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Abstract

We present a unifying framework to establish a lower-bound on the number of semidef-
inite programming based, lift-and-project iterations (rank) for computing the convex hull
of the feasible solutions of various combinatorial optimization problems. This framework is
based on the maps which are commutative with the lift-and-project operators. Some special
commutative maps were originally observed by Lovász and Schrijver, and have been used
usually implicitly in the previous lower-bound analyses. In this paper, we formalize the lift-
and-project commutative maps and propose a general framework for lower-bound analysis,
in which we can recapture many of the previous lower-bound results on the lift-and-project
ranks.
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1 Introduction.

An important subject in both the theory and the practise of combinatorial optimization involves
“computing” the convex hull of the integer points lying in a simply described (usually by facets)
polytope. Here, “computing” means generating the facets of the convex hull of integer points
either explicitly or implicitly.

For many hard combinatorial optimization problems, we lower our goals from computing
all the facets of the convex hull to computing a partial, but still useful subset of the facets
of the convex hull. Depending on the approach taken, there are many ways of measuring how
complicated a facet of the convex hull is. A traditional theoretical approach is to apply Gomory-
Chvátal closures to the original polytope and count the number of major iterations needed to
derive a particular facet or all facets of the convex hull. The resulting measure, called Gomory-
Chvátal rank, has been studied, among others, in [7, 8, 12].

A less mainstream approach to computing the convex hull is the lift-and-project methods.
Such methods have been proposed by Balas [3], Lovász and Schrijver [26], and Sherali and Adams
[27]. Sherali and Adams [28] extended their lift-and-project methods to more general nonconvex
problems (also see the references therein for many applications). Closely related Lovász-Schrijver
procedures were generalized to compute the convex hull of any compact set in [18]. The reference
[18] contains the first convergence proof of such a method in that generality. Later, Lasserre
[19, 20] proposed similar procedures in a less general setting and used results from real-algebraic
geometry to establish convergence. While the convergence of lift-and-project methods for 0-1
optimization problems was well-understood, convergence proofs for lift-and-project methods on
more general nonconvex optimization problems involve different techniques. The focus of the
current paper is Lovász-Schrijver lift-and-project methods for 0-1 combinatorial optimization
problems, especially, the method involving positive semidefiniteness constraints. However, we
hope that our approach can be generalized to deal with Sherali-Adams procedures, Lasserre-type
methods and the more recently proposed methods of Bienstock and Zuckerberg [5]; also see the
analysis in [6].

Cook and Dash [10] were the first to make an explicit connection between the tools for
lower-bound proving techniques for the Gomory-Chvátal rank and those for the lift-and-project
ranks. Here, we slightly generalize their approach and streamline a proof technique for lower-
bound analysis. A main feature of the analysis is that the positive semidefiniteness of certain
matrix in a lifted relaxation is established inductively by a simple convexity argument on positive
semidefiniteness preserving linear maps (therefore avoiding the need to work out algebraically,
the eigenspaces, eigenvalues etc. of the matrices of arbitrary size). More specifically, let Lp ∈
R

n×m, n ≥ m. Then the linear transformation Lp · LT
p maps any m × m symmetric positive

semidefinite matrix to an n × n symmetric positive semidefinite matrix. Therefore, the linear
map

∑

p λp(Lp ·LT
p ) also preserves symmetry and positive semidefiniteness (provided λp ≥ 0,∀p).

Taking convex combinations preserves some other critical properties in addition.

The next section contains definitions and the basic properties of the lift-and-project methods
that are studied in this paper. In Section 3 we describe the skeleton of a generic proof via the
unified approach. To do so, we also introduce the notions of commutativity of linear maps and
the lift-and-project operators. Section 4 is made up from typical elementary examples of the
unifying proof technique.
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2 The Lift-and-Project Methods.

In this section, we review the definitions and some of the previously established, basic properties
of the lift-and-project procedures. For details and further related results, see [26, 27, 28, 4, 23,
10, 16, 24, 13].

Let P be any convex subset of the d-dimensional hypercube [0, 1]d. PI denotes the integral
hull of P , namely the convex hull of 0-1 vectors of P . The lift-and-project methods are general
procedures which take P as input and deliver PI as output. In doing so, it is sometimes
convenient to homogenize P to a cone K in R

d+1 by introducing an additional coordinate which
will be referred to as the 0-th coordinate.

K :=

{

λ

(

1
x

)

: x ∈ P, λ ≥ 0

}

, or P =

{

x ∈ R
d :

(

1
x

)

∈ K

}

. (1)

Accordingly, KI is the homogenized cone of PI . See Figure 1. It is clear that K is con-

Figure 1: P , PI , K, and KI .

tained in Q ⊆ R
d+1, the homogenization of [0, 1]d. The cone Q has a very simple polyhe-

dral structure. Denote Hi(0) := {x ∈ R
d+1 : xi = 0} and Hi(1) := {x ∈ R

d+1 : xi =
x0}. Similarly, for J ⊆ {1, 2, . . . , d}, write HJ(0) :=

{

x ∈ R
d+1 : xi = 0, i ∈ J

}

and HJ(1) :=
{

x ∈ R
d+1 : xi = x0, i ∈ J

}

. Then, for each (d + 1 − k)-dimensional face of Q, there is a set
J ⊆ {1, 2, . . . , d} with |J | = k and its partition J = J0 ∪ J1 so that the face is given as

Q ∩ HJ0
(0) ∩ HJ1

(1). (2)

Given a set S, its dual cone is defined as S∗ := {x : xT s ≥ 0, s ∈ S}. Let L be a linear map.
Then, it is easy to see that

y ∈ (LS)∗ ⇔ LT y ∈ S∗. (3)

It is well known that when S is polyhedral, S∗ is generated by the vectors determining the facets
of S. Hence, we have

Q∗ = cone{e1, . . . , ed, f1, . . . , fd}, (4)
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where ei denotes the ith unit vector and fi := e0 − ei. Let K1 ⊆ Q and K2 ⊆ Q be convex cones
such that K = K1 ∩ K2. For instance, if K is polyhedral, then K1 and K2 can be obtained
by taking proper subsystems of the linear systems determining K. We are ready to define the
lift-and-project operators N0, N and N+ in increasing strength. For Y ∈ R

(d+1)×(d+1), consider
the conditions:

diag(Y ) = Y e0, (5)

uT Y v ≥ 0, ∀ u ∈ K∗
1 , v ∈ K∗

2 , (6)

where diag : R
(d+1)×(d+1) → R

d+1 maps the diagonal elements of the given matrix onto a vector.
Then

M0(K1,K2) := {Y = (yij)i,j∈{0,1,...,d} : Y satisfies (5), and (6)}.

