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Abstract

We consider two notions for the representations of convex cones: G-representation and lifted-
G-representation. The former represents a convex cone as a slice of another; the latter allows in
addition, the usage of auxiliary variables in the representation. We first study the basic properties
of these representations. We show that some basic properties of convex cones are invariant under
one notion of representation but not the other. In particular, we prove that lifted-G-representation
is closed under duality when the representing cone is self-dual. We also prove that strict comple-
mentarity of a convex optimization problem in conic form is preserved under G-representations.
Then we move to study efficiency measures for representations. We evaluate the representations of
homogeneous convex cones based on the “smoothness” of the transformations mapping the central
path of the representation to the central path of the represented optimization problem.
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1 Introduction, Motivation and Definitions

Problem formulation is one of the most important stages in the theory and practice of mathematical
programming. Here we focus on convex optimization problems formulated as the optimization of a
real-valued linear function over the intersection of a convex cone and an affine subspace of a finite
dimensional Euclidean space. We call these problems convex optimization problems in conic form or
convex conic programming problems. This formulation encompasses essentially all convex optimization
problems on finite dimensional spaces. While this may not always be the best way to attack a
given convex optimization problem, much of the modern theory focused on this model partly for
expository reasons. In this paper, we study formulations (representations) of a given subclass of
convex optimization problems in conic form as instances of another subclass.

Some convex conic programming problems and underlying convex cones are better understood than
others. Therefore, there is a way of measuring the relative easiness of convex optimization problems
based on the current state-of-the-art. For instance, there are many efficient and robust software for
semidefinite programming. Then the results about representing a convex set as the intersection of
a cone of symmetric, positive semidefinite matrices and an affine subspace, raise the hope of solving
convex optimization problems involving such convex constraints by using the standard software. More
interestingly, this opens the ways of thinking about specialized solution methods or theories to be
developed for the new problem along the lines of those existing for semidefinite programming. From
a more theoretical point of view, the representations can help us understand the hierarchies and the
structures of convex optimization problems from easy to difficult.

Let S
n denote the space of n-by-n symmetric matrices equipped with the inner product 〈·, ·〉 :

(U, V ) 7→ trUT V = trUV , where UT denotes the transpose of U and tr(·) denotes the trace. Denote
the (i, j)th entry of each X ∈ S

n by Xij .

Let S
n
+ ⊂ S

n denote the cone of n-by-n symmetric, positive semidefinite matrices and let S
n
++ :=

int(Sn
+), where int(·) denotes interior. We also use the partial order notation. For A,B ∈ S

n, we write
A � B (A ≻ B) to mean (A − B) is positive semidefinite (positive definite). The second-order cone
in R

n+1 is the cone

Qn := {(x0, x) ∈ R ⊕ R
n : x0 ≥ ‖x‖2}.

Throughout this paper, let K ⊂ R
d be a pointed, closed, convex cone with nonempty interior.

Definition 1.1. K ⊂ R
d is said to admit a G-representation via L if G ⊂ R

N is a pointed, closed,
convex cone with nonempty interior and L : R

d → R
N is a linear map such that

x ∈ int(K) ⇐⇒ L(x) ∈ int(G).

The relation

L(x) ∈ G

is called a G-representation.
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If G is a collection of pointed, closed, convex cones, and P is the subclass of convex conic program-
ming problems with underlying cones in G, then we say that a pointed, closed, convex cone K ⊂ R

d is
P-representable if it admits a G-representation for some G ∈ G.

Especially when we deal with the cones S
n
+ and Qn, we abuse these definitions slightly and

talk about the SDP-representation and SOCP-representation of convex cones and sets (instead of
G-representation with G :=

{

S
n
+ : n ∈ {1, 2, . . .}

}

and G := {Qn : n ∈ {1, 2, . . .}} respectively).

Example 1.1. When G is the collection
{

S
n
+ : n ∈ {1, 2, . . . }

}

, we say that K is SDP-representable
if it admits a S

n
+-representation for some n.

When G is the collection of second-order cones and their direct sums, we say that K is SOCP-
representable if it admits a G1 ⊕ · · · ⊕ Gk-representation for some second-order cones G1, . . . , Gk.

Definition 1.2. K ⊂ R
d is said to admit a lifted-G-representation via L if G ⊂ R

N is a pointed,
closed, convex cone with nonempty interior and L : R

d ⊕ R
m → R

N is a linear map such that

x ∈ int(K) ⇐⇒ L(x, u) ∈ int(G) for some u ∈ R
m.

For every linear subspace V ⊆ R
N , let V ⊥ ⊆ R

N denote its orthogonal complement and let PrV (·)
denote the orthogonal projection onto V . For every convex cone K ⊆ R

d, let

K∗ := {s ∈ R
d : 〈s, x〉 ≥ 0, ∀x ∈ K}

denote its dual cone.

The following two propositions present alternative definitions for G-representability and lifted-G-
representability respectively.

Proposition 1.1. Suppose that G ⊂ R
N is a pointed, closed, convex cone with nonempty interior.

Then the following are equivalent:

(i) K admits a G-representation;

(ii) there exists a linear subspace V ⊆ R
N such that V ∩ int(G) 6= ∅ and K is linearly isomorphic to

G ∩ V .

Proposition 1.2. Suppose that G ⊂ R
N is a pointed, closed, convex cone with nonempty interior.

Then the following are equivalent:

(i) K admits a lifted-G-representation;

(ii) there exist linear subspaces V,W ⊆ R
N such that V ∩ int(G) 6= ∅, W⊥ ⊆ V and K is linearly

isomorphic to PrW (G ∩ V );

(iii) there exist linear subspaces V,W ⊆ R
N such that

(

V + W⊥) ∩ int(G) 6= ∅ and K is linearly
isomorphic to PrW (G) ∩ V (without loss of generality, V ⊆ W );
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(iv) there exist linear subspaces V,W ⊆ R
N such that V ∩ (int(G) + W ) 6= ∅ and K is linearly

isomorphic to (G + W ) ∩ V .

Proof. We shall show (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i).

Suppose K admits a lifted-G-representation via L. Then x ∈ R
d 7→ PrWL(x, 0) is a linear iso-

morphism from K to PrW (G ∩ V ), where V := L(Rd ⊕ R
m) and W := (L({0} ⊕ R

m))⊥ are linear
subspaces satisfying V ∩ int(G) 6= ∅ and W⊥ ⊆ V .

Suppose (ii) holds. Then K is linearly isomorphic to PrW (G∩V ) = PrW (G)∩Ṽ , where Ṽ := V ∩W
satisfies (Ṽ + W⊥) ∩ int(G) 6= ∅ as desired.

Suppose (iii) holds. Then K is linearly isomorphic to PrW (G)∩V = (G+W̃ )∩V , where W̃ := W⊥

satisfies V ∩ (int(G) + W̃ ) 6= ∅ as desired.

Suppose (iv) holds with L : R
d → R

N as the linear isomorphism from K to (G + W ) ∩ V . Then
K admits a lifted-G-representation via L̃ : (x, u) ∈ R

d ⊕ W 7→ L(x) + u. Since L is an isomorphism
and V ∩ (int(G) + W ) 6= ∅, we have that

x ∈ int(K) ⇐⇒ ∃u ∈ R
m s.t. L̃(x, u) ∈ int(G).

Remark 1.1. In Part (ii) of Proposition 1.2, by observing that the linear operator PrW is an isomor-
phism from PrV W to PrW V , it only takes a little extra effort to remove the condition W⊥ ⊆ V .

