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Abstract

We begin with a study of the infeasibility measures for linear programming problems. For
this purpose, we consider feasibility problems in Karmarkar’s standard form. Our main focus
is on the complexity measures which can be used to bound the amount of computational
effort required to solve systems of linear inequalities and related problems in certain ways.
We propose a new complexity measure that is particularly well-suited for the generalized
Tardos’ scheme for the real number data model. We prove that the new measure is between
Ye’s (smallest large variable) measure and x. We present geometric interpretations of the
complexity measures and then turn to the sensitivity analyses and the computation of the
directional derivatives of the complexity measures. For this purpose, various sets of allowed
perturbations are identified (depending on the complexity measure) using the minimal and
maximal sign vectors of the subspaces involved. Finally, we consider the generalization
of the infeasibility certificates to convex optimization problems in conic form. We present
a geometric generalization of a condition measure proposed by Cheung-Cucker. We derive
various new relationships amongst the existing and new complexity measures in this context.
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1 Introduction, Definitions and Notation

Let A € R™*" such that rank(A) = m (this will be assumed throughout the paper) be given.

Consider the feasibility problems:

Does there exist € R™  such that Az =0, > 07 (1)
Does there exist y € R™  such that ATy < ¢? (2)

In the above, b € R™ and ¢ € R"™ are given. The feasibility problems (1) and (2) correspond to
the primal-dual linear optimization problems:

(P) minimize c'2
Ar = b,
x> 0,
(D) maximize by
ATy < e

By Farkas’ lemma, (1) has no solution iff there exist y € R™, s € R" such that
ATj4+5=0,e'5=1,5>0, and b75 > 0.
Similarly, (2) has no solution iff there exists # € R™ such that
A7 =0,e'2=1,2>0, and ¢’ 7 < 0.

Since rank(A) = m, the system Az = b always has solution(s) and we can find [ € R” such that
Al=10 (e.g., 1 := AT(AAT)~1p).

Let AV(+), R(-) denote the nullspace and the range (respectively) of the matrix argument.
We can write: (1) is infeasible iff

35 € R(AT) such that ¢T5=1,5>0, and I15 < 0.

The above provides some motivation for studying complexity and condition measures for the
feasibility problems in Karmarkar’s standard form:

{x: Ar =0, T2 =1, xZO}.

For such a feasibility problem, we have a dual which exposes a beautiful structure (see Vavasis
and Ye [40]):
x € N(4),
(FP) ¢ llzlh = 1,
z > 0,
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s € R(AD),
(FD) q lslh = 1,
s > 0.

The strict complementarity theorem of linear optimization translates to the following fact: For
every A € R™*", there exists [B, N], a partition of {1,2,...,n} (B or N may be empty) such
that there exists # feasible in (FP), g > 0, Iy = 0 and there exists 5 feasible in (FD),
sp = 0, sy > 0. In particular, B = () iff (FP) is infeasible and B = {1,2,...,n} iff (FD) is
infeasible. Note that the partition [B, N] as described above is always unique and is called the
strict complementarity partition determined by A.

Since (FP) and (FD) are defined over any pair of orthogonally complementary linear sub-
spaces in R"™, we have the following definitions (for convenience, S is the nullspace of A):

op(A4) :=o0p(9) = gréiqul max{z;: 2 €S, ||z|y =1,2 >0},

op(A) :=op(S) := op(St) = min max{8j cs€ St s =1,8> 0} ,
JEN

where op(S) :=1if B =0 (and therefore, op(S) := 1 if N = (). The primal-dual complexity

measure of Ye [42, 41] for the pair (FP), (FD) is then defined by

o(A) :=min{op(A4),0p(A)}
(we define ¢(S) similarly).

Ye [42, 41] and Vavasis-Ye [40] show that the abovementioned strict complementarity parti-
tion [B, N] can be computed in O (\/ﬁln ((r(”—A))) interior-point iterations.

Many of the concepts in our presentation become more apparent when we focus on those
characterizations of the complexity measures involving sign patterns of vectors in certain linear
subspaces. For z € R", sign(z) € {—,0,+}" encodes the signs of the entries of . Let S C R"
be a linear subspace. We denote by sign(S) C {—,0,+}" the set of sign vectors of the elements
of S.

Note that if A € R™*" such that AN'(A) = S then every nonzero vector in S represents a
linear dependence amongst the columns of A. Minimal linear dependencies play a particularly
important role in what follows.

We denote the set of sign patterns of those minimal elements in S by sign(S). That is,
sign (S) C sign(S) denotes those nonzero sign patterns in sign(S) such that setting any number
of +’s and —’s to zero (without changing the others) does not give another nonzero element of
sign(S). For z € R", let

J_(z)={j5€{1,2,...,n}:2; <0},

Jo(z) ={j€{1,2,...,n} :2; =0},
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Ji(z) ={j€{1,2,...,n}:2; > 0}.

Then, z € S\{0} is minimal if for all 2 € S\{0} satisfying J_(2Z) C J_(z), J4(Z) C J+(2),
Jo(2) 2 Jo(z) we have sign(#) = sign(z). So, € S is minimal iff sign(z) € sign(S).

It is well-known that if we identify the elements of sign(S) as the circuits on the ground set
{=,0,+}", we obtain an oriented matroid of rank [n — dim(S)]. Nonnegative sign patterns are
particularly important to us:

sign, (S) := {sign(z) : 2 € S,z > 0},

sign  (S) := sign(5) N sign . (5).

Also relevant to our study are the mazimal elements of a subspace. Analogously, we say
z € S is mazimal if for all & € S satisfying J_(2) D J_(z), J+(&) D J4 (@), Jo(&) C Jo(Z) we
have sign (%) = sign (7). We denote by sign(S) the set of sign vectors of all maximal elements of
S. We also define
ST, () = Fga(S) N sign (S).

Note that for a given subspace S, sign, (S) is either empty or is a singleton. Moreover, if
S = N(A) then sign (S) identifies the elements of B and sign, (S*) identifies the elements of
N.

The following very elementary lemma expresses the minimal elements in N (A) as minimal
linear dependencies amongst the columns of A.

Lemma 1.1 Consider & € N'(A) such that ||z||; = 1. Then, T is minimal in N'(A) if and only
if for J = J1(x) U J_(Z) the system of equations

Ajey=0,|lzs]i =1 (3)

has T 5 as the unique solution.

Proof. Take an arbitrary solution Z; of (3). Suppose for a contradiction that Zy # ;. Define
hjla) = 54 aiy. Now choose @ such that |a is the smallest positive number such that some
of the components of hj(a) become zero while the rest of the components preserve their signs
in Z 7 (not all the components can be driven to zero at the same time, because & # z ). Define
h(@) in R™ by completing with zeros. Clearly 0 # h(a) € N'(A), J4(h(a)) C J4 (), J-(h(a)) C
J_(z) and Jo(h(a)) D Jo(z). This contradicts the minimality of Z since sign(z) # sign(h(a)).
Conversely, suppose that Z; is the unique solution of (3) and that it is not minimal. Then
there exists & € N (A) different from Z satisfying ||&||, = 1, J1 (&) C J4+ (&), J-(&) C J_(Z) and
Jo(#) D Jo(Z). Then we have that (J;(2)UJ_(z)) C J. Therefore, &7 € N(Ay) and ||& ||, = 1.
This provides a contradiction because z ; is the unique point satisfying these last relations.

0
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Next we define a new complexity measure

¢p(A) :=¢p(S) :==min {xj #0:2 € 8,||z]|s = 1,sign(z) € siﬁ_l_(S)},

En(4) = €n(S) = &p(ST) = min {5, # 0 5 € ST, |ls|l1 = 1, sign(s) € sign, (S1)}

§(A) := min{¢p(4),{p(A)},

where £p(S) is defined to be 1 if the set over which the minimum is computed is empty. We
define £(S5) accordingly. These complexity measures provide our starting point in this paper.
We study the properties of infeasibility certificates for systems of linear inequalities and their
generalizations in the more general context of convex optimization.

In the next section, we give a dual characterization of £(A) using LP duality theory. Then
in Section 3, we review characterizations of y(A4) and extend and/or sharpen some of the known
results. In Section 4, we show that the new complexity measure is particularly well-suited to
Tardos’ scheme in solving LP feasibility problems. In this section we improve a result of Ho
and Tuncel [20] and refine a theorem of Todd, Tuncel and Ye [36]. Section 5 concerns the basic
setup for a variety of conditions on the sign vectors of subspaces and the study of how o(A) and
&(A) behave under perturbations. Many of the complexity measures can be expressed as the
maximum (or the minimum) of the optimal values of a family of LP problems. For perturbation
theory of linear programming problems see, for instance, first Robinson [32, 31, 30, 29, 28], then
Hirabayashi-Jongen-Shida [19] and Renegar [27]. The complexity measures, we are concerned
with here, are motivated by the complexity analyses of interior-point methods. There are many
papers which discuss perturbation and sensitivity analysis from an interior-point method point
of view; see Adler-Monteiro [1], Greenberg [15, 16], Mehrotra-Monteiro [24] and Yildirim-Todd
[43]. None of these works is concerned with analyzing the sensitivity of o(A), {(A) or y(4).
Luo and Tseng [22] obtained perturbation results for Hoffman constants for systems of linear
inequalities (see also Deng [7] and Azé and Corvellec [2] for more recent studies of related issues in
more general settings). These approaches are based on rank conditions on certain submatrices
of A. Our approach is more geometric and is based on sign vectors defined by the subspace
partition determined by A, as suggested in [37]. Our approach easily applies to o(A), £(A4) and
X(A) in a unified manner. We do not analyze the Hoffman constants in this paper; however, our
approach can also be used to obtain results similar to those of Luo and Tseng [22].