Notice that (5) and (6), respectively, can be restated as follows.

〈Y, eif
T
i 〉 := trace

(

Y T eif
T
i

)

= 0, ∀ i ∈ {1, 2, . . . , d} , (7)

Y K∗
2 ⊆ (K∗

1 )∗ = K1. (8)

The additional condition

Y ∈ Σd+1, the (d + 1) × (d + 1) symmetric matrices, (9)

yields the stronger operator

M(K1,K2) := {Y ∈ M0(K1,K2) : Y satisfies (9)}.

An additional positive semidefiniteness constraint

Y ∈ Σd+1
+ , the (d + 1) × (d + 1) PSD matrices, (10)

gives

M+(K1,K2) := {Y ∈ M(K1,K2) : Y also satisfies (10)}.

We use N♯ ∈ {N0, N,N+}, and M♯ ∈ {M0,M,M+}, to state definitions and results for all
three operators M0,M,M+ and N0, N,N+ (defined below) respectively:

N♯(K1,K2) := {Y e0 : Y ∈ M♯(K1,K2)}. (11)

N♯(K1,K2) is a relaxation of KI tighter than K. We have

K ⊇ N0(K1,K2) ⊇ N(K1,K2) ⊇ N+(K1,K2) ⊇ KI . (12)

When K1 := K, we can use for K2 any convex cone such that K ⊆ K2 ⊆ Q. While the choice
K2 := K provides the tightest relaxations, the simplicity of Q (especially of Q∗) allows the usage
of more elegant and simpler mathematical tools. Moreover, choosing K2 := Q yields a sequence
of clearly tractable relaxations from a computational complexity point of view as we explain
below. In this case, by (4), (8) is equivalent to

Y ei, Y fi ∈ K, i ∈ {1, 2, . . . , d} . (13)
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For this case, we will adopt the following notation:

M♯(K) := M♯(K,Q), N♯(K) := N♯(K,Q). (14)

Clearly, N♯ operators can be applied iteratively:

K := N0
♯ (K), N t

♯ (K) := N♯(N
t−1
♯ (K)) for t ∈ {1, 2, . . .}. (15)

The following conventional notation is also useful.

N♯(P ) :=

{

x ∈ R
d :

(

1
x

)

∈ N♯(K)

}

. (16)

Now, we review various facts on the lift-and-project methods.

N0(K) =
d

⋂

i=1

[(K ∩ Hi(0)) + (K ∩ Hi(1))] . (17)

For a given set J with |J | = t, consider the union F̄d+1−t(J) of the (d + 1− t)-dimensional faces
of Q determined by the partitions of J in (2):

F̄d+1−t(J) :=
⋃

J0∪J1=J

Q ∩ HJ0
(0) ∩ HJ1

(1).

Then we can define the following operator:

Ñ t
0(K) :=

⋂

J⊆N,|J |=t

cone
(

K ∩ F̄d+1−t(J)
)

. (18)

Then, the N♯-operators have the following relations:

N t
+(K) ⊆ N t(K) ⊆ N t

0(K) ⊆ Ñ t
0(K). (19)

Since Ñd
0 (K) = KI , the above fact implies that the lift-and-project procedures capture the

integral hull in at most d iterations. A remarkable fact is that linear optimization on N♯(K) can
be done in polynomial time if K is polynomially separable. It can be shown that (5), (9), (10)
and (13) are polynomially separable constraints if K is so. Roughly speaking, a separation of
N t

♯ (K) requires the separation of N t−1
♯ (K), O(d) times. This implies that N t

♯ (K) is polynomially
separable when t = O(1).

3 Lower Bound Analysis.

We mentioned at the end of the last section that after O(1) iterations of N♯ operator, the
resulting relaxation N t

♯ (K) of KI is still tractable provided K is polynomially separable. In
both theory and practice of combinatorial optimization, it is extremely important to come up
with tight relaxations (good outer approximations) of KI that are tractable. Therefore, a most
natural and important question regarding the lift-and-project procedures is what is the smallest
number of iterations, t, required to find the integral hull of a combinatorial optimization problem.
Establishing this smallest number t is usually done in two parts:
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• proving N t
♯ (K) ⊆ KI ,

• proving ∃v ∈ N
(t−1)
♯ (K) \ KI .

These two parts are based on very different mathematical techniques and it is part 2 that seems
much harder and much less unified. In this paper, we focus on this second part, establishing
lower bounds on the smallest number t. Lower bounds have been established for several problems
[10, 16, 30] and we describe a framework unifying these analyses.

3.1 N♯-ranks

Let Π be a 0-1 integer programming problem with the instances ι. Denote the input size of ι
by 〈ι〉 and Πn := {ι ∈ Π : 〈ι〉 ≤ n}. The rank r is a function on the quadruples (N♯,Π, P, n),
where P is a initial relaxation scheme of the instances ι of Π. For each ι, let P (ι) ⊆ Q be the
relaxation obtained by P applied to ι, and ℓι the minimum ℓ such that N ℓ

♯ (P (ι)) ⊆ PI(ι), the
integral hull of P (ι). Then, the rank function r is defined as

r(N♯,Π, P, n) := max{ℓι : ι ∈ Πn}. (20)

When Π and n are clear from the context, we will simply write r♯(P ) := r(N♯,Π, P, n). Obviously,
r♯(P ) is a measure of efficiency of the lift-and-project methods for problem Π. However, finding
an exact value of r is usually a difficult task. Therefore, the analyses are focused on finding good
lower and/or upper bounds on r♯(P ). The former is equivalent to finding an instance ι ∈ Πn,
a suitable point v(n) and the largest ℓn and such that v(n) lies in the gap between PI(ι) and
N ℓn

♯ (P (ι)): v(n) ∈ N ℓn

♯ (P (ι))\PI (ι). Then, clearly r♯(P ) ≥ ℓn + 1. For such analysis, see also
[2, 17, 21, 22].

