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t. We present a framework for designing and analyzing primal-dual interior-point methods for 
onvex opti-mization. We assume that a self-
on
ordant barrier for the 
onvex domain of interest and the Legendre transformation ofthe barrier are both available to us. We dire
tly apply the theory and te
hniques of interior-point methods to the givengood formulation of the problem (as is, without a 
oni
 reformulation) using the very usual primal 
entral path 
on
eptand a less usual version of a dual path 
on
ept. We show that many of the advantages of the primal-dual interior-pointte
hniques are available to us in this framework and therefore, they are not intrinsi
ally tied to the 
oni
 reformulation andthe logarithmi
 homogeneity of the underlying barrier fun
tion.Key words. 
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tion. In what follows, we are interested in solving the optimization problem
� � infx2Dh
; xiE;(1.1)where D is an open 
onvex domain in an Eu
lidean spa
e E with inner produ
t h�; �iE . What we intendto use is a kind of a primal-dual interior-point method. With the traditional 
oni
 approa
h, in order tosolve (1.1) by a primal-dual path-following method, we would a
t as follows.1) We represent the feasible domainD of the problem as the inverse image of the interior of a 
losedpointed 
one K � F under the aÆne embedding x 7! Ax� b of E into an Eu
lidean spa
e F :D = fx : Ax� b 2 intKg;(1.2)thus reformulating (1.1) as the 
oni
 problemmin� fhd; �iF : � 2 (L� b) \Kg ;(1.3)where L = ImA and d is su
h that A�d = 
;2) we asso
iate with (1.3) the dual problemmaxy �hb; yiF : y 2 (L? + d) \K�	 ;(1.4)where K� is the 
one dual to K K� � fy : h�; yi � 0; 8� 2 Kg :(without loss of generality, we 
an assume b 2 L? and d 2 L);3) we equip K with a #-self-
on
ordant logarithmi
ally homogeneous barrier H(�) with known Leg-endre transformation H�(�) � sup� fhy; �i �H(�)g; the fun
tion H�(y) = H�(�y) is a #-self-
on
ordant logarithmi
ally homogeneous barrier for K�;4) we tra
e, as t!1, the primal-dual 
entral path (��(t); y�(t)) de�ned by the requirements��(t) = argmin� fthd; �iF +H(�) : � 2 (L� b) \ intKg ;y�(t) = argminy ��thb; yiF +H�(y) : y 2 (L? + d) \ intK�	 :(1.5)�Fa
ulty of IE&M, Te
hnion, Haifa, Israel (nemirovs�ie.te
hnion.a
.il). Part of the resear
h was done while theauthor was a Visiting Professor at the University of Waterloo.y(Corresponding Author)Dept. of Combinatori
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2 A. NEMIROVSKI AND L. TUNC�ELWhen primal-dual potential-redu
tion methods are used, at step 4), rather than tra
ing the primal-dual 
entral path, we redu
e step by step the primal-dual potentialS(�; y) = H(�) +H�(y) + (#+p#) ln(hy; �iF );(1.6)keeping � and y feasible for the respe
tive problems (1.3), (1.4).Note that if all we are interested in is the original problem (1.1), not the primal-dual pair (1.3), (1.4),then in prin
iple we 
ould solve (1.1) by interior-point methods \as the problem is", provided that we
an equip D with a #-self-
on
ordant barrier F (x). Indeed, given su
h a barrier, we 
ould tra
e as t!1the primal 
entral path x�(t) = argminx fFt(x) � th
; xiE + F (x) : x 2 Dg(1.7)or redu
e step by step the \primal potential"s(x; t) = [Ft(x) �minz2D Ft(z)℄�p# ln t:(1.8)In fa
t, the primal-dual te
hniques 
an be interpreted as no more than some parti
ular 
ases ofthe latter straightforward approa
h. Indeed, given a primal-dual framework A; b;K; #;H(�), we 
an setF (x) = H(Ax� b), thus getting a #-self-
on
ordant barrier for 
l D. With this F , the path (1.7) existsif and only if the primal-dual 
entral path exists, and the latter path is readily given by the former one:��(t) = Ax�(t) � b; y�(t) = �t�1H 0(Ax�(t)� b):Therefore, tra
ing the primal 
entral path is basi
ally the same as tra
ing the primal-dual one. Oneimportant advantage of the primal-dual path-following framework, at least in its theoreti
al aspe
ts,
omes partly from the fa
t that in this framework it is easy to realize whether a given primal-dual pair(�; y) is 
lose to a given \target pair" (��(t); y�(t)) on the primal-dual 
entral path. This allows fortheoreti
ally valid long-step path-following poli
ies (see [15℄). In 
ontrast to this, in the \purely primal"framework it seems to be impossible to realize, at a low 
omputational 
ost, whether a given primalsolution x is 
lose to a given target point x�(t) on the path. (Note that if x is very 
lose to the 
entralpath then it is easy to dete
t this; however, it does not seem easy to re
ognize when x lies in the x-spa
eproje
tion of a wide neighbourhood of the primal-dual 
entral path.) As a result, all known theoreti
allyeÆ
ient purely primal path-following methods are for
ed to use a worst-
ase-oriented short-step poli
y.The situation with potential-redu
tion te
hniques is similar. Indeed, given a primal-dual frameworkA; b;K; #;H(�), let us equip 
l D with the #-self-
on
ordant barrier F (x) = H(Ax� b), and 
onsider thefun
tion P (x; y; t) = H(Ax � b) +H�(y) + thy;Ax� biF � (#+p#) ln t;where y is restri
ted to satisfy the relation A�y = 
. This fun
tion in a way \
ontains" both the primal-dual potential (1.6) and the primal potential (1.8). It is easily seen thatS(Ax � b; y) = mint>0 P (x; y; t) + 
onst; s(x; t) = miny:A�y=
P (x; y; t):Thus, we 
an say that both in the primal-dual and in the (
on
eptual) primal potential-redu
tion methodswe are pushing the potential P (�) to �1, keeping x feasible for (1.1) and y feasible for (1.4). Here, theadvantages of the primal-dual framework be
ome even more apparent than in the path-following 
ase:the primal-dual potential S is expli
itly 
omputable, while this is not so for the primal potential s(x; t)(this is why the \primal potential-redu
tion" method is a 
on
eptual, not a 
omputational one).The goal of this paper is to demonstrate that the outlined advantages of the primal-dual interior-pointte
hniques are not intrinsi
ally related to 
oni
 reformulation of the original problem and logarithmi
homogeneity of the barriers underlying the interior-point methods. Spe
i�
ally, it turns out that we
an build \good analogies" of the path-following and the potential-redu
tion primal-dual interior-pointte
hniques in the following



\CONE-FREE" PRIMAL-DUAL METHODS 3\Complete Formulation Case": We 
an equip the domain of the problem of interest (1.1)with a self-
on
ordant barrier F (x) = �(Ax� b)whi
h is obtained, via an aÆne substitution of argument, from a #-self-
on
ordant barrier�(�) with known Legendre transformation ��(�).We also refer to su
h domains as \Completely s.
. Representable." The di�eren
e with the traditionalprimal-dual framework is that we do not require � to be a logarithmi
ally homogeneous self-
on
ordantbarrier for a 
one. Indeed, this is not a negligible di�eren
e. As an example, 
onsider a Geometri
Programming problem: minx �
Tx : fi(x) � 0; i = 1; :::;m; Px � h	 ;fi(x) � ln� LP̀=1�i` expfdTi`xg�+ eTi x+ �i(1.9)where �i` > 0 for all i, `. Constraints fi(x) � 0 
an be represented equivalently asLX̀=1 expf ai`(x)z }| {(�i + ln�i`) + (di` + ei)Txg � 1;when
e (1.9) is equivalent tominz=(x;u)(
Tx : Px � h; X̀ui` � 1; i = 1; :::;m; expfai`(x)g � ui`; i = 1; :::;m; `= 1; :::; L) :(1.10)Assuming problem (1.9) stri
tly feasible, so is (1.10), and the interior D of the feasible set of the latterproblem 
an 
learly 
an be represented asD = fz : Az � b 2 Dg; D � f(t; y; s) 2 Rp �Rq �Rq : ti > 0; i = 1; :::; p; expfyig < si; i = 1; :::; qgwith properly 
hosen A; b and p = dimh+m, q = mL. Now, the set 
l D admits the following (p+ 2q)-self-
on
ordant barrier �(t; y; s) = � pXi=1 ln ti � qXi=1 [ln(ln(si) � yi) + ln si℄(1.11)(see [16℄, Se
tion 5.3.2). One 
an easily 
ompute the Legendre transformation of �:��(�; �; �) = �(p + 2q)� pXi=1 ln(��i)� qXi=1 �(�i + 1) ln� ��i�i + 1�+ ln�i + �i�(1.12)(from now on, unless stated otherwise, all fun
tions are +1 outside of their natural domains). Note that� is not a logarithmi
ally homogeneous self-
on
ordant barrier for a 
one.It should be mentioned that in prin
iple the 
oni
 stru
ture and logarithmi
 homogeneity 
an beintrodu
ed at a low 
ost: it is known (see [16℄, Proposition 5.1.4) that a #-self-
on
ordant barrier �(x)
an be asso
iated with a (�#)-logarithmi
ally homogeneous barrier (for the 
oni
 hull of the origin inR � E and D) �+(x; t) = � [�(x=t)� # ln(t)℄ (� is an appropriate absolute 
onstant | for instan
e,25 [�(x=t)� 7# ln(t)℄ works for every �, see [6℄). Note that the original barrier �, up to absolute 
onstantfa
tor, 
an be obtained from �+ by an aÆne substitution of the argument. Further, if ��(�) is available,then it is not that diÆ
ult to 
ompute �+� (�; � ):�+� (�; � ) = maxt>0 [���(t�=�) + � t+ �# ln t℄ :(1.13)