In Section 6, we begin extending our study to a convex optimization setting. Again we take
a geometric viewpoint. We consider the complexity measure sym(-) studied by Epelman and
Freund [8] (also see the measure ¢(-) proposed by Freund [11] and a related geometric approach
to primal-dual level sets in convex optimization [12]). We also consider the condition measure of
Renegar (see [27, 26]). In the context of strong infeasibility certificates, we generalize a condition
measure of Cheung-Cucker [5] (originally proposed for systems of linear inequalities) to convex
optimization. We present various results establishing some new relationships amongst these
condition and complexity measures in addition to results involving the width and the norm
approrimation coefficients of convex cones.
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2 Dual Characterization of ¢

We use linear programming duality theory repeatedly throughout the paper. To warm the reader
up to the notation, we present the following dual characterization of .

Theorem 2.1 For all linear subspaces S C R"”, we have the following dual characterization of

&:

&p(S) = min max min {min{s]}7 (14 s,)} .
0#JCB s €St ied
i€ (B\J) sign(sj)=+,Yj€J
sign(s;) = —

When B = (), the last minimum above is over the empty set and for convenience, it is defined
to be 1. Similarly, when |B| = 1, we have {p(S) = 1 and the minimum above is again over the
empty set and is defined to be 1. Finally, and again similarly, if the maximum above is over the
empty set then it is also defined to be 1. Note that if S contains unit vectors, this is a rather
trivial situation too, similar to what happens with other complexity measures o (see [37]) and
p (defined in Section 3, see [36]). If e; is in S, we simply remove the jth component and work
with the restriction of S (and S1) to R*~L.

Proof. As we noted above, we can assume |B| > 2 and that S contains no unit vectors.
Let J*, ", s* determine the right-hand-side above (the existence of such a solution follows from
the LP duality theorem applied to a set J U {i} identifying a nonnegative, minimal element in
S—also see below). Then the value of the right-hand-side is the optimal value of the linear
optimization problem

maximize t
subject to A%w +et <0
Ag;w 4+t <1.

Let w* € R™ such that s* = —ATw*, and define t* := min {minjej*{sj}, (1+ Sz**)} > 0. Then
(w*,t*) is an optimal solution of the linear optimization problem above. Conversely, an optimal

solution (w*,t*) of the above linear optimization problem determines the optimal s* (for the
fixed pair (J*,¢*)) in the right-hand-side above. The dual of the linear optimization problem is

minimize Tyx
subject to Az g + Az =0
eTopmtas=1

X Jxy Lgx Z 0.

Choose an extreme point solution Z y+, #;+ which is optimal in this problem. Obviously, z;+ > 0
by the duality theorem of linear programming. Define z € R™ by completing with zeros. This



INFEASIBILITY CERTIFICATES

is a minimal linear dependence verifying Az = 0,e’z = 1,z > 0; so, {p(A) is at most the

right-hand-side.

Now we take d € R" defining £p(A4). Identify i such that £p(A) = d;. Take J U {4} the set of

nonzero components of d. The system of equations Ad = 0 can be written as Ajdy; + A;d; =0
where the columns of A; are linearly independent, because d is a minimal linear dependence.

The problem

minimize d;
subject to  Ajyd;j+ A;d; =0
erj +d;, =1
dy,d; >0

has a unique solution given by dj,d;. The dual of this problem is

maximize t
subject to A?w +et <0
AiTw +t<1.

Now take an optimal solution (w, ) with optimal value t = {p(A4) which is at least the right-

hand-side.

0

Since the above theorem applies to all subspaces and our definition of £ can be written in

terms of £p(S) and &p(ST), we have

Corollary 2.1 Let A € R™*" be given. Also let S :== N'(A). Then,

£(A)= min min max min {mif}l{@}, (1+ s,)} )
0+JCB se S+ 7€
i€ (B\J) sign(s;)=+,VjeJ
sign(s;) = —
min max min {min{ac]}7 (14 x,)}
§£JCN z€S i€l

i€ (N\J) sign(z;)=+,VjeJ

sign(z;) = —
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Even though the above algebraic description seems long-winded, the geometric interpretation
of this dual characterization is quite nice and is included in Section 5 together with the geometric
characterizations of other condition and complexity measures.

3 Characterizations of y

Let D denote the set of n X n positive definite, diagonal matrices. We define
%(A4) = sup{|[A”(ADAT) " AD||, : D €D}, pe [L,+ox.

We easily have

ATyl

lells

The complexity measure Y(A) := Y2(A4) has been studied by many researchers (see for instance
Vavasis [38], Vavasis-Ye [40, 39] and Ho-Tungel [20]; also see Forsgren [10] for a historical account
up to early 1990s). The next result was stated in [36] for the 2-norm only.

Xp(A) :sup{ :yEargmin”D%(ATy—c)Hz,cER”,DED}. (4)

Lemma 3.1 For every p € [1,400], we have Y, (A) = max{||[ATAZ"|, : B € B(A)}.

Proof. Proofs of Lemma 1 (also see Todd [35]) and Lemma 2 of [36] (also see Vavasis-Ye [39])
go through with an arbitrary p-norm in place of the 2-norm. O

In [23], Megiddo and Shub studied the behavior of large variables of the least square solutions.
For a sequence {d®} in R? , converging to d € R}, they demonstrate among other things the
following fact.

Lemma 3.2 (Megiddo and Shub [238]) Let J := Jy(d) # 0. Then the sequence {y(d™)} defined
by
1
y(dV) := argmin{|| D (A%y - ¢)]l2},

1

where Dy, = Diag(d®)), converges to y(d) = argmin{||D3(ATy — ¢j)]|2}
Let X := {Du : u € N(4),D € cl(D)},Y, = {ve R(AT) : ||v|, = 1},

ppqg(A) =inf{|lu—v|, : v€ X,veY,}.

We also define
pp(A) == ppp(A).
The fact that y3(A4) = 1/pa(A) was established by Stewart and O’Leary.
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Proposition 3.1 (O’Leary [25]) Denoting the variables by u, v and J we have

PralA) = min |lvslq
sign(v;) = sign(u;),Vj ¢ J
[oll, =1
v e R(AT)
u € N(A)
0£JC{1,...,n}.

Proposition 3.2 In the above proposition, there always erists a mazimal v € N(A) which
attains the minimum.

Proof. Let u e N(A4),v € R(A),J C {1,2,...,n} attain the minimum. If v is not maximal
then there exists 4 € N(A) maximal such that Jy (@) D Jy(u) and J_(@) O J_(u). Then
(@,v, J U (Jo(u)\Jo())) is also an optimal solution. O

Theorem 3.1 For every p € [1,+00], we have Y,(A) = op(A)

Proof. Take v = ATy and c satisfying the maximum in (4). Then there exists a sequence
{d®} in R’ , such that the sequence {y(d®)} of least squares solutions associated with d(*)
converges to y. So, the sequence {v*¥)} defined by v(¥) := ATy(d*)) converges to v. Define
the sequence {u(k)} by u® = () — ¢, We claim that for each &, v ¢ N(ADy). In fact,
ADu®) = ADy(AT(ADLAT)"'ADyc — ¢) = 0. By definition of {«®}, ||¢l, = [Jo® — ¥,

for all k, so

vo®) u® 1 el lelly
MM“M_HMWMP_H“WM_HA%MWWA
Taking limits, we obtain
I v U
MM)_MWM_HNpQ

Since v/||v||, € Y, and u/||v||, € X we obtain m > pp(A).

