
Condition and Complexity Measures for InfeasibilityCerti�
ates of Systems of Linear Inequalities andTheir Sensitivity Analysis�Hugo J. Lara y Levent Tun�
elzJuly 2002Abstra
tWe begin with a study of the infeasibility measures for linear programming problems. Forthis purpose, we 
onsider feasibility problems in Karmarkar's standard form. Our main fo
usis on the 
omplexity measures whi
h 
an be used to bound the amount of 
omputationale�ort required to solve systems of linear inequalities and related problems in 
ertain ways.We propose a new 
omplexity measure that is parti
ularly well-suited for the generalizedTardos' s
heme for the real number data model. We prove that the new measure is betweenYe's (smallest large variable) measure and ��. We present geometri
 interpretations of the
omplexity measures and then turn to the sensitivity analyses and the 
omputation of thedire
tional derivatives of the 
omplexity measures. For this purpose, various sets of allowedperturbations are identi�ed (depending on the 
omplexity measure) using the minimal andmaximal sign ve
tors of the subspa
es involved. Finally, we 
onsider the generalizationof the infeasibility 
erti�
ates to 
onvex optimization problems in 
oni
 form. We presenta geometri
 generalization of a 
ondition measure proposed by Cheung-Cu
ker. We derivevarious new relationships amongst the existing and new 
omplexity measures in this 
ontext.Keywords: linear inequality systems, linear programming, 
onvex optimization, 
omputational
omplexity, 
ondition numbers, 
omplexity measures, interior-point methodsAMS Subje
t Classi�
ation: 90C05, 90C25, 90C60, 52A41, 49K40, 90C31, 90C51�Results of this manus
ript were presented at the Fields Institute and at the SIAM Conferen
e on Optimizationin Toronto during May 2002.y(hugol�u
la.edu.ve) De
anato de Cien
ias. Universidad CentroO

idental Lisandro Alvarado (UCLA). Apdo400. Barquisimeto, 3001, Venezuela. Resear
h suported in part by CDCHT-UCLA, Venezuela. Also supportedby a resear
h grant from NSERC and a PREA of the se
ond author.z(ltun
el�math.uwaterloo.
a) Department of Combinatori
s and Optimization, Fa
ulty of Mathemati
s, Uni-versity of Waterloo, Waterloo, Ontario N2L 3G1, Canada. Resear
h of this author was supported in part byresear
h grants from NSERC and a PREA from Ontario, Canada.1



2 Lara and Tun
�el1 Introdu
tion, De�nitions and NotationLet A 2 Rm�n su
h that rank(A) = m (this will be assumed throughout the paper) be given.Consider the feasibility problems:Does there exist x 2 Rn su
h that Ax = b; x � 0? (1)Does there exist y 2 Rm su
h that AT y � 
? (2)In the above, b 2 Rm and 
 2 Rn are given. The feasibility problems (1) and (2) 
orrespond tothe primal-dual linear optimization problems:(P ) minimize 
TxAx = b;x � 0;(D) maximize bTyAT y � 
:By Farkas' lemma, (1) has no solution i� there exist �y 2 Rm, �s 2 Rn su
h thatAT �y + �s = 0; eT �s = 1; �s � 0; and bT �y > 0:Similarly, (2) has no solution i� there exists �x 2 Rn su
h thatA�x = 0; eT �x = 1; �x � 0; and 
T �x < 0:Sin
e rank(A) = m, the system Ax = b always has solution(s) and we 
an �nd l 2 Rn su
h thatAl = b (e.g., l := AT (AAT )�1b).Let N (�), R(�) denote the nullspa
e and the range (respe
tively) of the matrix argument.We 
an write: (1) is infeasible i�9�s 2 R(AT) su
h that eT �s = 1; �s � 0; and lT �s < 0:The above provides some motivation for studying 
omplexity and 
ondition measures for thefeasibility problems in Karmarkar's standard form:�x : Ax = 0; eTx = 1; x � 0	 :For su
h a feasibility problem, we have a dual whi
h exposes a beautiful stru
ture (see Vavasisand Ye [40℄): (FP ) 8><>: x 2 N (A);kxk1 = 1;x � 0;



Infeasibility Certifi
ates 3(FD) 8><>: s 2 R(AT );ksk1 = 1;s � 0:The stri
t 
omplementarity theorem of linear optimization translates to the following fa
t: Forevery A 2 Rm�n, there exists [B;N ℄, a partition of f1; 2; : : : ; ng (B or N may be empty) su
hthat there exists �x feasible in (FP ), �xB > 0, �xN = 0 and there exists �s feasible in (FD),�sB = 0, �sN > 0. In parti
ular, B = ; i� (FP ) is infeasible and B = f1; 2; : : : ; ng i� (FD) isinfeasible. Note that the partition [B;N ℄ as des
ribed above is always unique and is 
alled thestri
t 
omplementarity partition determined by A.Sin
e (FP ) and (FD) are de�ned over any pair of orthogonally 
omplementary linear sub-spa
es in Rn, we have the following de�nitions (for 
onvenien
e, S is the nullspa
e of A):�P (A) := �P (S) := minj2B max fxj : x 2 S; kxk1 = 1; x � 0g ;�D(A) := �D(S) := �P (S?) = minj2N maxnsj : s 2 S?; ksk1 = 1; s � 0o ;where �P (S) := 1 if B = ; (and therefore, �D(S) := 1 if N = ;). The primal-dual 
omplexitymeasure of Ye [42, 41℄ for the pair (FP ); (FD) is then de�ned by�(A) := min f�P (A); �D(A)g(we de�ne �(S) similarly).Ye [42, 41℄ and Vavasis-Ye [40℄ show that the abovementioned stri
t 
omplementarity parti-tion [B;N ℄ 
an be 
omputed in O �pn ln � n�(A)�� interior-point iterations.Many of the 
on
epts in our presentation be
ome more apparent when we fo
us on those
hara
terizations of the 
omplexity measures involving sign patterns of ve
tors in 
ertain linearsubspa
es. For x 2 Rn, sign(x) 2 f�; 0;+gn en
odes the signs of the entries of x. Let S � Rnbe a linear subspa
e. We denote by sign(S) � f�; 0;+gn the set of sign ve
tors of the elementsof S.Note that if A 2 Rm�n su
h that N (A) = S then every nonzero ve
tor in S represents alinear dependen
e amongst the 
olumns of A. Minimal linear dependen
ies play a parti
ularlyimportant role in what follows.We denote the set of sign patterns of those minimal elements in S by sign(S). That is,sign(S) � sign(S) denotes those nonzero sign patterns in sign(S) su
h that setting any numberof +'s and �'s to zero (without 
hanging the others) does not give another nonzero element ofsign(S). For x 2 Rn, let J�(x) := fj 2 f1; 2; : : : ; ng : xj < 0g ;J0(x) := fj 2 f1; 2; : : : ; ng : xj = 0g ;



4 Lara and Tun
�elJ+(x) := fj 2 f1; 2; : : : ; ng : xj > 0g :Then, �x 2 Snf0g is minimal if for all x̂ 2 Snf0g satisfying J�(x̂) � J�(�x); J+(x̂) � J+(�x);J0(x̂) � J0(�x) we have sign(x̂) = sign(�x). So, �x 2 S is minimal i� sign(�x) 2 sign(S).It is well-known that if we identify the elements of sign(S) as the 
ir
uits on the ground setf�; 0;+gn, we obtain an oriented matroid of rank [n� dim(S)℄. Nonnegative sign patterns areparti
ularly important to us: sign+(S) := fsign(x) : x 2 S; x � 0g ;sign+(S) := sign(S)\ sign+(S):Also relevant to our study are the maximal elements of a subspa
e. Analogously, we say�x 2 S is maximal if for all x̂ 2 S satisfying J�(x̂) � J�(�x); J+(x̂) � J+(�x); J0(x̂) � J0(�x) wehave sign(x̂) = sign(�x). We denote by sign(S) the set of sign ve
tors of all maximal elements ofS. We also de�ne sign+(S) := sign(S)\ sign+(S):Note that for a given subspa
e S, sign+(S) is either empty or is a singleton. Moreover, ifS = N (A) then sign+(S) identi�es the elements of B and sign+(S?) identi�es the elements ofN . The following very elementary lemma expresses the minimal elements in N (A) as minimallinear dependen
ies amongst the 
olumns of A.Lemma 1.1 Consider �x 2 N (A) su
h that k�xk1 = 1. Then, �x is minimal in N (A) if and onlyif for J := J+(�x) [ J�(�x) the system of equationsAJxJ = 0; kxJk1 = 1 (3)has �xJ as the unique solution.Proof. Take an arbitrary solution x̂J of (3). Suppose for a 
ontradi
tion that x̂J 6= �xJ . De�nehJ (�) = �xJ + �x̂J . Now 
hoose �� su
h that j��j is the smallest positive number su
h that someof the 
omponents of hJ (�) be
ome zero while the rest of the 
omponents preserve their signsin �xJ (not all the 
omponents 
an be driven to zero at the same time, be
ause x̂J 6= �xJ). De�neh(��) in Rn by 
ompleting with zeros. Clearly 0 6= h(��) 2 N (A), J+(h(��)) � J+(�x), J�(h(��)) �J�(�x) and J0(h(��)) � J0(�x). This 
ontradi
ts the minimality of �x sin
e sign(�x) 6= sign(h(��)).Conversely, suppose that �xJ is the unique solution of (3) and that it is not minimal. Thenthere exists x̂ 2 N (A) di�erent from �x satisfying kx̂k1 = 1, J+(x̂) � J+(�x), J�(x̂) � J�(�x) andJ0(x̂) � J0(�x). Then we have that (J+(x̂)[J�(x̂)) � J . Therefore, x̂J 2 N (AJ) and kx̂Jk1 = 1.This provides a 
ontradi
tion be
ause �xJ is the unique point satisfying these last relations. �



