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Abstract

We propose minimum volume ellipsoids (MVE) clustering as an alternative clustering technique
to k-means for data clusters with ellipsoidal shapes and explore its value and practicality. MVE
clustering allocates data points into clusters in a way that minimizes the geometric mean of the
volumes of each cluster’s covering ellipsoids. Motivations for this approach include its scale-invariance,
its ability to handle asymmetric and unequal clusters, and our ability to formulate it as a mixed-
integer semidefinite programming problem that can be solved to global optimality. We present some
preliminary empirical results that illustrate MVE clustering as an appropriate method for clustering
data from mixtures of “ellipsoidal” distributions and compare its performance with the k-means
clustering algorithm as well as the MCLUST algorithm (which is based on a maximum likelihood
EM algorithm) available in the statistical package R.
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1 Introduction

Clustering or unsupervised learning is a key problem in data mining, machine learning and statistics. It
is the problem of allocating data points into K clusters (where K is a predetermined positive integer)
such that the points within each cluster are more “closely” related to one another than the points
assigned to other clusters. One of the inherent difficulties of this problem is the lack of a clear generally
effective criteria function. The ideal criterion or objective function aims to mazimize similarity of the
data points within each cluster and mazimize dissimilarity across clusters. However, the appropriate

measure of “similarity” is ambiguous.

The most common measure of similarity in popular clustering methods, such as k-means and hier-
archical clustering, is the Euclidean distances between data points and the cluster center. If the data
points have d attribute measurements, each of these attributes is considered a dimension in R%. The k-
means method allocates points into clusters so that for each cluster, the total mean Euclidean distances
of all the points in the cluster to the center of that cluster (center calculated as the arithmetic mean
of all the points in the cluster) is minimized. The main drawback of such a criterion is its tendency to
prefer cluster allocation of equal sizes and spherical shapes. Another key disadvantage of this metric is
its scale dependence (i.e., the cluster allocation may change significantly with linear transformations of

the data space).

To overcome these difficulties we can use Mahalanobis distances instead of the Euclidean distance.
For example, if we know that a particular cluster has covariance X, then the similarity within that
cluster with center ¢ would be measured by ||® — ¢||x-1. This measure is scale invariant and can deal
with asymmetric non-spherical clusters. [16] shows that among many cluster quality criteria, the within
cluster sum of squares (which is proportional to the sample covariance of the clusters) worked best in
general. However, the challenge in using Mahalanobis distances is deciding on the covariance matrix
of each cluster. Even if each cluster had the same variability and spread, we often do not know the
covariance matrix X @ priori and the sample covariance of the points might provide us with an erroneous

solution.

A promising alternative scale-invariant metric of cluster quality is given by the minimum volume
ellipsoids, where data points are allocated into clusters so that the volumes of the covering ellipsoids for
each cluster is minimized. The problem of finding the minimum volume ellipsoid that covers a set of
points can be formulated as a semidefinite programming problem and an efficient algorithm for solving

the SDP has been proposed by [15].
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Even with an appropriate criteria function, there is another inherent challenge in clustering — the
problem of allocating the data points to optimize the objective function. Optimal allocation has long
been considered computationally intractable, thus data points are allocated heuristically. One approach
is to use randomized local search methods. For example, the k-means algorithm initially randomly
allocates points to clusters then iteratively re-allocates the points to their closest cluster. Other heuristic
methods are based on greedy approaches such as in hierarchical clustering. This method initially
assigns each point as a singleton cluster and merges the closest clusters together until there are K
clusters remaining. These methods work well with Euclidean distances, but face several problems
using Mahalanobis distances and minimum volume ellipsoids as the clustering criteria [8]. When these
alternative measures are used in the k-means heuristic, it often gets stuck in local minima and produce
poor cluster allocations that are far from being globally optimal.

Our goal in this paper is to explore the possibility and the value of optimal cluster allocation using
minimum volume ellipsoids (MVE). There is no practical approach for solving the k-means problem
to optimality, however, we can formulate the MVE clustering problem as a mixed-integer semidefinite
programming problem, allowing us to solve it to optimality. Figure 1 shows the result of running the
k-means algorithm with 1000 different starting points and the optimal MVE algorithm on two bivariate
Gaussian distributions.

MVE is an example of a union between semidefinite programming and combinatorial optimization.
Computing the minimum volume ellipsoid is a semidefinite programming problem whereas cluster al-
location is a form of a facility location problem. The problem of determining the minimum volume
covering ellipsoid has its roots in classical, ellipsoidal problems in convex geometry which go back at
least to [10] and [13]. [5] developed significant amount of theory and [1] proposed a heuristic algorithm
based on the eigenvalue decomposition. The current best complexity bound is due to [6]. Other inter-
esting theoretical algorithms are presented in [7] and [12]. Recently, many advances have been made
to provide more practical algorithms with good foundations in convex optimization [18, 17, 15, 9]. We
extend the algorithm developed by [15] to solve the continuous relaxation of this clustering problem
and solve it to optimality via various branch-and-bound algorithms.

Dealing with practical problems which lie in the span of this paper would require us to address
the problem of outliers. In our case, interesting techniques for “outlier detection” compatible with our
approach already exist (see [14] and [3]). Therefore, we keep our focus on the underlying optimization
problem and consider “outlier removal” as a separate problem which is outside the scope of the current

paper. We point out that our techniques can be very sensitive to the existence of outliers. While this
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Figure 1: Three examples of two bivariate Gaussian distributions. The original distribution is represented with

an “077

(150 points) and “x” (50 points). The clustering algorithms (k-means with 1000 iterations on the left and

optimal minimum volume ellipsoids on the right) clustered the points into red and blue clusters.
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by itself suggest that we can use the sensitivity of our techniques for detecting outliers, our algorithms
(though theoretically sound) would not be practical to adapt for outlier detection. Investigation of

heuristic algorithms using approximate MVEs may be a fruitful direction for future research.

We view our contribution as follows:

1. Propose and evaluate formulations and algorithms combining semidefinite programming and mixed-

integer programming for solving a clustering problem to optimality.

2. Empirically illustrate the minimum volume covering ellipsoids as an appropriate measure for
clustering data from mixtures of Gaussian distributions, uniform ellipsoidal distribution and an
asymmetric ellipsoidal distribution. We compare its performance with the k-means clustering

algorithm and the model-based EM algorithm, MCLUST.

The structure of the paper is as follows: Section 2 describes the problem at hand and proposes two
solution methods. Section 3 describes the Pure Branch-and-Bound approach and Section 4 elaborates
on the Convex Relaxation Branch-and-Bound approach. Section 5 highlights additional interpretations
of our model and some pitfalls to avoid. Section 6 describes several implementation strategies for
both of the branch-and-bound algorithms. Section 7 presents a refinement to the original problem,
where cluster membership information for a small subset of the data points are given to us a priori.
Section 8 describes several alternative nonconvex formulations of the problem. Section 9 describes the
computational experimentations and illustrates the results from applying MVE clustering compared
to k-means clustering and MCLUST. Section 10 shows analogous computational results for the prior

information case described in Section 7. Finally, we present our conclusions and future potential work

in Section 10.

1.1 Notation

We denote by S9, the space of symmetric (d x d) matrices over the reals. Si stands for the convex cone
of positive semidefinite matrices in S¢. Finally, S‘_iH is the interior of Si, ie., Si-l— is the convex cone of
(d x d) symmetric positive definite matrices over the reals. We also use the partial order notation where
for A, B € S%, we write A > B (A = B) to mean (A — B) is positive semidefinite (positive definite). We

use the trace inner-product in this space, given A, B € S¢,

(A, B) := trace(AB).
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2 The Problem

Our minimum volume ellipsoid clustering method is as follows. Given n points in R%: aq,as, ..., a,,
find an allocation of these points into K clusters that minimizes the geometric mean of the volumes of
the minimum volume covering ellipsoid for each cluster. To state this formally, let C; denote the set of
indices of the data points assigned to Cluster j, j = 1,2,..., K, and E;, E; C RY, is the ellipsoid that
contains all the points a; € C;.

The parameters determining an ellipsoid E; are its center ¢; and Q; € Sd++ that defines its shape
and size, i.e.,

Ej={z eR|(2 - ¢,)"Q;(z — ¢;) < 1}.

However, as in [15] we define it by
Ej={z e RY|(M;z - z;)" (M - 2;) < 1},

1 1
L — 2 J— 2h.
where M]_Qj and z]_Qjc].

-1

Since the volume of E; is proportional to det(M ;)~', we wish to find the optimal allocation Cj,

7=1,..., K, that solves:

K
min — Zln det(M ), (1)
j=1
s.t. (Mja,' - z]‘)T(M]‘a,' - Z]‘) <1, 1€ C]‘,j =1,.., K,
Uci=A11,...,n},
J

d
MjES++.

Note that we simply chose to add the terms — In det(M ;) for all j in the objective function. In some
applications it might make sense to take a weighted combination of these terms with given positive

weights w; so that the objective function becomes

K
min — Z w;Indet(M;).

j=1
Indeed, from a mathematical point of view, everything we do in this paper can trivially be adapted to
this more general situation.

We test two different approaches in solving this semidefinite mixed integer programming problem,

namely (1) Pure Branch-and-Bound and (2) Convex Relaxation Branch-and-Bound.
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3 Pure Branch-and-Bound

The Pure Branch-and-Bound method is a simple branching procedure that adds a point to a cluster

until all of the points are assigned. The sketch of the procedure is as follows:
Step 0: Initialization. Set C; =0, j=1,...,K. C, := {1}, UB := 0.

Step 1: Calculate MVE. For each Cluster 5, j = 1,..., K, calculate the minimum vol-
ume ellipsoid E; where a; € Ej;, Vi € C}, parameterized by M, and z;. If
— 25‘:1 Indet(M ;) > UB, Stop branching.

Step 2: Find Interior Point. For each unassigned point, a;, 7 € {1,...,n}\ U Cj, as-
j=1,..K
sign the point to Cluster j if @; € E;. If all n points are assigned to a cluster,

Stop Branching. If — Ele Indet(M;) < UB, set UB = — 2?:1 In det(M ;).

Step 3: Branch on Unassigned Point. Pick an unassigned point a;, i € {1,...,n}\ U Cj.
=1, K
For each Cluster j, j =1,..., K, set C; = C; U{i} and go to Step 1.

At first, it seems to be a trivial enumeration procedure, but we implement the branching so that
many unassigned points are assigned in Step 2. Thus, we only need to branch on a fraction of the
total number of points in practice. We will elaborate on the specific implementation of the branching

procedure in Section 6.

To calculate the minimum volume covering ellipsoid in Step 1, we solve the following problem:

Min — YK In (det (M)
(Mja,'—Zj)T (Mja,'—zj) < 1, 1€C;Vj€ {1,2,...,K};
M;cs?z; e RY Vie{1,2,....K},

where the positive definiteness of M ; is enforced by the domain of the objective function. Clearly, the
above problem is separable across j, thus we solve for the minimum volume covering ellipsoid separately

for each cluster using the Dual Reduced Newton algorithm proposed by [15].

4 Convex Relaxation Branch-and-Bound Method

In the Convex Relaxation Branch-and-Bound method, we wish to solve Problem (1) as a mixed-integer

semidefinite programming problem.

Let
1, if point ¢ is assigned to Cluster j;

Bij =

0, otherwise.
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Let R; € Z44 be a large enough constant such that for every 7 and for every j, we have

(Mja; - 25)" (M}ai - 23) < R;,

where M and z7 denote the parameters (initially unknown) of the minimum volume ellipsoid for

Cluster j. With this notation, our naive formulation is:

K
Min = In(det (M;)) (2)
7=1
st. (Mja; —z;)" (Mja;—z;) < Biy+R;(1—8;),Yie{1,2,....n},¥je{1,2,....K}; (3)
K
Y B = LVie{l,2,...,n}; (4)
7=1
Bij > 0, and integer,Vi € {1,2,...,n},Vj € {1,2,...,K}; (5)
M;eS? z; e R Vie{1,2,...,K}. (6)

Note that the constraints M; > 0 for every j € {1,2,..., K'} are implied by the domain of the objective
function.

We propose to solve the above semidefinite mixed-integer optimization problem via branch-and-
bound where the convex relaxation would be solved at each node. Each branching step would assign
an unassigned data point to one of the K clusters. At an intermediary branch-and-bound node, if C;
are the indices of the points assigned to Cluster j, the subproblem that is solved at the node is the

following continuous convex semidefinite programming problem:

K
min - Zln det(M ;) (7)
=1
K
st (Mja; — z]')T (Mja; —z;)+ (R; —1)3;; <Rj, Vig U C;,V7; (8)
j=1
(Mja; - z;)" (Mja;i - z;) <1, VieC;Vj; (9)
K K
Yoy =1, vig|JCj; (10)
=1 =1
Bij 2 0, Vi, Vj; (11)
M; e Sd, zj € Rd, Vi; (12)

where the constraints (9) are the ellipsoid inclusion constraint for the assigned points and constraints
(8) are the ellipsoid inclusion constraints for the unassigned points. Note that the relaxed integer
assignment variables 3;; exist only for the unassigned data points a;, i.e, i ¢ Uj;l C;. This formulation

is the same as setting 3;; = 1 for all 7+ € C; in the relaxation of the original problem.
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A very important drawback of this formulation is R;. While it is reasonable to assume that the
optimal solution will have the property that M = 0 for every j and that all zj lie in a box (which can
be computed from a;), it is much less reasonable to assume certain orientations of the ellipsoids or small
ranges for the eigenvalues of all M7 a priori. Without proper handling of this parameter R;, we do
not expect that the above formulation will be effective, especially for large n. Indeed, if the best value
for R; (the smallest value which makes the above formulation valid) is too large, this might indicate
some kind of intrinsic difficulty with the data. Appendix A illustrates how we can find a theoretical

upperbound for the values of R;. This upperbound for Cluster j and point a, is
[(d+1) (1250 + 1) Amax + [|251°,
where ||z;]| (the center of the ellipsoid for cluster j) can be bounded and
Amax (= max{|N;|: 7€ {1,2,...,d+ 1}}

(the maximum absolute value of the affine combination coefficients for point a, based on (d+ 1) affinely
independent points known to belong to Cluster j—without the knowledge of such (d+ 1) points, finding

a good bound on Apyay can be hard).