Now, we take v, and J optimal in Proposition 3.1. Let § € R™ such that v = ATj. We
have p,(A) = ||vs|lp- Consider a sequence {ex} in R converging to zero. Define the sequence
of diagonal matrices {Dy} by (Dg)is = e if ¢ ¢ J; (Dg)is = 1if ¢ € J. Consider ¢ € R”
defined as 0; := vy and ¥; := 0 for all other j. Also consider the sequences {y(k)} defined by

1
yk) = argmin{|| D} (ATy — 9)||2}, and {v®)} defined by v® := ATy*) By Lemma 3.2, the
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limit of y(® is given by argmin{||ATy — vs|l2}. We claim that this limit coincides with . To
see it, note that the sequence {7} defined by 7*) := argmin{HD}q/z(ATy —)||2} has the same
limit; moreover, for each &k, AT§(*) is the oblique projection of v onto R(AT). Since v € R(AT)
then the projection must be itself. This proves that y* — ¢ and so {v(k)} — v. By hypothesis,
[ollp = 1473l = 1 and pp(A) = [[vsl, = [[AT]l- Then

1 ATy ATy _
ATl 1T
pp(4)  losllp 121l
The inequality above follows from the characterization (4). O

Gonzaga and Lara [14] proved that for p = 2, \,,(S) and Y, (S*) coincide. For general norms
this behavior is not preserved, even if we consider dual norm type relations: Consider the matrix

-3 0 1
null space matrix of A. Using Lemma 3.1, we have y;(S) = maX{HATAZ;THl : B¢ B(A)} =6,
Y2(S) = V14, and Yoo (S) = 3, while y1(S*) = max{||ZTZ]§T||1 :BeB(Z)} =4, v2(St) =
V14 and XOO(SJ‘) = 5. This example shows that in general \,(S) # Xp(S1), \p(S) #
Xp/(p—l)( ) Pp.q(S) # pp,q(sj_) and py, 4(S) # pq,p(SJ—)-

-2 1
Ai=(1 2 3). Here, N(4) = S and R(AT) = S*. Then the matrix Z := ( 0 ) is a

4 Infeasibility Detection via a Constructive Proof of a Helly-
type Theorem

Consider the feasibility problem (2). In this case, Helly’s Theorem (see for instance [6]) implies
that “ATy < ¢ is infeasible iff there exists J C {1,2,...,n}, |J| < (m + 1) such that ATy < ¢,
is infeasible.”

Tardos’ scheme to solve the feasibility problem (2), is a constructive proof of a Helly-type
theorem (see [20]). The scheme solves “easier” related systems, recursively. In each iteration,
the scheme identifies at least one constraint to drop. We will outline such a scheme after the
next lemma.

Lemma 4.1 Let c € N(A). Then for every s € R" such that ATy4+s=c¢ (for some y € R™)
we have ||s]|2 > ||¢/|2-

Proof. Note that ATy + s = ¢ implies ¢! ATy 4+ ¢'s = ¢’'¢ which in turn implies ¢’'s = ¢L'¢

(since ¢ € N'(A)). Now, by Cauchy-Schwarz inequality, we obtain

cfe=cls <Jlelals]l2-
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If ¢ = 0 then the claimed inequality is clearly true; otherwise, we divide both sides by ||¢||z and
we obtain ||s||2 > ||¢||2, as desired. O

This lemma implies that in Section 7.2 of [20], it suffices to choose p > \/n (m + 1) rather
than p > 2n3/2(y(A))2.

In answering the question posed by (2), first, we can replace ¢ by its orthogonal projection
onto N (A). Secondly, if ¢ = 0 then § := 0 solves (2). Therefore, we can assume ||¢|| = 1. We

choose p > /n m + 1) and solve the system

ATy +5=[pc], s > 0. (5)

If the system (5) is infeasible then so is the system (2). Otherwise, every solution (y,5) of the
system (5) satisfies

ATy + 54 pe - [pe] = pe.
Thus, by Lemma 4.1,

Vs +pe— [pel|l > |15+ pe — [pellly > [lpellz > p.
Therefore,
l8lloe > -2 — fipe - [pelll > bie
== Vn 7 &p(A)
We have

Theorem 4.1 Let J := {] €{1,2,...,n}:5; < m}. Then the system ATy < ¢ has a fea-

sible solution iff the system A?y < ¢y does.

Proof. Essentially the same as the proof of Lemma 7.3 of [20]. g

To appreciate this improvement, we offer the following refinements of a theorem of Todd,
Tungel and Ye [36]. First we need a definition. Let G C {1,2,...,n}. If we multiply by (—1)
the columns of A indexed by G, then the resulting matrix (this was called the signing of A by G
and denoted A_¢ in [36]) has the same X value as A. We write g(A) for mingcgy 2. n) 0(A-G).
Analogously, we write {(A) for mingc 2.0 §(A-g) and §P(A) for mingeg2,...n) EP(A—G)-

Theorem 4.2 For all A € R™*" with rank(A) = m, we have

_ 1 . ,OOO(A)
A= T T @
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Proof. First we prove “>”. Since Yo (A) is invariant under signings of A, for this part of
the proof we can assume {,(A4) = {p(A4). Let z € R" determine {p(A) such that = € N (4),
ez =1, sign(z) € sign (NV(A)) and there exist B € B(A), k ¢ B such that x = {p(A) and all

the nonzero components of & are determined by the unique solution of the linear system
Aprp = —€p(A)Ag.

Then
rg = —fp(A)AElAk >0
and
¢'7p = Ep(A)]| A5 Akl < Ep(A)Nao(A).
Since eTzg + &p(A) = 1, we get 1 < Ep(A) (Yoo (A) + 1). Thus we obtain,

as desired.

To prove the reverse inequality, let B € B(A), and k ¢ B determine Yo (A). Then pick a
signing of A corresponding to the diagonal m X m matrix G such that diag(G) € {—1,1}™ and

GAZ' A, < 0.

(Note that for j ¢ B, A; is not signed.) For the same basis B of the signed matrix A, we have
the linear system

ApGrp = —Ag

which has a unique solution (hence it determines a minimal linear dependence amongst the
columns of A). Upon normalizing by (e’zp + 1) and focusing on the component corresponding
to Ag, we have

1 1
A) < = .
$pl )_6T96B—|-1 Xoo(4) +1
The rest of the statement of the theorem follows from Theorem 3.1. O

Theorem 4.3 Let A € R™*", rank(4) = m. Then

A = =a(4) < m(d) < €A) = g(4) < €A <ad).

A proof of the above theorem is included in Appendix A. It follows from the above theorem
that the probabilistic analysis of [36] also applies to the complexity measures £(A) and (A). We
note that there are instances A(e) such that as e — 0, £(A(e)) — 0, even though o(A(e)) — %
(this can be easily seen using the geometric characterizations of ¢ and & presented in Section 6)
Also, there are instances A(e) such that as e — 0, 0(A(e)) — 0 even though &(A(e)) stays Q(1)
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The above theorems and the discussion also imply that even though £p(A) and £p(A4) can
take very different values, {,(A4) and {,(A4) must always be “close” to each other. (Use, for
instance, the fact that p2(S) = p2(S+).) Similarly, Theorem 2 of [36] and the discussion above
imply that even though op(A) and op(A) can take very different values, op(A4) and g (A) must
always be “close” to each other.

To conclude this section, we note that Tardos’ scheme is applied to A in a way that the
complexity measures of submatrices obtained from A by column deletion are important. As it
was shown in Proposition 2.4 of [20], x(-) is monotone nonincreasing under this operation. Here,
we note that the same property extends to 1/&p(-) (the property also extends to 1/op(-) whose
proof is omitted).

Theorem 4.4 Let A € R™*", rank(A) = m. Suppose A is obtained from A by removing a
column of A. Then we have the following facts.

(a) If rank(A) = m then p(A) > Ep(A).

(b) If rank(fl) < m—1 then let A be obtained from A by removing any linearly dependent row.
Then rank(A) = m — 1 and £p(A) = Ep(A).

Proof.  If rank(A) = m then the set of minimal elements of A'(A) can be extended to a
subset of the set of minimal elements of N(A) (by appending an appropriate zero). Therefore,

Ep(A) > €p(A) trivially follows. If rank(A) < m — 1 then without loss of generality, assume that
the deleted column was A,,. Then there exists an m X m nonsingular matrix G such that

) =aiea=e (g V),

where rank(A’) = rank(A4) = m — 1. We easily see from the structure of GA that every vector
2 in the null space of A must have z,, = 0. Hence

Ep(A') =Ep(A) = Ep(A).

The proof of Proposition 2.4 of [20] also trivially extends to x,(-) for all p € [1,+00] by
utilizing our Lemma 4.1 and Theorem 4.1 from the current paper.

Note that the analogous results apply to £p(A). Therefore, {(A) can be used in the above-
mentioned manner as a complexity measure in Tardos’ scheme to determine the feasibility of
the systems (1) and (2).
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5 Geometric Interpretations and Sensitivity Analysis

Epelman and Freund [8] showed that the complexity measure of Ye is very closely related to the
symmetry measure interpreted as follows.

Let
sym(A) := max {t : —tv € conv{A; : i € B}, for all v € conv{4,; :i € B}}.

sym(A) measures the symmetry of conv{A; : i« € B} about the origin in R™ (symmetry of a
compact convex set containing the origin in its interior is defined analogously—this is used in
Section 6). When conv{A; : 7 € B} is centrally symmetric about the origin, we have sym(A4) = 1.

