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tionSemide�nite Programming (SDP) has generated tremendous interest during the last �fteen years,e.g. [31℄, both for the many appli
ations and the mathemati
al elegan
e. Many of the earlyinteresting algorithms were primal-dual interior-point (p-d i-p) methods based on solving a system ofmatrix equations for Newton type sear
h dire
tions. The sear
h dire
tions, after a symmetrization,followed the derivation of similar p-d i-p methods for linear programming (LP), mainly based on thehope to extend the 
omputational and/or theoreti
al properties of su

essful p-d i-p methods forLP. However, in 
ontrast to the LP 
ase, existen
e and uniqueness of some of these sear
h dire
tionswere not guaranteed under the standard nondegenera
y assumptions: (i) the linear transformationA from the linear 
onstraints is onto and (ii) Slater's 
onstraint quali�
ation (stri
t feasibility withrespe
t to the 
one 
onstraints) holds for both primal and dual programs. (We assume that 
ondition(i) holds throughout this paper.)There are many sear
h dire
tions proposed for p-d i-p methods for semide�nite programming.For an a

ount up to 1997 see Kojima, Shida and Shindoh [11℄ and Todd [26℄. Some of the proposalsdes
ribe a set of sear
h dire
tions su
h as Kojima, Shindoh and Hara [12℄ (KSH family), Zhang [32℄,Monteiro and Zhang [19℄ (denoted MZ family), Tun�
el [29℄. Another general approa
h to sear
hdire
tions is to 
ompute the Gauss-Newton dire
tion for the overdetermined optimality 
onditions,see Kruk et al. [13℄.Among the earliest proposals were the HrvwKshM dire
tion [9, 12, 15℄, NT dire
tion [21℄, andthe AHO dire
tion [1℄. For ea
h value of the 
entral path parameter (or the barrier parameter),� > 0, these sear
h dire
tions, under standard nondegenera
y assumptions, are found by solving2



a parti
ular (symmetrized) linear system of matrix equations. The HrvwKshM and NT dire
tionshave the disadvantage that the linear system be
omes ill-
onditioned as � approa
hes zero (it issingular for � = 0); while the linear system for the AHO dire
tion is nonsingular at � = 0. Onthe other hand, the HrvwKshM and NT dire
tions are well-de�ned for every pair of primal-dualinterior-points, though the AHO dire
tion is not.Two di�erent suÆ
ient 
onditions that guarantee existen
e and uniqueness of the AHO dire
tionare given in [24℄ (denoted SSK 
ondition) and [18℄ (denoted MZ 
ondition; this was improved laterin [17℄). Both of these 
onditions assume that the primal and dual matri
es X;S are positivede�nite. Both 
onditions depend only on X;S and not on the data from the linear 
onstraints ofthe SDP. Further 
onditions and proofs for the AHO dire
tion are given in [28℄; 
onditions for theMonteiro-Zhang family of sear
h dire
tions are given in e.g. [16℄, [27, Theorem 3.1℄ and [24℄.In this paper we revisit the two suÆ
ient 
onditions 
ited above. We provide several strength-ened 
onditions as well as 
hara
terizations. In parti
ular, we provide the strongest 
onditionsusing only the data matri
es X;S; see, Theorems 3.9, 3.11 and 3.18. The results deal with (sym-metri
) matrix equations and, therefore, the Krone
ker and the symmetri
 Krone
ker produ
ts areinvolved. Though the Krone
ker produ
t has been extensively studied in the literature, this isnot true for the (
onstrained version) symmetri
 Krone
ker produ
t. In Theorems 2.8 and 2.9, wepresent the new results that the positive semide�niteness of the symmetri
 Krone
ker produ
t isequivalent to the positive semide�niteness of the Krone
ker produ
t and that the eigenvalues have aspe
ial relationship. We in
lude topologi
al properties on the solutions, e.g. that the existen
e anduniqueness of the AHO dire
tion is generi
. We 
on
lude by extending the results to the generalMonteiro-Zhang family.The paper is organized as follows. After introdu
ing some notation, we outline the main resultsin Se
tion 1.1. We in
lude several illustrative examples. The Krone
ker produ
t is dis
ussedin Se
tion 2.2. The 
hara
terizations for existen
e and uniqueness are given in Se
tion 3.1. Thestrengthened suÆ
ient 
onditions of SSK type are given in Se
tion 3.2.1. The strengthened suÆ
ient
onditions of MZ type are given in Se
tions 3.2.2 and 3.2.3. We in
lude results on topologi
alproperties and generi
ity in Se
tion 4 in
luding the generi
ity results. We 
on
lude by extendingthe results to the general Monteiro-Zhang family of sear
h dire
tions in Se
tion 5.1.1 Preliminaries; Outline of Results1.1.1 NotationWe use the following standard notation: Sn is the spa
e of n�n real symmetri
 matri
es equippedwith the tra
e inner-produ
t for two matri
es X; Y ,hX; Y i := tra
eXTY ;C 2 Sn ; the matri
es Ai 2 Sn ; i = 1; : : : ; m, are linearly independent; and b 2 Rm. The dimensionof Sn is t(n) := n(n+ 1)=2. Mn denotes the spa
e of n� n matri
es over the reals. For M 2 Mnwith real eigenvalues, �1(M) � �2(M) � � � � � �n(M)denote its eigenvalues. We also use �max := �1 and �min := �n. In the spa
e Mn , k � k denotesthe operator 2-norm and k � kF denotes the Frobenious norm (thus, kMkF = hM;Mi1=2). We useX 2 Sn+ or X � 0 (respe
tively, X 2 Sn++ or X � 0) to denote symmetri
 positive semide�niteness(and symmetri
 positive de�niteness, respe
tively). Then (X; y; S)2 Sn+ �Rm�Sn+ are the primal3



and dual variables for the following SDP and its dual.min hC;Xi(P) subje
t to hAi; Xi = bi; i = 1; : : : ; m;X 2 Sn+ ;max bTy(D) subje
t to Pmi=1 yiAi + S = C;S 2 Sn+ :The linear 
onstraints in the primal (P), respe
tively dual (D), 
an be written using the lineartransformation notation AX = b; A �y + S = C; X � 0; S � 0;where �� denotes the adjoint transformation.One of the �rst 
omputationally interesting algorithms for SDP was based on the Alizadeh-Haeberly-Overton (AHO) sear
h dire
tion [1℄. At a point (X; y; S)2 Sn+ �Rm�Sn+ with 
entralityparameter � 2 (0; 1℄ and barrier parameter 0 < � := hX;Si=n, this sear
h dire
tion (when it exists)is the solution (�X;�y;�S) 2 Sn �Rm�Sn of the (symmetrized linearized optimality 
onditions)linear system Pmi=1 (�y)iAi + �S = C �Pmi=1 yiAi � S;hAi;�Xi = bi � hAi; Xi; i = 1; : : : ; m;X(�S) + (�S)X + S(�X) + (�X)S = 2��I �XS � SX: (1.1)Let HP :Mn ! Sn denote the linear transformationHP (M) := PMP�1 + P�TMTPT ;where P is any n� n nonsingular matrix. If we repla
e (1.1) byPmi=1 (�y)iAi +�S = C �Pmi=1 yiAi � S;hAi;�Xi = bi � hAi; Xi; i = 1; : : : ; m;HP (X(�S) + (�X)S) = HP (��I �XS) ; (1.2)then the solutions (�X;�y;�S) 2 Sn � Rm � Sn are in the Monteiro-Zhang family of sear
hdire
tions. If we 
hoose P = I , then we get the AHO dire
tion. The 
hoi
e P = S 12 gives theso-
alled HrvwKshM dire
tion [9, 12, 15℄; while any P with PTP = X� 12 �X 12SX 12� 12 X� 12 , e.g.,P = �X 12SX 12� 14 X� 12 gives the NT dire
tion, [21℄.In this paper we fo
us on 
onditions for the AHO dire
tion. We then show in Se
tion 5 thatthese 
onditions dire
tly extend to the 
omplete Monteiro-Zhang family of dire
tions.We now look at two 
lasses of suÆ
ient 
onditions that guarantee existen
e and uniqueness ofsolutions of (1.1).1.1.2 Shida-Shindoh-Kojima (SSK) Type SuÆ
ient ConditionsIt has been shown by Shida, Shindoh and Kojima [24℄ (see also Todd, Toh and T�ut�un
�u [27℄)that system (1.1) has a unique solution, and hen
e that the AHO sear
h dire
tion is well-de�ned,whenever (SSK
ond) X;S � 0 and XS + SX � 0: (1.3)4



