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2 L. Lipt�ak and L. Tun
�el1 Introdu
tionWe are interested in the lift-and-proje
t pro
edures for solving 
ombinatorial optimization prob-lems as des
ribed by Lov�asz and S
hrijver [16℄ (see also Balas et al. [3℄ and Sherali and Adams[17℄) and their performan
es on the stable set problem.In Se
tion 2 we introdu
e the lift-and-proje
t pro
edures, set up some notations, and mentiona few well-known fa
ts about these pro
edures and the stable set problem. We study three lift-and-proje
t pro
edures, denoted by N0, N , and N+ in the order of in
reasing strength, andde�ne graph ranks r0, r, and r+ based on these pro
edures.In Se
tion 3 we observe that when a graph 
an be de
omposed into two smaller graphs su
hthat the interse
tion of the smaller graphs is a 
lique, then the rank of the original graph isthe maximum of the ranks of the smaller graphs. Then we prove that when the graph has a
ut vertex, a mu
h stronger property holds, whi
h 
an be generalized to polytopes that have asimilar \
ut 
oordinate." In both 
ases the behaviours of N0, N , and N+ 
an be 
ompletelydes
ribed by the behaviours of these pro
edures on the smaller, de
omposed pie
es alone. These
onsiderations naturally lead us to a problem posed by Lov�asz in 1992, involving perfe
t graphs,whi
h we solve here as a by-produ
t of our work.Se
tion 4 is mostly 
on
erned with pro
edures N0 and N ; however, many of our proofs applyalso to the N+ pro
edure. Among other results, we prove that r0, r, and r+ are monotonenonde
reasing under the subdivision of a star and the odd subdivision operations (as well asunder their 
ommon generalization, the stret
hing of a vertex operation) on the given graph, andwe give an ex
luded-indu
ed-subgraph 
hara
terization of odd-star subdivisions of 
liques. Wealso prove that a subdivision of a 
lique is odd-star if and only if r0 and r of the graph 
oin
ideand are both equal to two less than the order of the 
lique whi
h gave rise to the subdivision.Various related te
hni
al tools whi
h may be of independent interest are also developed in thisse
tion.Se
tion 5 
ontains some elementary fa
ts around the similarities and di�eren
es of N0 andN as well as the behaviour of these pro
edures under fundamental graph operations.In Se
tion 6 we study 
ertain �-
riti
al graphs whi
h arise from the line graphs of nestedblossoms (blossom inequalities on odd 
liques are known to translate to high N+-rank values[18℄ when we 
onsider the 
orresponding stable set problem via taking the line graph). We provethat for su
h graphs, r0 and r grow only logarithmi
ally with the dimension.Finally, in Se
tion 7 we fo
us ex
lusively on r+ and prove improved upper bounds for it.2 Notations and basi
 propertiesThe lift-and-proje
t pro
edures 
an be de�ned as follows: Let K 2 Rn+1 be a 
onvex 
one (the
omponents of the ve
tors are indexed by 0; 1; : : : ; n, and the elements of K are denoted byy = (y0; y1; : : : ; yn)T =: � y0x �, where x 2 Rn) su
h that �x 2 Rn : � 1x� 2 K� � [0; 1℄n: Weuse ej to denote the jth unit ve
tor and �e to denote the ve
tor of all 1's. In this paper, all ve
torsare 
olumn ve
tors. The linear operator diag : R(n+1)�(n+1) ! Rn+1 takes Y 2 R(n+1)�(n+1)and returns a ve
tor whose ith 
omponent is Yii. ThenM0(K) := nY 2 R(n+1)�(n+1) : Y e0 = Y T e0 = diag(Y );Y ei 2 K; 8i 2 f1; 2; : : : ; ng ;



Stable Set Problem and Graph Ranks 3Y (e0 � ei) 2 K; 8i 2 f1; 2; : : : ; nggde�nes a lifting of the next relaxation (potentially tighter than K) of the 
one of all 0-1 ve
torsin K. We proje
t it ba
k onto the spa
e of K to getN0(K) := fY e0 : Y 2M0(K)g :Let �n+1 denote the spa
e of (n + 1) � (n + 1) symmetri
 matri
es with real entries. We 
annow restri
t the above lifting to symmetri
 matri
es:M(K) := �Y 2 �n+1 : Y e0 = diag(Y );Y ei 2 K; 8i 2 f1; 2; : : : ; ng ;Y (e0 � ei) 2 K; 8i 2 f1; 2; : : : ; ngg :Proje
ting this lifting ba
k results inN(K) := fY e0 : Y 2M(K)g :Finally, to obtain tighter relaxations, we 
an restri
t the matrix Y to be positive semide�nite.Let �n+1+ denote those elements Y of �n+1 whi
h are positive semide�nite, i.e., satisfy hTY h � 0for all h 2 Rn+1. De�ningM+(K) := �Y 2 �n+1+ : Y e0 = diag(Y );Y ei 2 K; 8i 2 f1; 2; : : : ; ng ;Y (e0 � ei) 2 K; 8i 2 f1; 2; : : : ; nggand proje
ting it ba
k yields the relaxationN+(K) := fY e0 : Y 2M+(K)g :Our main interest lies in the sets �x 2 Rn : � 1x� 2 N0(K)�(and similarly for N(K) and N+(K)). For simpli
ity, when we say that we are applying theN0, N , or N+ operator to some 
onvex set P � [0; 1℄n, we mean that we 
onsider the 
one
orresponding to this 
onvex set, apply the 
orresponding lifting-proje
ting pro
edure, thentake the 
onvex subset of [0; 1℄n de�ned by the interse
tion of this new 
one with y0 = 1. N0(P ),N(P ), or N+(P ), resp., will denote this �nal subset of [0; 1℄n, and we will use Nk0 (P ), Nk(P ),and Nk+(P ) to indi
ate that we applied the 
orresponding operator k times in su

ession (k = 0will refer to the original polytope, so N00 (P ) = P , et
.).The following fa
t is well-known and some related insights also exist in Balas' work from1970s (see [2℄).Lemma 1 Let F be any fa
e of [0; 1℄n and P � [0; 1℄n. ThenN(P \ F ) = N(P ) \ F:Similarly for N+ and N0.



4 L. Lipt�ak and L. Tun
�elApplying Lemma 1 �nitely many times we getCorollary 2 Let F be any fa
e of [0; 1℄n and P � [0; 1℄n. Then for every k � 0,Nk(P \ F ) = Nk(P ) \ F:Similarly for N+ and N0.Let G := (V;E) := (V (G); E(G)) denote a �nite, undire
ted, simple graph with vertex ornode set V and edge set E. In what follows, Kn denotes the 
omplete graph on n verti
es. Wede�ne the fra
tional stable set polytope asFRAC(G) := �x 2 [0; 1℄V : xi + xj � 1 for all fi; jg 2 E	 :This polytope is used as the initial approximation to the 
onvex hull of in
iden
e ve
tors of thestable sets of G (sets of verti
es su
h that no two of them are joined by an edge), whi
h is 
alledthe stable set polytope: STAB(G) := 
onv�FRAC(G)\ f0; 1gV � :For all v 2 V (G) let G � v denote the graph de�ned by V (G � v) := V (G) n fvg andE(G�v) := E(G)nffu; vg 2 E(G) : u 2 V (G)g, and let �G(v) := �(v) denote the neighbourhoodof v in G: �(v) := fu 2 V : fu; vg 2 Eg :Let G	 v be de�ned by V (G	 v) := V n (�(v) [ fvg)and E(G	 v) := ffu; wg 2 E(G) : u; w =2 (�G(v)[ fvg)g :This operation was 
alled the 
ontra
tion of v in [16℄; here we 
all it the destru
tion of v. Forany edge e 2 E let G � e denote the graph obtained from G by the deletion of the edge e. Ifthe inequality aTx =Pu2V (G) a(u)xu � b is valid for STAB(G), so are Pu2V (G�v) a(u)xu � bandPu2V (G	v) a(u)xu � b� a(v), obtained by the deletion and the destru
tion of the vertex v,respe
tively.For a given graph G = (V;E), its N0-rank (and similarly its N -rank and N+-rank) isde�ned as the smallest nonnegative integer k for whi
h the appli
ation of the N0 (N or N+)operator k times to FRAC(G) gives STAB(G). Alternatively, this rank is the largest rank ofa fa
et of STAB(G) (the N0-, N -, and N+-rank of an inequality valid for STAB(G) is de�nedas the minimum k for whi
h the inequality is valid for Nk0 (FRAC(G)), Nk(FRAC(G)), andNk+(FRAC(G)) resp.). We denote these ranks by r0(G), r(G), and r+(G), respe
tively. Tosimplify the notation we write Nk0 (G), Nk(G), and Nk+(G) for Nk0 (FRAC(G)), Nk(FRAC(G)),and Nk+(FRAC(G)) respe
tively. The following two lemmas are due to Lov�asz and S
hrijver[16℄:Lemma 3 For all graphs G, we haver(G) � r0(G) � minv2V fr0(G� v)g+ 1 and r(G) � minv2V fr(G� v)g+ 1:Moreover, if the inequalities obtained from aTx � b by the deletion and destru
tion of v 2 V arevalid for Nk0 (G), Nk(G), resp., then aTx � b is valid for Nk+10 (G), Nk+1(G), respe
tively.



