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Abstract. We present a framework for designing and analyzing primal-dual interior-point methods for convex opti-
mization. We assume that a self-concordant barrier for the convex domain of interest and the Legendre transformation of
the barrier are both available to us. We directly apply the theory and techniques of interior-point methods to the given
good formulation of the problem (as is, without a conic reformulation) using the very usual primal central path concept
and a less usual version of a dual path concept. We show that many of the advantages of the primal-dual interior-point
techniques are available to us in this framework and therefore, they are not intrinsically tied to the conic reformulation and
the logarithmic homogeneity of the underlying barrier function.
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1. Introduction. In what follows, we are interested in solving the optimization problem

(1.1) Cx = xlg{)(c, e,

where D is an open convex domain in an FEuclidean space £ with inner product (-, -)z. What we intend
to use is a kind of a primal-dual interior-point method. With the traditional conic approach, in order to
solve (1.1) by a primal-dual path-following method, we would act as follows.
1) We represent the feasible domain D of the problem as the inverse image of the interior of a closed
pointed cone K C F under the affine embedding z — Az — b of £ into an Fuclidean space F:

(1.2) D={x:Az—-beint K},
thus reformulating (1.1) as the conic problem

(1.3) min {(d.€)7: € € (L~ b) N K},

where £ = ImA and d is such that A*d = ¢;
2) we associate with (1.3) the dual problem

(1.4) myax{{b,y>]::y€ (EJ‘—i—d)ﬂK*},
where K, 1s the cone dual to K

K.={y:{&y) >0, VE e K}.

(without loss of generality, we can assume b € £+ and d € £);

3) we equip K with a 9-self-concordant logarithmically homogeneous barrier H(-) with known Leg-
endre transformation H.(-) = sup, {(y,&) — H({)}; the function H*(y) = H.(~y) is a J-self-
concordant logarithmically homogeneous barrier for K.;

4) we trace, as t = oo, the primal-dual central path (£.(t), y«(t)) defined by the requirements

&) = arggnin{t(d,@}- +H():Ee(L-bNint K},

(1.5) y(t) = argmin{—t(b, Yr+H (y):ye (L +d)Nn intK*} .
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When primal-dual potential-reduction methods are used, at step 4), rather than tracing the primal-
dual central path, we reduce step by step the primal-dual potential

(1.6) S(&y) = H(E) + H (y) + (9 + V) In((y, &) 7).

keeping £ and y feasible for the respective problems (1.3), (1.4).

Note that if all we are interested in is the original problem (1.1), not the primal-dual pair (1.3), (1.4),
then in principle we could solve (1.1) by interior-point methods “as the problem is”, provided that we
can equip D with a 9-self-concordant barrier F'(#). Indeed, given such a barrier, we could trace as t = oo
the primal central path

(1.7) . (t) = arg;nin {Fi(x) =t{c,2)e + F(x) : 2 € D}

or reduce step by step the “primal potential”

(1.8) s(z,1) = [Fi(x) — min F(2)] - Vilnt.
z€
In fact, the primal-dual techniques can be interpreted as no more than some particular cases of
the latter straightforward approach. Indeed, given a primal-dual framework A, b6, K, 9, H(-), we can set
F(x) = H(Ax — b), thus getting a 9-self-concordant barrier for cI D. With this F, the path (1.7) exists
if and only if the primal-dual central path exists, and the latter path is readily given by the former one:

E ) = Az (t) — by (1) = =t H'(Az.(t) — b).

Therefore, tracing the primal central path is basically the same as tracing the primal-dual one. One
important advantage of the primal-dual path-following framework, at least in its theoretical aspects,
comes partly from the fact that in this framework it is easy to realize whether a given primal-dual pair
(&,y) is close to a given “target pair” (£.(%),y«(t)) on the primal-dual central path. This allows for
theoretically valid long-step path-following policies (see [15]). In contrast to this, in the “purely primal”
framework it seems to be impossible to realize, at a low computational cost, whether a given primal
solution  is close to a given target point .(f) on the path. (Note that if « is very close to the central
path then it is easy to detect this; however, it does not seem easy to recognize when z lies in the z-space
projection of a wide neighbourhood of the primal-dual central path.) As a result, all known theoretically
efficient purely primal path-following methods are forced to use a worst-case-oriented short-step policy.
The situation with potential-reduction techniques is similar. Indeed, given a primal-dual framework
A, b, K, 9, H(-), let us equip ¢l D with the 9-self-concordant barrier F(x) = H(Axz — b), and consider the
function

Pl y,t) = H(Azx — b) + H*(y) + t{y, Ax — byr — (9 + V9) Int,

where y is restricted to satisfy the relation Ay = ¢. This function in a way “contains” both the primal-
dual potential (1.6) and the primal potential (1.8). Tt is easily seen that

S(Az — b,y) = min P(x,y,t) + const, s(x,t) = min P(x,y,1).
t>0 y:A*y=c
Thus, we can say that both in the primal-dual and in the (conceptual) primal potential-reduction methods
we are pushing the potential P(-) to —oo, keeping z feasible for (1.1) and y feasible for (1.4). Here, the
advantages of the primal-dual framework become even more apparent than in the path-following case:
the primal-dual potential S is explicitly computable, while this is not so for the primal potential s(z,?)
(this is why the “primal potential-reduction” method is a conceptual, not a computational one).

The goal of this paper is to demonstrate that the outlined advantages of the primal-dual interior-point
techniques are not intrinsically related to conic reformulation of the original problem and logarithmic
homogeneity of the barriers underlying the interior-point methods. Specifically, it turns out that we
can build “good analogies” of the path-following and the potential-reduction primal-dual interior-point
techniques in the following
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“Complete Formulation Case”: We can equip the domain of the problem of interest (1.1)
with a self-concordant barrier

F(z) = ®(Ax —b)

which is obtained, via an affine substitution of argument, from a ¥J-self-concordant barrier

®(-) with known Legendre transformation @, (-).
We also refer to such domains as “Completely s.c. Representable.” The difference with the traditional
primal-dual framework is that we do not require ® to be a logarithmically homogeneous self-concordant
barrier for a cone. Indeed, this is not a negligible difference. As an example, consider a Geometric
Programming problem:

min{ch s file) <0,i=1,...,m, Pe < h} ,

1.9 L
- fi(z) =In <Z Qg eXp{dﬁx}> +efz+ 5

£=1
where «;; > 0 for all ¢, £. Constraints f;(x) < 0 can be represented equivalently as

. aie ()

ZGXP{(@' +Inage) + (dig + )T 2} <1,

=1

whence (1.9) is equivalent to
(1.10) min {CTl‘ : Pa < h, ZUM <1, i=1,..,m,exp{aj(e)} <up, i=1,....,m =1, ...,L}.

z=(z,u) 7

Assuming problem (1.9) strictly feasible, so is (1.10), and the interior D of the feasible set of the latter
problem can clearly can be represented as

D={z:4:-b€D}, D={{t,y,s) ERP xRIXRY:4; >0,i=1,...,p, explyi} < s;, i =1,...,q}

with properly chosen A, b and p = dimh + m, ¢ = mL. Now, the set cl D admits the following (p + 2¢)-
self-concordant barrier

q
(1.11) (t,y,s Zlnt —Z [In(In(s;) — y;) + In 5]
= i=1

(see [16], Section 5.3.2). One can easily compute the Legendre transformation of &:

q

(1.12) O, (1,n,0) =—(p+2q) — Zln —7) Z [(m +1)ln <

i=1

.
—r 1> + I -1-772']

(from now on, unless stated otherwise, all functions are +oo outside of their natural domains). Note that
® is not a logarithmically homogeneous self-concordant barrier for a cone.

