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ON LIMITING PROPERTIES 21 Introdu
tionConsider the primal and dual linear programming (LP) problems(P ) min 
TxAx = b;x � 0;(D) max bTyATy � 
;where 
 2 Rn, b 2 Rm and A 2 Rm�n has full row rank (this will be assumed throughoutthe paper).On many o

asions, it will be more 
onvenient for us to 
onsider the equivalent for-mulations whi
h are phrased in terms of subspa
es: N (A) (the null spa
e of A) and itsorthogonal 
omplement R(AT ) (the range spa
e of AT ) in Rn as follows.(P ) min �sTxx 2 (S + �x) ;x � 0;(D) min �xT ss 2 �S? + �s� ;s � 0;where we 
an take S := N (A) (thus, S? = R(AT )), �x 2 Rn su
h that A�x = b and �s 2 Rnsu
h that (�s� 
) 2 R(AT ). Then the new pair is equivalent to the previous one in thatthe 
orresponding optimal solution sets (in the appropriate spa
e for (D)) are identi
aland the obje
tive values 
an be related by trivial transformations.The subspa
e transformation reveals other equivalen
e 
lasses in the data spa
e for LPproblems in this standard form. Two full row rank matri
es A, �A of the same dimensionsu
h that N (A) = N ( �A) get mapped to the same subspa
e pair S; S? in the subspa
eformulation. Moreover, many �x ve
tors 
orrespond to the same b(namely, fx 2 Rn : Ax = bg) and many 
 ve
tors 
an be redu
ed to the same �s (namely,�
 2 Rn : (�s� 
) 2 R �AT�	).If 
 2 R �AT� then we 
an take �s := 0 whi
h proves that in (P ), every feasiblesolution is optimal (the obje
tive fun
tion is 
onstant over the feasible region). Similarly,if �x 2 N (A) (i.e., b = 0) then every feasible solution of (D) is optimal. We will ex
ludesu
h spe
ial 
ases. Even the least sophisti
ated algorithms will do the right thing in su
h



ON LIMITING PROPERTIES 3
ases. For instan
e, the aÆne-s
aling algorithm (whose sear
h dire
tion is one of the mainobje
ts of study here) always takes a step along the s
aled (with respe
t to the metri
de�ned by the 
urrent interior-point iterate) steepest-des
ent dire
tion. This dire
tion issimply a s
aled proje
tion of s
aled 
 (in 
ase of (D), �x) onto a linear subspa
e and it willalways result in the zero ve
tor for (P ), if 
 2 R �AT� (and similary, it will always resultin the zero ve
tor for (D) if b = 0|i.e., �x 2 N (A)).Let PA denote the orthogonal proje
tion onto N (A). For x 2 Rn, X denotes then� n diagonal matrix whose iith entry is xi. For 
onvenien
e, suppose that we are givenx0 2 Rn++ := fx 2 Rn : x > 0g su
h that Ax0 = b and that the optimal obje
tive value isknown to be v. We want to get within � (given) of v. e denotes the ve
tor of all ones (ofappropriate size, determined by the 
ontext). Then, the aÆne-s
aling algorithm 
an bedes
ribed as follows: k := 0;WHILE 
Txk � v � � DO�A := AXk; �
 := Xk
; �d := �P �A�
;
hoose � > 0 su
h that (e+ � �d) > 0;xk+1 := Xk(e+ � �d);k := k + 1;ENDfWHILEg;Following Karmarkar's algorithm [11℄, the aÆne-s
aling algorithm was proposed as asimpli�
ation of it. These proposals 
ame from Barnes [2℄ and Vanderbei, Meketon andFriedman [24℄, independently. It turned out, however, that Dikin [5℄ proposed it almost 20years prior to its redis
overy. Current best 
onvergen
e results (without any assumptionson the nondegenera
y of (P ) or (D)) are due to Tsu
hiya and Muramatsu [23℄. Let �maxdenote the maximum step size for whi
h the next iterate is feasible. They prove thattaking the step size as 23�max guarantees the 
onvergen
e of the algorithm. (This result issomewhat tight, in that for larger step sizes the dual iterates need not 
onverge |see Halland Vanderbei [9℄.) However, 
urrently it is not known whether there exists a s
heme for
hoosing the step size su
h that the aÆne-s
aling algorithm be
omes a polynomial timealgorithm for LP. On a related issue, Megiddo and Shub [15℄ proved that the aÆne-s
alingtraje
tories 
an get arbitrarity 
lose to the 
ombinatorial paths on the boundary of theKlee-Minty 
ube whi
h is used to show that various variants of the simplex method areexponential time algorithms. AÆne-s
aling traje
tories were also studied by Adler andMonteiro [1℄.



ON LIMITING PROPERTIES 4AÆne-s
aling algorithm is the simplest and one of the most fundamental of the interior-point algorithms. Deep understanding of the behaviour of the aÆne-s
aling algorithmusually has important 
onsequen
es for many other, more sophisti
ated interior-pointalgorithms.The notion of lo
al metri
 whi
h is profoundly important in interior-point methods,is the key in the aÆne-s
aling algorithm. The aÆne-s
aling sear
h dire
tion 
an be in-terpreted as the displa
ement between the 
urrent point �x and the minimizer of 
Tx overthe following ellipsoid 
entered at �x:�x 2 Rn : (x� �x)T �X�2(x� �x) � 1	 :This ellipsoid (
alled the Dikin Ellipsoid) is 
ompletely 
ontained in the feasible regionwhen restri
ted to the aÆne subspa
e fx 2 Rn : Ax = bg. Note that the shape and thesize of the ellipsoid are de�ned by the positive de�nite matrix �X�2 whi
h 
hanges as the
urrent point 
hanges (hen
e the term lo
al metri
).Let Xk �d denote the aÆne-s
aling dire
tion at the point xk, as in the statement of thealgorithm. Then xk+1 := xk + �Xk �dand 
Txk+1 = 
Txk + �
TXk �d= 
Txk � ��
TP �A�
= 
Txk � � ��
TP �A� �P T�A �
�= 
Txk � �kP �A�
k2(where we used the fa
ts: P T�A = P �A and P 2�A = P �A). We see that the obje
tive valueof (P ) stri
tly improves from one iteration to the next. Moreover, if P �A�
 = 0 (same as
 2 R(AT )) then every feasible solution of (P ), in
luding xk is optimal.Usually, the worst-
ase behaviour of interior-point algorithms for LP is measured interms of the larger of the dimensions (that is n) of the problem and the desired a

