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2 L. Lipt�ak and L. Tun
�el1 Introdu
tionRe
ently, Aguilera, Es
alante, and Nasini [1℄ exposed a beautiful relationship between the lift-and-proje
t operator proposed by Balas, Ceria, and Cornu�ejols [3℄ and the antiblo
ker duality[8, 9℄ (also see [2℄, for a study of the blo
ker duality in the same 
ontext). Their results areaimed at the relaxation of the stable set polytope de�ned by the 
lique inequalities (we refer tothis relaxation as the 
lique polytope).Aguilera et al. [1℄ provedTheorem 1 The minimum number of iterations of the Balas{Ceria{Cornu�ejols (BCC) pro
e-dure required to obtain the stable set polytope of a graph G from the 
lique polytope of G isinvariant under the 
omplementation of G.Here we provide a very short proof of this theorem from the basi
 prin
iples underlyingthe BCC pro
edure and Lov�asz's perfe
t graph theorem (a graph is perfe
t if and only if its
omplement is) [14℄; see our Theorem 6. The proof of Aguilera et al. [1℄ relies on their mainte
hni
al result, whi
h des
ribes a stronger property of all intermediate relaxations:Theorem 2 Every appli
ation of the BCC pro
edure to the 
lique polytope of any graph followedby taking the antiblo
ker of the resulting polytope is an involution (i.e., applying this 
ompositeoperator twi
e results in the original 
lique polytope).We also provide a short proof of this result. The proof of Aguilera et al. utilizes resultsof Ceria [6℄ (also see [5℄), whereas our proof uses simpler and more general arguments; seeTheorems 11 and 12. As a result, our theorems are slightly more general. As we were preparingthis note for submission, we learned from [5℄ that Gerards, Mar�oti, and S
hrijver [10℄ alsoobtained short proofs of Theorem 1, 2. Their proofs are very 
on
ise and have some similaritiesto our proofs. These results were independently obtained.We provide examples, proving that these elegant properties of the BCC pro
edure do notgeneralize to the pro
edures of Lov�asz{S
hrijver [15℄. We 
on
lude with a dis
ussion of related
omputational 
omplexity issues and relaxations involving positive semide�niteness 
onstraints.2 De�nitions and FundamentalsLet P � [0; 1℄d be given. We say that P is integral if PI := 
onv�P \ f0; 1gd� is equal to P ,i.e., if P is a polytope with only integral extreme points. De�neHi(0) := nx 2 Rd : xi = 0o ; Hi(1) := nx 2 Rd : xi = 1o :The following operator is usually de�ned via the 
orresponding lift-and-proje
t pro
edure; how-ever, for the purposes of this paper, we 
an simply de�ne the BCC operator as follows:N(i)(P ) := 
onv f[P \Hi(0)℄[ [P \Hi(1)℄g :Then 
learly PI � N(i)(P ) � P:



Lift-and-Proje
t Ranks and Duality 3Let J := fi1; i2; : : : ; ikg � f1; 2; : : : ; dg. We 
an apply N(i) for i 2 J su