It should be mentioned that in principle the conic structure and logarithmic homogeneity can be
introduced at a low cost: it is known (see [16], Proposition 5.1.4) that a ¥-self-concordant barrier ®(x)
can be associated with a (k9)-logarithmically homogeneous barrier (for the conic hull of the origin in
R x &£ and D) ®T(z,t) = s [®(x/t) — VIn(t)] (x is an appropriate absolute constant — for instance,
25 [®(x/t) — 70 In(t)] works for every @, see [6]). Note that the original barrier @, up to absolute constant
factor, can be obtained from ®* by an affine substitution of the argument. Further, if ®.(-) is available,
then it is not that difficult to compute &} (¢, 7):

(1.13) ot (¢, T) :IP>a8([H<D*(t€/H)+Tt—|—l€19hlt].
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In particular, in the Geometric Programming case we could, in principle, associate with the barrier (1.11)
a logarithmically homogeneous barrier, thus getting a x(p + 2¢)-logarithmically homogeneous barrier &,
with “nearly explicitly computable” Legendre transformation and such that &, (A4 x—by) is a barrier for
the feasible set of (1.9). With this barrier, we can solve (1.9) by the standard conic, primal-dual technique.
In light of these observations, a question arises: what could be the advantages of new methods we intend
to propose, given that the applications covered by these methods can be covered by the standard conic,
primal-dual techniques as well? Our answer to this question is that “to enforce” the standard conic
framework, when the problem in the original form does not fit this framework, can be computationally
costly: one-dimensional maximization in (1.13) is perhaps not too expensive, but certainly is not costless.
And it is absolutely unclear in advance why the primal-dual techniques we intend to develop should be
that inferior as compared to the standard conic ones to justify “enforcement” of the standard techniques.
Tt should be added that, at the time of this writing, there is neither clear theoretical reasons (perhaps
with the exception of [20]) nor computational experience in favour of the standard primal-dual interior-
point techniques beyond the scope of problems on self-scaled cones, i.e., beyond the scope of linear, conic,
quadratic, and semidefinite programming.

Note that the above “complete formulation case” was already considered in [17], where long-step
path-following (in fact, “surface-following”) interior-point methods for this case were proposed. Below, we
investigate in much greater detail the primal-dual framework associated with the Complete Formulation
Case, with emphasis on developing the associated potential-reduction techniques.

The rest of the paper is organized as follows. In Section 2, we introduce some notation and outline
a number of basic facts on self-concordance which will be frequently used in the sequel. In Section 3, we
describe our “cone-free” primal-dual framework and introduce and investigate the main ingredients of
our approach — primal-dual path, proximity measure and potential. In Section 4, we analyze centering
and path-tracing directions. In Sections 5 and 6 we use the preceding results to develop path-following,
resp. potential-reduction, “cone-free” primal-dual methods and to analyze their complexity. Section 7
contains a discussion of possible applications and extensions.

2. Preliminaries on self-concordant functions. We start by summarizing the properties of self-
concordant functions and barriers we will frequently use in the sequel; for the proofs, see [16].

2.1. Notation. In what follows letters like &£, F, etc., denote Euclidean linear spaces; corresponding
inner products are denoted {-,-)g, {-,-)r. We skip subscripts in {-,-} when it is clear from the context
what the Euclidean space in question is.

For a linear operator # — Bz : F — £, B* stands for the conjugate operator: {y, Bx)s = (B™y, z)r.
We write B = 0 (B = 0) to express that B is a symmetric and positive semidefinite (resp., positive
definite) operator on F, with evident interpretation of relations like A > B or B < A.

We associate with an operator B = 0 on &, a conjugate pair of Euclidean norms on &:

lells = (x, Bx)'/?,
[Ed1r7 max {(z,y) : lyllp <1} = [[z[|p-1.

,From now on, we set

and
o(s) = max{t: p(t) < s}, s > 0;

it is easily seen that
LEMMA 2.1. For every s > 0, we have

(2.1) o(s) < V2s +s.
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Proof. Since p(t) is increasing in ¢ > 0, it suffices to verify that p(v/2s+s) > s when s > 0, or, which
is the same, that v/2s > In(1 + v/2s + s), or, equivalently, that 1 +v/2s + s < exp{v/2s} when s > 0.
The latter fact is evident, since the left hand side contains three first terms of the power expansion of
exp{v/2s}, and all terms in this expansion are positive. m

For a convex function f: & = RU {+o0o} C? on its domain as well as nondegenerate (f” > 0), and
x € Dom f, we define the Newton decrement of [ at x as

AU o) = 1 @) o )

2.2. Self-concordant functions and barriers: definitions. A convex function f: £ - R U
{400} is called self-concordant (s.c.), if the domain @ of f is open, f is C3 on @, satisfies the differential
inequality

2

d? d
(2.2) ‘ flz +th)‘ <2 <@ t

3/2
e fle + th)> VizeQ,hef)
=0

t=0

and is a barrier for @: f(x;) = oo along every sequence {z;} C @ converging to a boundary point of Q.
A s.c. function f is called nondegenerate, if its Hessian f”(x) is nondegenerate at some (and then
automatically at every) point « € Dom f.
Let ¥ > 1. Function f is called a 9-self-concordant barrier (9-s.c.b.) for cl Dom f, if f is self-
concordant and

d 1/2
(2.3) ‘— flx —|—th)> V(z € Dom f,h € £).

dt

Vi (4
f(x—l—th)‘ <V <W

t=0
A nondegenerate s.c. function f is ¥-s.c.b. if and only if A(f, z) < V0 for all € Dom f.

2.3. Basic properties of self-concordant functions. We summarize these properties in the
following list.
SC.I. [Stability w.r.t. linear operations]
1) Let f;, i = 1,..,m, be s.c. functions on &, and let A\; > 1. Then the function f = > \; f; is s.c. If
2

fi is ¥j-s.c.b. for every i, then f is (3 A\j¥;)-s.c.b.

2) Let f be s.c. on &, and let y — Ay + b be an affine mapping from Euclidean space F to £ with
image intersecting Dom f. Then the function g(y) = f(Ay + b) is s.c. If f is a ¥-s.c.b., then so is g.
SC.II. [Local behaviour and damped Newton step] Let f be a nondegenerate s.c. function with @ =
Dom f. Then

1) For every x € @, the ellipsoid {y : ||y — 2|1 (») < 1} is contained in Q). Besides this,

r=lly =l <1o= (=) f"(2) 2 Fy) 2 (1 —r)” ) (a)
(2.4) r=lly = allpn@ <= Jy) < Se)+(F(2),y —l‘>+p( r) (6.1)
yer,r= IIy—l‘IIfH = f(y) > fle) +([(2),y — 2) + p(r). (6.2)

In the above, (a) is given in Theorem 2.1.1 of [16], and (b.1-2) is relation (2.4) in Lecture Notes [12] (a
simplified version of [16] with all necessary proofs).
2) For x € @, we define the damped Newton iterate of x as

1

ry = — m[f”(l‘)]_lfl(l‘)-

For every x € () we have

ry € @ (a)
(2.5) fleg) < f(@) = p(A(f, ) (b)
(fyzy) < 2X%([,x). (¢)
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In the above, (a) and (b) are proved in Proposition 2.2.2 of [16]. For (c), plugin s in Theorem
2.2.1 of [16] or see relation (2.19) in [12].

SC.II. [Minima of s.c. functions] Let f be a nondegenerate s.c. function. f attains its minimum on
Dom f if and only if f is bounded below, and if and only if there exists © € Dom [ with A(f,z) < 1.

The minimizer x; of f, if it exists, is unique, and

= _ 1
— 14+X(fx)

(2.6) Afiw) <1= f(x) = fleg) < p(=A(f, @)

The above fact can be established by a refinement of the derivation in pp. 31-32 of [16], see items VI,
VIII in Lecture 2 in [12].

SC.IV. [Additional properties of s.c.b.’s] Let f be a nondegenerate ¥-s.c.b., and let Q = Dom f. Then
1) one has

Vi yed): (y—u [(2)) <V (a)

®1) V(e € Q)i y— 2, (2)) > 0= [ly — 2ll ey < 0+ 2VF (8

In the above, (a) is given by (2.3.2) of [16]. (b) was first proven in [16] with a larger constant (304 1), see
Proposition 2.3.2 in [16]. The better bound (9 + 2v/9) follows from Lemma 2.8 of Jarre [9], see Lemma
3.2.1 in [12].

2) f is bounded below on @ if and only if Q) is bounded, and in this case

(2.8) {v:lly— sl <1} CQC{y: lly— sl < 9+2V0)

This fact was also presented with a larger constant (39 + 1) in [16] (see Proposition 2.3.2). The LHS
inclusion of the above claim was already established. The RHS inclusion follows from the facts f/(x;) = 0,
(2.7) part (b), and the fact that @ is open. Also see Theorem 2.9 of Jarre [9] or relation (3.10) in [12].

SC.V. [Legendre transformation of a s.c. function] Let f be a nondegenerate s.c. function on €.
1) The domain of the Legendre transformation

fi(§) = Sl;p[<€, vy — f()]

is exactly the image of Dom f under the mapping x «— f'(), f« is a nondegenerate s.c. function, and
the Legendre transformation of f, is f.

2) If f is a nondegenerate ¥-s.c.b, then Dom f. is either the entire £ — this is the case if and only if
Dom f is bounded — or the open cone

1€:(&h)y <0, VY(he Rh#0)},

where R is the recession cone of Dom f.