Stable Set Problem and Graph Ranks 5Lemma 4 For all graphs G, we haver+(G) � maxv2V fr+(G	 v)g+ 1:So node deletion 
an only de
rease any of the ranks, and at most by one (for N+ this willfollow later from Theorem 40).Another fa
t that makes the pro
edures N0, N , and N+ very interesting is that we 
anoptimize a linear fun
tion over any of Nk0 (G), Nk(G), and Nk+(G) in polynomial time, providedk = O(1). (See [16, 7℄.)So far, the abovementioned ranks and some of their relatives have been studied from manypoints of view (see [3, 5, 6, 10, 12, 16, 18℄). However, many important open questions remain.Our goal here is to improve some of the known bounds on these ranks for the stable set problemand to deal with some of those open problems related to the behaviour of these ranks underfundamental graph operations.The area of geometri
 representations of graphs (see Lov�asz [13℄, Gr�ots
hel, Lov�asz and S
hri-jver [7℄, Kotlov, Lov�asz and Vempala [9℄ and Lov�asz [15℄) is 
losely 
onne
ted to the subje
t ofthis paper. Even though there has been a lot of progress in understanding geometri
 embeddingsof graphs and invariants like the Colin de Verdi�ere number of a graph, due to the fa
t that we
an optimize any linear fun
tion over any of Nk0 (G), Nk(G), and Nk+(G) in polynomial time,provided k = O(1), investigating N0-, N - and N+-ranks of graphs and further understanding ofgraphs of small rank remain very interesting.3 An Elementary De
ompositionChv�atal [4℄ has shown that if the graph G 
an be de
omposed into two parts, G1 and G2, sothat their interse
tion is a 
omplete graph, then the fa
ets of STAB(G) are just the union of thefa
ets of STAB(G1) and STAB(G2). Hen
e we get a similar property for the N0-rank, N -rankand the N+-rank:Lemma 5 If G = G1 [G2 su
h that G1 \G2 is a 
omplete graph, thenr0(G) = max fr0(G1); r0(G2)g ;r(G) = max fr(G1); r(G2)gand r+(G) = max fr+(G1); r+(G2)g :Proof: In Corollary 2 let F := �x 2 [0; 1℄V (G) : xv = 0 for all v 2 V (G2)nV (G1)	 : Then Corol-lary 2 and Chv�atal's result imply r0(G) � r0(G1), r(G) � r(G1), and r+(G) � r+(G1). Anal-ogously we get r0(G) � r0(G2), r(G) � r(G2), and r+(G) � r+(G2). To establish the reverseinequalities we utilize Chv�atal's result again and 
on
lude that to derive all fa
ets of STAB(G),it suÆ
es to derive all fa
ets of STAB(G1) and STAB(G2). By Corollary 2, the latter 
anbe a
hieved in at most max fr0(G1); r0(G2)g, max fr(G1); r(G2)g, and max fr+(G1); r+(G2)giterations of the N0, N , and N+ operators respe
tively.The usual appli
ation of Lemma 5 o

urs when there is a 
ut vertex v in G. In this 
ase, we
an prove the following stronger result:



6 L. Lipt�ak and L. Tun
�elTheorem 6 If G = G1 [G2 and V (G1)\ V (G2) = fvg, then Nk0 (G) (Nk(G)) is de�ned by thefa
ets of the polytopes Nk0 (G1) and Nk0 (G2) (Nk(G1) and Nk(G2)) for every k � 0.Proof: We prove the 
laim by indu
tion on k. For k = 0 the 
laim is easy (see the proof ofLemma 10), so we assume that the statement is true for k � 1 � 0 and prove it for k. First
onsider the N0 operator only.Lemma 1 implies that any x 2 Nk0 (G) must also satisfy the inequalities de�ning Nk0 (G1) andNk0 (G2), hen
e it is enough to show the other way around. Assume thatx = 0� x(1)xvx(2)1Asatis�es the inequalities de�ning Nk0 (G1) and Nk0 (G2) with x(`) 2 RV(G`)nfvg for ` = 1; 2. Thenthere are matri
es X(`) = (X(`)ij ) 2 R(V(G`)nfvg)�(V (G`)nfvg) and ve
tors y(1;`); y(2;`) 2 RV(G`)nfvgfor ` = 1; 2 su
h that Y (`) = 0� 1 (x(`))T xvx(`) X(`) y(1;`)xv (y(2;`))T xv 1A 2Mk0 (G`);thus showing that �x(`)xv � 2 Nk0 (G`). By de�nition this means that for all u 2 V (G`) we haveX(`)uu = x(`)u and that the ve
tors Y (`)eu and Y (`)(e0�eu) are all in the 
one indu
ed by Nk�10 (G`).De�ne now the following matrix that will show that x 2 Nk0 (G):Y := 0BBB� 1 (x(1))T xv (x(2))Tx(1) X(1) y(1;1) X(1)xv (y(2;1))T xv (y(2;2))Tx(2) X(2) y(1;2) X(2) 1CCCA ;where the matri
es X(1) and X(2) are de�ned as follows:X(1) := 11� xv (x(1)� y(1;1))(x(2) � y(2;2))T + 1xv y(1;1)(y(2;2))T ;X(2) := 11� xv (x(2)� y(1;2))(x(1) � y(2;1))T + 1xv y(1;2)(y(2;1))T :If xv = 0 or 1, we keep only the terms that make sense. The idea of this de�nition is that nowwe 
an write0� (x(1))TX(2)(y(2;1))T 1A = 11� xv 0�0� 1x(2)xv 1A�0� xvy(1;2)xv 1A1A (x(1) � y(2;1))T + 1xv 0� xvy(1;2)xv 1A (y(2;1))T (1)and0� (x(2))TX(1)(y(2;2))T 1A = 11� xv 0�0� 1x(1)xv 1A�0� xvy(1;1)xv 1A1A (x(2) � y(2;2))T + 1xv 0� xvy(1;1)xv 1A (y(2;2))T : (2)



Stable Set Problem and Graph Ranks 7Now, to show that Y 2 Mk0 (G), we need to 
he
k that for all u 2 V (G) we have Y uu = xu andthat Y eu and Y (e0 � eu) are all in the 
one indu
ed by Nk�10 (G). The �rst property triviallyholds, for the remaining two we use the indu
tion hypothesis, whi
h says that in order to be inNk�10 (G) these ve
tors must satisfy all valid inequalities for Nk�10 (G`) for ` = 1; 2.Assume �rst that u 2 G1 n fvg and 
onsider the ve
tor Y eu. This satis�es the inequalitiesvalid for Nk�10 (G1), sin
e so does Y (1)eu. To satisfy the valid inequalities for Nk�10 (G2), we onlyneed that 0� (x(1))TX(2)(y(2;1))T 1A eu (3)is in the 
one indu
ed by Nk�10 (G2), whi
h follows immediately from (1), sin
e (3) is a nonneg-ative linear 
ombination of Y (2)(e0 � eu) and Y (2)eu.We 
an similarly 
he
k that Y (e0�eu) satis�es the inequalities valid both for Nk�10 (G1) andfor Nk�10 (G2), sin
e 0� 1x(2)xv 1A�0� (x(1))TX(2)(y(2;1))T 1A euis again a nonnegative linear 
ombination of Y (1)(e0 � eu) and Y (1)eu with 
oeÆ
ients 1� x(1)u � y(2;1)u1� xv ! and  1� y(2;1)uxv ! ;whi
h are nonnegative sin
e Y (1)(e0 � eu) and Y (1)eu are in Nk�10 (G1).The 
ase u 2 V (G2) n fvg is analogous, while in the 
ase of u = v it is enough to use theindu
tion hypothesis, �nishing the indu
tion.For the N -operator, it is easy to 
he
k that if the matri
es Y (1) and Y (2) are symmetri
,then so is Y .Theorem 6 is basi
ally valid for the N+-operator as well; however, sin
e N+(G) is usuallynonpolyhedral, we need to slightly rephrase it:Theorem 7 Assume G = G1[G2 and V (G1)\V (G2) = fvg. Then for every k � 0, the 
onvexset Nk+(G) is de�ned by the union of all valid inequalities for Nk+(G1) and all valid inequalitiesfor Nk+(G2).Proof: We only need to show that in the proof of the previous theorem whenever the matri
esY (`) are positive semide�nite for ` = 1; 2, so is Y . We use the property that the matrix X 2 �nis positive semide�nite if and only if SXST is, for every nonsingular n � n matrix S. Considerthe following matrix: S := 0BBB� 1 0 0 00 IV (G1)nfvg 0 00 0 Ifvg 0s 0 t IV (G2)nfvg 1CCCA ;



8 L. Lipt�ak and L. Tun
�elwhere IV is the identity matrix with rows and 
olumns indexed by the elements of the set V , 0indi
ates a matrix of 0's of the appropriate size, and the ve
tors s = (su), t = (tu) are de�nedfor u 2 V (G2) n fvg bysu := �x(2)u � y(2;2)u1� xv and tu :=  x(2)u � y(2;2)u1� xv � y(2;2)uxv ! :Using (1) and (2) we 
an easily 
he
k (using the symmetry of Y ) thatSY ST = 0BBB� 1 (x(1))T xv 0x(1) X(1) y(1;1) 0xv (y(2;1))T xv 00 0 0 X(2) 1CCCA ;where X(2) is given by 0B� 1 0 xv0 X(2) 0xv 0 xv 1CA := SY (2)ST ;with S := 0� 1 0 0s IV (G2)nfvg t0 0 1 1A :Sin
e S is nonsingular, Y is positive semide�nite if and only if SY ST is positive semide�nite.Clearly SY ST is positive semide�nite if and only if the two square submatri
es it 
an be de
om-posed are positive semide�nite, i.e. if and only if Y (1) and X(2) are positive semide�nite. Sin
eS is also nonsingular, SY (2)ST is positive semide�nite if and only if Y (2) is positive semide�nite,thus its symmetri
 minor, X(2), is also positive semide�nite, and the theorem is proved.A by-produ
t of the above te
hnique is the following positive semide�nite extension fa
t:Proposition 8 Let Y 2 �n+1, and suppose that Y0j = Yjj for some j. De�ne the matrixY := � Y Y (e0 � ej)(e0 � ej)TY (Y00 � Y0j) � :Then Y 2 �n+2+ if and only if Y 2 �n+1+ :Moreover, the (linear algebrai
) ranks of the matri
es Y and Y are the same.Theorems 6 and 7 
an be generalized to polytopes. We will assume that the 
oordinates ofthe polytope are split into two sets I and J su
h that I \ J = fvg, i.e. there is one 
ommon
oordinate, and let I 0 and J 0 denote the nonempty sets I n fvg and J n fvg. We will use thefollowing notations: If x = (xi)i2I 2 RI, then x0 = (xi)i2I 0 2 RI 0 and similarly for J . Thus, ifx 2 RI and y 2 RJ, then both ve
tors (x; y0) and (x0; y) are in RI[J, but they are the same onlyif xv = yv.