essively. As shown in[3℄, the �nal polytope is independent of the order in whi
h we apply these individual operators.So we 
an de�ne without ambiguity:N(J)(P ) := N(ik) �N(ik�1) �� � �N(i1)(P ) � � ��� :In parti
ular, Balas et al. [3℄ proved the following ni
e geometri
 property of the operator N(J):Lemma 3 For every set J � f1; 2; : : :dg we haveN(J)(P ) = 
onv�P \ nx 2 Rd : xj 2 f0; 1g for all j 2 Jo� : (1)We 
an de�ne the rank of PI relative to P as the smallest jJ j su
h that N(J)(P ) = PI ,we denote this rank by ~r(P ). Similarly, the rank of an inequality aTx � � valid for PI is thesmallest jJ j su
h that aTx � � is valid for N(J)(P ).From Lemma 3 we 
an easily deriveLemma 4 Let J � f1; 2; : : : ; dg, and suppose P � [0; 1℄d is given. Then N(J)(P ) = PI if andonly if P (J ; z) := fx 2 P : xj = zj for every j 2 Jg is integral for every z 2 f0; 1gJ .Proof: First assume that P (J ; z) is not integral for some z 2 f0; 1gJ . Then there is a ve
torx 2 P (J ; z) n P (J ; z)I . If x is in PI , then it 
an be written as a 
onvex 
ombination of integralve
tors in P , and sin
e xj = 0 or 1 for ea
h j 2 J , the j-
omponent of ea
h of those ve
tors mustbe the same for ea
h j 2 J , so they are also in P (J ; z). But then x is a 
onvex 
ombination ofintegral ve
tors in P (J ; z), a 
ontradi
tion. Hen
e x is not in PI . Sin
e x is 
learly in N(J)(P ),this shows that N(J)(P ) 6= PI .Next assume that P (J ; z) is integral for every z 2 f0; 1gJ . Sin
e the in
lusion N(J)(P ) � PIis 
lear, it suÆ
es to prove PI � N(J)(P ). Let x 2 N(J)(P ). By Lemma 3, x is a 
onvex
ombination of ve
tors in P \ �x 2 Rd : xj 2 f0; 1g for all j 2 J	 : Ea
h of these ve
tors lies inP (J ; z) for some z 2 f0; 1gJ , by de�nition. Sin
e P (J ; z) is integral for every z 2 f0; 1gJ , theseve
tors 
an be written as a 
onvex 
ombination of integral ve
tors in P . Therefore, x 
an bewritten as a 
onvex 
ombination of integral ve
tors in P ; i.e., x 2 PI . Thus PI � N(J)(P ), andwe 
on
lude PI = N(J)(P ):Let G = (V;E) be a graph with vertex set V and edge set E. For any U � V , let G � Udenote the graph obtained by deleting all verti
es of U from G. The neighborhood of U , i.e., theset of verti
es of G that are adja
ent to a vertex in U , will be denoted by �(U). A 
lique is a setof verti
es so that every pair of them are joined by an edge. The 
lique polytope of G is de�nedby CLQ(G) := �x 2 RV+ : x(C) � 1 for every 
lique C in G	 ;where we used the notation x(C) := Pj2C xj . Now, for ea
h v 2 V the appli
ation of theBCC operator gives N(v)(CLQ(G)), and similarly it gives N(U)(CLQ(G)) for ea
h U � V .It is well-known that CLQ(G) = STAB(G) if and only if the graph G is perfe
t (this followsfrom the works of Fulkerson [8℄ and Chv�atal [7℄). Rephrasing Lemma 4 givesCorollary 5 Let U � V . Then N(U)(CLQ(G)) = STAB(G)if and only if G� U is perfe
t.