3.2 Construction of v(n)

Many of the existing proofs set up symmetric structures (graphs or polytopes) which allow
arguments with convex combinations in the relaxations Nk

♯ (P ). This in turn, reduces the number
of parameters in v(n).

We denote by ē the vector of all ones of appropriate size. Suppose v ∈ R
d
+ maximizes

ēT x (we assume for this discussion that the underlying combinatorial optimization problem is a
maximum cardinality problem) over Nk

♯ (P ). Thus, if Nk
♯ (P ) is invariant under all permutations

Sd (represented as permutation matrices), i.e.,

∀R ∈ Sd : x ∈ Nk
♯ (P ) ⇐⇒ Rx ∈ Nk

♯ (P ).

Then




1

|Sd|

∑

R∈Sd

Rv



 ∈ Nk
♯ (P ),

by the convexity of Nk
♯ (P ). Therefore, we can assume v = αē for some α ≥ 0 (we used

ēT Sv = ēT v,∀R ∈ Sd).
In other problems, the symmetry might be less pronounced; however, this basic technique

can still be useful in reducing the number of parameters in v from a large function of d to a
constant. Then the conditions of N♯ may lead to recursions (as in [16]). This kind of technique
was used in [30, 15, 10, 25, 22, 21]. A recent formal approach is presented in [14].
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3.3 M♯- and N♯-commutative maps.

An ingredient of our unifying framework is the inductive construction of v(n) of the desired
property mentioned in Section 3.1. In doing so, M♯- and M♯-commutative maps are very useful.
These maps provide the passage from the space of one induction step (the lower one) to the
next.

Definition 1 Suppose L : R
d+1 → R

d+1+k is a linear map. Then, L is said to be M♯-
and N♯-commutative, respectively, if LM♯(K1,K2)L

T ⊆ M♯(LK1, LK2) and LN♯(K1,K2) ⊆
N♯(LK1, LK2) for every pair of closed convex cones K1,K2 ⊆ Q (see Figure 2).

Kj -L LKj

?

M♯

?

M♯

M♯(K1, K2)
�

� -L · LT M♯(LK1, LK2)

� �

��

M♯-commutativity

Kj -L LKj

?

N♯

?

N♯

N♯(K1, K2)
�

� -L N♯(LK1, LK2)

� �

��

N♯-commutativity

Figure 2: M♯- and N♯-commutative diagram.

Let ẽi’s and f̃i’s be the extreme rays of the dual cone Q̃∗ of the (d+ 1+ k)-dimensional cone
Q̃ spanned by the (d + k)-dimensional hypercube.

Theorem 2 A linear map L : x ∈ R
d+1 7→ x̃ ∈ R

d+1+k is M♯–commutative if and only if, for
every j ∈ {1, 2, . . . , d + 1 + k},

LT ẽj f̃
T
j L ∈ span

{

eif
T
i : i ∈ {1, 2, . . . , d}

}

. (21)

Proof: Assume Y ∈ M♯(K1,K2). We first show that (21) guarantees LY LT ∈ M♯(LK1, LK2).

First, notice that (6), (9), and (10) are true for LY LT regardless of (21): (9) and (10) are clearly
satisfied by LY LT . Regarding (6), due to (3), w̃ ∈ (LKj)

∗ if and only if LT w̃ ∈ K∗
j for j ∈ {1, 2}.

Therefore, Y ∈ M♯(K1,K2) implies 0 ≤ (LT ũ)T Y (LT ṽ) = ũT LY LT ṽ for any ũ ∈ (LK1)
∗ and

ṽ ∈ (LK2)
∗. It remains to show (21) guarantees (5) for LY LT .

But, by (7) the latter is equivalent to that for all j ∈ {1, 2, . . . , d + k},

trace
(

LY LT ẽj f̃
T
j

)

= trace
(

Y (LT ẽj f̃
T
j L)

)

= 0. (22)

From (21), LT ẽj f̃
T
j L =

∑

i λieifi
T for some λi, i ∈ {1, 2, . . . , d}. Since Y satisfies (7), this

implies (22).
We will prove the necessity for the M -operator. The proofs for M0- and M+-operators are

similar. Suppose (21) does not hold for j = 1: LT ẽ1f̃
T
1 L /∈ span{eif

T
i : 1, 2, . . . , d}. Then, there

is Ȳ ∈ Σd+1 such that trace
(

Ȳ eif
T
i

)

= 0 for all i ∈ {1, 2, . . . , d} and trace
(

Ȳ LT ẽ1f̃
T
1 L

)

6= 0.

Pick K1 and K2 so that M(K1,K2) is full dimensional in
{

Y ∈ Σd+1 : diag(Y ) = Y e0

}

. Let

Ŷ ∈ rel int (M(K1,K2)). Then, there is ǭ > 0 such that Ŷ + ǫȲ ∈ M(K1,K2) for all ǫ < ǭ.

But, since trace
(

Ȳ LT ẽ1f̃
T
1 L

)

6= 0, trace
(

L(Ŷ + ǫȲ )LT ẽ1f̃
T
1

)

= trace
(

Ŷ LT ẽ1f̃
T
1 L

)

+

ǫtrace
(

Ȳ LT ẽ1f̃
T
1 L

)

can not be identically 0 on 0 < ǫ < ǭ. Hence, L is not M -commutative.
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Remark 3 Notice that in Theorem 2, k is not necessarily assumed to be nonnegative.