ura
y� 2 (0; 1) of the �nal solution (relative to the starting point). Moreover, we are usually
ontent with just fo
using on the bounds on the number of iterations required. The
urrent best polynomial bound of this sort is O(pn ln(1=�)). However, if we study thealgorithms more deeply, we 
an 
ome up with 
omplexity analyses whi
h depend on thedata (A; b; 
) in more sophisti
ated ways (using 
omplexity measures other than n andln(1=�)) and expose more spe
i�
 information about the performan
e of the underlyingalgorithms. On
e su
h knowledge is exposed, then we 
an go ba
k to the development ofthe algorithms and try to improve them in a way that the overall 
omplexity bounds aswell as the pra
ti
al performan
e of the algorithms get better.



ON LIMITING PROPERTIES 5In the 
urrent paper, our fo
us is on the aÆne-s
aling dire
tion. Almost all sear
hdire
tions in interior-point methods 
an be expressed as a linear 
ombination of theaÆne-s
aling and 
entering dire
tions. Sin
e the aÆne-s
aling dire
tion is the 
ompo-nent responsible for the improvement in the obje
tive fun
tion value, its analysis is veryimportant for most interior-point algorithms.In the next se
tion, we dis
uss oblique proje
tions and the 
omplexity measure ��(A).Se
tion 3 introdu
es some of the existing results about the aÆne-s
aling dire
tions. InSe
tion 4, using geometri
 
on
epts (together with the algebrai
 
on
ept of minimal lin-ear dependen
e), we 
hara
terize the worst-
ase angle between the aÆne-s
aling dire
tionsand the obje
tive fun
tion ve
tor (see Theorem 4.2). In Se
tion 5, we represent a new
hara
terization of Ye's 
omplexity measure (this extends an earlier partial 
hara
teriza-tion by Lara and Gonzaga [12℄); see Theorem 5.1. Using our geometri
 
hara
terizationof the worst-
ase angle from Se
tion 4, we provide lower bounds on this angle in terms of
ertain 
omplexity measures of the data, in
luding ��(A) (see Theorem 5.2). We 
on
ludewith a strengthening of this last result in the interesting 
ase that we are near the optimalfa
e (see Theorem 5.3).2 Oblique proje
tions, pseudo-inverses and ��(A)The 
omplexity measure ��(A) 
an be de�ned as the suprema of the norms of all obliqueproje
tion operators onto N (A). This measure has been studied by Stewart [19℄, O'Leary[18℄, Todd [20℄, Vavasis and Ye [27℄ and others. ��(A) has been used to study the 
omputa-tional 
omplexity of some interior-point path-following algorithms for linear programming.Most notably, see Vavasis and Ye [26℄ and the re
ent and very ni
e analysis of Monterioand Tsu
hiya [17℄ (who used a s
ale-invariant version of ��(A)). ��(A) was also used inthe analysis of a generalization of Tardos' s
heme (see Ho and Tun�
el [10℄); but re
entlya better 
omplexity measure repla
ed ��(A), see, Lara and Tun�
el [14℄.Let v0 2 Rn and a ve
tor d in the positive orthant Rn++ be given. We de�ne the obliqueproje
tion of v0 2 Rn onto R(AT ) with respe
t to d 2 Rn++ (and denote it by ~QA;dv0) asthe unique solution of the problemminimize fkD(v � v0)k : v = ATw for some w 2 Rmg;where D := Diag(d) is the diagonal matrix whose diagonal elements are the entries of d.Similarly, the oblique proje
tion QA;dv0 of v0 onto N (A), the null spa
e of A, with respe
tto d 2 Rn++ is the unique minimizer ofminimize fkD�1(u� v0)k : Au = 0g:



ON LIMITING PROPERTIES 6Under the assumption that A is of full row rank, it is easy to show thatQA;dv0 = �I �D2AT (AD2AT )�1A� v0 and ~QA;dv0 = AT (AD2AT )�1AD2v0:The matrix A+d := (AD2AT )�1AD2 is frequently named as the weighted pseudo-inverse ofA (be
ause A+dAT = I). Even though this formula does not hold without the assumptionof full row rank, A+d always exists. In general, we 
an write~QA;dv0 = AT (A+d )v0 and QA;dv0 = hI � �A+d �T Aiv0:Consider now the set B(A) of 
olumn indi
es asso
iated with maximally linearly inde-pendent 
olumns of A. If J 2 B(A) then the 
olumns of AJ are linearly independent andif we add any other 
olumn of A to AJ , then the linear independen
e is broken. Under theassumption of full row rank, the elements J of B(A) de�ne m�m nonsingular submatri-
es of A. The following results are devoted to 
al
ulating the weighted pseudo-inverses:The oblique proje
tion �v of the origin onto the set fv : v = 
 � ATy; y 2 Rmg, is theunique solution of the problem minfkDvk : v = 
�ATy; y 2 Rmg. Using the optimality
onditions, we 
an write �v = 
 �AT �y, where �y = A+d 
. Similarly, the oblique proje
tion�w of the origin onto the aÆne subspa
e de�ned by Ax = b is the unique minimizer ofthe problem minfkD�1wk : Aw = bg. By the optimality 
onditions, �w = (A+d )Tb. Thefollowing result, due to Dikin [4℄, 
al
ulates �y and �w:Lemma 2.1 (Dikin [4℄) Let A 2 Rm�n, 
 2 Rn, b 2 Rm, and D := Diag(d), for somed 2 Rn++. Then for �J (d) := det(D2J) det(AJ)2PK2B(A) det(D2K)det(AK)2 ,(a) A+d 
 = XJ2B(A)�J (d) (AJ)�T 
J ;(b) (A+d )Tb = XJ2B(A)�J (d)w(J;b);where w(J;b)J := (AJ)�1 b and the remaining entries of w(J;b) are zero.Proof. A proof for part (a) 
an be found in Ben-Tal and Teboulle [3℄. For part (b),note that for every 
 2 Rn, we have
T (A+d )Tb =PJ2B(A) �J (d)
TJ (AJ)�1 b=PJ2B(A) �J (d)
Tw(J;b)= 
T PJ2B(A) �J (d)w(J;b):



