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Abstract

We present a very short proof of the beautiful result of Aguilera et al. that the BCC-rank
of the clique polytope is invariant under complementation. Such properties do not extend to
the Ny and N procedures of Lovéasz and Schrijver, or to the N} procedure unless P = AP.
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1 Introduction

Recently, Aguilera, Escalante, and Nasini [1] exposed a beautiful relationship between the lift-
and-project operator proposed by Balas, Ceria, and Cornuéjols [3] and the antiblocker duality
[8, 9] (also see [2], for a study of the blocker duality in the same context). Their results are
aimed at the relaxation of the stable set polytope defined by the clique inequalities (we refer to
this relaxation as the clique polytope).

Aguilera et al. [1] proved

Theorem 1 The minimum number of iterations of the Balas—Ceria—Cornuéjols (BCC) proce-
dure required to obtain the stable set polytope of a graph G from the clique polytope of G is
inwariant under the complementation of G.

Here we provide a very short proof of this theorem from the basic principles underlying
the BCC procedure and Lovasz’s perfect graph theorem (a graph is perfect if and only if its
complement is) [14]; see our Theorem 6. The proof of Aguilera et al. [1] relies on their main
technical result, which describes a stronger property of all intermediate relaxations:

Theorem 2 FEvery application of the BCC procedure to the clique polytope of any graph followed
by taking the antiblocker of the resulting polytope is an involution (i.e., applying this composite
operator twice results in the original clique polytope).

We also provide a short proof of this result. The proof of Aguilera et al. utilizes results
of Ceria [6] (also see [5]), whereas our proof uses simpler and more general arguments; see
Theorems 11 and 12. As a result, our theorems are slightly more general. As we were preparing
this note for submission, we learned from [5] that Gerards, Maréti, and Schrijver [10] also
obtained short proofs of Theorem 1, 2. Their proofs are very concise and have some similarities
to our proofs. These results were independently obtained.

We provide examples, proving that these elegant properties of the BCC procedure do not
generalize to the procedures of Lovasz—Schrijver [15]. We conclude with a discussion of related
computational complexity issues and relaxations involving positive semidefiniteness constraints.

2 Definitions and Fundamentals

Let P C [0,1]¢ be given. We say that P is integral if Py := conv (P N {0, 1}d) is equal to P,

i.e., if P is a polytope with only integral extreme points. Define
H;(0) := {96 ERd:xizo}, H;(1) := {xERd:xizl}.

The following operator is usually defined via the corresponding lift-and-project procedure; how-
ever, for the purposes of this paper, we can simply define the BCC operator as follows:

Ny (P) := conv{[P N H;(0)]U[P N H;(1)]}.

Then clearly
PrC Ni(P)CP.
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Let J = {i1,49,..., ik} C {1,2,...,d}. We can apply N;) for i € J successively. As shown in
[3], the final polytope is independent of the order in which we apply these individual operators.
So we can define without ambiguity:

Ny (P) := Ny <N(ik_1) (- Ny (P) - J).
In particular, Balas et al. [3] proved the following nice geometric property of the operator Ny

Lemma 3 For every set J C {1,2,...d} we have
N5 (P) = conv (Pﬁ {96 cRY:2; € {0,1} forallj€ J}) . (1)

We can define the rank of Pr relative to P as the smallest |.J| such that N5 (P) = Py,
we denote this rank by 7(P). Similarly, the rank of an inequality a’z < « valid for Py is the
smallest |.J| such that a”2 < « is valid for Ny(P).

From Lemma 3 we can easily derive

Lemma 4 Let J C {1,2,...,d}, and suppose P C [0,1]¢ is given. Then Ny(P) = Pr if and
only if P(J;z) :={x € P:a; =z for every j € J} is integral for every z € {0, 17,

Proof: First assume that P(J;z) is not integral for some z € {0, 1}7. Then there is a vector
x € P(J;z)\ P(J;2);. If z is in Py, then it can be written as a convex combination of integral
vectors in P, and since z; = 0 or 1 for each j € J, the j-component of each of those vectors must
be the same for each j € J, so they are also in P(J;z). But then z is a convex combination of
integral vectors in P(JJ;2), a contradiction. Hence x is not in Pj. Since z is clearly in Ny (P),
this shows that N(j(P) # Pr.

