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Abstract

We study the limiting properties of the affine-scaling directions for linear pro-
gramming problems. The worst-case angle between the affine-scaling directions
and the objective function vector provides an interesting measure that has been
very helpful in convergence analyses and in understanding the behaviour of var-
ious interior-point algorithms. We establish new relations between this measure
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smallest large variable complexity measure of Ye.
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1 Introduction

Consider the primal and dual linear programming (LP) problems

(P) min 'z
Axr = b,
r = 0,

(D) max bly
Aly < ¢

where ¢ € R", b € R™ and A € R™*" has full row rank (this will be assumed throughout
the paper).

On many occasions, it will be more convenient for us to consider the equivalent for-
mulations which are phrased in terms of subspaces: AN(A) (the null space of A) and its
orthogonal complement R(AT) (the range space of A7) in R" as follows.

(P) min Tz
r e (5+),
x > 0,

(D) min z's
s € (5t+5),
s

Y

where we can take S := N (A) (thus, ST = R(AT)), z € R" such that Az = band 5 € R"
such that (5 —¢) € R(AT). Then the new pair is equivalent to the previous one in that
the corresponding optimal solution sets (in the appropriate space for (D)) are identical
and the objective values can be related by trivial transformations.

The subspace transformation reveals other equivalence classes in the data space for LP
problems in this standard form. Two full row rank matrices A, A of the same dimension
such that N'(A4) = N(A) get mapped to the same subspace pair S, S+ in the subspace
formulation. Moreover, many & vectors correspond to the same b
(namely, {z € R": Az = b}) and many ¢ vectors can be reduced to the same s (namely,

{ceR": (5—c) e R(AT)}).

If ¢ € R(AT) then we can take s := 0 which proves that in (P), every feasible
solution is optimal (the objective function is constant over the feasible region). Similarly,
if z € N(A) (i.e., b = 0) then every feasible solution of (D) is optimal. We will exclude
such special cases. Even the least sophisticated algorithms will do the right thing in such
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cases. For instance, the affine-scaling algorithm (whose search direction is one of the main
objects of study here) always takes a step along the scaled (with respect to the metric
defined by the current interior-point iterate) steepest-descent direction. This direction is
simply a scaled projection of scaled ¢ (in case of (D), &) onto a linear subspace and it will
always result in the zero vector for (P), if c € R (AT) (and similary, it will always result
in the zero vector for (D) if b = 0—i.e., z € N(A)).

Let P4 denote the orthogonal projection onto N'(A). For x € R™, X denotes the

n X n diagonal matrix whose ;ith entry is x;. For convenience, suppose that we are given
2? € R%, :={z € R": x > 0} such that Az" = b and that the optimal objective value is
known to be v. We want to get within e (given) of v. e denotes the vector of all ones (of
appropriate size, determined by the context). Then, the affine-scaling algorithm can be
described as follows:

k:=0;

WHILE ¢'2* —v > € DO
A= AXy, ¢:= Xpe, d:= —Pjy¢;
choose a > 0 such that (e + ad) > 0;
okt .= Xe(e+ aJ);
k:=k+1;

END{WHILE};

Following Karmarkar’s algorithm [11], the affine-scaling algorithm was proposed as a
simplification of it. These proposals came from Barnes [2] and Vanderbei, Meketon and
Friedman [24], independently. It turned out, however, that Dikin [5] proposed it almost 20
years prior to its rediscovery. Current best convergence results (without any assumptions
on the nondegeneracy of (P) or (D)) are due to Tsuchiya and Muramatsu [23]. Let ampax
denote the maximum step size for which the next iterate is feasible. They prove that
taking the step size as %amax guarantees the convergence of the algorithm. (This result is
somewhat tight, in that for larger step sizes the dual iterates need not converge —see Hall
and Vanderbei [9].) However, currently it is not known whether there exists a scheme for
choosing the step size such that the affine-scaling algorithm becomes a polynomial time
algorithm for LP. On a related issue, Megiddo and Shub [15] proved that the affine-scaling
trajectories can get arbitrarity close to the combinatorial paths on the boundary of the
Klee-Minty cube which is used to show that various variants of the simplex method are
exponential time algorithms. Affine-scaling trajectories were also studied by Adler and
Monteiro [1].
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Affine-scaling algorithm is the simplest and one of the most fundamental of the interior-
point algorithms. Deep understanding of the behaviour of the affine-scaling algorithm
usually has important consequences for many other, more sophisticated interior-point
algorithms.

The notion of local metric which is profoundly important in interior-point methods,
is the key in the affine-scaling algorithm. The affine-scaling search direction can be in-
terpreted as the displacement between the current point # and the minimizer of ¢’z over
the following ellipsoid centered at z:

{:1; ER": (z —2)' X 22 —2) < 1}.