Theorem 5.1 (Epelman and Freund [8]) Let A € R™*™ be such that the corresponding strict
complementarity partition [B, N| satisfies B # (). Then

sym(A)

op(A) = TG sym(A)”

Note that the above theorem and the fact that op(A) only depends on the pair of subspaces
N(A), R(A), imply that we can define sym(-) for subspaces. Thus, we have sym(A) = sym(S)
for all A such that N'(4) = S.

We denote by rp(A; Q) the radius of the largest ball with respect to the norm induced by
Q € I, contained in conv{A; : 7 € B} and centered at the origin. Similarly, Rp(A4;Q) is
the radius of the smallest ball (with respect to the norm induced by @ € X7, ) containing
conv{A; : 7 € B} and centered at the origin. The following are alternative descriptions:

rp(A;Q) =max{r e R: {u e R™: ||u|]lo < r} Cconv{A; : i€ B}},
Rp(A;Q)=min{ReR: {u e R™: ||ullg < R} D conv{A,; : i € B}},

where we define ||ul|g = (uTQ_lu)%. We easily have

sym(A4) >  sup rp(4iQ)

gexm, Rp(4;Q) ©)

This allows us to make immediate geometric statements about sensitivity analysis of sym(-) and
hence o(-). Instead of the ellipsoidal norms above, we could use any norm induced by a compact
convex set in R™ containing the origin in its interior such that the set is symmetric about the
origin. Then if we take the supremum in (6) over all such convex bodies, the analogous statement
to (6) would hold with equality (see Epelman and Freund [8]).

Any perturbation made to Ay which does not change the strict complementarity partition
[B, N]does not change the value o(A) either. On the other hand, changes to Ap can be analyzed
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geometrically using the above lower bound on sym(A). For instance, suppose each A; for ¢ € B
is perturbed along a direction (AA); such that |[(AA)||]2 = 1 (or zero) for every ¢ € B. Also
assume that the over all perturbation (including the perturbations to Ay) has the property that
there exists a positive & such that [A + (A A)] determines the same partition [B, N] as A does,
for every o € [0, @]. We would like to understand how sym(A(«)) behaves for small a.

First, note that the supremum in (6) is attained. Also, we can restrict @ to those positive
definite matrices with the largest eigenvalue equal to 1. Secondly, let ) denote a symmetric
positive definite matrix attaining that supremum and denote by A; the ith largest eigenvalue of

Q.

Proposition 5.1 Let A, AA, Q and )\, be as defined above. Then there exists & € (0,1) such
that for every a € [0, @],

sym(A(e)) >

L (1O T 0 ), .

Vi \Rp(4;Q)VAn + o

Proof. Let w € {u eR™:ul'Qtu< [RP(A;Q)]Z}. Then for every v € R™ such that

||[v]]2 € o < @, we have
(w+0)'Q ' (u+v) = w'Qlu+2uTQ v+ 0TQ!
< [Be(Q) + 1+ 21Q7 el @l
(RP(A§ Q)+ L>2 :
VAm

This implies that the ellipsoid {u eR™: |lullg < Rp(4;Q) + \/)\—} contains conv {[A(a)];

2

IA

1 € B}.

Let u(9) denote the eigenvectors of Q. Then the vectors +rp(4; Q) ) € conv {4, :1 € B},
for every j € {1,2,...,n}. Thus, + [rp(A Q)N 04] ) € conv {[4 ()], 1 € B}, for every
je{L,2,...,m}. Hence by standard arguments, we conclude that the ellipsoid

{uermiulg < o= (wias) - =)}

is contained in conv {[A(a)], : 7 € B}.

Finally, using the above ellipsoids, we conclude the desired lowerbound. O

The above result is simply meant to motivate the sensitivity analysis of o(A) (which is
coming up) using the elegant geometric setting from Epelman-Freund [8]. In the same setting,
we have the following geometric interpretations.
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Now, we are ready to give a geometric interpretation of the definition of {p(A). Consider all
simplices made from ext (conv{A; : ¢ € B}), containing the origin in their relative interior. Let
S(A) denote the set of all such simplices. For each A € S(A), consider the (unique) barycentric
coordinates of 0 in A. Assign the smallest of these coordinates to A. The smallest number
assigned to any such simplex is equal to £p(A).

Next, we give a geometric interpretation of the dual characterization of {p(A) provided by
Theorem 2.1 and Corollary 2.1. Counsider pairs (.J, ) such that J C B, i € B\.J, and the point A4,
and the set conv{A; : j € J} can be strictly separated by a hyperplane through the origin. For
each such hyperplane, consider the “distances” from A; and conv{A; : j € J} to the hyperplane.
Choose the hyperplane which maximizes the ratio of the smaller to the larger of these distances,
and assign this ratio to the pair (J,¢). Now, {p(A) is basically the minimum of all these ratios.

5.1 Perturbation matrices

Now, we begin studying the effect that the perturbations on the data of the problem (FP) can
have on some of the complexity measures for linear feasibility and linear programming problems.
Since the definitions of these condition numbers can be made to depend on the sign patterns of
the subspaces defined by A, we deal with perturbations that preserve the sign patterns of the
original data. Consider the perturbation matrix AA € R™*". That is, in problem (FP) the
matrix A is replaced by A(«) := (A + a(AA)), for small positive a. The following conditions
on certain extreme elements of the subspaces defined by A and A(a) respectively will be very
important in our treatment.

Condition C'l: The perturbation matrix AA is said to satisfy condition C'1 for A if there
exists & > 0 such that for all a € (0, @),

sign(A'(4)) = sign(A'(A + a(AA)).
Condition C'2: The perturbation matrix AA is said to satisfy condition C?2 for A if there
exists @ > 0 such that for all a € (0, @),
TER(N(4)) = TN (A + a(A4)).
Condition C'3: The perturbation matrix AA is said to satisfy condition C3 for A if there
exists @ > 0 such that for all a € (0, @),
sign, (V'(4)) = sign, (M(A + a(A4))).
Condition C'4: The perturbation matrix AA is said to satisfy condition C'4 for A if there
exists @ > 0 such that for all a € (0, @),

Sz, (M(4)) = Sig, (V(A + a(A4))).
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Conditions C'1 and €2 are relevant to perturbation results involving y; condition C3 is
relevant to & and condition C4 (which says that the strict complementarity partition [B, N]
does not change) is relevant to o.

Note that if AA satisfies C'1 for A, then for every a € [0,&) the strict complementarity
partition determined by (A 4+ «(AA)) is the same as the one determined by A.

Theorem 5.2 Let A, (AA) € R™*". Then we have the following facts.
(a) For every a € R, we have

sign (A (4)) = sign (V' (A + a(AA4))) iff sign(R(A)) = sign(R(A” + a(A4)")).

(1) Por every a € [0, ), 5gi, (V(4)) = Tgn, (V(A + a(A4))
if and only if

or every a € [0,a), Fen, (R(AT)) = sign, (R(AT + a(A4)T)).
(¢) Condition C'1 implies conditions C2,C3 and C4.

(d) Condition C2 implies condition C'4.

(e) Condition C3 implies condition C'4.

Proof. (a) sign(NV(A4)) = sign(N(A + a(AA))) implies that these two sets of minimal sign
vectors determine the same oriented matroid on {1,2,...,n}. The dual of the oriented matroid
determined by sign(N(A)) is sign(R(AT)) (for more general results related to this fact see
Bland and LasVergnas [4]; also see Proposition 3.4.1 and Lemma 3.4.2 of [3]). The latter is also
determined by sign(R(AT)). Therefore, we have the statement (a).

(b) This follows from the facts that A determines a strict complementarity partition [B, N] and
(of course) B stays the same iff N does.

(c) Since the minimal sign vectors completely determine all sign vectors in the pair of orthogonal
subspaces, C2,C'3 and C'4 are consequences of C'1.

(d) and (e) follow easily from the definitions. O

Note that the other direct implication relations amongst the conditions C'1-C'4 are false in
general.

The next lemma establishes a relationship between the minimal vectors in N'(A) and those

in V(A4 a(AA)) in the case that AA satisfies condition C4 for A.

Lemma 5.1 Assume that AA satisfies condition C4 for A and that sign (NM(A)) # 0. Then
for every x € N(A) such that sign(z) € sign (N(A)) there exist & > 0 and a path of solutions
{2(a) : @ € (0,4]} such that (o) € N(A+ a(AA)), sign(z(a)) € sign (N(A+a(AA))) and is

constant for every o € (0,4] and z(a) — 2 as o — 0.
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Proof. Consider z as in the statement of the lemma. Let J := J;(2). Then there exists
& € (0,a] such that the columns of [A; + a(AA) ;] are either minimally linearly dependent or
are linearly independent.

In the first case, we focus on the unique solution (path) z;(«) of the system
[AJ—|—O((AA)]]$]ZO7||$J||1 =1. (8)

It is clear that 2 («) (the extension to R™ of 2 j(«) by completing with zeros), satisfies sign(z(«)) €
sign (N(A+ a(AA))) for all small enough o and that z(a) — .