Stable Set Problem and Graph Ranks 9Now given a polytope P � [0; 1℄I[J, let its proje
tions to 
oordinates I , J , resp., be PI , PJ ,respe
tively. So, e.g.,PI = nx 2 RI : there is a y0 2 RJ 0 su
h that (x; y0) 2 Po :We will say that v is a 
ut 
oordinate for the polytope P , if P has the property that wheneverx 2 PI and y 2 PJ with xv = yv , then (x; y0) = (x0; y) 2 P . Thus v is a 
ut 
oordinate for P ifand only if the inequalities de�ning its proje
tions PI and PJ suÆ
e to de�ne P itself.From Corollary 2 it easily follows that �Nk(P )�I = Nk(PI) and �Nk(P )�J = Nk(PJ) for anyk � 1, and similarly for N0 and N+. Hen
e, Theorems 6 and 7 
an be phrased for polytopes asfollows:Theorem 9 If v is a 
ut 
oordinate for the polytope P , then it is a 
ut 
oordinate for Nk0 (P ),Nk(P ), and Nk+(P ) as well for every k � 0.Proof: The proof is essentially the same as that of Theorem 6 with I playing the role of V (G1)and J the role of V (G2).To see that Theorems 6 and 7 are spe
ial 
ases of Theorem 9, one just needs to 
he
k thefollowing:Lemma 10 If G is a graph with a vertex v, then v is a 
ut 
oordinate for FRAC(G) (and forSTAB(G) as well) if and only if v is a 
ut vertex of G.Proof: If v is a 
ut vertex in G, then G = G1 [G2 su
h that V (G1) \ V (G2) = fvg, and thenit is easy to 
he
k that v is a 
ut 
oordinate for FRAC(G) with I = V (G1) and J = V (G2),sin
e if x 2 FRAC(G1) and y 2 FRAC(G2) with xv = yv, then (x; y0) will also satisfy all edgeinequalities.On the other hand, if v is not a 
ut vertex in G, then for any split V (G) = I [ J of theverti
es with I \ J = fvg and I 0 6= ;, J 0 6= ;, there will be an edge fu; wg 2 E(G) with u 2 I 0and w 2 J 0, and then the ve
tors x and y de�ned byxi := ( 1 if i = u;0 if i 2 I n fug;and yi := ( 1 if i = w;0 if i 2 J n fwg;will be in FRAC(G1), FRAC(G2), respe
tively, but (x; y0) is not in FRAC(G) (or STAB(G)).Theorem 6 does not generalize to the 
ase when G1 \ G2 is a larger 
lique (even if only anedge). An example is presented in Figure 1.Claim 11 For the graph G given in Figure 1, the inequality2x1 + 3x2 + 3x6 + x3 + x4 + x5 � 3 (4)has N0-rank 2. Moreover, it de�nes a fa
et of N2(G).
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�elTTTTBBBBB ������������� ���� ZZZZZZ BBBBBBB������� ���� ZZZZZZ BBBBBBB �����"""" bbbbr rr rrr123 4 56Figure 1: G = K5 [K3 with K5 \K3 = K2Proof: Theorem 2.3 of [16℄ shows that for all graphs, one appli
ation of N and N0 are the sameand both are de�ned by the trivial, edge, and odd 
y
le inequalities. Therefore in our exampleN0(G) = N(G), and they are both de�ned by the nonnegativity and the triangle 
onstraints.It is 
lear that (4) is a valid inequality for STAB(G) (K5 inequality plus twi
e the triangleinequality of f1; 2; 6g). Sin
e the deletion and destru
tion of vertex 1 both result in an inequalityof N0-rank 1 (deletion of 1 gives the sum of three triangles, destru
tion of 1 leaves just a triangleinequality), (4) has N0-rank at most 2.The point 13�e 2 [0; 1℄6 satis�es all triangle inequalities, but it violates (4). Thus the N -rankof the inequality is at least 2, hen
e the N0- and N -ranks of (4) are both equal to 2.To see that (4) de�nes a fa
et of N2(G), 
onsider the 
hara
teristi
 ve
tors of the stablesets f1; 3g ; f1; 4g ; f1; 5g ; f2g ; f6g and the ve
tor �38 ; 14 ; 14 ; 14 ; 14 ; 14�T : The �rst �ve ve
tors are inSTAB(G), so they also lie in N2(G). The last one is in N2(G) be
ause the following matrix isin M2(G): 18 0BBBBBBBB� 8 3 2 2 2 2 23 3 0 1 1 1 02 0 2 0 0 0 02 1 0 2 0 0 02 1 0 0 2 0 02 1 0 0 0 2 02 0 0 0 0 0 21CCCCCCCCA :It is easy to see that the six ve
tors mentioned above are aÆnely independent and they all satisfy(4) with equality. Sin
e the dimensions of STAB(G) and N2(G) are equal to 6 in this example,the 
laim follows.In fa
t, for this example, N20 (G) = N2(G) and both are de�ned by all K4 inequalities, thetriangle inequality on f1; 2; 6g, and (4). However, STAB(G) has just two nontrivial fa
ets, thetwo maximal 
liques (hen
e r0(G) = 3 = r0(K5)), and we need both of them to get (4) as a linear
ombination of fa
ets of STAB(G).Note that although for perfe
t graphs (by the results of Lov�asz and S
hrijver [16℄), r+(G) = 1and r0(G) = r(G) = (size of the largest 
lique in G)� 2;it is not true in general that Nk0 (G) (or Nk(G)) is equal to the (k+2)-
lique polytope of G (thepolytope de�ned by the 
lique inequalities for every 
lique of G of size at most (k + 2)). This



Stable Set Problem and Graph Ranks 11obviously holds for k = 0 and k = r(G), and also for k = 1, and it is an interesting question forwhat perfe
t graphs it will hold for some other values of k.Our example above and Claim 11 solve Problem 5 of Lov�asz [14℄. Lov�asz asked (paraphrasedhere) whether Nk(G) is de�ned only by the 
lique inequalities (up to Kk+2) and nonnegativity
onstraints when G is perfe
t. Our example and 
laim prove that the answer to this question is\no."4 The N0-rank and the N-rank of a graphLov�asz and S
hrijver [16℄ proved that for any graph G the polytopes N0(G) and N(G) are thesame and both are the odd-
y
le polytope of G. This motivates the following 
onje
ture:Conje
ture 12 Nk0 (G) = Nk(G) for all graphs G and all k � 0.By the abovementioned results, Conje
ture 12 is true for k = 1 for all graphs and for k = 2when r0(G) = 2. This 
onje
ture is also true for every 
lique. It is easy to 
he
k this dire
tly(sin
e the stronger 
ondition Mk0 (G) =Mk(G) holds for every k � 0); also, this fa
t 
an be seenas a 
onsequen
e of a general geometri
 
ondition given in Theorem 6.3 of [6℄. As we prove inTheorem 24, a weaker version of this 
onje
ture (namely that the N0- and N -ranks of all graphsare equal) holds for a wide variety of subdivisions of 
liques. Up
oming Proposition 14 providessimilar additional eviden
e. First let us point out that for some very spe
ial polytopes P we dohave Nk0 (P ) = Nk(P ).Theorem 13 (Theorem 3:1 of Cook and Dash [5℄) If the 
onvex polytope P � [0; 1℄d 
ontainsall verti
es of the unit 
ube ex
ept one, then Nk0 (P ) = Nk(P ) = Nk+(P ) for every k � 0.However,N0(P ) 6= N(P ) in general, even if P is lower-
omprehensive, i.e. for any y 2 [0; 1℄d ify � x, and x 2 P , then y 2 P as well (it was observed in [5℄ and [6℄ thatN0, N , and N+ preservelower-
omprehensiveness of the argument|of 
ourse, FRAC(G) is lower-
omprehensive). Anexample is easy to �nd when two adja
ent verti
es of the unit 
ube are 
ut.The question of the equivalen
e of the N0 and the N -operators in our setting and Lemma 3motivate the examination of su
h graphs that have a vertex whose deletion de
reases its N0-rankor N -rank. Hen
e, we de�ne the following two 
lasses of graphs, B0 and B:� Bipartite graphs belong to B0.� If G has a vertex v su
h that its deletion de
reases its N0-rank and G� v is in B0, then Gis in B0.The de�nition is similar for B, we just use the N -rank instead.Proposition 14 We have B � B0. Moreover, for all G 2 B there exists a bipartite subgraph(VB; EB) of G su
h that r(G) = r0(G) = jV j � jVBj:Proof: If G 2 B, there exists a sequen
e of graphsG = GjV j�jVBj � GjV j�jVBj�1 � � � � � G1 � G0 = GB
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�elsu
h that Gi+1 is obtained from Gi by adding a new node v to Gi and some edges in
ident tov su
h that r(Gi+1) = r(Gi) + 1. Initially, r(GB) = r0(GB) = 0 (sin
e GB is bipartite). Wepro
eed by indu
tion to show that r(Gk+1) = r0(Gk+1) = k + 1 for all k. Assume that we haver(Gi) = r0(Gi) for all i � k. Clearlyr0(Gk+1) � r(Gk+1) = r(Gk) + 1:On the other hand, the deletion of the spe
ial node in Gk+1 gives Gk and r0(Gk) = k. Thusr0(Gk+1) � r0(Gk) + 1 = r(Gk) + 1, and we proved r(Gk+1) = r0(Gk+1) = k + 1. Sin
e everyG 2 B 
an be 
onstru
ted in this way, this also proves G 2 B0.We do not know whether B = B0, and �nding a des
ription of the graphs belonging to these
lasses would also be interesting. Clearly Kn 2 B, but there are other examples, see Figure 2.We are interested in properties of graphs in B0 and in B. However, sin
e not all graphs of������









 HHHHHH JJJJJJJJJJr rr r rrr12 3 45 6 7Figure 2: A graph G 2 BN0-rank k 
ontain an indu
ed subgraph of N0-rank (or N -rank) k that is also in B0 (or B), weintrodu
e another pair of graph 
lasses, C0 and C:� If r0(G) = k, and for every vertex v 2 V the graph G� v has N0-rank k � 1, then G is inC0.The de�nition is similar for C with the N -rank. Then we have the following fa
t: If the N0-rank(or the N -rank) of the graph G is k � 1, then G has an indu
ed subgraph G0 of N0-rank (orN -rank) k su
h that G0 2 C0 (or C).A subdivision of a graph G is obtained by repla
ing every edge by a path of length at least 1(the new verti
es, if any, on these paths should be all di�erent). A vertex of degree at least 3 inthe subdivision must be also a vertex of the original graph; it will be referred to as a vertex ofG. The path that repla
ed the edge fv; wg 2 E(G) in the subdivision is 
alled the path indu
edby v and w (or by the edge fv; wg); these paths are the indu
ed paths of the subdivision. An oddsubdivision of an edge repla
es the edge by a path of odd length (again, all new verti
es on thepath are di�erent). The subdivision of a star operation pi
ks a vertex v in G, and introdu
es anew vertex on every edge in
ident to v. The graph in Figure 2 is obtained from K4 by applyingthe subdivision of a star operation at vertex 1.Theorem 15 If G 2 B0 [ C0 (or G 2 B [ C), then deletion or odd subdivision of an edge orsubdivision of a star does not in
rease the N0-rank (the N -rank). Moreover, for G 2 B0, B,resp., the new graph obtained by the odd subdivision of an edge or the subdivision of a staroperation is also an element of B0, B, respe
tively.