The subsequent sections discuss how we solve the above problem by solving the necessary and suffi-
cient optimality conditions of the problem via Newton’s method. Subsection 4.1 derives the optimality
conditions for the subproblem and Subsection 4.2 illustrates the Newton directions for the optimality

conditions.

4.1 Optimality Conditions for the Relaxations

Let us relax the constraint “g;; is integer for every ¢ ¢ U?:1 Cjand j € {1,2,...,K}.” To apply an

interior-point-method, we consider the following formulation (parameterized by u > 0):

K n K
min = Indet(M;) — > > [In (ti;) + In(B;;)]
7=1 =1 3=1
K
subject to: (Mja; — z;)T (Mja; — z;) + (Rj — 1)Bij+ t;; =R;, Vig U C;,Vj;

J=1
(M]‘CL,'—ZJ‘)T (Mja,'—zj)—l—t,'j =1, VieC},Vy;

K K
s =1, vi¢g ]
j=1

=1
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We denote by t;; the slack variables in the ellipsoidal inclusion constraints. We use u;; for the dual
variables corresponding to the same constraints. The dual variables v; are for the linear equations on
Bi; ensuring that every point is included in some cluster. Now, we can list the (necessary and sufficient)

optimality conditions for the above problem:

Zu,’j [(Mja,' — zj)al»T + a,'(Mja,' — Zj)T] — M;l = 0,Vje{l2,....K};
=1

n

> wij(zi— Mja;) = 0,Yj€{1,2,...,K};

=1
K
(R; — 1)uij +v; — ﬁi = ovi¢g|JCie{l,2,.. K}
17 j=1
uij — tﬁ — 0,Vic{l1,2,...,n},je{1,2,...,K};
i
K
(M]‘a,' — Z]‘)T(Mja,' — Z]‘) + 1t + (R]‘ — 1)5,']‘ = R; Vi ¢ U,j €{1,2,....K};
i=1
K K
> B = LvigJCs
M; > O,t;; > 0,u;; > 0,5;; >0, Vi, V7.
Suppose ng is the number of unassigned points, i.e., ng = n — ?:1 |Ck|, and n; is the number of

points assigned to Cluster j, i.e., n; = |C;|. We denote by e the vector of all ones, A; € R¥*mo+n;
denotes the matrix of a;’s that can be assigned to Cluster j, i.e., the first ng columns of A; are comprised
of a; for i ¢ Ufyzl Cy and the last ng columns of A; are comprised of a; for ¢ € C;. Similar to [15], we
can eliminate the variables M ; and z; in the above formulation. Let u; € R™*" denote the vector of
variables u;;, the first ng elements corresponding to i ¢ Ufyzl C} and the last n; elements corresponding
to i € C;. Then, M, z; and u; satisfying the above optimality conditions (for some 3, v) have the

following relationships:

—-1/2
1 . T AJ"LL]‘UTAT
M; = 7 (A,Diag(u;)A;) — TJ]‘] :
2, = M;Aju;
elu;

where Diag(«) is a diagonal matrix with @ on the diagonal. Let h;;(w;) (h;j : R®™ — R) be a nonlinear
function of u;; that corresponds to the value of (M ja; — z;)T(Mja; — z;) with the above relations

substituted, i.e.,

Aju])T

Tay .
€ Uy

Ajujul AT] Aju,
A Diag(u;)AT - M] (a,' — ]u]) .

J Ty . Ty .
eu] eu]

1
hij(uj) = - (ai -
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Then the necessary and sufficient optimality conditions reduce to the following:

K

hij(uj) + (R; — )i +t; =Ry, Vig|JCjie{l,2,... K} (13)
7=1

hij(uj) +t; =1, VieCjje{l,2,....K}; (14)

uljtl] :H7 Vl G {1727---77[/}7].6 {1727"'7‘[&’}; (15)
K

(Rj — DuigBij +viByy =p, Vig|JCiie{l,2,... K} (16)
7=1
K K

gy =1, vig|JCy (17)
7=1 7=1

u;; > 0,8; > 0,t; >0, Vi, Vj. (18)

4.2 Newton-type Direction for the Convex Relaxation

Given p and u,;, t;;, v; and f3;;, we compute a Newton-type direction for the optimality conditions (13)-
(18). We first introduce some additional notation. To distinguish between assigned and unassigned
points, let @, be the vector of u;; that are not assigned, 4; be the vector of u,; that have been assigned
to Cluster j, Ej be the vector of ¢;; that are not assigned, and fj be the vector of #;; that have been
assigned to Cluster j. Further, let 3; be the vector of 3;; and v be the vector of v;. Let H; denote

the matrix of first derivatives of h;;(u;) with respect to u;;. This matrix can be partitioned into four

submatrices:
H; :=Vhj(u;) =: H(l)ﬁj H(l)ﬁj
Hea, Hea,
H 5. is the submatrix of H corresponding to (13) and 4, H 4, corresponds to (13) and 4, H 5.

corresponds to (14) and @, and H , ;. corresponds to (14) and @;.
J
The Newton-type search direction (Aw;, Adj, Afj, Afj, ABj,Av), j € {1,2,...,K}, at point (i,

a;, t, L, Bj;v), j €11,2,..., K}, is the solution to the following linear system:

Hyq A0+ Hiy g A+ (R - 1D)AB; + AL = #1;,Vj € {1,... K}, (19)

H g, At + Hpyg Aty + At; = 7 Vjedl,... K}, (20)

U;At; +T;Aa; = #9;,VYj€{l,...,K}, (21)

U,A; +T;Aa; = vy ¥j€e{l,..., K}, (22)

(R; - 1)BjA@; + (Rj - 1)U; + V)AB; + B;jAv = #3,,Vj€{l,...,K}, (23)

K
S ag; = 7 (24)
7=1
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where

U; := Diag(@), Vje{l,...,K},

U, := Diag(a;), Vje{l,..., K},

T, := Diag(t;), Vje{l,..., K},

T, := Diag(t;), Vje{l,..., K},

B; := Diag(B,), Vje{l,...,K},

V := Diag(v),

71, = Rje—hj(@;)— (R;—1)B,—t;, Vje{l,... K},

rj o= e—hi(d;) -, Yie{l,... K},

Ty = ,ue—ﬁjfj, Viedl,...,K},

ry; = ,ue—ffjfj, Viedl,...,K},

fia; = pe—(R;j—-1)U;B;-VB;, Vie{l,... K}
"

Ty = e—ZBj.
7=1

After some reorganizing, we can write the above system solely in terms of Awu; and Aw;: for every

je {1727"'7‘[&’}7

(H(l)ﬁj — ij — D5j> Au; + H(l)ﬁjA’fL]‘ + ZD]‘,IA{LI = ¢y, (25)
I#5
~ N ~ —1
H(Z)ﬁj Au; + (H(Z)ﬂj - Dltj) Ad; = 11— Uj 2.5 (26)

where ij, Dg,;, and ij are diagonal matrices resulting from back substituting Zj, B; and fj, respec-
tively, and D, is a diagonal matrix resulting from (24). Let S, := (R; — 1)U; + V)'B;. (We use Al

to denote the pseudo-inverse of A.) Then,

p; = U,'T, (27)
p; = U;'T (28)
Dy, = (R;—1) Bj—Sj(Z:Sj)f : (29)
J
D = (R;j-1)7%8;8:1(>_ S, (30)
j
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Linear Algebra for each Iteration

Since we do not have any explicit control over the values of V', it seems conceivable that | (R; — 1)Ijj +V
is singular for some j for some iterate. Moreover, the linear system (19)-(24) may be singular. It is

known that H; is negative semidefinite (Proposition 5 of [15]) which implies

We would like to have a linear system whose nonsingularity is based on the above fact.

Note that we cannot ensure the nonsingularity of the current system based on this fact alomne:
Suppose that the above matrix is —(R; — 1)1 for some iterate for every j € {1,2,..., K}. We may also
choose positive values for u, 8 and appropriate value for v such that the system (19)-(24) when reduced

in terms of the variables A4, AB and Awv has the coefficient matrix

—(Ry — 1)I 0 0 (Ry — 1)I 0 0 0
0 —(Ry—1)I - 0 0 (Ry - 1)I - 0 0
0 0 —(Rg — 1)I 0 0 (Rx —1)I |0
(Ry — 1)I 0 0 —(Ry — 1)I 0 0 I,
0 (Ry — 1)I 0 0 —(Ry - 1)I 0 I
0 0 oo (Rx —1I 0 0 oo (R -VI|I
0 0 0 I I I 0

where the first column block corresponds to A, second column block corresponds to A3 and the last
column block to Av. For K > 2, the above matrix is clearly singular (add the first block row to the

second, then the second block row has linearly dependent rows).

4.3 Alternative Search Direction

Although the singularity of the matrix |(R; — 1)I~]j 4+ V| arose rarely in practice, we present an al-
ternative search direction that removes the usage of pseudo-inverses in Subsection 4.2. Note that (16)
is

(Rj — Duij +v; = i
51]
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Instead of multiplying both sides by 3,;; and then linearizing, we can directly linearize the above. We

use the first order approximation:

1 1 AB

—_— = , for AB;; small.
Bij + ARy  Bij B ’

Analogous derivations of search directions for interior-point methods have led to interesting algorithms.

The system (19)-(24) stays the same except (23) becomes
(R]‘ - 1)Aﬁj + ;LB;ZAﬁj +Av = 75, (32)
where
T5; 1= ,uB;le —(R; —1)a; —v.

We define

Proposition 4.1 Let @ > 0, @ > 0, £ > 0, t > 0, § € (0,1)"K v € R™ and R; > 1, for every
j€41,2,..., K} be given. Then the system given by (19), (20), (21), (22), (32) and (24) has a unique

solution.

Proof. Note that H is the Schur complement of the (1,1) block of

~_1 -~
_H(l)ﬁj + Uj Tj —H
—Hy)g, —Hya, +U;

The positive definiteness of the above matrix was already established [15]. Therefore, ﬁj is positive

definite. Using (15), we have

Using (20) we obtain
~jAu]} . (33)

Now, using the last identity with (14) and (12) we arrive at

) . _— R - "
Au; = H; [(Rj —DAB;+U; #25+ Hyyg, (H(Z)ﬁj -U; Tj) (rl’j -U TQ’j) - 7‘1,]‘](34)
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Define

~ 1

~ ~—1 . -1 ~
o= —H; [Uj 2.5+ Haya, (H<2)ﬁj -U; Tf‘) ("171 -U; "'“) B m] '
Substituting into (32) we obtain
~ —1 _ ~ ~
{(Rj ~1)°H; + uB; 2} AB+Av = 75+ (R — 1)7%,;. (35)
Note that since ﬁj and Bj are positive definite and R; > 1, u > 0, we have that
27771 -2
L= |(R; - 1A +uB;?| - 0.

Thus, using (17), we arrive at

-1

Av = ZL;l —F4—|—ZL;1 (75 + (Rj — 1)) | - (36)

(Positive definiteness of L; implies the positive definiteness and hence the nonsingularity of (Ele L;l) )

Substituting back, we conclude

ABj = L' (75, + (R - 1)fg; — Av) (37)

3

and A#@; and Ad; are given by (34) and (35) respectively. The above computation also proves the

uniqueness of the solution. O

For the numerical computation, we consider other ways of solving the linear system. Instead of
solving for Aw first, it might be better to eliminate Av, AB3 and reduce the system to a linear system

involving only Aw. We derive,

K -1 K ]
Av = (Z Bg) [—,m + ) B} (56 — (R — 1) Adiy)
=1

=1

and

where
T = H(l)ﬁj (H(z)ﬁj -U; T, )_1 (7’1,]‘ -U; 7'271') :

Substituting back into (32) we obtain

(RM_ 1B;2ﬁj +(R; —1)(I - BB§)> Ad; - (R; - 1)BY BiAdy
! ]
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K
~ —2{~ =1 -~ ~ ~ . -
=75, — 4'“ sz (Tl,j_Uj 7‘27]‘—7’77]‘) - B (ZB?’I@J—M’I@) , JE {1,...,]&},
=1

5 Further Interpretations and Some Pitfalls to Avoid

Our objective function is to minimize a convex function of M, M4, ..., M. This is significant for
the following reasons: First, we would like to arrive at a good convex optimization problem (“good”
meaning efficiently solvable and a good approximation of the initial non-convex problem). To find such
a relaxation, we usually find an outer approximation to the non-convex feasible solution set. Secondly,
if the objective function is also non-convex, we need to approximate (in our case, over-estimate the
objective function by a convex function). Because of our choice of the objective function, we get to
skip this second step of approximation. Thus, for any convex relaxation of the feasible region, we
immediately have a corresponding convex optimization problem whose objective value is a lower bound

on the optimal objective value of the original problem (1).