We similarly define the SDP-representation, the lifted-SDP-representation, the G-representation
and the lifted-G-representation of convex sets (via affine maps and affine restrictions). For elementary
operations which preserve lifted-SDP-representability, see [1].

Our interests in this paper are

• to investigate representations as theoretical tools in establishing facts about K by utilizing known
facts about S

n
+ or G and the properties of the representations,

• to evaluate the goodness of representations from a theoretical viewpoint.

The first path of the investigation is concerned more with the basic properties and the existential
issues. For instance, if the cone G has property χ which is preserved under G-representation and if
cone K violates property χ, then clearly K is not G-representable. Sections 2 and 3 deal with this
item. Our second interest is a matter of efficiency. Once a P-representation exists there may be many
others. A main question is “how good are these representations?” To answer this, we need to find
measures of goodness for representations. One obvious measure of goodness is the dimension of the
representing cone. However, the dimension alone is a very rough measure of efficiency. We would like
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to find more precise measures. To find more precise measures with rigorous justifications for them, we
need to define the context for representations. We choose to focus on the modern theory of interior-
point methods. We immediately have the fundamental notions of barrier functions, optimal barrier
parameters and central paths. These notions lead to more precise measures of efficiency in the context
of interior-point methods. Sections 4, 5, and 6 are geared towards establishing the efficiency measures.
We give below a preview of our approach for studying the efficiency of convex representations.

We are interested in representations, mostly because they allow us to deal with difficult sets via
easier sets. In the context of modern interior-point methods, we usually think of a convex set as
easy if we know of efficiently computable barriers for it (see [14, 15]). For example, suppose that the
cone G is very well-studied and understood. Further suppose that “the best” barrier function for G is
F : int(G) 7→ R. Consider K which admits a G-representation via L. Then we can study the barrier
function F (L(·)) : int(K) 7→ R and determine how good a barrier F (L(·)) is for K. This would give
a notion of efficiency for the G-representation of K via L. So, in some cases, the representation can
be assumed to imply the treatment of the represented set using a particular barrier function.

A fundamental concept in the theory of interior-point methods is that of the central path (which
is defined by a barrier function) and its neighborhoods. The first thing to understand here is what
happens to the barrier function under representations.

In the case of S
n
++, the standard barrier is

− ln(det(x)).

An obvious measure of goodness in this context is the barrier parameter.

Suppose that K is SDP-representable. Let {x(µ) : µ ∈ R++} denote the central path for the
problem

inf {〈c, x〉 : A(x) = b, x ∈ K}
which is defined based on the “best” self-concordant barrier available for K. Let {x̃(µ) : µ ∈ R++}
denote the central path for an SDP-representation of the problem. Clearly, there exists a map R :
R

d 7→ S
n such that

R (x(µ)) = x̃(µ), for every µ > 0.

• What good properties can be expected of such R (depending on L)?

• Are there algebraic expressions of good, computable maps R?

In Section 4, we study SDP-representations of homogeneous cones. In Section 6, we consider the
mapping R above for the primal-dual central path. We also work with R−1 (mapping the primal-dual
central path for the SDP-representation to the primal-dual central path based on an optimal barrier
for the homogeneous cone K). We show that there is a very nice choice for such mapping R (this is the
mapping T −1 ◦τ ◦T defined in Section 6). We then address the question “how smooth is this mapping
R?” In our context, the primal-dual interior-point method theory, to evaluate the “smoothness,” we
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measure the scale-invariant size of the neighbourhood of the primal-dual central path over which R
(and hence R−1) is a diffeomorphism. (See Corollary 6.1 and the discussion following it.)

Example 1.2. Consider as K the following cone, which is useful in describing the epigraph of matrix
2-norm over R

k×r:

K := cl

















x

u

t






∈ S

r ⊕ R
r×k ⊕ R : t > 0,

(

x − uuT

t

)

≻ 0











,

where cl(·) denotes the closure. An optimal barrier for K is

f(x, u, t) := − ln det

(

x − uuT

t

)

− ln(t).

The SDP-representation
(

tI uT

u x

)

� 0

implies the usage of the barrier

f(x, u, t) − (k − 1) ln(t).

Clearly, if the constraints of the problem imply that t is constant, then these two barriers are essentially
the same. Indeed, the situation is more complicated in general even for this simple example. Recall
that we allow for taking direct sums. So, a convex optimization problem over the family of such cones
(epigraph of matrix 2-norms) could lead to the barrier

m
∑

i=1

fi(x
(i), u(i), ti) −

m
∑

i=1

(ki − 1) ln(ti),

where we assumed that we have the direct sum of m cones. Moreover, we could let G denote the family
of cones linearly isomorphic to a direct sum of such cones K with varying r and k. Then the barrier
functions for representations arising from the family G may not look as separable over the direct sum
as the above barrier (with m main components and the difference involving only ln(ti)).

For instance, consider K := S
3
+⊕Q3 as a pointed, closed convex cone in R

10 with nonempty interior.
Take any nonsingular linear transformation L : R

10 → R
10. Then the cone L(K) is isomorphic to K.

However, for most choices of L, at a first glance, the corresponding barrier function for L(K) may
not look as separable as the one above.

The above convex cone is an example of a homogeneous cone. A cone K ⊂ R
d is homogeneous if

its automorphism group acts transitively on the interior of K.

A convex cone K is self-dual if there exists an inner product under which K∗ = K. A convex cone
is symmetric if it is homogeneous and self-dual.
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Both S
n
+ and Qn are symmetric. The family of homogeneous cones is significantly richer than

symmetric cones (however every homogeneous cone can be represented as a slice of a possibly higher
dimensional semidefinite cone; see [4, 7]).

The next family in the hierarchy is hyperbolic cones. A homogeneous polynomial p : R
d 7→ R is

hyperbolic in the direction h ∈ R
d, if the univariate polynomial (in t ∈ R)

p(x + th)

has only real roots for every x ∈ R
d. (More general notions exist for nonhomogeneous polynomials

over C; see Güler [8].) A convex cone K is a hyperbolic cone if it is

{

x ∈ R
d : p(x + th) 6= 0, ∀t ∈ R+

}

for a polynomial p which is hyperbolic in the direction h ∈ R
d. Homogeneous cones make up a proper

subset of hyperbolic cones; see [4].

Recently, Lax conjecture was proved by Lewis, Parrilo and Ramana [10] which implies that all three
dimensional hyperbolic cones are SDP-representable. Also see [9, 23] for some of the foundational
work related to this result. Generalized Lax conjecture states that “every hyperbolic cone can be
represented as a slice of a possibly higher dimensional semidefinite cone.” As further progress is made
along these lines and similar avenues of research in convex representations, we hope that our results
on invariance properties of representations and our suggestions for evaluating the goodness/efficiency
of representations continue to be fruitful.

2 Invariance for Convex Cones

We start with a series of basic definitions. A subset P of K is a face of K if for every x, z ∈ K
such that (x + z) ∈ P we have x, z ∈ P (equivalently, for every open line segment (x, z) ⊂ K which
intersects P , we have [x, z] ⊂ P ). A face P of K is called proper if P is neither empty nor equal to
K. A face P of K is exposed if P = K ∩ H, for some supporting hyperplane H of K. We say that K
is facially exposed if every proper face of K is exposed.

We continue with an elementary fact.