We strengthen the (SSK
ond) 
ondition, see Theorem 3.9 below: AHO is well-de�ned wheneverK := [I 
 (SX +XS)℄ + [(SX +XS)
 I ℄ + 2 [X 
 S℄ + 2 [S 
X ℄ is de�nite; (1.4)where 
 denotes the Krone
ker produ
t. We use K and derive the following suÆ
ient 
onditionfor existen
e and uniqueness independent of A , i.e. from (3.18) below, the suÆ
ien
y of (1.4) isimplied by the suÆ
ien
y of the 
onditionL := K + TK +KT is semide�nite with rank n(n+ 1)=2; (1.5)where T is the matrix representation of the transpose operator, see (2.10). (The matrix L in (1.5)has at least n(n� 1)=2 zero eigenvalues, for any K. Therefore we 
an use the stable 
ondition thatrank � n(n+1)=2 implies (1.5).) These two new suÆ
ient 
onditions have the advantage that theyhold on an open set. Note that the set where existen
e and uniqueness holds is open (see Se
tion4 for related results).1.1.3 Monteiro-Zanj�a
omo (MZ) Type SuÆ
ient ConditionsA di�erent, 
entrality type, suÆ
ient 
ondition for existen
e and uniqueness is given by Monteiroand Zanj�a
omo [18℄,(MZ
ond) X;S � 0 and kS 12XS 12 � �Ik � 12�; for some � > 0; (1.6)see Theorem 3.14 below. We note below that this latter 
ondition is equivalent to the bound onthe 
ondition number(MZequivalent) X;S � 0 and 
(S 12XS 12 ) � 3; (1.7)see Proposition 1.1 below.Proposition 1.1 Let S;X 2 Sn , S � 0 and � 2 R+. Then the 
ondition kS 12XS 12 � �Ik � ��for some s
alar � > 0, holds if and only if(1� �)� � �min(S 12XS 12 ) and �max(S 12XS 12 ) � (1 + �)�: (1.8)Proof. Let S 12XS 12 =: PDPT for some diagonal matrix D and some unitary matrix P . Then D
ontains the eigenvalues of S 12XS 12 . Moreover, kD��Ik � �� and the 
ondition j�i(S 12XS 12 )��j ���; for all i = 1; : : : ; n are equivalent to (1.8).Moreover, we strengthen these results. The 
onstant 12 in (1.6) was strengthened to 1p2 in [17℄.(This implies that 3 in (1.7) in
reases to 3 + 2p2.) We show that the te
hniques of Monteiro andTodd in (1.6) 
an be used to further improve the 
onstant 1p2 to p3� 1. (And 3 + 2p2 in
reasesto 3+2p3.) Furthermore, we show that the approa
h of Monteiro and Zanj�a
omo [17℄ 
an be usedto further strengthen the 
onstant in (1.6) and the equivalent 
ondition number bound in (1.7), i.e.we get 45 in (1.6); 9 in (1.7); respe
tively;see Theorem 3.11. We also show that the 
onstant 12 in (1.6) 
annot be improved beyond 0:9193,see Example 1.5. (A previous bound in this dire
tion was 0:9837, due to Tseng [28℄.)5



1.1.4 Comparison ExamplesHowever, the relationships between the di�erent 
onditions are not 
lear. Some of these propertiesare seen in the following examples.Example 1.2 From [27, Page 778℄, we see that m := 1, n := 2,A1 := ��1 p2p2 0 � ; b := 3; X := � 1 p2p2 3 � ; S := � 1 00 11�provide an example where the AHO dire
tion does not exist. Here � := hX;Si2 = 17 and kS 12XS 12 ��Ik = p278, while the MZ result, Theorem 3.14 below, requires the RHS to be at most 172 . The
ondition number of S 12XS 12 is 17+p27817�p278 �= 103:081. Note that XS+SX is not positive semide�nite.Example 1.3 From [18℄, we see thatX := � 8 11 :5� ; S := � 1 00 16�provide an example where (MZ
ond) holds but (SSK
ond) fails, i.e. S 12XS 12 = � 8 44 8� has eigen-values 4; 12 and 
ondition number 3. But XS + SX = � 16 1717 16� is not positive semide�nite.(Though the new 
ondition (1.4) holds.)Example 1.4 From [18℄, we see thatX := � 1 00 10� ; S := � 1 00 1�provide an example where (SSK
ond) holds but (MZ
ond) fails, i.e. the 
ondition number of S 12XS 12is 10, while XS + SX is positive semide�nite.Example 1.5 Using a spe
ial parametrized grid sear
h, we found the example m := 1, n := 2,A1 := ��1 aa d� ; a := �11:7078; d := �40:2704;X := QT � 30 00 1�Q; Q := � � �p1� �2p1� �2 � � ;with � := �0:99 and S := � 1 00 273�. The a; d were found using the solutions of quadrati
polynomials based on the parameter � := 273 in S. We obtained the better 
ondition number value23:7911, though still greater than 9. Also, this example shows that the 
onstant 12 in (1.6) 
annotbe improved beyond 0:9193. 6



2 Linear Algebra Results2.1 Subspa
es and Linear OperatorsDe�nition 2.1 De�ne the linear (Lyapunov) operator on Sn :LU(V ) := UV + V U; for U; V 2 Sn :To investigate whether (1.1) has a unique solution, we 
hoose to study the related 
ondition on the
orresponding homogeneous system in the variables (�X;�y;�S)2 Sn �Rm� Sn .A �(�y) + (�S) = 0;A (�X) = 0;LS(�X) + LX(�S) = 0: (2.1)We single out the third equation LS(�X) + LX(�S) = 0: (2.2)Equivalently, we need to establish nonsingularity of the linear operator with the blo
k stru
tureK := 0� 0 A � IA 0 0LS 0 LX1A : (2.3)De�ne the one-one linear transformation Z : Rt(n)�m ! Sn so that the range spa
e of Z is equalto the nullspa
e of A , i.e. R(Z) = N (A ); (2.4)or equivalently A (�X) = 0 i� �X = Z(�v) for some �v 2 Rt(n)�m:Then, we 
an substitute for �X;�S in (2.1) and see that nonsingularity of K is equivalent tononsingularity of the linear operator (on Rt(n))�K := �LSZ ... � LXA �� ; (2.5)i.e. �K a
ts on ��v�y�.Lemma 2.2 (Also see Lemma 10.4.9 of [17℄) Suppose that X � 0. Then, the linear operator LXis one-one, onto, self-adjoint, and positive de�nite.Proof. Let U; V 2 Sn . ThathXU + UX; V i = hU;XV i+ hU; VXi = hXV + V X;Uishows LX is self-adjoint. ThathU; LXUi = 2hU;XUi= 2kUX 12 k2F � 0(the last inequality is stri
t, unless U = 0) shows that LX is positive de�nite. Now, LX(U) = 0 i�U = 0. Therefore, LX is one-one and onto. 7