3) If [ is a ¥-self-concordant logarithmically homogeneous barrier, i.e., Dom f is the interior of a
pointed closed convex cone K and

f(te) = f(z) —9Int V(z € Dom f,t > 0),
then f. is a ¥-s.c. logarithmically homogeneous barrier with
Dom f, = —int K,

where K, Is the cone dual to K.
All these results can be found in Section 2.4 of [16].

3. Path, proximity measure and potential.
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3.1. The setup. As it was indicated in the Introduction, we intend to consider the following situ-
ation. We are given
e a nondegenerate ¥-s.c.b. ® with a domain D¥ C F and the Legendre transformation ®. of ®
(which is a nondegenerate s.c. function, SC.V.1)); the domain of ®, is denoted Df. By SC.V.2),
D is a conic set:

(3.1) yeDf =>ryeDF Vr>0

e a linear embedding x + Az : £ — F (KerA = {0}) with the image intersecting D;
e avector c € &, c £ 0.
These data define

e the optimization problem
(3.2) c. =inf {{c,z):x € D}, D={r:Az e DT},

we are interested in solving;
e the function F(z) = ®(Az) which is a nondegenerate ¥-self-concordant barrier for cl D (SC.1.2)).
REMARK 3.1. 1. In the Introduction, we considered the affine mapping © — (Ax — b) instead of
the linear mapping © — Ax. Of course, this does not restrict generality, since a shift in the mapping is
equivalent to translating the barrier .
2. In order to compare our constructions below with the standard primal-dual interior-point construc-
tions, let us specify the Standard case as the one where

(§) = H(E —b),
for a ¥-logarithmically homogeneous s.c.b. H(-). Note that in this case
(3-3) D.(y) = Hu(y) + (y,0) = H™ (—y) + (v, ).

3.2. Primal and dual paths. The major entity of our interest is the primal path

(3.4) 2. (t) = argmin Fy(2), Fi(z) = F(2) + t{c, ),
and we would like this path to be well-defined for all ¢ > 0. By SC.III, this is the case if and only if Fy(-)
is bounded below for every ¢ > 0. The corresponding condition can be stated as follows.

LEMMA 3.1. Let ¢t > 0. The function Fy(x) = F(x) + t{c, x) is bounded below if and only if there is
ay € DF such that A*y = —c. In particular,

— either (case A) Fy(-) is bounded below for everyt >0,

— or (case B) Fy(-) is unbounded below for everyt > 0.

Proof. If Fi(z) is bounded below, then the function attains its minimum at a unique point z.(¢)
(SC.1N). We have A*®'(Az,(t)) = F'(2.(t)) = —tc and z = ®'(Ax.(t)) € D}, whence y = =1z € D} by
(3.1); thus, Jy € D} : A*y = —c. Conversely, let y € D} be such that A*y = —¢, and let ¢ > 0. Setting
z =ty and applying (3.1), we get z € D and A*z = —tc. We now have

Fi(z) = ®(Ax) + t{c,z) = ®(Ax) — (z, Ax) > —D.(2),
so that Fy(z) is bounded below. m

From now on, we assume that case A takes place, so that the primal central path (3.4) is well-defined
for all ¢ > 0.

REMARK 3.2. In the Standard case, the assumptions that D # @ and that case A takes place are
equivalent to strict primal-dual feasibility of the primal-dual pair (1.3), (1.4) associated with (3.2).

We associate with the primal path z.(¢) the dual path

(3.5) Y« (1) = @' (Az. (1)), t > 0.
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LEMMA 3.2. Fort > 0, the “primal-dual pair” (z,y) = (x«(t),y«(t)) is uniquely defined by the
relations

(a) yeDf, zeD
(3.6) () A*y = —le

(c) @y =Az [&y=d(Ar)].
Moreover,
(3.7) yu(t) = arg;nin{q)*(y) : A%y = —tel.

Proof. Let ® = x.(t), y = y« (). Then (z,y) clearly satisfies (a) and (c); besides this, —tc = F'(z) =
A*®'(Ax) = A*y, so that (z,y) satisfies (b).

Now let (z,y) satisfy (3.6). Then F'(z) = A*®'(Azx) = A*y = —tc (we have used (¢) and (b)), i.e.,
z = x4(t). Now from (¢) it follows that y = y.(t).

To prove (3.7), note that, as we already know, A*y. () = —tcand & (y,(t)) = Az, (1), i.e., P\ (y. (1)) =
Az, (t) is orthogonal to the kernel of A*. m

REMARK 3.3. It is immediately seen that in the Standard case (see Remark 3.1), x.(t) and (Ax.(t)—
b, —t=ty. (1)) are exactly what was called in the Introduction “primal central path” and “primal-dual central
path”, respectively.

3.2.1. Optimality gap. The role of the standard expression for the duality gap is now played by
the following statement:
LEMMA 3.3. Let y € DF be such that A*y = —tc. Then

9 04
(3.8) ¢ = inf (¢, 2"} > —M
z'€D - [
and therefore

(3.9) VweD): (ex)—c <17V [0+ (@) - (u, Av)].

REMARK 3.4. In the Standard case (see Remark 3.1), it is immediately seen that vectors y € DF
such that A*y = —tc are exactly the vectors of the form —ty, where y is a feasible solution to the conic
dual (1.4) of our problem of interest min{{c, ) : (Az — b) € Dom H}. Moreover, in the Standard case

xr

(v, @2 () =y, b) + (y, H(y)) =y, b) — V.
Thus, in the Standard case (3.8) reads
Ve e D,yeDom H* , A"y=¢): {c,x)—c. <{g, Az —b)

which is the standard result on the duality gap in Conic Duality.
Proof of Lemma 3.3. Let z = ®/ (y), so that y = ®'(z). For ' € D we have

o) =y Ax') = (@(2), Aw') = (@'(2), Aa' )+ (#(2), )
< D HA{P(2),z)
[by (2.7.a)]
= U+ <y7 <I>; (y)>7
whence
inf fe,a) » L)

and therefore, in view of (¢, z) = —t =Y A*y, z) = —t~1{y, Az),
<c, x> - l,IelfD<cv x/> < ! [7‘9 + <y7 <I>; (y)> - <y7 Ax>] ’

as claimed. =m
Note that on the primal-dual path &/ (y) = Az, and (3.9) gives the standard accuracy bound

(3.10) (e, 2.(1)) — ca <1710



“CONE-FREE” PRIMAL-DUAL METHODS 9

3.3. Proximity measure. Let us define the proximity measure as the function
U(z,y) = ®(Az) + O (y) — (y, Az) : D x Df - R

Legendre-Fenchel gap between ® and ®.). Notice that for every x € D and ever € DT, we have
(Leg gap y y y € DT,

Y(r,y) = ®(Azx)+ Séqu+{<y’ 2) = ®(2)} — (y, Ax)
> f,‘é%{@’ Ax') = ©(Ax')} — [(y, Aw) — $(Ax)].

Clearly, the last expression is always nonnegative. Also note that for such a pair (x, y) we have ¥(z,y) =0
iff y = ®'(Ax). We elaborate on the properties of this proximity measure in the next proposition.
PRrOPOSITION 3.4. Let x € D, 1 > 0, and let y € DF be such that

(3.11) Ay = —te.
Then

(i) One has
(3.12) U(x,y) = Fi(x)+Pu(y) = [Fi(x) — umeiB Ft(u)] + [d)*(y) — UED;*'I,Ij\i*Ii:—tc D, (v)

= [Fe(w) = Fe(e. (1)) + [Pu(y) — Py (1))] -
(ii) Let
ro= o= 2 @) F )

(3.13) s = ly = vOllory. ),

Acly) = max{(h, ®L(y)) : Ah = 0,(h, ®L(y)h) < 1}

(note that A (y) is the Newton decrement, taken at y, of the restriction of ®.(-) to the affine subspace
{z:+ A"z = —tc}). Then

(3.14) p(r) + p(s) < W(x,y) < p(=r) + p(—s)
and
(3.15) PA(Fr @) + p(As(y) < W(z,y) < p(=A(Fr, @) + p(=As(y))-