In our implementation and experiments, we assumed that for every Cluster j, there are at least
(d + 1) affinely independent points a; which belong to that Cluster j. When there is only one cluster
(the MVE problem addressed in [15]), this assumption is clearly reasonable and can be efficiently checked
in practice, before any optimization method is employed to compute the MVE or an approximation of it.
The situation is different in our more general setting of multiple clusters, since the assignment of points
to clusters is part of our decision variable. Moreover, without any additional knowledge about the data,
this assumption is not as easily verifiable, a priori. Therefore, the users of our techniques will have to
be familiar enough with their data (or ensure that the assumption holds by a suitable preprocessing
step) so that they will know a priori that every cluster is “full-dimensional” (the users will also have to
decide what affine independence means numerically —i.e., to what accuracy). For instance, the setting

of Section 6 describes a “learning” situation in which such a strong assumption can be verified easily.

In our branch-and-bound algorithms, we do not evaluate the objective function until every cluster
has at least (d 4 1) affinely independent points assigned to it by branching (i.e., if this condition fails
at a node of the branch-and-bound tree, we branch further; if the condition fails at a leaf node, we
eliminate the node). Therefore, our branch-and-bound algorithms minimize the geometric mean of the

volumes of MVEs where every MVE is full-dimensional and with finite volume.
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Note that if the number of points a; is extremely large and/or the assumption of affine independence
is nearly violated, some numerical difficulties might occur in our algorithms. Also, under such conditions,
our branch-and-bound algorithms might favor solutions in which one or more clusters are covered by
MVEs with extremely skinny ellipsoids. However, some of these problems can be circumvented by the

introduction of various convex constraints. For example, we can add the linear inequality

for a large enough constant R (or we can add a convex quadratic constraint which serves a similar
purpose). Since the matrices M ; are symmetric and positive definite, such linear inequality ensures
that all the eigenvalues of all the matrices are in the interval (0, R). However, introduction of such a
constant R must be done very carefully (again, additional knowledge about the data is necessary). We

will have a discussion of similar constants later in Appendix A.

To discuss our choice of the objective function, suppose we have only two clusters, K = 2, and we
have a complete assignment of points to the clusters leading to the MVEs: F; and F;. Furthermore,

suppose that we have another complete assignment of the points to the clusters leading to the MVEs

E{ and E) such that

vol (EY) = 2vol (E) .
Then, the second assignment is better than the first if and only if
, 1
vol (E%) < §V01 (E7) .

Thus, our objective function considers relative “blow-up factors” of the ellipsoids rather than their actual
volumes. On the one hand, this kind of invariance property can be sometimes desirable (when the real
distributions have covariance matrices with different magnitudes—say ||Z;|| < [|2||, our objective
function will treat these two distributions on more equal ground—doubling the volume of the first

ellipsoid is equivalent to doubling the volume of the second ellipsoid).

On the other hand, if the users want to minimize the sum of the volumes of MVEs, then this can
be easily handled by our Pure Branch-and-Bound Method (Section 3) after modifying the objective
function; however, we could no longer use our Convex Relaxation Branch-and-Bound Method (Section

4) which is tailored for minimizing the geometric mean of the volumes of MVEs.
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6 Implementation Strategies for Branch-and-Bound

The computational performance of the branch-and-bound algorithm can depend heavily on the imple-
mentation. The following are the different strategies we tested—some pertaining to both Pure Branch-
and-Bound and Convex Relaxation Branch-and-Bound, and some only to one of the approaches. This

section illustrates some of the different strategies we tested.

6.1 Root Heuristic

A heuristic was run at the root node to find a good initial upperbound on the optimal objective value

for both branch-and-bound versions. We tested three different methods for comparison:

1. Total Volume times K: As a benchmark, we used a trivial upperbound by calculating the

volume of the minimum volume covering ellipsoid that covered all n points and multiplied it by

K.

2. k-means Heuristic: The k-means algorithm using Euclidean distances was run with 1000 dif-
ferent starting points. We used two different criteria for the best solution—one corresponding to
the minimum mean Euclidean distances from the center of the clusters (the traditional objective
function for k-means) and the other corresponding to the minimum total volume of the covering
ellipsoids associated to each cluster. We tested other variants of the k-means algorithm, such
as using Mahalanobis distances with updating covariance matrices, but the traditional version of

k-means gave the best solutions overall.

3. Sampling Heuristic: Unlike the k-means heuristic, the minimum volume ellipsoids are depen-
dent only on the boundary points. Thus, sampling a small number of points and running either
of the branch-and-bound algorithms gives solutions that are often close to optimal. Since we are
assuming there are no outliers, we selected the sample points to include all of the boundary points
of the covering ellipsoid that covers all n points, plus additional interior points. For the latter set
of points, we randomly selected pn additional points from a uniform distribution, where p € (0,1)

is a user-defined value (e.g. p = 0.1 indicates that 10% of the data points were selected).

6.2 Branching Strategies

Different branching strategies in the branch-and-bound tree have significant impact in the total compu-

tation time of both branch-and-bound versions. We tested different strategies for node searches, variable
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selection and branching direction.

Node Search: We use depth-first-search for our node search strategy. Although best-bound
search and other hybrid node search strategies are typically better in total computation time,
depth-first-search often requires significantly less memory. For K = 2, we can implement this

with constant memory usage.

Branching Variable Selection: The efficacy of a variable selection strategy is closely dependent
on the branching order strategy as well. Because we are currently using depth-first-search only,
these branching strategies are geared towards faster fathoming of the nodes. For both of the
branch-and-bound strategies, we want to be able to assign the boundary points first so that many
of the interior points would not have to be branched on. Out of many varieties, the following

strategies worked best overall:

1. Maximum Distance: The unassigned point that is “farthest” from a cluster is branched.
The distance is measured in terms of the Mahalanobis distance with respect to the cluster cen-
ter. In Pure Branch-and-Bound, we calculate the optimal M ; and z; for the assigned points,
C;. The farthest unassigned point would be @, where r = argmax i€ {1 UK, O |M ;a; —
z;||%. In Relaxation Branch-and-Bound, if we want to choose an unassigned point to assign

to Cluster j, we choose the point a, if r = argmax;c o UK ¢, {Bij+ R(1 - Bij) —ti;}.

? k=
2. Maximum Angle: Together with the above strategy, we want the assigned points to be
as spread out as possible. Thus, we use the measure proposed by [15] which chooses the
point that has the largest angle from the current assigned points in Ej;, i.e., we choose an
unassigned point a, to assign to Cluster j if Z (M ja; — z;)"(Mja, — z;) < 0. If none of
1€C;

the points satisfies this criteria, we simply choose the point with the maximum distance.

From computational testing thus far, the combination of the two strategies seems to work best

for fathoming the most nodes overall.
Branching Direction: We tested two branching strategies for both branch-and-bound versions:

1. Constant Order: In this strategy, when a data point is branched upon, it is first assigned
to Cluster 1, then Cluster 2, etc., in consecutive order. The branch-and-bound tree would,

thus, be building up the first cluster first, then the second, etc.
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2. Farthest Cluster: Using the maximum distance strategy for variable selection, the cluster
corresponding to the largest Mahalanobis distance for all of the unassigned points is branched

on. The clusters will grow more uniformly compared to the Constant Order strategy.

Although the Farthest Cluster strategy seemed more intuitive, computational experimentation
showed that one did not have significant advantages over the other in terms of the total number

of nodes explored.

6.3 Warm Starting

In Convex Relaxation Branch-and-Bound, the relaxation problem at each node starts at a given starting
value for u; ; and f3; ;. Unlike the pivoting-based methods, the Newton direction has no clear theoretical
nor practical choice for a starting point given the optimal solution of the parent node. Thus, we tested

different choices for the starting point:

1. Solve from Scratch: The default strategy is to solve from scratch, i.e., to not utilize the solution

4 and

of the parent node. We use the starting point suggested by [15]. We initialize with u; ; = 5~

1
Bij = 7

2. Resolve from Previous Point: This resolve strategy starts with the solution of the parent node.
Initializing at the optimal u,; ; and 3; ; leads to numerical instability, so we use an intermediary

u; ; and B3, ;.

Experimentation thus far has not shown that the resolve strategy gives us any computational advantage.
In most cases, the numerical instability of resolve leads to more iterations (e.g., 20 iterations versus
300) to solve the relaxation problem. The occasional cases where resolve did benefit does not seem to

compensate for this overall.

6.4 Interior Point Elimination

At intermediary nodes, if an unassigned Point a; is in the convex hull of the assigned points of Cluster 7,
then Point ¢ must be in Cluster j for all subsequent nodes of that subtree. Detecting these interior points
and assigning them to clusters can significantly reduce the size of our branch-and-bound tree. Also,
once they are considered interior points, they are not considered in the computation of the ellipsoids

at each node. Especially for the Convex Relaxation Branch-and-Bound, eliminating these points as
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interior points can significantly improve the solution time of the relaxation problem. We tested several

methods for detecting these interior points:

1. Constructing the Convex Hull: (Convex Relaxation Version Only) We use the convhulln pro-
cedure in Matlab (based on QHull ©), developed by the National Science and Technology Research
Center for Computation and Visualization of Geometric Structures, University of Minnesota) to

find all the facets that define the convex hull of the assigned points.

2. Covering Ellipsoid: For each cluster, we compute the minimum volume covering ellipsoid of the
points assigned to that cluster. For the Pure Branch-and-Bound Version, these covering ellipsoids
are simply those that are computed at each node. If an unassigned Point a; is contained in that
ellipsoid, we assign Point ¢ to that cluster. For the Convex Relaxation Branch-and-Bound, the
minimum volume covering ellipsoid is only an approximation of the convex hull, so it is possible
that such a point will not be contained in the convex hull. Thus, this strategy is a heuristic for
finding the interior points. In the Pure Branch-and-Bound Version, since the unassigned points
do not affect the solution at each node, points that are previously assigned as interior points but

become exterior points can be labeled unassigned again.

In larger dimensions (d > 5), we approximated the convex hull using the minimum volume ellipsoids

that covered all the assigned points in that cluster.

6.5 Node Fathoming and Updating R;

Typically, a node is fathomed in the branch-and-bound tree if the objective value of the relaxation
is worse than the current upperbound. However, in the Convex Relaxation Branch-and-Bound, this
objective value may not be a valid lowerbound to the optimal mixed-integer objective if our R; is too

small. We considered updating the value of R; in the Convex Relaxation Branch-and-Bound as follows:

Test with mazR: We first check whether the current node should be fathomed by solving the
relaxation problem using R; = maxR, where maxzR is the theoretical upperbound for R; of
Appendix A. If the new objective value is less than the upperbound, then we cannot fathom the

node. At this point, we have three strategies for updating R;:

(a) Keep R; = mazR,
(b) Use binary search to find an R; < mazR that also gives an objective value less than the

upperbound. We use geometric mean as the midpoint.
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(c) Double the value of R; from the current value until the objective value is less than the

upperbound.

We want R; to be as small as possible for both numerical stability and for computational efficiency.
Thus, we prefer updating R; via binary search or by doubling. Although there is no theoretical basis for
doubling, it worked best in practice. A key problem with this updating scheme is that often maz R is so
large that the relaxation is not solvable due to numerical instability, or the solution value is unreliable.
For overall computation time and numerical stability, the best approach would be to find better bounds

on R; or keep the value of R; constant throughout.

7 A Refinement of the Model and the Assumptions

In many applications, we have some prior knowledge of the clusters. A plausible approach is similar to
the one taken in the area of learning theory. Instead of clustering points without any prior information,
we assume that for each cluster, we are given a small set of representative points. Let C’? denote the
indices of points that are known (a priori) to belong to Cluster j, where C’? c{1,...,n}and |C’?| < n.
We can use these representative points to approximate a value for R; and incorporate them into our

original problem as follows:

1. For each Cluster j, compute the smallest volume ellipsoid E; containing those points a; € C;J .

2. Approximate R;,

R; := d(the smallest value R > 2 such that R expansion of E; contains all points a;, Vi € {1,...,n}).

3. Initiate branch-and-bound with the points a;, i € C’? already branched to Cluster j ,7 =1, ..., K,

at the root node.

The way it is stated above, our problem is related to transduction in learning theory. That is, given
a set of points together with their cluster assignment (the training set) and an unassigned test set, the
problem is to predict the cluster assignments of the points in the test set. Section 10 presents some

computational results of our methods when provided with these representative points a priori.
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8 Alternative Formulations

The main shortcoming of the formulation in Section 4 is the use of the parameter R;. Since our initial
approximations of R; are often very conservative, it often results in poor relaxations. Large value of R;
also results in numerical instability and inaccuracy. The following are alternative formulations that we

explored.