ON LIMITING PROPERTIES 7Sin
e (A+d )T b is unique, and the above identities hold for every 
 2 Rn, we have our
laim. �Now, we spe
ialize these ideas to �t our needs. Consider a partition of the 
olumnindi
es set [B;N ℄ and de�ne for B(AB) an extended �B(AB) su
h that for ea
h J 2 B(AB)we 
hoose an extended �J � J su
h that �J 2 B(A). For some �b 2 R(AB) we 
an 
al
ulatebasi
 solutions of ABwB = �b by using the basi
 extensions given by the elements of �B(AB).So, a basi
 solution w(J;�b) 
an be 
al
ulated by w(J;�b)�J = (A �J)�1 �b (and setting the otherentries of w(J;�b) to zero).Theorem 2.1 Let A 2 Rm�n, 
 2 Rn, b 2 Rm, and D := Diag(d), for some d 2 Rn++.Also let [B;N ℄ be a partition of the index set. Then for�J(dB) := det(D2J ) det(AJ)2PK2 �B(AB) det(D2K) det(AK)2 ;we have (AB)+dB 
 = XJ2 �B(AB)�J (dB) (AJ)�T 
J (1)and �(AB)+dB�T b = XJ2 �B(AB)�J (dB)w(J;�b); (2)where w(J;�b)J := (AJ)�1 �b (and the other entries of w(J;�b) are set to zero).Proof. The solution given in (1) is a 
onvex 
ombination of the basi
 solutions forATBy � 
B. These basi
 solutions 
an be 
al
ulated by using the extended basis in �B(AB),and the s
alars �J (dB) in the same way as in the lemma above. The proof of equation(2) is analogous. �We de�ne the 
omplexity measure ��(A) as��(A) := supfk ~QA;dvk : kvk = 1; d 2 Rn++g:We list in the following lemma some of the properties of ��(A). First, we de�ne thesets S := fs 2 R(AT ) : ksk = 1g and X := fx 2 N (AD) : d 2 Rn++g.



ON LIMITING PROPERTIES 8Lemma 2.2 Consider the m� n matrix A, b 2 R(A), the matrix Z whose rows form abasis of N (A). Then:(a) 1��(A) = �(A) := inffks� xk : s 2 S; x 2 Xg.(b) kA+d bk � ��(A)kA+bk, where A+ is the right-pseudo-inverse of A.(
) ��(A) = ��(Z).(d) ��(A) = maxfkAT (AJ)�T k : J 2 B(A)g, where B(A) is the set of 
olumn indi
esasso
iated with nonsingular m�m submatri
es of A.Proof. Stewart [19℄ and O'Leary [18℄ demonstrated part (a). A proof of part (b) 
anbe found in Vavasis and Ye [27℄, while Gonzaga and Lara [8℄ proved part (
). Finally, forpart (d) we refer to Todd [22℄, Vavasis and Ye [26℄ and Todd, Tun�
el and Ye [21℄. �3 The AÆne-S
aling Dire
tionConsider d 2 Rn++. The primal aÆne-s
aling dire
tion u(d) is de�ned as the uniquesolution for the problem minimize �
Tu+ 12kD�1uk2subje
t to Au = 0: (3)Analogously, we de�ne the dual aÆne-s
aling dire
tion in terms of the right hand side bas follows: First we get some ve
tor �x satisfying A�x = b. Then the dual aÆne-s
alingdire
tion v(d) is the unique solution for the problemminimize ��xTv + 12kDvk2subje
t to v = ATw: (4)We want to study lower bounds for the 
osine of the angle between u(d) and 
 forall d 2 Rn++. Tseng and Luo [22℄ show that this in�mum is positive. Tseng and Luo'sdemonstration is an indire
t proof, so the in�mum is not 
al
ulated in a 
onstru
tive way.We shall study su
h limiting angles and their relationship with other known 
omplexitymeasures. A proof of the following result 
an also be found in Monteiro and Tsu
hiya[16℄.



ON LIMITING PROPERTIES 9Lemma 3.1 (Tseng and Luo [22℄)Consider A; b and 
 as before, with 
 62 R(AT ). Then there exist positive 
onstants �A;
and �A;b su
h that �A;
 = infd2Rn++�
Tu(d)ku(d)k� ;�A;b = infd2Rn++� �xTv(d)kv(d)k� :Our aim is to �nd lower bounds on these in�ma in terms of some 
omplexity measuresof (P ) and (D).The dire
tion u(d) satis�es the optimality 
onditions for some y 2 Rm:Au = 0; (5)u = D2(
�ATy): (6)Using these equations we obtain the following equivalent 
ompa
t formulaeu(d) = DPADD
; (7)u(d) = D2 �
�AT (AD2AT )�1AD2
� (8)u(d) = D2 �
�ATA+d 
� or (9)u(d) = (I � (A+d )TA)D2
 (10)for the full row rank matrix A.Consider an arbitrary set I � f1; 2; : : : ; ng. We will denote by [u(d)℄I the restri
tionof u(d) to the indi
ies in I; and u(dI) stands for the aÆne-s
aling dire
tion 
al
ulatedwith the restri
ted data AI ; 
I ; dI . Then [u(dI)℄I = u(dI) satis�es for some y:AIuI = 0; (11)uI = D2I (
I �ATI y): (12)By (10) we have [u(d)℄I = (I � (A+dI)TAI)D2I 
I :Consider an arbitrary partition [B;N ℄ of the 
olumn index set. Assume that we know[u(d)℄N , the part of u(d) indexed by N . Then the remainder, [u(d)℄B, 
an be obtained asthe unique solution of minimize �
TBuB + 12k (DB)�1 uBk2ABuB = �AN [u(d)℄N :