This ellipsoid (called the Dikin Ellipsoid) is completely contained in the feasible region
when restricted to the affine subspace {# € R" : Az = b}. Note that the shape and the
size of the ellipsoid are defined by the positive definite matrix X2 which changes as the
current point changes (hence the term local metric).

Let Xpd denote the affine-scaling direction at the point z*, as in the statement of the
algorithm. Then B
o= gk aXd

and

Lkt = Tk + ochXka
= 2% —acf'Pye
= 'ab —a (ETPA) (P}E)
= cf'aF — o Pel)?
(where we used the facts: P} = P; and P% = P;). We see that the objective value
of (P) strictly improves from one iteration to the next. Moreover, if Pg¢ = 0 (same as
c € R(AT)) then every feasible solution of (P), including z* is optimal.

Usually, the worst-case behaviour of interior-point algorithms for LP is measured in
terms of the larger of the dimensions (that is n) of the problem and the desired accuracy
€ € (0,1) of the final solution (relative to the starting point). Moreover, we are usually
content with just focusing on the bounds on the number of iterations required. The
current best polynomial bound of this sort is O(y/nln(1/¢€)). However, if we study the
algorithms more deeply, we can come up with complexity analyses which depend on the
data (A, b, c) in more sophisticated ways (using complexity measures other than n and
In(1/€)) and expose more specific information about the performance of the underlying
algorithms. Once such knowledge is exposed, then we can go back to the development of
the algorithms and try to improve them in a way that the overall complexity bounds as
well as the practical performance of the algorithms get better.
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In the current paper, our focus is on the affine-scaling direction. Almost all search
directions in interior-point methods can be expressed as a linear combination of the
affine-scaling and centering directions. Since the affine-scaling direction is the compo-
nent responsible for the improvement in the objective function value, its analysis is very
important for most interior-point algorithms.

In the next section, we discuss oblique projections and the complexity measure y(A).
Section 3 introduces some of the existing results about the affine-scaling directions. In
Section 4, using geometric concepts (together with the algebraic concept of minimal lin-
ear dependence), we characterize the worst-case angle between the affine-scaling directions
and the objective function vector (see Theorem 4.2). In Section 5, we represent a new
characterization of Ye’s complexity measure (this extends an earlier partial characteriza-
tion by Lara and Gonzaga [12]); see Theorem 5.1. Using our geometric characterization
of the worst-case angle from Section 4, we provide lower bounds on this angle in terms of
certain complexity measures of the data, including y(A) (see Theorem 5.2). We conclude
with a strengthening of this last result in the interesting case that we are near the optimal

face (see Theorem 5.3).

2 Oblique projections, pseudo-inverses and Y(A)

The complexity measure Y(A) can be defined as the suprema of the norms of all oblique
projection operators onto A'(A). This measure has been studied by Stewart [19], O’Leary
[18], Todd [20], Vavasis and Ye [27] and others. x(A) has been used to study the computa-
tional complexity of some interior-point path-following algorithms for linear programming.
Most notably, see Vavasis and Ye [26] and the recent and very nice analysis of Monterio
and Tsuchiya [17] (who used a scale-invariant version of Y(A)). x(A) was also used in
the analysis of a generalization of Tardos’ scheme (see Ho and Tungel [10]); but recently
a better complexity measure replaced y(A), see, Lara and Tungel [14].

Let v® € R™ and a vector d in the positive orthant R” | be given. We define the oblique
projection of v° € R™ onto R(AT) with respect to d € R’} (and denote it by Q) 4,4v°) as
the unique solution of the problem

minimize {|[D(v —v°)|| : v = ATw for some w € R™},

where D := Diag(d) is the diagonal matrix whose diagonal elements are the entries of d.
Similarly, the oblique projection Q4 4v° of v° onto N'(A), the null space of A, with respect
to d € RY} | is the unique minimizer of

minimize {||D~"(u — v%)|| : Au = 0}.
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Under the assumption that A is of full row rank, it is easy to show that
Qaav’ = [I — D*AT(AD*AT)™ A] v° and Q4 q0° = AT(AD*AT)"' AD%°.

The matrix AT := (AD?AT)~1 AD? is frequently named as the weighted pseudo-inverse of
A (because ATAT = I). Even though this formula does not hold without the assumption
of full row rank, A} always exists. In general, we can write

QAJUO = AT(A:;)UO and Q4 qv° = [I — (A;)TA] v°.