4 A. NEMIROVSKI AND L. TUNC�ELIn parti
ular, in the Geometri
 Programming 
ase we 
ould, in prin
iple, asso
iate with the barrier (1.11)a logarithmi
ally homogeneous barrier, thus getting a �(p+2q)-logarithmi
ally homogeneous barrier �+with \nearly expli
itly 
omputable" Legendre transformation and su
h that �+(A+x�b+) is a barrier forthe feasible set of (1.9). With this barrier, we 
an solve (1.9) by the standard 
oni
, primal-dual te
hnique.In light of these observations, a question arises: what 
ould be the advantages of new methods we intendto propose, given that the appli
ations 
overed by these methods 
an be 
overed by the standard 
oni
,primal-dual te
hniques as well? Our answer to this question is that \to enfor
e" the standard 
oni
framework, when the problem in the original form does not �t this framework, 
an be 
omputationally
ostly: one-dimensional maximization in (1.13) is perhaps not too expensive, but 
ertainly is not 
ostless.And it is absolutely un
lear in advan
e why the primal-dual te
hniques we intend to develop should bethat inferior as 
ompared to the standard 
oni
 ones to justify \enfor
ement" of the standard te
hniques.It should be added that, at the time of this writing, there is neither 
lear theoreti
al reasons (perhapswith the ex
eption of [20℄) nor 
omputational experien
e in favour of the standard primal-dual interior-point te
hniques beyond the s
ope of problems on self-s
aled 
ones, i.e., beyond the s
ope of linear, 
oni
,quadrati
, and semide�nite programming.Note that the above \
omplete formulation 
ase" was already 
onsidered in [17℄, where long-steppath-following (in fa
t, \surfa
e-following") interior-point methods for this 
ase were proposed. Below, weinvestigate in mu
h greater detail the primal-dual framework asso
iated with the Complete FormulationCase, with emphasis on developing the asso
iated potential-redu
tion te
hniques.The rest of the paper is organized as follows. In Se
tion 2, we introdu
e some notation and outlinea number of basi
 fa
ts on self-
on
ordan
e whi
h will be frequently used in the sequel. In Se
tion 3, wedes
ribe our \
one-free" primal-dual framework and introdu
e and investigate the main ingredients ofour approa
h | primal-dual path, proximity measure and potential. In Se
tion 4, we analyze 
enteringand path-tra
ing dire
tions. In Se
tions 5 and 6 we use the pre
eding results to develop path-following,resp. potential-redu
tion, \
one-free" primal-dual methods and to analyze their 
omplexity. Se
tion 7
ontains a dis
ussion of possible appli
ations and extensions.2. Preliminaries on self-
on
ordant fun
tions. We start by summarizing the properties of self-
on
ordant fun
tions and barriers we will frequently use in the sequel; for the proofs, see [16℄.2.1. Notation. In what follows letters like E , F , et
., denote Eu
lidean linear spa
es; 
orrespondinginner produ
ts are denoted h�; �iE , h�; �iF . We skip subs
ripts in h�; �i when it is 
lear from the 
ontextwhat the Eu
lidean spa
e in question is.For a linear operator x 7! Bx : F ! E , B� stands for the 
onjugate operator: hy;BxiE = hB�y; xiF .We write B � 0 (B � 0) to express that B is a symmetri
 and positive semide�nite (resp., positivede�nite) operator on E, with evident interpretation of relations like A � B or B � A.We asso
iate with an operator B � 0 on E , a 
onjugate pair of Eu
lidean norms on E :kxkB = hx;Bxi1=2;kxk�B = maxfhx; yi : kykB � 1g = kxkB�1 :>From now on, we set �(t) = t� ln(1 + t) h= t22 (1 + o(t)); t! 0i ;!(t) = �(�t) � t22 h= t33 (1 + o(t)); t! 0iand �(s) = maxft : �(t) � sg; s � 0;it is easily seen thatLemma 2.1. For every s � 0, we have �(s) � p2s + s:(2.1)



\CONE-FREE" PRIMAL-DUAL METHODS 5Proof. Sin
e �(t) is in
reasing in t � 0, it suÆ
es to verify that �(p2s+ s) > s when s > 0, or, whi
his the same, that p2s > ln(1 + p2s + s), or, equivalently, that 1 + p2s + s < expfp2sg when s > 0.The latter fa
t is evident, sin
e the left hand side 
ontains three �rst terms of the power expansion ofexpfp2sg, and all terms in this expansion are positive.For a 
onvex fun
tion f : E 7! R [ f+1g C2 on its domain as well as nondegenerate (f 00 � 0), andx 2 Dom f , we de�ne the Newton de
rement of f at x as�(f; x) = kf 0(x)k�f 00(x):2.2. Self-
on
ordant fun
tions and barriers: de�nitions. A 
onvex fun
tion f : E ! R [f+1g is 
alled self-
on
ordant (s.
.), if the domain Q of f is open, f is C3 on Q, satis�es the di�erentialinequality ���� d3dt3 ����t=0f(x + th)���� � 2� d2dt2 ����t=0f(x + th)�3=2 8(x 2 Q; h 2 E)(2.2)and is a barrier for Q: f(xi)!1 along every sequen
e fxig � Q 
onverging to a boundary point of Q.A s.
. fun
tion f is 
alled nondegenerate, if its Hessian f 00(x) is nondegenerate at some (and thenautomati
ally at every) point x 2 Dom f .Let # � 1. Fun
tion f is 
alled a #-self-
on
ordant barrier (#-s.
.b.) for 
l Dom f , if f is self-
on
ordant and ���� ddt����t=0f(x + th)���� � p#� d2dt2 ����t=0f(x + th)�1=2 8(x 2 Dom f; h 2 E):(2.3)A nondegenerate s.
. fun
tion f is #-s.
.b. if and only if �(f; x) � p# for all x 2 Dom f .2.3. Basi
 properties of self-
on
ordant fun
tions. We summarize these properties in thefollowing list.SC.I. [Stability w.r.t. linear operations℄1) Let fi, i = 1; ::;m, be s.
. fun
tions on E , and let �i � 1. Then the fun
tion f =Pi �ifi is s.
. Iffi is #i-s.
.b. for every i, then f is (Pi �i#i)-s.
.b.2) Let f be s.
. on E , and let y 7! Ay + b be an aÆne mapping from Eu
lidean spa
e F to E withimage interse
ting Dom f . Then the fun
tion g(y) = f(Ay + b) is s.
. If f is a #-s.
.b., then so is g.SC.II. [Lo
al behaviour and damped Newton step℄ Let f be a nondegenerate s.
. fun
tion with Q =Dom f . Then1) For every x 2 Q, the ellipsoid fy : ky � xkf 00(x) < 1g is 
ontained in Q. Besides this,r � ky � xkf 00(x) < 1 ) (1� r)2f 00(x) � f 00(y) � (1 � r)�2f 00(x) (a)r � ky � xkf 00(x) < 1 ) f(y) � f(x) + hf 0(x); y � xi+ �(�r) (b:1)y 2 Q; r � ky � xkf 00(x) ) f(y) � f(x) + hf 0(x); y � xi+ �(r): (b:2)(2.4)In the above, (a) is given in Theorem 2.1.1 of [16℄, and (b.1-2) is relation (2.4) in Le
ture Notes [12℄ (asimpli�ed version of [16℄ with all ne
essary proofs).2) For x 2 Q, we de�ne the damped Newton iterate of x asx+ = x� 11 + �(f; x) [f 00(x)℄�1f 0(x):For every x 2 Q we have x+ 2 Q (a)f(x+) � f(x) � �(�(f; x)) (b)�(f; x+) � 2�2(f; x): (
)(2.5)



6 A. NEMIROVSKI AND L. TUNC�ELIn the above, (a) and (b) are proved in Proposition 2.2.2 of [16℄. For (
), plug in s � 11+�(f;x) in Theorem2.2.1 of [16℄ or see relation (2.19) in [12℄.SC.III. [Minima of s.
. fun
tions℄ Let f be a nondegenerate s.
. fun
tion. f attains its minimum onDom f if and only if f is bounded below, and if and only if there exists x 2 Dom f with �(f; x) < 1.The minimizer xf of f , if it exists, is unique, and�(f; x) < 1) f(x) � f(xf ) � �(��(f; x)):(2.6)The above fa
t 
an be established by a re�nement of the derivation in pp. 31{32 of [16℄, see items VI,VIII in Le
ture 2 in [12℄.SC.IV. [Additional properties of s.
.b.'s℄ Let f be a nondegenerate #-s.
.b., and let Q = Dom f . Then1) one has 8(x; y 2 Q) : hy � x; f 0(x)i � # (a)8(x; y 2 Q) : hy � x; f 0(x)i � 0) ky � xkf 00(x) � #+ 2p# (b)(2.7)In the above, (a) is given by (2.3.2) of [16℄. (b) was �rst proven in [16℄ with a larger 
onstant (3#+1), seeProposition 2.3.2 in [16℄. The better bound (#+ 2p#) follows from Lemma 2.8 of Jarre [9℄, see Lemma3.2.1 in [12℄.2) f is bounded below on Q if and only if Q is bounded, and in this 
asefy : ky � xfkf 00(xf ) < 1g � Q � fy : ky � xfkf 00(xf ) < #+ 2p#g:(2.8)This fa
t was also presented with a larger 
onstant (3# + 1) in [16℄ (see Proposition 2.3.2). The LHSin
lusion of the above 
laimwas already established. The RHS in
lusion follows from the fa
ts f 0(xf ) = 0,(2.7) part (b), and the fa
t that Q is open. Also see Theorem 2.9 of Jarre [9℄ or relation (3.10) in [12℄.SC.V. [Legendre transformation of a s.
. fun
tion℄ Let f be a nondegenerate s.
. fun
tion on E .1) The domain of the Legendre transformationf�(�) = supx [h�; xi � f(x)℄is exa
tly the image of Dom f under the mapping x 7! f 0(x), f� is a nondegenerate s.
. fun
tion, andthe Legendre transformation of f� is f .2) If f is a nondegenerate #-s.
.b, then Dom f� is either the entire E { this is the 
ase if and only ifDom f is bounded { or the open 
onef� : h�; hi < 0; 8(h 2 R; h 6= 0)g;where R is the re
ession 
one of Dom f .3) If f is a #-self-
on
ordant logarithmi
ally homogeneous barrier, i.e., Dom f is the interior of apointed 
losed 
onvex 
one K andf(tx) = f(x) � # ln t 8(x 2 Dom f; t > 0);then f� is a #-s.
. logarithmi
ally homogeneous barrier withDom f� = �intK�;where K� is the 
one dual to K.All these results 
an be found in Se
tion 2.4 of [16℄.3. Path, proximity measure and potential.