In the second case, we note that the strict complementarity partition [B, N| defined by A
has the property that J C B. So, we extend J by adding to it j € B\J until we have JoJ
(and J C B) such that the columns of [A; + a(AA);] are minimally linearly dependent and
the unique solution (path) z(«) determined by

[Aj+ a(AA)j]e; =0,z =1

converges to x. Here, we redefine & if necessary (by reducing it) to ensure that sign(z(«))
stays the same for all @ € (0,4]. If z(a) > 0 then we are done. Otherwise, there exists
j € J such that z;(a) < 0 for all a € (0,4]; moreover (since z(a) converges to a nonnegative
vector), z; = 0 for every such j. Let Z(«) be a maximal element of V(4 4 a(AA)) such that
sign(Z(a)) € sign, (M (A+a(AA))) and #(a) — &, where sign(z) € sign, (AV(A)). By Condition
C4, sign(z) = sign(i(«)), for every a € (0, @]. For o € (0, &, we define

7(a) == min {7 € [0,1] : 2() + 7 [#() — 2(a)] > 0}.

Such 7 exists since # j(a) > 0, for every « € (0,a]. We also define

(o) = :
el {r(a) + () [#(a) — ()]}

We have u(a) — z as o« — 0. We redefine & if necessary (by reducing it) to ensure that sign (u(«))
stays the same for all a € (0,4&]. We constructed a nonnegative path {u(a) : « € (0,a]} such
that if sign(u(a)) € sign (MN(A+ a(AA))) then we are done. If u(«) is not minimal, then note
that |J4 (u(a))| < |B| — 1. We remove all columns A;, (AA); for every j € Jo(u(a)), redefine

B := J; (u(e)) and repeat the above. As we keep iterating, the procedure will have to stop after
at most (n — 2) steps leaving the last u(«) as the desired path. O

{z(a) +7(a) [#(a) — z(a)]} .

The above lemma can be interpreted as a statement about how the extreme points of a
polytope behave (in terms of the extreme points of certain “nearby” polytopes) under a pertur-
bation.

Consider a minimal z and z(«) for some o € (0, &| as in the lemma above. Denote J (o) :=
Ji(2(a)). Clearly Jo(z) D Jo(z(@)). () is the unique solution of the system (3) for J = J,(0)
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and  j(q)(e) is the unique solution of (8) for J = J, (a). Choose a basis B € B (A + a(AA))
and jp € J4+(0)\B such that J(a) C BU{jp}. Let

wa:(mmM[Mwm)7

el 1

where A(a) := A + a(AA). This matrix is nonsingular for every a € [0,&]. We denote M :=
M (0). Consider an arbitrary index 7 € J4 («) and the dual equations

ALwy +te = ¢, 9)
where J := BU {jp} as above, and the perturbed ones

(Ay+ a(AA)J)Tw + te = ¢;. (10)

Associated to each i € J;(a) and the basis B defined above, there exists a unique solution
(0, ) of the system of equations (9). It is easy to see that () = z; (to see this claim we can
express #; as the optimal value for the problem min{z; : Ajz; =0,e¢’2; =1}; then the claim
easily follows from the duality theorem of linear programming).

Lemma 5.2 Consider A, (AA) € R™*" such that (AA) satisfies C4 for A. Also consider a
minimal @ € N(A) and 2(«) € N(A(e)) such that @ > 0, 2(«) > 0, the path {z(a) : « €
(0,4]} satisfies all the properties mentioned in Lemma 5.1, and x(a) — x. Finally consider
the strict complementarity partition [B, N| determined by A. Then for each o € [0, 4] we have
N C Jo(z(ar)) C Jo(2), and if i € Ji(«) then

zi(a) = 7 — a { [M]T (AA); [M(a)]™ el} 7

where Jy (a) CJ = BU{jz} for some jg € J1(0) and B € B(A), and (v, +)) is the unique
solution of (9).

Proof. Consider a fixed o € [0,4], 2 and z(«) as in the statement of the lemma. Then
we have Jo(2) O Jo(z(a)) D N as a consequence of condition C'4 and the hypothesis. Let
i € Jy(a) (note that J_(z(a)) = @). For each a € [0,a], z;(4)(e) is the unique solution of
(8) for J = Ji(«a). Consider the dual system of equations (10) with J = B U {jp} for some
jB € J1(0), J(0) C Jy (@) C J and B € B(A). Express the unique solution (w(*)(«), " (a)) for
these equations as (w( ()t (a)) = (w®, D) + (v (a), 5)(a)). By substituting this relation
in (10) and noticing that (w(®), () satisfies the system (9), we conclude that (v(*)(a), n()(a))
satisfies the equations (A; + a(AA) ) v+ ne = —a(AA)Tw). By construction, the matrix
[M(a)]" which forms the left hand side coefficients is invertible. This means that

U(i)(@) - i
(ﬁw@)z—menT@m%M%
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The last component is 7()(a) = —« { [w(i)]T (AA) 7 [M(a)] ™ e,} as desired. O

If ¢ € J4(0) and there exists B such that J(a) C BU{i} and B € B(A) (that is jp = ¢ in
the construction above) then the inverse [A(a)]3' exists for every a € [0,4] and the inverse of
M («) can be expressed as the constant

1
1— e [A(0)]5' [A()]:

multiple of the matrix
( {1 - MA@ [A@)]i} [A()]5' + [A(a)]5 TA()]ie[A(e)]5! —[A(Oé)]E;lAz)
—e"[A(a)]5! 1 '

We have lim,—_o[A(a)]5" = Ap', and lima_,o[M (a)]7' = M~!. These facts help us specialize
the lemma above to ¢ € J;(0).

Corollary 5.1 Consider the conditions of the lemma above, and suppose that ¢ € J(0). Then

[a%

1 - eT[A(0)]5' [A()];

zi(a) =a; —

[w®]" {(a4); - (A4)plA(0)]5' [A(e)]:}

Proof. Since i € J4(0) and J4(0) C J(«), we have that z; and z;(«) are both positive. Using
Lemma 5.2 and the explicit formula for the inverse of M («) given above, we obtain the desired
result. O

We conclude this subsection by giving a sufficient condition for C'1 to hold. Suppose that
the perturbation matrix AA satisfies the following condition: For every minimal z € A/(A4), and
every j € (Jy(v)UJ-(x)), the column (AA); € R(Aj, (z)us_(z))- Since the columns of (AA),
are in R(Ay), for each j € .J there exist ’y( 7)€ R’ such that AA; = AJ’)/(j). Therefore, we
can write Ay + a(AA); = Aj(I + al'); where the columns of T' are the vectors vU) previously
defined. Note that for o small enough, the matrix (I 4 oI') is invertible. So, there exists & > 0
such that for each a € (0, &), the system (8) has a unique solution, say = j(«); and (I +al')z j(«)
is collinear with z ;.

Proposition 5.2 Consider the perturbation matriv AA € R™*"™ and suppose that for each
mianimal point @ € N'(A) we have

J € Jp(x) U J_(x) implies (AA); € R(A, (2)ui_(x))-

Then there exists a > 0 such that for all o € (0,a), sign(N (A4 aAA)) = sign(N(4)).
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Proof. Counsider arbitrary @ € N (A). Denote J = Jy(2) U J_(2). Note that for arbitrary
T € RVIXMl and small a > 0 the equations

Aj(I+aT)w =0, ||w|; =1 (11)

have a unique solution if and only if the equations (3) do, because the matrix (I + oT') is
invertible for every a sufficiently small. Since for T'=T' the systems (8) and (11) are equivalent,
we have that (8) has a unique solution if and only if (3) has a unique solution. Therefore,
x € N(A) is minimal if and only if the point z(«), the solution associated with (8), is minimal.
It is easy to see that (I + oI')aj(a) = na; for some positive 7, and from this claim we have
that sign(z) = sign(z(«)) for every small a. We have shown that for each 2 € N (A4) minimal,
there exists z(a) € N(A(a)) minimal such that sign(z) = sign(z(«)) for all o sufficiently small.
Therefore, sign(V(A4)) C sign(N(A(a))).

Suppose now that there exist a minimal #(a) € N (A4 a(AA)) such that for every sufficiently
small o, sign(#(a)) & sign(N(A4)). Then the system of equations (3) for J = J4 (& (e))UJ_(E(a))
must have multiple solutions. Choose a minimal z; in A'(A). Complete with zeros to define
z € R". Clearly Z is a minimal solution for N'(A). For J = J;(Z) U.J_(Z), (8) has a unique
solution if and only if (11) has a unique solution. Therefore, by the first part of the proof, the
unique solution of (11) has the same sign vector as z. We arrived at a contradiction. Thus,

sign(V'(4)) 2 sign(V (A(a))). O

The condition in the hypothesis implies that condition C1 holds. The converse is not
0 0

1
and AA =
1 -1 0

true, as shown in the next example. Consider the matrices A := (

1 -1 0

0 0
that 1 € Jy(2) U J_(2) and (AA); & R(Ay, (a)us_(a)), but for every o € R, sign(N(4)) =
sign (N (A(a))); that is, AA satisfies condition C'1 for A.