Next assume that P(.J; z) is integral for every z € {0, 1}‘]. Since the inclusion N(p(P) 2 Pr
is clear, it suffices to prove P O N(j(P). Let z € N5 (P). By Lemma 3, z is a convex
combination of vectors in PN {96 €ERI:z; € {0,1} forall j € J} . Each of these vectors lies in
P(J; z) for some z € {0, 1}/, by definition. Since P(J; z) is integral for every z € {0, 1}/, these
vectors can be written as a convex combination of integral vectors in P. Therefore, z can be

written as a convex combination of integral vectors in P;i.e., x € Pr. Thus Py D .7\7(‘])(P)7 and
we conclude Pr = N(j)(P). .

Let G = (V, E) be a graph with vertex set V' and edge set E. For any U C V, let G —= U
denote the graph obtained by deleting all vertices of U from G. The neighborhood of U, i.e., the
set of vertices of G that are adjacent to a vertex in U, will be denoted by I'(U). A clique is a set
of vertices so that every pair of them are joined by an edge. The clique polytope of G is defined
by

CLQ(G):={z € RK : 2(C) < 1 for every clique C in G},

where we used the notation 2(C) := } ..~ x;. Now, for each v € V the application of the
BCC operator gives N(,)(CLQ(G)), and similarly it gives N (CLQ(G)) for each U C V.

It is well-known that CLQ(G) = STAB(G) if and only if the graph G is perfect (this follows
from the works of Fulkerson [8] and Chvatal [7]). Rephrasing Lemma 4 gives

Corollary 5 Let U C V. Then
Ny (CLQ(G)) = STAB(G)
if and only if G — U is perfect.
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Proof: By Lemma 4 we have N (CLQ(G)) = STAB(G) if and only if
CLQ(G,U; z) :={z € CLQ(G) : x4 = z, for every u € U}

is integral for every z € {0, 1}U. So, it suffices to show that this latter condition holds if and
only if G — U is perfect.

If G — U is not perfect, then there is a vector € CLQ(G — U) \ STAB(G — U), and then
extending = with zeros for the components corresponding to U gives a vector in CLQ(G, U;0),
showing it is not integral.

It is easy to see that for any z € {0, 1}U if we define U, := {v € U : z, = 1}, then the set
CLQ(G,U; z) is defined by the clique inequalities on G —U —T'(U) and z, = 0 for all v € I'(U,).
If G—U is perfect, then G — U —T'(U,) is also perfect, so its clique polytope is integral, showing
that CLQ(G, U; z) is integral, finishing the proof. .

Let 7(G) denote the rank of STAB(G) relative to CLQ(G). Corollary 5 helps us give a short
proof for the following theorem of Aguilera et al. [1]:

Theorem 6 For every graph G, 7(G) = 5(6)

Proof: If 7(G) = k, then there are k vertices vy, ..., vg such that with U = {vy, ..., v} we have
Ny (G) = STAB(G). So, by Corollary 5 the graph G — U is perfect. But then G — U = G-U

is also perfect, so again by the lemma we get that N(;;)(G) = STAB(G), so 7#(G) < k = 7(G).
Exchanging the roles of G and G we get #(G) < 7(G), proving the theorem. ]

Note that the above theorem generalizes Lovéasz’s perfect-graph theorem (the special case

HG) = (@) = 0).

3 Polytopes with Integral Antiblocker

For a set P C [0,1]%, let P* denote its antiblocker:
pPr = {SER‘i:wnglforalleP}.