Proposition 2.1. Suppose that G ⊂ R
N is a pointed, closed, convex cone with nonempty interior,

and that V ⊂ R
N is a linear subspace such that int(G)∩ V 6= ∅. Then a subset P ⊆ G∩ V is a proper

face of G ∩ V if and only if it is the intersection of some proper face P ′ of G with V .

Proof. Suppose that P ′ is a face of G. For any line segment that lies in G ∩ V , if its relative interior
intersects P ′ ∩ V , then its endpoints must lie in P ′. Thus, its endpoints lie in P ′ ∩ V . This proves the
“if” part of the statement.
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For the “only if” part, let P ′ be the smallest face of G containing P . Since P is proper, so is P ′.
Clearly, P ⊆ P ′ ∩ V . Since P ′ is the smallest face containing P , there exists z ∈ relint(P ′)∩P , where
relint(·) denotes the relative interior. Suppose that x ∈ P ′ ∩ V . Then for sufficiently small ε > 0,
y := z + ε(z − x) ∈ P ′ ∩ V ⊆ G ∩ V . Since (x, y) ∩ P ⊇ {z} 6= ∅, we conclude that x ∈ P .

Corollary 2.1. Facial exposedness is preserved under G-representability.

The next example proves that facial exposedness is not preserved under lifted-G-representations.

Example 2.1. We consider the example from [21] (pp. 239–240, Figure 1). This is a convex cone
with four unexposed extreme rays. The cone admits a lifted-SDP-representation as follows (the interior
of the cone equals) :




























x0

x1

x2






:













x3 x2 0 0

x2 −x3 0 0

0 0 x1 + x3 0

0 0 0 −x1 + x3













≻













−x0 0 0 0

0 −x0 0 0

0 0 −x0 0

0 0 0 −x0













, for some x3 ∈ R























.

Since the largest block in the above representation is (2× 2), and S
2
+ admits an SOCP-representation,

the above cone admits a lifted-SOCP-representation.

Another interesting facial property of a subclass of cones is
(

K∗ + P⊥
)

is closed for every proper face P of K, (FP1)

where P⊥ = (P − P )⊥ denotes the orthogonal complement of the linear span of P . The above is a
property of semidefinite cones, and it is relevant in the duality theory of conic optimization.

Proposition 2.2. Property (FP1) is preserved under G-representability.

Proof. Suppose that G satisfies (FP1) and K is G-representable via L. So, L(K) = G ∩ V for some
linear subspace V with V ∩ int(G) 6= ∅. Let P be an arbitrary proper face of K. By Proposition 2.1,
there exists a proper face P ′ of G such that L(P ) = P ′ ∩ V . Moreover, we know from its proof that
V ∩ relint(P ′) 6= ∅. Let H be the linear span of P ′, so that P ′ = G ∩ H and (P ′)⊥ = H⊥. Using
Corollary 16.4.2 of Rockafellar [18], we deduce that (P ′)∗ = (G ∩ H)∗ = cl(G∗ + H⊥) = G∗ + H⊥ by
(FP1). Moreover, since each of relint(P ′), relint(H) and int(G) has nonempty intersection with V , we
invoke Corollary 16.4.2 of Rockafellar [18] again to deduce that

L(P )⊥ = (P ′ ∩ V )⊥ = (H ∩ V )⊥ = H⊥ + V ⊥

and
L(P )∗ = (P ′ ∩ V )∗ = (P ′)∗ + V ⊥ = G∗ + H⊥ + V ⊥ = L(K)∗ + L(P )⊥.

Consequently, using Corollary 16.3.2 of Rockafellar [18], K∗+P⊥ = L∗(L(K)∗+L(P )⊥) = L∗(L(P )∗)
is closed.
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Proposition 2.3. K is lifted-G-representable if and only if K∗ is lifted-G∗-representable.

Proof. Suppose that K admits a lifted-G-representation. According to Proposition 1.2, there exists
a linear isomorphism L from K to PrW (G ∩ V ), where V,W ⊆ R

N are linear subspaces satisfying
V ∩ int(G) 6= ∅. Using Corollary 16.3.2 of Rockafellar [18],

K∗ = L∗((PrW (G ∩ V ))∗) = L∗((W ∩ ((G ∩ V ) + W⊥))∗) = L∗(W⊥ + (G ∩ V )∗ ∩ W )

= L∗((G∗ + V ⊥) ∩ W ).

Since L∗ is a bijection from W to R
d, we conclude from Proposition 1.2 that K∗ admits a lifted-G∗-

representation. Since all closed, convex cones C satisfy (C∗)∗ = C, the converse follows.

Corollary 2.2. If K is G-representable, then K∗ is lifted G∗-representable.

Corollary 2.3. If G is self-dual and K is G-representable, then K∗ is lifted G-representable.

Corollary 2.4. If G is a pointed, closed, convex cone that is self-dual, then lifted-G-representability
is closed under duality.

However, the following example shows that in general, G-representability is not closed under
duality, even when G is self-dual.

Example 2.2. Consider the S
3
+-representable cone
















x0

x1

x2






:







x0 + x1 x2 0

x2 x0 − x1 0

0 0 x1






� 0











,

which is exactly the intersection of the second-order cone Q2 and the half-space H := {(x0, x1, x2)
T :

x1 ≥ 0}. (Note that the resulting cone is the intersection of two hyperbolic cones Q2 and H; therefore,
it is also a hyperbolic cone.) The dual cone is then

(Q2)∗ + H⊥ = Q2 +

















0

s1

0






: s1 ≥ 0











=

















s0

s1

s2






: s0 ≥ |s2|, s1 ≥ −

√

s2
0 − s2

2











,

which has two unexposed extreme rays (to locate the unexposed rays, set s0 := 1 and plot), and thus is
not even SDP-representable (of course, it admits a lifted-SDP-representation as well as a lifted-SOCP-
representation, by Corollary 2.3 or directly from the structure of Example 2.1). This type of example
was also used by Braams [2] to show that the pre-images of the cones S

n
+ under arbitrary linear maps

is not equal to the topological closures of images of S
n
+ under arbitrary linear maps.

It is well-known that S
n
+ is facially exposed. It was proven in [19] that homogeneous cones are

also facially exposed. This last fact also easily follows from the result that all homogeneous cones
admit SDP-representations [4] and Proposition 2.1. Recently, Renegar [17] noted that all hyperbolic
cones are facially exposed. Noticing that there are convex cones with unexposed faces (and hence not
hyperbolic) which admit lifted-SDP-representations, we immediately conclude that the set of convex
cones that admit lifted-SDP-representations differs from the set of hyperbolic cones.
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3 Invariance for Convex (Conic) Optimization Problems

Suppose K admits a G-representation via L. Then for any linear map AL whose kernel coincides with
the range of L, the interior of K is linearly isomorphic to

AL(x) = 0, x ∈ int(G).

Then any cone programming problem over K can be represented by

inf 〈c, x〉
A(x) = b,

AL(x) = 0,

x ∈ G,

for appropriate choices of A, b and c.

Definition 3.1. (Pataki [16]) Suppose that (CP ) is a convex conic programming problem with un-
derlying cone K. A feasible primal-dual pair (x, s) is called strictly complementary for (CP ) if there
exists a face P of K such that

x ∈ relint(P ) and s ∈ relint(P△).

where P△ := P⊥ ∩ K∗ denotes the complementary face of P .