Consider now the set B(A) of column indices associated with maximally linearly inde-
pendent columns of A. If J € B(A) then the columns of A; are linearly independent and
if we add any other column of A to Ay, then the linear independence is broken. Under the
assumption of full row rank, the elements .J of B(A) define m x m nonsingular submatri-
ces of A. The following results are devoted to calculating the weighted pseudo-inverses:
The oblique projection v of the origin onto the set {v : v = ¢ — ATy, y € R™}, is the
unique solution of the problem min{||Dv|| : v =c— ATy,y € R™}. Using the optimality
conditions, we can write v = ¢ — ATy, where § = Afec. Similarly, the oblique projection
w of the origin onto the affine subspace defined by Ax = b is the unique minimizer of
the problem min{|[D~'w|| : Aw = b}. By the optimality conditions, w = (AT)7b. The
following result, due to Dikin [4], calculates y and w:

Lemma 2.1 (Dikin [{]) Let A € R™*", ¢ € R", b € R™, and D := Diag(d), for some

n L det(D?%) det(A5)?
de R+ Then for As(d) := Yren(a) dgt(D%()det(AKP’

(a)
Afe= )" M(d)(A) " e,
JeB(4)
(b)

(Ao = > A,
JEB(A)

7b)

where wi"™ = (AJ)_1 b and the remaining entries of w'® are zero.

Proof. A proof for part (a) can be found in Ben-Tal and Teboulle [3]. For part (b),

note that for every ¢ € R", we have

(AP = EJeB(A) As(d
= ZJGB(A) As(d
=c! D seB(a) Ag(dyw!??).

(AN D
T

cCw
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Since (AF)Tb is unique, and the above identities hold for every ¢ € R", we have our
claim. O

Now, we specialize these ideas to fit our needs. Consider a partition of the column
indices set [B, N] and define for B(Ap) an extended B(Ag) such that for each J € B(Ap)
we choose an extended J O J such that J € B(A). For some be R(Ap) we can calculate
basic solutions of Agwg = b by using the basic extensions given by the elements of B(AB).

So, a basic solution w® can be calculated by w(l]b) = (A7)7" b (and setting the other

entries of w? to zero).

Theorem 2.1 Let A € R™™", ¢ € R”, b € R™, and D := Diag(d), for some d € R},
Also let [B, N] be a partition of the index set. Then for

det(D?3) det(A)?
)\J(dB) = 2 99
ZKeB(AB) det(Df) det(A)
we have
(Ap)y c= > Mldp)(A) e (1)
JeB(Ap)
and

[(AB),, dB = > Aldg)uwt™, (2)

JEB(Ap)

where ng’g) = (AJ)_lz; (and the other entries of w7 gre set to zero).

Proof.  The solution given in (1) is a convex combination of the basic solutions for
ALy < cp. These basic solutions can be calculated by using the extended basis in B(Agp),
and the scalars Aj(dp) in the same way as in the lemma above. The proof of equation
(2) is analogous. O

We define the complexity measure y(A) as

(A 1= sup{[[Quavl] ¢ [lo]l = 1,d e R},

We list in the following lemma some of the properties of y(A). First, we define the
sets § 1= {s € R(AT) : ||s|| =1} and X := {x e N(AD) : d e R} }.
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Lemma 2.2 Consider the m X n matriz A, b € R(A), the matriz Z whose rows form a

basis of N(A). Then:

(a) ﬁ =p(A):=inf{|ls —z|| : s€ S,z e X}
(b) || ASB|| < Y (A)||ATY||, where AT is the right-pseudo-inverse of A.

(¢) X(A) = X(Z).
(d) X(A) = max{||AT (AJ)_T | : J € B(A)}, where B(A) is the set of column indices

associated with nonsingular m X m submatrices of A.

Proof. Stewart [19] and O’Leary [18] demonstrated part (a). A proof of part (b) can
be found in Vavasis and Ye [27], while Gonzaga and Lara [8] proved part (¢). Finally, for
part (d) we refer to Todd [22], Vavasis and Ye [26] and Todd, Tungel and Ye [21]. O

3 The Affine-Scaling Direction

Consider d € R%,. The primal affine-scaling direction u(d) is defined as the unique
solution for the problem

minimize —c’u + 1| D7 ul? 3)
subject to Au = 0.

Analogously, we define the dual affine-scaling direction in terms of the right hand side b

as follows: First we get some vector = satisfying Az = b. Then the dual affine-scaling

direction v(d) is the unique solution for the problem

minimize —z%v+ %HDUHZ

(4)

subject to v=ATw.

We want to study lower bounds for the cosine of the angle between u(d) and ¢ for
all d € R%,. Tseng and Luo [22] show that this infimum is positive. Tseng and Luo’s
demonstration is an indirect proof, so the infimum is not calculated in a constructive way.
We shall study such limiting angles and their relationship with other known complexity
measures. A proof of the following result can also be found in Monteiro and Tsuchiya

[16].
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Lemma 3.1 (Tseng and Luo [22])
Consider A,b and c as before, with ¢ € R(AT). Then there exist positive constants T4

and Tap such that
‘ cTU(d)
Tae = infern, { ||u(d)]| } 7

| z'v(d)
Tap = infaery, {W} '

Our aim is to find lower bounds on these infima in terms of some complexity measures

of (P) and (D).
The direction u(d) satisfies the optimality conditions for some y € R™:

Au =0, (5)
u= D*(c— A"y). (6)

Using these equations we obtain the following equivalent compact formulae

u(d) = DPspDc, (7)

u(d) = D* [c — AT(AD*AT)"' AD*(] (8)
u(d) = D* [e — ATAfc] or (9)

u(d) = (I — (AT)' A)D?c (10)

for the full row rank matrix A.