2.2 Krone
ker and Symmetri
 Krone
ker AlgebraThe two linear operators LX ; LS have been studied in the literature in relation to matrix equations,e.g. [2℄,[10, Se
t. 4.4℄ and [3, 5, 6℄. The main tool is the Krone
ker produ
t. Some basi
 fa
tsare given in [27, Appendix℄. We also in
lude the relevant de�nitions and properties that we need.(Further properties are given in e.g. [10, 30, 23℄.) We in
lude new results on the symmetri
Krone
ker produ
t.It is well known that, for 
ompatible matri
es K;N;M , we 
an �nd the matrix representationsof 
ertain linear transformations on Mn (identi�ed with Rn2) using the Krone
ker produ
t, i.e.ve
 (NKMT) = (M 
N)ve
 (K); (2.6)where ve
 (K) is the ve
tor formed from the 
olumns of K and 
 denotes the Krone
ker produ
t.If �; � are the eigenvalues with 
orresponding eigenve
tors v; w for M;N , respe
tively, then aneigenvalue/eigenve
tor pair is given in(M 
N)(v
 w) = ��(v 
 w); (2.7)see e.g. [10, Theorem 4.2.12℄. For 
ompatible matri
es:(A
 B)(C 
D) = (AC 
BD); (A
 B)T = (AT 
BT ):We have the following fa
t.Lemma 2.3 Let A;B;C be n � n matri
es. Then2hAT ; BCi = �ve
 (B)T jve
 (C)T� � 0 I 
ATI 
 A 0 �� ve
 (B)ve
 (C) � :Proof. We 
ompute hAT ; BCi = ve
 (C)Tve
 (ABI)= ve
 (C)T (I 
 A) ve
 (B)= ve
 (B)T (I 
 A)T ve
 (C)= ve
 (B)T �I 
 AT� ve
 (C):Therefore, using the se
ond and the fourth equations, we obtain the desired result2hAT ; BCi = ve
 (C)T (I 
A) ve
 (B) + ve
 (B)T �I 
 AT �ve
 (C):Re
all t(n) = n(n + 1)=2. Let s2ve
 (X) 2 Rt(n) denote the isometry between Sn and Rt(n)that takes the lower triangular part of X 
olumnwise and multiplies the stri
t lower triangu-lar part by p2. Then the inner-produ
t in Sn 
an be expressed as the ve
tor inner-produ
thX; Y i = s2ve
 (X)Ts2ve
 (Y ). In addition, we 
an express the matrix representations of 
ertainlinear transformations on Sn (identi�ed with Rt(n)) using the symmetri
 Krone
ker produ
t. ForU 2 Sn we write, see [2, 27℄,(M s
N)s2ve
 (U) := s2ve
 �12(NUMT +MUNT )� :8



(We have 
hanged the notation used in [2℄.) If M;N 2 Mn , then the matrix �M s
N� 2 Mt(n) ,while if A;B 2 Sn , then �A s
B� 2 St(n) . Note that by de�nition, M s
N = N s
M and it is easily
he
ked that �M s
N�T =MT s
NT :We 
an express s
 using 
; we 
onsider Sn isomorphi
 to Rt(n). Let Q 2 Rt(n)�n2 be de�nedas follows: Q(i;j);(k;l) :=8><>: 1 if i = j = k = l,1p2 if i = k 6= j = l or i = l 6= j = k,0 otherwise;i.e. the 
olumns of QT 
onsist of ve
 (Pij), where fPij : 1 � i � j � ng is the set of t(n) orthonormalbasis matri
es of Sn . Then QQT = I ,QTQ is the matrix representation of the orthogonal proje
tionofMn (asRn2) onto Sn (as a subspa
e of Rn2). Let u := QTv; v 2 Rt(n); U := Mat (u), i.e. U 2 Snand u = ve
 (U). The quadrati
 form with U 2 Sn is12hU;NUMT +MUNT i = 12uT [(N 
M) + (M 
N)℄u= 12vTQ [(N 
M) + (M 
N)℄QT v= s2ve
 (U)T (M s
N)s2ve
 (U)= s2ve
 (U)T (M s
N)T s2ve
 (U)= s2ve
 (U)T (MT s
NT )s2ve
 (U)= s2ve
 (U)T (N s
M)s2ve
 (U): (2.8)A similar derivation with v1; v2 2 Rt(n), ui := QTvi, Ui := Mat (ui) yieldsM s
N = 12Q (M 
N +N 
M)QT = Q(M 
N)QT : (2.9)We need a 
orresponding result to Lemma 2.3.Lemma 2.4 Let A 2 Mn and B;C 2 Sn . Then2hAT ; BCi = �s2ve
 (B)T js2ve
 (C)T� " 0 I s
ATI s
A 0 #� s2ve
 (B)s2ve
 (C) � :Proof. We 
ompute hAT ; BCi = 12tra
eC(ABIT + IBAT )= 12s2ve
 (C)Ts2ve
 (ABIT + IBAT )= s2ve
 (C)T �I s
A� s2ve
 (B)= s2ve
 (B)T �I s
A�T s2ve
 (C)= s2ve
 (B)T �I s
AT� s2ve
 (C):In the �rst equation we used B;C 2 Sn . Using the third and the �fth equations, we 
on
lude2hAT ; BCi = s2ve
 (C)T �I s
A� s2ve
 (B) + s2ve
 (B)T �I s
AT� s2ve
 (C);as 
laimed. 9