8.1 Reciprocal Formulation

We can consider

1

T

(M]‘a,' — Z]‘) (M]‘a,' — Z]‘) — —5 +t; = 0,
ij

in place of Constraint (3). However, the resulting relaxation is nonconvex.

8.2 Logarithmic Formulation

To protect the nice structure of the necessary conditions for local optimality, we may try
T
(Mja; — z;)" (Mja; - z;) + 1 (8ij) + tij = 1,

instead of Constraint (3). Again, the resulting relaxation is nonconvex. The necessary conditions for

local optimality in the parameterized problems become

K
h,'j(u]') +In (5”) +t; = 1L,Vu ¢ U Cj,5¢€ {1,2,...,K};

j=1
hij(u;) +t;; = 1,VieCjje{1,2,....,K};

Uijti; = w,Vie{1,2,....n},7€{1,2,...,K};
K
wij +viPi; = p,Vi¢ U Cj,j€41,2,....K};
J=1
k K
Y 8 = LvigJcy
Jj=1 7=1

u;; > 0,83; > 0,t; >0, Vi, V7.
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8.3 Nonconvex Quadratic Formulation

Let y;; denote some auxiliary variables. Then we can formulate the problem as follows.

Minimize - 2?:1 In (det (M ;))
(Mja; — z;)T (Mja; — z;) Vig UL, C; V5 €{1,2,...,K};
(Mja; — z;)T (Mja; — z;) VieC;,Vje{1,2,....K};
Buvi; < 1, VigUL,CjVjie{1,2,... K}
S By Vi ¢ UL, Cj
BL = Bij, VigUL,Cpvied{1,2,... K}

INIA
= &
§~

|
—

This is a nonconvex quadratic optimization problem to which SDP based relaxation techniques can be
applied. However, currently this approach seems hopeless for large scale problems.

We could also use a system of cubic inequalities
T
Bij (M ja; — z;)" (Mja; — z;) < 1.

There are many methods for obtaining convex relaxations of such systems (e.g., with auxiliary variables
we can formulate these as quadratic inequalities). However, currently such approaches are not successful

in problems with thousands of quadratic inequalities (which is our interest here).

8.4 Complementarity Based Formulation for Two Clusters

When K = 2, simpler, R;-free formulations are possible. In particular, we let y;1, y;» denote the

auxiliary variables so that if ¢ € C; then y;; = 0. The formulation would be as follows:

Minimize — Ef‘zl In (det (M ;))
(Mja; — z;)" (Mja; — z;) < 14y, Vi¢ UL, C; Ve {12}
(Mja; — z;)T (Mja; — z;) < 1, Vi e C;,Vj5 € {1,2};
YiaYiz < 0, Vi ¢ U?ﬂ Cj;
yi; > 0, Vig UK, Cj,V5 € {1,2}.

9 Computational Experiments I

We tested our MVE algorithms against the k-means algorithm and MCLUST’s EMclust routine, a

model-based clustering method that uses an EM algorithm for Gaussian mixture models [4]. Both
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k-means and MVE algorithms were implemented in MATLAB ®[11] and MCLUST is implemented in
R.

We randomly generated data points from a Gaussian distribution, a uniform ellipsoidal distribution,
and an asymmetric ellipsoidal distribution. The uniform ellipsoidal distribution has points uniformly
distributed in a given ellipsoid. We used the MATLAB ® code developed by J. Berkardt[2] to generate
these points. An example of this distribution is shown in Figure 2. The asymmetric ellipsoidal distribu-
tion is an off-centered version of the Gaussian distribution, where the center of mass of the data points
do not correspond to the center of the ellipsoid. An example of this distribution is shown in Figure 3.
For both of these distributions, the positive semi-definite matrix and the center of the ellipsoids were
generated randomly. Similarly, the covariance matrix and the mean were randomly generated for the
Gaussian distribution. In all of our experiments, we had K = 2 clusters and d = 2 and d = 5 (the

dimension).

Zox
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R .
R Ry :
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Figure 2: Points from two uniform ellipsoidal distribution

Tables 1 and 3 illustrate the accuracy of k-means with 1000 different starting points, MCLUST, the
optimal MVE algorithm and the sampling heuristic of the optimal MVE algorithm on the Gaussian data
points with d = 2 and d = 5, respectively. We included the latter heuristic from Subsection 6.1, that
runs the optimal MVE algorithm on a sampled set of the points since it often gave accurate solutions
efficiently. We used p = 0.1, i.e., we uniformly selected 10% of the points for the sampling heuristic. We

measure the accuracy of the algorithms by their ability to capture the original Gaussian distributions.

The first column “Problem” is the problem name, the column “n¢” is the number of points generated
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Figure 3: Points from two asymmetric ellipsoidal distribution

from the first Gaussian distribution and the column “ny” is the number of points generated from the
second Gaussian distribution. Three types of distributions were generated for a given number of points,
as denoted by “E”, “U”, and “M” in the problem name. “E” refers to equal sizes, where ny = ny. “U”
refers to unequal sizes, where n; # ng. “M” refers to two clusters of differing covariance matrices, where

one cluster’s covariance matrix has entry magnitudes five times larger than the other.

The number of points that are wrongly assigned (out of the nq + ny points) by k-means, MCLUST,
MVE and the sampling heuristic are shown in column “Train” under “k-means”,“MCLUST”, “MVE”,
and “Sample MVE”, respectively. In column “Sample MVE” entries with “*” indicate that the sampling

heuristic found the optimal solution for that instance.

To test the robustness of these clusters, a new data set of the same size was generated from the
original distributions. For the k-means cluster, a new point is assigned to the cluster with the closest
center in terms of Euclidean distance. For MCLUST, a new point is assigned to a cluster according
to the Bayesian information (maximum log-likelihood) criterion using the fitted model parameters [4].
For the MVE algorithms, a new point is assigned to the cluster with the closest center in terms of the
metric induced by the optimal ellipsoids. The number of new points that are incorrectly assigned are
shown under column “Test”. The last column “True” is the number of points that are wrongly assigned
in the new test data set, where a data point is assigned to the cluster of maximum likelihood, given
the mean and covariance matrix of the true distributions. This value is presented as the benchmark,

though it does not necessarily produce the fewest assignment errors as shown in the experiments.
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This measure of robustness, along with the use of maximum likelihood as the assignment criteria,
may optimistically bias the result of MCLUST which is based on maximum likelihood estimation.
A potential alternative is to compare the various approaches in terms of how well they estimated the
geometric centers of the “distributions” and the “covariance matrices” of the “distributions.” These can
be easily obtained from our optimal solutions (from z;’s and M ’s). One could then look at the norms
of the difference of the true center and z; and compare the true covariance matrix 3; to the information
provided by the eigenvectors (and the eigenvalues) of M ; properly scaled. Such investigations are left
for future work.

Tables 2 and 4 illustrate the total running times of the different algorithms for the Gaussian data
points with d = 2 and d = 5. A Linux desktop with Pentium 4 (2.4 GHz) and 1G of RAM was used for
all computations. The column labeled “k-means” is the total CPU time for the k-means algorithm with
1000 iterations. The column labelled “MCLUST” is the total CPU time for MCLUST. The columns
labeled “MVEH1”, “MVEH2”, and “MVEH3” are the total CPU times for the MVE Pure Branch-
and-Bound algorithms of Section 3 using the root heuristic “Total Volume times K”, k-means, and
sampling, respectively. The column labeled “SampleMVE” is the total CPU times for the sampling
heuristic. Note that the running times for MVEH2 and MVEH3 do not include the running times of
the heuristics.

The running times of Convex Relaxation Branch-and-Bound of Section 4 are not shown since it
was consistently worse than that of Pure Branch-and-Bound. For n = 100, the running times of both
approaches were comparable, yet the convex relaxation version became significantly slower for larger n.
Although the total number of branch-and-bound nodes explored is fewer for the convex relaxation due
to its stronger bound, it did not compensate for the longer per node running time.

Analogous to the Gaussian distribution results, Tables 5 and 7 correspond to the accuracy of the
different methods using the uniform distribution with d = 2 and d = 5, respectively. The corresponding
running times are shown in Tables 6 and 8, respectively. Tables 9 and 11 show the accuracy of the
methods using the asymmetric data with d = 2 and d = 5, respectively. The corresponding running
times are shown in Tables 10 and 12, respectively. The assignment for the test set was done as in the
Gaussian data for the uniform and asymmetric data. In addition, the column “True” is analogous to

before, where the true center and shape of the ellipsoid are given.

9.1 Results

This section summarizes the results from Tables 1-12.
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Gaussian data:

For the Gaussian data sets, it is clear from Tables 1-4 that MCLUST is the superior clustering technique,
both in terms of accuracy and computation time. This is not surprising since MCLUST is tailored to
detect Gaussian distributions, but the degree of its success is still impressive. In comparing MVE and
k-means, MVE dominates k-means in most cases (the exceptional cases are discussed in the following
paragraph). Relative to MCLUST and MVE, it appears as though k-means has more difficulty clustering
the unequal clusters (“U” problems) and clusters with differing magnitudes (“M” problems), though
this appears to be problem dependent. In almost all cases, the Sample MVE algorithm performs as well
(and sometimes better) than the MVE algorithm in terms of accuracy.

We further investigate the problems that MVE performed especially poorly, namely G100d2M#2
and G500d2M#1. For Problem G100d2M#2, Figure 4 illustrates the true cluster membership and the
cluster membership resulting from MVE. This appears to be a case where minimizing the product of
the volumes of ellipsoids may not be appropriate, since one cluster has near negligible volume. Such a
situation may be avoided by modifying the objective to minimize the sum of the volumes, as discussed
in Section 5. For Problem G500d2M#1, Figure 5 illustrates the true cluster membership and the cluster
membership resulting from MVE. This is clearly a case where incorporating density information gives
significant advantage to the clustering method. MCLUST considers the positions and densities of the
points when building a cluster, whereas MVE only considers the shape of the cluster’s border. Thus, if
there are known spatial distributions (such as Gaussian), a method such as MCLUST would be more

appropriate than MVE.
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Figure 4: Tllustration of Problem G100d2M#2. The left plot shows the true cluster memberships and the right

plot shows the cluster membership resulting from MVE.
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Figure 5: Illustration of Problem G500d2M#1. The left plot shows the true cluster memberships and the right

plot shows the cluster membership resulting from MVE.

In terms of computation time, again MCLUST is clearly the dominant method. MVE is faster than
k-means for d = 2 (Table 2), though this is for k-means repeated 1000 times. For d = 5, the running time
for MVE increases dramatically. Almost half of the problems cannot be solved to provable optimality
within 7200 CPU seconds. This explosion in computation time from d = 2 and d = 5 is mainly due
to the “curse of dimensionality”. The key to MVE’s tractability for d = 2 was due to the elimination
of interior points, as described in Section 6.4. For d = 2, a majority of the points did not need to be
branched upon because they were contained in the interior of at least one of the ellipsoids. However,
as d increases, the sparseness of the points increase for a given n. Thus, fewer points can be eliminated
as interior points, requiring us to branch on significantly more points. With the increased height of the
branch-and-bound tree, the number of nodes and thus the total running time increase exponentially.
However, it appears that the “sub-optimal” (at least not provably optimal) solutions are not too poor
in terms accuracy (Table 3). Also, as before, the Sample MVE appears to provide good solutions, with
faster running times. Perhaps for higher dimensional data sets, solving MVE to provable optimality is

not a tractable computation, but sub-optimal solutions might still provide good predictions.

Uniform data:

MVE performs well under the uniform data, losing to MCLUST on just two problems: U100d2#2 and
Ub500d24#2. Figure 6 illustrates the true cluster membership and the cluster membership from MVE
of Problem U100d2#2. The MVE clustering does not appear unreasonable from simple inspection.

Since the data is derived from the uniform distribution, it is not clear how MCLUST utilized density
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information to capture the training set more accurately. Perhaps this data set contains too few data
points from each cluster to fully capture the shape of the clusters. For Problem Ub00d2#2, Figure 7
illustrates the true cluster membership and the MVE’s cluster assignments. The errors in assignments
are largely due to the overlapped region of the two clusters. For MVE, assignment of points in that
region to one cluster or the other is due to the order in which the points were selected in the branch-
and-bound algorithm. Perhaps points contained in both ellipsoids should be treated differently, instead
of being given a hard assignment.
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Figure 6: Tllustration of Problem U100d2#2. The left plot shows the true cluster memberships and the right

plot shows the cluster membership resulting from MVE.
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Figure 7: Tllustration of Problem U500d2#2. The left plot shows the true cluster memberships and the right

plot shows cluster membership resulting from MVE.

Again, the Sample MVE algorithm appears to perform well, both in terms of accuracy and running
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Figure 8: Tllustration of Problem A1000d241.

time. In the d = 5 case, the Sample MVE resulted in either the optimal assignment or the best
assignment within 7200CPU seconds. All of the Sample MVE times were under 7200CPU seconds.

MVE could not solve two of the problems to provable optimality within the time limit, but both
cases resulted in few assignment erros (one having 0 mistakes, and other other having fewer mistakes

than MCLUST in the training set).