4 L. Lipt�ak and L. Tun
�elProof: By Lemma 4 we have N(U)(CLQ(G)) = STAB(G) if and only ifCLQ(G;U ; z) := fx 2 CLQ(G) : xu = zu for every u 2 Ugis integral for every z 2 f0; 1gU . So, it suÆ
es to show that this latter 
ondition holds if andonly if G� U is perfe
t.If G � U is not perfe
t, then there is a ve
tor x 2 CLQ(G� U) n STAB(G� U), and thenextending x with zeros for the 
omponents 
orresponding to U gives a ve
tor in CLQ(G;U ; 0),showing it is not integral.It is easy to see that for any z 2 f0; 1gU if we de�ne Uz := fv 2 U : zu = 1g, then the setCLQ(G;U ; z) is de�ned by the 
lique inequalities on G�U��(Uz) and xu = 0 for all u 2 �(Uz).If G�U is perfe
t, then G�U ��(Uz) is also perfe
t, so its 
lique polytope is integral, showingthat CLQ(G;U ; z) is integral, �nishing the proof.Let ~r(G) denote the rank of STAB(G) relative to CLQ(G). Corollary 5 helps us give a shortproof for the following theorem of Aguilera et al. [1℄:Theorem 6 For every graph G, ~r(G) = ~r(G).Proof: If ~r(G) = k, then there are k verti
es v1; : : : ; vk su
h that with U = fv1; : : : ; vkg we haveN(U)(G) = STAB(G). So, by Corollary 5 the graph G� U is perfe
t. But then G� U = G�Uis also perfe
t, so again by the lemma we get that N(U)(G) = STAB(G), so ~r(G) � k = ~r(G).Ex
hanging the roles of G and G we get ~r(G) � ~r(G), proving the theorem.Note that the above theorem generalizes Lov�asz's perfe
t-graph theorem (the spe
ial 
ase~r(G) = ~r(G) = 0).3 Polytopes with Integral Antiblo
kerFor a set P � [0; 1℄d, let P � denote its antiblo
ker :P � := ns 2 Rd+ : xT s � 1 for all x 2 Po :Suppose P � [0; 1℄d is given. Then P � � [0; 1℄d if and only if ej 2 P for every j 2 f1; 2; : : : ; dg(ej denotes the jth unit ve
tor, and e denotes the ve
tor of all ones in Rd).We will need the following elementary, well-known fa
ts:Proposition 7 If P � [0; 1℄d, then(i) P � ~P implies ~P � � P �;(ii) Suppose ej 2 P for every j 2 f1; 2; : : : ; dg. Then P � � [0; 1℄d is 
onvex and lower 
ompre-hensive (if 0 � y � x 2 P �, then y 2 P �).(iii) Suppose P is 
ompa
t, 
onvex, and 0 2 P . Then P �� = P .De�nition 8 An operator N℄ that maps subsets of [0; 1℄d to 
onvex subsets of [0; 1℄d su
h that(i) N℄(P ) � PI for every P � [0; 1℄d, and
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t Ranks and Duality 5(ii) N℄(P ) � P for every 
onvex P � [0; 1℄d,is 
alled a 0-1 monotone operator.It is 
lear that if N℄ is a 0-1 monotone operator, then iterating it �nitely many times yieldsanother (usually stronger) 0-1 monotone operator.Not all 0-1 monotone operators are interesting. However, note that N(J) is a 0-1 monotoneoperator for every J � f1; 2; : : : ; dg. Also, the operators N0, N , and N+ (see [15℄ for a de�ni-tion) are 0-1 monotone operators. The related works of Sherali{Adams [16℄, Lasserre [12℄, andBiensto
k{Zu
kerberg [4℄ all yield various 0-1 monotone operators. Finally, Gomory{Chv�atal
losures 
an also be thought of as 0-1 monotone operators.Proposition 9 Let N℄ be a 0-1 monotone operator, and let P � [0; 1℄d be 
onvex, 
ontaining theorigin su
h that P � = 
onv(P � \ f0; 1gd) (i.e., P � is an integral polytope in the unit hyper
ube).Then for any k � 1 nNk℄ �hNk℄ (P )i��o� � P:Proof: By (ii) of De�nition 8 we have Nk℄ (P ) � P , hen