Corollary 4 If, in addition, L is invertible, then the equality holds: LM♯(K1,K2)L
T = M♯(LK1,

LK2).

Proof: It suffices to show that if Ỹ ∈ M♯(LK1, LK2), then L−1Ỹ L−T ∈ M♯(K1,K1), namely
L−1Ỹ L−T satisfies (6), (7), (9), and (10). Clearly, (9) and (10) are satisfied. Also, from (3) and
invertibility of L, it follows that (LKi)

∗ = L−TK∗
i for i ∈ {1, 2}. Therefore, ũT Ỹ ṽ ≥ 0 for all

ũ ∈ L−T K∗
1 and ṽ ∈ L−TK∗

2 , or equivalently uT L−1Ỹ L−T v ≥ 0 for all u ∈ K∗
1 and v ∈ K∗

2 .

Finally, to prove (7), since trace
(

L−1Ỹ L−T eif
T
i

)

= trace
(

Ỹ L−T eif
T
i L−1

)

, it suffices to

show that the linear subspace span
{

eif
T
i

}

is invariant under the mapping L−T · L−1. Or
equivalently, LT span

{

eif
T
i

}

L = span
{

eif
T
i

}

. But, since L is invertible, the linear map LT ·L :
span

{

eif
T
i

}

→ span
{

eif
T
i

}

is a bijection. Hence the corollary follows.

Corollary 5 If L and L′ are M♯-commutative maps, then their composite, if defined, is also
M♯-commutative.

The following facts were observed by Lovász and Schrijver.

Lemma 6 [26] If L is M♯-commutative and LT e0 is parallel to e0, then L is also N♯-commutative.

Corollary 7 [26] If L : R
d+1 → R

d+1 is an automorphism of Q, namely a linear map such that
LQ = Q, then for every pair of closed convex cones K1,K2 ⊆ Q, we have LM♯(K1,K2)L

T =
M♯(LK1, LK2) and LN♯(K1,K2) = N♯(LK1, LK2).
The proof follows from Corollary 4 and Lemma 6. For if L is an automorphism of Q then,
there are a permutation σ : {1, 2, . . . , d} → {1, 2, . . . , d} and λ > 0 such that {LT ei, L

T fi} =
{λeσ(i), λfσ(i)}, and LT e0 is parallel to e0. For the details, the reader is referred to the Appendix.

Notice that in Definition 1, M♯- and N♯-commutative linear maps that are not necessarily
assumed to be invertible. The followings are such examples of M♯- and N♯-commutative maps:

• Embedding L : x ∈ R
d+1 7→ x̃ ∈ R

d+1+k so that, for some 0 ≤ l ≤ k,

x̃i :=







xi for i ∈ {0, 1, . . . , d} ,
0 for i ∈ {d + 1, . . . , d + l} ,
x0 for i ∈ {d + l + 1, . . . , d + k} .

(23)

• Duplication L : x ∈ R
d+1 7→ x̃ ∈ R

d+1+k so that, for a subset {j1, . . . , jk} ⊆ {1, 2, . . . , d},

x̃i :=

{

xi for i ∈ {0, 1, . . . , d} ,
xji−d

for i ∈ {d + 1, . . . , d + k} .
(24)

• Flipping is an automorphism that maps ej 7→ fj, fj 7→ ej for each j ∈ J ⊆ {1, 2, . . . , d}.

Indeed, in all of the above examples, one can check that for every j ∈ {1, 2, . . . , d + k}, there is
i ∈ {1, 2, . . . , d} such that

{

LT ẽj , L
T f̃j

}

= {e0, 0} , or {ei, fi} , (25)

that is sufficient for (21). In fact, (25) describes a fairly broad class of linear maps that are both
M♯- and N♯-commutative.
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Corollary 8 Suppose L satisfies the following conditions: 1) The first row is e0, and 2) the rest
are either, 0, e0, ei, or fi for i ∈ {1, 2, . . . , d}. Then any positive multiple of L is both M♯- and
N♯-commutative.

Now, we discuss one of the key properties used in our framework for lower-bound analysis.

Lemma 9 Let K ⊆ R
d+1 and K̃ ⊆ R

d+1+k, respectively, be the homogenizations of the convex
sets P ⊆ [0, 1]d and P̃ ⊆ [0, 1]d+k. Assume L : R

d+1 → R
d+1+k is an N♯-commutative map. If

L is feasible, namely LK ⊆ K̃, then for every t ≥ 0, we have LN t
♯ (K) ⊆ N t

♯ (LK) ⊆ N t
♯ (K̃).

Proof: By induction on t using the feasibility of L.

The following fact is potentially useful in a lower bound analysis.

Theorem 10 Every convex combination of N♯-commutative maps is also N♯-commutative.

Proof: Let L1 and L2 be N♯-commutative maps and 0 < λ < 1. Define L := λL1 + (1− λ)L2.
Then,

LN♯(K) = λL1N♯(K) + (1 − λ)L2N♯(K)

⊆ λN♯(L1K) + (1 − λ)N♯(L2K)

⊆ N♯ (λL1K + (1 − λ)L2K) = N♯(LK).

N♯-commutativity of L1 and L2 implies the first inclusion. The second inclusion follows from
the concavity of N♯-operators.

We note that M♯-commutativity, however, is not necessarily preserved under taking convex
combinations.

Analogously to the relation of P and K, for the notation of (16), we can also define ,

LP :=

{

x :

(

1
x

)

∈ LK

}

, LN♯(P ) :=

{

x :

(

1
x

)

∈ LN♯(K)

}

. (26)

If L is N♯-commutative, then it is routine to check that

LN♯(P ) ⊆ N♯(LP ). (27)

3.4 Unifying approach

Most lower-bound analyses rely on a mathematical induction on the size (suitably defined) of
the instances. To facilitate the presentation, we only consider the instances that are symmetric
with respect to the variables. Thus, we consider essentially a unique instance of each size. Let
sk be the size of the instance at the k-th induction step. For instance, sk can be the number
of edges, nodes, or variables. Denote by Psk

and Ksk
, respectively, the initial relaxation and its

homogenization for Πsk
. For simplicity, we will write M♯(sk) := M♯(Ksk

) and N♯(sk) := N♯(Ksk
).