Consider an arbitrary set I C {1,2,...,n}. We will denote by [u(d)]; the restriction
of u(d) to the indicies in I; and wu(dj) stands for the affine-scaling direction calculated
with the restricted data Ay, ¢y, dr. Then [u(dr)]; = u(d;) satisfies for some y:

A[U[ == 0, (11)
ur = Dies — Aly) (12)
By (10) we have
[u(d)]; = (I - (A7)" Ap)Dicr.

Consider an arbitrary partition [B, N] of the column index set. Assume that we know
[u(d)]y, the part of u(d) indexed by N. Then the remainder, [u(d)]g, can be obtained as
the unique solution of

minimize —chup + %H (DB)_1 ugl|?

ABUB = —AN [u(d)]N .
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This solution satisfies the optimality conditions

—CRB + DézuB + Ag)\ =0
ABUB = —AN [u(d)]N

which give us the form

[u(d)]; = ulds) — [(45)7. ] A [u(d)]x -

Using Lemma 2.1, we can write

[u(d)] 5 = u(ds) + Z \s(dp) [w (J,—Anu( )]N)] 7 (13)
JeB(Ap) B
where
det(D3) det(A)?
Aj(dg) == 5
2K eB(A det(DA) det(Ax)*’
[w(J’_AN[“(d)]N)] = — (Ay)"" Ay [u(d)]y, and all other entries of wF=ANE@DIN) are set
J

to zero. The vector w*® € R™ is defined based on the input J C {1,2,...,n} such that
|J| = m, Ay is nonsingular, and the vector b € R™. We simply set

[w(‘]’g)] , = [A;]7" b and

[w(‘]’g)] - = 0, for every j ¢ J.
j

Equation (13) is equivalent to

w(d)]y =ulds)+ > > As(dp)[u(d)); [w=] (14)

JEB AB) 1EN

where [w(J’_A")] S = (AJ)_1 A; and all the other entries of w(/~4i) are set to zero. Note
that if z € NN J for some J € B(AB) then [w(J’_AJ)]Z. =0.

For x € R", let
J_(x):={je{1,2,...,n} : x; <0},
Ji(x):={je{1,2,...,n} : x; >0},
Jo(x):={j €{L,2,....,n} : x; =0},
J(x) = J_(2)U Jy(2).
We want to study the map u(d) when d — cz> 0 (d # 0). Given d, consider the partition
[B, N] defined as B := Jy(d) and N := Jo(d) (note that J_(d) = (). The components of
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d indexed by B are called “the large variables” and the other ones “the small variables”.
Megiddo and Shub [15] and Gonzaga and Tapia [7] studied the behavior of the large
variables in the mapping u(d) when d — d. We quote the result here, and give a simple
proof which uses Lemma 2.1 and (14):

Theorem 3.1 (Megiddo and Shub [15])
Consider u(d), d — d and the partition [B, N] as defined above. Then
(’L) [u(d)]B — U(CZB) = DBPABDBDBCB'

(it) [u(d)]y — 0; moreover, (PspDec)y — 0.

Proof. From (9) we have

[u(d)]y = DX [en — AR (47) ]
= D [Dy (en = Ay (47) )] -
y(d) := (AF)c is bounded; because, by Lemma 2.1 it is a convex combination of the dual

feasible solutions (AJ)_T cy. Furthermore, since Dy [CN — A%(A;)c] = (PapDc)y and
Dy converges to zero, we have the second claim. To show (7), note that by (14) we have

u(d)g =u(ds)+ > Y As(dp) [u(d)]; [w ],

JeB(Ag) i€N
where [w(J’_A")]J = — (AJ)_1 A, (and the other entries of w=41) are set to zero). By
part (i2) [u(d)] — 0 and since Aj(dp) is bounded we have that the second part of the
equation above tends to zero and we have our claim. O

4 Minimal linear dependencies

The number 74, will be estimated in terms of the minimal linear dependencies among
the columns of the matrix A and the angles such minimal linear dependencies make with
the cost vector c.

As in [13], we shall focus on those characterizations of complexity measures involving
the sign pattern of vectors in certain orthogonal linear subspaces. For x € R”, sign(x) €
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{—.,0,4}" encodes the signs of the entries of z. Let S C R" be a linear subspace. We
denote by sign(.S) C {—,0,+}" the set of sign vectors of the elements of S.

Note that if A € R™*" such that AN'(A) = S then every nonzero vector in S repre-
sents a linear dependence among the columns of A. Minimal linear dependencies play a
particularly important role in our work.