Proof. (i): The first equality in (3.12) follows from the definition of ¥ combined with (3.11). To
prove the second equality, it suffices to verify that

min Fy(u) + min D, (v) =0,
ueD veDF, Atv=—tc

or, which is the same in view of Lemma 3.2, that

(3.16) D(Ax. )+ t{e, wa) + Pu(ys) =0,

where z, = x.(t), y« = y«(t). Since ¥, (y.) = Ax. and A*y. = —tc by Lemma 3.2, we have
DY) = (r Az} — B(Azs) = —U{c, 2.) — O(Ax.),

and (3.16) follows.
The third equality in (3.12) is readily given by (3.4) and (3.7).
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(ii): Setting . = 24 (), y« = y«(t), we have by (2.4.5.2):
Fl@) > F(e)+ (= a0, F'(e,)) + (1)
= F(r.) +{Ae — Az, ' (Az.)) + p(r)
= F(r.) +{Ae — Az, y.) + p(r),
<I>*(y) > <I>*(y*) +<y—y*,<1>i(y*)>+P(5)
= Du(ys) + (¥ — ys, Axs) + p(s)
= Ou(y.) +p(s)

[since A*y = A*y. = —1]

whence, taking into account that

(3.17) F(z.) + ®u(ye) = P(Axs) + Pu (D' (Azs)) = (Y, Azs),
———r’
we get

Flz)+®.(y) > Fl:)+ Px(y

= (Y, Azs) +(A
<y*,Al‘> [p
(y, Az) + [p(r

Az, yu) + [p(r) + p(s)]
p(s)]

)+ (Ar = Aaey) + [ol(r) + p(s)]
"+
)+ p(s)];

(

[since A"y = A*y.]
and we arrive at
p(r) + p(s) < ¥(z,y),

as required in the first inequality in (3.14). The second inequality in (3.14) is trivial when max[s, r] > 1;
assuming max[s, r] < 1, we have by (2.4.b.1):

Flz) < F(w.) 4+ (@ — @, Fl(2a)) + p(=7)
= F(x.)+ {(Ae — Az, ' (Az,)) + p(—7)
= F(r.)+ {(Ae — Az, y.) + p(—7),
Pu(y) < Pulys) + (Y — v, PU(y)) + p(—5)
= <I>*(y*)—|—<y—y*,Ax*> p( 5)
= Ou(ys) +p(—s)

[since A*y = A*y. = —1]
whence, taking into account (3.17),

F(o)+®.(y) < Flr.) + @u(ye) + (Ax — Azs, yo) + [p(=7) + p(=s5)]
= <y*,Al‘*> <Al‘ - Al‘*, y*> + [p(—?“) + p(—S)]
= (Az,y) + [p(=r) + p(=s5)]

(Az, y) + [p(=7) + p(=5)],

and we arrive at

Y(z,y) < p(=7r) + p(—s),

as required in the second inequality in (3.14).
Finally, since Fy(-) is self-concordant, we have

p(A(Fi,2)) < Fi(x) —min Fi (-) = Fi(x) — Fi(x) < p(=A(F, )

by (2.5.0) and (2.6). The same arguments as applied to the self-concordant function ®.|;..4+,=_;.) result
in

p(Ae(y)) < @u(y) = Dulye) < p(=Au(y))-
These relations, in view of (3.12), lead to (3.15). m
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3.4. Potential. For t € D, y € DF, 1> 0 let
O(x,y,t) = ¥(x,y) — Vdlnt.
Note that by (3.12) we have

Ay = —tc = O(x,y,t) = Fi(x) + Du(y) — VInt
(3.18) = [Fi(w) — min Fy(u)] + [®.(y) = min ®,(v)] — v lInt.

UEDj,A*U:—tC

PRrOPOSITION 3.5. Let x € D, 1 > 0, and let y € DF be such that

Aty = —te.
Then
. Vi -9 O(x,y,1)
(3.19) {c, )y — ung%(c, u) < 29 exp {T exp {T} .

REMARK 3.5. We will see in Sections J, 6 that the standard Newton-type techniques allow, given
a initial triple (x9, Yo, t0) such that zg € D, yo € D* , to > 0 and A*yo = —toc, to build a sequence of
iterates (x;, yi, t;) such that A*y; = —tic and ©; = O(w;, yi,t;) < ©;_1 — & with an absolute constant
k > 0. Relation (3.19) demonstrates that the resultmg procedure obeys the standard v/0-complexity bound.

REMARK 3.6. In the Standard case (see Remark 3.1), the points y € Dom &, satisfying A*y = —tc
are exactly the points of the form y = —ty, where § is a strictly feasible solution to the dual problem (1.4).
Exzpressing © in terms of (x,Y,t), we arrive at the function

(:j(x,g,t) O(x, —ty,t) = H*(ty) + H(Az — b) + t{y, Aw — b) — Vilnt
H*(g) 4+ H(Azx — b) + (7, Az — b) — (9 + V9) Int.

In the potential-reduction scheme, we want to iterate on (x, y,t) in order to reduce step by step the potential
©. In the Standard case, we can simplify this task by eliminating the variable t — by minimizing © in t
analytically. The “optimal” t ist = %, and the “optimized” potential is
Y,AT—
E(x,y) = H () + H(Az — b) + (19+\/1_9)1n(<§,Ax—b>)+const,

which is nothing but the usual primal-dual potential of the Standard case.
Proof of Proposition. Let x, = x.(t), so that F'(x,.) = —tc, let y. = y.(t), and let v = O(z,y,1).
Since A*y = —tec, Proposition 3.4 implies the first statement in the following chain:

VOt + [Fy(x) = Fo(2:)] + [2x(y) — (1))
—_————

>0

m
Fi(z) — Fy(ze) <v+ VOlInt
U
() ol — 2ullpren) <7+ VTG [using (2.4.6.2), F(r.) = 0]

Observe that from (x) it follows that
(3.20) |z — || P () So-(*y—i—«/??lnt) .
On the other hand,

ltellirr e -1 = 1F @l @i = 1F (@)l < VO
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(the concluding inequality comes from the fact that F' is ¥-s.c.b.), whence in view of (3.20) and the fact
that {c,z — z,) < ||c||},,(x*)||x — x*||Fu(x*), one has

(3.21) (e, ) < (e, 2.) + VoI~! (~y+¢51nt).
Recalling that z, = 2.(¢) and invoking (3.10), we come to

(3.22) e(z) = {e,z) — uigf)(c, u) < 9t 4 Vit ('y + \/Elnt) .
(From (2.1) it follows that o(s) < 1+ 2s for all s > 0. Now (3.22) implies that
(3.23) () < (W + VO~ 20t Int + 20ty
Consequently,

e(r) < mgg{(ﬁ + \/5)7'_1 +207 tinT 4+ 2\/1_97'_17} ,

and the maximum in the right hand side, as it is easily seen, is exactly the right hand side in (3.19). m

4. How to reduce the potential. Consider the following situation: We are given a triple (x €
D,y e Df,t>0) with

(4.1) Aty = —te,
and we intend to update this triple into a triple (24, y4+,t4) such that

(a) =4+ €D, yy €Df
(4.2) (b) A"yp = —tic

(€) Olzy,y4,t4) <O(x,y,8) — Q(1).
The options we have are at least as follows:

4.1. Centering, damped Newton step in z. Here

Y+ = 9
(4.3) t. = t,
ry = ¢ o (@] F ().
This update clearly satisfies (4.2.a — b). Since A*y = —te, we have
@(x+,y+,t+) —@(m,y,t) = @(x+,y,t)—®(x,y,t)
(4.4) = Fi(ry) — Fe(x) [see (3.18)]
< —p(A(Fy,2)) [see (2.5.5)].
4.2. Centering, damped Newton step in y. Here
T+ = L
(45) t_|_ = t,
Y+ = ¥y- me(y),
where
o) = argmax((h L) s A = 0, (1, ()h) < 1)
(4.6) = [@”( )71 — A[AT[@ (y)] AT AT @ ()] 7] @L(y),
Aely) = max{(hy®L(y)) 5 A"h = 0, (b, ®(y)h) < 1)

lle(y)

are, respectively, the Newton direction and the Newton decrement, taken at y, of the function

P

Y (y)

* |{z:A*z:—tc}'
Updating (4.5) clearly satisfies (4.2.a — b). Since A*y = A*y; = —tc, we have

@(x+,y+,t+)—®(x,y,t) = @(l‘,y+,t)—®(l‘,y,t)
(4.7 =
< —p(A(y)) [(2.5.b) as applied to ®u|{.:a%2=—¢c}]-
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4.3. Primal path-tracing. A generic primal path-tracing step is as follows:

ty = t+At [At>0],
(18) vy = oz [F(e)] (),
yy = O'(Ax)+ 9" (Ax)A(x4 — ).