\CONE-FREE" PRIMAL-DUAL METHODS 73.1. The setup. As it was indi
ated in the Introdu
tion, we intend to 
onsider the following situ-ation. We are given� a nondegenerate #-s.
.b. � with a domain D+ � F and the Legendre transformation �� of �(whi
h is a nondegenerate s.
. fun
tion, SC.V.1)); the domain of �� is denoted D+� . By SC.V.2),D+� is a 
oni
 set: y 2 D+� ) �y 2 D+� 8� > 0(3.1)� a linear embedding x 7! Ax : E ! F (KerA = f0g) with the image interse
ting D+;� a ve
tor 
 2 E , 
 6= 0.These data de�ne� the optimization problem
� = infx fh
; xi : x 2 Dg ; D = fx : Ax 2 D+g;(3.2)we are interested in solving;� the fun
tion F (x) = �(Ax) whi
h is a nondegenerate #-self-
on
ordant barrier for 
l D (SC.I.2)).Remark 3.1. 1. In the Introdu
tion, we 
onsidered the aÆne mapping x 7! (Ax � b) instead ofthe linear mapping x 7! Ax. Of 
ourse, this does not restri
t generality, sin
e a shift in the mapping isequivalent to translating the barrier �.2. In order to 
ompare our 
onstru
tions below with the standard primal-dual interior-point 
onstru
-tions, let us spe
ify the Standard 
ase as the one where�(�) = H(� � b);for a #-logarithmi
ally homogeneous s.
.b. H(�). Note that in this 
ase��(y) = H�(y) + hy; bi = H�(�y) + hy; bi:(3.3)3.2. Primal and dual paths. The major entity of our interest is the primal pathx�(t) = argminx Ft(x); Ft(x) = F (x) + th
; xi;(3.4)and we would like this path to be well-de�ned for all t > 0. By SC.III, this is the 
ase if and only if Ft(�)is bounded below for every t > 0. The 
orresponding 
ondition 
an be stated as follows.Lemma 3.1. Let t > 0. The fun
tion Ft(x) = F (x) + th
; xi is bounded below if and only if there isa y 2 D+� su
h that A�y = �
: In parti
ular,{ either (
ase A) Ft(�) is bounded below for every t > 0,{ or (
ase B) Ft(�) is unbounded below for every t > 0.Proof. If Ft(x) is bounded below, then the fun
tion attains its minimum at a unique point x�(t)(SC.III). We have A��0(Ax�(t)) = F 0(x�(t)) = �t
 and z = �0(Ax�(t)) 2 D+� , when
e y = t�1z 2 D+� by(3.1); thus, 9y 2 D+� : A�y = �
: Conversely, let y 2 D+� be su
h that A�y = �
, and let t > 0. Settingz = ty and applying (3.1), we get z 2 D+� and A�z = �t
. We now haveFt(x) = �(Ax) + th
; xi = �(Ax) � hz; Axi � ���(z);so that Ft(x) is bounded below.From now on, we assume that 
ase A takes pla
e, so that the primal 
entral path (3.4) is well-de�nedfor all t > 0.Remark 3.2. In the Standard 
ase, the assumptions that D 6= ; and that 
ase A takes pla
e areequivalent to stri
t primal-dual feasibility of the primal-dual pair (1.3), (1.4) asso
iated with (3.2).We asso
iate with the primal path x�(t) the dual pathy�(t) = �0(Ax�(t)); t > 0:(3.5)



8 A. NEMIROVSKI AND L. TUNC�ELLemma 3.2. For t > 0, the \primal-dual pair" (x; y) = (x�(t); y�(t)) is uniquely de�ned by therelations (a) y 2 D+� ; x 2 D(b) A�y = �t
(
) �0�(y) = Ax [, y = �0(Ax)℄ :(3.6)Moreover, y�(t) = argminy f��(y) : A�y = �t
g:(3.7)Proof. Let x = x�(t), y = y�(t). Then (x; y) 
learly satis�es (a) and (
); besides this, �t
 = F 0(x) =A��0(Ax) = A�y, so that (x; y) satis�es (b).Now let (x; y) satisfy (3.6). Then F 0(x) = A��0(Ax) = A�y = �t
 (we have used (
) and (b)), i.e.,x = x�(t). Now from (
) it follows that y = y�(t).To prove (3.7), note that, as we already know, A�y�(t) = �t
 and �0�(y�(t)) = Ax�(t), i.e., �0�(y�(t)) =Ax�(t) is orthogonal to the kernel of A�.Remark 3.3. It is immediately seen that in the Standard 
ase (see Remark 3.1), x�(t) and (Ax�(t)�b;�t�1y�(t)) are exa
tly what was 
alled in the Introdu
tion \primal 
entral path" and \primal-dual 
entralpath", respe
tively.3.2.1. Optimality gap. The role of the standard expression for the duality gap is now played bythe following statement:Lemma 3.3. Let y 2 D+� be su
h that A�y = �t
. Then
� � infx02Dh
; x0i � �#+ hy;�0�(y)it(3.8)and therefore 8(x 2 D) : h
; xi � 
� � t�1 [#+ hy;�0�(y)i � hy;Axi℄ :(3.9)Remark 3.4. In the Standard 
ase (see Remark 3.1), it is immediately seen that ve
tors y 2 D+�su
h that A�y = �t
 are exa
tly the ve
tors of the form �tby, where by is a feasible solution to the 
oni
dual (1.4) of our problem of interest minx fh
; xi : (Ax� b) 2 Dom Hg. Moreover, in the Standard 
asehy;�0�(y)i = hy; bi + hy;H 0�(y)i = hy; bi � #:Thus, in the Standard 
ase (3.8) reads8(x 2 D; by 2 Dom H�; A�by = 
) : h
; xi � 
� � hŷ; Ax� biwhi
h is the standard result on the duality gap in Coni
 Duality.Proof of Lemma 3.3. Let z = �0�(y), so that y = �0(z). For x0 2 D we have�th
; x0i = hy;Ax0i = h�0(z); Ax0i = h�0(z); Ax0 � zi + h�0(z); zi� #+ h�0(z); zi [by (2.7.a)℄= #+ hy;�0�(y)i;when
e infx02Dh
; x0i � �#+ hy;�0�(y)itand therefore, in view of h
; xi = �t�1hA�y; xi = �t�1hy;Axi,h
; xi � infx02Dh
; x0i � t�1 [#+ hy;�0�(y)i � hy;Axi℄ ;as 
laimed.Note that on the primal-dual path �0�(y) = Ax, and (3.9) gives the standard a

ura
y boundh
; x�(t)i � 
� � t�1#:(3.10)



\CONE-FREE" PRIMAL-DUAL METHODS 93.3. Proximity measure. Let us de�ne the proximity measure as the fun
tion	(x; y) = �(Ax) + ��(y) � hy;Axi : D �D+� ! R(Legendre-Fen
hel gap between � and ��). Noti
e that for every x 2 D and every y 2 D+� , we have	(x; y) = �(Ax) + supz2D+fhy; zi ��(z)g � hy;Axi� supx02Dfhy;Ax0i ��(Ax0)g � [hy;Axi ��(Ax)℄:Clearly, the last expression is always nonnegative. Also note that for su
h a pair (x; y) we have 	(x; y) = 0i� y = �0(Ax). We elaborate on the properties of this proximity measure in the next proposition.Proposition 3.4. Let x 2 D, t > 0, and let y 2 D+� be su
h thatA�y = �t
:(3.11)Then(i) One has	(x; y) = Ft(x) + ��(y) = �Ft(x)�minu2DFt(u)�+ ���(y) � minv2D+� ;A�v=�t
��(v)�= [Ft(x)� Ft(x�(t))℄ + [��(y) ���(y�(t))℄ :(3.12)(ii) Let r = kx� x�(t)kF 00(x�(t));s = ky � y�(t)k�00� (y�(t));��(y) = maxfhh;�0�(y)i : A�h = 0; hh;�00�(y)hi � 1g(3.13)(note that ��(y) is the Newton de
rement, taken at y, of the restri
tion of ��(�) to the aÆne subspa
efz : A�z = �t
g). Then �(r) + �(s) � 	(x; y) � �(�r) + �(�s)(3.14)and �(�(Ft; x)) + �(��(y)) � 	(x; y) � �(��(Ft; x)) + �(���(y)):(3.15)Proof. (i): The �rst equality in (3.12) follows from the de�nition of 	 
ombined with (3.11). Toprove the se
ond equality, it suÆ
es to verify thatminu2DFt(u) + minv2D+� ;A�v=�t
��(v) = 0;or, whi
h is the same in view of Lemma 3.2, that�(Ax�) + th
; x�i+ ��(y�) = 0;(3.16)where x� = x�(t), y� = y�(t). Sin
e �0�(y�) = Ax� and A�y� = �t
 by Lemma 3.2, we have��(y�) = hy�; Ax�i � �(Ax�) = �th
; x�i ��(Ax�);and (3.16) follows.The third equality in (3.12) is readily given by (3.4) and (3.7).