ON LIMITING PROPERTIES 10This solution satis�es the optimality 
onditions�
B +D�2B uB +ATB� = 0ABuB = �AN [u(d)℄Nwhi
h give us the form [u(d)℄B = u(dB)� �(AB)+dB�T AN [u(d)℄N :Using Lemma 2.1, we 
an write[u(d)℄B = u(dB) + XJ2 �B(AB)�J (dB) hw(J;�AN [u(d)℄N)iB ; (13)where �J(dB) := det(D2J ) det(AJ)2PK2 �B(AB) det(D2K) det(AK)2 ;hw(J;�AN [u(d)℄N)iJ := � (AJ)�1AN [u(d)℄N , and all other entries of w(J;�AN [u(d)℄N) are setto zero. The ve
tor w(J;~b) 2 Rn is de�ned based on the input J � f1; 2; : : : ; ng su
h thatjJ j = m, AJ is nonsingular, and the ve
tor ~b 2 Rm. We simply sethw(J;~b)iJ := [AJ ℄�1 ~b andhw(J;~b)ij := 0; for every j =2 J:Equation (13) is equivalent to[u(d)℄B = u(dB) + XJ2 �B(AB)Xi2N �J (dB) [u(d)℄i �w(J;�Ai)�B (14)where �w(J;�Ai)�J := � (AJ)�1Ai and all the other entries of w(J;�Ai) are set to zero. Notethat if i 2 N \ J for some J 2 �B(AB) then �w(J;�Aj)�i = 0.For x 2 Rn, let J�(x) := fj 2 f1; 2; : : : ; ng : xj < 0g;J+(x) := fj 2 f1; 2; : : : ; ng : xj > 0g;J0(x) := fj 2 f1; 2; : : : ; ng : xj = 0g;J(x) := J�(x) [ J+(x):We want to study the map u(d) when d! �d � 0 ( �d 6= 0). Given �d, 
onsider the partition[B;N ℄ de�ned as B := J+( �d) and N := J0( �d) (note that J�( �d) = ;). The 
omponents of



ON LIMITING PROPERTIES 11d indexed by B are 
alled \the large variables" and the other ones \the small variables".Megiddo and Shub [15℄ and Gonzaga and Tapia [7℄ studied the behavior of the largevariables in the mapping u(d) when d ! �d: We quote the result here, and give a simpleproof whi
h uses Lemma 2.1 and (14):Theorem 3.1 (Megiddo and Shub [15℄)Consider u(d), d! �d and the partition [B;N ℄ as de�ned above. Then(i) [u(d)℄B ! u( �dB) = �DBPAB �DB �DB
B.(ii) [u(d)℄N ! 0; moreover, (PADD
)N ! 0.Proof. From (9) we have[u(d)℄N = D2N �
N �ATN �A+d � 
�= DN �DN �
N �ATN �A+d � 
�� :y(d) := (A+d )
 is bounded; be
ause, by Lemma 2.1 it is a 
onvex 
ombination of the dualfeasible solutions (AJ)�T 
J . Furthermore, sin
e DN �
N �ATN(A+d )
� = (PADD
)N andDN 
onverges to zero, we have the se
ond 
laim. To show (i), note that by (14) we have[u(d)℄B = u(dB) + XJ2 �B(AB)Xi2N �J (dB) [u(d)℄i �w(J;�Ai)�Bwhere �w(J;�Ai)�J = � (AJ)�1Ai (and the other entries of w(J;�Ai) are set to zero). Bypart (ii) [u(d)℄ ! 0 and sin
e �J (dB) is bounded we have that the se
ond part of theequation above tends to zero and we have our 
laim. �4 Minimal linear dependen
iesThe number �A;
 will be estimated in terms of the minimal linear dependen
ies amongthe 
olumns of the matrix A and the angles su
h minimal linear dependen
ies make withthe 
ost ve
tor 
.As in [13℄, we shall fo
us on those 
hara
terizations of 
omplexity measures involvingthe sign pattern of ve
tors in 
ertain orthogonal linear subspa
es. For x 2 Rn, sign(x) 2