Stable Set Problem and Graph Ranks 13Proof: We prove the �rst 
laim for the N0-rank, the 
ase of the N -rank is identi
al. Assume�rst that G 2 C0. Let fv; wg= e be the deleted edge. Sin
e deleting v de
reases the N0-rank ofG, and G� v = (G� e)� v, we get that r0(G� e) � r0(G� e� v) + 1 = r0(G� v)+ 1 = r0(G).The proof is similar for the odd subdivision of e or for the subdivision of a star of v, sin
e thenthe deletion of v gives a graph that is G � v plus a path (paths) of length 2 (1). By Lemma 5this graph has the same N0-rank as G� v.Next let G 2 B0. We prove the 
laim by indu
tion on the N0-rank. For bipartite graphsthe 
laim is true, sin
e the deletion or odd subdivision of an edge e or the subdivision of a stargives another bipartite graph. Now, we assume that r0(G) = k > 0 and that we have shown the
laim for any graph in B0 with N0-rank k � 1. Then by de�nition there is a vertex v su
h thatG� v has N0-rank k � 1 and G� v 2 B0. We have two 
ases:(1) If v is in
ident to e to be deleted or subdivided or the subdivision of a star is applied tov, then the proof is the same as in the 
ase G 2 C0.(2) Otherwise G� v 2 B0 has N0-rank r0(G� v) = k� 1, hen
e by the indu
tion hypothesisthe deletion or subdivision of an edge or the subdivision of a star does not in
rease its N0-rank.Thus, by Lemma 3, the same holds for G.To prove the se
ond 
laim (G0 2 B0) for N0 (the proof for N is identi
al), it is enough toshow that r0(G0) = r0(G) and G0 � v 2 B0 with r0(G0 � v) = r0(G)� 1, where v is a vertex inG with G� v 2 B0 and r0(G� v) = r0(G)� 1.To show r0(G0) = r0(G) we already have r0(G0) � r0(G), and we prove the other dire
tionseparately, in Theorem 17 below.Finally we show by indu
tion on r0(G) that G0� v is also in B0, and r0(G0� v) = r0(G)� 1.This is 
lear for r0(G) = 1, sin
e then G � v and hen
e G0 � v are both bipartite. Now letr0(G) � 2. In 
ase (2), the 
laims follow from the indu
tion hypothesis, while in 
ase (1) theyfollow from Lemma 5.Remark 16 From the proof of Theorem 15 it is 
lear that the �rst 
laim holds for any subdi-vision of G. Deletion of an edge 
an in
rease the rank for G 62 B0, an example is given later inFigure 4 (p. 20).Theorem 17 If the graph G0 is obtained from G using the subdivision of a star or odd subdivi-sion of an edge operations, then r0(G0) � r0(G) (and similarly for the N - and the N+-rank).Proof: Let us 
onsider the odd subdivision operation �rst. To prove r0(G0) � r0(G), it is enoughto show the property when we repla
e edge fv; wg 2 E(G) by a path of length 3, say vv0w0w. Ifr0(G) = k, then there is a point x 2 RV(G) su
h that x 2 Nk�10 (G) but x 62 STAB(G). De�nex0 2 RV(G0) as follows: x0u :=8<: 1� xv if u = v0;xv if u = w0;xu otherwise:Now the 
laim will follow from the following lemma:Lemma 18 If x 62 STAB(G), then x0 62 STAB(G0), and if x 2 Nk0 (G), then x0 2 Nk0 (G0)(similarly for N and N+).
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�elProof: To prove the �rst 
laim we use the following fa
t from Wolsey [20℄: If aTx � b is a validinequality for STAB(G), then (a0)Tx � b0 is valid for STAB(G0), where b0 := b+ a(v) anda0(u) := � a(v) if u = v0 or u = w0,a(u) otherwise:(Sometimes a0(v0), a0(w0), and b0 
an be 
hosen smaller, but this is not important for us.) Nowif x 62 STAB(G), then there is an inequality aTx � b valid for STAB(G) that is violated by x.It is very easy to 
he
k that x0 will also violate (a0)Tx � b0, whi
h is valid for STAB(G0), thusx0 62 STAB(G0).We prove the se
ond statement by indu
tion on k. For k = 0 the statement is trivial, sin
eif x satis�es the edge inequalities, so will x0 (and x 2 [0; 1℄V implies x0 2 [0; 1℄V (G0)). Now, weassume that the 
laim holds for k � 0 and prove it for k + 1. If x 2 Nk+10 (G), then there is amatrix X = (Xij) 2 RV (G)�V (G) su
h thatY := � 1 xTx X � 2Mk+10 (G);hen
e Xuu = xu and Y eu; Y (e0�eu) 2 Nk0 (G) for any u 2 V (G). We de�ne the following matrixthat will show x0 2 Nk+10 (G0): Y 0 := � 1 (x0)Tx0 X 0 � ;where the matrix X 0 = (X 0ij) 2 RV(G0)�V (G0) is de�ned as follows:X 0v0u := 8<: 1� xv if u = v0;0 if u = w0;xu �Xvu otherwise: X 0w0u := 8<: 0 if u = v0;xv if u = w0;Xvu otherwise:X 0uv0 := 8<: 1� xv if u = v0;0 if u = w0;xu �Xuv otherwise: X 0uw0 := 8<: 0 if u = v0;xv if u = w0;Xuv otherwise:X 0uu0 := Xuu0 if u; u0 2 V (G).Thus in Y 0 the row 
orresponding to w0 is the same as the row 
orresponding to v while therow 
orresponding to v0 is the �rst row minus the row 
orresponding to v, and similarly for the
olumns. Be
ause of this, it is easy though somewhat tedious to 
he
k that Y 0 2 Mk+10 (G0)using the indu
tion hypothesis. We 
onsider one example:To show that Y 0(e0 � ev0) 2Mk0 (G0) just noti
e thatY 0(e0 � ev0) = � xvy � ;where y = (yu) 2 RV (G0) is given byyu :=8<: 0 if u = v0;xv if u = w0;Xuv otherwise:



Stable Set Problem and Graph Ranks 15Using that Y ev 2 Nk0 (G) and the indu
tion hypothesis it now follows that Y 0(e0�ev0) 2 Nk0 (G0).The other 
ases are analogous. Sin
e the matrix Y 0 is symmetri
 if Y is symmetri
, the statementis also valid for the N -operator.For the N+-operator one needs to 
he
k that whenever Y is positive semide�nite, so is Y 0.But this follows immediately from our earlier observation that the new rows (and 
olumns) arelinear 
ombinations of the �rst row (
olumn) and the row (
olumn) 
orresponding to v, hen
eby simple row and 
olumn operations we 
an eliminate them, showing that Y 0 is also positivesemide�nite.The rest of the proof for the subdivision of a star operation is similar. Assume that we getG0 by applying the subdivision of a star operation to vertex v 2 V (G), and for any w 2 �(v)repla
e the edge fv; wg 2 E(G) with the path vw0w. Given x 2 RV(G) de�ne x00 2 RV(G0) byx00u :=8<: 1� xv if u = v;xv if u = w0 and fv; wg 2 E(G);xu otherwise:Again the 
laim will follow from the following lemma, analogous to Lemma 18:Lemma 19 If x 62 STAB(G), then x00 62 STAB(G0), and if x 2 Nk0 (G), then x00 2 Nk0 (G0)(similarly for N and N+).Proof: For the �rst part, we use the following theorem from [12℄: Let aTx � b be a validinequality for STAB(G), and de�ne a(�G(v)) :=Pw2�G(v) a(w). Then (a00)Tx � b00 is valid forSTAB(G0), where b00 := b+ a(�G(v))� a(v) anda00(u) := 8<: a(�G(v))� a(v) if u = v;a(w) if u = w0 and w 2 �G(v);a(u) otherwise:(Again, sometimes some of the new weights a00(w0), a00(v), and b00 
an be 
hosen smaller.) Nowif x 62 STAB(G), then there is an inequality aTx � b valid for STAB(G) that is violated by x.It is very easy to 
he
k that x00 will also violate (a00)Tx � b00, whi
h is valid for STAB(G0), thusx00 62 STAB(G0).The proof of the se
ond statement is similar to that of Lemma 18, so we only give a sket
hof the indu
tion. For k = 0 the statement is trivial, sin
e if x satis�es the edge inequalities,so will x00 (and x 2 [0; 1℄V (G) implies x00 2 [0; 1℄V (G0)). If x 2 Nk+10 (G), then there is a matrixX = (Xij) 2 RV (G)�V (G) su
h thatY := � 1 xTx X � 2Mk+10 (G):We de�ne the 
orresponding matrix Y 00Y 00 := � 1 (x00)Tx00 X 00 � ;
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�elwhere the matrix X 00 = (X 00ij) 2 RV (G0)�V (G0) is de�ned as follows:X 00vu := 8<: 1� xv if u = v;0 if u = w0 and w 2 �G(v);xu �Xvu otherwise;X 00uv := 8<: 1� xv if u = v;0 if u = w0 and w 2 �G(v);xu �Xuv otherwise;for any w 2 �G(v)X 00w0u := 8<: 0 if u = v;xv if u = w0 and w 2 �G(v);Xvu otherwise; X 00uw0 := 8<: 0 if u = vxv if u = w0 and w 2 �G(v);Xuv otherwise;and �nally X 00uu0 := Xuu0 if u; u0 2 V (G) n fvg. The rest of the proof, showing Y 00 2 Mk+10 (G0),is the same. Note that Y 00 is symmetri
 if and only if Y is, therefore the proof also appliesto the N -operator. For the N+-operator one just needs to noti
e that the new rows (
olumns)
orresponding to the new verti
es w 2 �G(v) are simple extensions of the rows (
olumns)
orresponding to v in Y , while the row (
olumn) 
orresponding to v in Y 00 is just the �rst row(
olumn) minus the row (
olumn) 
orresponding to any w 2 �G(v). Thus by appropriate rowand 
olumn operations we 
an eliminate these extra rows and 
olumns to get that Y 00 is positivesemide�nite if and only if Y is, �nishing the proof.This �nishes the proof of Theorem 17.Remark 20 The rank 
an in
rease in Theorem 17 when applying these operations. For the N0-and N -rank, an example 
an be obtained from the graph in Figure 3 (use odd subdivision foredge f1; 4g or subdivision of a star for vertex 1), while for the N+-rank an example is mentionedlater in Proposition 41 for odd subdivision.Theorem 15 also immediately implies the following:Corollary 21 If G 2 B0 (resp. B) and G0 is obtained from G using a sequen
e of the subdivisionof a star and the odd subdivision of an edge operations, then G0 2 B0 (resp. B) and r0(G0) = r0(G)(resp. r(G0) = r(G)).A similar statement for the N0-rank (or N -rank) is true for graphs in C0 (or C) if every edgein the graph G is rank-
riti
al, i.e. r0(G � e) < r0(G) (or r(G � e) < r(G)) for all e 2 E(G)(though G0 will usually not be in C0 or C).Combining Theorem 15 with Lemma 14 gives a lot of graphs G with the property thatr0(G) = r(G). In parti
ular, every graph obtained from Kn by a sequen
e of odd subdivisionsof edges and/or subdivisions of stars belongs to B and B0 and has N0- and N -rank n� 2.When G 
an be obtained from Kn using the subdivision of a star and the odd subdivisionof an edge operations, we say that G is an odd-star subdivision of Kn. We 
an re
ognize whena subdivision of Kn is odd-star:



Stable Set Problem and Graph Ranks 17Lemma 22 Let G be a subdivision of Kn (n � 3) where every indu
ed path of G 
ontains 0, 1,or 2 new verti
es. The graph G is an odd-star subdivision of Kn if and only if the following twoproperties are satis�ed:(a) Every 
y
le formed by three indu
ed paths of G is odd;(b) G does not 
ontain the graph shown in Figure 3 as an indu
ed subgraph.������









 HHHHHH JJJJJJJJJJr rr rrr rr15 6 72 3 48Figure 3: A non-odd-star subdivision of K4Remark 23 It is easy to see that if a subdivided edge 
ontains at least three additional verti
es,then having two fewer verti
es on the path does not 
hange whether the graph is an odd-starsubdivision of Kn or not. Thus, it is enough to examine the graphs spe
i�ed in the lemma.Proof: (of Lemma 22) Assume �rst that G is an odd-star subdivision of Kn. Property (a)holds for Kn, and it 
learly remains valid after the appli
ation of these operations. If property(b) is not true, then G 
ontains the indu
ed subgraph shown on Figure 3. Clearly the verti
es1, 2, 3, and 4 belonged to the original Kn. Sin
e the path from vertex 1 to vertex 2 
ontainsexa
tly one additional vertex, to obtain G from Kn we must have applied the subdivision ofa star operation to either vertex 1 or 2. However, in the �rst 
ase we should have at least oneadditional vertex on the path joining vertex 1 to vertex 4, while in the se
ond 
ase we shouldhave at least one additional vertex on the path joining vertex 2 to vertex 3. Sin
e none of thesepaths is subdivided, we get a 
ontradi
tion, so property (b) is valid for G.Now assume that G satis�es properties (a) and (b). If every indu
ed path of the subdivision
ontains 0 or 2 new verti
es, then G 
an be obtained from Kn by using only the odd subdivisionof an edge operation. Assume now that the path indu
ed by the verti
es v; w 2 Kn has exa
tlyone new vertex. Let A be the set of those verti
es of Kn that with v, indu
e a path havingexa
tly 1 new vertex, and let B be the remaining verti
es of Kn, i.e. those that with v indu
ea path having 0 or 2 new verti
es. Be
ause of property (a), indu
ed paths between a vertex ofA and a vertex of B must have exa
tly 1 new vertex, while indu
ed paths within verti
es of Aor within verti
es of B 
an 
ontain 0 or 2 new verti
es. If every indu
ed path within verti
es ofB [ fvg 
ontain 2 new verti
es, then G 
an be obtained from Kn by applying the subdivision ofa star operation to every vertex of B[fvg and odd-subdividing those edges within verti
es of Athat indu
e a path having 2 new verti
es in G. Similarly, if every indu
ed path within verti
esof A has exa
tly 2 new verti
es, then G 
an be obtained from Kn by applying the subdivision ofa star operation to every vertex of A and odd-subdividing those edges within verti
es of B[fvgthat indu
e a path having 2 new verti
es. If neither of these 
ases o

ur, then we have two
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�elverti
es of B[fvg (say 1 and 4) and two verti
es of A (say 2 and 3) su
h that the paths indu
edby 1 and 4 and by 2 and 3 
ontain no new verti
es, while the rest of the paths between theseverti
es 
ontain exa
tly 1 new vertex. Sin
e this is exa
tly a forbidden indu
ed subgraph inproperty (b), this third 
ase is impossible, thus G is an odd-star subdivision of K4.Using the above lemma we 
an prove that only these odd-star subdivisions of Kn have theproperty that their N0-ranks and N -ranks are the same as that of Kn:Theorem 24 Let G be a subdivision of Kn. Then the following are equivalent:(i) r0(G) = r0(Kn) = n� 2,(ii) r(G) = r(Kn) = n� 2,(iii) G is an odd-star subdivision of Kn.Proof: First assume that G is not an odd-star subdivision of Kn. By Lemma 22 either property(a) or (b) is not satis�ed. If property (a) is not satis�ed, then a 
y
le indu
ed by three verti
esof Kn is even, hen
e deleting the remaining n � 3 verti
es of Kn in G leaves a bipartite graphhaving rank 0, hen
e r0(G) (and thus r(G)) is at most n� 3 by Lemma 3. Similarly, if property(b) is not satis�ed, then four verti
es of Kn indu
e the graph shown on Figure 3 in G (or agraph having an odd number of verti
es on the paths 1{2, 2{4, 4{3, and 3{1). Thus, deletingthe remaining n�4 verti
es ofKn leaves this graph plus possibly paths. It was shown by Gerardsand S
hrijver [8℄ that the N0-rank of su
h a graph is 1, thus again G has N0-rank at most n� 3.When G is an odd-star subdivision of Kn, we have already seen that its N0- and N -rank areboth n � 2, and the theorem is proved.Lov�asz and S
hrijver [16℄ proved r(Kn) = n�2 by showing that the point x = ( 1k ; 1k ; : : : ; 1k )Tbelongs to Nk�2(Kn) (they a
tually showed this for any graph). Using Lemmas 18 and 19 one
an similarly obtain points in Nk�2(G) for the graph G when G is obtained from Kn usingodd subdivision of an edge and subdivision of a star operations. That these points belong toNk�2(G) also follows from the following, more general statement:Lemma 25 Let S � V (G) be a stable set in the graph G. For k � 3 de�ne the ve
tor x(S;k) 2RV(G) as follows: x(S;k)i = ( k�1k if i 2 S;1k if i =2 S:If x(S;3) 2 N(G), then x(S;k) 2 Nm(G) for all k � m+ 2 for any m � 1.Remark 26 Lemma 2:7 of [16℄ is the statement of this lemma with S = ;.Proof: (of Lemma 25) First de�ne an equivalen
e relation on the verti
es of G depending onS: Let G0 be a subgraph of G 
ontaining those edges of G that are in
ident to a vertex ofS, and for i; j 2 V (G) de�ne i � j if and only if there is a path from i to j in G0, and letSj = fi 2 S : i � jg.The proof of the lemma goes by indu
tion on m. For m = 1, if x(S;3) 2 N(G), then sin
eN(G) is de�ned by the trivial, edge, and odd 
y
le inequalities (see Lov�asz and S
hrijver [16℄),the assumption x(S;3) 2 N(G) is equivalent to requiring that S 
ontains at most j � 1 verti
es



Stable Set Problem and Graph Ranks 19of any odd 
y
le of length 2j + 1 (note that by the de�nition of x(S;3) only the odd 
y
leinequalities have to be 
he
ked), but then x(S;k) also satis�es any odd 
y
le inequality for k � 4,thus x(S;k) 2 N(G).Next we assume that the statement holds for m � 1, and prove it for m+ 1. Let k � m+3,and de�ne the matrix X = (Xij) 2 RV (G)�V (G) as follows:If i � j, then let Xij = 8>><>>: 1k if x(S;k)i = x(S;k)j = 1k ,k�1k if x(S;k)i = x(S;k)j = k�1k ,0 otherwise;while if i 6� j, then set Xij = 8><>: 0 if x(S;k)i = x(S;k)j = 1k ,k�2k if x(S;k)i = x(S;k)j = k�1k ,1k otherwise.We 
laim now that the matrixY := � 1 (x(S;k))Tx(S;k) X � 2M(Nm(G));showing that x(S;k) 2 Nm+1(G).X is 
learly symmetri
, thus so is Y . Next we 
he
k that every 
olumn of Y is in the
one de�ned by Nm(G). This is trivial for the �rst 
olumn by the indu
tion hypothesis. Ifx(S;k)j = 1=k, then after res
aling (multiplying the ve
tor by 1=x(S;k)j ) the jth 
olumn be
omesk �Xij = ( 1 if i � j and x(S;k)i = 1k , or if i 6� j and x(S;k)i = k�1k ,0 otherwise.This is the 
hara
teristi
 ve
tor of the set 
ontaining the verti
es �(Sj)nSj and S nSj. We 
laimthat this is a stable set. Clearly, two verti
es of S n Sj 
annot be adja
ent, sin
e S is a stableset. If a vertex v 2 �(Sj) n Sj is adja
ent to a vertex w 2 S n Sj , then w 2 Sj , 
ontradi
tion.Finally, if v; w 2 �(Sj) n Sj are adja
ent, then v � w implies that there is a path from v to wsu
h that every se
ond vertex on the path belongs to S (but neither v nor w), thus togetherwith the edge fv; wg this forms an odd 
y
le, and x(S;k) violates the 
orresponding odd 
y
leinequality, again a 
ontradi
tion. Sin
e this ve
tor is the 
hara
teristi
 ve
tor of a stable set, itis in STAB(G) � Nm(G).If x(S;k)j = (k�1)=k, then similarly after res
aling (multiplying by k=(k�1)) the jth 
olumnbe
omes kk � 1 �Xij = 8>>>><>>>>: 1 if i � j and x(S;k)i = k�1k ,0 if i � j and x(S;k)i = 1k ,k�2k�1 if i 6� j and x(S;k)i = k�1k ,1k�1 if i 6� j and x(S;k)i = 1k .This is just the 
hara
teristi
 ve
tor of the stable set Sj on Sj [ �(Sj) and equals to x(S0;k�1)with S 0 = S n Sj on G � Sj � �(Sj), thus it belongs to Nm(G) by the indu
tion hypothesis(k � 1 � m+ 2) and Lemma 2.
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�elIt is easy to 
he
k that when we take the di�eren
e of the �rst and the jth 
olumns, we getexa
tly the same ve
tors (in the opposite order), whi
h 
ompletes the proof.Note that the edge deletion operation 
an in
rease the N0-rank or the N -rank of a graph,an example is shown on Figure 4. If we delete the edge e from that graph, we get an odd-star������









 ������ JJJJJJJJJJr r r r rrr rreFigure 4: Deleting e in
reases the ranksubdivision of K4, hen
e its N -rank is 2. However, that inequality is just the sum of two odd
y
le inequalities in the original graph, hen
e its rank is just 1, and it 
an be 
he
ked that thegraph indeed has rank 1, so the deletion of e has in
reased the rank.Odd-star subdivisions of K4 are the only minimal graphs we know whi
h have N0-rank 2.However, for n � 5 not only odd-star subdivisions of Kn have rank n � 2. In fa
t, we 
an
onstru
t graphs that have arbitrarily large rank while no vertex has degree higher than 3.To show this, we need the following generalizations of the odd subdivision of an edge and thesubdivision of a star operations:Let v be a vertex with neighbourhood �(v). Partition �(v) into two nonempty, disjoint setsA1 and A2 (so A1 [ A2 = �(v), and A1 \ A2 = ;). A stret
hing of the vertex v is obtained asfollows:Remove v, introdu
e two verti
es instead, 
alled v1 and v2, add an edge between vi and everyvertex in Ai for i 2 f1; 2g, add the edge fv1; v2g, and then do one of the following:(i) subdivide the edge fv1; v2g with one vertex w; or(ii) subdivide every edge between v2 and A2 with one vertex.These operations are illustrated on Figure 5.Noti
e that when A1 
ontains a single vertex, the stret
hing of a vertex operation redu
esto the odd subdivision of an edge (in 
ase of (i)) and the subdivision of a star (in 
ase of (ii))operations, so it is really their 
ommon generalization. Now we 
an identify another 
lass ofgraphs that have N -rank at least n� 2:Theorem 27 If G is a graph obtained from Kn using the stret
hing of a vertex operation �nitelymany times, then r0(G) � r(G) � n� 2.Proof: We follow the idea of the proof of Theorem 24 by de�ning an inequality indu
tively thathas N -rank at least n�2, whi
h is proven by a point x(S;n�1) 2 N (n�3)(G)nSTAB(G) for somestable set S in G.Clearly Kn has su
h an inequality, namely Pni=1 xi � 1 with x(;;n�1) (i.e. S = ;). Now weassume indu
tively that after applying the stret
hing of a vertex operation a �nite number of
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�������� ����CCCCr r r rr r rq q q q q q| {z }A1 | {z }A2v1 v2w �������� ����CCCCr r r rr rq q q q q q| {z }A1 | {z }A2v1 v2r rp p p�������� ����CCCCr r r rrq q q q q q| {z }A1 | {z }A2v����9 XXXXz(i) (ii)Figure 5: Two types of stret
hing of vtimes we have an inequality aTx � b whi
h has N -rank at least n � 2 in G, and this is shownby the point x(S;n�1) for some stable set S. Now apply a stret
hing of v 2 V (G) to get the newgraph ~G. De�ne the 
orresponding inequality ~aTx � ~b and the set ~S as follows:In 
ase (i), let ~a(u) := � a(v) if u = v1, v2, or w,a(u) otherwise;~b := b+ a(v);~S := � (S n fvg) [ fv1; v2g if v 2 S,S [ fwg otherwise.In 
ase (ii), let ~w denote the vertex whi
h was used to subdivide the edge fv2; wg for w 2 A2,re
all that a(A) :=Pu2A a(u), and let~a(u) := 8>><>>: a(v) if u = v1,a(A2) if u = v2,a(w) if u = ~w and w 2 A2,a(u) otherwise;~b := b+ a(A2);~S := � (S n fvg) [ f ~w : w 2 A2g [ fv1g if v 2 S,S [ fv2g otherwise.The new weights are illustrated on Figure 6.First 
he
k that the new inequality ~aTx � ~b is valid for STAB( ~G) (though it might not bea fa
et). Consider type (i) stret
hing, and let M be a stable set in ~G. If M 
ontains at mostone of the verti
es v1, w, and v2, then M 0 :=M n fv1; v2; wg is stable in G, hen
e~a(M) � ~a(M 0) + a(v) = a(M 0) + a(v) � b+ a(v):The remaining possibility is that M 
ontains both v1 and v2, but not w, and then M 0 :=(M [ fvg) n fv1; v2g is stable in G, hen
e~a(M) = a(M 0) + a(v) � b+ a(v):
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�el
�������� ����CCCCr r r rr r rq q q q q q| {z }A1 | {z }A2a(v) a(v)a(v) �������� ����CCCCr r r rr rq q q q q q| {z }A1 | {z }A2a(v) a(A2)a(w1) a(wk)r rp p p�������� ����CCCCr r r rrq q q q q q| {z }A1 | {z }A2vw1 wk����9 XXXXz(i) (ii)Figure 6: New weights after the stret
hings of vNow lets examine type (ii) stret
hing, and let M be a stable set in ~G as before. If v2 2M , thenM 0 :=M n fv2g is stable in G, hen
e~a(M) = ~a(M 0) + ~a(v2) = a(M 0) + a(A2) � b+ a(A2):If v1; v2 =2 M , then (M [ fv2g) n f ~w1; : : : ; ~wkg is also stable in ~G with at least as mu
h weight(sin
e ~a(v2) = a(A2)), so we are done by the �rst 
ase. In the remaining 
ase, when v1 2M andv2 =2M , we have M 0 := ((M \ V (G))[ fvg) nA2 stable in G, thus~a(M) � (a(M 0)� a(v)) + ~a(v1) + a(A2) = b� a(v) + a(v) + a(A2) � b+ a(A2);where the �rst inequality follows from the fa
t that we removed v1 and at most one of wi and~wi for any i from M , and then added v to get M 0.This proves that ~aTx � ~b remains valid for STAB( ~G), and it is easy to 
he
k that x( ~S;n�1)still violates this inequality if x(S;n�1) violated aTx � b.Sin
e x( ~S;3) will satisfy all odd 
y
le inequalities (every odd 
y
le going through some of thenew verti
es in ~G 
orresponds to a shorter odd 
y
le in G), by Lemma 25 we proved that theN -rank of ~G is also at least n� 2.Even though we 
an only prove this lower bound for the rank of these graphs, we think thatit is a
tually sharp:Conje
ture 28 If G is obtained from Kn using the stret
hing of a vertex operation �nitelymany times, then r0(G) = r(G) = n� 2.Theorem 27 also follows from the following generalization of Theorem 17:Theorem 29 If the graph G0 is obtained from G using the stret
hing of a vertex operation, thenr0(G0) � r0(G) (and similarly for the N - and the N+-rank).Proof: The proof is analogous to that of Theorem 17. It is enough to prove the 
laim when G0is obtained from G by a single appli
ation of the stret
hing of a vertex operation. If r0(G) = k,
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h that x 2 Nk�10 (G) but x 62 STAB(G). For type (i)stret
hing de�ne x0 2 RV(G0) as follows:x0u :=8<: 1� xv if u = w;xv if u = v1 or u = v2;xu otherwise;while for type (ii) stret
hing de�nex0u := 8<: 1� xv if u = v2;xv if u 2 �G0(v2);xu otherwise:Now the 
laim will follow from the generalization of Lemma 18:Lemma 30 If x 62 STAB(G), then x0 62 STAB(G0), and if x 2 Nk0 (G), then x0 2 Nk0 (G0)(similarly for N and N+).Proof: The �rst 
laim follows easily sin
e if aTx � b is a valid nontrivial inequality for STAB(G)violated by x, then we 
an de�ne ~a as in Theorem 27 to get a new valid inequality for STAB(G)violated by x0.The proof of the se
ond statement is very similar to the previous proofs seen in Lemmas 18and 19 so we again only give a sket
h of the indu
tion. For k = 0 the statement is trivial (x0 willsatisfy the trivial and the edge inequalities if x did), so assume that the 
laim holds for k � 0.If x 2 Nk+10 (G), then there is matrix X = (Xij) 2 RV(G)�V (G) su
h thatY := � 1 xTx X � 2Mk+10 (G);and we de�ne the 
orresponding matrix Y 0 showing x0 2 Nk+10 (G0) byY 0 := � 1 (x0)Tx0 X 0 �where the matrix X 0 = (X 0ij) 2 RV(G0)�V (G0) is de�ned as follows: For type (i) stret
hing andi = 1; 2 let X 0viu := 8<: xv if u = v1 or u = v2;0 if u = w;xu otherwise;X 0uvi := 8<: xv if u = v1 or u = v2;0 if u = w;xu otherwise;while the remaining new row and 
olumn isX 0wu :=8<: 0 if u = v1 or u = v2;1� xv if u = w;xu �Xvu otherwise; X 0uw := 8<: 0 if u = v1 or u = v2;1� xv if u = w;xu �Xuv otherwise;
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�eland �nally X 0uu0 := Xuu0 if u; u0 2 V (G) n fvg.To get Y 0 for type (ii) stret
hing �rst apply type (i) stret
hing to vertex v, then the subdi-vision of a star to vertex v2, then delete w and ~w and the 
orresponding rows and 
olumns.The proof showing Y 0 2Mk+10 (G0) is the same as in Lemmas 18 and 19. The proofs for theN - and N+-operators are the same, too, �nishing the proof.This �nishes the proof of Theorem 29.5 Further fa
ts about the N0 and N operatorsThe polytope N0(P ) has a ni
e geometri
 des
ription as follows: for every 
oordinate xi takethe 
onvex hull of those points of P that have xi = 0 or 1, then the interse
tion of these 
onvexhulls is N0(P ) (see Balas et al. [3℄). We know of no similar ni
e way to des
ribe the polytopeN(P ), ex
ept for P � R2:Theorem 31 When P � [0; 1℄2, the polytope N(P ) is de�ned by the following inequalities:(i) The inequalities obtained by the N0 operator.(ii) Pi
k any vertex v of the unit square and a dire
tion (
lo
kwise or 
ounter
lo
kwise). Findthe �rst points of P in the 
hosen dire
tion on the two sides of the unit square not 
ontaining v.The two nontrivial 
oordinates of these two points give another point w (e.g. if the two pointswere (a; 1), (0; b), then w = (a; b)). The inequality de�ned by the line vw that 
ontains the vertexbefore v in the 
hosen dire
tion is valid for N(P ).Proof: We use the alternative de�nition of the N0 and N operators using the derivation of thevalid inequalities. An inequality is valid for N0(P ) if we 
an obtain it from inequalities validfrom P by multiplying them by xi or 1�xi, then repla
ing x2i by xi, and xixj by yij , and takingtheir nonnegative linear 
ombination eliminating all y-variables. If we assume yij = yji for all
oordinates i; j, we get the N operator. For more details, see [11℄.Without loss of generality we 
an assume that v is the origin, and the �rst two points of Pin 
lo
kwise dire
tion on its boundary are (a; 1) and (1; b) with 0 < a; b < 1. Then with some0 � 
; d � 1 the inequalities 0 � 
a+ (1� 
)x� ay (5)(going through the points (0; 
) and (a; 1)) and0 � 1� db� (1� b)x� (1� d)y (6)(going through the points (d; 1) and (1; b)) are valid for P . To get the inequalities that may notbe valid for N0(P ), we need to use di�erent variables when multiplying (5) and (6). Sin
e wehave only two variables, it is easy to see that to get a meaningful new inequality we need tomultiply (5) by y and (6) by x. After repla
ing x2 and y2 by x and y, respe
tively, and repla
ingxy and yx by yxy we get 0 � (
� 1)ay + (1� 
)yxyand 0 � b(1� d)x� (1� d)yxy:
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 and 1� d, then add them to eliminate yxy to get0 � bx� ay;whi
h is exa
tly the line going through the origin and (a; b), and (1; 0) 
learly satis�es it. Thisproves the 
laim.It is un
lear whether N(P ) admits an analogous des
ription when d � 3.Now let us turn ba
k to the graph ranks. We say that e 2 E is r0-
riti
al (r-
riti
al, resp.)if r0(G� e) < r0(G) (r(G� e) < r(G), resp.). Lemmas 3 and 5 imply that if e 2 E is r0-
riti
althen r0(G� e) = r0(G)� 1, and similarly for the r-
riti
al edges. The proof of the next fa
t iselementary and hen
e is omitted. Below, we say odd-
ontra
tion to mean the inverse of the oddsubdivision of an edge.Proposition 32 Let G be a graph and e := fu; vg 2 E be su
h that d(u) = d(v) = 2. Name theother neighbors of u and v as w, z respe
tively (so that the odd-
ontra
tion of the edge e repla
esthe path wuvz by the edge fw; zg). If e is r-
riti
al thenr(G)� 1 � r(G=e) � r(G);where G=e denotes the graph obtained from G by the odd-
ontra
tion of the edge e. Moreover,if G=e 2 C then r(G) = r(G=e). Finally, r(G=e) = r(G)� 1 if and only if the edge fw; zg is notr-
riti
al in G=e.Analogous statement holds for r0, C0, et
. The last statement of Proposition 32 is not empty.Let G denote the graph obtained from the graph in Figure 2 (p. 12) by the subdivision of a staroperation applied to node 7. Let e denote the edge in G de�ned by node 4 and a new node.Then r(G) = r0(G) = 2, but r(G=e) = r0(G=e) = 1. (Of 
ourse, the edge f1; 7g is neitherr-
riti
al nor r0-
riti
al in G=e.)Let �(G) denote the size of a maximum stable set in G. An edge e 2 E is 
alled �-
riti
al if�(G� e) > �(G), while the graph G is 
alled �-
riti
al if all of its edges are �-
riti
al. Lov�aszand S
hrijver [16℄ proved that �(G) 
an be used to bound the N0-rank:r0(G) � jV j � �(G)� 1; (7)sin
e we 
an repeatedly delete verti
es outside a maximum stable set. What graphs have theproperty that there is equality in (7)? Clearly every 
omplete graph. Odd subdivision of an edgedestroys this property, sin
e it in
reases �(G) only by 1, while the number of verti
es in
reasesby 2, unless the N0-rank is also in
reased. The subdivision of a star operation also destroys it(apply the subdivision of a star operation to any vertex of K4).We 
on
lude this se
tion with two very elementary theorems.Theorem 33 If r0(G) = 1 = jV j��(G)�1 in the 
onne
ted graph G, then G has the followingproperty: there is an edge fu; vg su
h that the verti
es of V (G) n fu; vg 
an be partitioned intothree disjoint sets A, B, and C su
h that verti
es of A are joined only to u, the verti
es in Bare joined only to v, while the verti
es of C (whi
h must be nonempty) are joined to both u andv.
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�elProof: Suppose G = (V;E) satis�es the assumptions. Then jV j = �(G) + 2: Let S be amaximum stable set in G, so jV nSj = 2. De�ne fu; vg := V nS: There must be at least one pathfrom u to v, sin
e G is 
onne
ted. Sin
e S is a stable set, su
h a path 
annot have more than oneintermediate node. If all su
h paths have one intermediate node, then r0(G) = r(G) = 0 (sin
eG is bipartite). If there is only an edge 
onne
ting u and v, then G is again bipartite and hasN0-rank zero. Therefore fu; vg 2 E, and there is at least one path of length two between u andv. These intermediate nodes make up the set C. Sin
e G is 
onne
ted, V n fu; vg is partitionedas in the statement of the theorem.Theorem 34 If r0(G) = jV j � �(G) � 1, then the deletion of an edge e 
annot in
rease theN0-rank. Moreover, if the edge e is �-
riti
al, then r0(G� e) = jV j � �(G� e)� 1 = r0(G)� 1.Proof: The �rst 
laim follows from (7), sin
e the deletion of an edge 
annot de
rease �(G). Ife is �-
riti
al, then �(G� e) = �(G)+1, hen
e r0(G� e) � jV j��(G� e)� 1 = r0(G)� 1. Butby Lemma 3 the deletion of an edge 
an de
rease the rank by at most 1, hen
e we have equality.6 On the ranks of some sparse graphsEven though the stable set problem on line graphs and related graphs is rather trivial to solveby mat
hing te
hniques, su
h graphs seem quite important in our 
urrent understanding of theineÆ
ien
ies of N0, N , and N+ operators. Therefore, a better understanding of these operators'behaviour on su
h graphs seems relevant.The line graph L(G) of a graph G = (V (G); E(G)) is de�ned by V (L(G)) := E(G) andE(L(G)) := ffe; fg : e; f 2 E(G) are adja
ent in Gg. Consider L(K2k+1), the line graph of the
omplete graph K2k+1. Then r+(L(K2k+1)) = �(L(K2k+1)) = k (see [18℄|also see Aguileraet al. [1℄, whi
h in
ludes a study of Balas{Ceria{Cornu�ejols ranks in addition to N - and N+-ranks for mat
hing and very 
losely related problems), and this graph is maximal in the sensethat the addition of an edge to it de
reases the stability number and hen
e r+. In an e�ort tounderstand graphs with high r+, we would like to understand very sparse graphs with as highan r+ as possible.Let FRACM(G) denotes the usual LP relaxation of the mat
hing polytope of G, i.e. inaddition to the restri
tion x 2 [0; 1℄V (G), FRACM (G) is de�ned by the following 
onstraints:Xe2E(G): e is in
ident to v in G xe � 1 for all v 2 V (G): (8)Note that fe; fg 2 E(L(G)) implies that the edges e and f are in
ident to some node v 2 V (G),thus (8) for v implies the inequality xe + xf � 1.Proposition 35 We have FRAC(L(G)) � FRACM(G), where equality holds if and only if Gis a 
y
le or a path or a disjoint union of these.Proof: The in
lusion is 
lear from the de�nitions above. It is also 
lear that if G is a 
y
leor a path, then equality holds. For the 
onverse, suppose that the equality holds. Then every