10 A. NEMIROVSKI AND L. TUNC�EL(ii): Setting x� = x�(t), y� = y�(t), we have by (2.4.b:2):F (x) � F (x�) + hx� x�; F 0(x�)i+ �(r)= F (x�) + hAx� Ax�;�0(Ax�)i+ �(r)= F (x�) + hAx� Ax�; y�i+ �(r);��(y) � ��(y�) + hy � y�;�0�(y�)i+ �(s)= ��(y�) + hy � y�; Ax�i+ �(s)= ��(y�) + �(s)[sin
e A�y = A�y� = �t
℄when
e, taking into a

ount thatF (x�) + ��(y�) = �(Ax�) + ��(�0(Ax�)| {z }y� ) = hy�; Ax�i;(3.17)we get F (x) + ��(y) � F (x�) + ��(y�) + hAx� Ax�; y�i+ [�(r) + �(s)℄= hy�; Ax�i + hAx� Ax�; y�i+ [�(r) + �(s)℄= hy�; Axi+ [�(r) + �(s)℄= hy;Axi + [�(r) + �(s)℄; [sin
e A�y = A�y�℄and we arrive at �(r) + �(s) � 	(x; y);as required in the �rst inequality in (3.14). The se
ond inequality in (3.14) is trivial when max[s; r℄ � 1;assuming max[s; r℄ < 1, we have by (2.4.b:1):F (x) � F (x�) + hx� x�; F 0(x�)i+ �(�r)= F (x�) + hAx� Ax�;�0(Ax�)i+ �(�r)= F (x�) + hAx� Ax�; y�i + �(�r);��(y) � ��(y�) + hy � y�;�0�(y�)i + �(�s)= ��(y�) + hy � y�; Ax�i+ �(�s)= ��(y�) + �(�s)[sin
e A�y = A�y� = �t
℄when
e, taking into a

ount (3.17),F (x) + ��(y) � F (x�) + ��(y�) + hAx� Ax�; y�i + [�(�r) + �(�s)℄= hy�; Ax�i+ hAx� Ax�; y�i + [�(�r) + �(�s)℄= hAx; y�i+ [�(�r) + �(�s)℄= hAx; yi + [�(�r) + �(�s)℄;and we arrive at 	(x; y) � �(�r) + �(�s);as required in the se
ond inequality in (3.14).Finally, sin
e Ft(�) is self-
on
ordant, we have�(�(Ft; x)) � Ft(x)�minFt(�) = Ft(x)� Ft(x�) � �(��(Ft; x))by (2.5.b) and (2.6). The same arguments as applied to the self-
on
ordant fun
tion ��jfz:A�z=�t
g resultin �(��(y)) � ��(y) � ��(y�) � �(���(y)):These relations, in view of (3.12), lead to (3.15).



\CONE-FREE" PRIMAL-DUAL METHODS 113.4. Potential. For x 2 D, y 2 D+� , t > 0 let�(x; y; t) = 	(x; y) �p# ln t:Note that by (3.12) we haveA�y = �t
) �(x; y; t) = Ft(x) + ��(y) �p# ln t= [Ft(x)�minu2DFt(u)℄ + [��(y) � minv2D+� ;A�v=�t
��(v)℄ �p# ln t:(3.18)Proposition 3.5. Let x 2 D, t > 0, and let y 2 D+� be su
h thatA�y = �t
:Then h
; xi � infu2Dh
; ui � 2# exp(p#� #2# ) exp��(x; y; t)p# � :(3.19)Remark 3.5. We will see in Se
tions 4, 6 that the standard Newton-type te
hniques allow, givena initial triple (x0; y0; t0) su
h that x0 2 D, y0 2 D+� , t0 > 0 and A�y0 = �t0
, to build a sequen
e ofiterates (xi; yi; ti) su
h that A�yi = �ti
 and �i � �(xi; yi; ti) � �i�1 � � with an absolute 
onstant� > 0. Relation (3.19) demonstrates that the resulting pro
edure obeys the standard p#-
omplexity bound.Remark 3.6. In the Standard 
ase (see Remark 3.1), the points y 2 Dom �� satisfying A�y = �t
are exa
tly the points of the form y = �tby, where by is a stri
tly feasible solution to the dual problem (1.4).Expressing � in terms of (x; by; t), we arrive at the fun
tionb�(x; by; t) � �(x;�tby; t) = H�(tby) +H(Ax� b) + thby;Ax� bi � p# ln t= H�(by) +H(Ax� b) + thby;Ax� bi � (#+p#) ln t:In the potential-redu
tion s
heme, we want to iterate on (x; y; t) in order to redu
e step by step the potential�. In the Standard 
ase, we 
an simplify this task by eliminating the variable t | by minimizing b� in tanalyti
ally. The \optimal" t is t = #+p#hby;Ax�bi , and the \optimized" potential is�(x; by) = H�(by) +H(Ax� b) + (#+p#) ln (hby;Ax� bi) + 
onst;whi
h is nothing but the usual primal-dual potential of the Standard 
ase.Proof of Proposition. Let x� = x�(t), so that F 0(x�) = �t
, let y� = y�(t), and let 
 = �(x; y; t).Sin
e A�y = �t
, Proposition 3.4 implies the �rst statement in the following 
hain:
 = �p# ln t+ [Ft(x) � Ft(x�)℄ + [��(y) ���(y�)℄| {z }�0+Ft(x)� Ft(x�) � 
 +p# ln t+(�) �(kx � x�kF 00(x�)) � 
 +p# ln t [using (2.4.b:2), F 0t(x�) = 0℄:Observe that from (�) it follows thatkx� x�kF 00(x�) � � �
 +p# ln t� :(3.20)On the other hand, kt
k[F 00(x�)℄�1 = kF 0(x�)k[F 00(x�)℄�1 = kF 0(x�)k�F 00(x�) � p#



12 A. NEMIROVSKI AND L. TUNC�EL(the 
on
luding inequality 
omes from the fa
t that F is #-s.
.b.), when
e in view of (3.20) and the fa
tthat h
; x� x�i � k
k�F 00(x�)kx� x�kF 00(x�), one hash
; xi � h
; x�i+p#t�1� �
 +p# ln t� :(3.21)Re
alling that x� = x�(t) and invoking (3.10), we 
ome to�(x) � h
; xi � infu2Dh
; ui � #t�1 +p#t�1� �
 +p# ln t� :(3.22)>From (2.1) it follows that �(s) � 1 + 2s for all s � 0. Now (3.22) implies that�(x) � (#+p#)t�1 + 2#t�1 ln t+ 2p#t�1
:(3.23)Consequently, �(x) � max�>0 n(#+p#)��1 + 2#��1 ln � + 2p#��1
o ;and the maximum in the right hand side, as it is easily seen, is exa
tly the right hand side in (3.19).4. How to redu
e the potential. Consider the following situation: We are given a triple (x 2D; y 2 D+� ; t > 0) with A�y = �t
;(4.1)and we intend to update this triple into a triple (x+; y+; t+) su
h that(a) x+ 2 D; y+ 2 D+�(b) A�y+ = �t+
(
) �(x+; y+; t+) � �(x; y; t) �
(1):(4.2)The options we have are at least as follows:4.1. Centering, damped Newton step in x. Herey+ = y;t+ = t;x+ = x� 11+�(Ft;x) [F 00(x)℄�1F 0t(x):(4.3)This update 
learly satis�es (4.2.a� b). Sin
e A�y = �t
, we have�(x+; y+; t+) ��(x; y; t) = �(x+; y; t)� �(x; y; t)= Ft(x+) � Ft(x) [see (3.18)℄� ��(�(Ft; x)) [see (2.5.b)℄.(4.4)4.2. Centering, damped Newton step in y. Herex+ = x;t+ = t;y+ = y � 11+��(y)e(y);(4.5)where e(y) � argmaxh fhh;�0�(y)i : A�h = 0; hh;�00�(y)hi � 1g= [�00�(y)℄�1 �I �A[A�[�00�(y)℄�1A℄�1A�[�00�(y)℄�1��0�(y);��(y) � maxfhh;�0�(y)i : A�h = 0; hh;�00�(y)hi � 1g= ke(y)k�00� (y)(4.6)are, respe
tively, the Newton dire
tion and the Newton de
rement, taken at y, of the fun
tion����fz:A�z=�t
g.Updating (4.5) 
learly satis�es (4.2.a� b). Sin
e A�y = A�y+ = �t
, we have�(x+; y+; t+) ��(x; y; t) = �(x; y+; t)��(x; y; t)= ��(y+)� ��(y)� ��(��(y)) [(2.5.b) as applied to ��jfz:A�z=�t
g℄.(4.7)