De�ne the transpose operator T :Mn !MnT (M) :=MT ; with matrix representation T = (Tkl): (2.10)Sin
e T (Eij) = Eji, where Eij is the zero matrix but for 1 in the ij position, we see that thel = i+ (j � 1)n 
olumn of T is the all zero ve
tor ex
ept for a 1 in the k = j + (i� 1)n position.Note that T is orthogonal, self-adjoint.hT (M); Ni= tra
e (MT )TN = tra
eMN = tra
e (MT )NT = hM; T (N)i :Thus the matrix representation satis�es T = TT ; T 2 = I .Instead of 
onsidering Sn isomorphi
 to Rt(n) , we 
an 
onsider it as a subspa
e of Mn . Thenfor ea
h X 2 Mn , the orthogonal proje
tion onto Sn is U = PSn X = 12(X +XT). We 
an de�nea symmetri
 Krone
ker produ
t on Mn as(M T
N)ve
 (X) := ve
 �PSn �NPSn (X)MT��= ve
 �12 �N 12(X +XT )MT +M 12(X +XT )NT�� :The matrix (M T
N) 2 Mn2 with rank the same as M s
N . In fa
t, the two symmetri
 Krone
kerprodu
ts agree on Sn and T
 is identi
ally zero on (Sn )?, the spa
e of skew-symmetri
 matri
es inMn . Identify x = ve
 (X). We 
an expand to get an n�n matrix representation for the symmetri
Krone
ker produ
t.xT (M T
N)x = 14xTve
 �NXMT +NXTMT +MXNT +MXTNT�= 14xT ��N 
MT +M 
NT� +12 �N 
MT +M 
NT�T+12T �N 
MT +M 
NT�� x= 18xT �(I + T ) �N 
MT +M 
NT� +�N 
MT +M 
NT� (I + T ) ℄x:Thus T
 as an extension of s
 to all of Mn has the same t(n) eigenvalues and eigenve
tors whenrestri
ted to Sn � Mn and has an additional n(n � 1)=2 zero eigenvalues with eigenve
tors 
or-responding to skew-symmetri
 matri
es. Note that P := PSn �NPSn (�)MT� is a linear opera-tor on Mn with invariant subspa
e Sn � Mn . In fa
t, P(S) = �S; S 2 Sn , implies thatPSn �N(S)MT� = �S. This gives a relationship between the eigenve
tors of M s
N and the eigen-ve
tors of PSn �N(�)MT�. In summary, we 
an simply writeM T
N = 12QTQ (M 
N +N 
M)QTQ = QTQ (M 
N)QTQ: (2.11)See Theorem 2.9 below. 10



2.2.1 Eigenvalue InequalitiesSin
e h 2 Rt(n); khk = 1 ) kQThk = 1, we see that (2.8) and the Rayleigh Prin
iple yield somesimple bounds on the largest and smallest eigenvalues of the symmetri
 Krone
ker produ
t, e.g. forevery A;B 2 Sn we have �1(A s
B) � �1(A
B) = maxi;j (�i(A)�j(B))and �t(n)(A s
B) � �n2(A
B) = mini;j (�i(A)�j(B)) :We emphasize that the latter yields(A
 B) � 0) (A s
B) � 0; (2.12)but says nothing about the 
onverse impli
ation. Also let �; � be the eigenvalues of A;B with
orresponding normalized eigenve
tors a; b. De�ne H := abT + baT : Thens2ve
 (H)T(A s
B)s2ve
 (H) = �1 + (aTb)2���+ (aT b)2��+ �aTBa� �bTAb� :Thus, a useful relation iss2ve
 (H)T (A s
B)s2ve
 (H)tra
eHTH = 12��+ (aT b)2��+ �aTBa� �bTAb�2 [1 + (aT b)2℄ : (2.13)For 
ommuting matri
es we 
an say more.Corollary 2.5 ([2℄, Lemma 7.2) Let A;B 2 Sn su
h that A and B 
ommute. Let �i; �i; vi denotethe eigenvalues and the 
orresponding (
ommon) eigenve
tors of A and B, respe
tively. Then,for 1 � i � j � n, we get 12(�i�j + �j�i) as the eigenvalues and s2ve
 �vivTj + vjvTi � as the
orresponding eigenve
tors of (A s
B).Proof. Sin
e A and B 
ommute, we 
an use the same orthonormal system to des
ribe theireigenspa
es. Therefore, using dire
t 
omputation (as in obtaining the identity (2.13) ) we 
on
ludethe desired result, i.e. with a = vi; b = vj , the terms in the right hand side of (2.13) be
omeaTBa = �i; btBb = �j .Corollary 2.6 Let A;B 2 Sn with eigenvalues �i; �j, respe
tively, and 
orresponding eigenve
torsui; vj, respe
tively. Then �s2ve
 (uiuTi ); s2ve
 (vjvTj ) : �i = 0; �j = 0	are eigenve
tors of (A s
B) 
orresponding to zero eigenvalues. Moreover, if two eigenvalues �s; �thave the same eigenve
tor v, then s2ve
 (vvT) is an eigenve
tor of A s
B.Proof. Dire
t 
omputation. 11



We 
an add to the simple bounds above using the relation (2.13).Theorem 2.7 Let A;B � 0. Then12 [�1(A)�1(B) + �n(A)�n(B)℄ � �1 �A s
B� � �1(A)�1(B) = �1 (A
 B)and �n2 (A
 B) = �n(A)�n(B) � �t(n) �A s
B� � 12 [�1(A)�1(B) + �n(A)�n(B)℄ :Proof. First 
onsider the (pseudo
onvex/pseudo
on
ave) fun
tionf(t) = �t+ �2(1 + t) ; t 2 [0; 1℄:Then f 0(t) = 2(� � �)=(: : :)2, i.e. the fun
tion is nonde
reasing (resp. nonin
reasing) if � � �(resp. � � �).Choosing � := �1(A), � := �1(B) in (2.13), and using aTBa � �n(B), bTAb � �n(A) and(aT b)2 2 [0; 1℄, we get � = �� � � = (aTBa)(bTAb). The minimum value in (2.13) is thereforeattained at t = (aT b)2 = 0.�1 �A s
B� � 12 [�1(A)�1(B) + �n(A)�n(B)℄ :Similarly, 
hoosing � := �n(A), � := �n(B) in (2.13), and using aTBa � �1(B), bTAb � �1(A) and(aT b)2 2 [0; 1℄, we obtain � � � and the maximum value in (2.13) is attained at t = (aT b)2 = 0.�t(n) �A s
B� � 12 [�1(A)�1(B) + �n(A)�n(B)℄ :The remaining bounds were already established.The following theorem establishes the 
onverse impli
ation in (2.12), i.e. semide�niteness of thesmaller matrix implies semide�niteness of the larger matrix.Theorem 2.8 Let A;B 2 Sn . Then:A s
B � 0 () A
B � 0;A s
B � 0 () A
B � 0:Proof.If the following Krone
ker produ
t A 
 B � 0 (resp. � 0), then ne
essarily the (restri
ted)symmetri
 Krone
ker produ
t A s
B � 0 (resp. � 0). (This was already established in (2.12); seealso (2.9).)To show the 
onverse, we �rst 
onsider the � 0 result. Assume that A s
B � 0. Sin
es2ve
 (vvT )T �A s
B� s2ve
 (vvT) = �vTAv� �vTBv� � 0; 8v 2 Rn;12