ON LIMITING PROPERTIES 12f�; 0;+gn en
odes the signs of the entries of x. Let S � Rn be a linear subspa
e. Wedenote by sign(S) � f�; 0;+gn the set of sign ve
tors of the elements of S.Note that if A 2 Rm�n su
h that N (A) = S then every nonzero ve
tor in S repre-sents a linear dependen
e among the 
olumns of A. Minimal linear dependen
ies play aparti
ularly important role in our work.We denote the set of sign patterns of those minimal elements in S by sign(S). Thatis, sign(S) � sign(S) denotes those nonzero sign patterns in sign(S) su
h that settingany number of +0s and �0s to zero (without 
hanging the others) does not give anothernonzero element of sign(S). Then, �x 2 Snf0g is minimal if for all x̂ 2 Snf0g satisfyingJ�(x̂) � J�(�x), J+(x̂) � J+(�x), J0(x̂) � J0(�x) we have sign(x̂) = sign(�x). So, �x 2 S isminimal if and only if sign(�x) 2 sign(S).Denote by WP the set of minimal ve
tors w in N (A) su
h that kwk = 1 and 
Tw � 0.Also denote by ŴP the subset of WP whose elements satisfy 
Tw > 0. Analogously, wede�ne the dual sets WD and ŴD just with R(AT ) in the role of N (A), and some feasible�x in the role of 
. WP is the set of minimal ve
tors in N (A) whi
h make an a
ute anglewith the 
ost ve
tor 
. If dim(N (A)) � 1 then WP is nonempty.For ea
h J 2 B(A) and i 62 J we de�ne w(J;i) by �w(J;i)�J := � (AJ)�1Ai, w(J;i)i := 1 andzero elsewhere. It is easy to prove that sign �w(J;i)� 2 sign(N (A)). Thus, w(J;i)=kw(J;i)k 2WP , if 
Tw(J;i) � 0.Let I be a subset of the index set f1; 2; : : : ; ng. We denote by (WI)P the set de�nedin the same way as WP but with the data instan
e given by AI ; 
I . We de�ne �ŴI�Panalogously. The following lemma presents some properties of the sets WP , WD, ŴP andŴD:Lemma 4.1 Consider A, b, 
, WP ; ŴP ;WD and ŴD as de�ned above (b 6= 0 and 
 =2R �AT�). Assume n � m+ 1 � 2. Then the following statements hold:(a) The elements of WP span N (A) and the elements of WD span R(AT ).(b) ŴP 6= ; and ŴD 6= ;.(
) For ea
h w 2 ŴP there exists fdkg in Rn++ su
h that u(dk)ku(dk)k ! w.d) Consider I � f1; 2; : : : ; ng. If t 2 (WI)P then the ve
tor t̂ 2 Rn de�ned as t̂I :=t; t̂I
 := 0 belongs to WP . Similarly if t 2 (WI)D then the ve
tor t̂ 2 Rn de�ned ast̂I := t; t̂I
 := 0 belongs to WD.



ON LIMITING PROPERTIES 13Proof. For part (a): sin
e A has full row rank and m < n, we 
an 
hoose m linearlyindependent 
olumns of A whi
h we index by J . So dim(N (AJ)) = 0 and the 
olumnsof AJ generate R(A). We denote by J 
 the remaining (n � m) 
olumns of A. Ea
h
olumn Aj (j 2 J 
) 
an be written as AJyjJ = Aj with yjJ 6= 0. We de�ne for ea
hj 2 J 
 the ve
tor wj 2 Rn as wjJ = �jyjJ , wjj = �j and wjJ
nfjg = 0, where �j is 
hosenin su
h way that kwjk = 1 and 
Twj � 0. By the 
onstru
tion wj 2 WP for all j 2 J 
,and sin
e dim(N (A)) = (n � m) with jJ 
j = (n � m) and the ve
tors wj; j 2 J 
 arelinearly independent, we 
on
lude that the set fw1; : : : ; wn�mg generates N (A). These
ond statement of part (a) is similar.To prove part (b), �rst note that dim(N (A)) = m�n � 1: So, WP 6= ;. Next, assumefor a 
ontradi
tion that ŴP = ;. That is, for all w 2 WP , we have 
Tw = 0. This meansthat 
 ? N (A) (by part (a), the ve
tors in WP span N (A)). Thus, 
 2 R(AT ), whi
h isa 
ontradi
tion. The dual part is analogous.Now, 
onsider w 2 ŴP . Then by de�nition, there exists a J 2 B(A) whi
h gives riseto w. Take the sequen
e fdkg in Rn++ de�ned as dkJ = eJ and dkJ
 = �keJ
, where f�kgis a sequen
e in R+ 
onverging to zero. Thus, dk ! �d where �dJ = eJ and �dJ
 = 0. ByTheorem 3.1 the sequen
e u(dk) 
onverges to �u, where �uJ = PAJ 
J and �uJ
 = 0. We
laim that �uJ 6= 0. In fa
t, if �uJ = 0 then 
J 2 R(AT ) (be
ause �uJ 2 N (A)). This leadsto 
Tw = 
TJwJ = 0 whi
h 
ontradi
ts 
Tw > 0. This means that u(dk)ku(dk)k ! �uk�uk . Sin
e
T �u > 0, �uJ 2 N (AJ), �uJ
 = 0 and dim [N (AJ)℄ = 1 we 
on
lude that �u=k�uk = w. Thisproves part (
).To show (d), 
onsider t 2 (WI)P , and J = J+(t) [ J�(t) � I. Now, we 
onstru
tt̂ 2 Rn by t̂I := t and t̂I
 := 0. t̂ satis�es t̂J 2 R(AJ), t̂J
 = 0, kt̂k = 1 and 
T t̂ � 0. Thismeans that t̂ 2 WP . The proof for (WD) is similar. �The following geometri
 result is the main tool in this part. We denote the 
onegenerated by a set S � Rn by 
one(S). We shall establish that all primal aÆne-s
alingdire
tions are positive 
ombinations of the elements of ŴP :Theorem 4.1 Consider d 2 Rn++. Then u(d) 2 
one(ŴP ), and v(d) 2 
one(ŴD).Proof. We shall prove the primal statement. The dual one is analogous. Take a �xedd 2 Rn++. By (6), we have u(d) = D2 �
�ATy(d)�, where y(d) = A+d 
, and by Theorem2.1, y(d) = XJ2B(A) det(D2J ) det(AJ)2PK2B det(D2K) det(AK)2 (AJ)�T 
J :