The above definition of strict complementarity is not symmetric under duality. In general, if K or
its dual cone K∗ is not facially exposed, then we can always find some A, b and c such that one of
inf{〈c, x〉 : A(x) = b, x ∈ K} and sup{bT y : c−A∗(y) ∈ K∗} has at least one strictly complementary,
feasible, primal-dual pair while the other has none. This is due to the fact that all complementary
faces are exposed, and hence P 6= (P△)△ whenever P is not exposed. This observation, together with
the results of the previous section indicate that currently we do not have a primal-dual symmetric
notion of strict complementarity for hyperbolic programming.

When both K and its dual cone are facially exposed, we shall briefly show that strict complemen-
tarity is preserved under duality. We need the following two lemmas. The first one is well-known and
the next one is elementary.

Lemma 3.1. Let K be as above. Then the following hold.

1. A proper face P of K is exposed if and only if P = (P△)△.

2. For any proper face P of K and any subset V ⊂ P , the face (V △)△ is the smallest exposed face
of K containing V .

Lemma 3.2. There exists a strictly complementary, feasible primal-dual pair if and only if the dual
optimal face intersects the relative interior of the complementary face of the primal optimal face.
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Theorem 3.1. If K∗ is facially-exposed, then there exists a strictly complementary, feasible, primal-
dual pair if and only if the respective complementary faces of the primal and dual optimal faces are
orthogonal. Consequently, if both K and K∗ are facially-exposed, then strict complementarity is in-
variant under duality.

Proof. Suppose that there exists a strictly complementary, feasible, primal-dual pair. By the pre-
ceding lemma, there exists s′ ∈ Od ∩ relint(O△

p ), where Op and Od are the primal and dual optimal
faces respectively (note that these are the faces of the corresponding feasible regions—they are not

necessarily faces of the corresponding cones). Let x ∈ O△
d and s ∈ O△

p be arbitrary. Since x ∈ K and

s ∈ K∗, we have 〈x, s〉 ≥ 0. Since s′ ∈ relint(O△
p ), it follows that sε := s′ + ε(s′ − s) ∈ O△

p ⊂ K∗,
for ε positive and sufficiently small. If 〈x, s〉 > 0, then 〈x, sε〉 = (1 + ε)〈x, s′〉 − ε〈x, s〉 < 0 for all
ε > 0, contradicting the fact that x ∈ K and sε ∈ K∗ for ε positive and sufficiently small. Thus, we
necessarily have 〈x, s〉 = 0.

Conversely, suppose that O△
d ⊥ O△

p . Then O△
d ⊆ (O△

p )△. Since Od ⊆ O△
p =⇒ O△

d ⊇ (O△
p )△,

we further have O△
d = (O△

p )△. Since O△
p is exposed, it follows that O△

p = ((O△
p )△)△ = (O△

d )△

is the smallest exposed face of K∗ containing Od. Since K∗ is facially-exposed, O△
p is in fact the

smallest face of K∗ containing Od. It then follows that Od ∩ relint(O△
p ) 6= ∅, and thus the convex

conic programming problem is strictly complementary.

Consequently, the last statement of the theorem follows from duality.

Consider the convex conic programming problem over K,

inf 〈c, x〉
A(x) = b,

x ∈ K,

(PK)

and its formulation as a convex conic programming problem over G

inf 〈cG, x〉
AG(x) = b,

AL(x) = 0,

x ∈ G,

(PG)

where cG := L(L∗L)−1(c) and AG := A(L∗L)−1L∗.

Let Op(K) and Op(G) denote the primal optimal faces of these problems, and let Od(K) and
Od(G) denote the dual optimal faces of their respective dual problems. Clearly, L(Op(K)) = Op(G).
By definition, the complementary optimal faces of Op(K) and Op(G) are Cd(K) = {s ∈ K∗ : 〈s, x̄K〉 =
0} and Cd(G) = {s ∈ G∗ : 〈s, x̄G〉 = 0} respectively, where x̄K ∈ relint(Op(K)) is arbitrary and
x̄G = L(x̄K) ∈ relint(Op(G)).

Let V be the range of L.
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Lemma 3.3. With the above definitions, we have

Cd(K)) = L∗(Cd(G)).

Proof. Using Corollaries 16.3.2 and 16.4.2 of Rockafellar [18], we deduce

L∗(Cd(G)) = L∗(G∗ ∩ {x̄G}⊥ + V ⊥) = L∗(G∗) ∩ L∗({x̄G}⊥) = K∗ ∩ {x̄K}⊥ = Cd(K),

where the second equality follows from {x̄G}⊥ ⊇ V ⊥ = (L∗)−1({0}).

Let W denote the range of A∗
G; i.e., the image of the range of A∗ under L(L∗L)−1. The respective

dual optimal faces are

Od(K) = Cd(K) ∩ (L∗(W ) + {c}) and Od(G) = Cd(G) ∩ (V ⊥ + W + {cG}).

Thus, according to Lemma 3.2, (PK) (resp. (PG)) has strictly complementary solutions if and only if
relint(Cd(K)) ∩ (L∗(W ) + {c}) (resp. relint(Cd(G)) ∩ (V ⊥ + W + {cG})) is nonempty. Therefore

L∗(relint(Cd(G)) ∩ (V ⊥ + W + {cG})) = L∗(relint(Cd(G))) ∩ L∗(W + {cG})
= relint(L∗(Cd(G))) ∩ (L∗(W ) + {c})
= relint(Cd(K)) ∩ (L∗(W ) + {c})

where the first and second equality follows from (L∗)−1({0}) = V ⊥ and Theorem 6.6 of Rockafellar [18]
respectively, proves

Theorem 3.2. Strict complementarity is invariant under G-representability.

4 Some SDP Representations

4.1 An SDP Representation of Symmetric Cones

It is well-known that every symmetric cone admits an SDP-representation. Let K ⊂ R
d be an irre-

ducible symmetric cone such that rank(K) = r ≥ 2. Let J denote the Jordan Product representation
(see [6]) so that for every x ∈ K, J (x) : R

d 7→ R
d is represented by JM (x) ∈ S

d. We have

x ∈ int(K) ⇐⇒ JM (x) ≻ 0.

Let λi(x) denote the generalized eigenvalues of x. Then

f(x) := −
r
∑

i=1

ln (λi(x))

is an optimal barrier for K.

Using Theorem IV.2.1. and Corollary IV.2.6. of [6], we have
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Theorem 4.1. For every x ∈ int(K),

− ln det (JM(x)) = f(x) − 2(d − r)

r(r − 1)

∑

i<j

ln

(

λi(x) + λj(x)

2

)

.

The parameter of the above barrier is exactly the dimension d. The eigenvalues of JM (x) are
λ1(x), λ2(x), . . . , λd(x) and

λi(x) + λj(x)

2
, i ∈ {1, 2, . . . , r − 1}, j ∈ {i + 1, i + 2, . . . , r}.

The eigenspace of JM(x) corresponding to the eigenvalue
λi(x)+λj(x)

2 , for i < j, has dimension 2(d−r)
r(r−1) .

The usual central path equation S = −µX−1 is replaced by

S = −µX−1 − µ
2(d − r)

r(r − 1)
QDλQT ,

where the orthogonal matrix Q diagonalizes X and Dλ is the diagonal matrix with the iith entries
given by

∑

j 6=i

1

λi(x) + λj(x)
,

repeated with the corresponding multiplicity as described above for the eigenspaces of JM (x).