\CONE-FREE" PRIMAL-DUAL METHODS 134.3. Primal path-tra
ing. A generi
 primal path-tra
ing step is as follows:t+ = t+�t [�t > 0℄;x+ = x� [F 00(x)℄�1F 0t+(x);y+ = �0(Ax) + �00(Ax)A(x+ � x):(4.8)The motivation behind this 
onstru
tion is 
lear: our ideal goal would be to update (x; y; t) into the triple(x+� ; y+� ; t+) with t+ > t and x+� ; y+� on the primal-dual path:F 0t+(x+� ) = 0;�0(Ax+� )� y+� = 0:(4.9)x+; y+ as given by (4.8) solve the linearization of the system (4.9) at x.We now analyze the primal path-tra
ing step.Lemma 4.1. Let a triple (x 2 D; y 2 D+� ; t > 0) satisfy (4.1), and let (x+; y+; t+) be obtained from(x; y; t) by a primal path-tra
ing step (4.8). Then(i) One has A�y+ = �t+
:(4.10)(ii) Let z = �0(Ax). Thenky+ � zk�00� (z) = kx+ � xkF 00(x) = kF 0t(x) + �t
k�F 00(x):(4.11)(iii) The relation kx+ � xkF 00(x) < 1(4.12)is a suÆ
ient 
ondition for the in
lusionsx+ 2 D; y+ 2 D+� :(iv) One has kx+ � xkF 00(x) � �(Ft; x) + j�tjt (�(Ft; x) +p#):(4.13)Proof. (i): We haveA�y+ = A��0(Ax) + A��00(Ax)A(x+ � x) = F 0(x) + F 00(x)(x+ � x)= F 0(x)� F 0t(x)��t
 = �(t+�t)
 = �t+
;whi
h proves (i).(ii): The se
ond equality in (4.11) is evident. We havekx+ � xk2F 00(x) = hx+ � x;A��00(Ax)A(x+ � x)i= h�00(Ax)A(x+ � x); [�00(Ax)℄�1| {z }�00� (z) �00(Ax)A(x+ � x)| {z }y+�z i = hy+ � z;�00�(z)(y+ � z)i:(ii) is proved.(iii): By (4.11), in the 
ase of (4.12) one haskx� x+kF 00(x) = ky+ � zk�00� (z) < 1;when
e, by SC.II.1), x+ 2 D and y+ 2 D+� .



14 A. NEMIROVSKI AND L. TUNC�EL(iv): By (ii),kx+ � xkF 00(x) = kF 0t(x) + �t
k�F 00(x) � kF 0t(x)k�F 00(x) + j�tjk
k�F 00(x)= �(Ft; x) + j�tjk
k�F 00(x)(4.14)and kF 0t(x)k�F 00(x) = kF 0(x) + t
k�F 00(x) � tk
k�F 00(x) � kF 0(x)k�F 00(x)� tk
k�F 00(x) �p#;when
e k
k�F 00(x) � t�1 h�(Ft; x) +p#i ;whi
h 
ombines with (4.14) to yield (4.13).Lemma 4.2. Let a triple (x 2 D; y 2 D+� ; t > 0) satisfy (4.1), and let (x+; y+; t+) be obtained from(x; y; t) by a primal path-tra
ing step (4.8). Assume that
 � kx+ � xkF 00(x) < 1:Then 	(x+; y+) � 2!(
); (a)�(x+; y+; t+) ��(x; y; t) � 2!(
) �p# ln t+t : (b)(4.15)Proof. Let z = �0(Ax), �00 = �00(Ax), �x = x+ � x. Sin
e ky+ � zk�00� (z) = 
 by (4.11) and 
 < 1,relation (2.4) implies that ��(y+) � ��(z) + hy+ � z;�0�(z)i + �(�
)= ��(z) + h�x;A��00Axi + �(�
);(4.16)and similarly �(Ax+) � �(Ax) + h�x;A��0(Ax)i + �(�
)= �(Ax) + h�x;A�zi+ �(�
)(4.17)when
e, due to ��(z) + �(Ax) = hz; Axi in view of z = �0(Ax),�(Ax+) + ��(y+) � hy+; Ax+i� [��(z) + �(Ax)℄| {z }hz;Axi +h�x;A��00Axi+ h�x;A�zi � hy+; Ax+i + 2�(�
)= hz; Axi+ h�x;A��00Axi + h�x;A�zi � hz +�00A�x;A(x+�x)i+ 2�(�
)= �h�x;A��00A�xi+ 2�(�
)= �
2 + 2�(�
)= 2!(
);(4.18)as required in (4.15.a). We now have�(x+; y+; t+) ��(x; y; t)= [�(Ax+) + ��(y+)� hy+; Ax+i℄| {z }�2!(
) by (4.18) � [�(Ax) + ��(y) � hy;Axi℄| {z }�0 �p# ln t+t� 2!(
) �p# ln t+t :Corollary 4.3. Let t > 0 and x be su
h that �(Ft; x) � 0:1. Then with �tt = 0:25p# the primalpath-tra
ing step is feasible (i.e., x+ 2 D, y+ 2 D+� ) and�(x+; y+; t+) ��(x; y; t) � �0:17:Proof. This is an immediate 
onsequen
e of the previous two lemmas, in parti
ular, the bounds (4.13)and (4.15).



\CONE-FREE" PRIMAL-DUAL METHODS 154.4. Dual path-tra
ing. A generi
 dual path-tra
ing step is as follows:t+ = t+�t [�t > 0℄;y+ = y +�y : A�y+ = �t+
; �0�(y) + �00�(y)�y 2 ImA;x+ : �0�(y) + �00�(y)�y = Ax+:(4.19)The motivation behind the 
onstru
tion is similar to the one in Se
tion 4.3, up to the fa
t that now welinearize an alternative to (4.9), spe
i�
ally, the des
riptionA�y+� + t+
 = 0;�0�(y+� )� Ax+� = 0(4.20)(re
all Lemma 3.2).We now analyze a dual path-tra
ing step. Although the results to follow are 
ompletely similarto those for the primal path-tra
ing step, the analysis is slightly di�erent | we do not have enoughprimal-dual symmetry!Lemma 4.4. Let a triple (x 2 D; y 2 D+� ; t > 0) satisfy (4.1), and let� = �0�(y); �00 = �00(�):(4.21)Then(i) The triple (x+; y+; t+) in (4.19) is well-de�ned and is expli
itly given by the relationsx+ = [A��00A℄�1A� ��tt y +�00�� ;�y = �00 [Ax+ � �℄= �00��tt A[A��00A℄�1A�y| {z }Æ1 � �I �A[A��00A℄�1A��00� �| {z }Æ2 �;y+ = y +�y:(4.22)(ii) One has kAx+ � �k�00(�) = k�yk�00� (y):(4.23)(iii) The relation k�yk�00� (y) < 1(4.24)is a suÆ
ient 
ondition for the in
lusionsx+ 2 D; y+ 2 D+� :(iv) One has k�yk�00� (y) �r�2�(y) + # (�t)2t2 :(4.25)Proof. (i): This is given by a straightforward 
omputation, where one should take into a

ount that�00 = �00(�) = [�00�(y)℄�1 due to � = �0�(y) and that A�y = �t
 by (4.1).(ii): This is an immediate 
onsequen
e of the relations �y = �00(�)[Ax+ � �℄ (see (4.22)) and�00�(y) = [�00(�)℄�1 (re
all that � = �0�(y)).(iii): This is an immediate 
onsequen
e of (4.23) and SC.II.1).(iv): By (4.22) and in view of �00�(y) = [�00℄�1 we havek�yk2�00� (y) = k�tt Æ1 � Æ2k2�00= (�t)2t2 kÆ1k2�00 + kÆ2k2�00[dire
t 
omputation℄.(4.26)



16 A. NEMIROVSKI AND L. TUNC�ELTaking into a

ount that � = �0�(y) and �00�(y) = [�00℄�1, from (4.6) we havekÆ2k2�00 = �2�(y):(4.27)Finally, y = �0(�) due to � = �0�(y), and we havekÆ1k2�00 = hy;A[A��00A℄�1A�yi [dire
t 
omputation℄� hy; [�00℄�1yi [proje
tion of [�00℄�1=2yonto the range of (�00)1=2A℄= h�0(�); [�00(�)℄�1�0(�)i = �k�0(�)k��00(�)�2� # [sin
e � is #-s.
.b.℄.(4.28)Combining (4.26) { (4.28), we arrive at (4.25).Lemma 4.5. Let a triple (x 2 D; y 2 D+� ; t > 0) satisfy (4.1), and let (x+; y+; t+) be obtained from(x; y; t) by a dual path-tra
ing step (4.19). Assume that
 � ky+ � yk�00� (y) < 1:Then 	(x+; y+) � 2!(
); (a)�(x+; y+; t+) ��(x; y; t) � 2!(
) �p# ln t+t : (b)(4.29)Proof. Let � = �0�(y), �00 = �00(�), �y = y+ � y. Sin
e k�yk�00� (y) = 
 < 1, relation (2.4) impliesthat ��(y+) � ��(y) + h�y;�0�(y)| {z }� i + �(�
):(4.30)Similarly, in view of kAx+ � �k�00(�) = 
 (see (4.23)), we have�(Ax+) � �(�) + hAx+ � �;�0(�)| {z }y i + �(�
);(4.31)when
e, due to ��(y) + �(�) = hy; �i in view of � = �0�(y),�(Ax+) + ��(y+) � hy+; Ax+i� [��(y) + �(�)℄| {z }hy;�i +h�y; �i + hAx+ � �; yi � hy+; Ax+i+ 2�(�
)= h�y; � � Ax+i+ 2�(�
)= �h�y; [�00℄�1�yi + 2�(�
) [see (4.22)℄= �
2 + 2�(�
) [sin
e [�00℄�1 = �00�(y)℄= 2!(
);(4.32)as required in (4.29.a). We now have�(x+; y+; t+) ��(x; y; t)= [�(Ax+) + ��(y+)� hy+; Ax+i℄| {z }�2!(
) by (4.32) � [�(Ax) + ��(y) � hy;Axi℄| {z }�0 �p# ln t+t� 2!(
) �p# ln t+t :Corollary 4.6. Let t > 0 and y be su
h that (4.1) takes pla
e and ��(y) � 0:1. Then with �tt = 0:25p#the dual path-tra
ing step is feasible (i.e., x+ 2 D, y+ 2 D+� ) and�(x+; y+; t+) ��(x; y; t) � �0:17:
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onsequen
e of the bounds (4.25) and (4.29). Using (4.25), we obtain
 = k�yk�00� (y) �p0:01 + (0:25)2 < 1:Therefore, Lemma 4.5 applies; (4.29) (a), (b) and the feasibility of x+ and y+ follows. Now, using (4.29)(b) and the fa
t that � ln(1 + �) � ��+ �22(1�j�j); for � 2 (�1; 1), we obtain�(x+; y+; t+) ��(x; y; t) � �0:17as desired.5. Primal-dual path-following methods. Now we are ready to des
ribe the primal-dual path-following methods for solving (3.2). The 
onstru
tion to follow reprodu
es in our \
omplete formulation
ase" setting the 
onstru
tion developed in [15℄ for the Standard 
ase (and in fa
t it was investigated,even in a more general \surfa
e-following" form, in [17℄).Let us say that a triple (x 2 D; y 2 D+� ; t > 0) is 
lose to the primal-dual path ifA�y = �t
 & max[�(Ft; x); ��(y)℄ � 0:1:(5.1)Assume that we are given a starting triple (x0; t0; y0) 1), 
lose to the primal-dual path. Starting withthis point, we tra
e the primal-dual path using a predi
tor-
orre
tor s
heme. Spe
i�
ally, at step i of thes
heme we a
t as follows:1. [predi
tor step℄ Given a triple (xi�1; yi�1; ti�1), 
lose to the path, we(a) spe
ify a sear
h dire
tion (dxi; dyi) in su
h a way thatA�dyi = �
;(5.2)(b) �nd a stepsize �ti > 0 in su
h a way that	(xi�1 +�tidxi| {z }x+i ; yi�1 +�tidyi| {z }y+i ) � �(5.3)(� � 1 is a parameter of the method) and setti = ti�1 +�ti:2. [
orre
tor step℄ Starting with (x+i ; y+i ; ti), we apply the damped Newton updates� xy � 7! " x+ = x� 11+�(Fti ;x) [F 00(x)℄�1F 0ti(x)y+ = y � 11+��(y)e(y) #(5.4)(see (4.5)) until a pair (x; y) with max[�(Fti ; x); ��(y)℄ � 0:1(5.5)is built, and set xi = x; yi = y;thus obtaining a triple (xi; yi; ti) 
lose to the path.1)Su
h a triple 
an be found by every one of the well-known interior-point initialization routines.