Suppose P C [0,1]¢ is given. Then P* C [0,1]? if and only if e; € P for every j € {1,2,...,d}
(e; denotes the jth unit vector, and e denotes the vector of all ones in RY).
We will need the following elementary, well-known facts:

Proposition 7 If P C [0,1]¢, then
(i) P C P implies P* C P*;

(ii) Suppose e; € P for every j € {1,2,...,d}. Then P* C[0,1]¢ is convez and lower compre-
hensive (if 0 <y <z € P*, theny € P*).

(iii) Suppose P is compact, convezr, and 0 € P. Then P** = P.

Definition 8 An operator Ny that maps subsets of [0, 1] to conver subsets of [0, 1] such that

(i) Ny(P) D Py for every P C [0,1]%, and
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(ii) Ny(P) C P for every convez P C [0, 1]¢,
is called a 0-1 monotone operator.

It is clear that if IVy is a 0-1 monotone operator, then iterating it finitely many times yields
another (usually stronger) 0-1 monotone operator.

Not all 0-1 monotone operators are interesting. However, note that N(;) is a 0-1 monotone
operator for every J C {1,2,...,d}. Also, the operators Ny, N, and Ny (see [15] for a defini-
tion) are 0-1 monotone operators. The related works of Sherali-Adams [16], Lasserre [12], and
Bienstock—Zuckerberg [4] all yield various 0-1 monotone operators. Finally, Gomory—Chvatal
closures can also be thought of as 0-1 monotone operators.

Proposition 9 Let Ny be a 0-1 monotone operator, and let P C [0, 1]¢ be conver, containing the
origin such that P* = conv(P*N{0,1}9) (i.e., P* is an integral polytope in the unit hypercube).

Then for any k > 1 .
(e (pten Y e

Proof: By (ii) of Definition 8 we have Nﬁk(P) C P, hence {Nﬁk(P)r D P*. Since P* is an

integral polytope in the unit hypercube, using (i) of Definition 8, we arrive at Nﬁk ({Nﬁk (P)} ) D

Pr. Taking the antiblocker of both sides we obtain the desired result. n

Definition 10 Let Q C [0,1]? be an integral polytope. A conver set P C [0,1]¢ is called a
formulation of @) if conv (P N {0, 1}d) =Q.

Note that CLQ(G) and STAB(G) are both lower comprehensive and that the operator N
preserves the lower comprehensiveness of its argument.

Theorem 11 Let P € [0,1]¢ be a lower comprehensive polytope such that P* is integral. Suppose
further that [N(,»)(P)]* 1s a formulation of P*. Then

That is, the following diagram

commautes.

Proof: Since N(;) is a 0-1 monotone operator, by Proposition 9 it suffices to establish the
inclusion Ny ([N(i)(P)]*) C P*. Without loss of generality let ¢ = d. We have

Ny ([Nay(P)]) = conv {([N()(P)]" N Ha(0)) U ([Na)(P)]" N Ha(1)) }. (2)
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We first prove
[N@y(P)]" N Hq(0) = P*nHy(0). (3)

Since N(qy(P) C P (thus [N(d)(P)]* D P¥), the “D” direction is clear. Let § € [N(d)(P)]* N
Hy(0). Then 5 > 0,54 =0,and 275 < 1forall 2 € (P N Hy(0)). Since P is lower comprehensive,
and 54 = 0, we have 275 < 1 for every o € P. Therefore 5 € P*, and we established (3).

Next we claim that [N(d)(P)]* N Hy(1) C P*. To see this, let I C{1,2,...,(d — 1)} denote
the set of all indices j for which there exists € P such that 24 =1 and z; > 0. Then

[N@y(P)]" N Hy(1) = {(‘i) 05> 0,275 <1 - ay, v(x ) € (PN Hy(0))U (PN Hy1 ))]}

:{G) >0,5,=0,Vjel,a’s<1, v() (PN Hy(0 )}
_ {(i)(é) EP*,§j:0,VjEI},

where to obtain the last equality we used the fact that P is lower comprehensive. Note that
the last set is equal to the face P* N {8 e Re: 5;=0,VjeTlU {d}} of P* translated by the
unit vector eg. Since P* is integral, every face of it is integral; therefore, the set in question is
integral. Since [N(,»)(P)]* is a formulation of P*, the set in question must be contained in P*.
So we conclude that the set inside the convex hull operator in (2) is a subset of P*, finishing
the proof. "

v

O =

A direct generalization of Theorem 11 is

Theorem 12 Let P C [0,1]? be a lower comprehensive polytope such that P* is integral. Sup-
pose further that [N(J)(P)]* is a formulation of P* for some J C {1,2,....d}. Then

(N ([Npy(P)])} =P

That is, the following diagram

commautes.