Infeasibility Certifi
ates 5Next we de�ne a new 
omplexity measure�P (A) := �P (S) := min nxj 6= 0 : x 2 S; kxk1 = 1; sign(x) 2 sign+(S)o ;�D(A) := �D(S) := �P (S?) = minnsj 6= 0 : s 2 S?; ksk1 = 1; sign(s) 2 sign+(S?)o ;�(A) := min f�P (A); �D(A)g ;where �P (S) is de�ned to be 1 if the set over whi
h the minimum is 
omputed is empty. Wede�ne �(S) a

ordingly. These 
omplexity measures provide our starting point in this paper.We study the properties of infeasibility 
erti�
ates for systems of linear inequalities and theirgeneralizations in the more general 
ontext of 
onvex optimization.In the next se
tion, we give a dual 
hara
terization of �(A) using LP duality theory. Thenin Se
tion 3, we review 
hara
terizations of ��(A) and extend and/or sharpen some of the knownresults. In Se
tion 4, we show that the new 
omplexity measure is parti
ularly well-suited toTardos' s
heme in solving LP feasibility problems. In this se
tion we improve a result of Hoand Tun�
el [20℄ and re�ne a theorem of Todd, Tun�
el and Ye [36℄. Se
tion 5 
on
erns the basi
setup for a variety of 
onditions on the sign ve
tors of subspa
es and the study of how �(A) and�(A) behave under perturbations. Many of the 
omplexity measures 
an be expressed as themaximum (or the minimum) of the optimal values of a family of LP problems. For perturbationtheory of linear programming problems see, for instan
e, �rst Robinson [32, 31, 30, 29, 28℄, thenHirabayashi-Jongen-Shida [19℄ and Renegar [27℄. The 
omplexity measures, we are 
on
ernedwith here, are motivated by the 
omplexity analyses of interior-point methods. There are manypapers whi
h dis
uss perturbation and sensitivity analysis from an interior-point method pointof view; see Adler-Monteiro [1℄, Greenberg [15, 16℄, Mehrotra-Monteiro [24℄ and Y�ld�r�m-Todd[43℄. None of these works is 
on
erned with analyzing the sensitivity of �(A), �(A) or ��(A).Luo and Tseng [22℄ obtained perturbation results for Ho�man 
onstants for systems of linearinequalities (see also Deng [7℄ and Az�e and Corvelle
 [2℄ for more re
ent studies of related issues inmore general settings). These approa
hes are based on rank 
onditions on 
ertain submatri
esof A. Our approa
h is more geometri
 and is based on sign ve
tors de�ned by the subspa
epartition determined by A, as suggested in [37℄. Our approa
h easily applies to �(A), �(A) and��(A) in a uni�ed manner. We do not analyze the Ho�man 
onstants in this paper; however, ourapproa
h 
an also be used to obtain results similar to those of Luo and Tseng [22℄.In Se
tion 6, we begin extending our study to a 
onvex optimization setting. Again we takea geometri
 viewpoint. We 
onsider the 
omplexity measure sym(�) studied by Epelman andFreund [8℄ (also see the measure g(�) proposed by Freund [11℄ and a related geometri
 approa
hto primal-dual level sets in 
onvex optimization [12℄). We also 
onsider the 
ondition measure ofRenegar (see [27, 26℄). In the 
ontext of strong infeasibility 
erti�
ates, we generalize a 
onditionmeasure of Cheung-Cu
ker [5℄ (originally proposed for systems of linear inequalities) to 
onvexoptimization. We present various results establishing some new relationships amongst these
ondition and 
omplexity measures in addition to results involving the width and the normapproximation 
oeÆ
ients of 
onvex 
ones.



6 Lara and Tun
�el2 Dual Chara
terization of �We use linear programming duality theory repeatedly throughout the paper. To warm the readerup to the notation, we present the following dual 
hara
terization of �.Theorem 2.1 For all linear subspa
es S � Rn, we have the following dual 
hara
terization of�: �P (S) = min; 6= J � Bi 2 (BnJ) maxs 2 S?sign(sj) = +; 8j 2 Jsign(si) = � min�minj2J fsjg; (1 + si)� :When B = ;, the last minimum above is over the empty set and for 
onvenien
e, it is de�nedto be 1. Similarly, when jBj = 1, we have �P (S) = 1 and the minimum above is again over theempty set and is de�ned to be 1. Finally, and again similarly, if the maximum above is over theempty set then it is also de�ned to be 1. Note that if S 
ontains unit ve
tors, this is a rathertrivial situation too, similar to what happens with other 
omplexity measures � (see [37℄) and� (de�ned in Se
tion 3, see [36℄). If ej is in S, we simply remove the jth 
omponent and workwith the restri
tion of S (and S?) to Rn�1.Proof. As we noted above, we 
an assume jBj � 2 and that S 
ontains no unit ve
tors.Let J�; i�; s� determine the right-hand-side above (the existen
e of su
h a solution follows fromthe LP duality theorem applied to a set J [ fig identifying a nonnegative, minimal element inS|also see below). Then the value of the right-hand-side is the optimal value of the linearoptimization problem maximize tsubje
t to ATJ�w+ et � 0ATi�w + t � 1:Let w� 2 Rm su
h that s� = �ATw�, and de�ne t� := minnminj2J�fs�jg; (1 + s�i�)o > 0: Then(w�; t�) is an optimal solution of the linear optimization problem above. Conversely, an optimalsolution (w�; t�) of the above linear optimization problem determines the optimal s� (for the�xed pair (J�; i�)) in the right-hand-side above. The dual of the linear optimization problem isminimize xi�subje
t to AJ�xJ� + Ai�xi� = 0eTxJ� + xi� = 1xJ� ; xi� � 0:Choose an extreme point solution �xJ� ; �xi� whi
h is optimal in this problem. Obviously, �xi� > 0by the duality theorem of linear programming. De�ne �x 2 Rn by 
ompleting with zeros. This



Infeasibility Certifi
ates 7is a minimal linear dependen
e verifying A�x = 0; eT �x = 1; �x � 0; so, �P (A) is at most theright-hand-side.Now we take �d 2 Rn de�ning �P (A). Identify i su
h that �P (A) = �di. Take J [fig the set ofnonzero 
omponents of �d. The system of equations Ad = 0 
an be written as AJdJ +Aidi = 0where the 
olumns of AJ are linearly independent, be
ause �d is a minimal linear dependen
e.The problem minimize disubje
t to AJdJ + Aidi = 0eTdJ + di = 1dJ ; di � 0has a unique solution given by �dJ ; �di. The dual of this problem ismaximize tsubje
t to ATJw + et � 0ATi w + t � 1:Now take an optimal solution ( �w; �t) with optimal value �t = �P (A) whi
h is at least the right-hand-side. �Sin
e the above theorem applies to all subspa
es and our de�nition of � 
an be written interms of �P (S) and �P (S?), we haveCorollary 2.1 Let A 2 Rm�n be given. Also let S := N (A). Then,�(A) = min 8>>>>>>>>>><>>>>>>>>>>: min; 6= J � Bi 2 (BnJ) maxs 2 S?sign(sj) = +; 8j 2 Jsign(si) = � min�minj2J fsjg; (1+ si)� ;min; 6= J � Ni 2 (NnJ) maxx 2 Ssign(xj) = +; 8j 2 Jsign(xi) = � min�minj2J fxjg; (1 + xi)�9>>>>>>>>>>=>>>>>>>>>>; :



8 Lara and Tun
�elEven though the above algebrai
 des
ription seems long-winded, the geometri
 interpretationof this dual 
hara
terization is quite ni
e and is in
luded in Se
tion 5 together with the geometri

hara
terizations of other 
ondition and 
omplexity measures.3 Chara
terizations of ��Let D denote the set of n � n positive de�nite, diagonal matri
es. We de�ne��p(A) := supfkAT (ADAT )�1ADkp : D 2 Dg; p 2 [1;+1℄:We easily have��p(A) = sup�kAT ykpk
kp : y 2 argminkD 12 (AT y � 
)k2; 
 2 Rn; D 2 D� : (4)The 
omplexity measure ��(A) := ��2(A) has been studied by many resear
hers (see for instan
eVavasis [38℄, Vavasis-Ye [40, 39℄ and Ho-Tun�
el [20℄; also see Forsgren [10℄ for a histori
al a

ountup to early 1990s). The next result was stated in [36℄ for the 2-norm only.Lemma 3.1 For every p 2 [1;+1℄, we have ��p(A) = maxfkATA�TB kp : B 2 B(A)g.Proof. Proofs of Lemma 1 (also see Todd [35℄) and Lemma 2 of [36℄ (also see Vavasis-Ye [39℄)go through with an arbitrary p-norm in pla
e of the 2-norm. �In [23℄, Megiddo and Shub studied the behavior of large variables of the least square solutions.For a sequen
e fd(k)g in Rn++ 
onverging to �d 2 Rn+, they demonstrate among other things thefollowing fa
t.Lemma 3.2 (Megiddo and Shub [23℄) Let J := J+( �d) 6= ;: Then the sequen
e fy(d(k))g de�nedby y(d(k)) := argminfkD 12k (ATy � 
)k2g;where Dk = Diag(d(k)), 
onverges to y( �d) = argminfk �D 12J (ATJ y � 
J)k2g.Let X := fDu : u 2 N (A); D 2 
l(D)g, Yp := fv 2 R(AT ) : kvkp = 1g,�p;q(A) := inffku� vkq : u 2 X; v 2 Ypg:We also de�ne �p(A) := �p;p(A):The fa
t that ��2(A) = 1=�2(A) was established by Stewart and O'Leary.