The unifying approach focuses on constructing in a recursive manner, the sequence of proofs
Yk ∈ Mk

♯ (sk) such that v(k) = Yke0 via appropriate M♯-commutative maps Lp. See Figure 3.

Scheme 11 Using the symmetry of ι, P , and v(k), construct {Yk} so that Yke0 = v(k), Yk ∈
Mk

♯ (sk) and Yk+1 = 1
|S|

∑

p∈S LpYkL
T
p ∈ Mk+1

♯ (sk+1), for some set of M♯-commutative maps

{Lp : p ∈ S}.
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qv(k) ∈ Nk
♯ (sk)

-Lp · LT
p

qwp ∈ Nk
♯ (sk+1)

m
Yk ∈ Mk

♯ (sk).

m
W p = LpYkL

T
p ∈ Mk

♯ (sk+1)

?

induction
�

�
��	

proof

qv(k + 1) ∈ Nk+1
♯ (sk+1)

m

∃? Yk+1 ∈ cone{W p}.
s.t Yk+1ei, Yk+1fi ∈ cone{wp}.

Figure 3: Unifying approach

Figure 4: A schematic illustration of the proof technique.

The M♯-commutativity of Lp’s implies that LpYkL
T
p ∈ Mk

♯ (sk+1) for all p. Thus, the scheme

is based on the intuition that, due to the symmetry, when LpYkL
T
p ∈ Mk

♯ (sk+1) for p ∈ S then

their convex combination might lie in the smaller set Mk+1
♯ (sk+1). See Figure 4.

Note that the convex combination of the commutative maps,
∑

p∈S LpYkL
T
p preserves (5),

(9), and most importantly, positive semidefiniteness (10) of Yk, Hence, due to the manner in
which Yk is defined, the conditions are automatically met once we establish them in the base
step of the induction. Thus, the unifying approach can make the proof more straightforward
and systematic.

This approach can be extended to the special structures that a given problem Π may have.
Suppose, for instance, some set of integral points {zq : q ∈ T} ⊂ PI is readily available. Then,
for every q ∈ T and k ≥ 0, ( 1

zq
)( 1

zq
)T ∈ Mk

♯ (K). (An interesting special case is when P is upper

or lower comprehensive.) Thus, in such cases, the recursive definition of Yk can be generalized
as follows:

Yk+1 = µ





1

|S|

∑

p∈S

LpYkL
T
p



 + (1 − µ)





1

|T |

∑

q∈T

(

1

zq

)(

1

zq

)T


 , (28)

for some appropriate set of integral points {zq : q ∈ T} and 0 ≤ µ ≤ 1.
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4 Implementations of the Unifying Proof.

4.1 Matching polytope

The matching polytope of a graph G = (V,E) is defined to be the convex hull of the characteristic
vectors of the matchings in G. Then, it is the integral hull, PI of

P :=
{

x ∈ R
E : x(δ(v)) ≤ 1 ∀v ∈ V, x ≥ 0

}

, (29)

where, δ(v) is the set of edges that have v as an endpoint and x(S) :=
∑

j∈S xj . Denote by G2k+1,
the clique with sk := (2k + 1) nodes, V = {1, 2, . . . 2k + 1}. Then, it has tk := k(2k + 1) edges,
(1, 2), (1, 3), . . ., (2k, 2k + 1). Consider the lexicographic order ≺ on the edges: (i, j) ≺ (k, l)
⇔ i < k, or i = k and j < l. We assume that the edges are numbered to the lexicographic
order and denote for simplicity E2k+1 = {1, 2, . . . , tk}. See, e.g., G2k+1 in Figure 5 and the
numbers assigned to the edges. Also, let P2k+1 be the relaxation of (29) for G2k+1 and K2k+1

the homogenization of P2k+1. Recall that we write N t
+(2k + 1) := N t

+(K2k+1).
Stephen and Tunçel [30] showed that if K2k+1 is used as the initial cone, r+(P2k+1) is k. In

doing so, they established the lower-bound (k− 1) < r+(P2k+1) by constructing a uniform point
v(k) in Nk−1

+ (2k + 1)\(P2k+1)I : For k ∈ {1, 2, . . .},

v(k) :=

(

1
1
2k ē

)

∈ R
E2k+1∪{0}. (30)

Since the maximum cardinality of a matching on G2k+1 is k, v(k) is not in (P2k+1)I . Hence, the
lower-bound k on r+(P2k+1) will follow, if we show, for k ∈ {1, 2, . . .},

v(k) ∈ Nk−1
+ (2k + 1). (31)

Denote by G2k+1\p the graph obtained by deleting the two endpoints of p from G2k+1. Then,
a key observation is that for any p ∈ E2k+1, the lexicographic orders on Ek−1 and E (G2k+1\p)
induces an obvious isomorphism between G2k−1 and G2k+1\p. Hence, the following map aligns
the order of elements of a vector vi, i ∈ E2k−1 to the order of edges of the sub-clique G2k+1\p.
For p ∈ {1, 2, . . . , tk}, define Lp : v ∈ R

E2k−1∪{0} 7→ wp ∈ R
E2k+1∪{0}:

wp
j :=















v0, j = 0,
v0, j = p,
0, j ∈ Inc(p), the set of edges incident to p,
vi, j is the i-th edge of G2k+1\p.

(32)

For p ∈ E2k+1 and q ∈ E2k+3, we can define composite L̃qLp of the two embeddings, Lp :
R

E2k−1∪{0} → R
E2k+1∪{0} and L̃q : R

E2k+1∪{0} → R
E2k+3∪{0}. In Figure 5, L̃6L1v with v =

(v0, v1, v2, v3)
T is illustrated. Notice that for a given vector v ∈ R

E2k−1∪{0}, there can be more
than one two-level embeddings mapping v to the same vector.