Proof: We proceed by induction on |J|. The case |J| = 1 was established by the previous
theorem. Consider J' C {1,2,...,d} such that |J'| > 1. Without loss of generality we can
assume d € J', and let J := J'\ {d}. As in the proof of Theorem 11, we have

[Ny (P)]" N Ha(0) = [N (P)]" N Hg(0),

where we used the fact that N(;)(P) is lower comprehensive (since P is, too). Also, as in the
proof of Theorem 11 we obtain

[Nuny(P)]" N Ha(1) = {(f) : (é) € [Ny(P)] . 5,=0,Vj € I}, (5)
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where I C {1,2,...,(d — 1)} denotes the set of all indices j for which there exists € N(;)(P)
such that 24 = 1 and z; > 0 (again we used the lower comprehensiveness of N5 (P)). By (5) it
is clear that [N(J/)(P)]* M Hg(1) can be expressed as [N (P)] " intersected with a face of [0, 1]¢
and then translated by e4. By the induction hypothesis

Ny ([Noy(P)]) = P,

therefore N(j) applied to the right-hand side of (5) yields the corresponding (integral) face of
P*. Since [N(J/)(P)]* is a formulation of P*, we have the desired equality. "

The above theorem does not extend to even a single application of the stronger operators
Ny and N (the operator Ny is defined by No(P) := ﬁ;»i:lN(i)(P), and for the definition and
additional properties of N see [15, 13]). To see this, consider the following example:

Example 13 Let the graph G be as shown on Figure 1, and let

P :=CLQ(G) =FRAC(G) == {2 € [0,1)" 12, +2; <1, V{i,j} € E}.

2 4

Figure 1: A graph G for which neither N nor Ny satisfies (4)

It can be easily seen that No(P) (and N(P) as well) will be defined by the edge and the 5-

cycle inequalities, so its vertices will be the characteristic vectors of stable sets of G and four
additional vertices, in which each coordinate is % except two (one from vertices 5 and 6 and one
from vertices 7 and 8), which are 2. Hence [No(P)]" is defined by the triangle inequalities (which
are identified by the maximal stable sets in G) and four additional inequalities corresponding to
these four vertices. Then it is easy (though tedious) to check that No([No(P)]™) will still contain

the point %(27 2,2,1,1,1,1,1)T (this can be shown by the matrix

522 2 11 1 1 1
22 0011000
202 100100
201200000
111001000 0/,
111000100 0
101000100
100000011
1000000 11
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where it needs to be checked that each column and the difference of the first and any other column
is in Mo([No(P)]™); see [13] for the definition of My, and note that this matrix is symmetric, so
the result applies to N as well). Since this point violates the inequality Zle x; < 2 valid for P*
(it corresponds to the point e € FRAC(G)), No([No(P)]") is not equal to P*, so diagram (4)
does not commute for Ng or N.

It is well-known that when P is the clique polytope of a graph, then the antiblocker of its
convex hull is a formulation for P* (since the stable sets correspond to cliques in the complement
of the graph). So the conditions of Theorem 12 are automatically satisfied for any .J, thus
diagram (4) commutes for any J. This consequence was also proved by Aguilera et al. [1]. Next
we show that these are the only examples among polytopes whose antiblocker is integral:

Theorem 14 Let P C [0,1]? be a polytope containing 0 such that P* is integral. If (P;)" is a
formulation of P*, then P is the clique polytope of a graph with vertices {1,2,...,d}.