Infeasibility Certifi
ates 9Proposition 3.1 (O'Leary [25℄) Denoting the variables by u, v and J we have�p;q(A) = min kvJkqsign(vj) = sign(uj); 8j =2 Jkvkp = 1v 2 R(AT )u 2 N (A); 6= J � f1; : : : ; ng:Proposition 3.2 In the above proposition, there always exists a maximal u 2 N (A) whi
hattains the minimum.Proof. Let u 2 N (A); v 2 R(A); J � f1; 2; : : : ; ng attain the minimum. If u is not maximalthen there exists �u 2 N (A) maximal su
h that J+(�u) � J+(u) and J�(�u) � J�(u). Then(�u; v; J [ (J0(u)nJ0(�u))) is also an optimal solution. �Theorem 3.1 For every p 2 [1;+1℄, we have ��p(A) = 1�p(A).Proof. Take v = AT y and 
 satisfying the maximum in (4). Then there exists a sequen
efd(k)g in Rn++ su
h that the sequen
e fy(d(k))g of least squares solutions asso
iated with d(k)
onverges to y. So, the sequen
e fv(k)g de�ned by v(k) := ATy(d(k)) 
onverges to v. De�nethe sequen
e fu(k)g by u(k) := v(k) � 
. We 
laim that for ea
h k, u(k) 2 N (ADk). In fa
t,ADku(k) = ADk(AT (ADkAT )�1ADk
 � 
) = 0. By de�nition of fu(k)g, k
kp = kv(k) � u(k)kpfor all k, so 




 v(k)kv(k)kp � u(k)kv(k)kp




p = k
kpkv(k)kp = k
kpkAT y(d(k))kp :Taking limits, we obtain 1��p(A) = 



 vkvkp � ukvkp



p :Sin
e v=kvkp 2 Yp and u=kvkp 2 X we obtain 1��p(A) � �p(A).Now, we take v; u and J optimal in Proposition 3.1. Let ŷ 2 Rm su
h that v = AT ŷ. Wehave �p(A) = kvJkp. Consider a sequen
e f�kg in R+ 
onverging to zero. De�ne the sequen
eof diagonal matri
es fDkg by (Dk)ii := �k if i =2 J ; (Dk)ii = 1 if i 2 J . Consider v̂ 2 Rnde�ned as v̂J := vJ and v̂j := 0 for all other j. Also 
onsider the sequen
es fy(k)g de�ned byy(k) := argminfkD 12k (AT y � v̂)k2g, and fv(k)g de�ned by v(k) := ATy(k). By Lemma 3.2, the
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�ellimit of y(k) is given by argminfkATJ y � vJk2g. We 
laim that this limit 
oin
ides with ŷ. Tosee it, note that the sequen
e f~y(k)g de�ned by ~y(k) := argminfkD1=2k (ATy� v)k2g has the samelimit; moreover, for ea
h k, AT ~y(k) is the oblique proje
tion of v onto R(AT ). Sin
e v 2 R(AT )then the proje
tion must be itself. This proves that yk ! ŷ and so �v(k)	! v. By hypothesis,kvkp = kAT ŷkp = 1 and �p(A) = kvJkp = kATJ ŷkp. Then1�p(A) = kAT ŷkpkvJkp = kAT ŷkpkv̂kp � ��p(A):The inequality above follows from the 
hara
terization (4). �Gonzaga and Lara [14℄ proved that for p = 2, ��p(S) and ��p(S?) 
oin
ide. For general normsthis behavior is not preserved, even if we 
onsider dual norm type relations: Consider the matrixA := ( 1 2 3 ). Here, N (A) = S and R(AT ) = S?. Then the matrix Z :=  �2 1 0�3 0 1 ! is anull spa
e matrix of A. Using Lemma 3.1, we have ��1(S) = maxnkATA�TB k1 : B 2 B(A)o = 6,��2(S) = p14, and ��1(S) = 3, while ��1(S?) = maxnkZTZ�TB k1 : B 2 B(Z)o = 4, ��2(S?) =p14 and ��1(S?) = 5. This example shows that in general ��p(S) 6= ��p(S?), ��p(S) 6=��p=(p�1)(S?), �p;q(S) 6= �p;q(S?) and �p;q(S) 6= �q;p(S?).4 Infeasibility Dete
tion via a Constru
tive Proof of a Helly-type TheoremConsider the feasibility problem (2). In this 
ase, Helly's Theorem (see for instan
e [6℄) impliesthat \ATy � 
 is infeasible i� there exists J � f1; 2; : : : ; ng, jJ j � (m + 1) su
h that ATJ y � 
Jis infeasible."Tardos' s
heme to solve the feasibility problem (2), is a 
onstru
tive proof of a Helly-typetheorem (see [20℄). The s
heme solves \easier" related systems, re
ursively. In ea
h iteration,the s
heme identi�es at least one 
onstraint to drop. We will outline su
h a s
heme after thenext lemma.Lemma 4.1 Let 
 2 N (A). Then for every s 2 Rn su
h that AT y + s = 
 (for some y 2 Rm)we have ksk2 � k
k2:Proof. Note that AT y + s = 
 implies 
TATy + 
Ts = 
T
 whi
h in turn implies 
Ts = 
T
(sin
e 
 2 N (A)). Now, by Cau
hy-S
hwarz inequality, we obtain
T 
 = 
Ts � k
k2ksk2:



Infeasibility Certifi
ates 11If 
 = 0 then the 
laimed inequality is 
learly true; otherwise, we divide both sides by k
k2 andwe obtain ksk2 � k
k2, as desired. �This lemma implies that in Se
tion 7.2 of [20℄, it suÆ
es to 
hoose p � pn� 1�P (A) + 1� ratherthan p � 2n3=2(��(A))2.In answering the question posed by (2), �rst, we 
an repla
e 
 by its orthogonal proje
tiononto N (A). Se
ondly, if 
 = 0 then �y := 0 solves (2). Therefore, we 
an assume k
k1 = 1. We
hoose p � pn� 1�P (A) + 1� and solve the systemAT y + s = dp
e; s � 0: (5)If the system (5) is infeasible then so is the system (2). Otherwise, every solution (�y; �s) of thesystem (5) satis�es AT �y + �s+ p
� dp
e = p
:Thus, by Lemma 4.1,pn k�s+ p
� dp
ek1 � k�s+ p
� dp
ek2 � kp
k2 � p:Therefore, k�sk1 � ppn � kp
� dp
ek1 > 1�P (A) :We haveTheorem 4.1 Let J := nj 2 f1; 2; : : : ; ng : �sj < 1�P (A)o : Then the system ATy � 
 has a fea-sible solution i� the system ATJ y � 
J does.Proof. Essentially the same as the proof of Lemma 7.3 of [20℄. �To appre
iate this improvement, we o�er the following re�nements of a theorem of Todd,Tun�
el and Ye [36℄. First we need a de�nition. Let G � f1; 2; : : : ; ng. If we multiply by (�1)the 
olumns of A indexed by G, then the resulting matrix (this was 
alled the signing of A by Gand denoted A�G in [36℄) has the same �� value as A. We write �(A) for minG�f1;2;:::;ng �(A�G).Analogously, we write �(A) for minG�f1;2;:::;ng �(A�G) and �P (A) for minG�f1;2;:::;ng �P (A�G).Theorem 4.2 For all A 2 Rm�n with rank(A) = m, we have�P (A) = 1��1(A) + 1 = �1(A)1 + �1(A) :
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�elProof. First we prove \�". Sin
e ��1(A) is invariant under signings of A, for this part ofthe proof we 
an assume �P (A) = �P (A). Let �x 2 Rn determine �P (A) su
h that �x 2 N (A),eT �x = 1, sign(�x) 2 sign+(N (A)) and there exist B 2 B(A), k =2 B su
h that �xk = �P (A) and allthe nonzero 
omponents of �x are determined by the unique solution of the linear systemABxB = ��P (A)Ak:Then xB = ��P (A)A�1B Ak � 0and eT �xB = �P (A)kA�1B Akk1 � �P (A)��1(A):Sin
e eT �xB + �P (A) = 1, we get 1 � �P (A) (��1(A) + 1). Thus we obtain,�P (A) � 1��1(A) + 1as desired.To prove the reverse inequality, let B 2 B(A), and k =2 B determine ��1(A). Then pi
k asigning of A 
orresponding to the diagonal m�m matrix G su
h that diag(G) 2 f�1; 1gm andGA�1B Ak � 0:(Note that for j =2 B, Aj is not signed.) For the same basis B of the signed matrix A, we havethe linear system ABGxB = �Akwhi
h has a unique solution (hen
e it determines a minimal linear dependen
e amongst the
olumns of A). Upon normalizing by (eTxB + 1) and fo
using on the 
omponent 
orrespondingto Ak, we have �P (A) � 1eTxB + 1 = 1��1(A) + 1 :The rest of the statement of the theorem follows from Theorem 3.1. �Theorem 4.3 Let A 2 Rm�n, rank(A) = m. Then1pn�(A) = 1pn�(A) � �2(A) � �(A) = �(A) � �(A) � �(A):A proof of the above theorem is in
luded in Appendix A. It follows from the above theoremthat the probabilisti
 analysis of [36℄ also applies to the 
omplexity measures �(A) and �(A). Wenote that there are instan
es A(�) su
h that as � ! 0, �(A(�)) ! 0, even though �(A(�)) ! 12(this 
an be easily seen using the geometri
 
