have Tardos' theorem as a spe
ial 
ase. Also, in this 
ase it is very easy to get upper bounds(whose sizes are bounded by polynomial fun
tions of the input size) for ~p so that the multipli
ativefa
tor �log� log log(�(A)Æ(A) )log(n) �� in the 
omplexity bound 
an be removed.� Totally Unimodular Matrix A:Re
all that a matrix is totally unimodular if all of its square submatri
es have determinants �1, 0or 1. That is, ÆÆ(A) = Æ(A) = �(A) = 1. The following is spe
ial 
ase of Proposition 2.14.



COMPLEXITY MEASURES FOR LP 43Proposition 7.10 (Ho [11℄) Let A 2 <m�n be a full row rank totally unimodular matrix. Then��(A) � pmn.ProofTake any basis B of A. It is elementary to show that A�1B A is also totally unimodular. Then forall x su
h that kxk2 = 1,kA�1B Axk2 = vuuut mXi=10� nXj=1(A�1B A)ijxj1A2 �vuuut mXi=10� nXj=1 jxjj1A2= vuut mXi=1(kxk1)2 � pmn;be
ause maxkxk2=1 kxk1 = pn when x = 1pne. Therefore ��(A) � pmn by Proposition 2.3. 2In fa
t we 
an exhibit a totally unimodular matrix A with ��(A) = �(pmn). Consider the 
ompletegraph on verti
es f1; : : : ;m + 1g, with ar
s ij if i < j. Let A be its node-ar
 in
iden
e matrix,with any one row deleted. Then A is a totally unimodular m � n full row rank matrix, wheren = m(m+1)=2. It 
an be easily shown that if we 
hoose x = e and B su
h that the 
olumns of AB
orrespond to a spanning tree that is also a path, i.e., a Hamiltonian path with the 
orrespodingin
iden
e matrix: AB = 0BBBBBB� 1 �11 �1.. . . . .1 �11 1CCCCCCA ;then (A�1B Ax)j = j(m � j + 1). Therefore��(A) �vuuuuut mXj=1 j2(m� j + 1)2m(m+1)2 = �(m1:5) = �(pmn):Therefore, the upper bound proven in Proposition 7.10 is tight up to the order.Note that we used above, the fa
t that A�1B is the all ones upper-triangular matrix. As it is well-known, for every B 2 B(A), there exist permutations of the rows and the 
olumns of AB su
h thatthe resulting matrix is upper-triangular. Sin
e A�1B is also totally unimodular, it 
an only have�1; 0; 1 entries. Therefore, in this spe
ial setting, B 2 B(A), 
orresponding to Hamiltonian paths,maximize kA�1B k:� Minimum Cost Flow Problems:Consider the minimum 
ost 
ow problem with the 
onstraints Ax = b and 0 � x � u, where A isthe node-ar
 in
iden
e matrix of a given dire
ted graph with any one row deleted (so that it has full



COMPLEXITY MEASURES FOR LP 44row rank). By introdu
ing the sla
k variables v, we 
onvert the 
onstraints into standard equalityform: Â xv ! =  bu ! ; xv ! � 0;where Â :=  A 0I I ! :This stru
ture arises whenever we 
onvert an upper bounded LP problem to the standard equalityform. Vavasis and Ye [29℄ prove that ��(Â) = O(mn). Using Propositions 2.7 and 7.10 (and thearguments following that), we have ��(Â) = �(pmn) when A is totally unimodular.A
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