e hNk℄ (P )i� � P �. Sin
e P � is anintegral polytope in the unit hyper
ube, using (i) of De�nition 8, we arrive atNk℄ �hNk℄ (P )i�� �P �: Taking the antiblo
ker of both sides we obtain the desired result.De�nition 10 Let Q � [0; 1℄d be an integral polytope. A 
onvex set P � [0; 1℄d is 
alled aformulation of Q if 
onv �P \ f0; 1gd� = Q.Note that CLQ(G) and STAB(G) are both lower 
omprehensive and that the operator N(J)preserves the lower 
omprehensiveness of its argument.Theorem 11 Let P 2 [0; 1℄d be a lower 
omprehensive polytope su
h that P � is integral. Supposefurther that �N(i)(P )�� is a formulation of P �. Then�N(i) ��N(i)(P )���	� = P:That is, the following diagram P � ! P �N(i)??y x??N(i)N(i)(P ) � ! �N(i)(P )��
ommutes.Proof: Sin
e N(i) is a 0-1 monotone operator, by Proposition 9 it suÆ
es to establish thein
lusion N(i) ��N(i)(P )��� � P �. Without loss of generality let i = d. We haveN(d) ��N(d)(P )��� = 
onv���N(d)(P )�� \Hd(0)�[ ��N(d)(P )�� \Hd(1)�	 : (2)



6 L. Lipt�ak and L. Tun
�elWe �rst prove �N(d)(P )�� \Hd(0) = P � \Hd(0): (3)Sin
e N(d)(P ) � P (thus �N(d)(P )�� � P �), the \�" dire
tion is 
lear. Let �s 2 �N(d)(P )�� \Hd(0). Then �s � 0, �sd = 0, and xT �s � 1 for all x 2 (P \Hd(0)). Sin
e P is lower 
omprehensive,and �sd = 0, we have xT �s � 1 for every x 2 P . Therefore �s 2 P �, and we established (3).Next we 
laim that �N(d)(P )�� \Hd(1) � P �. To see this, let I � f1; 2; : : : ; (d� 1)g denotethe set of all indi
es j for whi
h there exists x 2 P su
h that xd = 1 and xj > 0. Then�N(d)(P )�� \Hd(1) = �� ~s1� : ~s � 0; ~xT ~s � 1� xd; 8� ~xxd� 2 [(P \Hd(0))[ (P \Hd(1))℄�= �� ~s1� : ~s � 0; ~sj = 0; 8j 2 I; ~xT ~s � 1; 8� ~x0� 2 (P \Hd(0))�= �� ~s1� : � ~s0� 2 P �; ~sj = 0; 8j 2 I� ;where to obtain the last equality we used the fa
t that P is lower 
omprehensive. Note thatthe last set is equal to the fa
e P � \ �s 2 Rd : sj = 0; 8j 2 I [ fdg	 of P � translated by theunit ve
tor ed. Sin
e P � is integral, every fa
e of it is integral; therefore, the set in question isintegral. Sin
e �N(i)(P )�� is a formulation of P �, the set in question must be 
ontained in P �.So we 
on
lude that the set inside the 
onvex hull operator in (2) is a subset of P �, �nishingthe proof.A dire
t generalization of Theorem 11 isTheorem 12 Let P � [0; 1℄d be a lower 
omprehensive polytope su
h that P � is integral. Sup-pose further that �N(J)(P )�� is a formulation of P � for some J � f1; 2; : : : ; dg. Then�N(J) ��N(J)(P )���	� = P:That is, the following diagram P � ! P �N(J)??y x??N(J)N(J)(P ) � ! �N(J)(P )�� (4)
ommutes.Proof: We pro
eed by indu
tion on jJ j. The 
ase jJ j = 1 was established by the previoustheorem. Consider J 0 � f1; 2; : : : ; dg su
h that jJ 0j > 1. Without loss of generality we 
anassume d 2 J 0, and let J := J 0 n fdg. As in the proof of Theorem 11, we have�N(J 0)(P )�� \Hd(0) = �N(J)(P )�� \Hd(0);where we used the fa
t that N(J)(P ) is lower 
omprehensive (sin
e P is, too). Also, as in theproof of Theorem 11 we obtain�N(J 0)(P )�� \Hd(1) = �� ~s1� : � ~s0� 2 �N(J)(P )�� ; ~sj = 0; 8j 2 I� ; (5)
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t Ranks and Duality 7where I � f1; 2; : : : ; (d� 1)g denotes the set of all indi
es j for whi
h there exists x 2 N(J)(P )su