Asymmetric Data:

Similar to the uniform data, MVE results in fewer assignment errors with the asymmetric data than
both k-means and MCLUST. For d = 5, both MCLUST and MVE has no errors for all the problems
tested. For d = 2, there are cases where Sample MVE performs rather poorly (e.g., A100d2#1 and
A500d2#2). These are the cases where the sampled data points did not effectively capture the shape

of the two clusters. This is improved by the inclusion of prior information as discussed in Section 7.

Some of the assignment errors under column “True” in Table 9 are relatively high compared to
MCLUST and MVE. An example of this is Problem A1000d2#1, illustrated in Figure 8, where the
green (x) mark indicates the center of the ellipsoid. As mentioned earlier, the “True” assignment uses
the center of the ellipsoid, not the center of mass, to assign test points. Given that the points are
assigned using maximum likelihood, the number of assignment errors is not surprising for A1000d2#1,
where the center of mass of one cluster is close to the boundary of another. In such cases, nearest
neighbor assignment might have produced better assignments in the test data. However, it would be

difficult to determine the appropriate approach without any prior distributional information.
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From the computational results thus far, it appears that MCLUST is the superior method when
there are ellipsoidal distributions in the data set. It is able to use relative positions of the points in the
Euclidean space to accurately detect its original distribution. MVE does not consider densities of the
data points—it only looks for the boundary points of ellipsoids that yield the total minimum volume. If
the data points do not have ellipsoidal distributions, such as the uniform and asymmetric distributions,
then MVE appears to perform well with respect to MCLUST. In these cases, the previous shortcoming
of MVE becomes an asset, since an ellipsoidal distribution assumption can throw off a method such as
MCLUST. Perhaps a practical solution is to test the data set first with MCLUST, then use its result
as an initial solution (root heuristic) to the MVE algorithm. Thus, if the data set comes from an
ellipsoidal distribution, MCLUST will provide the solution efficiently. In other cases, MVE may provide

improvement in the cluster assignments.

10 Computational Experiment II: Prior Information

This section illustrates the performance of the branch-and-bound algorithms and k-means algorithm
when given representative points, as described in Section 7. MCLUST was not tested in these exper-
iments since it was not clear how to incorporate prior information from its software interface. Tables
13 and 15 illustrate the accuracy of the clustering algorithms on Gaussian data with central informa-
tion for d = 2 and d = 5, respectively. The corresponding running times are in Tables 14 and 16,
respectively. For uniform data, Tables 21 and 25 show the accuracy of the algorithms for d = 2 and
d = 5, respectively, and the corresponding running times are shown in Tables 22 and 26, respectively.
For the asymmetric data, Tables 29 and 33 show the accuracy of the algorithms for d = 2 and d = 5,
respectively, and the corresponding running times are shown in Tables 30 and 34, respectively. For each
cluster, d? points near the center of each cluster are given. In the case of the asymmetric data, points
near the center of mass of the points are given instead of the center of the ellipsoids.

Tables 17 and 19 illustrate the accuracy and running times of the clustering methods on Gaussian
data for d = 2 and d = 5, respectively. For uniform data, Tables 23 and 27 show the accuracy of the
algorithms for d = 2 and d = 5, respectively, and the corresponding running times are shown in Tables
24 and 28, respectively. For the asymmetric data, Tables 31 and 35 show the accuracy of the algorithms
for d = 2 and d = 5, respectively, and the corresponding running times are shown in Tables 32 and
36, respectively. For each cluster, d? points with the lowest “probability” of being in any other clusters

were given.
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10.1 Results

The following gives an overview of the results shown in Tables 13-36.

Gaussian Data:

For d = 2, the central and extreme prior information does not uniformly improve the accuracy for
MVE. In some cases, prior central information improves accuracy (e.g. G100d2M#2). Also, extreme
information improves accuracy in some cases (e.g., G100d2E#2 and G500d2M#1), but slightly worsens
in others. The accuracy of k-means seems to improve with prior central information but not significantly
for extreme information. The main impact of the prior information is in the computation time. For
both central and extreme information, the total running time for MVE greatly improved with prior
information. The running times for k-means and Sample MVE remain the same, as expected.

For d = 5, the accuracy of MVE improves often due to the faster computation time that allows for
provable optimality within the time limit. The major improvement is seen with extreme information
(Table 19). With central information, six of the previously sub-optimal solutions were solved to provable
optimality. With extreme information, 12 of the previously sub-optimal problems were solved to provable
optimality, leaving just one problem that could not be solved to optimality within the time limit. The
extreme information provides data points on the boundary of the clusters, thus it is not surprising that
this information helps MVE capture the optimal ellipsoid shapes early on, thus speeding up the total

running time.

Uniform Data:

For d = 2, both prior central and extreme information appear to slightly improve the accuracy of MVE,
but not significantly. This is not surprising since the assignment errors of the original clustering (Table
5) was already low. Since MVE captures the correct shape of the clusters without the prior information,
these additional information do not seem to contribute much in terms of accuracy. The accuracy of the
Sample MVE improves for some cases, but not for all.

For d = 5, the accuracy level also remains relatively the same with prior information for both
MVE and k-means. However, the running times for MVE improve significantly, especially with extreme
information. Capturing the correct boundary points seem to have a great impact for the branch-and-
bound algorithm, which can fathom significantly more nodes corresponding to interior points. The
central information does not provide the boundary points, thus the running times are the same or
sometimes worse. The performances of the k-means algorithm and Sample MVE stay relatively the

Saline.
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Asymmetric Data: For d = 2, the accuracy remains relatively the same for both k-means and MVE.
However, the Sample MVE improves significantly with both prior information, especially for A500d24#1.
Again, the major impact for both central and extreme information is on the total running time of MVE.
The running time for Sample MVE and k-means remain the same. For d = 5, there is no change in
accuracy with prior information, which is not surprising since MVE had no assignment errors with the

original data. Again, the major impact is seen in computation time with extreme information.

For all three data types, the major impact of using prior information is in the running times of
MVE. In many cases, extreme information helped MVE find the correct cluster, thereby eliminating

many of the interior points early on.

11 Conclusion

We proposed using minimum volume ellipsoids (MVE) as a clustering criterion and modeled the problem
as a mixed-integer semidefinite optimization problem. Compared to the popular k-means clustering
algorithm, MVE is scale-invariant, can handle non-spherical asymmetric clusters and can be solved
to global optimality. We gave two solution approaches: one using pure branch-and-bound and the
other using convex relaxation branch-and-bound. To improve the efficiency of the branching algorithm,
we also considered several implementation strategies such as root heuristics, branching strategies, and
interior point elimination. From computational experimentation on ellipsoidal distributions, we saw
that the MVE approach was successful in capturing the original distribution of the data points and was
far more accurate than the k-means algorithm. MCLUST was clearly the best method for Gaussian
data, but MVE performed relatively well for the non-Gaussian distributions. Notably, the sampling
heuristic, which ran the branch-and-bound algorithm on only 10% of the data points, often found the
optimal solution at a fraction of the total running time.

These promising results provide at least preliminary support for using MVE for ellipsoid-shaped
clusters. However, there are clearly several follow-up research directions that must be explored. For
example, the computational experiments were conducted for d = 2 and d = 5. We saw that the branch-
and-bound method became significantly impaired in higher dimensions due to the sparsity of the data
points or “curse of dimensionality” suffered also by the k-means algorithm. The key challenge was
eliminating interior points, as discussed in Subsection 6.4, which becomes more difficult with larger

dimensions and thus significantly increases the number of nodes explored in the branching.
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Another extension is to explore alternative formulations with stronger relaxations. The Convex
Relaxation Branch-and-Bound formulation of Section 4 gave stronger relaxations at each node than the
Pure Branch-and-Bound approach of Section 3, but its advantage did not compensate for its longer
per node running time. Alternative formulations were proposed in Section 8, yet these formulations
are currently not tractable. For MVE to be a practical clustering algorithm for higher dimensions, we
would need to find a stronger formulation that can greatly cut down the size of the branch-and-bound
tree.

A very encouraging finding from our computational experimentation is the success of the sampling
heuristic. Again, since ellipsoids are defined only by their boundary points, we only need to run the
MVE clustering algorithm on the boundary points. Perhaps for data mining practitioners, this sampling
heuristic would be a viable technique since provable optimality may not be critical.

Our experiments showed that with Gaussian data, the MCLUST package is indeed outstanding as
expected. A careful look at our design of our experiments will reveal that we treated maximum likelihood
clustering as the “ideal clustering” that we try to match in performance. One important difference
between MCLUST and our MVE approach is that MCLUST tries to capture the “distribution” whereas
MVE is completely geometric and is invariant under the local densities of the points (except of course
for the sampling heuristic). If the application indicates that there is an underlying distribution, then
MCLUST would be a better choice. However, in applications where there may not be a distribution,
or one tends to apply a non-parametric technique, our MVE algorithms may be a great alternative.
As we pointed out in Section 9, using MCLUST as the root heuristic in our MVE algorithms may
be the current best overall approach. Also, our empirical experiments have shown that the sampling
heuristic often finds solution equal to or close to the optimal solution. We hope that these preliminary
results would spur interest in the intersecting fields of optimization, data mining and machine learning

to further consider minimum volume ellipsoid as a clustering technique.
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Problem I k-.means M(.JLUST MVE Sar.nple MVE | True
Train Test | Train Test | Train Test | Train Test | Test
G100d2E#1 50 50 6 3 1 2 4 2 4* 2
G100d2E#2 50 50 14 12 4 2 14 5 4 4 3
G100d2E#3 50 50 16 21 0 0 0 0 0* 0 0
G100d2U#1 20 80 12 13 0 0 0 0 0* 0 0
G100d2U#2 20 80 3 0 2 0 1 0 8 14 0
G100d2U#3 20 80 31 23 1 1 1 1 15 8 1
G100d2M#1 50 50 10 3 0 0 0 2 8 2 2
G100d2M#2 50 50 14 13 0 8 46 49 42 36 12
G100d2M#3 50 50 26 27 3 5 12 7 27 25 7
G5H00d2E#1 250 250 62 35 1 11 3 12 2 11 11
G500d2E#2 250 250 70 55 0 0 0 0 0* 0 0
G500d2E#3 250 250 91 90 48 56 60 52 59 67 44
G500d2U#1 350 150 173 153 2 4 3 3 3 4 3
G500d2U#2 350 150 73 98 4 10 9 10 13 11 14
G500d2U#3 350 150 135 111 3 4 21 3 21%* 3 5
G500d2M#1 250 250 122 115 30 38 158 142 109 129 60
G500d2M#2 250 250 73 63 7 13 33 18 9 15 19
G500d2M#3 250 250 95 92 0 2 0 2 0* 2 2
G1000d2E4#1 500 500 47 48 18 43 36 40 35 46 42
G1000d2E#2 500 500 190 168 34 29 63 45 63* 45 32
G1000d2E#3 500 500 126 111 21 28 20 31 20%* 31 29
G1000d2U#1 800 200 307 278 56 56 42 92 42% 92 91
G1000d2U#2 800 200 213 152 12 5 11 15 11* 15 17
G1000d2U#3 800 200 137 150 17 25 36 33 23 29 28
G1000d2M#1 500 500 151 151 0 2 0 12 9 30 12
G1000d2M#2 500 500 296 315 1 7 0 21 27 25 21
G1000d2M+#3 500 500 208 183 63 59 45 55 76 79 50

Table 1: Wrongly Assigned points for k-means, MCLUST, MVE, and Sample MVE on Gaussian Data
with d = 2.
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Problem k-means | MCLUST | MVEH1 MVEH2 MVEH3 | Sample MVE
G100d2E#1 23.24 0.08 26.45 10.87 3.97 0.70
G100d2E#2 17.34 0.07 15.23 8.21 4.40 1.26
G100d2E#3 28.45 0.07 11.26 10.50 3.28 1.04
G100d2U#1 29.02 0.07 4.12 4.12 4.12 1.30
G100d2U#2 46.94 0.10 52.30 50.66 12.16 0.93
G100d2U#3 31.24 0.08 29.10 17.38 11.10 0.78
G100d2M#1 23.51 0.06 25.12 16.73 11.33 1.14
G100d2M#2 23.72 0.08 29.26 28.91 28.22 1.05
G100d2M#3 29.11 0.07 14.67 14.51 11.79 1.16
G500d2E#1 353.56 0.61 134.72 115.57 54.65 20.61
G500d2E#2 173.42 0.65 168.56 50.84 16.52 15.11
G500d2E#3 209.09 0.62 140.34 60.46 56.07 20.09
G500d2U#1 213.95 0.57 163.52 34.54 17.61 18.64
G500d2U#2 253.83 0.59 70.46 23.16 8.17 25.60
G500d2U#3 162.51 0.60 73.23 50.34 9.22 16.94
G500d2M#1 201.03 0.59 193.45 178.62 108.13 24.59
G500d2M#2 262.35 0.56 172.68 20.93 18.60 27.72
G500d2M#3 226.02 0.58 159.73 23.75 9.22 19.18
G1000d2E#1 671.39 2.62 495.16 206.77 106.15 127.89
G1000d2E#2 612.62 2.82 284.35 175.95 116.53 118.54
G1000d2E#3 545.46 2.64 253.34 110.53 41.74 113.93
G1000d2U+#1 430.33 2.49 129.63 124.25 68.60 154.19
G1000d2U+#2 658.26 2.73 360.34 123.51 54.90 171.43
G1000d2U+#3 1000.45 2.84 260.35 235.06 73.42 147.60
G1000d2M#1 861.53 2.36 693.63 321.52 305.09 124.88
G1000d2M#2 644.69 2.61 489.06 435.23 337.16 182.49
G1000d2M#3 655.99 2.55 524.03 262.43 223.66 129.80