hara
terizations of � and � presented in Se
tion 6).Also, there are instan
es ~A(�) su
h that as �! 0, �( ~A(�))! 0 even though �( ~A(�)) stays 
(1).
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ates 13The above theorems and the dis
ussion also imply that even though �P (A) and �D(A) 
antake very di�erent values, �P (A) and �D(A) must always be \
lose" to ea
h other. (Use, forinstan
e, the fa
t that �2(S) = �2(S?).) Similarly, Theorem 2 of [36℄ and the dis
ussion aboveimply that even though �P (A) and �D(A) 
an take very di�erent values, �P (A) and �D(A) mustalways be \
lose" to ea
h other.To 
on
lude this se
tion, we note that Tardos' s
heme is applied to A in a way that the
omplexity measures of submatri
es obtained from A by 
olumn deletion are important. As itwas shown in Proposition 2.4 of [20℄, ��(�) is monotone nonin
reasing under this operation. Here,we note that the same property extends to 1=�P (�) (the property also extends to 1=�P (�) whoseproof is omitted).Theorem 4.4 Let A 2 Rm�n, rank(A) = m. Suppose ~A is obtained from A by removing a
olumn of A. Then we have the following fa
ts.(a) If rank( ~A) = m then �P ( ~A) � �P (A).(b) If rank( ~A) � m� 1 then let �A be obtained from ~A by removing any linearly dependent row.Then rank( �A) = m� 1 and �P ( �A) = �P (A).Proof. If rank( ~A) = m then the set of minimal elements of N ( ~A) 
an be extended to asubset of the set of minimal elements of N (A) (by appending an appropriate zero). Therefore,�P ( ~A) � �P (A) trivially follows. If rank( ~A) � m�1 then without loss of generality, assume thatthe deleted 
olumn was An. Then there exists an m�m nonsingular matrix G su
h that�P (A) = �P (GA) = �P �A0 00T 1� ;where rank(A0) = rank( ~A) = m � 1. We easily see from the stru
ture of GA that every ve
torx in the null spa
e of A must have xn = 0. Hen
e�P (A0) = �P ( �A) = �P (A): �The proof of Proposition 2.4 of [20℄ also trivially extends to ��p(�) for all p 2 [1;+1℄ byutilizing our Lemma 4.1 and Theorem 4.1 from the 
urrent paper.Note that the analogous results apply to �D(A). Therefore, �(A) 
an be used in the above-mentioned manner as a 
omplexity measure in Tardos' s
heme to determine the feasibility ofthe systems (1) and (2).
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�el5 Geometri
 Interpretations and Sensitivity AnalysisEpelman and Freund [8℄ showed that the 
omplexity measure of Ye is very 
losely related to thesymmetry measure interpreted as follows.Let sym(A) := max ft : �tv 2 
onvfAi : i 2 Bg; for all v 2 
onvfAi : i 2 Bgg :sym(A) measures the symmetry of 
onvfAi : i 2 Bg about the origin in Rm (symmetry of a
ompa
t 
onvex set 
ontaining the origin in its interior is de�ned analogously|this is used inSe
tion 6). When 
onvfAi : i 2 Bg is 
entrally symmetri
 about the origin, we have sym(A) = 1.Theorem 5.1 (Epelman and Freund [8℄) Let A 2 Rm�n be su
h that the 
orresponding stri
t
omplementarity partition [B;N ℄ satis�es B 6= ;. Then�P (A) = sym(A)1 + sym(A) :Note that the above theorem and the fa
t that �P (A) only depends on the pair of subspa
esN (A), R(A), imply that we 
an de�ne sym(�) for subspa
es. Thus, we have sym(A) = sym(S)for all A su
h that N (A) = S.We denote by rP (A;Q) the radius of the largest ball with respe
t to the norm indu
ed byQ 2 �m++, 
ontained in 
onvfAi : i 2 Bg and 
entered at the origin. Similarly, RP (A;Q) isthe radius of the smallest ball (with respe
t to the norm indu
ed by Q 2 �m++) 
ontaining
onvfAi : i 2 Bg and 
entered at the origin. The following are alternative des
riptions:rP (A;Q) = max fr 2 R : fu 2 Rm : kukQ � rg � 
onvfAi : i 2 Bgg ;RP (A;Q) = min fR 2 R : fu 2 Rm : kukQ � Rg � 
onvfAi : i 2 Bgg ;where we de�ne kukQ := �uTQ�1u� 12 . We easily havesym(A) � supQ2�m++ rP (A;Q)RP (A;Q) : (6)This allows us to make immediate geometri
 statements about sensitivity analysis of sym(�) andhen
e �(�). Instead of the ellipsoidal norms above, we 
ould use any norm indu
ed by a 
ompa
t
onvex set in Rm 
ontaining the origin in its interior su
h that the set is symmetri
 about theorigin. Then if we take the supremum in (6) over all su
h 
onvex bodies, the analogous statementto (6) would hold with equality (see Epelman and Freund [8℄).Any perturbation made to AN whi
h does not 
hange the stri
t 
omplementarity partition[B;N ℄ does not 
hange the value �(A) either. On the other hand, 
hanges to AB 
an be analyzed
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ates 15geometri
ally using the above lower bound on sym(A). For instan
e, suppose ea
h Ai for i 2 Bis perturbed along a dire
tion (�A)i su
h that k(�A)ik2 = 1 (or zero) for every i 2 B. Alsoassume that the over all perturbation (in
luding the perturbations to AN ) has the property thatthere exists a positive �� su
h that [A+�(�A)℄ determines the same partition [B;N ℄ as A does,for every � 2 [0; ��℄. We would like to understand how sym(A(�)) behaves for small �.First, note that the supremum in (6) is attained. Also, we 
an restri
t Q to those positivede�nite matri
es with the largest eigenvalue equal to 1. Se
ondly, let �Q denote a symmetri
positive de�nite matrix attaining that supremum and denote by �i the ith largest eigenvalue of�Q.Proposition 5.1 Let A, �A, �Q and �m be as de�ned above. Then there exists �� 2 (0; 1) su
hthat for every � 2 [0; ��℄, sym(A(�)) � 1pm � rP (A; �Q)p�m � �RP (A; �Q)p�m + �� : (7)Proof. Let �u 2 nu 2 Rm : uT �Q�1u � �RP (A; �Q)�2o. Then for every v 2 Rm su
h thatkvk2 � � � ��, we have(�u+ v)T �Q�1 (�u+ v) = �uT �Q�1�u + 2�uT �Q�1v + vT �Q�1v� �RP (A; �Q)�2 + ��m + 2k �Q�1=2vk2k �Q�1=2�uk2� �RP (A; �Q) + �p�m�2 :This implies that the ellipsoid nu 2 Rm : kuk �Q � RP (A; �Q) + �p�mo 
ontains 
onv f[A(�)℄i : i 2 Bg.Let u(j) denote the eigenve
tors of �Q. Then the ve
tors �rP (A; �Q)u(j) 2 
onv fAi : i 2 Bg,for every j 2 f1; 2; : : : ; ng. Thus, � �rP (A; �Q)p�j � ��u(j) 2 
onv f[A(�)℄i : i 2 Bg, for everyj 2 f1; 2; : : : ; mg. Hen
e, by standard arguments, we 
on
lude that the ellipsoid�u 2 Rm : kuk �Q � 1pm �rP (A; �Q)� �p�m��is 
ontained in 
onv f[A(�)℄i : i 2 Bg.Finally, using the above ellipsoids, we 
on
lude the desired lowerbound. �The above result is simply meant to motivate the sensitivity analysis of �(A) (whi
h is
oming up) using the elegant geometri
 setting from Epelman-Freund [8℄. In the same setting,we have the following geometri
 interpretations.
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�elNow, we are ready to give a geometri
 interpretation of the de�nition of �P (A). Consider allsimpli
es made from ext (
onvfAi : i 2 Bg), 
ontaining the origin in their relative interior. LetS(A) denote the set of all su
h simpli
es. For ea
h � 2 S(A), 
onsider the (unique) bary
entri