We denote the set of sign patterns of those minimal elements in S by sign(.5). That
is, sign(S) C sign(S) denotes those nonzero sign patterns in sign(S) such that setting
any number of +'s and —'s to zero (without changing the others) does not give another
nonzero element of sign($S). Then, & € S\{O} is minimal if for all & € S\{0} satisfying
J_(&) CJ_(z), Jo(&) C Ju(x), Jo(Z) D Jo(%) we have sign(#) = sign(z). So, z € S is
minimal if and only if sign(z) € sign(.5).

Denote by Wp the set of minimal vectors w in N(A) such that |lw| =1 and ¢lw > 0.
Also denote by Wp the subset of Wp whose elements satisfy c¢fw > 0. Analogously, we
define the dual sets Wy and Wp just with R(AT) in the role of N'(A), and some feasible
T in the role of c. Wp is the set of minimal vectors in N (A) which make an acute angle
with the cost vector c. If dim(N(A)) > 1 then Wp is nonempty.

For each J € B(A)and i € J we define w) by [w(‘]’i)] Si= = (A" A, wl(‘]’i) :=1and
zero elsewhere. It is easy to prove that sign (w(‘]’i)) € sign(N(A)). Thus, w ) || wtH|| €

Wp, if Tw) >0,

Let I be a subset of the index set {1,2,...,n}. We denote by (W;), the set defined

in the same way as Wp but with the data instance given by Aj,c;. We define <WI>
P

analogously. The following lemma presents some properties of the sets Wp, Wp, Wp and

WDi

Lemma 4.1 Consider A, b, ¢, Wp, Wp, Wp and Wp as defined above (b#0 and ¢ ¢
R (AT)). Assume n > m+1 > 2. Then the following statements hold:

(a) The elements of Wp span N'(A) and the elements of Wp span R(AT).
(c) For each w € Wp there exists {d*} in R%, such that E ;ll — w.

d) Consider I C {1,2,...,n}. Ift € (Wi)p then the vector t € R™ defined as t; :=
t,t1e := 0 belongs to Wp Similarly if t € (W) then the vector t € R" defined as
tri=1 t[c := 0 belongs to Wp.
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Proof. For part (a): since A has full row rank and m < n, we can choose m linearly
independent columns of A which we index by J. So dim (N (A4,)) = 0 and the columns
of A; generate R(A). We denote by J° the remaining (n — m) columns of A. Each
column A; (j € J°) can be written as Ayy) = A; with yj # 0. We define for each
j € J¢ the vector w’ € R™ as w’ = By, w; = [; and w?]c\{j} = 0, where f; is chosen
in such way that ||w’|| = 1 and ¢'w? > 0. By the construction w’ € Wp for all j € J¢,
and since dim (NV'(A4)) = (n — m) with |J¢| = (n — m) and the vectors w’,j € J¢ are
linearly independent, we conclude that the set {w',... ,w"™™} generates N'(A). The
second statement of part («) is similar.

To prove part (b), first note that dim (N(A)) =m—n > 1. So, Wp # . Next, assume
for a contradiction that Wp = (). That is, for all w € Wp, we have ¢/w = 0. This means
that ¢ 1 NV(A) (by part (a), the vectors in Wp span N (A)). Thus, ¢ € R(AT), which is

a contradiction. The dual part is analogous.

Now, consider w € Wp. Then by definition, there exists a .J € B(A) which gives rise
to w. Take the sequence {d*} in R’} defined as d = ey and d5. = Apese, where {Ai}
is a sequence in R, converging to zero. Thus, d* — d where d; = e¢; and dj. = 0. By

Theorem 3.1 the sequence u(dk) converges to u, where uy = Py,cy and uje = 0. We
claim that uy # 0. In fact, if uy = 0 then ¢; € R(AT) (because uy; € N(A)). This leads
to ¢Tw = c?wj = 0 which contradicts ¢’w > 0. This means that e Ejzgll — ﬁ Since
cl'u>0,u; € N(Ay), uge =0 and dim [N (A)] = 1 we conclude that @/||u| = w. This

proves part (c¢).

To show (d), consider ¢ € (WI)P, and J = Ji(t ) J_(t) C I. Now, we construct
t € R" by t; :=t and t7c := 0. t satisfies ¢; € R(Ay), tje =0, ||f|| =1 and 7% > 0. This
means that ¢ € Wp. The proof for (Wp) is similar. O

The following geometric result is the main tool in this part. We denote the cone
generated by a set S C R™ by cone(S). We shall establish that all primal affine-scaling
directions are positive combinations of the elements of Wp:

Theorem 4.1 Consider d € R . Then u(d) € cone(Wp), and v(d) € cone(Wp).

Proof. We shall prove the primal statement. The dual one is analogous. Take a fixed
d € R%,. By (6), we have u(d) = D? [c — ATy(d)], where y(d) = A}c, and by Theorem
2.1,

(AJ)_T Cj.