Lemma 12 Let p and q ∈ E2k+3 be two non-incident edges of G2k+3. Suppose p is the pq-th
edge of G2k+3\q. Similarly, define qp for q with respect to p. Then for every v ∈ R

E2k−1∪{0},

L̃qLpqv = L̃pLqpv.

Proof: Trivially, by definition, both L̃qLpqv and L̃pLqpv have the same 0-th element, v0.
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Figure 5: Two-level embed L̃L.

Since p and q are not incident in G2k+3, G2k+3\p and G2k+3\q have a common sub-clique
with tk−1 := (k−1)(2k−1) edges, namely G2k+3\{p, q}. We will show that, L̃qLpq assigns 1) v0

to p and q, 2) for each i ∈ E2k−1, vi to the i-th edge of G2k+3\{p, q}, and 3) 0’s to the remaining
edges in E2k+3. Then, by the symmetry between p and q, L̃pLqp does the same and hence the
lemma will follow.

By the definition, (32), and the discussion preceding it, Lpq aligns vi, i ∈ E2k−1 to E(G2k+1\pq).

Now, L̃q assigns v0 to q ∈ E2k+3 and aligns (Lpqv)j , j ∈ E2k+1 to the edges, E(G2k+3\q). The pq-
th element of Lpqv is v0 and, from the hypothesis, pq-th element of E(G2k+3\q) is p. Therefore,

L̃qLpq assigns v0 to p. Hence, 1) holds. Furthermore, in this alignment (Lpqv)j , j ∈ E2k+1\pq

will be assigned to the edges of (G2k+3\q) \p = G2k+3\{p, q} preserving the order. But, (Lpqv)j ,
j ∈ E2k+1\pq are ordered the same as vi, i ∈ E2k−1. Therefore, 2) also holds. Clearly, the
remaining edges of E2k+3 are assigned 0’s. Hence the lemma.

For example, in Figure 5, let p = 7 and q = 6. Then, pq = 1 and qp = 4. Therefore, another
two-level embedding L̃7L4v, as easily checked, has the same effect as L̃6L1v.

Now, we provide a proof of (31) based on the unifying approach.

Proof:

Clearly, v(1) ∈ N0
+(3) := K3 as it satisfies the inequalities of (29). Define

Yk ∈ R
E2k+1∪{0}×E2k+1∪{0} recursively as follows:

Y2 :=
[

1
s2

∑s2

p=1 Lpv(1); 1
4L1v(1); . . . ; 1

4Ls2
v(1)

]

, (33)

Yk := 1
tk

∑tk
p=1 LpYk−1L

T
p , k ∈ {3, 4, . . .}. (34)

First, let’s prove that, for every k ∈ {2, 3, . . .},

Yke0 = v(k), and (35)

Yk satisfies (5), (9), and (10). (36)
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It is easily seen from (30) and (33) that Y2 is given as follows:

Y2 =







































1 1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4 0 0 0 0 0 0 1

4
1
4

1
4

1
4 0 1

4 0 0 0 1
4

1
4 0 0 1

4
1
4 0 0 1

4 0 1
4 0 1

4 0 1
4 0

1
4 0 0 0 1

4
1
4

1
4 0 1

4 0 0
1
4 0 0 1

4
1
4

1
4 0 0 0 0 1

4
1
4 0 1

4 0 1
4 0 1

4 0 0 1
4 0

1
4 0 1

4
1
4 0 0 0 1

4
1
4 0 0

1
4

1
4 0 0 1

4 0 0 1
4

1
4 0 0

1
4

1
4 0 1

4 0 0 1
4 0 0 1

4 0
1
4

1
4

1
4 0 0 1

4 0 0 0 0 1
4







































(37)

Thus, Y2 satisfies (35). Now, we show it is also true for k + 1. But,

Yk+1ẽ0 = 1
tk+1

∑tk+1

q=1 L̃qYkL̃
T
q ẽ0 = 1

tk+1

∑tk+1

q=1 L̃qYke0

= 1
tk+1

∑tk+1

q=1 L̃qv(k) = 1
tk+1

(

tk+1

(1 + tk
1
2k )e

)

=

(

1
1

2(k+1)e

)

.

Thus, (35) holds for (k + 1) and hence for all k ≥ 2. Regarding (36), Y2 clearly satisfies (5), and
(9). It is straightforward to check that Y2 is positive semidefinite: It has eigenvalues 0, 5

24 and
19
12 . Hence, by induction, M+-commutativity of the embeddings Lp implies (36).

To complete the proof, due to (8), it suffices to show that for k ∈ {2, 3, . . .},

Ykei, Ykfi ∈ Nk−2
+ (2k + 1), ∀i ∈ {1, 2, . . . , tk}. (38)

To do so, we will prove the following:

Ykei = 1
2kLiv(k − 1), and (39)

Ykfi = 1
4k

∑

j∈Inc(i) Ljv(k − 1). (40)

Then, since v(1) ∈ K3 := N0
+(3), using the N+-commutativity and the feasibility of Li, it is

easy to see inductively that (38) follows from(39) and (40). By definition of Y2, (39) is satisfied
when k = 2. Now, we show (39) holds for k + 1. By definition,

Yk+1ẽj =
1

tk+1

tk+1
∑

q=1

L̃qYkL̃
T
q ẽj .

Case 1. If q = j, then L̃qYkL̃
T
q ẽj = L̃jYke0 = L̃jv(k) from (35).

Case 2. If q and j are incident, then L̃T
q ẽj = 0. Therefore, we have L̃qYkL̃

T
q ẽj = 0.