Table 2: Running Times for k-means, MCLUST, MVE, and Sample MVE on Gaussian Data with d = 2.
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Problem o 2 k-.means M(.JLUST MVE Sar.nple MVE | True

Train Test | Train Test | Train Test | Train Test | Test
G5H00d5E#1 250 250 2 0 0 0 0 0 0
G500d5E#2 250 250 0 0 0 0 0 0 0* 0 0
G500d5E#3 250 250 1 0 0 0 0 0 0* 0 0
G500d5U#1 350 150 12 14 0 0 0 0 0* 0 0
G500d5U#2 350 150 74 40 0 0 0 0 0* 0 0
G500d5U#3 350 150 18 27 2 0 32 17 32%* 17 1
G500d5M#1 250 250 59 57 0 0 0 0 0* 0 0
G500d5M#2 250 250 14 11 0 0 0 0 2 0 0
G500d5M#3 250 250 14 18 1 0 40 16 17 20 14
G1000d5E#1 500 500 0 0 0 0 0 0 0 0 0
G1000d5E#2 500 500 0 0 0 0 0 0 0* 0 0
G1000d5E#3 500 500 55 59 8 13 27 12 27% 12 11
G1000d5U#1 800 200 20 33 0 2 0 2 0* 2 2
G1000d5U#2 800 200 67 108 20 26 22 32 20 32 37
G1000d5U#3 800 200 32 21 4 1 6 3 6* 3 1
G1000d5M#1 500 500 69 65 0 0 11 0 1 0 0
G1000d5M#2 500 500 89 98 0 0 14 9 14* 9 1
G1000d5M+#3 500 500 0 0 0 0 0 0 0* 0 0
G2000d5E#1 1000 1000 79 111 2 6 7 7 9 9 8
G2000d5E#2 1000 1000 16 36 0 1 5 1* 5 0
G2000d5E#3 1000 1000 195 314 7 8 4 8 4% 8 8
G2000d5U#1 600 1400 17 26 0 0 0 0 0* 0 0
G2000d5U#2 600 1400 63 75 0 0 17 13 17* 13 14
G2000d5U#3 600 1400 34 45 0 0 0 0 0* 0 0
G2000d5M+#1 1000 1000 33 78 0 0 0 0 0* 0 0
G2000d5M#2 1000 1000 377 345 0 1 2 1 2% 1 0
G2000d5M+#3 1000 1000 212 202 7 10 27 48 27% 48 43

Table 3: Wrongly Assigned points for k-means, MCLUST, MVE, and Sample MVE on Gaussian Data
with d = 5.
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Problem k-means | MCLUST | MVEH3 | Sample MVE
G5H00d5E#1 130.02 0.80 | 2016.94 265.29
G500d5E#2 105.24 0.69 216.91 866.30
G500d5E#3 115.51 0.78 | 3526.81 452.47
G500d5U#1 203.23 0.67 | 3931.80 444 .94
G500d5U#2 304.01 0.83 301.47 168.73
G500d5U#3 275.95 0.79 7200+ 1008.56
G500d5M#1 209.39 0.68 912.55 186.97
G500d5M#2 161.93 0.79 | 4845.53 204.09
G500d5M#3 178.52 0.69 7200+ 1264.77
G1000d5E#1 242.49 3.23 | 3693.77 795.75
G1000d5E#2 249.13 3.21 2716.56 880.27
G1000d5E#3 589.35 3.37 7200+ 1660.31
G1000d5U#1 1041.51 3.06 | 4374.86 692.39
G1000d5U+#2 2110.43 2.97 | 2042.68 1326.89
G1000d5U+#3 1244.91 3.10 7200+ 937.92
G1000d5M#1 473.94 2.94 1933.71 1012.65
G1000d5M#2 578.00 3.11 7200+ 1198.86
G1000d5M#3 284.31 2.90 235.87 885.13
G2000d5E#1 1636.10 16.08 7200+ 1996.61
G2000d5E#2 1643.15 15.28 7200+ 7200+
G2000d5E#3 2856.74 15.25 7200+ 2873.70
G2000d5U#1 1952.23 15.57 | 1539.37 1640.25
G2000d5U+#2 2195.20 16.18 7200+ 4084.89
G2000d5U#3 1583.60 15.28 7200+ 7200+
G2000d5M#1 1474.02 14.85 7200+ 2200.97
G2000d5M#2 2212.93 15.16 7200+ 5943.29
G2000d5M+#3 2312.11 14.78 7200+ 3811.58

Table 4: Running Times for k-means, MCLUST, MVE, and Sample MVE on Gaussian Data withd =5
and a time limit of 7200 CPU seconds .
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Problem n oy k-.rneans M(.ZLUST MVE Sar.nple MVE | True

Train Test | Train Test | Train Test | Train Test | Test
U100d24#1 31 69 23 30 27 30 0 0 0* 0 3
U100d2#2 47 53 4 3 1 10 9 6 22 14 3
U100d2#3 45 55 12 7 0 2 0 0 37 52 0
Ub500d2#1 287 213 77 74 0 0 0 0 3 1 8
Ub500d2#2 174 326 152 166 35 29 59 41 39 40 48
U500d2#3 175 325 145 135 8 0 0 0 5 2 7
U1000d2#41 300 700 306 323 259 261 244 248 256 267 200
U1000d2#2 409 591 35 21 28 42 9 13 15 17 10
U1000d2#3 423 577 151 142 1 1 0 0 1 1 30

Table 5: Wrongly Assigned points for k-means, MCLUST, MVE, and Sample MVE on Uniform Data
with d = 2.

Problem k-means | MCLUST | MVEH1 MVEH2 MVEH3 | Sample MVE
U100d2#1 20.23 0.09 12.42 7.24 7.40 1.43
U100d24#2 18.62 0.08 20.42 17.99 18.65 1.26
U100d24#3 28.24 0.09 20.51 18.23 16.10 0.87
U500d24#1 241.35 0.63 70.44 45.43 43.50 23.36
U500d2#2 232.68 0.60 120.24 90.15 86.03 18.71
U500d2#3 254.76 0.69 179.23 100.02 90.91 24.93
U1000d2#1 405.30 2.53 589.53 521.05 505.36 237.00
U1000d2#2 517.35 2.54 203.06 123.51 105.06 146.19
U1000d2#3 564.26 2.53 287.02 257.64 256.35 126.76

Table 6: Running Times for k-means, MCLUST, MVE, and Sample MVE on Uniform Data with d = 2.
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Problem o 2 k-.means M(.ELUST MVE Sar.nple MVE | True
Train Test | Train Test | Train Test | Train Test | Test
U500d5#1 238 262 30 39 0 0 0* 0
U500d5#2 184 316 0 0 0 0 0 0 0* 0 0
U500d5#3 217 283 170 166 0 0 0 0 0* 0 0
U1000d5#1 266 734 205 195 8 2 7 12 7* 12 2
U1000d5#2 537 463 30 27 0 0 0 0 0* 0 0
U1000d5#3 413 587 53 55 0 0 0 0 0* 0 0
U2000d5#1 441 1559 328 290 0 0 1 0 1* 0 0
U2000d5#2 1265 735 25 26 0 0 0 0 0* 0 0
U2000d5#3 1072 928 167 158 0 0 0 0 0* 0 0

Table 7: Wrongly Assigned points for k-means, MCLUST, MVE, and Sample MVE on Uniform Data
with d = 5.

Problem k-means | MCLUST | MVEH3 | Sample MVE
Ub500d5#1 150.54 0.80 72004 1041.92
U500d5#2 124.41 0.67 216.94 113.77
U500d5#3 304.97 0.82 638.19 199.59
U1000d5#1 374.46 3.46 7200+ 725.32
U1000d5#2 415.27 3.15 1768.85 344.08
U1000d5#3 400.76 3.18 1146.30 428.72
U2000d5#1 1671.37 15.77 | 3444.22 4383.29
U2000d5#2 1417.49 14.95 955.20 1763.69
U2000d5#3 2440.71 15.26 | 4407.05 3397.38

Table 8: Running Times for k-means, MCLUST, MVE, and Sample MVE on Uniform Data with d =5
and a time limit of 7200 CPU seconds .
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Problem nom k-.rneans M(.ZLUST MVE Sar.nple MVE | True

Train Test | Train Test | Train Test | Train Test | Test
A100d2#1 56 44 0 0 1 0 0 0 43 44 2
A100d2#2 57 43 0 1 10 9 0 1 6 9 3
A100d2#3 32 68 16 11 5 7 0 0 1 0 0
A500d2#1 352 148 6 1 2 13 0 0 147 156 1
A500d2#2 247 253 8 16 35 22 2 12 2 12 8
A500d2#3 245 255 3 5 0 1 0 0 0* 0 0
A1000d24#1 418 582 97 80 59 42 6 7 14 2 65
A1000d24#2 394 606 93 85 2 4 2 2 1 2 5
A1000d24#3 565 435 37 25 13 11 3 7 4 7 41

Table 9: Wrongly Assigned points for k-means, MCLUST, MVE, and Sample MVE on Asymmetric
Data with d = 2.

Problem k-means | MCLUST | MVEH1 MVEH2 MVEH3 | Sample MVE
A100d2#1 14.35 0.07 20.51 16.34 15.74 1.36
A100d2#2 24.03 0.19 20.32 19.02 19.86 1.26
A100d2#3 17.41 0.08 10.24 6.82 6.73 0.99
A500d2#1 184.30 0.60 80.35 60.25 52.54 36.63
AB500d2#2 127.35 0.60 79.02 59.30 57.16 23.83
AB500d2#3 92.26 0.55 60.35 35.33 29.99 31.16
A1000d2#1 490.21 2.38 125.23 93.52 90.63 134.20
A1000d2#2 432.62 2.89 143.63 40.35 36.65 129.34
A1000d2#3 352.22 2.66 241.53 80.36 78.09 142.86

Table 10: Running Times for k-means, MCLUST, MVE, and Sample MVE on Asymmetric Data with
d=2.
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Problem o 2 k-.means M(.ELUST MVE Sar.nple MVE | True
Train Test | Train Test | Train Test | Train Test | Test
AB500d5#1 390 110 4 5 0 0*
A500d5#2 234 266 3 0 0 0 0 0 0* 0 0
A500d5#3 312 188 0 0 0 0 0 0 0* 0 0
A1000d5#1 349 651 15 12 0 0 0 0 0* 0 0
A1000d5#2 530 470 1 0 0 0 0 0 0* 0 0
A1000d5#3 499 501 2 1 0 0 0 0 0* 0 0
A2000d5#1 662 1338 14 96 0 0 0 0 0* 0 0
A2000d54#2 657 1343 2 2 0 0 0 0 0* 0 0
A2000d5#3 1386 614 14 7 0 0 0 0 0* 0 0

Table 11: Wrongly Assigned points for k-means, MCLUST, MVE, and Sample MVE on Asymmetric

Data with d = 5.