4.2 SDP Representations of Homogeneous Cones

It was shown in [4] that all homogeneous cones admit SDP-representations in the following way. A
T -algebra is a matrix algebra A with involution ∗ (i.e., A a bi-graded algebra

⊕r
i,j=1 Aij satisfying

AijAjk ⊆ Aik for all i, j, k and AijAkℓ ⊆ {0} when j 6= k, and ∗ is an involutory, anti-automorphism
of A) satisfying the following seven axioms (see [22]).

(I) Aii is isomorphic to R;

(II) eiaij = aijej = aij for all aij ∈ Aij, where ei denotes the unit of Aii;

(III) trab = trba for all a, b ∈ A, where tr : (aij)
r
i,j=1 ∈⊕r

i,j Aij 7→
∑r

i=1 aii;

(IV) tra(bc) = tr(ab)c for all a, b, c ∈ A;

(V) tra∗a > 0 for all a ∈ A unless a = 0;

(VI) t(uw) = (tu)w for all t, u, w ∈ T :=
⊕

1≤j≤i≤r Aij, the space of lower triangular elements;

(VII) t(uu∗) = (tu)u∗ for all t, u ∈ T .
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Given a homogeneous cone K, Vinberg [22] showed that there is a T -algebra A such that K is precisely
the cone containing elements of the form ℓ∗ℓ, where ℓ is a lower triangular element with ℓii > 0 for all
i. Moreover the map ℓ ∈ {t ∈ T : tii > 0} 7→ ℓ∗ℓ is a bijection.

For each (i, j) ∈ {1, . . . , r}2, let nij denote the dimension of Aij as a vector subspace of A. It
follows from the definition of matrix algebra and Axiom (I) respectively that nij = nji and nii = 1.

Let J denote a subset of {1, . . . , r} satisfying the following property.

For each i ∈ {1, . . . , r} there exists j ∈ J such that j ≤ i and nij > 0. (⋆)

For instance, J = {1, . . . , r} satisfies (⋆). Let TJ denote the subspace
⊕

j∈J

⊕r
i=j Aij of lower trian-

gular elements whose columns not indexed by J are zero columns. With each x ∈ A, we associate the
linear operator Lx : TJ → TJ defined by Lx : ℓ 7→ PrTJ

xℓ, where PrTJ
denotes the projection onto TJ .

It was proved in [4] that, whenever J satisfies (⋆), the map L : x 7→ Lx is a bijection from K to the
cone of self-adjoint, positive definite linear operators on TJ . This gives an SDP representation of K
for each ordered orthogonal basis of TJ .

Since each x ∈ K uniquely determines a lower triangular element ℓ with positive diagonal entries
satisfying x = ℓ∗ℓ, the functional f : K 7→ R defined by ℓ∗ℓ 7→ −∑r

i=1 ln ρ2
i (ℓ

∗ℓ) is well-defined.
Furthermore, it is a logarithmically homogeneous, self-concordant barrier for K. In fact, it is optimal
for K. We shall compare this barrier with the standard logarithmic barrier F of the representing SDP
cone. In computing the barrier F , it suffices to compute det(Lℓ) since det(Lℓ∗ℓ) = det(Lℓ)

2, which is
a direct consequence of the following proposition.

Proposition 4.1 (Proposition 3.4 of [4]). Let L : x ∈ A → Lx be as defined above. For every a ∈ A
and t, u ∈ T ,

1. La∗ = (La)
∗, the adjoint of La under the inner product 〈·, ·〉,

2. LtLu = Ltu, and

3. LtLt∗ = Ltt∗ .

Consider the orthogonal decomposition of TJ =
⊕

j∈J Cj into the columns Cj = J
⊕r

i=j Aij, j ∈ J .
Since Lℓ(Cj) ⊆ Cj for each j ∈ {1, . . . , r}, the determinant of Lℓ is the product of the determinants of
Lℓ|Cj

, j ∈ J .

We now fix an arbitrary j ∈ J and consider the determinant of Lℓ|Cj
.

For each i ∈ {j, . . . , r}, let Bi be an arbitrary ordered orthogonal basis of Aij. Let L denote
the matrix representing Lℓ|Cj

under the ordered orthogonal basis (Bj , . . . ,Br) of Cj. We consider L
in (r − j + 1) × (r − j + 1) block matrix form, where the (i − j + 1, k − j + 1)-st block represents
PrAij

(Lℓ|Akj
).

Since Lℓ(Aij) = {ℓyij : yij ∈ Aij} ⊆ ⊕r
k=i Akj, the matrix L is a lower block-triangular matrix.

Furthermore, PrAij
Lℓyij = PrAij

ℓyij = ℓiiyij for each yij ∈ Aij implies that the (i− j + 1)-st diagonal
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block in L is ℓiiInij
, where Inij

is the identity matrix of order nij. Thus, L is in fact a lower trian-
gular matrix with nij copies of ℓii on the diagonal for each i ∈ {j, . . . , r}. Consequently, the linear
operator Lℓ|Cj

has determinant
∏r

i=j ℓ
nij

ii . Thus, the standard logarithmic barrier of the representing
semidefinite cone, when restricted to L(K), is given by

F (Lℓ∗ℓ) = −
∑

j∈J

r
∑

i=j

ln ρi(ℓ
∗ℓ)2nij = −

r
∑

i=1

∑

j∈J
j≤i

nij ln ρi(ℓ
∗ℓ)2 = f(Lx) −

r
∑

i=1

(

∑

j∈J
j≤i

nij − 1
)

ln ρi(ℓ
∗ℓ)2,

where ρi(ℓ
∗ℓ) denotes ℓii, and with a slight abuse of notation, f(Lx) := f(x) ∀x ∈ K.

At this point, it is worth remarking that the standard barrier F is a special case of a family of
logarithmically homogeneous, self-concordant barriers for K. This family is given by

x 7→ −
r
∑

i=1

wi ln ρi(x)2,

where the weights wi’s are real constants no less than one. This family will be referred to in Section 6
where we discuss the weighted central paths of positive semidefinite cones.

Now, let us specialize back into the case of irreducible symmetric cones of dimension d and rank
r. It seems that J = {1} yields the best barrier in terms of its parameter value:

F (x) = f(x) −
(

2(d − r)

r(r − 1)
− 1

) r
∑

i=2

ln ρi(x)2.

Note that when K = S
n
+, the above barrier is the optimal barrier for K unlike the Jordan Product

representation J which leads to a barrier with parameter n(n + 1)/2 in this case.

Another interesting choice is J = {1, 2, . . . , r} which yields

F (x) = f(x) − 2(d − r)

r(r − 1)

r
∑

i=1

(i − 1) ln ρi(x)2.

The representation in this case also arises from [7] if one recognizes that every homogeneous cone is
in fact the “cone of squares”

{ℓ∗ℓ : ℓ ∈ T },
While this barrier is different from that obtained from the Jordan Product representation, it has the
same barrier parameter which equals the dimension of the represented cone.

5 Monotone Solutions of Linear Matrix Equations

In this section, we study certain linear matrix equations whose unique solvability allows maps with
nice properties between the usual central path and some weighted central paths.
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Lemma 5.1. (Lemma 2.2 of Monteiro and Zanjácomo [13]) Let L be an n×n lower triangular matrix
with Lii > 0, ∀i ∈ {1, 2, . . . , n} and H ∈ S

n be given. Then there exists a unique lower triangular
matrix V such that

LV T + V LT = H

and

‖L−1V ‖2
F =

‖L−1HL−T ‖2
F

2
−

n
∑

i=1

[(

L−1V
)

ii

]2
.