we get �vTAv� > 0) �vTBv� � 0; (2.14)�vTBv� > 0) �vTAv� � 0: (2.15)Now suppose �min (A
 B) < 0: (2.16)Without loss of generality, we 
an assume that �min (A
 B) = �min (A)�max (B), i.e. we assumethat � := �min (A) < 0 < � := �max (B) ; (2.17)with 
orresponding normalized eigenve
tors a; b, respe
tively. Note that aTAa < 0 implies aTBa �0 and bTBb > 0 implies bTAb � 0, by (2.15), i.e. (bTAb)(aTBa) � 0. Therefore (2.13) implies thathB; (abT + baT )A(abT + baT )i < 0:This 
ontradi
ts the assumption A s
B � 0, i.e. (2.16) fails.SuÆ
ien
y for the � 0 result follows similarly. We assume A s
B � 0. The right-hand sidesin (2.14) and (2.15) both be
ome > 0. If we assume that (2.16) holds, then we get the desired
ontradi
tion. If we assume that (2.16) holds with equality, = 0, and (2.17) is 
hanged to � = 0 < �,then (2.13) now implies that hB; (abT + baT )A(abT + baT )i � 0;a 
ontradi
tion to the assumption A s
B � 0.Theorem 2.9 Let M;N 2 Mn . For u 2 Rt(n), we have the eigenpair relationship�M s
N�u = �u =) 12 (M 
N +N 
M) (QTu) = �(QTu): (2.18)Proof. Dire
tly follows from the identity (2.9).The last theorem is quite powerful in that it establishes that ea
h eigenspa
e of (M 
N +N 
M)always de
omposes as the dire
t sum of symmetri
 and skew-symmetri
 matri
es (viewed in Rn2)In addition to the above, a tight, interla
ing type of relationship seems to exist between theeigenvalues of 12 (A
 B + B 
A) 
orresponding to the skew-symmetri
 eigenve
tors and the eigen-values of A s
B; see Conje
ture 2.12. We elaborate below.Note that u 2 Rn2 
orresponds to a symmetri
 matrix i� Tu = u and it 
orresponds to askew-symmetri
 matrix i� Tu = �u. Suppose u; w 2 Rn2 su
h that Tu = u and Tw = �w. Then12uT [(A 
B) + (B 
A)℄u = uT (A 
B)u;and 12wT [(A
B) + (B 
A)℄w = wT (A
 B)w:We 
onje
ture: 13



Conje
ture 2.10 Let A;B 2 Sn . ThenminTu=u uT (A
B)uuTu � minTw=�w wT (A
 B)wwTwand maxTu=u uT (A 
B)uuTu � maxTw=�w wT (A
B)wwTw :If the above 
onje
ture is true, then we will have�1 �A s
B� = 12�1 (A
B +B 
 A)and �t(n) �A s
B� = 12�n2 (A
 B + B 
A) :Another way of expressing this 
onje
ture is as follows:Conje
ture 2.11 Let A;B 2 Sn . ThenminU2Sn ;kUkF=1 tra
e (BUAU) � minW2 ~Sn ;kWkF=1 tra
e �BWAWT �and maxU2Sn ;kUkF=1 tra
e (BUAU) � maxW2 ~Sn ;kWkF=1 tra
e �BWAWT � ;where ~Sn denotes the spa
e of n � n skew-symmetri
 matri
es.Note that if B = I , then the 
onje
ture is easy to prove using the well-known tra
e inequality.For the �rst inequality, let U := uuT , where u 2 Rn is the eigenve
tor of A 
orresponding to �n(A);for the se
ond inequality, let U := uuT where u 2 Rn is the eigenve
tor of A 
orresponding to�1(A).In fa
t, a stronger 
onje
ture may be true:Conje
ture 2.12 Let A;B 2 Sn . Also let w 2 Rn2 su
h that Tw = �w and w is the eigenve
torof 12 [(A 
B) + (B 
A)℄ 
orresponding to its kth largest eigenvalue. Then �k�1 and �k+1 of thematrix are well-de�ned and they are determined by some u; v 2 Rn2 su
h that Tu = u and Tv = v.The statement of the above 
onje
ture is 
lear when all eigenvalues are distin
t. In 
ase of ties,they are to be broken (that is, the eigenvalues are numbered) in favor of the 
onje
ture. If true,the last 
onje
ture 2.12 implies the other two equivalent 
onje
tures, 2.10 and 2.11.3 Conditions for Existen
e and Uniqueness3.1 Chara
terizations for Existen
e and Uniqueness3.1.1 Conditions Using a Subspa
eDe�nition 3.1 Let A : Sn 7! Rm be surje
tive. De�neAHO(A) := f(X;S) 2 Sn � Sn : the system (2.1), determined by(X,S) and A, has a unique solution g :14



For 
onvenien
e, we de�ne the 
omplement of AHO(A):AHO(A) := f(X;S) 2 Sn � Sn : (X;S) =2 AHO(A)g :If L = N (A ), we also use the alternative notationAHO(L) := AHO(A ); AHO(L) := AHO(A ):The following is one 
hara
terization for existen
e and uniqueness in (1.1).Proposition 3.2 Let (X;S) 2 Sn �Sn and a subspa
e L � Sn be given. Then (X;S) 2 AHO(L)if and only if LX(L?) \ LS(L) 6= f0g: (3.1)Moreover, if LX is invertible (similar result if LS is invertible), then (3.1) holds if and only ifL�1X LS (�X) 2 L?; for some 0 6= �X 2 L: (3.2)Equivalently, for L = N (A ), (X;S) 2 AHO(L) if and only if 9 �X 2 N (A ) n f0g su
h that�S = L�1X LS(�X) 2 R(A �).Proof. It suÆ
es to note that the system (2.1) 
an be equivalently written asLX(�S) = �LS(�X)�X 2 L; �S 2 L?: (3.3)The following fa
t was already established in Subse
tion 2.1.Corollary 3.3 Suppose that X;S;A ;Z are de�ned as in Proposition 3.2 and (2.4). Then (X;S) 2AHO(A ) if and only if the linear operator �K = �LSZ ... � LXA �� is nonsingular.3.1.2 Conditions Using an Inde�nite Trust Region SubproblemTo obtain further 
hara
terizations for existen
e and uniqueness in (1.1), we use the followingproperties.Lemma 3.4 Suppose that (�X;�y;�S) solves (2.1) for a given pair X � 0, S � 0. Then thefollowing hold:1. h�X;�Si= 0.2. The matrix M := X(�S) + (�X)S (3.4)is skew-symmetri
. 15



3. M = X(�S) + (�X)S = 0if and only if�X = �S = 0; �y = 0: (3.5)Proof.1. This 
an be viewed simply as �X 2 N (A ) is orthogonal to �S 2 R(A �).2. This follows from (2.2), the third equation in (2.1).3. SuÆ
ien
y is 
lear. From the assumption we get �S = �X�1(�X)S. We now 
ompute theweighted norm of �X with this equation using part 1 above.0 = h�X;�Si = �h�X;X�1(�X)Si= �hX� 12 (�X)S 12 ; X� 12 (�X)S 12 i= �kX� 12 (�X)S 12 k2F :This equation holds if and only if �X = 0. Using the equation for �S, it follows that �S = 0as well. That �y = 0 follows from the se
ond equation in (2.1).The above Lemma 3.4 yields a se
ond 
hara
terization of existen
e and uniqueness.Proposition 3.5 Under the hypothesis in Proposition 3.2 and the assumptions X � 0, S � 0, wehave (X;S) 2 AHO(L) if and only if(2:1))M = X(�S) + (�X)S = 0 (3.6)if and only if 0 = �� := min tra
e n[X(�S) + (�X)S℄2o (= tra
e (M2))subje
t to (2:1): (3.7)Proof. The �rst 
hara
terization (3.6) is 
lear from Lemma 3.4. Ne
essity in the se
ond 
hara
-terization is also 
lear. Now, suppose that (�X;�y;�S) is a solution of the homogeneous system(2.1). Then Lemma 3.4 Part 2 implies thatM2 � 0 and tra
e �M2� � 0. Therefore, �� = 0 impliesthat tra
e �M2� = 0, i.e. 0 = tra
e �M2� = tra
e ��MMT �. This further implies that MMT = 0or M = 0. The 
on
lusion now follows from Lemma 3.4 Part 3.Corollary 3.6 Under the hyposthesis of Proposition 3.5, we get8<: 0 = �� := min tra
e �(X(�S)+ (�X)S)2�subje
t to h�X;�Si= 0kLS(�X) + LX(�S)k2 = 0 (3.8)if and only if (2:1) implies �X = �S = 0; independent of A : (3.9)16