Case 3. Finally, consider the case when q and j are not incident. Suppose j is the jq-th
smallest numbered edge of G2k+3\q. Then, by the definition of L̃, we have L̃T

q ẽj = ejq . Therefore,

L̃qYkL̃
T
q ẽj = L̃qYkejq , which is 1

2k L̃qLjqv(k − 1) from the induction hypothesis, (39). Suppose q

is the qj-th edge of G2k+3\j. Then, by Lemma 12, we get 1
2k L̃qLjqv(k − 1) = 1

2k L̃jLqj
v(k − 1).

Clearly, for a fixed j, distinct q’s have distinct qj’s from {1, 2, . . . , tk}.
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Thus, summarizing the cases, we get

Yk+1ẽj = 1
tk+1

(

L̃jv(k) + 1
2k

∑tk
i=1 L̃jLiv(k − 1)

)

(41)

= 1
tk+1

L̃j

(

v(k) + tk
2kv(k)

)

= 1
2(k+1) L̃jv(k). (42)

The first equality of (42) is from that
∑tk

i=1 Liv(k − 1) = tkv(k). Therefore, (39) holds for k + 1
and the proof of (39) is completed.

Finally, it is routine to check that (40) is implied by (35) and (39). Thus, (31) follows.

Remark 13 The usage of the two-level embedding in the above proof can be avoided (making the
proof considerably shorter) by a careful counting argument. However, the above linear algebraic
proof via the commuting single-level embeddings may be useful in other, more complicated situ-
ations. Aguilera, Bianchi and Nasini [1] gave another proof using the work of Doob [11] which
in turn has connections to Tutte’s much earlier work [31]. While this is a very nice connection
found by [1], the underlying proof still relies on working out the eigenspaces and the eigenvalues
of the corresponding Y matrix to establish the positive semidefiniteness.

4.2 Knapsack polytope

Consider the following (reversed) knapsack polytope and its 0-1 integral hull:

Pd :=

{

x ∈ R
d : x1 + · · · + xd ≥

1

2

}

, (Pd)I =
{

x ∈ R
d : x1 + · · · + xd ≥ 1

}

. (43)

Cook and Dash [10] showed that these are some of the worst-case examples for all N♯ operators:
r0(Pd) = r(Pd) = r+(Pd) = d. To capture such results, it suffices to show that

v(d) :=

(

1
1

d+1 ē

)

∈ Nd−1
+ (d). (44)

We use the following embeddings. For p ∈ {1, 2, . . . , d}, Lp : v ∈ R
d 7→ wp ∈ R

d+1 such that

wp
j :=







v0, j = 0,
0, j = p,
vi, j is the ith smallest number of {1, 2, . . . , d}\{p}.

(45)

We recursively construct Yd, for d ∈ {1, 2, . . .}, as follows:

Y1 :=

[

1 1
2

1
2

1
2

]

, (46)

Yd := 1
d+1

∑d
p=1 LpYd−1L

T
p + 1

d+1Arrowd

(

1
d ē

)

, for d ∈ {2, 3 . . .}, (47)

where Arrowd(·) : R
d 7→ Σd+1, is defined as

Arrowd(u) :=















1 u1 u2 · · · ud

u1 u1 0 · · · 0
u2 0 u2 · · · 0
...

...
...

. . .
...

ud 0 0 · · · ud















.
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Note that, Arrowd

(

1
d ē

)

fits the recursion of (28), since it corresponds to a convex combination
(with uniform coefficients 1

d) of the matrices corresponding to known integer points of P :















1 1 0 · · · 0
1 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0















,















1 0 1 · · · 0
0 0 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0















, · · · ,















1 0 0 · · · 1
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1















.

Clearly, Y1 satisfies (5), (9), and (10). Also, we have

Yd =

















1 1
d+1

1
d+1 · · · 1

d+1
1

d+1
1

d+1 0 · · · 0

1
d+1 0 1

d+1

. . . 0
...

... 0
. . . 0

1
d+1 0 0 0 1

d+1

















.

In particular, Yde0 = v(d). Moreover, Ydej = 1
d+1 (e0 + ej). Hence, (d + 1)Ydej ∈ PI(d). Finally,

Ydfj =
d

d + 1





























1
1
d
...
1
d
0
1
d
...
1
d





























=
d

d + 1
Ljv(d − 1) ∈ Nd−2

+ (d).

Thus, Ydej , Ydfj ∈ Nd−2
+ (d) for all j ∈ {1, 2, . . . , d} and (44) follows.

4.3 An Empty ℓ1-ball

Consider the following polytope:

Pd :=







x ∈ R
d :

∑

j∈S

xj +
∑

j /∈S

(1 − xj) ≥
1

2
, ∀S ⊆ {1, 2, . . . , d}







. (48)

Notice that any 0-1 vector x with xi = 1 exactly for i ∈ T , does not satisfy the inequality
corresponding to S = {1, 2, . . . , d} \ T . Thus, (Pd)I = ∅. Denote by Kd the homogenization of
Pd. Define, for p ∈ {1, 2, . . . , d},

L0p : (x0, x1, . . . xd−1)
T 7→ (x0, x1, . . . , xp−1, 0, xp, . . . , xd−1)

T ,

L1p : (x0, x1, . . . xd−1)
T 7→ (x0, x1, . . . , xp−1, x0, xp, . . . , xd−1)

T , (49)
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Y1 :=

[

1 1
2

1
2

1
2

]

, and (50)

(51)

Yd := 1
2

(

L01Yd−1L
T
01 + L11Yd−1L

T
11

)

for d ∈ {2, 3, . . .}. (52)

Then, it is easily seen that Yd defined in (52) coincides Yd given below:

Yd :=

















1 1
2

1
2 · · · 1

2
1
2

1
2

1
4 · · · 1

4

1
2

1
4

1
2

. . .
...

...
...