Now, suppose X ≻ 0, S ≻ 0. Let LS denote the lower triangular matrix in the Cholesky de-
composition of S (LS satisfies LSLT

S = S), and let UX denote the upper triangular matrix in the
inverse Cholesky decomposition of X (UX satisfies UXUT

X = X). Then, the following two systems
(in unknowns ∆X,∆S ∈ S

n and auxiliary variables: U , an upper triangular matrix, and V , a lower
triangular matrix) are equivalent (under the substitution(s) U ↔ −L−T

S V T UX).

(I)











LSV T + V LT
S = ∆S

LT
SXV + V T XLS + LT

S (∆X)LS = 0

〈∆X,∆S〉 ≥ 0;

(II)











UXUT + UUT
X = ∆X

UT
XSU + UT SUX + UT

X(∆S)UX = 0

〈∆X,∆S〉 ≥ 0.

Since we will only be concerned with nontrivial solutions to the above equivalent systems, we can
replace the last bilinear inequality by the bilinear equation 〈∆X,∆S〉 = 0 in each system.

We will use the following well-known fact.

Lemma 5.2. Let A ∈ S
n, B ∈ R

n×n. Then

‖BABT‖F ≥ λn(BBT )‖A‖F .

The next theorem uses the techniques of Monteiro and Tsuchiya [11] and of Wolkowicz and the
second author [20], and slightly improves the constant in Monteiro and Zanjácomo [13]. We include a
proof for the sake of completeness.

Note that the matrices XS, UT
XSUX and LT

SXLS are similar under the similarity transformations
U−1

X · UX and LT
S · L−T

S (respectively, for the last two). Therefore, they all have the same (real)
eigenvalues. This fact will be used repeatedly.

Theorem 5.1. Let X ≻ 0, S ≻ 0 such that

‖LT
SXLS − νI‖2 < (

√
3 − 1)ν, for some ν > 0.

Then both systems (I) and (II) have the unique solution: ∆X = ∆S = 0.



CONVEX REPRESENTATIONS 17

Proof. Let (∆X,∆S) be a solution of (I) (or equivalently of (II)). Then the solution must satisfy

νL−1
S (∆S)L−T

S + LT
S (∆X)LS = −(LT

SXLS − νI)L−1
S V − V T L−T

S (LT
SXLS − νI) (1)

νU−1
X (∆X)U−T

X + UT
X(∆S)UX = −(UT

XSUX − νI)U−1
X U − UT U−T

X (UT
XSUX − νI). (2)

Note that 〈∆X,∆S〉 ≥ 0 implies

〈L−1
S (∆S)L−T

S , LT
S (∆X)LS〉 = 〈U−1

X (∆X)U−T
X , UT

X(∆S)UX〉 = 〈∆X,∆S〉 ≥ 0.

Therefore, using Lemma 5.1 and (1), we obtain

(

ν2‖L−1
S (∆S)L−T

S ‖2
F + ‖LT

S (∆X)LS‖2
F

)1/2
≤

√
2‖L−1

S (∆S)L−T
S ‖F ‖LT

SXLS − νI‖2

and (using Lemma 5.1 and (2)) we obtain

(

ν2‖U−1
X (∆X)U−T

X ‖2
F + ‖UT

X(∆S)UX‖2
F

)1/2
≤

√
2‖U−1

X (∆S)U−T
X ‖F ‖LT

SXLS − νI‖2.

Using the last two inequalities and the facts

‖(UT
XLS)(L−1

S (∆S)L−T
S )(LT

SUX)‖F ≥ λn(UT
XSUX)‖L−1

S (∆S)L−T
S ‖F ,

‖(LT
SUX)(U−1

X (∆X)U−T
X )(UT

XLS)‖F ≥ λn(LT
SXLS)‖U−1

X (∆X)U−T
X ‖F ,

(we used Lemma 5.2), we conclude that every solution (∆X,∆S) must satisfy

[

ν2 − 2‖LT
SXLS − νI‖2

2 +
(

λn(LT
SXLS)

)2
] (

‖U−1
X (∆X)U−T

X ‖2
F + ‖L−1

S (∆S)L−T
S ‖2

F

)

≤ 0.

Let α := 1
ν ‖LT

SXLS − νI‖2, ν :=
λn(LT

S
XLS)+λ1(LT

S
XLS)

2 . Then λn(LT
SXLS) = (1 − α)ν. Hence, if

ν2 − 2α2ν2 + (1 − α)2ν2 > 0 then ∆X = ∆S = 0 is implied. Since ν > 0, the condition is equivalent
to

−α2 − 2α + 2 > 0.

Therefore, if α < (
√

3 − 1) then ∆X = ∆S = 0 is the unique solution.

Note that the related results of [11] can also be improved slightly (the constant (
√

3 − 1) replaces
1/
√

2).

6 Neighbourhoods of the Weighted Central Paths

In this section, we consider the SDP-representations of homogeneous cones as given in Section 4.
Recall that the standard self-concordant barrier F for a SDP-representation of a homogeneous cone
K, when restricted to L(K), is given by F (Lx) = −∑r

i=1 wi ln ρ2
i (x), where the integral weights wi’s

depend on the choice of the index set J . This expression was derived by arguing that if Lx = ULxUT
Lx
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is the inverse Cholesky decomposition of Lx ∈ S
n
++, then ULx has wi copies of ρi(x) among its diagonal

entries. Define the map π : {1, . . . , n} 7→ {1, . . . , r} by (ULx)jj =: ρπ(j)(x). Recall that an optimal
barrier for L(K) is given by

f(x) = f(Lx) = −
r
∑

i=1

ln ρi(x)2.

Using the map π, we may write f as

f(Lx) = −
n
∑

j=1

1

wπ(j)
ln(ULx)2jj .

Thus, the optimal barrier f for K is the restriction of a weighted barrier for its representing cone S
n
++

to L(K). Hence, in this section, we consider the relation between the standard central paths for SDP
and weighted central paths given by the weighted barriers. (See [3] for some convergence properties
of these weighted central paths.)

We consider the semidefinite programming (SDP) problem

inf{
〈

S̄,X
〉

: X ∈ L + X̄, X ∈ S
n
+},

where S̄, X̄ ∈ S
n and L ⊂ S

n is a subspace, and its dual problem

inf{
〈

X̄, S
〉

: S ∈ L⊥ + S̄, S ∈ S
n
+}.

Let Fp and Fd denote the primal and dual feasible regions respectively, and let relint(Fp) and relint(Fd)
denote the respective relative interiors. We assume that Fp ∩ S

n
++ and Fd ∩ S

n
++ are both nonempty.

For each X ∈ S
n, let 〈〈X〉〉 denote its lower triangular part, i.e., the unique lower triangular matrix

L satisfying L + LT = X.

For each α = (α1, . . . , αn) ∈ R
n, consider the functional fα : S

n
++ → R defined by

fα(X) = −
n
∑

i=1

αi ln(UX)2ii.

This is called the weighted logarithmic barrier for S
n
++ with weights α.

To compute the gradient gα and Hessian Hα of fα, observe that for any upper triangular matrix
U with positive diagonal entries,

fα(τ−1
U X) = fα(X) + cU ,

where τU denotes the automorphism X ∈ S
n
++ 7→ U−1XU−T , and cU is a constant independent of X.