Proof. The result follows sin
e the feasible set in the quadrati
 program is smaller in Proposition3.5, i.e. it depends on the spe
i�
 linear transformation A .Corollary 3.7 � 0 = �� := min tra
e �(XA �(�y) + Z(�v)S)2�subje
t to kLS (Z(�v)) + LX (A �(�y))k2 = 0 (3.10)if and only if (2:1) implies �X = �S = 0: (3.11)Proof. The result follows from Proposition 3.5 and the de�nitions of the transformations A ;Z .3.2 SuÆ
ient Conditions Independent of AWe present: (i) 
hara
terizations of existen
e and uniqueness; (ii) strengthened 
onditions of theSSK type; and strengthened 
onditions of the MZ type.Corollary 3.8 Suppose that X;S;L;A are de�ned as in Proposition 3.2. If LX is invertible (sim-ilar result if LS is invertible), then�L�1X LS + (L�1X LS)�� is de�nite ) (X;S) 2 AHO(A ): (3.12)Proof. Note that (3.2) holds only if there exists 0 6= �X 2 L su
h thath�X;L�1X LS (�X)i = 0:This 
annot happen if the quadrati
 form is de�nite.We now present suÆ
ient 
onditions using the Krone
ker produ
t and then apply this to get astrengthened SSK 
ondition. These 
onditions do not take into a

ount the 
onstraint transforma-tion A but do use the orthogonality between �S and �X .Theorem 3.9 Suppose that LX is invertible (similar results if LS is invertible) and T ; T are de�nedas above in (2.10). LetK := [I 
 (SX +XS)℄ + [(SX +XS)
 I ℄ + 2 [X 
 S℄ + 2 [S 
X ℄ : (3.13)Then 17



the 
ondition (3:14)impliesthe equivalent 
onditions (3:15); (3:16); (3:17); (3:18)whi
h imply(X;S) 2 AHO(L) for all subspa
es L � Sn :1. K = [I 
 (SX +XS)℄+[(SX +XS)
 I ℄+2 [X 
 S℄+2 [S 
X ℄ is de�nite(3.14)+ +2. (a) hI s
(SX +XS)i+ 2 hX s
Si is de�nite (3.15)(b) L�1X LS + LSL�1X is de�nite (3.16)(
) LSLX + LXLS is de�nite (3.17)(d) 2K + TK +KT is semide�nite with rank t(n) (3.18)+ +3. (X;S) 2 AHO(L); for all subspa
es L 2 Sn : (3.19)Proof. That (3.16) implies (3.19) follows from Corollary 3.8. The equivalen
e of (3.16) and(3.17) follows from the 
ongruen
e by the nonsingular self-adjoint operator LX .Now, we prove that (LSLX + LXLS) is de�nite if and only if12 hI s
(SX +XS)i+ hX s
Si is. Let U 2 Sn , thenhU; (LSLX + LXLS) (U)i = hU; [LS(XU + UX) + LX(SU + US)℄i= 2hU; SUX +XUSi+hU; [(XS + SX)UI + IU(SX +XS)℄i= 4 [s2ve
 (U)℄T �X s
S� s2ve
 (U)+2 [s2ve
 (U)℄T �I s
(XS + SX)� s2ve
 (U):Therefore, the equivalen
e of (3.15) and (3.17) follows.18



With U = UT = 12(V + V T ); V 2 Mn , the quadrati
 form under 
onsideration is4 hU; (LSLX + LXLS) (U)i = 
V + V T ; (LSLX + LXLS) (V + V T )�= 2hV; (XS+ SX)V i+ 2hV; V (XS + SX)i+4hV;XVSi+ 4hV; SVXi+hV T ; (XS + SX)V i+ hV; (XS+ SX)V T i+hV T ; V (XS + SX)i+ hV; V T (XS + SX)i2hV T ; XVSi+ 2hV;XV TSi+ 2hV T ; SVXi+ 2hV; SV TXi:(3.20)We have shown that 4 hU; (LSLX + LXLS) (U)i = hV; (2K + TK +KT )V i ; (3.21)if U = 12(V + V T ). We 
on
lude that (3.14) implies (3.17), sin
e we have ignored the restri
tionof V to symmetri
 matri
es in the Krone
ker produ
t. Let V 2 Mn be skew-symmetri
. Also letv := ve
 (V ). Then Tv = �v. Note thatvT (2K + TK +KT ) v = 2vTKv � 2vTKv = 0:Therefore, the rank of (K + TK +KT ) is always upperbounded by t(n). Using (3.21), we 
on
ludethat (3.17) and (3.18) are equivalent.Remark 3.10 The equivalent 
ondition (3.18) raises the question of �nding a simpler expressionfor the eigenvalues of the sum involving TK.The above 
onditions involve a similarity s
aling and numeri
al range, see e.g. [4, 22, 14℄. We nowpresent suÆ
ient 
onditions for existen
e and uniqueness using 
entrality and 
ondition numbermeasures. This strengthens the MZ result.Theorem 3.11 Suppose that S;X � 0. Then the equivalent 
onditions, (3.22) and (3.23), imply(X;S) 2 AHO(L) for every L � Sn :1. kS 12XS 12 � �Ik � 45�; for some s
alar � > 0: (3.22)2. The 
ondition number 
(S 12XS 12 ) � 9: (3.23)Proof. Let D2 := S�1=2�S1=2XS1=2�1=2S�1=2; (3.24)and V := DSD = D�1XD�1: (3.25)Note that the eigenvalues of V 2 and S1=2XS1=2 are the same. We de�ne�X := D�1(�X)D�1; and �S := D(�S)D;19



where �X;�S 2 Sn satisfy the 
onstraints of (3.8). Note thath�X;�Si = h�X;�Si= 0:By Corollary 3.6, we only need to show that0 � minftra
e �M2� : h�X;�Si = 0g: (3.26)tra
e �M2� = tra
e n[X(�S) + (�X)S℄2o= tra
e �V (�S)V (�S)�+ tra
e �V (�X)V (�X)�+2tra
e �(�X)V 2(�S)�= tra
e �V (�S)V (�S)�+ tra
e �V (�X)V (�X)�+2tra
e �(V 2 � �I)(�X)(�S)� :The parameter � plays the role of a Lagrange multiplier for (3.26), see [25, 20℄. Let s := s2ve
 ��S� ;x := s2ve
 ��X�. Then using Lemma 2.4 yieldstra
e �M2� =�xs�T ( V s
V 00 V s
V !+  0 I s
 �V 2 � �I�I s
 �V 2 � �I� 0 !)�xs� :Therefore, it suÆ
es to �nd 
onditions whi
h guarantee that V s
V I s
 �V 2 � �I�I s
 �V 2 � �I� V s
V ! � 0; for some �: (3.27)We 
an take the S
hur 
omplement in (3.27) to get the equivalent 
onditionV s
V � �I s
 �V 2 � �I�� �V s
V ��1 �I s
 �V 2 � �I�� � 0: (3.28)Note that the matri
es V; (V 2��I) and I all 
ommute. Thus, using Corollary 2.5, we 
an diagonalizeall four terms in (3.28) whi
h yields the following result for the eigenvalues �i of V ,4�2i�2j � (�2i + �2j � 2�)2 � 0; 8i; j: (3.29)Equivalently, 2�i�j � j�2i + �2j � 2�j; 8i; j: (3.30)Equivalently, 12 (�i � �j)2 � � � 12 (�i + �j)2 ; 8i; j: (3.31)Su
h � exists i� (�max � �min)2 � 4�2min: Equivalently, we see 
(V ) � 3 or 
2(V ) � 9. Sin
ethe 
ondition numbers of V 2 and S1=2XS1=2 are the same, using Proposition 1.1, we 
on
lude thedesired result. 20