Stable Set Problem and Graph Ranks 27node in G has degree less than or equal to 2 (otherwise 12 �e 2 FRAC(L(G))nFRACM(G), a
ontradi
tion). Thus G is a 
y
le or a path or a disjoint union of these.From Proposition 35 we 
an 
on
lude thatNk℄ (FRAC(L(G)))� Nk℄ (FRACM(G))for all k � 0 and for all N℄ 2 fN0; N;N+g. We know from [18℄ that for G = K2k+1 the N+-rankof the mat
hing polytope relative to FRACM(G) is k. This proves that there exist graphs Gwith r+(G) � �14 �p8jV (G)j+ 1� 1�� :This is the best lower bound known to date for r+(G).Motivated by the results of the previous se
tion, we are interested in determining r0 andr values of blossom inequalities on very sparse graphs (before we 
onsider r+ in the next se
-tion). In this se
tion, an odd subdivision of a graph is obtained by repla
ing an edge by a pathof length 3. Let the graph shown on Figure 7 be denoted by Gk. If we repla
e the path



 



 



 



 



JJJJJJJJ JJJJ������� p p pq q qq q qq q q q qq qq q1 23 4 56 7 89 3k�5 3k�43k�33k�2 3k�13kFigure 7: The graph Gk.v3k�2v3k�1v3kv3k�3 with the edge fv3k�2; v3k�3g in the graph Gk, denote the resulting graph by~Gk (e.g. ~G2 = K4). Then Gk is an odd subdivision of ~Gk, and �( ~Gk) = �(Gk)� 1. To motivatethese graphs, 
onsider the house on �ve nodes for the mat
hing problem (see Figure 8). Thenits line graph has six nodes and the removal of an appropriate edge makes it �-
riti
al (a
tually,the resulting �-
riti
al graph is exa
tly G2). In general, Gk 
an also be obtained from an apart-ment with k � 1 
oors (or a blossom ladder with k steps|see Figure 8) after taking the line���������� 123 45rrr rr r rr rr�������� p p p rr r rrr
Figure 8: A house and an apartmentgraph and removing k � 1 spe
ial edges. The motivation for studying these graphs 
ame from
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�elthe desire to understand how the lift-and-proje
t pro
edures behave under the nested blossominequality stru
tures. We see below in Theorem 39 that the N0-rank grows logarithmi
ally (asa fun
tion of k). As a result, we also see that for this 
lass of graphs, the information given bythe destru
tion lemma (Lemma 4) is extremely weak while the deletion lemma (Lemma 3) 
anbe used to obtain the sharp, logarithmi
 upper bound.Lemma 36 The graphs ~Gk and Gk are �-
riti
al for k � 1, and �(Gk) = k.To prove the above lemma we use the following union operation used to obtain new �-
riti
algraphs (see Wessel [19℄): Suppose that H1 and H2 are disjoint graphs. Let fx1; x2g 2 E(H1),fy1; y2g 2 E(H2). Take the disjoint union of the two graphs, delete the edges fx1; x2g andfy1; y2g, add the edge fx1; y1g, and identify x2 with y2. Denote the resulting graph by H :=H1 � H2. The operation is demonstrated on Figure 9 with H1 = H2 = K4. Note that odd
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x2 = y2� Figure 9: The union of two K4subdivision is the same as the union with K3. We also utilize the following theorem of Wessel[19℄:Theorem 37 If H1 and H2 are �-
riti
al, then so is H = H1�H2, and �(H) = �(H1)+�(H2).Proof: (of Lemma 36) The proof goes by indu
tion. The 
ases k = 1; 2 are trivial, sin
eG1 = K3 and ~G2 = K4, hen
e its subdivision is also �-
riti
al. Now assume that we have shownthat Gk�1 is �-
riti
al for k � 2. We will show that so is Gk+1. Noti
e that ~Gk+1 = Gk�1�K4.Hen
e Theorem 37 implies that ~Gk+1 is �-
riti
al, thus so is Gk+1, and it is easy to see that�(Gk) = k.Noti
e that we 
an have the edge v3j�4v3j instead of the edge v3j�4v3j�2 for any 2 � j � k,and the 
on
lusion of Lemma 36 would still apply, so the resulting graph is also �-
riti
al.Chv�atal [4℄ proved the following ni
e property of �-
riti
al graphs:Theorem 38 If the graph G is �-
riti
al, then �eTx � �(G) de�nes a fa
et of STAB(G).We 
an now establish the N0-rank of the graphs Gk:Theorem 39 r0(Gk) = blog2 k+13 
+ 2 for any k � 1.