ON LIMITING PROPERTIES 14So, u(d) = D2 �
�AT PJ2B(A) det(D2J) det(AJ )2PK2B(A) det(D2K) det(AK)2 (AJ)�T 
J�= D2PJ2B(A) det(D2J) det(AJ )2PK2B(A) det(D2K) det(AK)2 �
�AT (AJ)�T 
J� :Ea
h 
omponent [u(d)℄i 
an be written as[u(d)℄i = XJ2B(A) d2i det(D2J ) det(AJ)2PK2B(A) det(D2K) det(AK)2 �
i �ATi (AJ)�T 
J� :The form given by the 
oeÆ
ients d2i det(D2J ) = �j2J[figd2j allows us to regroup thesum de�ning u(d) : Consider a �xed J 2 B(A) and i 2 f1; 2; : : : ; ng. If i 2 J then
i � ATi A�TJ 
J = 
i � 
i = 0. This means that in the sum above only 
ombinations ofdi�erent J and i where i 62 J are allowed, so we 
an assume i 62 J . Now �xing i and varyingJ 2 B(A) we de�ne index sets �J := J[fig and 
onsider the 
oeÆ
ients �j2 �Jd2j . De�ne byJ the set of all index sets 
onstru
ted in the way above but varying also i 2 f1; 2; : : : ; ng.Note that the same �J 2 J 
an be built by using di�erent 
ombinations of basis J and
omponents i. Now fo
using on 
oeÆ
ients of the form det(D2�J)PK2B(A) det(D2K)det(AK)2 we 
anexpress u(d) as u(d) = X�J2J det(D2�J )� �JPJ2B det(D2K) det(AK)2w �J ; (15)where w �Ji := ��1�J det(A �Jnfig)2 h
i �ATi �A �Jnfig��1 
 �Jnfigi (�J su
h that kw �Jk = 1), if i 2 �Jand w �Ji := 0 elsewhere. We 
laim that the ve
tors w �J 2 Ŵ , for all �J 2 J . To show this,we prove that for �xed �J : w �J 2 N (A), sign(w �J ) 2 sign(N (A)) and that 
Tw �J > 0. Infa
t: Firstly 
onsider a sequen
e fdkg in Rn++ de�ned by dki = 1 if i 2 �J and dki := �k ifi 62 �J. Now suppose 0 < �k # 0. It is easy to see from (15) that limk!1 u(dk)ku(dk)k = w �J . Sin
eu(dk) 2 N (A) for all dk, and N (A) is a 
losed set we 
on
lude that w �J 2 N (A). Se
ondly,sin
e �J = J [ fig for some J 2 B(A) and i 62 J we 
on
lude that sign(w �J) 2 sign(N (A)).Finally, sin
e 
Tu(d) > 0 for all d 2 Rn++, we have limk!1 
Tu(dk) = 
Tw �J � 0. Sofar, we have shown that u(d) 2 
one(WP ). It remains to prove that only those ve
torsw �J , that satisfy 
Tw �J > 0, parti
ipate in the sum (15). Suppose for a 
ontradi
tion thatthere exists Ĵ 2 J su
h that 
TwĴ = 0. Then 
Ĵ 2 R(AT̂J ). Sin
e wĴ̂J 2 N (AĴ) anddim(N (AĴ)) = 1 we 
on
lude that wĴ̂J = 
PAĴ 
Ĵfor some 
 2 R. But 
Ĵ 2 R(AT̂J ) implies that PAĴ 
Ĵ = 0. This means that in the sum(15) we 
onsider only ve
tors w �J whi
h satisfy 
Tw �J > 0. Therefore, w �J 2 ŴP for all�J 2 J . �



ON LIMITING PROPERTIES 15As a 
onsequen
e of this result, we have the following theorem:Theorem 4.2 With the above de�nitions, we have�A;
 = minf
Tw : w 2 ŴPg:Moreover, for every �x 2 Rn su
h that A�x = b,�A;b = minf�xTv : v 2 ŴDg:Proof. We shall prove part (a). Part (b) is analogous. Sin
e u(d)=ku(d)k 2 
one(ŴP )for all d 2 Rn++, we have�A;
 = infd>0�
Tu(d)ku(d)k� � minf
Tw : w 2 ŴP g:Now, sin
e ea
h w 2 ŴP is limit of aÆne-s
aling dire
tions (by Lemma 4.1) we 
on
ludethat 
Tw � infd>0�
Tu(d)ku(d)k� = �A;
for ea
h w 2 ŴP . �5 The smallest large variable 
omplexity measureIn this se
tion, we �rst quote the 
omplexity measure �rst studied by Ye [29℄ and meantas the smallest large variable on the optimal set. Consider the optimal partition [B;N ℄.The smallest large variable 
omplexity measure � is de�ned as the minimum of�A;b = minj2B fmaxxj : Ax = b; xB � 0; xN = 0gand �A;
 = mini2N fmax si : ATBy = 
B; ATNy + sN = 
N ; sN � 0g:That is, �A;b;
 := minf�A;b; �A;
g :The main result in [29℄ is establishing that the sequen
es generated by many of the interior-point path-following algorithms 
an be terminated in O(pn(j log �A;b;
j+ n)) iterations.The primal smallest large variable measure has been related to the symmetry measureof the primal feasible set in 
ase of homogoneous systems in Karmarkar's form (see Epel-man and Freund [6℄). Various results relating this 
omplexity measure to others are givenin [10, 13, 21, 27℄.