Problem k-means | MCLUST | MVEH3 | Sample MVE
A500d5#1 157.40 0.79 162.83 115.31
A500d5#2 173.27 0.67 678.18 467.40
A500d5#3 124.41 0.76 442.89 119.93
A1000d5#1 487.98 3.25 7200+ 1377.69
A1000d54#2 298.23 3.07 1493.73 618.51
A1000d5#3 293.14 3.11 | 3039.47 639.40
A2000d5#1 1053.22 15.20 | 3340.94 6796.64
A2000d54#2 989.03 15.08 1821.74 1931.05
A2000d54#3 1429.52 15.31 7200+ 7200+

Table 12: Running Times for k-means, MCLUST, MVE, and Sample MVE on Asymmetric Data with

d = 5 and a time limit of 7200 CPU seconds.
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Problem I k-.means MVE Sar.nple MVE | True
Train Test | Train Test | Train Test | Test
G100d2E#1 50 50 10 5 3 2 2 6
G100d2E#2 50 50 14 12 14 5 4 4 3
G100d2E#3 50 50 20 21 0 0 0* 0 0
G100d2U#1 20 80 12 13 0 0 0* 0 0
G100d2U#2 20 80 3 0 1 0 0 0 0
G100d2U#3 20 80 33 26 1 1 15 8 1
G100d2M#1 50 50 9 2 0 2 8 2 2
G100d2M#2 50 50 13 12 5 11 43 50 12
G100d2M#3 50 50 11 9 12 7 4 2 7
G500d2E#1 250 250 40 33 3 12 2 11 11
G500d2E#2 250 250 70 55 0 0 0* 0 0
G500d2E#3 250 250 91 90 43 52 59 67 44
G500d2U#1 350 150 183 144 3 3 3 4 3
G500d2U#2 350 150 78 102 9 10 13 11 14
G500d2U#3 350 150 135 111 21 3 21% 3 5
G500d2M#1 250 250 121 115 132 135 109 129 60
G500d2M#2 250 250 69 61 33 18 9 15 19
G500d2M#3 250 250 94 91 0 2 0* 2 2
G1000d2E#1 500 500 47 48 33 40 35 46 42
G1000d2E#2 500 500 190 168 66 45 66* 45 32
G1000d2E#3 500 500 125 111 21 31 21% 31 29
G1000d2U#1 800 200 312 283 47 92 44 92 91
G1000d2U#2 800 200 213 152 13 15 13* 15 17
G1000d2U#3 800 200 142 177 35 33 23 29 28
G1000d2M#1 500 500 148 151 0 12 9 30 12
G1000d2M#2 500 500 265 262 0 21 27 25 21
G1000d2M+#3 500 500 206 180 56 55 76 79 50

Table 13: Wrongly Assigned points for k-means, MVE, and Sample MVE with Prior Central Information

on Gaussian Data with d = 2.
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Problem k-means | MVEH1 MVEH2 MVEH3 | Sample MVE
G100d2E#1 28.79 13.98 7.95 8.03 0.63
G100d2E#2 18.75 4.63 2.63 2.06 0.71
G100d2E#3 30.32 8.95 7.55 2.47 1.84
G100d2U#1 24.02 5.03 4.53 1.49 1.03
G100d2U#2 49.45 5.25 2.98 2.54 1.12
G100d2U#3 28.03 11.23 8.01 8.92 0.92
G100d2M#1 19.38 12.51 7.35 7.08 1.55
G100d2M#2 23.00 13.54 8.21 7.66 1.02
G100d2M#3 31.09 6.43 4.02 3.43 1.11
G500d2E+#1 174.59 33.25 26.34 25.15 19.42
G500d2E#2 177.88 53.42 39.25 17.58 17.35
G500d2E#3 182.25 23.11 16.83 14.07 18.04
G500d2U#1 243.51 58.35 52.53 17.41 18.60
G500d2U#2 250.58 72.42 35.44 10.09 19.29
G500d2U#3 148.26 23.52 14.99 11.82 18.30
G500d2M#1 197.63 40.23 28.52 25.03 22.74
G500d2M#2 206.53 34.66 12.53 11.95 18.10
G500d2M#3 203.73 18.60 9.21 8.00 17.30
G1000d2E#1 594.47 122.51 90.24 76.67 126.70
G1000d2E#2 599.27 110.24 105.23 63.45 117.05
G1000d2E#3 635.75 88.20 47.24 36.81 108.19
G1000d2U+#1 467.84 80.23 74.05 63.17 145.12
G1000d2U+#2 686.26 126.43 81.24 51.18 167.08
G1000d2U+#3 1156.50 73.00 72.31 59.54 140.58
G1000d2M#1 598.03 123.51 90.42 88.48 126.46
G1000d2M#2 647.20 172.09 151.25 127.15 182.30
G1000d2M#3 613.06 142.12 81.15 80.86 128.91

Table 14: Running Times for k-means, MVE, and Sample MVE with Prior Central Information on
Gaussian Data with d = 2.
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Problem o 2 k-.means MVE Sar.nple MVE | True
Train Test | Train Test | Train Test | Test
G5H00d5E#1 250 250 3 5 0 0 0 0
G5H00d5E#2 250 250 0 0 0 0 0* 0 0
G500d5E#3 250 250 1 0 0 0 0 0 0
G500d5U#1 350 150 12 14 0 0 0* 0 0
G500d5U#2 350 150 75 40 0 0 0* 0 0
G500d5U#3 350 150 19 28 9 5 9* 5 1
G500d5M#1 250 250 52 58 0 0 0* 0 0
G500d5M#2 250 250 13 12 0 0 2 0 0
G500d5M#3 250 250 12 13 18 18 18* 18 14
G1000d5E#1 500 500 0 0 0 0 0* 0 0
G1000d5E#2 500 500 0 0 0 0 0* 0 0
G1000d5E#3 500 500 56 59 32 12 27 12 11
G1000d5U#1 800 200 23 31 0 2 0* 2 2
G1000d5U#2 800 200 68 100 22 32 21 32 37
G1000d5U#3 800 200 30 16 5 3 5* 3 1
G1000d5M#1 500 500 63 59 1 0 1* 0 0
G1000d5M#2 500 500 87 94 9 7 9* 7 1
G1000d5M+#3 500 500 0 0 0 0 0* 0 0
G2000d5E#1 1000 1000 79 111 9 9 9* 9 8
G2000d5E#2 1000 1000 18 36 0 0 0* 0 0
G2000d5E#3 1000 1000 193 314 4 8 4% 8 8
G2000d5U#1 600 1400 18 26 0 0 0* 0 0
G2000d5U#2 600 1400 63 75 17 13 17* 13 14
G2000d5U#3 600 1400 34 45 0 0 0* 0 0
G2000d5M+#1 1000 1000 32 64 0 0 0* 0 0
G2000d5M+#2 1000 1000 371 345 0 0 2 1 0
G2000d5M+#3 1000 1000 212 202 27 48 27* 48 43

Table 15: Wrongly Assigned points for k-means, MVE, and Sample MVE with Prior Central Information

on Gaussian Data with d = 5.



CLUSTERING VIA MINIMUM VOLUME ELLIPSOIDS 47

Problem k-means | MVEH3 | Sample MVE
G5H00d5E#1 119.21 540.91 229.51
G500d5E#2 96.05 49.96 461.39
G500d5E#3 108.43 616.88 169.07
G500d5U#1 196.16 590.19 262.78
G500d5U#2 387.67 56.02 233.65
G500d5U#3 231.31 7200+ 428.63
G500d5M#1 195.64 138.17 128.90
G500d5M#2 182.01 818.09 254.36
G500d5M#3 174.23 72004 414.44
G1000d5E#1 244.05 | 2896.82 420.86
G1000d5E#2 278.22 926.84 1136.11
G1000d5E#3 602.06 | 7196.06 907.48
G1000d5U#1 1027.34 | 1786.53 488.54
G1000d5U+#2 1388.24 422.51 525.43
G1000d5U+#3 989.76 1996.61 676.19
G1000d5M#1 648.88 704.71 502.33
G1000d5M#2 567.37 7200+ 1031.73
G1000d5M#3 284.05 209.45 877.61
G2000d5E#1 1687.66 7200+ 1719.37
G2000d5E#2 1700.57 | 4247.95 4022.41
G2000d5E#3 2857.37 | 1540.36 4002.55
G2000d5U#1 1771.05 710.09 4319.08
G2000d5U+#2 2056.74 7200+ 2690.88
G2000d5U#3 1747.27 | 6510.16 5263.69
G2000d5M#1 1289.46 7200+ 1893.24
G2000d5M#2 1925.27 | 5242.83 4911.93
G2000d5M#3 2408.14 72004 2288.71

Table 16: Running Times for k-means, MVE, and Sample MVE with Prior Central Information on

Gaussian Data with d = 5 and a time limit of 7200 CPU seconds .
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Problem I k-.means MVE Sar.nple MVE | True
Train Test | Train Test | Train Test | Test
G100d2E#1 50 50 12 6 0 3 2 6
G100d2E#2 50 50 14 12 4 6 4* 4 3
G100d2E#3 50 50 16 9 0 0 0* 0 0
G100d2U#1 20 80 6 11 0 0 0* 0 0
G100d2U#2 20 80 4 5 1 0 0 0 0
G100d2U#3 20 80 28 22 1 1 9 3 1
G100d2M#1 50 50 9 2 9 2 9* 2 2
G100d2M#2 50 50 13 12 46 47 46* 49 12
G100d2M#3 50 50 8 7 4 2 4* 2 7
G500d2E#1 250 250 62 35 3 12 2 11 11
G500d2E#2 250 250 71 60 0 0 0* 0 0
G500d2E#3 250 250 94 92 77 52 62 69 44
G500d2U#1 350 150 183 81 4 3 3 4 3
G500d2U#2 350 150 79 102 5 10 13 11 14
G500d2U#3 350 150 141 119 17 3 17* 3 5
G500d2M#1 250 250 121 113 109 129 | 109* 129 60
G500d2M#2 250 250 69 61 34 18 9 15 19
G500d2M#3 250 250 94 91 0 2 0* 2 2
G1000d2E#1 500 500 47 48 27 40 35 46 42
G1000d2E#2 500 500 194 168 66 45 66* 45 32
G1000d2E#3 500 500 123 109 20 31 20%* 31 29
G1000d2U#1 800 200 316 291 41 91 41%* 92 91
G1000d2U#2 800 200 220 167 13 15 13* 15 17
G1000d2U#3 800 200 143 177 23 33 23 29 28
G1000d2M#1 500 500 149 151 0 12 9 30 12
G1000d2M#2 500 500 265 226 0 21 55 42 21
G1000d2M+#3 500 500 206 180 45 55 76 79 50

Table 17: Wrongly assigned points for k-means, MVE, and Sample MVE with Prior Extreme Information

on Gaussian Data with d = 2.
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Problem k-means | MVEH1 MVEH2 MVEH3 | Sample MVE
G100d2E#1 30.21 11.42 7.07 6.12 1.01
G100d2E#2 17.62 4.22 2.04 1.73 0.67
G100d2E#3 26.52 4.92 5.91 0.95 0.88
G100d2U#1 41.73 8.91 8.24 4.09 1.47
G100d2U#2 42.63 8.51 4.92 4.11 1.09
G100d2U#3 36.04 9.42 7.25 3.92 0.92
G100d2M#1 25.42 12.12 8.41 3.65 1.59
G100d2M#2 21.36 6.12 5.23 4.61 1.01
G100d2M#3 27.75 5.24 2.31 1.47 0.63
G500d2E#1 14.78 30.14 23.51 22.95 17.18
G500d2E#2 243.04 100.42 44.25 11.82 16.42
G500d2E#3 243.39 16.31 12.01 11.89 18.86
G500d2U#1 281.07 107.99 30.51 9.70 23.98
G500d2U#2 222.42 85.93 33.62 14.46 29.60
G500d2U#3 225.00 185.34 65.35 11.19 23.21
G500d2M#1 203.34 95.35 32.51 16.44 23.90
G500d2M#2 226.62 87.02 42.52 12.32 22.02
G500d2M#3 308.20 30.25 10.25 9.14 22.21
G1000d2E#1 714.34 169.35 120.52 111.65 137.95
G1000d2E#2 742.61 120.24 105.23 85.17 122.38
G1000d2E#3 469.10 315.23 172.24 73.76 119.74
G1000d2U+#1 450.66 72.35 40.24 47.47 144.50
G1000d2U+#2 689.35 320.41 162.34 74.04 173.82
G1000d2U+#3 855.29 50.36 47.34 42.83 138.57
G1000d2M#1 740.11 185.23 139.35 130.37 134.94
G1000d2M#2 665.15 223.41 200.14 183.53 190.41
G1000d2M#3 582.02 231.53 160.42 156.00 143.37

Table 18: Running Times for k-means, MVE, and Sample MVE with Prior Extreme Information on
Gaussian Data with d = 2.
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Problem o 2 k-.means MVE Sar.nple MVE | True
Train Test | Train Test | Train Test | Test
G5H00d5E#1 250 250 3 6 0 0 0*
G5H00d5E#2 250 250 0 0 0 0 0* 0 0
G500d5E#3 250 250 1 0 0 0 0* 0 0
G500d5U#1 350 150 12 11 0 0 0* 0 0
G500d5U#2 350 150 80 35 0 0 0* 0 0
G500d5U#3 350 150 19 23 6 2 7 3 1
G500d5M#1 250 250 51 53 0 0 0* 0 0
G500d5M#2 250 250 13 10 0 0 2 0 0
G500d5M#3 250 250 11 9 17 14 23 23 14
G1000d5E#1 500 500 0 0 0 0 0* 0 0
G1000d5E#2 500 500 0 0 0 0 0* 0 0
G1000d5E#3 500 500 58 57 18 12 18* 12 11
G1000d5U#1 800 200 23 30 0 3 0* 2 2
G1000d5U#2 800 200 281 219 19 34 19* 32 37
G1000d5U#3 800 200 29 13 5 2 5* 3 1
G1000d5M#1 500 500 63 57 3 0 3* 0 0
G1000d5M#2 500 500 89 97 0 1 0* 1 1
G1000d5M+#3 500 500 0 0 0 0 0* 0 0
G2000d5E#1 1000 1000 80 108 9 9 9* 9 8
G2000d5E#2 1000 1000 19 42 0 0 0* 0 0
G2000d5E#3 1000 1000 185 265 4 8 4% 8 8
G2000d5U#1 600 1400 18 38 0 0 0* 0 0
G2000d5U#2 600 1400 63 90 76 17 20 13 14
G2000d5U#3 600 1400 34 45 0 0 0* 0 0
G2000d5M+#1 1000 1000 32 63 0 0 0* 0 0
G2000d5M+#2 1000 1000 371 343 0 0 0* 0 0
G2000d5M+#3 1000 1000 212 198 41 50 41%* 51 43