, and the minimal vector z := (3, 3,0)7 € N (A(a)), for every o € R. It is clear

5.2 Sensitivity of o(A)

As mentioned in the previous section, we shall study the sensitivity of o(A) for a perturbation
matrix satisfying C'4. For each ¢ € B we define

op,(A) :=max{z; : Agrp = 0,25 > 0,¢lzp = 1}.

By the duality theorem of linear programming we have

op. (A) = min t:ATw—I—te>e,' = min {max{ min {s; 71—|—s,}}7
P, (4) {t: Aj > e} oo, ]EB\{Z.}{ i}
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also see Theorem 3.1 of [37] and Lara-Gonzaga [21] for another characterization. Associated
to each i € B there exists a minimal 2(*) in N (A), an optimal solution of the primal problem

defining op,(A) (op,(A) = JUEZ))-

Lemma 5.3 Consider the condition number op(A), op,(A), and the perturbation matriz AA €
R™X" satisfying C'4 for A. Then there exists & > 0 such that for all i € B and « € [0, ]

- ety ) {8 - A AL}
B k3

where B € B(A), BU {i} D J4 (&) for some & minimal in N(A), z >
(w,t() is the unique solution of system ATw + et = e; with J = BU {i}

op,(A+ aAA) =op,(A4)

0, z; = op,(4) and

Proof. By condition C4, the strict complementarity partition [B, N] does not change after
the perturbation. Consider minimal () such that sign(z(?)) € sign (NM(A4)) and op,(A) = xgl).
Consider also z()(a) satisfying the conditions given by Lemma 5.1. Since i € Jy (), by
Corollary 5.1 we have

() — o0 a @]" | ] -1 ,
v (@) = ;" - = w (AA); = (AA)p [A(a)]5 [A(a)]ig -
e &' LAl
Since xgi) is the maximum objective value of the LP problem maximizing z; over all feasible x

in the original problem (FP), and 2()(a) — 2() as & — 0, we have that there exists & > 0 such

that wgl)(a) is the maximum value of the LP problem of maximizing z; over all feasible z in the

perturbed problem defined by [4 + a(AA)]. O

Theorem 5.3 Consider the conditions of the lemma above. Suppose that there is a unique indez
C in B such that op,(A) = op(A). Then we have the following facts.
(a) There exists & > 0 such that for all o € [0, a]
op(A(a)) = ap,(A(a)).

(b) The directional derivative op(A, AA) exists and it is calculated as

= (0] ' {(24), - (A4) 5 [A(0)]5' [A(a)], }

L(AAA) = ——
O'P( ) 1—€TA§1A(

where B and w9 are as described in Lemma 5.5.

Proof. (a) Since ( is the unique index such that op,(A) = op(A), by continuity arguments,
there exists & > 0 such that op,(A(a)) = op(A(«)) for every a € [0, a].
(b) This follows from part (a) and Lemma 5.3, by driving « to zero. O
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5.3 Sensitivity of £(A)

Now we study {p(A). For each ¢ € B we define
¢pi(A) = min{a; #0 : 2 € N(A), [|z|L = 1, sign(w) € sign (A (4))}.

&p; (A) = Lif for the set over which the min is computed is empty. Clearly, {p(A) = min;ep {€p;(4)}.
For each 7 such that £p,(A) < 1 we have a minimal z() in A/(4) such that &p,(A) = wgl). Let us
define £p, (A(a)) accordingly, for the perturbed matrix.

Lemma 5.4 Consider the condition numbers £p(A), Ep,(A), and the perturbation matriz AA
satisfying C3 for A. Then there exists positive & such that for all o € [0, &] we have

[a%

1 T [A()] A,

2

Er,(Al0) = Er(4) [w] " {(a); — (24)5 [A(a)]5 [A(0)],}
where B € B(A), BU{i} D J.(2) for some & minimal in N'(A),

z nd z; = &p,(A) and
(w(’), t(’)) is the unique solution of the system A?w + et = e; with J

>0a
= BU{i}.

Proof. Note that condition C'3 implies condition C'4 by Theorem 5.2. The rest of the proof
can be completed as in the proof of Lemma 5.3. O

Theorem 5.4 Consider the condition numbers {p(A), p;(A), and the perturbation matric AA
satisfying C3 for A. Suppose that there is a unique index k € B such that {p(A) = Ep,(A).
Then we have the following facts.

(a) There exists & > 0 such that for all o € [0, &] we have {p(A(a)) = Ep,(A(a)).
(b) The directional derivative {(A, AA) exists and it is calculated as

1

LA AA)=—— -
gP( ) ]_—eTAélAk

) ! {(24) - (A4)5 A5 [A(@)], ]

where B and w are as described in Lemma 5.3.

Proof. Similar to the proof of Theorem 5.3. O

Note that the above set up and the results can also be used to work with the directional
derivatives of y(-) under condition C'1. in particular, we can utilize the above theorem together
with Theorem 4.2 to get the directional derivatives of Yoo (+).
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6 Generalizations to Convex Cones and Relationships with Rene-
gar’s Condition Measure

Consider a convex cone K in a finite dimensional normed space E. The dual cone K* is defined
as
K*:={s€E" : (s,x) >0, for every z € K}.

We will assume that K is a closed, convex cone, has a nonempty interior and is pointed (i.e.,
contains no line). It follows that K* has all of these properties too. We also have the fact that

int(K) = {x € E: (s,2) > 0, Vs € K*\{0}}. (12)

The width of K is given by:

.
;o= —: B K.
T elren, { E }

Note that 7 € (0,1]. Since K is pointed and has nonempty interior, 7 is attained for some
(z,7) as well as along the ray (az, ar) for all @ > 0. By choosing the value of o appropriately,
we can find v € K such that

||u|| = 1 and 7k is attained for (z,r) = (u, 7x). (13)

The norm approximation coefficient of K is defined by
O 1= dist (0, Jconv [K (1) U —K(1)]), (14)

where K (1) := {2z € K : ||z|| < 1}, and dconv[K (1) U —K(1)] is the boundary of the convex
hull of the set K (1) U (—K(1)).

Epelman and Freund [8] showed that dx > 75— > 7. Also see Freund-Vera [13] for an
earlier approach to similar geometric measures. We demonstrate here that when all the norms
in the above definition are taken as the Euclidean 2-norm, the denominator in the previous

relation is not necessary.

Proposition 6.1 Let K be as above and suppose all the norms in the definitions of dx and Tx
are the Fuclidean 2-norm. Then
T < 0K

Proof. Let z be an arbitrary point in B(0, 7x). To show our claim, it suffices to prove that
T €conv[K(1)U—-K(1)]. If z € K we are done. Assume Z ¢ I{. Take v as in (13), and consider
the two-dimensional subspace S generated by « and Z. S is isomorphic to R? because z and
u are not collinear, and each y € S can be written as y = au + 3% where (o, 3) € R? In the
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following, the action happens in S: Choose v € S such that «Tv = 0, ||v|ls = 1 and 27v > 0.
Define «(t) := & 4 tu for t > 0. It is clear that v(1) € B(u,7x) C K. Since y(0) =z ¢ K and
v(1) € K there exist a unique ¢ € (0,1) such that v(f) € K. Denote it by 7. Define by 6 the
angle between « and 4. We claim that sin 8 > TK. Suppose for a contradiction that sin 8 < 7x.
Then there exists v(f) := 4 near ¥ such that sin 0 < 7 and 3 ¥ ¢ K (here f stands for the angle
between u and 4). Now, we choose 5 > 0 such that 57 is the orthogonal projection of u onto
the ray 4. It is clear that ||3% — ully = sind < 7k, so 5 € K which is a contradiction. So
necessarily sin > 7x. Now, we have

T Tz 1t T
T <sinf =cos(w/2 — ) = vt (Z+tu) va

17112 9z 7l

So,
T,
7]z < — < 1.
TK

We have shown that ¥ € K( ). We can take in a similar way 4 = 7 — tu such that 4 € (=K (1)).

- @) 7 -

Then we can write z = (t-|-t)7 +

The following example shows that the relation above is not necessarily an equality: Consider
the cone K = R". For this cone, 1) = \/LE and u = (%)e We claim that éx > % To prove

this, it is enough to show that every point z in B(0, \/_) also belongs to conv[K (1) U —K(1)]. In

fact, consider arbitrary z € B (07 %) Ifz € K(1)orz € —K(1) then € conv [K (1)U —K(1)]

as desired. Suppose that z ¢ [K(1) U—K(1)]. So the signing partition is proper; that is, there
exist positive and negative components in z. Denote by B the index set of the nonnegative
components, and by N the index set of the negative components. Denote by () the vector

in R™ such that wg) = m@; and wg\lf) = 0 and by 2(® € R™ such that wg) = 0 and
wg\zf) = m’ . The vector T can be written as 7 = az(!) + (1- 04)36(2), where oo = ||z |2 €
(0 ,\/_) (0,1). It remains to show that () € K(1) and (3 € —K(1). The first claim is

trivial. To prove the second one, note that 2(?) € —K and its norm is the square root of:

= 112 92
el 1 (1)1t
(1-—a)? = (1—a)? \2 2(1— «a)?