Remark 3.12 Note that in the above proof, we used the skew-symmetry 
ondition early in theproof, and then threw it away. In fa
t, we 
an substitutes = s2ve
 ��S� = ��D s
D� s2ve
 �L�1X LS �D(�X)D�� :This should lead to stronger results. Also, we 
ould have used the usual Krone
ker produ
t andemployed Lemma 2.3 instead of the symmetri
 Krone
ker produ
t and Lemma 2.4. This alternativeproof leads to the bounds 35 for � and 4 for the 
ondition number. Using the same proof te
hniquewith the symmetri
 Krone
ker produ
t not only made the proof more elegant but it also improvedthe bounds. Finally, a related but weaker bound was obtained by Monteiro and Todd [17℄, usingdi�erent te
hniques. We slightly improve their result in Theorem 3.18.3.2.1 Shida-Shindoh-Kojima (SSK) SuÆ
ient ConditionFrom Corollary 3.8 and Theorem 3.9, we get the Shida, Shindoh and Kojima (SSK) suÆ
ient
ondition, [24℄ and see why this 
ondition is so 'weak', i.e. it does not use the positive de�nitenessof X 
 S or S 
X .Corollary 3.13 Suppose that X;S;L;A are de�ned as in Proposition 3.2 and X;S � 0. Thenea
h of the 
onditions in Theorem 3.9 is implied by the Shida et al. (SSK) hypothesisXS + SX � 0:Proof. The results follow immediately from Theorem 3.9.3.2.2 Monteiro-Zanj�a
omo (MZ) SuÆ
ient ConditionIn this se
tion we present the theorem from [18℄ that provides a suÆ
ient 
ondition for the abovesystem (1.1) to have a unique solution. The result follows from the strengthened version Theorem3.11 above. We in
lude a note on a typographi
al error in [18℄.Theorem 3.14 (Monteiro-Zanj�a
omo,[18℄) If (X;S; y) 2 Sn+ � Sn+ �Rm is su
h thatkS 12XS 12 � �Ik � 12�; for some s
alar � > 0; (3.32)then system (1.1) has a unique solution.Proof. The proof follows from the strengthened version in Theorem 3.11. Note that the lastexpressions in the proof in [18℄ should read...� � � � kd�Sk2F + 14�2kd�Xk2F � 212�kd�SkF kd�XkF= �kd�SkF � 12�kd�XkF�2� 0: (3.33)21



3.2.3 Monteiro-Todd (MT) SuÆ
ient ConditionThe previously stated MZ result was improved by Monteiro and Todd [17℄ using di�erent te
hniques.Theorem 3.15 (Monteiro-Todd,[17℄) If (X;S; y) 2 Sn+ � Sn+ �Rm is su
h thatkS 12XS 12 � �Ik < 1p2�; for some s
alar � > 0;then system (1.1) has a unique solution.Here, we extend the te
hniques of MT by utilizing the primal-dual symmetry property of theAHO dire
tion. As a result, we slightly improve the 
orresponding MT bound. We need thefollowing elementary lemmas:Lemma 3.16 Let A 2 Sn and B 2Mn. Then1. kABkF � kAkkBkF : (3.34)2. 

BTAB

F � �min �BTB� kAkF : (3.35)Lemma 3.17 ([17℄) Let M 2 Mn su
h that �PMP�1� is skew-symmetri
 for some nonsingularP 2 Mn . Suppose M = A+ B, where A 2 Sn . Then kAkF � p2kBkF :The next theorem improves the 
onstants 1p2 and �3 + 2p2� (resp.) of [17℄ to �p3� 1� and�3 + 2p3� (resp.). The proof of the next theorem follows the ideas of Monteiro and Todd [17℄ forprimal and dual s
alings and then 
ombines them in a symmetri
 way.Theorem 3.18 Suppose that S;X � 0. Then the following equivalent 
onditions imply that(X;S) 2 AHO(L), for every L � Sn :1. 


S1=2XS1=2� �I


 < �p3� 1� �; for some s
alar � > 0. (3.36)2. The 
ondition number 
 �S1=2XS1=2� < 3 + 2p3: (3.37)Proof. Suppose (U;�y;W ) 2 Sn � Rm � Sn solves the system (2.1). Let M := US + XW .Then M is skew-symmetri
. We will apply Lemma 3.17 to X�1=2MX1=2. LetA := �X�1=2UX�1=2 +X1=2WX1=2 (A 2 Sn );B := X�1=2UX�1=2 �X1=2SX1=2� �I� :Note that hX�1=2UX�1=2; X1=2WX1=2i = hU;W i = 0implies kAk2F = �2 


X�1=2UX�1=2


2F + 


X1=2WX1=2


2F :22



Lemma 3.17 and Lemma 3.16 Part 1 implykAk2F � 2kBk2F � 2 


X�1=2UX�1=2


2F 


X1=2SX1=2� �I


2 :Therefore, ��2 � 2 


X1=2SX1=2� �I


2�


X�1=2UX�1=2


2F � � 


X1=2WX1=2


2F : (3.38)Similarly, using the above MT idea with S1=2MS�1=2 = S1=2US1=2 + S1=2XWS�1=2, we applyLemma 3.17 to S1=2MS�1=2. LetA := �S�1=2WS�1=2 + S1=2US1=2 (A 2 Sn );B := �S1=2XS1=2� �I�S�1=2WS�1=2:Using hU;W i = 0, Lemma 3.17 and Lemma 3.16 Part 1, we obtain��2 � 2 


S1=2XS1=2� �I


2�


S�1=2WS�1=2


2F � � 


S1=2US1=2


2F : (3.39)Sin
e �S1=2XS1=2� and �X1=2SX1=2� have the same eigenvalues, 
ombining the relations (3.38)and (3.39) we 
on
lude��2 � 2 


S1=2XS1=2� �I


2��


X�1=2UX�1=2


2F + 


S�1=2WS�1=2


2F�� ��


X1=2WX1=2


2F + 


S1=2US1=2


2F� : (3.40)Using Lemma 3.16 Part 2,


X1=2WX1=2


2F = 


X1=2S1=2�S�1=2WS�1=2�S1=2X1=2


2F� h�min�X1=2SX1=2�i2 


S�1=2WS�1=2


2F :Similarly, 


S1=2US1=2


2F � h�min�S1=2XS1=2�i2 


X�1=2UX�1=2


2F :Thus, (3.40) yields that every solution (U;�y;W ) of the system (2.1) satis�es��2 � 2 