The motivation behind this construction is clear: our ideal goal would be to update (z,y, ) into the triple
(zt,yF,t4) with ¢4 > ¢ and ',y on the primal-dual path:

Fl,@f) =0,
(+9) ¥(Art) -y = 0.
T4,y as given by (4.8) solve the linearization of the system (4.9) at x.
We now analyze the primal path-tracing step.
LEMMA 4.1. Let a triple (x € D,y € DF,t > 0) satisfy (4.1), and let (x4, y4,t4) be obtained from
(z,y,1) by a primal path-tracing step (4.8). Then
(i) One has

(410) A*y+ = —t+C.

(i) Let = = ®'(Ax). Then

(4.11) s — #llawey = lles — 2llmwey = [1F(2) + Atellforge-
(iii) The relation
is a sufficient condition for the inclusions
l‘+ &€ D, y+ € D;I_

(iv) One has

At

Proof. (i): We have

A" yy

—

AP (Azx) 4+ AV (Axe)A(ey — ) = F'(x) + F'(2) (24 — )
= Fl(z)—Fl(z) - Ate=—(t+ At)e = —t4¢,

which proves (i).
(ii): The second equality in (4.11) is evident. We have

log = alfbngy = (o — 2, A®7(A2) Ay — o))
(@ (Ax) Ay — ), [0 (An)] @ (Ar) Ay — 2)) = (g — 2, D) (s — 2)).
B (z) Yy =2

(ii) is proved.
(iii): By (4.11), in the case of (4.12) one has

|z — 24 l|pre) = lly+ — 2llorz) < 1,

whence, by SC.I.1), zy € D and y; € Df.
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(iv): By (i),

" o = sllny = FYs) &+ Ml < I + 130l
= A(Fo o) + 1Al ellfns)
and
WE @)y = [[F () +tellfon oy > tlelln @y = I @) [Fn
> el = Vs
whence

el () <1 | A(Fry @) + VI

which combines with (4.14) to yield (4.13). m
LEMMA 4.2. Let a triple (x € D,y € DF,t > 0) satisfy (4.1), and let (x4, y4,t4) be obtained from
(z,y,1) by a primal path-tracing step (4.8). Assume that

7= ey = #llpr@) < L.
Then

(4.15)

Proof. Let z = ®'(Ax), " = ®"(Ax), Ax = x4 — x. Since ||y — 2|
relation (2.4) implies that

O (z) =7 by (411) and Y < 1,

(4 16) <I>*(y+) S (I)*(z)—|—<y+ —Z,@;(Z»—Fp(—’}/)
) = D.(z) + {Ax, A*O" Ax) + p(—7),
and similarly
D(Ary) < B(A2)+(Ax, AW (A2)) + p(—)

(4.17)

A

D(Ax) + (Ax, A™2) + p(—7)
whence, due to ®,(z) + ®(Ax) = (z, Az) in view of z = &'(Ax),
P(Ary) + Pulys) — (Y4, Awy)
< [®.(2) + @(Ax)] +{Aw, A*P" Ax) + (Aw, A*2) — {yy, Ax i) + 2p(—7)
——
(z,Azx)
(4.18) = {z, Axy + (Ax, A"®" Azx) + (Aw, A*2) — {z + ®"AAx, A(x + Az)) + 2p(—7)
= —(Ax, A*P"AAz) 4 2p(—7)
== +2p(—7)
= 2w(y),
as required in (4.15.a). We now have
O(x4,y4,t4) — O(2, 4, 1) .
= [B(Aay) + Bu(ys) — (4, Aws)] — [B(A2) + D, (4) — (y, Az} —v/In &

<2w(v) by (4.18) >0
< 2w(y) — V0 1n t7+

COROLLARY 4.3. Lett > 0 and = be such that N(Fy,z) < 0.1. Then with % = % the primal

path-tracing step is feasible (i.e., x4 € D, yy € DI ) and
@(l‘+, y+7t+) - @(l‘, yat) < —0.17.

Proof. This is an immediate consequence of the previous two lemmas, in particular, the bounds (4.13)

and (4.15). m
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4.4. Dual path-tracing. A generic dual path-tracing step is as follows:

ty = t+At [At> 0],
(4.19) y+ = y+Ay: ATyp = —tie, PL(y) + DY (y)Ay € ImA,
vy () + PU(y)Ay = Awy.

The motivation behind the construction is similar to the one in Section 4.3, up to the fact that now we
linearize an alternative to (4.9), specifically, the description

Ayt +itc = 0,
20 @) - Azt = 0
(recall Lemma 3.2).

We now analyze a dual path-tracing step. Although the results to follow are completely similar
to those for the primal path-tracing step, the analysis is slightly different — we do not have enough
primal-dual symmetry!

LEMMA 4.4. Let a triple (x € D,y € DF,t > 0) satisfy (4.1), and let

(4.21) {=P(y), @"=2"().

Then
(i) The triple (x4, y4,t4) in (4.19) is well-defined and is explicitly given by the relations

vy = [A*q)//A]—lA* [%y‘i‘q)//f] ,
Ay = @Ay~
(4‘22) — @”[%A[A*@//A]_lfl*y—[I—A[A*CI)”A]_lA*(I)”]f],
1 92
y+ = y+ Ay
(ii) One has
(4.23) 1Az = Ellone) = 1AYllor ()
(iii) The relation
(4.24) [Ayl[ey() <1

is a sufficient condition for the inclusions
+
Ly S Da Y+ € D* .

(iv) One has

At)?
(4.25) 18ullzi) < /3200 + 920

Proof. (i): This is given by a straightforward computation, where one should take into account that
Q" = @"(¢) = [@(y)]~! due to & = @ (y) and that A*y = —tc by (4.1).

(ii): This is an immediate consequence of the relations Ay = ®"(£)[Avy — &] (see (4.22)) and
O (y) = [@"(£)]71 (recall that & = @ (y)).

(iii): This is an immediate consequence of (4.23) and SC.II.1).

(iv): By (4.22) and in view of ®/(y) = [®"]™! we have

1Ay20, = (1500 = 630
At)?
B (164130 + 1182130

[direct computation].

(4.26)



16 A. NEMIROVSKI AND L. TUNGEL
Taking into account that & = ®’ (y) and ®”(y) = [®"]71, from (4.6) we have
(4.27) 182115 = AZ(v).

Finally, y = ®'(¢) due to £ = @ (y), and we have

o1||3n = (y, A[A* D" A]~ 1 A%y) [direct computation]
< Ay [@]'y) [projection of [®"]~1/2y
(4.28) onto the range of (®)!/2A]
' 2
= @[ (9) = (IO e,)
< v [since @ is ¥-s.c.b.].

Combining (4.26) — (4.28), we arrive at (4.25). m
LEMMA 4.5. Let a triple (x € D,y € DF,t > 0) satisfy (4.1), and let (x4, y4,t4+) be obtained from
(z,y,1) by a dual path-tracing step (4.19). Assume that

v = ly+ = Yllow ) < 1-
Then

Ulry,yy) < 2w(y), (a)
(4.29) @(x+’y+,t+)_®(;,y;) < 2w(y) —VIlntE (b)

Proof. Let £ = @ (y), " = ®"({), Ay = y4 — y. Since [|Ayllay(y) =7 < 1, relation (2.4) implies
that

(4.30) D, (y+) < @u(y) + (Ay, 2L(Y)) + p(—7)-
——
&
Similarly, in view of ||Axy — &[|eu ) = 7 (see (4.23)), we have

(4.31) P(Awy) < O(E) +({Azy — f,a’(ﬁ)j +2(=7)

Y

whence, due to @, (y) + ®(£) = (y,&) in view of £ = @, (y),

P(Avy) + Pulys) — (Y4, Awy)
< [P.(y) + 2] H(AY, &) +(Avy — & y) — (Y4, Avy) + 2p(—)
——

(,€)
(4.32)  =(Ay,¢ : Axy) + 2p(—)
= —(Ay, [2"]7 ! Ay) + 2p(—7) [see (4.22)]
= =7 +2p(—7) [since [#"]~1 = &7 (y)]

= 2w(y),
as required in (4.29.a). We now have

@(l‘+,y+,t+) - @(x,y,t)
= () + D () — (g, A )] — [B(A2) + @ (4) — (3, Az)] —VTIn ¢
<2w(v) by (4.32) >0
< 2w(y) — V0 1n t7+

"
COROLLARY 4.6. Lett > 0 and y be such that (4.1) takes place and A (y) < 0.1. Then with % = (1'/—255
the dual path-tracing step is feasible (i.e., x4 € D, yy € DY) and

@(l‘+,y+,t+) - @(l‘,y,t) < —0.17.
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Proof. This is an immediate consequence of the bounds (4.25) and (4.29). Using (4.25), we obtain

Therefore, Lemma 4.5 applies; (4.29) (a), (b) and the feasibility of 1 and y; follows. Now, using (4.29)
(b) and the fact that —In(1 + o) < —a + (1%704), for a € (—1, 1), we obtain

@(l‘+,y+,t+) - @(l‘,y,t) < —0.17

as desired. m

5. Primal-dual path-following methods. Now we are ready to describe the primal-dual path-
following methods for solving (3.2). The construction to follow reproduces in our “complete formulation
case” setting the construction developed in [15] for the Standard case (and in fact it was investigated,
even in a more general “surface-following” form, in [17]).