18 A. NEMIROVSKI AND L. TUNC�ELNote that with this approa
h, the number of damped Newton updates at a 
orre
tor step is O(1)(�+1).Indeed, in view of SC.II and (3.12), the update (5.4) ensures that	(x+; y+) � 	(x; y)� �(�(Fti ; x))� �(��(y));sin
e 	 is nonnegative and 	 � � at the beginning of the 
orre
tor step by (5.3), the number of updates(5.4) before the termination 
riterion (5.5) is met is at most O(1)(�+ 1).Let dx
 denote the dire
tion (x+ � x) in (4.3), also let dy
 denote the dire
tion (y+ � y) in (4.5).Similarly, dxp denotes (x+�x) in (4.8), dyp denotes (y+ � y) in (4.8), dxd denotes (x+�x) using (4.19),and dyd represents �y given in (4.19).Definition 5.1. A primal-dual interior-point algorithm A is said to belong to the (#; �; Æ; `)-PFMfamily, if D admits a 
omputable #-s.
.b. �, with �� also available and in ea
h iteration, A generates(xi; yi) 2 D �D+� , ti > 0 su
h that1. if max��(Fti�1 ; xi�1); ��(yi�1)� > Æ then A applies the \
orre
tor step" des
ribed above;2. otherwise �max��(Fti�1 ; xi�1); ��(yi�1)� � Æ�, A generates (xi; yi) 2 D �D+� , ti > 0 su
h that� ti � ti�1 � ti�1`p# ;� xi � xi�1 2 span fdx
; dxp; dxdg,� yi � yi�1 2 span fdy
; dyp; dydg,� A�yi = �ti
,� 	(xi; yi) � �.Note that the des
ription of the \predi
tor step" in the above de�nition is not as \separable" as itmay seem at a �rst glan
e, sin
e for instan
e, dxp and dyp involve ti part of the 
urrent iterate we aretrying to determine (on the positive side, the se
ond order operators, Hessians, only involve xi�1 andyi�1, the previous iterates).Proposition 5.2. Suppose we are in the Complete Formulation Case (therefore, #-s.
. barriers�(�) and ��(�) are known). Also assume that a triple (x0 2 D; y0 2 D+� ; t0 > 0) satisfying A�y0 = �t0
and 	(x0; y0) � � for some � = O(1) is given. As well, we are given a small, desired a

ura
y � > 0for the obje
tive value of the �nal solution. Then every algorithm from the (#; �; Æ; `)-PFM family with0 � Æ � 0:1 and 0 � ` = O(1) returns (xk; yk) 2 D �D+� , tk > 0 in O �p# ln� #�t0�� iterations su
h thatA�yk = �tk
 and h
; xki � 
� � �:Proof. At least in every other iteration, we have a 
onstant fra
tion in
rease in t quaranteed by thealgorithm. During all the remaining iterations, t stays 
onstant (
orre
tor step). Therefore, for smallpositive �, after O �p# ln� #�t0�� iterations we have tk � 2#� . Clearly, xi 2 D, yi 2 D+� and A�yi = �ti
are maintained throughout. It follows from the proof of Proposition 3.2.4 of [16℄ that sin
e xk 2 D 
anbe assumed to satisfy �(Ftk ; xk) � 0:1, we haveh
; xki � 
� � 2#tk :Sin
e tk � #� , we have the desired a

ura
y bound.There are at least three extreme examples of the path-following algorithms 
overed by the aboveproposition:1. Primal-Fo
used Path-Following. For the predi
tor step, always apply (4.8).2. Dual-Fo
used Path-Following. For the predi
tor step, always apply (4.19).3. Symmetri
 Primal-Dual Path Following. Perform a low dimensional sear
h to �nd the largestin
rease in t attained inside the set of (xi; yi; ti) de�ned by� ti � ti�1 � ti�1`p# ;� xi � xi�1 2 span fdx
; dxp; dxdg,� yi � yi�1 2 span fdy
; dyp; dydg,� A�yi = �ti
,