. . .
. . . 1

4
1
2

1
4 · · · 1

4
1
2

















∈ R
(d+1)×(d+1). (53)

For instance,

Y1 =

[

1 1
2

1
2

1
2

]

, L01Y1L
T
01 =





1 0 1
2

0 0 0
1
2 0 1

2



 , and L11Y1L
T
11 =





1 1 1
2

1 1 1
2

1
2

1
2

1
2



 . (54)

Hence,

Y2 =





1 1
2

1
2

1
2

1
2

1
4

1
2

1
4

1
2



 . (55)

Clearly, v(d) = Yde0. Trivially, Y1 satisfies (5), (9), and (10). Therefore, the same conditions are
met by Yd for d ∈ {2, 3, . . .}. Thus, to prove v(d) ∈ Nd−1

+ (d), it remains to show that Ydej , Ydfj ∈

Nd−2
+ (d) for j ∈ {1, 2, . . . , d}. First, v(1) ∈ N0

+(1) = K1. Notice that for j ∈ {1, 2, . . . , d},

Ydej = 1
2L1jv(d − 1), and (56)

Ydfj = 1
2L0jv(d − 1). (57)

From the induction hypothesis, v(d − 1) ∈ Nd−2
+ (d − 1). But, for every j ∈ {1, 2, . . . , d},

Li1 for i ∈ {0, 1} are N+-commutative and feasible. Thus, for i ∈ {0, 1}, Li1N
d−2
+ (d − 1) :=

Li1N
d−2
+ (Kd−1) ⊆ Nd−2

+ (Li1Kd−1) ⊆ Nd−2
+ (Kd). Therefore, we have Ydej , Ydfj ∈ Nd−2

+ (d).
Hence, the proof.

Remark 14 Instead of (52), we can also use 1
2d

∑d
p=1

(

L0pYd−1L
T
0p + L1pYd−1L

T
1p

)

to get the
same results.

4.4 TSP: (4/3)-conjecture related lower-bounds

Since our techniques generalize those of Cook and Dash [10], their main results concerning
N+-rank of the TSP polytope fits into the framework.

Recently, Cheung [9] obtained, through an elegant analysis, some lower-bound results for the
N+-rank of various relaxations obtained from the subtour elimination polytope. Motivation of [9]
is the so-called (4/3)-conjecture. The proof analyzes the eigenspaces of the individual matrices
to prove that the claimed fractional vector indeed lies in Nk

+(P ). Our unifying approach is
also directly applicable to this situation since the original proof only uses the well established
embeddings all of which are M+-commutative.
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4.5 Packing, covering and set partition type problems

Very important and typical applications of lift-and-project methods have been in the general area
of packing, covering and set partition type problems (see Lovász and Schrijver [26], Balas, Ceria
and Cornuéjols [4], Sherali and Lee [29], Arora, Bollobás and Lovász [2]). Lower bound analyses
for the results based on N♯ operators can easily be covered by our unification. However, Sherali
and Lee [29] work with Sherali-Adams Reformulation-Linearization Technique (RLT). While
operators like RLT, N♯ and the one by Lasserre all belong to the same general lift-and-project
family of operators, the lower bound unification for RLT and Lasserre-type operators should
be done in the language of “optimization over lattices interpretation” of the lift-and-project
methods. So, these are not currently covered by our framework.

To extend our framework to RLT and Lasserre type methods, one has to deal with two
separate dimension increases in a single inductive step. One increase (same as what we had)
is in the dimension of the original instance (e.g., we go from a k-clique to a (k + 2)-clique).
The second increase is in the order of the monomials used in obtaining the new, higher-order
relaxations.

5 Conclusion.

We presented a unified proof technique for establishing lower-bounds on the SDP-based lift-and-
project rank of combinatorial optimization polyhedra. There are two obvious future research
directions opened by our approach:

• Clearly, the lower-bound established for a stronger operator directly applies to the weaker
operator. However, to obtain better lower-bound results for the weaker operators, one
needs to focus on those N0- and N - commutative maps that are not N+-commutative.
In particular, complete characterization of N -commutative maps can be very useful in
settling many open questions.

• It seems that our technique has a lot of potential for generalization to the so-called “op-
timization over lattices interpretation” of the lift-and-project methods (see [26] and [21]).
Such generalization would help analyze Sherali-Adams operator and Lasserre-type meth-
ods. Indeed, in the Appendix of [21], Laurent sketches “a tentative iterative proof” which
has similarities to our framework.
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A Proof of Corollary 7.

Assume that L is an automorphism of Q. Then, from (3) it follows that LT is also an automor-
phism of Q∗. Hence, LT preserves the set of extreme rays as well as the interior of Q∗. As e0

is an interior ray, so is LT e0. But, since e0 = ei + fi ∀ i ∈ {1, 2, . . . , d}, there exist λi1, λi2 > 0
such that

LT e0 = λi1vi1 + λi2vi2,∀i ∈ {1, 2, . . . , d},

where vij are distinct extreme rays {e1, . . . , ed; f1, . . . , fd} of Q∗. Now, it is easy to see that for
each i, vi1 and vi2 must be “complementary,” that is, there exits j such that if vi1 = ej then
vi2 = fj and vice versa. Furthermore, λi1 = λi2 should hold. Hence, LT e0 is a positive multiple of
e0. Also, we have shown that there are λ > 0 and a permutation σ : {1, 2, . . . , d} → {1, 2, . . . , d}
such that

{LT ei, L
T fi} = {λeσ(i), λfσ(i)}. (58)

The automorphism L of Q is a very special type of linear transformation. Since ei’s are d
linearly independent vectors, L is unique up to the constant λ. In fact, (58) implies that LT is
of a very special form. For instance, suppose d = 3, λ = 1, and LT maps e1 7→ f3, e2 7→ e1, and
e3 7→ f2. Then,

LT =
[

e0 f3 e1 f2

]

=









1 1 0 1

0 0 1 0
0 0 0 −1
0 −1 0 0









. (59)

The generalization of (59) for general d is obvious. It says that an automorphism LT is totally
unimodular and a composite of permutation, flipping and scaling. LT in (59), for example, can
be rewritten as,

LT =









1 0 1 1

0 1 0 0
0 0 −1 0
0 0 0 −1

















1 0 0 0

0 0 1 0
0 0 0 1
0 1 0 0









. (60)