Proof: Let S, := P*N {0, 1}d7 and define the graph G := (V, E) as follows:
Vi={1,2,...,d}, E:={{i,j}:e;+e; <sforsomeseS.}.
Since P~ is integral, S. C {0,1}%, and 0 € P, using (iii) of Proposition 7 we get
P = {x €10,1]%: sT2 < 1 forall 863*},

where S, denotes the set of maximal elements of S,.. We now prove by contradiction that P
is the clique polytope of G. Assume S, does not correspond to the maximal cliques in G.
By construction, if s € S,, then it describes a maximal clique in G. Therefore there must
exist a clique C in G such that the characteristic vector of C, y¢, does not lie in S,. Note
that STAB(G) C P C FRAC(G), and FRAC(G) is a formulation of STAB(G). Therefore
[Nowy(P)]" = (Pr)” must include x¢. But yo ¢ S., so (P;)” is not a formulation of P*, a
contradiction. .

Thus we have shown that the diagram in Theorem 12 commutes for every J exactly when
P is a clique polytope of a graph. Note, however, that it may commute for some J even for
nonclique polytopes. So Theorem 12 is slightly more general than the corresponding theorem
in [1]. Indeed, for an application of our theorem with a fixed .J, all we need is that [N(J)(P)]*
be a formulation of P*.

4 Complexity Issues and SDP Based Relaxations

As we discussed in the previous sections, if we begin with CLQ(G) as the initial relaxation
of STAB(G) and then apply the BCC procedure to it, a beautiful relationship between the
intermediate relaxations and their antiblockers exists. However, given G, optimization (or sepa-
ration) over CLQ(G) (or its antiblocker) is NP-hard. So, in this sense, CLQ(G) is an intractable
relaxation of STAB(G).

If G is triangle-free, then CLQ(G) = FRAC(G), which is tractable. Then the above results
apply to FRAC(G) as the initial relaxation. Moreover, we can obtain from any graph G a
triangle-free graph G’ by subdividing an edge from each triangle of G. Then FRAC(G') =
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CLQ(G"). However, the ranks of G and G’ may be very different (for a detailed study of rank
changes under such graph operations see [13]).

Lovasz and Schrijver [15] proved that their N; operator (which utilizes semidefiniteness
constraints, see [15] for a definition and further details) has the property that

N4+ (FRAC(G)) C CLQ(G), for every graph G.

Moreover, we can optimize over N¥(FRAC(G)) in polynomial time for every k& = O(1). We
utilize these facts below:

Theorem 15 If for every graph G

{3 ([Mcrae)] )} =cra@

for some k> 1 and k = O(1), that is, if the following diagram

CLQ(G) += STAB(G)
Nk | [

*

NECLQ(G)) = [NF(CLQ(@)]

commutes for some k > 1 and k = O(1), then P = N'P.

Proof: We have N, (FRAC(G)) C CLQ(G) for every graph G. Also, for every G we have
N3 FERAC(G)) = STAB(G) (see [13]). Since [STAB(G)]" = CLQ(G), {NJ'FVV?)(FRAC(G))

is a formulation of STAB(G). Since N4 (FRAC(G)) D N_||_V|/3(FRAC(G))7 using (i) of Proposi-
tion 7 we see that [Ny (FRAC(G))]" is also a formulation of STAB(G). Now suppose that the
above diagram commutes for some k& = O(1) for all G. Then

CLQ(G) 2 N4 (FRAC(G)) 2 N§(CLQ(G))
= STAB(G) C [N (FRAC(G))]" C [N%(CLQ(6))]
= Nk (N (FRAC(G))) = STAB(G),

where the last implication used the assumption that the diagram commutes. Since & = O(1), by
Theorem 1.6 of [15] and the equivalence of separation and optimization (see [11]) for this class

of convex sets, we can optimize over N¥ ([N;(FRAC(G))T") in polynomial time. Thus we can
optimize over STAB(G) for every graph G in polynomial time. Therefore P = N'P. "
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