\CONE-FREE" PRIMAL-DUAL METHODS 19� 	(xi; yi) � �, where � = O(1).Proposition 5.3. Ea
h of the above three algorithms belongs to the (#; �; Æ; `)-PFM family for1 � � = O(1), Æ � 0:1, and ` � 4. Therefore, the p#-
omplexity result of Proposition 5.2 applies to allthree algorithms.Proof. We only prove the result for the Primal-Fo
used Path-Following algorithm. The proof for theDual-Fo
used algorithm is similar and the 
laim for the Symmetri
 algorithm will follow from the prooffor the Primal-Fo
used Path-Following algorithm and the fa
t that for a given �xed iterate (x; y; t), thelargest in
rease in t is always a
hieved by the Symmetri
 Primal-Dual algorithm as we des
ribed above.We already analyzed the 
orre
tor step and noti
ed that O(1) damped Newton updates per iterationsuÆ
e. Therefore, we fo
us on the predi
tor step. It suÆ
es to prove that if we set�t � ti � ti�1 = 0:6ti�1p# ;(5.6)then we have 	(xi; yi) � �: We know that (x; y; t) � (xi�1; yi�1; ti�1) is 
lose to the path. Thus, (4.13)ensures that
 � kx+ � xkF 00(x) � �(Ft; x) + j�tjt (�(Ft; x) +p#) � 0:1 + 0:6p#(0:1 +p#) � 0:76;where (x+; y+; t+) � (xi; yi; ti). Consequently, Lemma 4.2 implies that	(xi; yi) � 2!(0:76) < 1 � �;and (5.3) follows.Note that (5.6), as well as any more aggressive stepsize rule 
ompatible with (5.3), guarantees thestandard p#-
omplexity bounds for the resulting algorithm.The major advantage of the primal-dual path-following framework we have developed (as with thestandard-
ase-oriented primal-dual framework developed in [15℄) is that we have no reason to restri
tourselves to the worst-
ase-oriented short-step poli
ies like (5.6). The proximity measure 	(x; y) isusually easy to 
ompute, whi
h allows us to implement various poli
ies for on-line adjustment of thestepsizes (for theoreti
al results on the \power" of these adjustments, see [17℄).6. Primal-dual potential-redu
tion methods. Proposition 3.5, 
ombined with the results ofSe
tion 4, yields primal-dual potential-redu
tion methods obeying the standard p#-
omplexity bounds.A generi
 method of this type is as follows.We generate a sequen
e of triples (xi 2 D; yi 2 D+� ; ti > 0) satisfyingA�yi = �ti
(6.1)in su
h a way that �(xi; yi; ti) � �(xi�1; yi�1; ti�1)� �;(6.2)where � > 0 is a parameter of the method. Spe
i�
ally, given (xi�1; yi�1; ti�1) satisfying(6.1), we build somehow a sear
h dire
tion (dxi; dyi; dti) satisfying the requirementA�dyi = �dti
and a stepsize �i in su
h a way that the point(xi; yi; ti) = (xi�1; yi�1; ti�1) + �i(dxi; dyi; dti)satis�es (6.2).The results of Se
tion 4 suggest rules for 
hoosing the sear
h dire
tions and the stepsizes whi
h ensure(6.2) for an appropriate absolute 
onstant �. For example, if �(Fti�1 ; xi�1) > 0:1, then the 
entering stepin x redu
es the potential by at least �(�(Fti�1 ; xi�1)) � �(0:1) (Se
tion 4.1), and if �(Fti�1 ; xi�1) � 0:1,
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ing step with ti � ti�1 = 0:25ti�1=p# redu
es the potential by at least 0.17(Se
tion 4.3). (Of 
ourse, we 
an utilize, in the same fashion, the 
entering in y and the dual path-tra
ingstep.) Needless to say, a reasonable implementation should in
lude a line-sear
h in the 
hosen dire
tion inorder to get as large a redu
tion in the potential as possible, or even a multi-dimensional sear
h (e.g., 4-dimensional sear
h along the linear span of the four sear
h dire
tions des
ribed in Se
tion 4). A treatmentanalogous to the one in Se
tion 5 is also possible here. However, a deeper investigation of possible variantsand implementations of potential-redu
tion methods goes beyond the s
ope of this paper. What matterstheoreti
ally is that whenever we ensure (6.2) and thus the relation �(xi; yi; ti) � �(x0; y0; t0) � i�;Proposition 3.5 implies that
Txi � infu2D 
Tu � "2# exp(p#� #2# ) exp��(x0; y0; t0)p# �# exp�� i�p#� :I.e., we get a polynomial time method with the standard p#-
omplexity bound (provided, of 
ourse, that� = 
(1)).7. Possible Appli
ations and Extensions. When working on polynomial-time interior-pointmethods, among other issues, four important issues arise.1. Are there interesting 
lasses of problems whi
h are 
overed by the new method in an e�e
tivemanner?2. How provably long are the primal and/or dual steps?3. How mu
h dual information is utilized (and generated) by the method and how e�e
tively?4. How 
an we initiate the method for an arbitrary input in a way that preserves 1., 2. and 3.above?In this last se
tion, we 
omment on the above issues.7.1. Potential appli
ations. Geometri
 Programming provides an interesting 
lass of appli
ations(for a survey, see [5℄; for a set of test problems see [4℄; interesting re
ent appli
ations in Engineeringare presented in [2℄). We have seen in the Introdu
tion that this problem 
lass �ts our primal-dualframework. At the same time, it is not dire
tly 
overed by the existing primal-dual polynomial timealgorithms. Moreover, the only previous primal-dual interior-point method for Geometri
 Programming[11℄, although globally 
onvergent, is not known to be a polynomial time one.Note that, essentially, the only feature of Geometri
 Programming whi
h is responsible for the possi-bility to pro
ess this 
lass within our framework, is the fa
t that the \underlying entity" { the epigraphof the exponential fun
tion f(y) = expfyg| admits an expli
it self-
on
ordant barrier with expli
it Leg-endre transformation. Now, 
onstru
ting a self-
on
ordant barrier for the epigraph of a univariate 
onvexfun
tion f is usually a routine task. As a rule, it is not very diÆ
ult to obtain, along with su
h a barrier,its Legendre transformation, either in an expli
it analyti
al form, as in the 
ase of f(y) = expfyg, or\semi-expli
itly" | via a real parameter whi
h should satisfy a \well-posed" equation. As an instru
tiveexample, 
onsider the entropy fun
tion f(y) = y lny. The 2-self-
on
ordant barrier for the epigraph of fis given by G(s; y) = � [ln(s � y ln(y)) + ln(y)℄(see [16℄, Se
tion 5.3.1), and the Legendre transformation of this barrier isG�(�; �) = � ln(��) + � �1 + �� � ln(��)� � �� + 1� �1 + �� � ln(��)� � 3;where �(r) is the unique root of the equation 1� � ln � = r:(7.1)(For the derivation of G�, see Appendix A.) It is not very diÆ
ult to write a dedi
ated 
ode whi
h
omputes �(r); �0(r); �00(r) in time 
omparable with the one required to 
ompute a standard elementary
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tion, like ar

os(�)2). Thus, it is not a great sin to state that G�(�; �) is as easily 
omputable as, say,the Legendre transformation of the barrier for the epigraph of the exponent. Note that G(�; �) is not alogarithmi
ally homogeneous barrier for a 
one. Now, with G(�) and G�(�) in our disposal, we 
an pro
essan Entropy Optimization problemminx �
Tx : fi(x) � 0; i = 1; :::;m; Px � h	 ;fi(x) = LP̀=1�i` (Æ` + dT̀x)| {z }a`(x) ln(Æ` + dT̀x) + eTi x+ �i;(7.2)with �i` � 0 in the same fashion as a Geometri
 Programming problem. Spe
i�
ally, we �rst rewrite(7.2) equivalently asminz=(x;u)(
Tx : Px � h; a`(x) > 0; X̀�i`u` + eTi x+ �i � 0; a`(x) lna`(x) � u` 8i; `) :(7.3)Assuming (7.2) stri
tly feasible, so is (7.3), and the feasible set D of the latter problem 
an be easilyrepresented asD = fx : Ax� b 2 Dg;D = f(t; y; s) 2 Rp �Rq �Rq : ti > 0; i = 1; :::; p; yi ln(yi) < si; i = 1; :::; qg:The set 
l D admits the expli
it (p+ 2q)-self-
on
ordant barrier�(t; y; s) = � pXi=1 ln ti + qXi=1 G(si; yi);(7.4)with the Legendre transformation��(�; �; �) = �p� pXi=1 ln(��i) + qXi=1G�(�i; �i);(7.5)and we 
an apply the primal-dual ma
hinery we have developed to get new families of polynomial timeinterior-point methods for Entropy Optimization, an important problem 
lass whi
h, in parti
ular, hasvery interesting appli
ations in graph theory (see [3, 10℄). (At the moment, there exists just one dedi
atedpolynomial time algorithm for Entropy Minimization [22℄).Another appli
ation worth mentioning is minimization of 
oni
 
ombinations of p-norms (this problemhas many appli
ations, in
luding \p-norm multi-fa
ility lo
ation problem" see [25℄). In [25℄, Xue and Yepresent an interior-point method approa
h to this problem. Their development however, follows thegeneral approa
h of 
onverting the given problem to 
oni
 form and homogenizing the given barrierto make it logarithmi
ally homogeneous. The 
urrent manus
ript deals with ways of avoiding su
hreformulations and enfor
ement of logarithmi
 homogeneity.Similarly, we 
an handle many other 
onvex programs where the feasible set 
an be represented as theinverse image, under an aÆne mapping, of a dire
t produ
t of sets of the form fi(yi) � si with univariatefi. In fa
t, the family of problems we 
an handle is quite ri
h. Indeed, let us say that an \essentiallyopen" (Q = rintQ) 
onvex domain Q � E is 
ompletely representable, if it admits a representationQ = fx 2 E j 9u 2 E 0 : Ax+Bu + b 2 Dom �g ;(7.6)2)The Newton iteration�t = �2t�1�t�1 + 1 h1 + 2�t�1 � ln �t�1 � ri ; �0 � � expf�rg; r � 11r�ln(r�ln r) ; r > 1
onverges to �(r) quadrati
ally, and it takes at most 6 steps to 
ompute �(r) within relative a

ura
y 10�15 in the entirerange of values of r where 10�400 � �(r) � 10400. With �(r) 
omputed, the derivatives of the fun
tion are readily available:�0(r) = � �2(r)�(r)+1 , �00(r) = � �2(r)+2�(r)[�(r)+1℄2 �0(r).



22 A. NEMIROVSKI AND L. TUNC�ELwhere � is a self-
on
ordant barrier with known Legendre transformation. Whenever the relative interiorQ of the feasible set of a 
onvex program minx2
l Q 
Tx is 
ompletely s.
.-representable and we are given arepresentation (7.6) for Q, we 
an rewrite our problem equivalently as infx;u�
Tx : Ax+ Bu+ b 2 Dom �	,thus arriving at a problem whi
h �ts our framework. On the other hand, it is easily seen that the familyFof 
ompletely s.
.-representable domains is 
losed w.r.t. basi
 
onvexity-preserving operations, spe
i�
ally,taking dire
t produ
ts, interse
tions and images/inverse images under aÆne mappings (
f. \
al
ulus of
overings" in [16℄ or \
al
ulus of Coni
 Quadrati
/Semide�nite Representable sets in [1℄). Note thatF is mu
h wider than the family of all domains over whi
h we 
an minimize by existing primal-dualinterior-point te
hniques (these are exa
tly the domains whi
h 
an be 
ompletely s.
.-represented vialogarithmi
ally homogeneous barriers for 
ones) and 
ontains, e.g., domains given by semide�nite andGeometri
 Programming 
onstraints.We 
on
lude this dis
ussion with one more example whi
h demonstrates that our framework mayhave (at least theoreti
al) advantages even in the 
ase where an ex
ellent 
oni
 formulation is readilyavailable. Assume that our de
ision ve
tor is an m � n matrix u, m � n, whi
h should satisfy the normbound kuk � 1, where k � k is the standard matrix norm (maximum singular value); for the sake ofde�niteness, let there be no other 
onstraints (the 
on
lusion to follow remains inta
t when allowing forno more than m \simple" { linear or quadrati
 { additional 
onstraints on u). The standard way topro
ess our problem is to express the norm bound by the LMI� Im�m uuT In�n � � 0and to treat the problem as a semide�nite program; with this approa
h, the theoreti
al iteration 
ountper given a

ura
y will be proportional to pm + n. At the same time, the domain U = fu : kuk < 1g ofour problem admits the representationU = fu : (I; u) 2 Dom �; �(x; u) = � lnDet(x� uuT )g;where x belongs to the spa
e Sm of m �m symmetri
 matri
es. Let us use the inner produ
th(x; u); (y; v)i � Tr(xy) + Tr(vTu)on Sm � Rm�n. Note that � is an m-self-
on
ordant barrier (see [16℄) with the expli
it Legendretransformation (details of its 
omputation are in Appendix A)��(y; v) = � lnDet(�y) � 14Tr(vT y�1v) �m [Dom �� = f(y; v) : y � 0g℄so that the problem �ts our framework with the parameter of self-
on
ordan
e of the barrier equal to m.Consequently, the 
omplexity bound for the primal-dual methods we have developed is proportional topm, whi
h, for m << n, is mu
h better than the \standard" O(pm + n)-
omplexity bound.7.2. Long steps. We 
onsider three related viewpoints:(a) �-regularity of a s.
.b. [17℄;(b) 
onvexity of the \gradient produ
t" h�H 0(x); yi [18, 19℄;(
) �-normality of a s.
.b. [13℄.All of these properties are strengthenings of the fundamental property of the self-
on
ordant barrierswhi
h states that the Hessian of a s.
.b. behaves very well inside the Dikin ellipsoid (see SC.II), anywherein the interior of the domain. Ea
h of the three notions tries to make this property valid in a wider regionthan the Dikin ellipsoid, with the ultimate goal to understand \how long are the long steps" yielded bythe path-following (or potential-redu
tion) methods with on-line stepsize poli
ies.(a) Let f be a s.
. fun
tion with Q = Dom f � E . f is 
alled �-regular if���� d4dt4 ����t=0f(x+ th)���� � �(�+ 1)� d2dt2 ����t=0f(x+ th)� [�Q;x(h)℄2 ; 8x 2 Q; h 2 E ;