Z det(D?) det(A)?
JEB(A Z]%Bdet(D%)det(Ak)
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So,

det(D2)det(A )2 -T
uld) = D% (o= AT Cpenin o iy g (40) o)
_ D2 ZJeB det(D? )det(AJ) <c AT (AJ)—T cj) ‘

EKGB det(Di)det(AKP
Each component [u(d)]; can be written as
d; det(Dj) det(A;)* <c Al (4 e >
A J 7.
siatn ren(a) det(Di) det(Ax)?

[u(d)]z =

The form given by the coefficients df det(D3) = ILicjugiyd; allows us to regroup the
sum defining u(d) : Consider a fixed J € B(A) and ¢ € {1,2,...,n}. If i € J then

- AZTA;TCJ = ¢; — ¢; = 0. This means that in the sum above only combinations of
different J and ¢ where ¢ ¢ .J are allowed, so we can assume ¢ ¢ .J. Now fixing 7 and varying
J € B(A) we define index sets J := JU{i} and consider the coefficients IL,;c 7d3. Define by
J the set of all index sets constructed in the way above but varying also ¢ € {1,2,... n}.

Note that the same J € J can be built by using different combinations of basis J and
det(D2)
EK'GB det(D2 )det(AK)

components . Now focusing on coefficients of the form 5 We can

express u(d) as
det(D})/«LJ w’
vt EjeB det(D3.) det(Axk)? ’

u(d) = (15)

where w] := 1 det(AJ\{ 1)’ [c,' — AT (Aj\{,»})_ Cj\{l'}] (peg such that ||wj|| =1),ifieJ
and wi := 0 elsewhere. We claim that the vectors w’ € W, for all J € J. To show this,
we prove that for fixed J: w’ € N(A), sign(w’) € sign(A(A)) and that ¢’w’ > 0. In
fact: Firstly consider a sequence {d*} in R% ., defined by d¥* =1if i € J and dk = A if

i & J. Now suppose 0 < Ay, | 0. Tt is easy to see from (15) that llmk_>oo I Ed ;ll . Since
u(d) € N(A) for all d*, and N'(A) is a closed set we conclude that w”’ € N(A ) Secondly,
since J = J U {4} for some J € B(A) and i ¢ J we conclude that sign(w”) € sign(A(A)).

Finally, since c'u(d) > 0 for all d € R%,, we have limy_. c'u(d*) = lw 7> 0. So
far we have shown that u(d) € cone(Wp). It remains to prove that only those vectors
7 that satlsfy clw’ >0, partlclpate in the sum (15). Suppose for a contradiction that

there exists J € j such that ¢! = 0. Then ¢; € R(A?). Since w§ € N(A4;) and
dim(N(A;)) = 1 we conclude that
w§ =Py, c;

for some v € R. But ¢; € R(A?) implies that P4 ,c; = 0. This means that in the sum

(15) we consider only vectors w”? which satisfy ¢Tw”’ > 0. Therefore, w’ € Wp for all
JeJ. O
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As a consequence of this result, we have the following theorem:

Theorem 4.2 With the above definitions, we have
The = min{cTw Cw € Wp}.
Moreover, for every x € R" such that Ax = b,

Tap = min{z’v : v € WD}.

Proof. We shall prove part (a). Part (b) is analogous. Since u(d)/||u(d)|| € Cone(Wp)
for all d € R% ,, we have

Tae = infgsg {M} > min{c’w : w e Wp}.
’ [u(d)]]
Now, since each w € Wp is limit of affine-scaling directions (by Lemma 4.1) we conclude
that uld)
T )
R P
for each w € Wp. O

5 The smallest large variable complexity measure

In this section, we first quote the complexity measure first studied by Ye [29] and meant
as the smallest large variable on the optimal set. Consider the optimal partition [B, N].
The smallest large variable complexity measure o is defined as the minimum of
TAp = miél{maxxj c Ax=b,ap > 0,25y =0}
jE
and

OAc= :reli]?{maxsi : ALy =cp, ALy 4 sy = en, sy > 0.
k]

That is,

OApe :=min{oap, oac}.
The main result in [29] is establishing that the sequences generated by many of the interior-
point path-following algorithms can be terminated in O(y/n(|logoap.| + n)) iterations.

The primal smallest large variable measure has been related to the symmetry measure
of the primal feasible set in case of homogoneous systems in Karmarkar’s form (see Epel-
man and Freund [6]). Various results relating this complexity measure to others are given

in [10, 13, 21, 27].
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5.1 A characterization of 0,4,

In this subsection, we give a characterization of o4, in terms of the elements of Wp and

Wp that are feasible directions from the optimal primal and dual faces.