ON LIMITING PROPERTIES 165.1 A 
hara
terization of �A;b;
In this subse
tion, we give a 
hara
terization of �A;b;
 in terms of the elements of ŴP andŴD that are feasible dire
tions from the optimal primal and dual fa
es.Given the optimal partition [B;N ℄, a feasible dire
tion from the primal optimal set isany dire
tion v 2 N (A) su
h that vN � 0. We denote by FP the set of feasible dire
tionsfrom the primal optimal set. Similarly, we de�ne FD as the set of dual feasible dire
tionsfrom the dual optimal set (ve
tors v in R(AT ) su
h that vB � 0). For any x 2 Rn, x+stands for the maximum nonnegative 
omponent of x. Let us denote by � the minimumof �P := minf
Tw=w+N : w 2 ŴP \ FPgand �D := minf�xTv=v+B : v 2 ŴD \ FDgwhere �x satis�es A�x = b.In [12℄, Lara and Gonzaga proved that �A;
 � minf
Tw : w 2 ŴP \ FPg and�A;b � minf�xTv : v 2 ŴD \ FDg. Here, we prove a tight 
hara
terization.First we state an auxiliary problemwhi
h de�nes the maximumvalue of a large variableon the optimal dual set. For �xed j 2 N we de�ne �Dj as the optimal value forMaximize eTj sN(Pj) Subje
t to ATBy = 
BATNy + sN = 
NsN � 0;where ej denotes the j� th 
olumn of the identity matrix I. The dual problem asso
iatedwith (Pj) is Minimize 
Tw(Dj) Subje
t to Aw = 0wN � 0wj � 1:The problem (Pj) has a positive optimal value, be
ause the 
omponents indexed by Nare positive in the relative interior of the dual optimal set. It follows from the dualitytheorem that (Dj) also has a positive optimal value. Let w be an optimal solution for(Dj), then wj = 1, be
ause otherwise wj > 1 and ~w := w=wj would also be feasible with
T ~w < 
Tw, 
ontradi
ting the optimality of w.



ON LIMITING PROPERTIES 17Lemma 5.1 Consider a �xed j 2 N , and �Dj as de�ned above. Then there exists w(j) 2ŴP \ FP su
h that �Dj = 
Tw(j)=w(j)j .Proof. By de�nition, �Dj is the optimal value of the problem (Pj). Consider the dualproblem (Dj). Sin
e wj = 1, we 
an write (Dj) asMinimize 
Tw(Dj) Subje
t to ABwB +ANjwNj = �AjwNj � 0;where Nj = Nnfjg. Among the optimal solutions for (Dj), let us 
hoose an optimalsolution w of this problem su
h that the number of zero 
omponents of w is maximum.So, sign(w) 2 sign(N (A)). Sin
e wN � 0 we 
on
lude that w 2 ŴP \FP . We have shownthat w 2 ŴP \ FP with wj = 1 and �Dj = 
Tw = 
Tw=wj . �The same result 
an be established for �Pi := maxfxi : ABxB = b; xB � 0g, that is�Pi = �xTv(i)=v(i)i for some primal feasible �x, and some i 2 B.In the sequel, we state the main result of this subse
tion:Theorem 5.1 With the above de�nitions, we have�A;
 = �P ;�A;b = �D and thus �A;b;
 = �:Proof. Let s� be a dual optimal solution su
h that for some l, s�l = �A;
. We wantto show that there exists w 2 ŴP \ FP su
h that s�l = 
Tw=w+N . In fa
t, s�l is theoptimal value for (Pl). By the lemma above there exists w(l) 2 ŴP \ FP satisfying�A;
 = �Dl = s�l = 
Tw(l)=w(l)l . We 
laim that w(l)l = maxi2Nfw(l)i g = (w(l)N )+. To showthat, suppose for a 
ontradi
tion that there exists i 2 Nnflg su
h that w(l)i > w(l)l . Then~w := w(l)=w(l)i is a feasible solution for (Di). Furthermore, 0 < 
T ~w < 
Tw(l). By theduality theory of linear programming, 
T ~w is an upper bound for the optimal value of(Pi). Take �s any optimal solution for (Pi). Then we have �si > 0, be
ause i 2 N , and�si = maxfsi : sN = 
N �ATNy � 0; 
B = ATBy; y 2 Rmg. So, we have�si � 
T ~w < 
Tw(l) = �A;
;whi
h 
ontradi
ts the minimality of �A;
. This means that w(l)l = (w(l)N )+, and therefore,�A;
 = 
Tw(l)=(w(l)N )+ � �P .



ON LIMITING PROPERTIES 18Now, 
onsider w� 2 ŴP \ FP su
h that �P = 
Tw�=(w�N )+, and take l as the index inN whi
h de�nes the maximum (w�N)+. w�=(w�N )+ is feasible for (Dl). Take an optimalsolution �s of (Pl). We obtain,�P = 
Tw�=(w�N )+ � �sl = �Dl � �A;
: �5.2 Bounds on �Now, we give some bounds on �A;b;
 in terms of some 
omplexity measures. Note that�A;
 is attained at an extreme point of the optimal set (similarly �A;b), so there exists anoptimal basis AJ and an index l su
h that �A;
 = 
l � 
TJ (AJ)�1Al. In the sequel, wede�ne quantities asso
iated with di�erent basi
 solutions:�A;b := minfxi : xi > 0; x = (AJ)�1 b � 0; J 2 B(A)g;�̂A;b := minfxi : xi > 0; x = (AJ)�1 b; J 2 B(A)g;and �A;b := minfjxij : xi 6= 0; x = (AJ)�1 b; J 2 B(A)g:The following relations among these quantities are straightforward to establish:�A;b � �̂A;b � �A;b:It 
an be shown by examples where these inequalities are not tight.We also de�ne the analogous dual quantities:�A;
 := fsi : si > 0; s = 
�AT (AJ)�T 
J � 0; J 2 B(A)g;�̂A;
 := fsi : si > 0; s = 
�AT (AJ)�T 
J ; J 2 B(A)g;and �A;
 := fjsij : si 6= 0; s = 
�AT (AJ)�T 
J ; J 2 B(A)g:A version of this 
omplexity measure 
alled �(A) was studied in [13℄ and further usedin the 
omplexity analyses [14℄. Now, we establish the following result whi
h links �A;
 to�A;
 and �A;b to �A;b:



ON LIMITING PROPERTIES 19Theorem 5.2 Consider A; b; 
; �̂A;
; �̂A;b; �A;
 and �A;b as de�ned above. Then(a) �A;
 � �̂A;
p��(A)2+1 .(b) �A;b � �̂A;bp��(A)2+1 .Proof. We shall prove (a). The proof for (b) is analogous. By Theorem 4.2 we have�A;
 = min�
Twkwk : w 2 ŴP� :Consider w� 2 ŴP su
h that the minimum is attained. For w� there is a J� 2 B(A) andi� 62 J� su
h that w�J� = � (AJ)�1Ai�; w�i� = 1, and w�j is zero elsewhere. So�A;
 = 
Tw�kw�k= 
i��
TJ� (AJ� )�1Ai�pk(AJ� )�1Ai�k2+1 :Sin
e w� 2 ŴP we 
on
lude that the numerator is positive. By the de�nition of �̂A;
, wehave �̂A;
 � 
i� � 
TJ� (AJ�)�1Ai�. On the other hand, sin
e k (AJ)�1Aik � k (AJ)�1Ak ���(A) (by Lemma 2.2) then the denominator in the last relation is at most p��(A)2 + 1.�Bounds on � , provided by Theorem 5.2, are independent of the optimal partition andtherefore, 
an be too rough if we want to measure how small the angle between 
 andthe aÆne-s
aling dire
tion is, when approa
hing optimal solutions. We 
an obtain betterbounds on � , if we fo
us on the aÆne-s
aling dire
tions near the optimal fa
e.Now, we apply the results of the above subse
tion to study the limits of the aÆne-s
aling dire
tions when approa
hing the optimal fa
e. First, we 
onsider the quantityminfw+N : w 2 ŴP \ FPg and a sequen
e fdkg in Rn++ with a limit identifying theoptimal fa
e, that is, dkB ! dB > 0; dkN ! 0.Theorem 5.3 Consider A; b; 
 as above, the optimal partition [B;N ℄ and the sequen
efdkg satisfying dkB ! �dB > 0, dkN ! 0. Thenlimk!1�
Tu(dk)ku(dk)k� � �A;
minfw+N : w 2 ŴP \ FPgp��(A)2 + 1 :



ON LIMITING PROPERTIES 20Proof. Consider fdkg as in the hypothesis. For a �xed k, we haveu(dk) = D2k(
�ATyk);where yk := y(dk) = XJ2B(A)�J (dk) (AJ)�1 
J (16)and �J (dk) = det(Dk2J) det(AJ)2=PK2B(A) det((Dk)2K) det(AK)2. Sin
e yk is a 
onvex
ombination of some dual basi
 solutions (AJ)�1 
J with J 2 B(A), we 
on
lude thatfykg is bounded and so we 
an assume fykg 
onverges to, say, �y 2 Rm. By using theoptimal partition [B;N ℄ we 
an split u(dk) as �u(dk)�B and �u(dk)�N . 
B 2 R(ATB),be
ause, in optimal solutions we have sB = 
B � ATBy = 0 for some y 2 Rm. Sin
e
 62 R(A) we 
on
lude that 
N 62 R(ATN). This means that 
N � ATN �y 6= 0. Let usdenote �k := k �u(dk)�N k. Note that �k ! 0 by Theorem 3.1. We know �u(dk)�N =(D2K)N(
N �ATNyk). We 
an rearrange �u(dk)�N as �ktkN where tkN := [u(dk)℄Nk[u(dk)℄k . Clearly tkNis bounded and we 
an assume that it 
onverges (to �tN 6= 0).Now, let us fo
us on u(dk). We know that aÆne-s
aling dire
tions when approa
hingthe optimal set, are feasible dire
tions from the optimal fa
e (i.e., �u(dk)�N > 0). Sou(dk) 2 FP and therefore �u(dk)�N � 0 for all k � �k, for some �k. This means that tkN > 0and so �tN � 0.By (14), �u(dk)�B = u(dB)� (AB+dB)TAN �u(dk)�N= u(dB) +PJ2 �B(AB)Pi2N �J (dkB) �u(dk)�iw(J;�Ai):with (w(J;�Ai))J := � (AJ)�1Ai and zero in the remainder of the 
omponents. Sin
e
B 2 R(ATB) we have uB(dB) = 0. Merging the expression for �u(dk)�i (i 2 N) we obtain�u(dk)�B = �2kPJ2 �B(AB)Pi2N �J (dk)tkiw(J;�Ai)B :Consequently, by putting uB(dk) and uN(dk) together we haveu(dk) = �2k XJ2 �J (AB)Xi2N �J (dkB)tkiw(J;i);with wJ;iJ := � (AJ)�1Ai, wJ;ii := 1 and zero elsewhere. By the 
onstru
tion, w(J;i) 2 ŴPfor all J . Sin
e �u(dk)�N � 0, ea
h w(J;i)N � 0 and the 
oeÆ
ients �k, �J (dkB) and �tki are



ON LIMITING PROPERTIES 21nonnegative, we 
on
lude w(J;i) 2 FP . Therefore, w(J;i) 2 ŴP \FP . This shows that u(dk)is a 
oni
 
ombination of the ve
tors in ŴP \ FP . Thus,
T u(dk)ku(dk)k ! 
T u( �d)ku( �d)k� minw2ŴP\FP 
Twkwk w+Nw+N� �D minw2ŴP\FP w+Np��(A)2+1 :The last inequality follows from Theorem 5.1. �An analogue of this type of analysis would be very interesting for the primal-dualaÆne-s
aling dire
tion as well. This is left for future work.AppendixIn many proofs, we established the result for the primal form of the LP problem andomitted the proof for the dual-form LP. In all of these 
ases, the same proof also worksfor the dual-form LP, if we use the equivalent, subspa
e representation of (D):(D) min �xT ss 2 �S? + �s� ;s � 0;where S = N (A).Referen
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