\CONE-FREE" PRIMAL-DUAL METHODS 23where �Q;x(h) � inf� 1� : � > 0; (x� �h) 2 Q� :It was shown in [17℄ that many useful s.
.b.'s are �-regular with a quite moderate value of �.The examples in
lude: the standard s.
.b.'s for the Lorentz and the semide�nite 
one (both are2-regular), the aforementioned barrier for Geometri
 Programming (and its Legendre transfor-mation) and the barrier for the entropy (all are 6-regular). Besides this, �-regularity is preservedunder the summation of barriers and an aÆne substitution of argument, see [17℄. The fa
t thatthe universal barrier for a 
onvex set is O �#2�-regular was shown in [7℄. We note that the barrier�� lnDet �x� uuT�� with the domain�(x; u) 2 Sm �Rm�n : �x� uuT� � 0	 :(see above) is also 2-regular. Indeed, we have� I 00 x� uuT � = � I 0�u I �� I uTu x �� I �uT0 I � :Therefore, Det� I uTu x � = Det� I 00 x� uuT � = Det �x� uuT � :Sin
e � lnDet� I uTu x � is 2-regular by the results of [17℄, it follows that � lnDet(x � uuT ) isalso 2-regular for its domain. A
tually, it is now known that all hyperboli
 barriers are 2-regular(see Theorem 4.2 of [8℄). The above fa
t 
an also be easily obtained using an aÆne restri
tionof this theorem. As a �nal remark on �-regularity, we note that this property behaves veryni
ely under the symmetries of the domain of the s.
.b. For instan
e, if Q is a 
one and A isan automorphism of it su
h that for a self-
on
ordant barrier f for Q, we have the f(x) andf(Ax) di�ering only by a 
onstant depending only on A, then the kth derivative of f at Ax alongthe dire
tion Ah 
oin
ides with the kth derivative of f at x along h. Moreover, as it is easilyseen, �Q;Ax(Ah) = �Q;x(h). Therefore, if the automorphism group Aut(Q) of Q a
ts transitivelyon Q and the barrier f in question is \semi-invariant" (f(Ax) = f(x) + 
onstant(A) for everyA 2 Aut(Q)), then it suÆ
es to 
he
k the �-regularity 
ondition at a single point of Q (but alongevery dire
tion).(b) Let H be a self-s
aled barrier for K (so K is a symmetri
 
one). De�ne�x(h) � 1sup ft : (x� th) 2 Kg :Then 1[1 + t�x(�h)℄2H 00(x) � H 00 (x� th) � 1[1� t�x(h)℄2H 00 (x);for every x 2 intK, h 2 E and t 2 [0; 1=�x(h)) : This property was proven via establishing the
onvexity of the fun
tion h�H 0(x); yi : intK ! R, for every y 2 K [18℄. Later, this propertywas extended to all hyperboli
 barriers [8℄.(
) f is �-normal if for every x; z 2 Q, r � �Q;x(z � x) < 1 implies(1� r)� � d2dt2 ����t=0f(x + th)� � � d2dt2 ����t=0f(z + th)� � 1(1� r)� � d2dt2 ����t=0f(x + th)� ; 8h 2 E :It is known that all spe
i�
 examples dis
ussed here are �-normal for moderate values of � (see[13℄).Our approa
h is very 
exible to take advantage of any of the aforementioned desirable properties ofspe
ial self-
on
ordant barriers (for the related results in the 
ontext of predi
tor-
orre
tor path-followingmethods, see [17, 13℄).



24 A. NEMIROVSKI AND L. TUNC�EL7.3. Primal-dual symmetry and dual information. The setting of self-s
aled barriers is idealfor the strongest use of primal-dual symmetry in interior-point algorithms. However, taking all of theseni
e properties beyond symmetri
 
ones is not possible (see, for instan
e [23℄).In most appli
ations, the importan
e of generating good bounds (via good dual feasible solutions)on the optimal obje
tive value of the problem at hand 
annot be denied. In the self-s
aled 
ase, thedual is proven to be even more powerful in that good dual solutions are also used (via so-
alled \primal-dual joint s
aling") to generate ex
ellent sear
h dire
tions for both primal and the dual problems. Someproperties of primal-dual joint s
aling interior-point methods have been generalized and extended to all
onvex optimization problems in 
oni
 form (see [24℄). We 
an use analogous sear
h dire
tions in ourset-up as well.An important advantage of the 
urrent set-up is that when we are in the \Complete FormulationCase", the primal and the dual paths are \asymmetri
": the primal path is 
omprised of minimizers ofthe penalized obje
tive th
; xi+�(Ax), while the dual path is 
omprised of minimizers of �� on \shiftedaÆne planes" A�y = �t
; unless �� is logarithmi
ally homogeneous, the dual path is not of the samenature as the primal one.3) This asymmetry may make the task of tra
ing one of the paths more relevantand/or easier for the interior-point approa
h. In su
h a 
ase, the 
exibility of our approa
h allows us tofo
us on the problem whi
h has the s.
.b. with better long-step properties (we 
an also swit
h the fo
usof the algorithm from one problem to the other dynami
ally depending on the progress of the algorithm).Moreover, we still use the dual problem to generate improved lower bounds on 
� and guide the sear
hdire
tions.7.4. Infeasible-start. As we already 
ommented, the standard initialization te
hniques as givenin [16℄ 
an be applied. We 
ould also apply the surfa
e-following idea developed in [17℄. However, aparti
ularly attra
tive 
hoi
e would be an e�e
tive analogue of the approa
h of [21℄. Su
h analoguesseem possible and the development of su
h te
hniques is left for future work.

3)The idea to solve the problem by tra
ing the primal path is, of 
ourse, a 
ommon pla
e. The idea to tra
e what we
all here the dual path is not new either (it originates from Nesterov [14℄; for a more general treatment, see [16℄, Se
tion3.4). What is seemingly new (beyond the s
ope of the Standard 
ase, of 
ourse), is the idea to work with both of thesepaths simultaneously.



\CONE-FREE" PRIMAL-DUAL METHODS 25Appendix A.Computing the Legendre transformation of G(s; y).maxs;y [ln(s � y lny) + ln y + �s + �y℄Fermat equations: 1s�y ln y + � = 0; � 1s�y ln y [1 + lny℄ + 1y + � = 0;when
e � + � lny + 1y = ��; s� y lny = � 1� :Setting  = 1��y :  � ln 1�� = 1 + �� ,  + ln = 1 + �� � ln(��):Thus,  = b� �1 + �� � ln(��)� ;where b�(r) is given by b� + ln b� = r, ln b� = r � b�:Now, y = � 1�b�(1+ ���ln(��)) ;�s = �y lny � 1 = � 1b�(1+ ���ln(��)) h� ln(��) + b� �1 + �� � ln(��)� � 1� �� + ln(��)i� 1;�s = �2 + 1+�=�b�(1+ ���ln(��)) ;�y = � �=�b�(1+ ���ln(��)) ;and �nallyG�(�; �) = � ln(��) � ln(��) � ln(b� �1 + �� � ln(��)�) + 1b�(1+ ���ln(��)) � 2= �2 ln(��) + b� �1 + �� � ln(��)� � 1� �� + ln(��) + 1b�(1+ ���ln(��)) � 2= � ln(��) + b� �1 + �� � ln(��)� � �� + 1b�(1+ ���ln(��)) � 3:Setting �(r) = 1b�(r) , so that 1�(r) � ln(�(r)) = b�(r)+ ln(b�(r)) = r, we arrive at the expression presented inthe paper.Computing the Legendre transformation of �(x; u).maxx;u �Tr(yx) + Tr(vTu) + lnDet(x� uuT )	D(lnDet(x� uuT ))[dx; du℄ = Tr([x� uuT ℄�1dx) + Tr([x� uuT ℄�1(udTu + duuT ))= h[(x� uuT )�1; 2(x� uuT )�1u℄; [dx; du℄iFermat equations: y + (x � uuT )�1 = 0; 2(x� uuT )�1u = v;when
e u = �12y�1v; x = �y�1 + uuT = �y�1 + 14y�1vvT y�1;so that ��(y; v) = Tr(�I + 14y�1vvT ) + Tr(�12vT y�1v) + lnDet(�y�1)= �m � 14Tr(vT y�1v) � lnDet(�y):REFERENCES[1℄ Ben-Tal, A., Nemirovski, A., Le
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