Given the optimal partition [B, N]|, a feasible direction from the primal optimal set is
any direction v € N'(A) such that vy > 0. We denote by Fp the set of feasible directions
from the primal optimal set. Similarly, we define Fp as the set of dual feasible directions
from the dual optimal set (vectors v in R(AT) such that vg > 0). For any = € R", 27
stands for the maximum nonnegative component of x. Let us denote by 1 the minimum
of

np = min{c w/wl : we Wpn Fp}

and
np := min{z’v/vE : v € WpnN Fp}

where z satisfies Az = b.

In [12], Lara and Gonzaga proved that o4, < min{c’w : w € Wp N Fp} and
oap < min{:i'Tv : v € Wp N Fp}. Here, we prove a tight characterization.

First we state an auxiliary problem which defines the maximum value of a large variable
on the optimal dual set. For fixed j € N we define op, as the optimal value for
Maximize e]TSN
(P;) Subject to ALy =cp
A%y + sy =cn
SN Z 07

where e; denotes the j —th column of the identity matrix /. The dual problem associated
with (P;) is
Minimize ¢’w
(D) Subject to Aw =0
wy > 0

w]‘Z:[.

The problem (P;) has a positive optimal value, because the components indexed by N
are positive in the relative interior of the dual optimal set. It follows from the duality
theorem that (D;) also has a positive optimal value. Let w be an optimal solution for
(Dj), then w; = 1, because otherwise w; > 1 and @ := w/w; would also be feasible with

T

e’ < e'w, contradicting the optimality of w.
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Lemma 5.1 Consider a fired j € N, and op; as defined above. Then there exists w9 ¢
Wp N Fp such that op; = cTw(j)/w;j),

Proof. By definition, op, is the optimal value of the problem (P;). Consider the dual
problem (D;). Since w; = 1, we can write (D;) as

Minimize ¢fw

(Dj) Subject to Apwp + Ay,wn, = —A;
WN; > 07
where N; = N\{s}. Among the optimal solutions for (D;), let us choose an optimal

solution w of this problem such that the number of zero components of w is maximum.
So, sign(w) € sign(N'(A)). Since wy > 0 we conclude that w € Wp N Fp. We have shown

that w € Wp N Fp with w; =1 and op, = clw = cTw/w;. O
The same result can be established for op, := max{z; : Agxp = b,xp > 0}, that is

op, = :Y;Tv(i)/vl(i) for some primal feasible z, and some 1 € B.

In the sequel, we state the main result of this subsection:

Theorem 5.1 With the above definitions, we have

Oac=Np;04ap =Np and thus o4 = 1.

Proof. Let s be a dual optimal solution such that for some [, s] = 04.. We want
to show that there exists w € Wp N Fp such that s; = cTw/w]"Q. In fact, s is the
optimal value for (P). By the lemma above there exists w() € Wp N Fp satisfying
OpAc = 0Op, = §f = cTw(l)/wl(l). We claim that wl(l) = maXiGN{wl(»l)} = (w%))"'. To show
that, suppose for a contradiction that there exists ¢ € N\{l} such that wl(»l) > wl(l). Then
W = w(l)/wl(»l) is a feasible solution for (D;). Furthermore, 0 < ¢Tw < c¢Tw®. By the
duality theory of linear programming, ¢!
(P;). Take s any optimal solution for (P;). Then we have s5; > 0, because i € N, and
5, = max{s; : sy =cy — ALy >0,cp = ALy, y € R™}. So, we have

w 1s an upper bound for the optimal value of

5 < o < Tl = CAc,

which contradicts the minimality of o4,.. This means that wl(l) = (w%))"', and therefore,

oae = clwl /(i) = np.
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Now, consider w* € Wp N Fp such that np = clw*/(wy )T, and take [ as the index in
N which defines the maximum (w})". w*/(w)7T is feasible for (D;). Take an optimal
solution s of (P;). We obtain,

np = clw*/(wy)t > 5 =op, > o4,

5.2 Bounds on 7

Now, we give some bounds on 745, in terms of some complexity measures. Note that
04 is attained at an extreme point of the optimal set (similarly o44), so there exists an
optimal basis Ay and an index [ such that o4, = ¢; — c? (AJ)_1 A;. In the sequel, we
define quantities associated with different basic solutions:

Eapi=minfz; @ 2> 0,2 = (Ay)7 6> 0,7 € B(A)},

Eap:=min{z; : x; > 0,2 = (A;)"'b,J € B(4)},
and

¢, = min{le;| © @ # 0,2 =(4;)7b,J € B(A)}.

7b‘

The following relations among these quantities are straightforward to establish:
§ap 2 8ap 2 €,
It can be shown by examples where these inequalities are not tight.
We also define the analogous dual quantities:
Eac:={si : i >0,s=c—AT(A;) " ¢; >0,J € B(A)},

Eaci={si : si>0,s=c— AT (A)) " ¢;,J € B(A)},

and

£ = Alsil = si# 0s=c— AT (A7) es, J € B(A)}.