oordinates of 0 in �. Assign the smallest of these 
oordinates to �. The smallest numberassigned to any su
h simplex is equal to �P (A).Next, we give a geometri
 interpretation of the dual 
hara
terization of �P (A) provided byTheorem 2.1 and Corollary 2.1. Consider pairs (J; i) su
h that J � B, i 2 BnJ , and the point Aiand the set 
onvfAj : j 2 Jg 
an be stri
tly separated by a hyperplane through the origin. Forea
h su
h hyperplane, 
onsider the \distan
es" from Ai and 
onvfAj : j 2 Jg to the hyperplane.Choose the hyperplane whi
h maximizes the ratio of the smaller to the larger of these distan
es,and assign this ratio to the pair (J; i). Now, �P (A) is basi
ally the minimum of all these ratios.5.1 Perturbation matri
esNow, we begin studying the e�e
t that the perturbations on the data of the problem (FP ) 
anhave on some of the 
omplexity measures for linear feasibility and linear programming problems.Sin
e the de�nitions of these 
ondition numbers 
an be made to depend on the sign patterns ofthe subspa
es de�ned by A, we deal with perturbations that preserve the sign patterns of theoriginal data. Consider the perturbation matrix �A 2 Rm�n. That is, in problem (FP ) thematrix A is repla
ed by A(�) := (A + �(�A)), for small positive �. The following 
onditionson 
ertain extreme elements of the subspa
es de�ned by A and A(�) respe
tively will be veryimportant in our treatment.Condition C1: The perturbation matrix �A is said to satisfy 
ondition C1 for A if thereexists �� > 0 su
h that for all � 2 (0; ��),sign(N (A)) = sign(N (A+ �(�A))):Condition C2: The perturbation matrix �A is said to satisfy 
ondition C2 for A if thereexists �� > 0 su
h that for all � 2 (0; ��),sign(N (A)) = sign(N (A+ �(�A))):Condition C3: The perturbation matrix �A is said to satisfy 
ondition C3 for A if thereexists �� > 0 su
h that for all � 2 (0; ��),sign+(N (A)) = sign+(N (A+ �(�A))):Condition C4: The perturbation matrix �A is said to satisfy 
ondition C4 for A if thereexists �� > 0 su
h that for all � 2 (0; ��),sign+(N (A)) = sign+(N (A+ �(�A))):
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ates 17Conditions C1 and C2 are relevant to perturbation results involving ��; 
ondition C3 isrelevant to � and 
ondition C4 (whi
h says that the stri
t 
omplementarity partition [B;N ℄does not 
hange) is relevant to �.Note that if �A satis�es C1 for A, then for every � 2 [0; ��) the stri
t 
omplementaritypartition determined by (A+ �(�A)) is the same as the one determined by A.Theorem 5.2 Let A; (�A) 2 Rm�n. Then we have the following fa
ts.(a) For every � 2 R, we havesign(N (A)) = sign(N (A+ �(�A))) i� sign(R(AT )) = sign(R(AT + �(�A)T )):(b) For every � 2 [0; ��), sign+(N (A)) = sign+(N (A+ �(�A)))if and only iffor every � 2 [0; ��), sign+(R(AT )) = sign+(R(AT + �(�A)T )).(
) Condition C1 implies 
onditions C2; C3 and C4.(d) Condition C2 implies 
ondition C4.(e) Condition C3 implies 
ondition C4.Proof. (a) sign(N (A)) = sign(N (A + �(�A))) implies that these two sets of minimal signve
tors determine the same oriented matroid on f1; 2; : : : ; ng. The dual of the oriented matroiddetermined by sign(N (A)) is sign(R(AT )) (for more general results related to this fa
t seeBland and LasVergnas [4℄; also see Proposition 3.4.1 and Lemma 3.4.2 of [3℄). The latter is alsodetermined by sign(R(AT )). Therefore, we have the statement (a).(b) This follows from the fa
ts that A determines a stri
t 
omplementarity partition [B;N ℄ and(of 
ourse) B stays the same i� N does.(
) Sin
e the minimal sign ve
tors 
ompletely determine all sign ve
tors in the pair of orthogonalsubspa
es, C2; C3 and C4 are 
onsequen
es of C1.(d) and (e) follow easily from the de�nitions. �Note that the other dire
t impli
ation relations amongst the 
onditions C1-C4 are false ingeneral.The next lemma establishes a relationship between the minimal ve
tors in N (A) and thosein N (A+ �(�A)) in the 
ase that �A satis�es 
ondition C4 for A.Lemma 5.1 Assume that �A satis�es 
ondition C4 for A and that sign+(N (A)) 6= ;. Thenfor every x 2 N (A) su
h that sign(x) 2 sign+(N (A)) there exist �̂ > 0 and a path of solutionsfx(�) : � 2 (0; �̂℄g su
h that x(�) 2 N (A+ �(�A)), sign(x(�)) 2 sign+(N (A+�(�A))) and is
onstant for every � 2 (0; �̂℄ and x(�)! x as �! 0.
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�elProof. Consider x as in the statement of the lemma. Let J := J+(x). Then there exists�̂ 2 (0; ��℄ su
h that the 
olumns of [AJ + �(�A)J ℄ are either minimally linearly dependent orare linearly independent.In the �rst 
ase, we fo
us on the unique solution (path) xJ (�) of the system[AJ + �(�A)J ℄xJ = 0; kxJk1 = 1: (8)It is 
lear that x(�) (the extension toRn of xJ (�) by 
ompleting with zeros), satis�es sign(x(�)) 2sign+(N (A+ �(�A))) for all small enough � and that x(�)! x.In the se
ond 
ase, we note that the stri
t 
omplementarity partition [B;N ℄ de�ned by Ahas the property that J � B. So, we extend J by adding to it j 2 BnJ until we have Ĵ � J(and Ĵ � B) su
h that the 
olumns of �AĴ + �(�A)Ĵ� are minimally linearly dependent andthe unique solution (path) x(�) determined by�AĴ + �(�A)Ĵ�xĴ = 0; kxĴk1 = 1
onverges to x. Here, we rede�ne �̂ if ne
essary (by redu
ing it) to ensure that sign(x(�))stays the same for all � 2 (0; �̂℄. If x(�) � 0 then we are done. Otherwise, there existsj 2 Ĵ su
h that xj(�) < 0 for all � 2 (0; �̂℄; moreover (sin
e x(�) 
onverges to a nonnegativeve
tor), xj = 0 for every su
h j. Let ~x(�) be a maximal element of N (A + �(�A)) su
h thatsign(~x(�)) 2 sign+(N (A+�(�A))) and ~x(�)! ~x, where sign(~x) 2 sign+(N (A)): By ConditionC4, sign(~x) = sign(~x(�)); for every � 2 (0; �̂℄: For � 2 (0; �̂℄, we de�ne
(�) := min f
 2 [0; 1℄ : x(�) + 
 [~x(�)� x(�)℄ � 0g :Su
h 
 exists sin
e ~xĴ(�) > 0, for every � 2 (0; �̂℄. We also de�neu(�) := 1eT fx(�) + 
(�) [~x(�)� x(�)℄g fx(�) + 
(�) [~x(�)� x(�)℄g :We have u(�)! x as �! 0. We rede�ne �̂ if ne
essary (by redu
ing it) to ensure that sign(u(�))stays the same for all � 2 (0; �̂℄. We 
onstru
ted a nonnegative path fu(�) : � 2 (0; �̂℄g su
hthat if sign(u(�)) 2 sign+(N (A+ �(�A))) then we are done. If u(�) is not minimal, then notethat jJ+(u(�))j � jBj � 1: We remove all 
olumns Aj ; (�A)j for every j 2 J0(u(�)), rede�neB := J+(u(�)) and repeat the above. As we keep iterating, the pro
edure will have to stop afterat most (n� 2) steps leaving the last u(�) as the desired path. �The above lemma 
an be interpreted as a statement about how the extreme points of apolytope behave (in terms of the extreme points of 
ertain \nearby" polytopes) under a pertur-bation.Consider a minimal x and x(�) for some � 2 (0; �̂℄ as in the lemma above. Denote J+(�) :=J+(x(�)). Clearly J0(x) � J0(x(�)). xJ(0) is the unique solution of the system (3) for J = J+(0)
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ates 19and xJ(�)(�) is the unique solution of (8) for J = J+(�). Choose a basis B 2 B (A+ �(�A))and jB 2 J+(0)nB su
h that J(�) � B [ fjBg. LetM(�) :=  [A(�)℄B [A(�)℄jBeT 1 ! ;where A(�) := A + �(�A). This matrix is nonsingular for every � 2 [0; �̂℄. We denote M :=M(0). Consider an arbitrary index i 2 J+(�) and the dual equationsATJwJ + te = ei; (9)where J := B [ fjBg as above, and the perturbed ones(AJ + �(�A)J)Tw + te = ei: (10)Asso
iated to ea
h i 2 J+(�) and the basis B de�ned above, there exists a unique solution(w(i); t(i)) of the system of equations (9). It is easy to see that t(i) = xi (to see this 
laim we 
anexpress xi as the optimal value for the problem minfxi : AJxJ = 0; eTxJ = 1g; then the 
laimeasily follows from the duality theorem of linear programming).Lemma 5.2 Consider A; (�A) 2 Rm�n su
h that (�A) satis�es C4 for A. Also 
onsider aminimal x 2 N (A) and x(�) 2 N (A(�)) su
h that x � 0, x(�) � 0, the path fx(�) : � 2(0; �̂℄g satis�es all the properties mentioned in Lemma 5.1, and x(�) ! x. Finally 
onsiderthe stri
t 
omplementarity partition [B;N ℄ determined by A. Then for ea
h � 2 [0; �̂℄ we haveN � J0(x(�)) � J0(x), and if i 2 J+(�) thenxi(�) = xi � ��hw(i)iT (�A)J [M(�)℄�1 ei� ;where J+(�) � J := ~B [ fj ~Bg for some j ~B 2 J+(0) and ~B 2 B(A), and (w(i); t(i)) is the uniquesolution of (9).Proof. Consider a �xed � 2 [0; �̂℄, x and x(�) as in the statement of the lemma. Thenwe have J0(x) � J0(x(�)) � N as a 
onsequen
e of 
ondition C4 and the hypothesis. Leti 2 J+(�) (note that J�(x(�)) = ;). For ea
h � 2 [0; ��℄, xJ(�)(�) is the unique solution of(8) for J = J+(�). Consider the dual system of equations (10) with J = B [ fjBg for somejB 2 J+(0), J+(0) � J+(�) � J and B 2 B(A). Express the unique solution (w(i)(�); t(i)(�)) forthese equations as (w(i)(�); t(i)(�)) = (w(i); t(i))+(v(i)(�); �(i)(�)). By substituting this relationin (10) and noti
ing that (w(i); t(i)) satis�es the system (9), we 
on
lude that (v(i)(�); �(i)(�))satis�es the equations (AJ + �(�A)J )Tv + �e = ��(�A)TJw(i). By 
onstru
tion, the matrix[M(�)℄T whi
h forms the left hand side 
oeÆ
ients is invertible. This means that v(i)(�)�(i)(�) ! = ��[M(�)℄�T (�A)TJw(i):
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�elThe last 
omponent is �(i)(�) = ��n�w(i)�T (�A)J [M(�)℄�1 eio as desired. �If i 2 J+(0) and there exists B su
h that J(�) � B [ fig and B 2 B(A) (that is jB = i inthe 
onstru
tion above) then the inverse [A(�)℄�1B exists for every � 2 [0; �̂℄ and the inverse ofM(�) 
an be expressed as the 
onstant 11� eT [A(�)℄�1B [A(�)℄imultiple of the matrix �1� eT [A(�)℄�1B [A(�)℄i	 [A(�)℄�1B + [A(�)℄�1B [A(�)℄ie[A(�)℄�1B �[A(�)℄�1B Ai�eT [A(�)℄�1B 1 ! :We have lim�!0[A(�)℄�1B = A�1B , and lim�!0[M(�)℄�1 = M�1. These fa
ts help us spe
ializethe lemma above to i 2 J+(0).Corollary 5.1 Consider the 
onditions of the lemma above, and suppose that i 2 J+(0). Thenxi(�) = xi � �1� eT [A(�)℄�1B [A(�)℄i hw(i)iT �(�A)i � (�A)B[A(�)℄�1B [A(�)℄i	 :Proof. Sin
e i 2 J+(0) and J+(0) � J(�), we have that xi and xi(�) are both positive. UsingLemma 5.2 and the expli
it formula for the inverse of M(�) given above, we obtain the desiredresult. �We 
on
lude this subse
tion by giving a suÆ
ient 
ondition for C1 to hold. Suppose thatthe perturbation matrix �A satis�es the following 
ondition: For every minimal x 2 N (A), andevery j 2 (J+(x) [ J�(x)), the 
olumn (�A)j 2 R(AJ+(x)[J�(x)). Sin
e the 
olumns of (�A)Jare in R(AJ), for ea
h j 2 J there exist 
(j) 2 RJ su
h that �Aj = AJ
(j). Therefore, we
an write AJ + �(�A)J = AJ (I + ��); where the 
olumns of � are the ve
tors 
(j) previouslyde�ned. Note that for � small enough, the matrix (I + ��) is invertible. So, there exists �� > 0su
h that for ea
h � 2 (0; ��), the system (8) has a unique solution, say xJ(�); and (I+��)xJ (�)is 
ollinear with �xJ .Proposition 5.2 Consider the perturbation matrix �A 2 Rm�n and suppose that for ea
hminimal point x 2 N (A) we havej 2 J+(x)[ J�(x) implies (�A)j 2 R(AJ+(x)[J�(x)):Then there exists �� > 0 su
h that for all � 2 (0; ��), sign(N (A+ ��A)) = sign(N (A)).
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ates 21Proof. Consider arbitrary x 2 N (A). Denote J = J+(x) [ J�(x). Note that for arbitraryT 2 RjJj�jJj and small � > 0 the equationsAJ(I + �T )w = 0; kwk1 = 1 (11)have a unique solution if and only if the equations (3) do, be
ause the matrix (I + �T ) isinvertible for every � suÆ
iently small. Sin
e for T = � the systems (8) and (11) are equivalent,we have that (8) has a unique solution if and only if (3) has a unique solution. Therefore,x 2 N (A) is minimal if and only if the point x(�), the solution asso
iated with (8), is minimal.It is easy to see that (I + ��)xJ(�) = �xJ for some positive �, and from this 
laim we havethat sign(x) = sign(x(�)) for every small �. We have shown that for ea
h x 2 N (A) minimal,there exists x(�) 2 N (A(�)) minimal su
h that sign(x) = sign(x(�)) for all � suÆ
iently small.Therefore, sign(N (A)) � sign(N (A(�))).Suppose now that there exist a minimal x̂(�) 2 N (A+�(�A)) su
h that for every suÆ
ientlysmall �, sign(x̂(�)) 62 sign(N (A)). Then the system of equations (3) for J = J+(x̂(�))[J�(x̂(�))must have multiple solutions. Choose a minimal �xJ in N (AJ). Complete with zeros to de�ne�x 2 Rn. Clearly �x is a minimal solution for N (A). For J = J+(�x) [ J�(�x), (8) has a uniquesolution if and only if (11) has a unique solution. Therefore, by the �rst part of the proof, theunique solution of (11) has the same sign ve
tor as �x. We arrived at a 
ontradi
tion. Thus,sign(N (A)) � sign(N (A(�))): �The 
ondition in the hypothesis implies that 
ondition C1 holds. The 
onverse is nottrue, as shown in the next example. Consider the matri
es A :=  0 0 11 �1 0 ! and �A := 1 �1 00 0 0 !, and the minimal ve
tor x := (12 ; 12 ; 0)T 2 N (A(�)); for every � 2 R. It is 
learthat 1 2 J+(x) [ J�(x) and (�A)1 62 R(AJ+(x)[J�(x)), but for every � 2 R, sign(N (A)) =sign(N (A(�))); that is, �A satis�es 
ondition C1 for A.5.2 Sensitivity of �(A)As mentioned in the previous se
tion, we shall study the sensitivity of �(A) for a perturbationmatrix satisfying C4. For ea
h i 2 B we de�ne�Pi(A) := max�xi : ABxB = 0; xB � 0; eTxB = 1	 :By the duality theorem of linear programming we have�Pi(A) = min�t : ATBw + te � ei	 = mins2R(ATB)�max� minj2Bnfigfsjg; 1 + si�� ;
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�elalso see Theorem 3.1 of [37℄ and Lara-Gonzaga [21℄ for another 
hara
terization. Asso
iatedto ea
h i 2 B there exists a minimal x(i) in N (A), an optimal solution of the primal problemde�ning �Pi(A) (�Pi(A) = x(i)i ).Lemma 5.3 Consider the 
ondition number �P (A), �Pi(A), and the perturbation matrix �A 2Rm�n satisfying C4 for A. Then there exists �̂ > 0 su
h that for all i 2 B and � 2 [0; �̂℄�Pi(A+ ��A) = �Pi(A)� �1� eT [A(�)℄�1�B [A(�)℄i hw(i)iT n(�A)i � (�A) �B[A(�)℄�1�B [A(�)℄io ;where �B 2 B(A), �B [ fig � J+(�x) for some �x minimal in N (A), �x � 0, �xi = �Pi(A) and(w(i); t(i)) is the unique solution of system ATJw + et = ei with J = �B [ fig.Proof. By 
ondition C4, the stri
t 
omplementarity partition [B;N ℄ does not 
hange afterthe perturbation. Consider minimal x(i) su
h that sign(x(i)) 2 sign+(N (A)) and �Pi(A) = x(i)i .Consider also x(i)(�) satisfying the 
onditions given by Lemma 5.1. Sin
e i 2 J+(x(i)), byCorollary 5.1 we havex(i)i (�) = x(i)i � �1� eT [A(�)℄�1�B [A(�)℄i hw(i)iT n(�A)i � (�A) �B [A(�)℄�1�B [A(�)℄io :Sin
e x(i)i is the maximum obje
tive value of the LP problem maximizing xi over all feasible xin the original problem (FP ), and x(i)(�)! x(i) as �! 0, we have that there exists �̂ > 0 su
hthat x(i)i (�) is the maximum value of the LP problem of maximizing xi over all feasible x in theperturbed problem de�ned by [A+ �(�A)℄. �Theorem 5.3 Consider the 
onditions of the lemma above. Suppose that there is a unique index` in B su
h that �P`(A) = �P (A). Then we have the following fa
ts.(a) There exists �� > 0 su
h that for all � 2 [0; ��℄�P (A(�)) = �P`(A(�)):(b) The dire
tional derivative �0P (A;�A) exists and it is 
al
ulated as�0P (A;�A) = � 11� eTA�1�B A` hw(`)iT n(�A)` � (�A) �B [A(�)℄�1�B [A(�)℄`o ;where �B and w(`) are as des
ribed in Lemma 5.3.Proof. (a) Sin
e ` is the unique index su
h that �P`(A) = �P (A), by 
ontinuity arguments,there exists �� > 0 su
h that �P`(A(�)) = �P (A(�)) for every � 2 [0; ��℄.(b) This follows from part (a) and Lemma 5.3, by driving � to zero. �
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ates 235.3 Sensitivity of �(A)Now we study �P (A). For ea
h i 2 B we de�ne�Pi(A) := minfxi 6= 0 : x 2 N (A); kxk1 = 1; sign(x) 2 sign+(N (A))g:�Pi(A) = 1 if for the set over whi
h the min is 
omputed is empty. Clearly, �P (A) = mini2B f�Pi(A)g.For ea
h i su
h that �Pi(A) < 1 we have a minimal x(i) in N (A) su
h that �Pi(A) = x(i)i . Let usde�ne �Pi(A(�)) a