Let us say that a triple (x € D,y € DF,t > 0) is close to the primal-dual path if

(5.1) A%y = —te & max[A(Fi, z), A (y)] < 0.1.

Assume that we are given a starting triple (xo, o, yo) 1) close to the primal-dual path. Starting with
this point, we trace the primal-dual path using a predictor-corrector scheme. Specifically, at step ¢ of the
scheme we act as follows:
1. [predictor step] Given a triple (#;—1, ¥i—1,%;—1), close to the path, we
(a) specify a search direction (dz;,dy;) in such a way that

(5.2) Atdy; = —c;
(b) find a stepsize At; > 0 in such a way that

(5.3) W(wio1 + Atida;, yio1 + Alidy;) < &

+ +
Ty Yi

(k > 11is a parameter of the method) and set
t; =ti_1 + At;.

2. [corrector step] Starting with (z;, y,¢;), we apply the damped Newton updates

(5.4) [ v ] . l o= v = e @) (@)

y vt =y - e
(see (4.5)) until a pair (z,y) with
(5.5) max[A(Fy,, ), Ac(y)] < 0.1

is built, and set
Li=2, Yi=Y,
thus obtaining a triple (z;, y;,t;) close to the path.

YSuch a triple can be found by every one of the well-known interior-point initialization routines.
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Note that with this approach, the number of damped Newton updates at a corrector step is O(1)(xk+1).
Indeed, in view of SC.Il and (3.12), the update (5.4) ensures that

Uzt yt) < U(x,y) — p(A(Fr,, 2)) — p(Ae(y));

since W is nonnegative and ¥ < k at the beginning of the corrector step by (5.3), the number of updates
(5.4) before the termination criterion (5.5) is met is at most O(1)(x + 1).

Let dx. denote the direction (#4 — x) in (4.3), also let dy. denote the direction (y; — y) in (4.5).
Similarly, dz, denotes (x4 — ) in (4.8), dy, denotes (y+ —y) in (4.8), dxg denotes (z4 — z) using (4.19),
and dyg represents Ay given in (4.19).

DEFINITION 5.1. A primal-dual interior-point algorithm A is said to belong to the (9, k, 4, £)-PFM
family, if D admits a computable 9-s.c.b. ®, with ®. also available and in each iteration, A generates
(ziyyi) € D x DF, t; > 0 such that

1. if max [/\(Ft,_la Ti—1), /\*(yi_l)] > § then A applies the “corrector step” described above;
2. otherwise (max [/\(Ft,_la Tio1), /\*(yi_l)] < 5), A generates (z;,y;) € D x DF, t; > 0 such that

ot —ti_12> 2%7

o x; —x;_1 € span{dz.,dz,, dzq},
® yi — yi—1 € span {dyc, dy,, dya},
L] A*yi = —tic,
o Uz, y) <k.

Note that the description of the “predictor step” in the above definition is not as “separable” as it
may seem at a first glance, since for instance, dz, and dy, involve ¢; part of the current iterate we are
trying to determine (on the positive side, the second order operators, Hessians, only involve z;_; and
yi—1, the previous iterates).

PROPOSITION 5.2. Suppose we are in the Complete Formulation Case (therefore, 9-s.c. barriers
®(-) and ®.(-) are known). Also assume that a triple (xo € D,yo € DT, to > 0) satisfying A*yo = —toc
and ¥(xo,y0) < & for some & = O(1) is given. As well, we are given a small, desired accuracy ¢ > 0
for the objective value of the final solution. Then every algorithm from the (U, k,d,€)-PFM family with

0<d<0.1 and 0 < ¢=0(1) returns (zg,yx) € D x D¥, tx > 0in O (\/5111 (E%)) iterations such that

A%y = —tie and {c, x5y — ¢ < €.

Proof. At least in every other iteration, we have a constant fraction increase in t quaranteed by the
algorithm. During all the remaining iterations, ¢ stays constant (corrector step). Therefore, for small

positive €, after O (\/1_9111 (E%)) iterations we have ¢ > %. Clearly, #; € D, y; € DF and A*y; = —t;¢

are maintained throughout. Tt follows from the proof of Proposition 3.2.4 of [16] that since #; € D can
be assumed to satisfy A(F%,,25) < 0.1, we have

{c,xp) —ex < E
(2
Since ¢ > %, we have the desired accuracy bound. m
There are at least three extreme examples of the path-following algorithms covered by the above
proposition:
1. Primal-Focused Path-Following. For the predictor step, always apply (4.8).
2. Dual-Focused Path-Following. For the predictor step, always apply (4.19).
3. Symmetric Primal-Dual Path Following. Perform a low dimensional search to find the largest
increase in ¢ attained inside the set of (x;,y;,1;) defined by
ot —ti_12> 2%7
o x; —x;_1 €span{dx.,dr,, dzq},
® yi — yi—1 € span {dyc, dy,, dya},
o A* Y, = —tic,
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o U(z;,y;) <&k, where k = O(1).

PRrROPOSITION 5.3. Fach of the above three algorithms belongs to the (9, k,0,0)-PFM family for
1<k=0(1),4d <0.1, and £ > 4. Therefore, the VO-complexity result of Proposition 5.2 applies to all
three algorithms.

Proof. We only prove the result for the Primal-Focused Path-Following algorithm. The proof for the
Dual-Focused algorithm is similar and the claim for the Symmetric algorithm will follow from the proof
for the Primal-Focused Path-Following algorithm and the fact that for a given fixed iterate (x,y,t), the
largest increase in ¢ is always achieved by the Symmetric Primal-Dual algorithm as we described above.

We already analyzed the corrector step and noticed that O(1) damped Newton updates per iteration
suffice. Therefore, we focus on the predictor step. It suffices to prove that if we set

0.6t;_1
5.6 At = ti — ti— = ,
(5.6) TV

then we have U(x;, y;) < k. We know that (z,y,t) = (#i—1,Yi—1,%i—1) is close to the path. Thus, (4.13)
ensures that

At 0.6
v = ey — | prey < M Fryx) + %(/\(Ft, 2) + V) < 0.1+ ﬁ(oq + V) < 0.76,

where (24,y+,t4+) = (i, ¥4, ti). Consequently, Lemma 4.2 implies that
U2, y) < 2w(0.76) < 1 < &,

and (5.3) follows. m

Note that (5.6), as well as any more aggressive stepsize rule compatible with (5.3), guarantees the
standard v/9-complexity bounds for the resulting algorithm.

The major advantage of the primal-dual path-following framework we have developed (as with the
standard-case-oriented primal-dual framework developed in [15]) is that we have no reason to restrict
ourselves to the worst-case-oriented short-step policies like (5.6). The proximity measure ¥(z,y) is
usually easy to compute, which allows us to implement various policies for on-line adjustment of the
stepsizes (for theoretical results on the “power” of these adjustments, see [17]).

6. Primal-dual potential-reduction methods. Proposition 3.5, combined with the results of
Section 4, yields primal-dual potential-reduction methods obeying the standard v/v-complexity bounds.
A generic method of this type is as follows.