Thus,
Dfα(x)[V ] = Dfα(τ−1

UX
I)[V ] = Dfα(I)[τUX

V ]

(here V ∈ S
n is arbitrary) and

D2fα(x)[V,W ] = D2fα(τ−1
UX

I)[V,W ] = D2fα(I)[τUX
V, τUX

W ].
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It remains to compute Dfα(I) and D2fα(I). Since fα is analytic,

fα([I + h〈〈V 〉〉]T [I + h〈〈V 〉〉]) = fα(I + hV + h2V̄ )

=
∞
∑

k=0

1

k!
Dkfα(I)[hV + h2V̄ , . . . , hV + h2V̄ ]

= hDfα(I)[V ] + h2
(

Dfα(I)[V̄ ] +
1

2
D2fα(I)[V, V ]

)

+ O(h3),

where V̄ = 〈〈V 〉〉T 〈〈V 〉〉. On the other hand,

fα([I + h〈〈V 〉〉]T [I + h〈〈V 〉〉]) = −
n
∑

i=1

αi ln(1 + hVii/2)
2

= h
(

−
n
∑

i=1

1

2
αiVii

)

+ h2
(

n
∑

i=1

1

4
αiV

2
ii

)

+ O(h3)

= −htrDα〈〈V 〉〉 + h2trDα〈〈V 〉〉2,

where Dα denotes the diagonal matrix with α on its diagonal. Hence,

Dfα(I)[V ] = −trDα〈〈V 〉〉

and

D2fα(I)[V, V ] = −2Dfα(I)[V̄ ] + 2trDα〈〈V 〉〉2

= 2trDα〈〈V 〉〉T 〈〈V 〉〉 + 2trDα〈〈V 〉〉2

= tr(〈〈V 〉〉D1/2
α + D1/2

α 〈〈V 〉〉T )2

= tr(MαV )2,

where Mα : V 7→ 〈〈V 〉〉D1/2
α + D

1/2
α 〈〈V 〉〉T . Consequently,

gα(X) = U−T
X DαU−1

X and Hα(X) : V 7→ U−T
X M2

α(U−1
X V U−T

X )U−1
X .

It is a known fact that the functional fα is a self-concordant barrier for the convex cone S++ if and
only if αi ≥ 1 for all i ∈ {1, . . . , n} (see [5, Corollary 2.2]). Clearly, fα is logarithmically homogeneous
with parameter

∑

i αi.

From this point onward, we fix an α ∈ R
n
++ and drop all subscripts α.

It is well-known that the (modified) Legendre-Fenchel conjugate functional f∗ : S
n → R of f ,

defined by
f∗(S) := − inf

X∈Sn
{〈X,S〉 + f(X)},

is a logarithmically homogeneous self-concordant barrier for (Sn
++)∗, the dual cone of S

n
++, which

coincides with the cone S
n
++. (Note that the self-concordance property may fail if some αi < 1;
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however, the other properties are maintained, as long as α ∈ R
n
++.) The parameter of f∗ is

∑

i αi, the
same as that of f . The gradient g∗ and Hessian H∗ of the functional f∗ are given by

g∗(S) = −L−T
S DL−1

S

and

H∗(S) : V 7→ L−T
S M2

∗(L
−1
S V L−T

S )L−1
S ,

where M∗ : S
n → S

n is the linear map defined by

M∗(V ) = D1/2〈〈V 〉〉 + 〈〈V 〉〉T D1/2.

For each µ > 0, the minimization problems

inf{
〈

S̄,X
〉

+ µf(X) : X ∈ L + X̄}

and

inf{
〈

X̄, S
〉

+ µf∗(X) : S ∈ L⊥ + S̄}

have unique solutions, which we denote by X̂(µ) and Ŝ(µ) respectively. The weighted primal-dual
central path with weights α is the set

{(X̂(µ), Ŝ(µ)) : µ > 0} ⊂ relint(Fp) ⊕ relint(Fd).

Alternatively, we can define (X̂(µ), Ŝ(µ)) as the unique pair of matrices that satisfies the following
set of constraints

X ∈ relint(Fp), S ∈ relint(Fd), and

LT
SXLS = µD.

Note that the last constraint is equivalent to UT
XSUX = µD.

We are interested in looking at “nice” maps that take the weighted primal-dual central path to
the standard primal-dual central path, i.e., the unweighted primal-dual central path.

We focus our attention on the map that takes (X̂(µ), Ŝ(µ)) to the pair (X(µ), S(µ)) on the standard
primal-dual central path associated with the same µ. This can be viewed as a composition of the three
maps

T : S
n
++ ⊕ S

n
++ → S

n
++ : (X,S) 7→ LT

SXLS ,

τ : S
n
++ → S

n
++ : V 7→ D−1/2V D−1/2,

and T −1. Note that DT (X,S)[∆X,∆S] = 0 is equivalent to the first two equations in system (I) (and
(II)). Of course, T is not necessarily invertible over relint(Fp)⊕ relint(Fd) as the next example proves.
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Example 6.1. Let

X :=

(

1 2

2 5

)

, S :=

(

1 1

1 4

)

, ξ := −
√

46 + 1

2

and

∆S :=

(

2 ξ

ξ 0

)

,∆X :=

(

1
3(10 − 16ξ) 4 − 6ξ

4 − 6ξ 10
3 (ξ − 1)

)

.

We observe that with

V :=

(

1 0

(ξ − 1) 1√
3
(1 − ξ)

)

,

∆X,∆S solve system (I) (and (II)).

However, we know from Theorem 5.1 that for γ ∈ [0,
√

3 − 1), the map T is invertible over the
neighbourhood

N(γ) := {(X,S) ∈ relint(Fp) ⊕ relint(Fd) : ‖T (X,S) − µI‖2 ≤ γµ for some µ > 0}

around the standard primal-dual central path, where ‖·‖2 is the operator 2-norm. So, for γ ∈ [0,
√

3−
1), the map T −1 ◦ τ ◦ T is well-defined over the neighbourhood

N̂(γ) := {(X,S) ∈ relint(Fp) ⊕ relint(Fd) : ‖τ(T (X,S)) − µI‖2 ≤ γµ for some µ > 0}

around the weighted primal-dual central path.

We now consider the inverse map T −1◦τ−1◦T . For this map to be well-defined in a neighbourhood
around the standard primal-dual central path, we need to show that T is invertible over N̂(γ) for some
γ > 0.

For simplicity of notation, let αmin and αmax denote mini{αi} and maxi{αi} respectively. The
next theorem uses the techniques of Monteiro and Tsuchiya [11] and generalizes a result in Monteiro
and Zanjácomo [13] (also see [12] for some related results) that corresponds to the unweighted case.

Theorem 6.1. Suppose ‖τ(T (X,S)) − µI‖2 ≤ γµ for some γ ∈ [0,
√

αmin/(2αmax)) and some µ > 0,
and ∆X,∆S ∈ S

n satisfy 〈∆X,∆S〉 ≥ 0. Then

max
{

µ
∥

∥

∥
M(L−1

S (∆S)L−T
S )

∥

∥

∥

F
,
∥

∥M−1(LT
S (∆X)LS)

∥

∥

F

}

≤
∥

∥D−1/4(DT (X,S)[∆X,∆S])D−1/4
∥

∥

F
(

αmin

αmax

)
1

4 −
√

2
(

αmax

αmin

)
1

4 γ
,

where DT (X,S)[∆X,∆S] = T 〈〈L−1
S (∆S)L−T

S 〉〉 + 〈〈L−1
S (∆S)L−T

S 〉〉T T + LT
S (∆X)LS .