ordingly, for the perturbed matrix.Lemma 5.4 Consider the 
ondition numbers �P (A), �Pi(A), and the perturbation matrix �Asatisfying C3 for A. Then there exists positive �̂ su
h that for all � 2 [0; �̂℄ we have�Pi(A(�)) = �Pi(A)� �1� eT [A(�)℄�1�B [A(�)℄i hw(i)iT n(�A)i � (�A) �B [A(�)℄�1�B [A(�)℄io ;where �B 2 B(A), �B [ fig � J+(�x) for some �x minimal in N (A), �x � 0 and �xi = �Pi(A) and�w(i); t(i)� is the unique solution of the system ATJw + et = ei with J = �B [ fig.Proof. Note that 
ondition C3 implies 
ondition C4 by Theorem 5.2. The rest of the proof
an be 
ompleted as in the proof of Lemma 5.3. �Theorem 5.4 Consider the 
ondition numbers �P (A), �Pi(A), and the perturbation matrix �Asatisfying C3 for A. Suppose that there is a unique index k 2 B su
h that �P (A) = �Pk(A).Then we have the following fa
ts.(a) There exists ~� > 0 su
h that for all � 2 [0; ~�℄ we have �P (A(�)) = �Pi(A(�)).(b) The dire
tional derivative �0P (A;�A) exists and it is 
al
ulated as�0P (A;�A) = � 11� eTA�1�B Ak hw(k)iT n(�A)k � (�A) �B [A(�)℄�1�B [A(�)℄ko ;where �B and w are as des
ribed in Lemma 5.3.Proof. Similar to the proof of Theorem 5.3. �Note that the above set up and the results 
an also be used to work with the dire
tionalderivatives of ��(�) under 
ondition C1. in parti
ular, we 
an utilize the above theorem togetherwith Theorem 4.2 to get the dire
tional derivatives of ��1(�):
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�el6 Generalizations to Convex Cones and Relationships with Rene-gar's Condition MeasureConsider a 
onvex 
one K in a �nite dimensional normed spa
e E. The dual 
one K� is de�nedas K� := fs 2 E� : hs; xi � 0; for every x 2 Kg:We will assume that K is a 
losed, 
onvex 
one, has a nonempty interior and is pointed (i.e.,
ontains no line). It follows that K� has all of these properties too. We also have the fa
t thatint(K) = fx 2 E : hs; xi > 0; 8s 2 K�nf0gg : (12)The width of K is given by:�K := maxx2K;r2R+� rkxk : B(x; r) � K� :Note that �K 2 (0; 1℄. Sin
e K is pointed and has nonempty interior, �K is attained for some(�x; �r) as well as along the ray (��x; ��r) for all � > 0. By 
hoosing the value of � appropriately,we 
an �nd u 2 K su
h thatkuk = 1 and �K is attained for (x; r) = (u; �K): (13)The norm approximation 
oeÆ
ient of K is de�ned byÆK := dist (0; �
onv [K(1)[ �K(1)℄) ; (14)where K(1) := fx 2 K : kxk � 1g, and �
onv [K(1)[ �K(1)℄ is the boundary of the 
onvexhull of the set K(1)[ (�K(1)).Epelman and Freund [8℄ showed that ÆK � �K1+�K � �K2 . Also see Freund-Vera [13℄ for anearlier approa
h to similar geometri
 measures. We demonstrate here that when all the normsin the above de�nition are taken as the Eu
lidean 2-norm, the denominator in the previousrelation is not ne
essary.Proposition 6.1 Let K be as above and suppose all the norms in the de�nitions of ÆK and �Kare the Eu
lidean 2-norm. Then �K � ÆK :Proof. Let �x be an arbitrary point in B(0; �K). To show our 
laim, it suÆ
es to prove that�x 2 
onv [K(1)[ �K(1)℄. If �x 2 K we are done. Assume �x 62 K. Take u as in (13), and 
onsiderthe two-dimensional subspa
e S generated by u and �x. S is isomorphi
 to R2 be
ause �x andu are not 
ollinear, and ea
h y 2 S 
an be written as y = �u + ��x where (�; �) 2 R2. In the
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ates 25following, the a
tion happens in S: Choose v 2 S su
h that uTv = 0, kvk2 = 1 and �xT v > 0.De�ne 
(t) := �x+ tu for t > 0. It is 
lear that 
(1) 2 B(u; �K) � K. Sin
e 
(0) = �x 62 K and
(1) 2 K there exist a unique �t 2 (0; 1) su
h that 
(�t) 2 �K. Denote it by �
. De�ne by � theangle between u and �
. We 
laim that sin � � �K . Suppose for a 
ontradi
tion that sin � < �K .Then there exists 
(t̂) := 
̂ near �
 su
h that sin �̂ < �K and 
̂ 62 K (here �̂ stands for the anglebetween u and 
̂). Now, we 
hoose � > 0 su
h that �
̂ is the orthogonal proje
tion of u ontothe ray �
̂. It is 
lear that k�
̂ � uk2 = sin �̂ < �K , so �
̂ 2 K whi
h is a 
ontradi
tion. Sone
essarily sin � � �K . Now, we have�K � sin � = 
os(�=2� �) = vT �
k�
k2 = vT (�x+ �tu)k�
k2 = vT �xk�
k2So, k�
k2 � vT �x�K � 1:We have shown that �
 2 K(1). We 
an take in a similar way ~
 = �x� ~tu su
h that 
̂ 2 (�K(1)).Then we 
an write �x = ~t2(�t+~t)�
 + h1� ~t2(~t+�t)i ~
. �The following example shows that the relation above is not ne
essarily an equality: Considerthe 
one K = Rn+. For this 
one, �K = 1pn and u = ( 1pn )e. We 
laim that ÆK � 1p2 . To provethis, it is enough to show that every point x in B(0; 1p2) also belongs to 
onv [K(1)[ �K(1)℄. Infa
t, 
onsider arbitrary �x 2 B �0; 1p2�. If �x 2 K(1) or �x 2 �K(1) then �x 2 
onv [K(1)[ �K(1)℄as desired. Suppose that �x 62 [K(1) [ �K(1)℄. So the signing partition is proper; that is, thereexist positive and negative 
omponents in �x. Denote by B the index set of the nonnegative
omponents, and by N the index set of the negative 
omponents. Denote by x(1) the ve
torin Rn su
h that x(1)B = 1k�xBk2 �xB and x(1)N = 0 and by x(2) 2 Rn su
h that x(2)B = 0 andx(2)N = 1(1�k�xBk2) �xN . The ve
tor �x 
an be written as �x = �x(1)+(1��)x(2), where � = k�xBk2 2(0; 1p2) � (0; 1). It remains to show that x(1) 2 K(1) and x(2) 2 �K(1). The �rst 
laim istrivial. To prove the se
ond one, note that x(2) 2 �K and its norm is the square root of:k�xNk2(1� �)2 � 1(1� �)2 �12 � �2� = 1� 2�22(1� �)2 � 1:The �rst inequality is true be
ause �x 2 B(0; 1=p2). The maximum of the last fun
tion in theinterval (0; 1p2) is attained at � = 12 , with value 1. So we have the result.Proposition 6.2 For K = Rn+, if we 
hoose all the norms in the de�nitions as the Eu
lidean2-norm, then ÆK = 1p2 :Proof. We already proved that ÆK � 1=p2. So, it suÆ
es to prove the reverse inequality.Clearly, we 
an assume n � 2. Let k be an integer su
h that 1 � k � n=2. Consider the
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�elnonnegative ve
tor x(+) with 1=pk in the �rst k positions and zeros everywhere else. Similarly,let x(�) denote the ve
tor with �1=pk in the last k positions and zeros everywhere else. Clearly,x(+) 2 B(0; 1) \Rn+ and x(�) 2 B(0; 1)\ �Rn+; moreover, 