A version of this complexity measure called {(A) was studied in [13] and further used
in the complexity analyses [14]. Now, we establish the following result which links 74 . to

fA,c ELIld TAJ) to fA,b:
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Theorem 5.2 Consider A, b, ¢, §A7C,§A7b,m7c and T4 as defined above. Then

(a) Tae > i

Vx(A)2+1]

(b) TAp > A

x(A)241

Proof. We shall prove (a). The proof for (b) is analogous. By Theorem 4.2 we have

Consider w* € Wp such that the minimum is attained. For w* there is a J* € B(A) and
i ¢ J* such that w%. = — (As)"" Ap, wi = 1, and w? is zero elsewhere. So
cTw*
TAe = T
Cy* —03* (AJ*)_lAi*

VA " A |2 41

Since w* € Wp we conclude that the numerator is positive. By the definition of §A7C, we
have €4, < ¢x — cha (AJ*)_I A;x. On the other hand, since || (AJ)_1 Al < (AJ)_1 Al <
X(A) (by Lemma 2.2) then the denominator in the last relation is at most v/ x(A)? + 1.

0

Bounds on 7, provided by Theorem 5.2, are independent of the optimal partition and
therefore, can be too rough if we want to measure how small the angle between ¢ and
the affine-scaling direction is, when approaching optimal solutions. We can obtain better
bounds on 7, if we focus on the affine-scaling directions near the optimal face.

Now, we apply the results of the above subsection to study the limits of the affine-
scaling directions when approaching the optimal face. First, we consider the quantity
min{wl, : w € WpN Fp} and a sequence {d*} in R” . with a limit identifying the
optimal face, that is, d% — dg > 0, d% — 0.

Theorem 5.3 Consider A,b,c as above, the optimal partition [B, N| and the sequence
{d*} satisfying d — dg > 0, d% — 0. Then

. {cTu(dk)} S TAe min{wl : w € Wp N Fp}
im )
(@) ) — N(AZ+1

k— oo
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Proof. Consider {d*} as in the hypothesis. For a fixed k, we have
u(d®) = Di(c— ATy"),

where

y* Z As(d¥) (As) ey (16)
JeB(A
and A;(d*) = det(Dy%)det(Ay)? /EBGB det((Dk)B)det(AB) . Since y* is a convex

combination of some dual basic solutions (AJ)_ ¢y with J € B(A), we conclude that

{y*} is bounded and so we can assume {y*} converges to, say, ¥ € R™. By using the
optimal partition [B, N] we can split u(d*) as [u(dk)]B and [u(dk)]N cg € R(AL),

because, in optimal solutions we have sg = cg — ALy = 0 for some y € R™. Since

c ¢ R(A) we conclude that cy & R(AL). This means that ey — ALy # 0. Let us

denote py = || [u(dk)]N ||. Note that gr — 0 by Theorem 3.1. We know [u(dk)]N =
[u(@")]

(D% )y (cny — ALyY). We can rearrange [u(dk)]N as pth; where 5, 1= . Clearly #;

[l

is bounded and we can assume that it converges (to ty # 0).

Now, let us focus on u(d*). We know that affine-scaling directions when approaching

the optlmal set, are feasible directions from the optimal face (i.e., [ (dk)]N > 0). So

(dk) € Fp and therefore [ (dk)] > 0 for all k > k, for some k. ThlS means that 5 > 0
and so ty > 0.

By (14),
[u(d)] ;= uldp) — (Apf,) " An [u(d")] y
= u(dp) + EJeB(AB) EieN )‘J(d%) [u(dk)},»w(J’_Ai)-
with (w(J’_A"))J = — (AJ)_1 A; and zero in the remainder of the components. Since

cp € R(AL) we have up(dg) = 0. Merging the expression for [u(dk)]l (1 € N) we obtain

J,— A
[u(dk)]B = 1i EJGB(AB) EieN)‘ (dk)tk ( )

Consequently, by putting up(d®) and uy(d*) together we have

Z Z)‘J dk tk Jz

= 1 and zero elsewhere. By the construction, w’) € Wp
each wg\, ) > 0 and the coefficients jig, Aj(d%) and #* are

with wﬁ’i = (AJ) LA,

w]
for all J. Since [ ]N > 0,
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nonnegative, we conclude wh) e Fp. Therefore, wh) ¢ Wp N Fp. This shows that u(dk)
is a conic combination of the vectors in Wp N Fp. Thus,

cTu(d?) cT (fi)
(@l Ta@l .
. T, w
> min e

weWpnFp Jlull w},
i +
op mlanWPﬂFP wN

- VX441
The last inequality follows from Theorem 5.1. 0

An analogue of this type of analysis would be very interesting for the primal-dual
affine-scaling direction as well. This is left for future work.

Appendix

In many proofs, we established the result for the primal form of the LP problem and
omitted the proof for the dual-form LP. In all of these cases, the same proof also works
for the dual-form LP, if we use the equivalent, subspace representation of (D):

(D) min wls

where S = N(A).
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