h that xd = 1 and xj > 0 (again we used the lower 
omprehensiveness of N(J)(P )). By (5) itis 
lear that �N(J 0)(P )��\Hd(1) 
an be expressed as �N(J)(P )�� interse
ted with a fa
e of [0; 1℄dand then translated by ed. By the indu
tion hypothesisN(J) ��N(J)(P )��� = P �;therefore N(J) applied to the right-hand side of (5) yields the 
orresponding (integral) fa
e ofP �. Sin
e �N(J 0)(P )�� is a formulation of P �, we have the desired equality.The above theorem does not extend to even a single appli
ation of the stronger operatorsN0 and N (the operator N0 is de�ned by N0(P ) := \di=1N(i)(P ), and for the de�nition andadditional properties of N see [15, 13℄). To see this, 
onsider the following example:Example 13 Let the graph G be as shown on Figure 1, and letP := CLQ(G) = FRAC(G) := �x 2 [0; 1℄V : xi + xj � 1; 8 fi; jg 2 E	 :
������









 HHHHHH JJJJJJJJJJr rrr rr r r165 72 3 48Figure 1: A graph G for whi
h neither N nor N0 satis�es (4)It 
an be easily seen that N0(P ) (and N(P ) as well) will be de�ned by the edge and the 5-
y
le inequalities, so its verti
es will be the 
hara
teristi
 ve
tors of stable sets of G and fouradditional verti
es, in whi
h ea
h 
oordinate is 13 ex
ept two (one from verti
es 5 and 6 and onefrom verti
es 7 and 8), whi
h are 23 . Hen
e [N0(P )℄� is de�ned by the triangle inequalities (whi
hare identi�ed by the maximal stable sets in G) and four additional inequalities 
orresponding tothese four verti
es. Then it is easy (though tedious) to 
he
k that N0([N0(P )℄�) will still 
ontainthe point 15(2; 2; 2; 1; 1; 1; 1; 1)T (this 
an be shown by the matrix150BBBBBBBBBBBB� 5 2 2 2 1 1 1 1 12 2 0 0 1 1 0 0 02 0 2 1 0 0 1 0 02 0 1 2 0 0 0 0 01 1 0 0 1 0 0 0 01 1 0 0 0 1 0 0 01 0 1 0 0 0 1 0 01 0 0 0 0 0 0 1 11 0 0 0 0 0 0 1 11CCCCCCCCCCCCA ;



8 L. Lipt�ak and L. Tun
�elwhere it needs to be 
he
ked that ea
h 
olumn and the di�eren
e of the �rst and any other 
olumnis in M0([N0(P )℄�); see [13℄ for the de�nition of M0, and note that this matrix is symmetri
, sothe result applies to N as well). Sin
e this point violates the inequality P8i=1 xi � 2 valid for P �(it 
orresponds to the point 12e 2 FRAC(G)), N0([N0(P )℄�) is not equal to P �, so diagram (4)does not 
ommute for N0 or N .It is well-known that when P is the 
lique polytope of a graph, then the antiblo
ker of its
onvex hull is a formulation for P � (sin
e the stable sets 
orrespond to 
liques in the 
omplementof the graph). So the 
onditions of Theorem 12 are automati
ally satis�ed for any J , thusdiagram (4) 
ommutes for any J . This 
onsequen
e was also proved by Aguilera et al. [1℄. Nextwe show that these are the only examples among polytopes whose antiblo
ker is integral:Theorem 14 Let P � [0; 1℄d be a polytope 
ontaining 0 su
h that P � is integral. If (PI)� is aformulation of P �, then P is the 
lique polytope of a graph with verti
es f1; 2; : : : ; dg.Proof: Let S� := P � \ f0; 1gd, and de�ne the graph G := (V;E) as follows:V := f1; 2; : : : ; dg ; E := ffi; jg : ei + ej � s for some s 2 S�g :Sin
e P � is integral, S� � f0; 1gd, and 0 2 P , using (iii) of Proposition 7 we getP = nx 2 [0; 1℄d : sTx � 1 for all s 2 S�o ;where S� denotes the set of maximal elements of S�. We now prove by 
ontradi