The first inequality is true because # € B(0,1/v/2). The maximum of the last function in the
interval (0, ) is attained at o = £, with value 1. So we have the result.

NG 2

Proposition 6.2 For K = R, if we choose all the norms in the definitions as the Euclidean

2-norm, then o — %

Proof. We already proved that 6x > 1/v/2. So, it suffices to prove the reverse inequality.
Clearly, we can assume n > 2. Let k be an integer such that 1 < k& < n/2. Consider the
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nonnegative vector z(+) with 1/\/% in the first k positions and zeros everywhere else. Similarly,
let (=) denote the vector with —1/\/% in the last k positions and zeros everywhere else. Clearly,
z(t) € B(0,1) NR” and 2(7) € B(0,1) N —R"; moreover, H%w(_) + %w("')Hz = % It remains
to show that this midpoint is on the boundary of conv[K (1) U —K(1)]. To see the latter, let
€ > 0 be arbitrarily small, add € to the positive entries of the midpoint and subtract ¢ from the
negative entries of the midpoint. The resulting vector cannot be written as [)\w(_) +(1- )\)w("')]
for () € B(0,1)N —RY%, +(H) e B(0,1)NRY and A € [0, 1]. Therefore, the midpoint described
above is on the boundary of conv[K (1) U —K(1)] as desired. O

We can generalize the above proposition to all self-dual cones.

Theorem 6.1 Let K be a convex cone in R™ as described at the beginning of the section. If
K = K* under the inner product {-,-), then

1
5K = 5[(* - Ev
where the distances (and the balls) are defined with respect to the norm ||z|| := (x, z)'/2.
Proof. The claim that §x = dx+ is obvious.
First, we show that there exists v € dconv[K (1)U —K(1)] such that ||y|]| = 2=. Let v €

N
ext(K). Denote by F(v) the minimal face of K containing v. Consider [F(v)]®, the dual face
(F* .= {yc K*: (z,y) =0, Vo € F}). Let w € ext(K) N [F(v)]®. Note that (v,w) = 0. We
claim that v := v + 3(—w) € dconv [K (1) U —K (1)]. It is clear that v € conv [K (1) U —K(1)]
and that ||y]| = % Define v(€) := (14 €)vy. We will prove that v(e) € conv [K(1) U —K(1)]. To
do so, let us denote by S the two-dimensional subspace generated by v and w. Since vy(e) € S
it suffices to show that vy(e) € S Nconv[K(1)U—K(1)]. This last set can be characterized in

terms of v and w:
SNconv [K (1)U —K(1)] = [cone{v, w}](1)U[cone{—v, —w}](1)Uconv{0, v, —w }Uconv{0, —v, w}.

Clearly, for no € > 0, v(€) is in the above set. Therefore, v is on the boundary of
conv [I{ (1) U —K(1)] as claimed. We proved that §x < %

Secondly, to demonstrate the reverse inequality, we prove that

1 . -
B (07 ﬁ) Ceonv[K(1)U—-K(1)].

Take an arbitrary z € B (07 %) If z € K(1) or # € —K (1), then we are done. So, we can

assume that z ¢ [K(1) U —K(1)]. Let u be the closest point to Z in K and define v := z — u.
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We claim that v is in —K. Since u is the closest point to # in K, we have (by the Kolmogorov
Criterion)
(z—u,xz—u)y<0, Ve e K

which is equivalent to
(T —u,z) < (u,)— ||u||?, VzeK. (15)
Since K is a cone, and the right-hand-side is a constant, the above implies
(z —u,2) <0, Ve € K.
That is, v € — K.
Also note that
(u, ) = (7 — u) = (u,) — Jul]? > 0.

The last inequality above follows from (15) and the fact that 0 € K. But v € K and v € —K™.
Thus, {(u,v) = 0. (In fact, at this point, we can easily verify the Kolmogorov Criterion for v to
be the closest point to Z in —K.) Since ||Z]| < %, T =u+ v, and {u,v) = 0, we conclude that
|lu]| € (0,1). Define
M= and 2@ = —
[l L= |l

Then z = az™ 4+ (1 — @)2?), where « := |lu]| € (0,1). Clearly, 2™ € K(1). We claim that
2 € —~K(1). (3 € —K was already established. Moreover,

2 5.2
Jez = A1 (E—M):i; 2,

(1-a)? = (1-a)?2\2 (1-a)? ~
The first inequality is true because & € B(0, %) and ||v]|? = ||z]|* — ||u?||. The maximum of the
last function in (0,1/4/2) is attained at o = 1/2, with value 1. O

A quantity related to 75 was mentioned by Sturm in the context of symmetric cones [34].
Let x(K') denote the Carathéodory number of I (for a definition see [17]). Sturm remarks that
the radius of the smallest circular cone (scaled second-order cone) which contains a symmetric
cone I (see [9] for a definition) is [k(K) — 1] times the radius of the largest inscribed circular
cone. In particular, Sturm’s remark about the largest inscribed circular cone is equivalent to
the following fact (we omit the proof).

Theorem 6.2 Let K be a symmetric cone and define the width of K by using the norm induced
by the inner product under which K = K*. Then

TK =

k(K)
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Cheung and Cucker [5] propose a condition measure for the linear feasibility problem. They
establish the theory in terms of the cone of solutions sol(A”) := {y € R" : ATy < 0} and its
dual cone sol(AT)* = {w € R™ : (w,y) > 0, Yy € sol(AT)}. We shall define this condition
measure for a (general) pointed convex cone K. For arbitrary vectors z,y in E, define the angle
6(y, z) between these vectors as:

Y, )

(y, x) := arc cos —————.
7 IIEd]

Also define the angle (K, z) between z and a pointed convex cone K as

(K,z):= min {6(u,2)},
u€ext(K)
where ext(K') denotes the set of normalized extreme rays of K. We denote by z € K any vector
satisfying

0(—K*,z) = r;leal%{{O(—K )}

We are now ready define the generalization of Cheung and Cucker’s measure:

1
COK) = .
CE) |cosO(—K*, z)]

In the sequence, we establish some properties of C°C. The next lemma generalizes Lemma 1 of

[5].
Lemma 6.1 Let z € E, ¥ defined as above, and y € (—=K*). Then

(@) (y,z) < 0 & cosb(y, z) < 0= 0y, z) > L.
(b) T € 1nt(K) f=4 0(—_[{*7$) > % &= COSO(—I{*7$) < 0.

(¢)int(K) #0 < 2 € int(K).

Proof.

(a) This follows directly from the definition of #(y, z).

(b) Note that

0(—K*,z)> 5 ©0(y,z)> 75, Vyeext(—K~)
S (y,x) <0, Vy € ext(—K") (by part (a))
< (y,z) <0, Vy € —K~ (by convexity of K*)
&z € int(K) (by the equation (12)).

Furthermore, since 0(y,z) € [0,7] for all y € ext(—K*), we have §(—K*,z) € [0,7].
Therefore 8(—K*,2) > T < cos§(—K™,2) < 0.
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(¢) Let int(K) # §. Then there exists # € int(K). By part (b), 8(—=K*,&) > 7. By the
definition of z, 8(—K*,z) > 0(—K*,Z) > 7. By part (b) again & € int(K). The converse
is obvious.

Suppose that int(K) # (. For every z,y € E, let S(y,z) be the acute angle, i.e. 0 <
B(y,z) < 7 between x and the subspace y+: that is,

(¢, P, ) ) |

By, x) := arccos <7
[Epened|

Also define

B(K,a) = min _Aly,a).
yeext(K)

We shall prove that
if int(K) # 0 then maxgex sin 5(—K*,2) = | cos8(—K*, 7)|,

that is )
CY“(K) = min ————.
() ek sin B(—K*, z)

The next lemma generalizes Lemma 7 of Cheung and Cucker [5].

Lemma 6.2 Consider a pointed closed conver cone K C E, and z as defined above. Suppose
that int(K) # 0. Then

(a) 0(—K*, %) = maxzex 0(—K*, z).

(b) For all x € int(K) and for all y € ext(—K*), 0(y,z) = B(y,z)+ F.

(c) B(—K*, &) = maxzex B(—K*, z).

(d) |cosO(—K*,z)| =sin (- K*, 7).

Proof.

(a) This follows from part (c) of the previous lemma.