We generate a sequence of triples (z; € D,y; € DF,¢; > 0) satisfying

(61) A*yi = —tic
in such a way that
(6.2) O(xi, yisti) < O(xi—1, Yim1,tic1) — K,

where £ > 0 is a parameter of the method. Specifically, given (x;_1, yi—1,¢i—1) satisfying
(6.1), we build somehow a search direction (dx;, dy;, dt;) satisfying the requirement

A*dyi = —dtic
and a stepsize 7; in such a way that the point
(ziyyisti) = (Tiz1, Yim1, tiz1) + Tildei, dy;, dt;)

satisfies (6.2).
The results of Section 4 suggest rules for choosing the search directions and the stepsizes which ensure
(6.2) for an appropriate absolute constant k. For example, if A(F,_,, #;—1) > 0.1, then the centering step
in 2 reduces the potential by at least p(A(Fy,_,, zi—1)) > p(0.1) (Section 4.1), and if A(F} zi—1) < 0.1,

i—17



20 A. NEMIROVSKI AND L. TUNCEL

then a primal path-tracing step with ¢; — ¢;,_1 = 0.25ti_1/\/5 reduces the potential by at least 0.17
(Section 4.3). (Of course, we can utilize, in the same fashion, the centering in y and the dual path-tracing
step.) Needless to say, a reasonable implementation should include a line-search in the chosen direction in
order to get as large a reduction in the potential as possible, or even a multi-dimensional search (e.g., 4-
dimensional search along the linear span of the four search directions described in Section 4). A treatment
analogous to the one in Section b is also possible here. However, a deeper investigation of possible variants
and implementations of potential-reduction methods goes beyond the scope of this paper. What matters

theoretically is that whenever we ensure (6.2) and thus the relation O(xz;, yi, %) < ©(zo,yo,%0) — ix,

Proposition 3.5 implies that
219 \/1_9—19 {@(l‘o,yo,to)} { Z'K? }
eXpy ———— peXpy ————————— ¢ | eXpy{———=¢ -
P 20 P \/5 P \/5

L.e., we get a polynomial time method with the standard V/V-complexity bound (provided, of course, that
Kk =Q(1)).

cTa:Z' —inf Tu<
ueD -

7. Possible Applications and Extensions. When working on polynomial-time interior-point
methods, among other issues, four important issues arise.
1. Are there interesting classes of problems which are covered by the new method in an effective
manner?
2. How provably long are the primal and/or dual steps?
3. How much dual information is utilized (and generated) by the method and how effectively?
4. How can we initiate the method for an arbitrary input in a way that preserves 1., 2. and 3.
above?
In this last section, we comment on the above issues.

7.1. Potential applications. Geometric Programming provides an interesting class of applications
(for a survey, see [5]; for a set of test problems see [4]; interesting recent applications in Engineering
are presented in [2]). We have seen in the Introduction that this problem class fits our primal-dual
framework. At the same time, it is not directly covered by the existing primal-dual polynomial time
algorithms. Moreover, the only previous primal-dual interior-point method for Geometric Programming
[11], although globally convergent, is not known to be a polynomial time one.

Note that, essentially, the only feature of Geometric Programming which is responsible for the possi-
bility to process this class within our framework, is the fact that the “underlying entity” — the epigraph
of the exponential function f(y) = exp{y} — admits an explicit self-concordant barrier with explicit Leg-
endre transformation. Now, constructing a self-concordant barrier for the epigraph of a univariate convex
function f is usually a routine task. As a rule, it is not very difficult to obtain, along with such a barrier,
its Legendre transformation, either in an explicit analytical form, as in the case of f(y) = exp{y}, or
“semi-explicitly” — via a real parameter which should satisfy a “well-posed” equation. As an instructive
example, consider the entropy function f(y) = yIny. The 2-self-concordant barrier for the epigraph of f
is given by

G(s,y) = —[In(s — yIn(y)) + In(y)]

(see [16], Section 5.3.1), and the Legendre transformation of this barrier is

1
n _3,
a

Gelonn) = —In(=0) +0 (1 + g B 111(—0')) .t 0(1+2—1In(—0))

where 6(r) is the unique root of the equation

1
(7.1) 5—1110:7“.
(For the derivation of G, see Appendix A.) Tt is not very difficult to write a dedicated code which

computes 0(r), 0 (r),0"”(r) in time comparable with the one required to compute a standard elementary
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function, like arccos(-)?). Thus, it is not a great sin to state that G.(-,-) is as easily computable as, say,
the Legendre transformation of the barrier for the epigraph of the exponent. Note that G(-,-) is not a
logarithmically homogeneous barrier for a cone. Now, with G/(+) and G.(-) in our disposal, we can process
an Entropy Optimization problem

min{ch s file) <0,i=1,...,m, Pe < h} ,

L
(7.2) file) = 3 aie (60 + dlx) In(S, + d¥ 2) + el w + 35,
(=1 Se———
a:(z)
with ;¢ > 0 in the same fashion as a Geometric Programming problem. Specifically, we first rewrite
(7.2) equivalently as

(7.3) min {ch : Po < h, ap(z) >0, Zamuz + eZ»Tx + 5 <0, ap(x) Inay(z) <u Vi,ﬁ} .
¢

Assuming (7.2) strictly feasible, so is (7.3), and the feasible set D of the latter problem can be easily
represented as

D {o: Az — b e D},
D = {({t,y,s) ERPXRIXRI:t; >0,i=1,...,p, 4 In(ys) <s5,i=1,...,q}.

The set ¢l D admits the explicit (p + 2¢)-self-concordant barrier

P q
(7.4) Ot y,s) = - Int; + Y G(si,u),
i=1 i=1

with the Legendre transformation

q

(7.5) O.(1,n,0)=—p— Zln(—n) + ZG* (045 1)

i=1

and we can apply the primal-dual machinery we have developed to get new families of polynomial time
interior-point methods for Entropy Optimization, an important problem class which, in particular, has
very interesting applications in graph theory (see [3, 10]). (At the moment, there exists just one dedicated
polynomial time algorithm for Entropy Minimization [22]).

Another application worth mentioning is minimization of conic combinations of p-norms (this problem
has many applications, including “p-norm multi-facility location problem” see [25]). In [25], Xue and Ye
present an interior-point method approach to this problem. Their development however, follows the
general approach of converting the given problem to conic form and homogenizing the given barrier
to make it logarithmically homogeneous. The current manuscript deals with ways of avoiding such
reformulations and enforcement of logarithmic homogeneity.

Similarly, we can handle many other convex programs where the feasible set can be represented as the
inverse image, under an affine mapping, of a direct product of sets of the form f;(y;) < s; with univariate
fi. In fact, the family of problems we can handle is quite rich. Indeed, let us say that an “essentially
open” (Q =rint ()) convex domain @ C & is completely representable, if it admits a representation

(7.6) Q={ref|Fuef:Ar+ Bu+bec Dom ¥},

2) The Newton iteration

01
01 +1 0i_1

0

—r}, <1
—]net_l —Ti| s 90 = {exp{ 1T} ' ; 1

r—In(r—Inr)’

converges to 0(r) quadratically, and it takes at most 6 steps to compute 6(r) within relative accuracy 1015 in the entire
range of values of r where 107100 < o(r) < 10490 With 0(r) computed, the derivatives of the function are readily available:

2 T 2 T T
0'(r) = — g, 0"(r) = _wiff]g)e/(r).
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where @ is a self-concordant barrier with known Legendre transformation. Whenever the relative interior

@ of the feasible set of a convex program miln ¢’z is completely s.c.-representable and we are given a
z€eCl Q

representation (7.6) for (), we can rewrite our problem equivalently as inf {ch : Ax 4+ Bu+ b € Dom <I>},
z,u

thus arriving at a problem which fits our framework. On the other hand, it is easily seen that the family F
of completely s.c.-representable domains is closed w.r.t. basic convexity-preserving operations, specifically,
taking direct products, intersections and images/inverse images under affine mappings (cf. “calculus of
coverings” in [16] or “calculus of Conic Quadratic/Semidefinite Representable sets in [1]). Note that
F is much wider than the family of all domains over which we can minimize by existing primal-dual
interior-point techniques (these are exactly the domains which can be completely s.c.-represented via
logarithmically homogeneous barriers for cones) and contains, e.g., domains given by semidefinite and
Geometric Programming constraints.

We conclude this discussion with one more example which demonstrates that our framework may
have (at least theoretical) advantages even in the case where an excellent conic formulation is readily
available. Assume that our decision vector is an m X n matrix u, m < n, which should satisfy the norm

bound ||u|| < 1, where || - || is the standard matrix norm (maximum singular value); for the sake of
definiteness, let there be no other constraints (the conclusion to follow remains intact when allowing for
no more than m “simple” — linear or quadratic — additional constraints on w). The standard way to

process our problem is to express the norm bound by the LMI

Lxm U
| ]

U Inxn

and to treat the problem as a semidefinite program; with this approach, the theoretical iteration count
per given accuracy will be proportional to v/m + n. At the same time, the domain & = {u : |Ju|| < 1} of
our problem admits the representation

U=A{u:(I,u) € Dom ¥, ®(x,u) = —InDet(z — uuT)},
where z belongs to the space 8™ of m X m symmetric matrices. Let us use the inner product
((x,u), (y,v)) = Tr(zy) + Tr(v’ u)

on 8™ x R™*" Note that ® is an m-self-concordant barrier (see [16]) with the explicit Legendre
transformation (details of its computation are in Appendix A)

@. () = — I Det(—y) — TTr(e"y ") — m Dom @. = {(4.v) : y < 0}]

so that the problem fits our framework with the parameter of self-concordance of the barrier equal to m.
Consequently, the complexity bound for the primal-dual methods we have developed is proportional to

v/m, which, for m << n, is much better than the “standard” O(y/m + n)-complexity bound.