Consequently, the map T is invertible over N̂(γ) whenever γ ∈ [0,
√

αmin/(2αmax)).
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Proof. For simplicity of notation, let T , V and W denote T (X,S), L−1
S (∆S)L−T

S and LT
S (∆X)LS

respectively. It then follows from
〈

M−1(W ),M(V )
〉

= 〈W,V 〉 = 〈∆X,∆S〉 ≥ 0 that

max{µ ‖M(V )‖F ,
∥

∥M−1(W )
∥

∥

F
} ≤

(

‖µM(V )‖2
F +

∥

∥M−1(W )
∥

∥

2

F

) 1

2

≤
∥

∥µM(V ) + M−1(W )
∥

∥

F

≤
(αmax

αmin

)
1

4

δ,

where

δ :=
∥

∥

∥
D−1/4〈〈µM(V ) + M−1(W )〉〉D1/4 + D1/4〈〈µM(V ) + M−1(W )〉〉T D−1/4

∥

∥

∥

F

=

∥

∥

∥

∥

∥

D−1/4(DT (X,S)[∆X,∆S])D−1/4

−D−1/4(τ(T ) − µI)(〈〈V 〉〉D1/2)D1/4 − D1/4(D1/2〈〈V 〉〉T )(τ(T ) − µI)D−1/4

∥

∥

∥

∥

∥

F

≤
∥

∥

∥
D−1/4(DT (X,S)[∆X,∆S])D−1/4

∥

∥

∥

F
+ 2

∥

∥

∥
D−1/4(τ(T ) − µI)(〈〈V 〉〉D1/2)D1/4

∥

∥

∥

F

≤
∥

∥

∥
D−1/4(DT (X,S)[∆X,∆S])D−1/4

∥

∥

∥

F
+ 2
(αmax

αmin

) 1

4 ‖τ(T ) − µI‖2

∥

∥

∥
〈〈V 〉〉D1/2

∥

∥

∥

F

≤
∥

∥

∥
D−1/4(DT (X,S)[∆X,∆S])D−1/4

∥

∥

∥

F
+

√
2
(αmax

αmin

) 1

4

γµ ‖M(V )‖F

≤
∥

∥

∥D−1/4(DT (X,S)[∆X,∆S])D−1/4
∥

∥

∥

F
+

√
2
(αmax

αmin

)
1

4

γ max{µ ‖M(V )‖F ,
∥

∥M−1(W )
∥

∥

F
}.

To see the first equation above, expand the first norm and note that DT (X,S)[∆X,∆S] = 0 is a
representation of the first two equations in the linear system (I) (and (II)). Thus

(αmin

αmax

) 1

4

max{µ ‖M(V )‖F ,
∥

∥M−1(W )
∥

∥

F
}

≤
∥

∥

∥D−1/4(DT (X,S)[∆X,∆S])D−1/4
∥

∥

∥

F
+

√
2
(αmax

αmin

)
1

4

γ max{µ ‖M(V )‖F ,
∥

∥M−1(W )
∥

∥

F
}.

Consequently, for any γ ∈ [0,
√

αmin/(2αmax)), the map T has nonsingular Jacobian over N̂(γ),
and hence is invertible over the same neighbourhood.

The next example shows that the bound
√

αmin/(2αmax) is tight up to a constant multiplicative
factor.

Example 6.2. Suppose α1(= αmax) ≥ α2 ≥ · · · ≥ αn(= αmin). In the following, all matrices are
expressed as 3-by-3 block matrices where the four corner blocks are scalars. Let

X =







αmax 0 3αmin

0 Diag(α2, . . . , αn−1) 0

3αmin 0 αmin






, S = I,
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∆X =







12αminαmax 0 αmin(54αmin + 2αmax)

0 0 0

αmin(54αmin + 2αmax) 0 4αminαmax






and ∆S =







36αmin 0 −4αmax

0 0 0

−4αmax 0 4αmax






.

We observe that with

V =







18αmin 0 0

0 0 0

−4αmax 0 2αmax






,

∆X,∆S solve system (I) (and (II)). Moreover, (X,S) ∈ N̂(3
√

αmin/αmax).

Corollary 6.1. For any γ ∈ [0,
√

αmin/(2αmax)), the map T −1 ◦τ ◦T is a diffeomorphism over N̂(γ).

Proof. By Theorem 6.1 the map T has nonsingular Jacobian at any (X,S) ∈ N̂(γ) whenever γ ∈
[0,
√

αmin/(2αmax)). Furthermore, T −1 is well-defined over τ(T (N̂(γ))) for any

γ ∈ [0,
√

αmin/(2αmax)) ⊂ [0,
√

3−1). Moreover, it has nonsingular Jacobian at any V ∈ τ(T (N̂(γ))).
Finally, τ is clearly a diffeomorphism over S

n
++.

Consider a homogeneous cone programming problem (P ) and one of its SDP-representations given
in Section 4. Corollary 6.1 indicates that the mapping T −1 ◦ τ ◦T and its inverse are well-defined and
differentiable in a neighbourhood of the central path of the original problem (formulated using the
optimal barrier for the underlying homogenous cone) and its SDP representation (using the barrier
− ln det(·) on the underlying S

n
+). The scale-invariant size of this neighbourhood (measured by γ

above) is at least
√

αmin

2αmax
. Example 6.2 proves that the ratio

√

αmin

αmax
is the largest (up to a small

constant factor) such neighbourhood over which the mapping T −1 ◦ τ ◦ T is a diffeomorphism.

We deduce that the efficiency of the representation depends on the ratio αmin

αmax
∈ (0, 1]. Larger

values of this ratio correspond to better representations in the above context, because the mapping is
well-defined and is a diffeomorphism over a larger neighbourhood of the central path.

We conclude with another class of simple examples indicating again that the ratio αmin

αmax
is not just

a by-product of our approach; but, it seems inherent in the way the representation deforms the usual
central path.

Example 6.3. Consider as K an arbitrary homogeneous cone admitting an SDP-representation via
L. For a given set of A, b, c and µ, we can look at how bad of an automorphism Ax ∈ Aut

(

S
n
+

)

we
have to use to get

x̃(µ) = Ax (L(x(µ))) .

Let us pick a simple class of specific examples. Consider the primal SDP problem

sup {〈I,X〉 : 〈I,X〉 ≤ 1,X � 0} .

Then the dual central path is given by Sy := (y − 1)I depending on the dual variable y. For a fixed
central path parameter µ > 0, we have the primal central point X(µ) = µ

y(µ)−1I. For weighted central
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paths (weights described by the positive definite diagonal matrix D), using the central path equation
L̂T

S X̂L̂S = µD, we have X̂(µ) = µ
y(µ)−1D.

Now, if we focus on automorphisms mapping X̂(µ) to X(µ), we see that their condition number
must involve the ratio αmax

αmin

; i.e., D−1/2 · D−1/2 has the condition number αmax

αmin

.
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[22] È. B. Vinberg, The theory of homogeneous cones, Trans. Moscow Math. Soc. 12 (1965) 340–403.

[23] V. Vinnikov, Self-adjoint determinantal representations of real plane curves, Mathematische
Annalen 296 (1993) 453–479.