12x(�) + 12x(+)

2 = 1p2 : It remainsto show that this midpoint is on the boundary of 
onv [K(1)[ �K(1)℄. To see the latter, let� > 0 be arbitrarily small, add � to the positive entries of the midpoint and subtra
t � from thenegative entries of the midpoint. The resulting ve
tor 
annot be written as ��x(�) + (1� �)x(+)�for x(�) 2 B(0; 1)\ �Rn+, x(+) 2 B(0; 1)\Rn+ and � 2 [0; 1℄. Therefore, the midpoint des
ribedabove is on the boundary of 
onv [K(1)[ �K(1)℄ as desired. �We 
an generalize the above proposition to all self-dual 
ones.Theorem 6.1 Let K be a 
onvex 
one in Rn as des
ribed at the beginning of the se
tion. IfK = K� under the inner produ
t h�; �i, thenÆK = ÆK� = 1p2 ;where the distan
es (and the balls) are de�ned with respe
t to the norm kxk := hx; xi1=2.Proof. The 
laim that ÆK = ÆK� is obvious.First, we show that there exists 
 2 �
onv [K(1)[ �K(1)℄ su
h that k
k = 1p2 . Let v 2ext(K). Denote by F (v) the minimal fa
e of K 
ontaining v. Consider [F (v)℄M, the dual fa
e(FM := fy 2 K� : hx; yi = 0; 8x 2 Fg). Let w 2 ext(K) \ [F (v)℄M. Note that hv; wi = 0. We
laim that 
 := 12v + 12(�w) 2 �
onv [K(1)[ �K(1)℄. It is 
lear that 
 2 
onv [K(1)[ �K(1)℄and that k
k = 1p2 . De�ne 
(�) := (1+ �)
. We will prove that 
(�) 62 
onv [K(1)[ �K(1)℄. Todo so, let us denote by S the two-dimensional subspa
e generated by v and w. Sin
e 
(�) 2 Sit suÆ
es to show that 
(�) 62 S \ 
onv [K(1)[ �K(1)℄. This last set 
an be 
hara
terized interms of v and w:S\
onv [K(1)[ �K(1)℄ = [
onefv; wg℄(1)[[
onef�v;�wg℄(1)[
onvf0; v;�wg[
onvf0;�v; wg:Clearly, for no � > 0, 
(�) is in the above set. Therefore, 
 is on the boundary of
onv [K(1)[ �K(1)℄ as 
laimed. We proved that ÆK � 1p2 .Se
ondly, to demonstrate the reverse inequality, we prove thatB�0; 1p2� � 
onv [K(1)[ �K(1)℄ :Take an arbitrary �x 2 B �0; 1p2�. If �x 2 K(1) or �x 2 �K(1), then we are done. So, we 
anassume that �x =2 [K(1)[ �K(1)℄. Let u be the 
losest point to �x in K and de�ne v := �x � u.
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ates 27We 
laim that v is in �K. Sin
e u is the 
losest point to �x in K, we have (by the KolmogorovCriterion) h�x� u; x� ui � 0; 8x 2 Kwhi
h is equivalent to h�x� u; xi � hu; �xi � kuk2; 8x 2 K: (15)Sin
e K is a 
one, and the right-hand-side is a 
onstant, the above impliesh�x� u; xi � 0; 8x 2 K:That is, v 2 �K.Also note that hu; vi = hu; �x� ui = hu; �xi � kuk2 � 0:The last inequality above follows from (15) and the fa
t that 0 2 K. But u 2 K and v 2 �K�.Thus, hu; vi = 0. (In fa
t, at this point, we 
an easily verify the Kolmogorov Criterion for v tobe the 
losest point to �x in �K.) Sin
e k�xk � 1p2 , �x = u+ v, and hu; vi = 0, we 
on
lude thatkuk 2 (0; 1). De�ne x(1) := ukuk and x(2) := v1� kuk :Then �x = �x(1) + (1 � �)x(2), where � := kuk 2 (0; 1). Clearly, x(1) 2 K(1). We 
laim thatx(2) 2 �K(1). x(2) 2 �K was already established. Moreover,kx(2)k2 = kvk2(1� �)2 � 1(1� �)2 �12 � �2� = 1� 2�22(1� �)2 � 1:The �rst inequality is true be
ause x 2 B(0; 1p2) and kvk2 = k�xk2� ku2k. The maximum of thelast fun
tion in (0; 1=p2) is attained at � = 1=2, with value 1. �A quantity related to �K was mentioned by Sturm in the 
ontext of symmetri
 
ones [34℄.Let �(K) denote the Carath�eodory number of K (for a de�nition see [17℄). Sturm remarks thatthe radius of the smallest 
ir
ular 
one (s
aled se
ond-order 
one) whi
h 
ontains a symmetri

one K (see [9℄ for a de�nition) is [�(K)� 1℄ times the radius of the largest ins
ribed 
ir
ular
one. In parti
ular, Sturm's remark about the largest ins
ribed 
ir
ular 
one is equivalent tothe following fa
t (we omit the proof).Theorem 6.2 Let K be a symmetri
 
one and de�ne the width of K by using the norm indu
edby the inner produ
t under whi
h K = K�. Then�K = 1p�(K) :
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�elCheung and Cu
ker [5℄ propose a 
ondition measure for the linear feasibility problem. Theyestablish the theory in terms of the 
one of solutions sol(AT ) := fy 2 Rn : AT y < 0g and itsdual 
one sol(AT )� = fw 2 Rm : hw; yi � 0; 8y 2 sol(AT )g. We shall de�ne this 
onditionmeasure for a (general) pointed 
onvex 
one K. For arbitrary ve
tors x; y in E, de�ne the angle�(y; x) between these ve
tors as: �(y; x) := ar
 
os hy; xikykkxk :Also de�ne the angle �(K; x) between x and a pointed 
onvex 
one K as�(K; x) := minu2ext(K) f�(u; x)g ;where ext(K) denotes the set of normalized extreme rays of K. We denote by �x 2 K any ve
torsatisfying �(�K�; �x) = maxx2E f�(�K�; x)g :We are now ready de�ne the generalization of Cheung and Cu
ker's measure:CCC(K) := 1j 
os �(�K�; �x)j :In the sequen
e, we establish some properties of CCC . The next lemma generalizes Lemma 1 of[5℄.Lemma 6.1 Let x 2 E, �x de�ned as above, and y 2 (�K�). Then(a) hy; xi < 0, 
os �(y; x) < 0, �(y; x) > �2 .(b) x 2 int(K), �(�K�; x) > �2 , 
os �(�K�; x) < 0.(
) int(K) 6= ; , �x 2 int(K).Proof.(a) This follows dire
tly from the de�nition of �(y; x).(b) Note that�(�K�; x) > �2 , �(y; x) > �2 ; 8y 2 ext(�K�), hy; xi < 0; 8y 2 ext(�K�) (by part (a)), hy; xi < 0; 8y 2 �K� (by 
onvexity of K�), x 2 int(K) (by the equation (12)):Furthermore, sin
e �(y; x) 2 [0; �℄ for all y 2 ext(�K�), we have �(�K�; x) 2 [0; �℄.Therefore �(�K�; x) > �2 , 
os �(�K�; x) < 0.
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) Let int(K) 6= ;. Then there exists ~x 2 int(K). By part (b), �(�K�; ~x) > �2 . By thede�nition of �x, �(�K�; �x) � �(�K�; ~x) > �2 . By part (b) again �x 2 int(K). The 
onverseis obvious. �Suppose that int(K) 6= ;. For every x; y 2 E, let �(y; x) be the a
ute angle, i.e. 0 <�(y; x) � �2 between x and the subspa
e y?; that is,�(y; x) := ar
 