7.2. Long steps. We consider three related viewpoints:

(a) a-regularity of a s.c.b. [17];

(b) convexity of the “gradient product” (—H'(z),y) [18, 19];

(¢) B-normality of a s.c.b. [13].

All of these properties are strengthenings of the fundamental property of the self-concordant barriers
which states that the Hessian of a s.c.b. behaves very well inside the Dikin ellipsoid (see SC.1I), anywhere
in the interior of the domain. Each of the three notions tries to make this property valid in a wider region
than the Dikin ellipsoid, with the ultimate goal to understand “how long are the long steps” yielded by
the path-following (or potential-reduction) methods with on-line stepsize policies.

(a) Let f be a s.c. function with @ = Dom f C £. [ is called a-regular if

2

f(x—l—th)‘ <aofa+1) <d—

d4
|

dtt

fo+ th)) rou (W), V2 € Q.h € &,

t=0 t=0
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where
1
1Q,«(h) = inf{; s >0, (et ph) € Q}

It was shown in [17] that many useful s.c.b.’s are a-regular with a quite moderate value of a.
The examples include: the standard s.c.b.’s for the Lorentz and the semidefinite cone (both are
2-regular), the aforementioned barrier for Geometric Programming (and its Legendre transfor-
mation) and the barrier for the entropy (all are 6-regular). Besides this, a-regularity is preserved
under the summation of barriers and an affine substitution of argument, see [17]. The fact that
the universal barrier for a convex set is O (192)—regular was shown in [7]. We note that the barrier
[— In Det (a: — uuT)] with the domain

{(z,u) €S™ x R™ "™ : (x —uu’) > 0}.

(see above) is also 2-regular. Indeed, we have
I 0 (1 0 I o’ I —u”
0 z—uu” )~ \—u I u oz 0o I /°

I UT _ I 0 _ T
Det<u x>_Det<0 $_UUT>_Det(x—uu )

T
Since — In Det <£ Ux > is 2-regular by the results of [17], it follows that — In Det(x — uu?) is

Therefore,

also 2-regular for its domain. Actually, it is now known that all hyperbolic barriers are 2-regular
(see Theorem 4.2 of [8]). The above fact can also be easily obtained using an affine restriction
of this theorem. As a final remark on «-regularity, we note that this property behaves very
nicely under the symmetries of the domain of the s.c.b. For instance, if ) is a cone and A is
an automorphism of it such that for a self-concordant barrier f for (), we have the f(z) and
f(Az) differing only by a constant depending only on A, then the kth derivative of f at Ax along
the direction Ah coincides with the kth derivative of f at z along h. Moreover, as it is easily
seen, mo az(Ah) = mg o (h). Therefore, if the automorphism group Aut(Q) of () acts transitively
on @ and the barrier f in question is “semi-invariant” (f(Az) = f(x) + constant(A4) for every
A € Aut(Q)), then it suffices to check the a-regularity condition at a single point of @ (but along
every direction).
(b) Let H be a self-scaled barrier for K (so K is a symmetric cone). Define

1
sup{t: (x —th)e K}’

oz(h) =

Then

@) < B e th) < (),
[+ toa () (1~ 1o ()]
for every # € int K, h € £ and t € [0,1/0;(h)). This property was proven via establishing the
convexity of the function (—H'(z),y) : int K — R, for every y € K [18]. Later, this property
was extended to all hyperbolic barriers [8].
(¢) fis f-normal if for every z,2 € Q, r = mg (2 — 2) < 1 implies
2 d2

d? d 1
1—-7)? [ — thy) < (= thy) < —— ([ —
= (G e m) < (e ) < i (i
Tt is known that all specific examples discussed here are g-normal for moderate values of 3 (see
[13)).
Our approach is very flexible to take advantage of any of the aforementioned desirable properties of
special self-concordant barriers (for the related results in the context of predictor-corrector path-following

methods, see [17, 13]).

Flx —|—th)> , VheE.

t=0 t=0
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7.3. Primal-dual symmetry and dual information. The setting of self-scaled barriers is ideal
for the strongest use of primal-dual symmetry in interior-point algorithms. However, taking all of these
nice properties beyond symmetric cones is not possible (see, for instance [23]).

In most applications, the importance of generating good bounds (via good dual feasible solutions)
on the optimal objective value of the problem at hand cannot be denied. In the self-scaled case, the
dual is proven to be even more powerful in that good dual solutions are also used (via so-called “primal-
dual joint scaling”) to generate excellent search directions for both primal and the dual problems. Some
properties of primal-dual joint scaling interior-point methods have been generalized and extended to all
convex optimization problems in conic form (see [24]). We can use analogous search directions in our
set-up as well.

An important advantage of the current set-up is that when we are in the “Complete Formulation
Case”, the primal and the dual paths are “asymmetric”: the primal path is comprised of minimizers of
the penalized objective t{c, 2} + ®(Ax), while the dual path is comprised of minimizers of ®. on “shifted
affine planes” A*y = —t¢; unless @, is logarithmically homogeneous, the dual path is not of the same
nature as the primal one.?) This asymmetry may make the task of tracing one of the paths more relevant
and/or easier for the interior-point approach. In such a case, the flexibility of our approach allows us to
focus on the problem which has the s.c.b. with better long-step properties (we can also switch the focus
of the algorithm from one problem to the other dynamically depending on the progress of the algorithm).
Moreover, we still use the dual problem to generate improved lower bounds on ¢, and guide the search
directions.

7.4. Infeasible-start. As we already commented, the standard initialization techniques as given
in [16] can be applied. We could also apply the surface-following idea developed in [17]. However, a
particularly attractive choice would be an effective analogue of the approach of [21]. Such analogues
seem possible and the development of such techniques is left for future work.

3) The idea to solve the problem by tracing the primal path is, of course, a common place. The idea to trace what we
call here the dual path is not new either (it originates from Nesterov [14]; for a more general treatment, see [16], Section
3.4). What is seemingly new (beyond the scope of the Standard case, of course), is the idea to work with both of these

paths simultaneously.
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Appendix A.
Computing the Legendre transformation of G(s,y).

max[Iln(s —ylny) + Iny+ os + ny]

Fermat equations: N
s— ylny—i_o-_0 s— ylny[1+1ny]+ +77_0
whence
J—i—alny—i—i:—n,s—ylny:—%.
Setting v = _Lgy:
1 —1In U¢—1+§<:>1/J—|—ln1/;:1+g—ln(—0').
Thus,

=0 (1+1 ~In(-0)),
where 6(r) is given by

§+ln§:r<:>ln§: 0.
Now,
y _ﬁ\li
a€(1+%—ln(—0))’
os=oylny—1= —m —In(-0) —|—6A’(1 + 2 —1In(—0)) —=1—=2 +1In(—0)| — 1,
’ os = —2+ Al%
9(1+/§—ln(—0))’
_ n/o .
Y = 9(1+1—ln(—0))’
and finally
Gi(oyn) = —In(—0)—In(-0c) —In(0 (1 + g - ln(—o'))) + 9(1+1_11n(_g)) —2
= —2(=0) + 6 (14 L =In(=0) ~ 1= 2 (o) gt =
= —In(-0)+0(1+2—-In(—0)) =2+ ~——1 ~3

Setting 0(r) = A(l g so that ﬁ —In(0(r)) = a(r) + ln(a(r)) = r, we arrive at the expression presented in
the paper.

Computing the Legendre transformation of ®(x, u).

max {Tr(ya:) + Tr(vTu) + In Det(z — uuT)}

D(In Det(x — vu®))[dy,d,] = Tr([z — uul]7d,) + Tr([z — wu® ] (udl + d,uT))
= [z - UUT)_la 2(x — UUT)_lu]a [de, du])

Fermat equations:

whence

U = —%y‘lv,x = —y_1 + wul = —y_1 + iy‘lvay_l,

so that
Qo (y,v) = Tr(—1+ 3 Ly=1y )—|—Tr( 19Ty~ 1v) + In Det(—y~')
= —-m-— 1Tr(v Yy 1v)—lnDet( y).
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