Stable Set Problem and Graph Ranks 29Proof: Sin
e by Lemma 36 the graph Gk is �-
riti
al for any k � 1, Theorem 38 implies that�eTx � �(Gk) de�nes a fa
et of STAB(Gk). We will show by indu
tion on k that this inequalitya
hieves the N0-rank of Gk, and this will enable us to �nd a re
ursion for r0(Gk).The 
ase k = 1 is easy to 
he
k, so let k > 1, and assume for any 1 � m < k that theN0-rank of �eTx � �(Gm) is equal to r0(Gm). We use the following property of the N0-rank ofan inequality, proved in [11℄: If aTx � b is a fa
et of STAB(G) with N0-rank k, then there isa vertex v 2 V (G) su
h that the deletion and the destru
tion of v give rise to inequalities withN0-rank stri
tly less than k.Turning this around and by using Lemma 3 we get that if k � 1 is the minimum over allverti
es of G of the maximum of the ranks of the inequalities obtained by the deletion and thedestru
tion of v, then the rank of the original inequality is exa
tly k.Clearly there are basi
ally three di�erent 
hoi
es for the vertex v to be deleted and destroyed:(i) v = v3m+1 for some 0 � m � k � 1;(ii) v = v3m+2 for some 0 � m � k � 1;(iii) v = v3m+3 for some 0 � m � k � 1.Consider 
ase (i). If we delete v3m+1, then in the remaining graph v3m is a 
ut vertex, so byLemma 5 we 
an also delete the edge v3mv3m+3, then the remaining two disjoint subgraphs willbe �-
riti
al, sin
e one of them is Gm, the other one is an odd subdivision of Gk�(m+1) as shownon Figure 10 (the 
ases m = 0 or k � 1 are simpler). Similarly, if we destroy v3m+1, then the
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Figure 10: The deletion of v3m+1.remaining graph will have the following �-
riti
al 
omponents: Gm+1, the edge v3mv3m+3, and anodd subdivision of Gk�(m+2), as demonstrated on Figure 11. Sin
e 
learly r0(Gm) � r0(Gm+1)



 



 



 



 



 



JJJJJJJJJJJJ JJJJ������� p p pq q q qq q q qq q q q q qq qq qq3m�2 3m�13m 3m+1 3m+23m+3 3k�2 3k�13kGm�16 Gk�(m+2) subdivided6�������



 s JJJJ 



Figure 11: The destru
tion of v3m+1.
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�elfor any m � 1, we obtain using the indu
tion hypothesis that the N0-rank of �eTx � �(Gk) is atmost 1 + max�r0(Gm); r0(Gk�(m+1))	, and by Lemma 3 it follows thatr0(Gk) � 1 + max�r0(Gm); r0(Gk�(m+1))	 :When we delete and destroy v3m+2 we obtain similarly that (noti
e that the resulting graph 
anbe obtained as the union of Gm and Gk�m, hen
e it is �-
riti
al)r0(Gk) � 1 +max�r0(Gk�1); r0(Gm�1); r0(Gk�(m+1))	 ;and in 
ase of v3m+3 we getr0(Gk) � 1 + max�r0(Gm); r0(Gk�(m+2))	 :Clearly the smallest N0-rank (hen
e the N0-rank of �eTx � �(Gk)) is obtained in this last 
asewhen m = bk�12 
. Sin
e this N0-rank is also an upper bound for r0(Gk), we get thatr0(G2k) = 1 + r0(Gk�1)and r0(G2k+1) = 1 + r0(Gk):This re
urren
e is easy to solve by �nding the indi
es when the N0-rank is �rst n. It 
an beseen easily that for n � 2r0(Gk) � n if and only if k � 3 � 2n�2 � 1;hen
e r0(Gk) = �log2 k + 13 �+ 2for k � 2, and this formula gives 
orre
t result for k = 1, too.This example shows that Lemma 4 itself 
an be rather weak. However, one 
an 
ombine theN+ operator with the weaker operators to a
hieve stronger bounds:Theorem 40 For every graph G = (V;E), we haver+(G) � min�maxv2V fr+(G	 v)g ;minv2V fr+(G� v)g� + 1:Proof: Sin
e we already have Lemma 4, we only need to prove that if there exists v 2 V su
hthat r+(G� v) � k, then r+(G) � k + 1. To prove this, 
onsider Nk+(G). Then N(Nk+(G)) =STAB(G) by Lemma 1.3 of [16℄ sin
e bothNk+(G)\ fx 2 RV : xv = 0g and Nk+(G)\ fx 2 RV : xv = 1gare integral polytopes by Lemma 1 and the assumption that r+(G�v) � k. Sin
e N+(Nk+(G)) �N(Nk+(G)), we 
on
lude that r+(G) � k + 1.



Stable Set Problem and Graph Ranks 317 On the N+-rank of graphsLet us 
ontinue with the thread of investigation from the previous se
tion. With a slightlydi�erent slant, we 
an ask \what is the smallest graph whose N+-rank is 1?" The answer is\the triangle." The next question in the sequen
e is a bit harder and its answer exposes asigni�
ant amount of new insights into the behaviour of the N+-rank under the fundamentalgraph operations.Proposition 41 For the graph G2 on Figure 7 we have r+(G2) = 2: Moreover, every graphG with V (G) � 5 or E(G) � 7 satis�es r+(G) � 1: Therefore, G2 is the smallest graph withN+-rank equal to 2.Proof: Let Y (�) := 2666666666666664 1 1740 1740 1=3 1=3 1=4 1=41740 1740 0 � 0 1=8 1=81740 0 1740 0 � 1=8 1=81=3 � 0 1=3 1=3� � 0 01=3 0 � 1=3� � 1=3 0 01=4 1=8 1=8 0 0 1=4 01=4 1=8 1=8 0 0 0 1=4
3777777777777775 ;where the 
orresponding weights on G2 are illustrated in Figure 12. It 
an be easily 
he
ked������������r rrr rr14 141313 17401740Figure 12: G2 with 
orresponding weightsthat Y (�) 2M (G2) if and only if 1160 � � � 310 :Setting � := 497+p6092400 2 �1160 ; 310� makes Y positive semide�nite. Sin
e the proje
tion of Yonto the spa
e of FRAC(G) 
orresponds to the ve
tor �x := (1740 ; 1740 ; 1=3; 1=3; 1=4; 1=4)T with�eT �x = 2+ 160 , and �(G2) = 2, we have r+(G2) � 2: Using Corollary 2.19 of [16℄, it is easy to seethat r+(G2) � 2: Therefore, r+(G2) = 2.Next we prove r+(G) � 1 for jV (G)j � 5 or jE(G)j � 7. By Lemma 5 we 
an assume Gis 2-
onne
ted (otherwise we have a 
ut vertex and a smaller graph with the same N+-rank).Thus the degree of every node is at least 2, so for jV (G)j � 5 the destru
tion of any node leavesat most an edge, thus the remaining graph has N+-rank 0, and we get r+(G) � 1. Now we 
anassume jV (G)j � 6 and jE(G)j � 7. Sin
e the degree of any node is at least 2, jV (G)j 2 f6; 7g.
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�elIf jV (G)j = 7, then G is an odd hole, whi
h has N+-rank 1, while if jV (G)j = 6, then G is a6-
y
le with a 
hord. The deletion of any of the degree 3 nodes leaves a path (having N+-rank0), therefore r+(G) � r0(G) � 1 +minv2V fr0(G� v)g = 1.Now we 
onsider an arbitrary graph G. First, we present a summarizing theorem, then givea new upper bound on r+(G) in general. The operation of 
loning a vertex v 2 G is repla
ing vby a 
lique of size at least 2 and 
onne
ting every new vertex to every original neighbour of v.Theorem 42 Ea
h of the following operations 
an in
rease r+(G): odd subdivision of an edge,subdivision of an edge, 
loning of a vertex, adding an edge, deleting an edge, 
ontra
ting an edge.Proof: We proved in Proposition 41 that r+(G2) = 2. Sin
e r+(K4) = 1 and G2 
an be obtainedfrom K4 by an odd subdivision of any edge, odd subdivision and 
onsequently subdivision 
anin
rease r+. Next 
onsider the odd hole on 5 nodes (N+-rank is 1), and 
lone any node. Sin
ewe again get G2, 
loning 
an in
rease r+. Next, take a path of length 2 (N+-rank is 0) andadd the edge that joins the endpoints of the path, yielding a triangle whi
h has N+-rank 1. Tosee that deleting an edge 
an in
rease the N+-rank, start with K6 (whi
h has N+-rank 1) andnoti
e that G2 
an be obtained from K6 by deleting some edges. Sin
e r+(G2) = 2, at somepoint throughout these deletions, the N+-rank must in
rease. Finally, usual 
ontra
tion 
analso in
rease the N+-rank, sin
e 
ontra
ting an edge from a 4-
y
le (N+-rank is zero), results ina triangle.Using Corollary 2.8 of [16℄, we getr+(G) � r(G) � r0(G) � jV j � �(G)� 1:(The last two inequalities above are tight for G = Kn.) Using Corollary 2.19 of [16℄, we haver+(G) � �(G):(The inequality above is tight for G = Kn and G = L(Kn).) Thereforer+(G) � � jV j � 12 � :We 
an further improve the above upper bound:Theorem 43 Let G = (V;E). Then r+(G) � j jV j3 k :Proof: For ea
h k � 1, let n+(k) denote the minimum number of nodes needed in a graphG to have r+(G) = k. Clearly, n+(1) = 3. Let G0 be a graph with n+(k + 1) nodes su
hthat r+(G0) = k + 1. Then G0 
annot 
ontain a leaf node or an isolated node (sin
e removingthe isolated node or the leaf node does not de
rease the N+-rank, this would 
ontradi
t theminimality of G0). Thus every node in G0 has degree at least 2. Now, there must exist a nodein G0 whose destru
tion leaves a graph �G with r+( �G) � k (otherwise by Lemma 4 we haver+(G0) � k, a 
ontradi
tion). Sin
e G0 is a graph with n+(k+1) nodes su
h that r+(G0) = k+1,the N+-rank of �G must be exa
tly k. Son+(k) � jV ( �G)j � jV (G0)j � 3 = n+(k + 1)� 3:
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e n+(1) = 3, we have the desired result.Note that n+(2) = 6 was proved using the graph G2 in Proposition 41. It is an interestingopen question whether the relation r+(G) � j jV j3 k is tight for an in�nite family of graphs, orwhether n+(k) = 3k for all k � 1.Conje
ture 44 n+(k) = 3k for all k � 1. Moreover, the equality is attained by a subdivisionof the 
lique Kk+2.A
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