S1=2XS1=2� �I


2 + h�min�S1=2XS1=2�i2��


X�1=2UX�1=2


2F + 


S�1=2WS�1=2


2F� � 0:Let a := 1� 

S1=2XS1=2� �I

 with � = �min(S1=2XS1=2)+�max(S1=2XS1=2)2 : Then �min �S1=2XS1=2� =(1 � a)�. Therefore, the above inequality implies that (0; 0; 0) 2 Sn � Rm � Sn is the uniquesolution of (2.1) if �2 � 2a2�2 + (1� a)2�2 > 0:Sin
e �2 > 0, we analyze the quadrati
 inequality in a and �nd that if a < �p3� 1� then (X;S) 2AHO(L). The value �p3� 1� of a 
orresponds to the bound �3 + 2p3� on the 
ondition numberof �S1=2XS1=2� by Proposition 1.1. 23



3.3 SuÆ
ient Conditions Dependent on AThe following is similar to Theorem 3.1 from [27℄.Corollary 3.19 Suppose that X;S;L;A are de�ned as in Proposition 3.2. If LX is invertible thenZ� �L�1X LS + (L�1X LS)��Z � 0) (X;S) 2 AHO(A ): (3.41)If LS is invertible, thenA � �L�1S LX + (L�1S LX)��A � 0) (X;S) 2 AHO(A ): (3.42)Proof. Note that (3.2) holds only if there exists 0 6= �X 2 L su
h that
�X;L�1X LS (�X)� = 0:We use �X = Z(�v). (The se
ond result follows similarly.)We use the notation Z(�v) =Pt(n)i=m+1(�v)iAi. Sin
e R(A �) ? N (A ), we havehAj ; Aii = 0; 8i = 1; : : : ; m; 8j = m+ 1; : : : ; t(n):If S � 0 then LS � 0 and LSZ is one-one. (Similarly for X;LX and LXA �.) Therefore, nonsingu-larity of �K depends on the relationship of the range spa
es of the two linear transformationsRX := R(LXA �); RS := R(LSZ);i.e. the rotations of the range spa
es of Z ;A � or equivalently of the orthogonal spa
es L;L?.Equivalently, we need to study the s
aled matri
esXAi +AiX; i = 1; : : : ; m; SAi +AiS; i = m+ 1; : : : ; t(n):4 Topologi
al PropertiesWe have seen the following interesting 
onundrum. The three best known sear
h dire
tions arethe AHO, HrvwKshM and NT dire
tions. Under standard nondegenera
y assumptions, all threedire
tions are well-de�ned in a neighbourhood of the 
entral path for X;S � 0. The linear systemsfor both HrvwKshM and NT be
ome in
reasingly ill-
onditioned as the barrier parameter � # 0, i.e.when X;S approa
h the optimum. This is not the 
ase for AHO near the 
entral path. However,both HrvwKshM and NT are well de�ned for all X;S � 0, while this is not the 
ase for AHO,i.e. the linearized system for the AHO dire
tion 
an be
ome ill-
onditioned unless the iterates stay
lose to the 
entral path. Nevertheless, we now show that AHO is generi
ally well-de�ned.Theorem 4.1 For every subspa
e L 2 Sn, the dimension of AHO(L) is full; i.e.,dim(AHO(L)) = n(n+ 1):Moreover, AHO(L) is a set of measure zero in Sn � Sn :In the above sense, the AHO dire
tion is generi
ally well-de�ned.24



Proof. The fa
t that dim(AHO(L)) = n(n+1) follows from Theorem 3.11. Note that AHO(L)and therefore AHO(L) are both semi-algebrai
 sets. Sin
e semi-algebrai
 sets without interiorare of measure zero (see Theorem 8.10 in [7℄), it suÆ
es to prove that the interior of AHO(L) inSn � Sn is empty. Note that �K(X;S) := �LSZ ... � LXA �� is linear in X and S. Therefore,det � �K(X;S)� : Sn � Sn 7! R is an analyti
 fun
tion. If this fun
tion is zero on an open subsetof Sn � Sn , then, sin
e the fun
tion is analyti
, it has to be identi
ally zero on all of Sn � Sn(see, for instan
e, [8, page 240℄). But we know that there are full-dimensional 
onne
ted subsetsof Sn � Sn over whi
h det � �K(X;S)� 6= 0. Therefore, the interior of AHO(L) is empty for everyL � Sn and AHO(L) is of measure zero.Remark 4.2 It also easily follows from the above proof that AHO(L) is an open subset of Sn �Sn .We 
an also give an alternative (but related) approa
h to proving the last theorem (via proving thatthe interior of AHO(L) is empty). Let (X;S) 2 AHO(L). Let W 2 Sn++ (negative de�nite alsoworks). Then by Lemma 2.2, LW (Sn ) = Sn . Therefore, there exists � > 0 su
h that for every� 2 [��; �℄ n f0g, LX+�W (L?) \ LS+�W (L) = f0g:(Another way of seeing this is to 
onsider �K. What we are doing here is equivalent to repla
ing �Kby � �K+ �I�; in our 
ase, we are using a nonsingular matrix instead of I. Clearly, for all suÆ
ientlysmall � 6= 0, the matrix � �K+ �I� is nonsingular.) Therefore, there exists � > 0 su
h that for every� 2 [��; �℄ n f0g, �X + �W; S + �W� 2 AHO(L):5 Extension to the Monteiro-Zhang FamilyWe now present an argument extending our 
 � 9 result to all sear
h dire
tions in the Monteiro-Zhang family. A simple argument is given by Monteiro [16℄ to show that MZ result extends tothe whole Monteiro-Zhang family (also see [17℄ for the extension of the MT result). Monteiro'sarguments are also appli
able to our improvements. However, below we give more me
hani
al
omputations showing that the proof te
hniques also extend.Re
all that HP :Mn ! Sn is the linear transformationHP (M) := PMP�1 + P�TMTPT ;where P is any n � n nonsingular matrix. Then in the last equation group (in �nding the sear
hdire
tion) apply HP (�) to both sides and then solve for �X and �S.When we write the 
orresponding homogeneous system, we haveP (�X)SP�1 + PX(�S)P�1 + P�TS(�X)PT + P�TX(�S)PT = 0:Note that this equation is equivalent to�P (�X)SP�1 + PX(�S)P�1� is skew-symmetri
:25



Therefore, as in our 
urrent arguments for the spe
ial 
ase P = I , to prove that the dire
tion iswell-de�ned, it suÆ
es to prove thattra
e n�P (�X)SP�1 + PX(�S)P�1�2o � 0:Now, we evaluate the above expression and �nd that it is equal to:tra
e �P (�X)S(�X)SP�1�+ tra
e �P (�X)SX(�S)P�1�+tra
e �PX(�S)(�X)SP�1�+ tra
e �PX(�S)X(�S)P�1� :All P 's under the tra
e 
an
el and we are ba
k to the spe
ial 
ase with P := I . Therefore, therest of the 
urrent proof of Theorem 3.11 applies and all sear
h dire
tions in the MZ-family arewell-de�ned if 
(S1=2XS1=2) = 
(V 2) � 9.For the SSK 
ondition, note that X 7! PXPT and S 7! P�TSP�1. So,XS + SX 7! PXSP�1 + P�TSXPT :For instan
e,K 7! � �I 
 �PXSP�1 + P�TSXPT��+ ��PXSP�1 + P�TSXPT�
 I�+2 ��P 
 P�T � (X 
 S) �PT 
 P�1��+ 2 ��P�T 
 P� (S 
X)�P�1 
 PT �� :Again the positive de�niteness of the last two terms is 
learly implied by X;S � 0. Therefore, westill have a strengthening of the extension of the SSK result.A
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