(b) Let z € int(K) and y € ext(—K*). Then {z,y) < 0. So y and z are not in the same half-
space with respect to y. It is clear that P,1z is in the same two-dimensional subspace
generated by x and y, so we can think about # and § as the angles between some vectors
in R% From this, it follows that 6(y,z) = 8(y,z) + 3.
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(c) Since 0(—K*, x) = min coxt(_g+) 0(y, ¢) we haveforall w € K, 0(—K*, 2) = B(—K~, 2)+7.
This together with part (a) imply that 8(—K*, ) = max,ex B(—K*, z).

(d) This follows from parts (a), (b) and (c).

O
The next proposition generalizes Proposition 3 of [5].
Proposition 6.3 For every pointed closed conver cone K such that int(K) # §,we have
maxsin S(— K™, z) = | cos(—K", 7)|.
zeK
Proof. Utilizing part (c) of the previous lemma we have
maxzex sin f(—K*, ) = sinmaxzex S(—K*, 2)
= sin B(—K*, 7)
= |cosf(—K*, z)|.
O

The definitions and properties described above coincide with those given by Cheung and
Cucker [5] in the case of K = {w € R™ : ATw < 0}. In such a special case, —K* is the cone
generated by the columns of A. The following result establishes a link between our generalization
of this condition measure and the width of K.

Theorem 6.3 For every pointed, closed conver cone K with nonempty interior, we have

1
COCK)= —.
( ) TK

Proof. First note that CC%(B) = sin f(—K*, 7). It suffices to show that 7 = sin S(—K*, z):
For arbitrary = € int(K)

sin 5(_1{*7 x) = minyEeXt(—K*) sin 5(97 x)
. . .T,PyJ_.T)
= mlnyeext(_l(*) Sin | arc cos m

= mi lle=Fy el
— mlnyeext(_l(*) ||.1’|| .
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Since Pjua € yt and y € ext(—K*), we have that 6(—K*, P,1z) = § and by Lemma 6.1 part (b),
we conclude that P12 ¢ int(K). This means that sin 3(—K*, z) > max,cg, {ﬁ : B(z,r)C K

Taking the maximum in each side over all z € K, we obtain that sin 8(— K™, z) > 7x.

—

Now, we take w on the boundary of K such that 7 > ”ﬁ;ﬁ’” =: Ty and B(z,7,) C K. We
denote by F the minimal face of K containing w. Consider the dual face F* in K* (that is,
Ft :={ye K*: {(x,y) =0, Vo € F}). Each element y € F# defines a supporting hyperplane
y* of K in w such that F C y*. Since each of these hyperplanes should also be a supporting
hyperplane of the ball B(Z,7,) at w, we conclude that F? is a singleton (so, y € ext(—K*)),
because a full dimensional ball admits only one supporting hyperplane at a boundary point.
Therefore, y satisfies y € ext(—K*), w L y and w = P, 1z. Then we have

Yy
- llz—P, .||
T > ||z 7“’” — Y
K= T ll=l]
X x,PyJ_x)
— SIN arc COS = =1
1=le, L 2l
= sin B(y,

> sin B(— K™, z)

as desired. O

The above fact was independently observed by Hauser-Cucker-Cheung [18], in the case of
polyhedral convex cones.

6.1 Strong infeasibility certificates

In this paper, our focus is on the infeasibility certificates and the related complexity and condition
measures. S0, in this subsection, we focus on the convex feasibility problems described as a
convex cone intersected with a linear subspace. Therefore, for a given linear subspace S of R”
and a given pointed closed convex cone K in R™ with nonempty interior, we define the following
pair of problems:

xr € S,
(CFP) § llzll = 1,
r € K,
s € St
(CED) q sl = 1,
s € K7,

where we allow different norms if so desired. We must note that we no longer have a good
analogue of the uniquely determined partition [B, N]. Of course, even the strong duality type
statements require additional assumptions in this general setting. With these warnings in place,
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we must also mention that the infeasibility certificates still are interesting since they characterize
strong infeasibility. Moreover, we can study the complexity measures for any closed, convex
pointed cone by simply redefining the space so that in the smaller space the cone has a nonempty
interior.

It follows from the separating hyperplane theorem that
SNK ={0} <= Stnint(K~)#90.

The implication St Nint(K*) # § = SN K = {0} is trivial. For the converse, suppose
S+Nint(K*) = (. Then there exists # € R™ such that (z, s) < 0, for every s € S* and (7, s) > 0,
for every s € int(K*). Thus, (z,s) = 0 for every s € ST (since S* is a subspace) and z € K\{0}.
Therefore, SN K D {0} as desired.

From now on, we will talk about the complexity and condition measures of subspace-cone
pairs: (S, K), (S+, K*) etc. In the previous sections we only indicated the subspace S in the
notation since the underlying cone was always R’} and under the Euclidean inner product, we
have (R} )* = RY.

Let us think of S as A(A4). Then
sym(A, K) :=sym{Az : ||z]| <1, z € K}.

Renegar’s condition number for (CFP) can then be defined as the reciprocal of the relative
distance to infeasibility, that is, the reciprocal of the smallest % such that e € R™*™ and

N(A+¢€) NK = 0. We denote Renegar’s condition number for (CFP) by CE(A, K).

Theorem 6.4 (Epelman and Freund [8]) Suppose N (A)NK # {0}. Then there exists an m X m
positive definite matriz U such that

Sym(4, K) < s < Y
CH(UAK) — Ok

sym(A4, K).

Suppose for a moment that we use the Euclidean 2-norm in all the definitions. Then using
the above theorem, Proposition 6.1 and Theorem 6.3 we have the following fact.

Corollary 6.1 Suppose N'(A)NK #{0}. Then, there exists an m X m positive definite matriz
U such that

1
AK)< ——7=X< COYK AK).
(4, K) € g < VmCCC () (A, K)

Note that (SNK) is always a pointed closed convex cone. When it is at least one-dimensional
(note that {0} is always in the intersection—which is not interesting for us), we can identify the
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linear span E of the cone (SN K). Then, (SN K) restricted to E is a pointed closed convex cone
with nonempty interior. Therefore, our proposed generalization of Cheung-Cucker measure is
applicable to it. We denote by (S N K)|j the pointed closed convex cone in E (note that this
is geometrically the same object, we simply redefined our space). This cone has a nonempty
interior in E. Therefore, we define

CEY(S,K) =Y (SN K)

E) )
and
CHO (S, K) :=Cp(S+, K,

where we define the underlying value to be 1 if the intersection of S and K is {0}, similarly for
the dual measure; and finally

CYY(S, K) == max {C5 (S, K),CH7(S, K)}.

Note that our geometric generalization of the Cheung-Cucker measure to cones is only geared
towards pointed, closed convex cones with non-empty interior. For our purposes, when (CFP) or
(CFD,) is infeasible, we assign the corresponding infeasibility measure problem, the complexity
value 1. (Recall the definitions describing o(A) for (FP) and (FD).) In contrast, Cheung-
Cucker measure for systems of linear inequalities (even though less data dependent than the
Renegar condition measure) still measures the distance from a scaled version of the data to
ill-posed instances (and hence it is well-defined and very meaningful for infeasible systems too).

Our generalization is much less data dependent and more geometric; hence fitting the ap-
proach that we have taken in this paper. Indeed, in this paper we focused on problems (FP),
(FD), (CFP) and (CFD) whose solutions are potential infeasibility certificates for an actual
optimization problem with additional data.

Acknowledgment We thank Robert M. Freund for very useful comments on an earlier draft
of this paper.

Appendix

Proof of Theorem 5.2: Consider the linear programming problem whose optimal solution
determines o (A):

maximize U;
subject to u €S
Jullt =1
u > 0,

where S is either A(A) or R(AT) (and i € B or i € N). The optimal value of the above linear
programming problem is o(A). So, there exists u € S which is an extreme point of the feasible
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region such that @; = 0(A). But @ is a minimal element of S. Therefore, {(A) < o(A). This
also establishes {(A) < o(A).

Next, we prove g(A) < {(A). We can assume that {(A) = {p(A). Let  and J determine
&(A) so that £(A) is the optimal value of

maximize T;

subject to Ajx;=0

eTay=1

z3 >0

determined by the unique optimal solution Z ;. Let (w,t) € R™ @ R be an optimal solution of
the dual of this LP problem. Then, t = z; > 0. For every j ¢ J such that ﬂ)TAj < 0, multiply

A; by (—1). Now, for this signing of A, consider z (extended by zeros to R") and (w,t). Then
7 is a feasible solution of

maximize T;
subject to  (A_g)z =0
ey =1
x>0

and (w,t) is a feasible solution of its dual. Moreover, z; = t. Therefore, Z is an optimal solution
of the last LP problem and we conclude

a(A) <o(A_g) <z, =&(A).

Thus, g(A) < &£(A). The last inequality we proved is valid for any signing of A and the left-
hand-side is invariant under signings of A. Therefore, we have g(A4) < {(A). Reverse inequality
was already established; thus, we have equality as desired. The rest of the relations follow from

Theorem 2 of [36] and the fact that o(A) = {(A). O
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