tion that Pis the 
lique polytope of G. Assume S� does not 
orrespond to the maximal 
liques in G.By 
onstru
tion, if s 2 S�, then it des
ribes a maximal 
lique in G. Therefore there mustexist a 
lique C in G su
h that the 
hara
teristi
 ve
tor of C, �C , does not lie in S�. Notethat STAB(G) � P � FRAC(G), and FRAC(G) is a formulation of STAB(G). Therefore�N(V )(P )�� = (PI)� must in
lude �C . But �C =2 S�, so (PI)� is not a formulation of P �, a
ontradi
tion.Thus we have shown that the diagram in Theorem 12 
ommutes for every J exa
tly whenP is a 
lique polytope of a graph. Note, however, that it may 
ommute for some J even fornon
lique polytopes. So Theorem 12 is slightly more general than the 
orresponding theoremin [1℄. Indeed, for an appli
ation of our theorem with a �xed J , all we need is that �N(J)(P )��be a formulation of P �.4 Complexity Issues and SDP Based RelaxationsAs we dis
ussed in the previous se
tions, if we begin with CLQ(G) as the initial relaxationof STAB(G) and then apply the BCC pro
edure to it, a beautiful relationship between theintermediate relaxations and their antiblo
kers exists. However, given G, optimization (or sepa-ration) over CLQ(G) (or its antiblo
ker) is NP-hard. So, in this sense, CLQ(G) is an intra
tablerelaxation of STAB(G).If G is triangle-free, then CLQ(G) = FRAC(G), whi
h is tra
table. Then the above resultsapply to FRAC(G) as the initial relaxation. Moreover, we 
an obtain from any graph G atriangle-free graph G0 by subdividing an edge from ea
h triangle of G. Then FRAC(G0) =
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t Ranks and Duality 9CLQ(G0). However, the ranks of G and G0 may be very di�erent (for a detailed study of rank
hanges under su
h graph operations see [13℄).Lov�asz and S
hrijver [15℄ proved that their N+ operator (whi
h utilizes semide�niteness
onstraints, see [15℄ for a de�nition and further details) has the property thatN+(FRAC(G)) � CLQ(G); for every graph G:Moreover, we 
an optimize over Nk+(FRAC(G)) in polynomial time for every k = O(1). Weutilize these fa
ts below:Theorem 15 If for every graph GnNk+ �hNk+(CLQ(G))i��o� = CLQ(G)for some k � 1 and k = O(1), that is, if the following diagramCLQ(G) � ! STAB(G)Nk+??y x??Nk+Nk+(CLQ(G)) � ! �Nk+(CLQ(G))��
ommutes for some k � 1 and k = O(1), then P = NP.Proof: We have N+(FRAC(G)) � CLQ(G) for every graph G. Also, for every G we haveN jV j=3+ (FRAC(G)) = STAB(G) (see [13℄). Sin
e [STAB(G)℄� = CLQ(G), hN jV j=3+ (FRAC(G))i�is a formulation of STAB(G). Sin
e N+(FRAC(G)) � N jV j=3+ (FRAC(G)), using (i) of Proposi-tion 7 we see that [N+(FRAC(G))℄� is also a formulation of STAB(G). Now suppose that theabove diagram 
ommutes for some k = O(1) for all G. ThenCLQ(G) � N+(FRAC(G)) � Nk+(CLQ(G))) STAB(G) � [N+(FRAC(G))℄� � hNk+(CLQ(G))i�) Nk+ ([N+(FRAC(G))℄�) = STAB(G);where the last impli
ation used the assumption that the diagram 
ommutes. Sin
e k = O(1), byTheorem 1.6 of [15℄ and the equivalen
e of separation and optimization (see [11℄) for this 
lassof 
onvex sets, we 
an optimize over Nk+ ([N+(FRAC(G))℄�) in polynomial time. Thus we 
anoptimize over STAB(G) for every graph G in polynomial time. Therefore P = NP.Referen
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