os� hx; Py?xikxkkPy?xk� :Also de�ne �(K; x) := miny2ext(K)�(y; x):We shall prove thatif int(K) 6= ; then maxx2K sin �(�K�; x) = j 
os �(�K�; �x)j;that is CCC(K) = minx2K 1sin �(�K�; x) :The next lemma generalizes Lemma 7 of Cheung and Cu
ker [5℄.Lemma 6.2 Consider a pointed 
losed 
onvex 
one K � E, and �x as de�ned above. Supposethat int(K) 6= ;. Then(a) �(�K�; �x) = maxx2K �(�K�; x).(b) For all x 2 int(K) and for all y 2 ext(�K�), �(y; x) = �(y; x) + �2 .(
) �(�K�; �x) = maxx2K �(�K�; x).(d) j 
os �(�K�; �x)j = sin �(�K�; �x).Proof.(a) This follows from part (
) of the previous lemma.(b) Let x 2 int(K) and y 2 ext(�K�). Then hx; yi < 0. So y and x are not in the same half-spa
e with respe
t to y?. It is 
lear that Py?x is in the same two-dimensional subspa
egenerated by x and y, so we 
an think about � and � as the angles between some ve
torsin R2. From this, it follows that �(y; x) = �(y; x) + �2 .
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�el(
) Sin
e �(�K�; x) = miny2ext(�K�) �(y; x) we have for all x 2 K, �(�K�; x) = �(�K�; x)+ �2 .This together with part (a) imply that �(�K�; �x) = maxx2K �(�K�; x).(d) This follows from parts (a), (b) and (
). �The next proposition generalizes Proposition 3 of [5℄.Proposition 6.3 For every pointed 
losed 
onvex 
one K su
h that int(K) 6= ;,we havemaxx2K sin �(�K�; x) = j 
os�(�K�; �x)j:Proof. Utilizing part (
) of the previous lemma we havemaxx2K sin �(�K�; x) = sinmaxx2K �(�K�; x)= sin �(�K�; �x)= j 
os�(�K�; �x)j: �The de�nitions and properties des
ribed above 
oin
ide with those given by Cheung andCu
ker [5℄ in the 
ase of K = fw 2 Rn : ATw � 0g. In su
h a spe
ial 
ase, �K� is the 
onegenerated by the 
olumns of A. The following result establishes a link between our generalizationof this 
ondition measure and the width of K.Theorem 6.3 For every pointed, 
losed 
onvex 
one K with nonempty interior, we haveCCC(K) = 1�K :Proof. First note that 1CCC(K) = sin �(�K�; �x). It suÆ
es to show that �K = sin �(�K�; �x):For arbitrary x 2 int(K)sin �(�K�; x) = miny2ext(�K�) sin �(y; x)= miny2ext(�K�) sin�ar
 
os hx;Py?xikxkkPy?xk�= miny2ext(�K�) kx�Py?xkkxk :
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ates 31Sin
e Py?x 2 y? and y 2 ext(�K�), we have that �(�K�; Py?x) = �2 and by Lemma 6.1 part (b),we 
on
lude that Py?x 62 int(K). This means that sin �(�K�; x) � maxr2R+ n rkxk : B(x; r)� Ko.Taking the maximum in ea
h side over all x 2 K, we obtain that sin �(�K�; �x) � �K .Now, we take w on the boundary of K su
h that �K � k�x�wkk�xk =: �w and B(�x; �w) � K. Wedenote by F the minimal fa
e of K 
ontaining w. Consider the dual fa
e FM in K� (that is,FM := fy 2 K� : hx; yi = 0; 8x 2 Fg). Ea
h element y 2 FM de�nes a supporting hyperplaney? of K in w su
h that F � y?. Sin
e ea
h of these hyperplanes should also be a supportinghyperplane of the ball B(�x; �w) at w, we 
on
lude that FM is a singleton (so, y 2 ext(�K�)),be
ause a full dimensional ball admits only one supporting hyperplane at a boundary point.Therefore, y satis�es y 2 ext(�K�), w ? y and w = Py?x. Then we have�K � k�x�wkk�xk = k�x�Py? �xkk�xk= sin ar
 
os h�x;Py? �xik�xkkPy? �xk= sin �(y; �x)� sin �(�K�; �x)as desired. �The above fa
t was independently observed by Hauser-Cu
ker-Cheung [18℄, in the 
ase ofpolyhedral 
onvex 
ones.6.1 Strong infeasibility 
erti�
atesIn this paper, our fo
us is on the infeasibility 
erti�
ates and the related 
omplexity and 
onditionmeasures. So, in this subse
tion, we fo
us on the 
onvex feasibility problems des
ribed as a
onvex 
one interse
ted with a linear subspa
e. Therefore, for a given linear subspa
e S of Rnand a given pointed 
losed 
onvex 
one K in Rn with nonempty interior, we de�ne the followingpair of problems: (CFP ) 8><>: x 2 S;kxk = 1;x 2 K;(CFD) 8><>: s 2 S?;ksk = 1;s 2 K�;where we allow di�erent norms if so desired. We must note that we no longer have a goodanalogue of the uniquely determined partition [B;N ℄. Of 
ourse, even the strong duality typestatements require additional assumptions in this general setting. With these warnings in pla
e,
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�elwe must also mention that the infeasibility 
erti�
ates still are interesting sin
e they 
hara
terizestrong infeasibility. Moreover, we 
an study the 
omplexity measures for any 
losed, 
onvexpointed 
one by simply rede�ning the spa
e so that in the smaller spa
e the 
one has a nonemptyinterior.It follows from the separating hyperplane theorem thatS \K = f0g () S? \ int(K�) 6= ;:The impli
ation S? \ int(K�) 6= ; ) S \ K = f0g is trivial. For the 
onverse, supposeS?\ int(K�) = ;: Then there exists �x 2 Rn su
h that h�x; si � 0; for every s 2 S? and h�x; si > 0,for every s 2 int(K�). Thus, h�x; si = 0 for every s 2 S? (sin
e S? is a subspa
e) and �x 2 Knf0g.Therefore, S \K � f0g as desired.From now on, we will talk about the 
omplexity and 
ondition measures of subspa
e-
onepairs: (S;K), (S?; K�) et
. In the previous se
tions we only indi
ated the subspa
e S in thenotation sin
e the underlying 
one was always Rn+ and under the Eu
lidean inner produ
t, wehave (Rn+)� = Rn+.Let us think of S as N (A). Thensym(A;K) := sym fAx : kxk � 1; x 2 Kg :Renegar's 
ondition number for (CFP ) 
an then be de�ned as the re
ipro
al of the relativedistan
e to infeasibility, that is, the re
ipro
al of the smallest k�kkAk su
h that � 2 Rm�n andN (A+ �) \K = ;: We denote Renegar's 
ondition number for (CFP ) by CRP (A;K).Theorem 6.4 (Epelman and Freund [8℄) Suppose N (A)\K 6= f0g. Then there exists an m�mpositive de�nite matrix U su
h thatsym(A;K) � 1CRP (UA;K) � pmÆK sym(A;K):Suppose for a moment that we use the Eu
lidean 2-norm in all the de�nitions. Then usingthe above theorem, Proposition 6.1 and Theorem 6.3 we have the following fa
t.Corollary 6.1 Suppose N (A)\K 6= f0g. Then, there exists an m�m positive de�nite matrixU su
h that sym(A;K) � 1CRP (UA;K) � pmCCC(K) sym(A;K):Note that (S\K) is always a pointed 
losed 
onvex 
one. When it is at least one-dimensional(note that f0g is always in the interse
tion|whi
h is not interesting for us), we 
an identify the
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ates 33linear span �E of the 
one (S\K). Then, (S\K) restri
ted to �E is a pointed 
losed 
onvex 
onewith nonempty interior. Therefore, our proposed generalization of Cheung-Cu
ker measure isappli
able to it. We denote by (S \ K)j �E the pointed 
losed 
onvex 
one in �E (note that thisis geometri
ally the same obje
t, we simply rede�ned our spa
e). This 
one has a nonemptyinterior in �E. Therefore, we de�neCCCP (S;K) := CCC ((S \K)j �E) ;and CCCD (S;K) := CCCP (S?; K�);where we de�ne the underlying value to be 1 if the interse
tion of S and K is f0g, similarly forthe dual measure; and �nallyCCC(S;K) := max�CCCP (S;K); CCCD (S;K)	 :Note that our geometri
 generalization of the Cheung-Cu
ker measure to 
ones is only gearedtowards pointed, 
losed 
onvex 
ones with non-empty interior. For our purposes, when (CFP ) or(CFD) is infeasible, we assign the 
orresponding infeasibility measure problem, the 
omplexityvalue 1. (Re
all the de�nitions des
ribing �(A) for (FP ) and (FD).) In 
ontrast, Cheung-Cu
ker measure for systems of linear inequalities (even though less data dependent than theRenegar 
ondition measure) still measures the distan
e from a s
aled version of the data toill-posed instan
es (and hen
e it is well-de�ned and very meaningful for infeasible systems too).Our generalization is mu
h less data dependent and more geometri
; hen
e �tting the ap-proa
h that we have taken in this paper. Indeed, in this paper we fo
used on problems (FP ),(FD), (CFP ) and (CFD) whose solutions are potential infeasibility 
erti�
ates for an a
tualoptimization problem with additional data.A
knowledgmentWe thank Robert M. Freund for very useful 
omments on an earlier draftof this paper.AppendixProof of Theorem 5.2: Consider the linear programming problem whose optimal solutiondetermines �(A): maximize uisubje
t to u 2 Skuk1 = 1u � 0;where S is either N (A) or R(AT ) (and i 2 B or i 2 N). The optimal value of the above linearprogramming problem is �(A). So, there exists �u 2 S whi
h is an extreme point of the feasible
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�elregion su
h that �ui = �(A). But �u is a minimal element of S. Therefore, �(A) � �(A). Thisalso establishes �(A) � �(A).Next, we prove �(A) � �(A). We 
an assume that �(A) = �P (A). Let �x and J determine�(A) so that �(A) is the optimal value ofmaximize xisubje
t to AJxJ = 0eTxJ = 1xJ � 0determined by the unique optimal solution �xJ . Let ( �w; �t) 2 Rm �R be an optimal solution ofthe dual of this LP problem. Then, �t = �xi > 0. For every j =2 J su
h that �wTAj < 0, multiplyAj by (�1). Now, for this signing of A, 
onsider �x (extended by zeros to Rn) and ( �w; �t). Then�x is a feasible solution of maximize xisubje
t to (A�G)x = 0eTx = 1x � 0and ( �w; �t) is a feasible solution of its dual. Moreover, �xi = �t. Therefore, �x is an optimal solutionof the last LP problem and we 
on
lude�(A) � �(A�G) � �xi = �(A):Thus, �(A) � �(A). The last inequality we proved is valid for any signing of A and the left-hand-side is invariant under signings of A. Therefore, we have �(A) � �(A). Reverse inequalitywas already established; thus, we have equality as desired. The rest of the relations follow fromTheorem 2 of [36℄ and the fa
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