Table 19: Wrongly Assigned points for k-means, MVE, and Sample MVE with Prior Extreme Informa-

tion on Gaussian Data with d = 5.
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Problem k-means | MVEH3 | Sample MVE
G500d5E#1 1.17 127.14 189.89
G500d5E#2 0.97 34.64 187.41
G500d5E#3 1.31 43.41 70.44
G500d5U#1 1.98 15.77 83.71
G500d5U#2 2.83 23.27 174.25
G500d5U#3 2.80 1736.35 206.78
G500d5M#1 1.97 74.96 104.82
G500d5M#2 1.84 534.16 119.06
G500d5M#3 1.50 | 2601.89 117.66
G1000d5E#1 2.70 528.38 672.17
G1000d5E#2 2.62 66.57 243.53
G1000d5E#3 6.10 350.00 310.12
G1000d5U#1 9.46 65.70 230.82
G1000d5U+#2 17.41 103.65 364.83
G1000d5U+#3 15.44 119.96 447.70
G1000d5M#1 5.75 121.96 311.45
G1000d5M#2 4.84 7200+ 854.41
G1000d5M#3 2.92 91.00 403.12
G2000d5E#1 16.51 1902.89 1848.15
G2000d5E#2 18.66 | 2621.15 1807.88
G2000d5E#3 24.74 505.32 2077.00
G2000d5U#1 17.25 482.20 2186.56
G2000d5U+#2 19.31 919.70 1638.89
G2000d5U#3 17.67 1964.28 2592.33
G2000d5M#1 13.90 | 3736.61 1401.29
G2000d5M#2 15.87 1078.74 4935.82
G2000d5M#3 27.48 | 2269.00 1287.78

Table 20: Running Times for k-means, MVE, and Sample MVE with Prior Extreme Infromation on
Gaussian Data with d = 5 and a time limit of 7200 CPU seconds .
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Problem I k-.means MVE Sar.nple MVE | True

Train Test | Train Test | Train Test | Test
U100d24#1 31 69 19 19 0 0 0* 0 3
U100d24#2 47 53 8 11 10 8 5 3 3
U100d2#3 45 55 12 7 0 0 1 1 0
U500d2#1 287 213 77 74 0 0 3 1 8
Ubs00d2#2 174 326 150 166 55 41 40 40 48
Ub500d2#3 175 325 143 135 0 0 5 2 7
U1000d2#41 300 700 306 323 167 203 211 227 200
U1000d2#2 409 591 34 21 8 13 15 17 10
U1000d2#3 423 577 150 142 0 0 1 1 30

Table 21: Wrongly Assigned points for k-means, MVE, and Sample MVE with Prior Central Information

on Uniform Data with d = 2.

Problem k-means | MVEH1 MVEH2 MVEH3 | Sample MVE
U100d2#1 20.46 3.42 3.24 3.03 0.84
U100d2#2 28.24 6.03 4.62 4.11 0.74
U100d2#3 26.74 5.53 5.00 4.77 1.05
U500d2#1 223.55 103.40 56.30 53.93 21.88
U500d2#2 230.64 20.24 15.32 12.50 18.69
U500d2#3 230.58 94.53 70.34 64.87 21.66
U1000d2#41 429.64 213.42 163.63 142.32 184.66
U1000d24#2 558.04 450.52 230.23 212.18 132.65
U1000d24#3 571.96 252.35 120.53 107.36 127.93

Table 22: Running Times for k-means, MVE, and Sample MVE with Prior Central Information on
Uniform Data with d = 2.
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Problem n m k-.means MVE Sar.nple MVE | True

Train Test | Train Test | Train Test | Test
U100d24#1 31 69 20 19 0 0 0* 0 3
U100d24#2 47 53 10 15 9 6 6 5 3
U100d2#3 45 55 19 8 0 0 36 40 0
U500d2#1 287 213 77 74 0 0 0* 0 8
Ubs00d2#2 174 326 150 166 59 41 42 40 48
Ub500d2#3 175 325 143 135 0 0 5 2 7
U1000d2#41 300 700 306 323 256 267 | 256* 267 200
U1000d2#2 409 591 29 21 8 13 8* 13 10
U1000d2#3 423 577 151 142 0 0 1 1 30

Table 23: Wrongly assigned points for k-means, MVE, and Sample MVE with Prior Extreme Information

on Uniform Data with d = 2.

Problem k-means | MVEH1 MVEH2 MVEH3 | Sample MVE
U100d2#1 19.15 12.42 7.90 8.72 1.15
U100d2#2 26.20 12.41 9.02 8.96 1.01
U100d2#3 26.39 15.43 8.01 7.94 1.22
U500d2#1 159.76 70.52 50.25 45.82 22.76
U500d2#2 224.57 34.52 16.34 14.35 17.58
U500d2#3 257.62 142.08 70.51 64.53 25.92
U1000d2#41 414.45 300.25 232.51 211.87 239.43
U1000d242 702.26 210.12 124.13 98.92 133.27
U1000d24#3 636.74 260.53 260.25 228.30 121.52

Table 24: Running Times for k-means, MVE, and Sample MVE with Prior Extreme Information on
Uniform Data with d = 2.
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Problem o 2 k-.rneans MVE Sar.nple MVE | True
Train Test | Train Test | Train Test | Test
Ub500d5#1 238 262 28 39 0 0 0* 0
U500d5#2 184 316 0 0 0 0 0* 0 0
U500d5#3 217 283 160 168 0 0 0* 0 0
U1000d5#1 266 734 204 195 7 12 * 12 2
U1000d5#2 537 463 29 27 0 0 0* 0 0
U1000d5#3 413 587 52 55 0 0 0* 0 0
U2000d5#1 441 1559 328 290 1 0 1* 0 0
U2000d5#2 1265 735 24 26 0 0 0* 0 0
U2000d5#3 1072 928 167 158 0 0 0* 0 0

Table 25: Wrongly Assigned points for k-means, MVE, and Sample MVE with Prior Central Information

on Uniform Data with d = 5.

Problem k-means | MVEH3 | Sample MVE
Ub500d5#1 164.60 | 2240.16 1363.19
U500d5#2 130.07 | 2106.00 352.69
U500d5#3 239.84 847.78 221.75
U1000d54#1 398.98 | 2546.12 1153.35
U1000d54#2 457.43 7200+ 1003.97
U1000d54#3 434.76 1688.09 1171.74
U2000d54#1 1476.44 7200+ 3844.33
U2000d54#2 1465.73 7200+ 5629.75
U2000d54#3 2482.04 | 3139.16 2264.27

Table 26: Running Times for k-means, MVE, and Sample MVE with Prior Central Information on
Uniform Data with d = 5 and a time limit of 7200 CPU seconds.
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Problem o 2 k-.rneans MVE Sar.nple MVE | True
Train Test | Train Test | Train Test | Test
Ub500d5#1 238 262 25 36 0 0 0* 0
U500d5#2 184 316 0 0 0 0 0* 0 0
U500d5#3 217 283 161 159 0 0 0* 0 0
U1000d5#1 266 734 202 115 8 10 8* 12 2
U1000d5#2 537 463 26 19 0 0 0* 0 0
U1000d5#3 413 587 52 52 0 0 0* 0 0
U2000d5#1 441 1559 327 283 0 0 0* 0 0
U2000d5#2 1265 735 25 24 0 0 0* 0 0
U2000d5#3 1072 928 167 165 2 0 2% 0 0

Table 27: Wrongly assigned points for k-means, MVE, and Sample MVE with Prior Extreme Information

on Uniform Data with d = 5.

Problem k-means | MVEH3 | Sample MVE
Ub500d5#1 154.37 187.65 118.55
U500d5#2 115.76 15.29 46.42
U500d5#3 326.04 12.91 53.48
U1000d54#1 453.00 82.48 257.41
U1000d54#2 535.66 147.33 325.88
U1000d54#3 476.98 106.38 481.87
U2000d54#1 1656.37 619.75 2511.85
U2000d5#2 1425.49 422.39 1995.81
U2000d54#3 2823.05 509.16 2033.69

Table 28: Running Times for k-means, MVE, and Sample MVE with Prior Extreme Information on
Uniform Data with d = 5 and a time limit of 7200 CPU seconds.
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Problem I k-'means MVE Sar.nple MVE | True

Train Test | Train Test | Train Test | Test
A100d2#1 56 44 0 0 0 0 6 17 2
A100d2#2 57 43 1 0 0 1 7 12 3
A100d2#3 32 68 15 11 0 0 1 0 0
A500d2#1 352 148 6 1 0 0 1 2 1
A500d2#2 247 253 7 14 2 12 2 12 8
A500d2#3 245 255 3 5 0 0 0* 0 0
A1000d2#41 418 582 97 80 6 7 14 2 65
A1000d24#2 394 606 91 80 2 2 1 2 5
A1000d24#3 565 435 37 25 3 7 4 7 41

Table 29: Wrongly Assigned points for k-means, MVE, and Sample MVE with Prior Central Information

on Asymmetric Data with d = 2.

Problem k-means | MVEH1 MVEH2 MVEH3 | Sample MVE
A100d2#1 13.66 7.34 5.93 5.34 0.93
A100d2#2 16.23 11.24 9.02 9.09 0.81
A100d2#3 20.04 10.53 9.15 9.03 1.23
A500d2#1 181.35 22.25 18.30 16.55 21.69
A500d2#2 123.42 50.25 36.02 30.07 22.72
AB500d2#3 85.61 62.63 30.64 27.78 25.68
A1000d2#1 404.03 129.09 93.64 80.87 138.51
A1000d24#2 560.59 73.53 50.26 43.98 122.70
A1000d243 345.72 120.42 65.30 36.71 135.79

Table 30: Running Times for k-means, MVE, and Sample MVE with Prior Central Information on

Asymmetric Data with d = 2.
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Problem I k-'means MVE Sar.nple MVE | True

Train Test | Train Test | Train Test | Test
A100d2#1 56 44 0 0 1 3 4 7 2
A100d2#2 57 43 13 9 0 0 7 12 3
A100d2#3 32 68 15 11 0 0 1 0 0
A500d2#1 352 148 9 2 0 0 2 6 1
A500d2#2 247 253 7 14 1 12 2 12 8
A500d2#3 245 255 3 6 0 0 0* 0 0
A1000d2#41 418 582 95 80 11 7 14 2 65
A1000d24#2 394 606 91 81 1 2 1* 2 5
A1000d24#3 565 435 42 28 4 7 7 8 41

Table 31: Wrongly assigned points for k-means, MVE, and Sample MVE with Prior Extreme Information

on Asymmetric Data with d = 2.

Problem k-means | MVEH1 MVEH2 MVEH3 | Sample MVE
A100d2#1 14.77 2.31 1.25 1.13 0.85
A100d2#2 22.57 12.42 9.87 9.58 1.51
A100d2#3 16.32 4.32 2.98 2.69 1.06
A500d2#1 159.03 20.09 10.53 10.00 22.04
A500d2#2 131.62 31.24 20.01 19.07 23.77
A500d2#3 92.25 21.41 20.59 16.09 31.12
A1000d2#1 391.85 178.25 121.42 112.78 135.44
A1000d24#2 503.04 60.34 31.52 29.38 122.30
A1000d24#3 424.63 79.36 50.34 34.56 144.54

Table 32: Running Times for k-means, MVE, and Sample MVE with Prior Extreme Information on

Asymmetric Data with d = 2.
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Problem o - k-.rneans MVE Sar‘nple MVE | True

Train Test | Train Test | Train Test | Test
A500d5#1 390 110 3 3 0 0 0* 0 0
A500d5#2 234 266 2 1 0 0 0* 0 0
A500d5#3 312 188 0 0 0 0 0* 0 0
A1000d5#1 349 651 15 12 0 0 0* 0 0
A1000d5#2 530 470 1 0 0 0 0* 0 0
A1000d5#3 499 501 2 1 0 0 0* 0 0
A2000d5#1 662 1338 13 95 0 0 0* 0 0
A2000d5#2 657 1343 2 2 0 0 0* 0 0
A2000d5#3 1386 614 13 7 0 0 0* 0 0

Table 33: Wrongly Assigned points for k-means, MVE, and Sample MVE with Prior Central Information

on Asymmetric Data with d = 5.

Problem k-means | MVEH3 | Sample MVE
A500d5#1 142.99 168.84 288.53
A500d5#2 140.10 1610.66 471.95
AB500d5#3 109.02 1488.79 216.28
A1000d5#1 442 .46 1979.69 1209.55
A1000d54#2 287.50 | 3280.37 417.90
A1000d54#3 297.42 1391.85 1313.92
A2000d54#1 1209.70 | 4560.19 2912.55
A2000d54#2 960.05 | 4635.59 3214.10
A2000d54#3 1255.17 7200+ 6316.71

Table 34: Running Times for k-means, MVE, and Sample MVE with Prior Central Information on
Asymmetric Data with d = 5 and a time limit of 7200 CPU seconds.
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Problem o - k-.rneans MVE Sar‘nple MVE | True

Train Test | Train Test | Train Test | Test
A500d5#1 390 110 3 0 0 0 0* 0 0
A500d5#2 234 266 2 1 0 0 0* 0 0
A500d5#3 312 188 0 0 0 0 0* 0 0
A1000d5#1 349 651 13 13 0 0 0* 0 0
A1000d5#2 530 470 1 0 0 0 0* 0 0
A1000d5#3 499 501 2 1 0 0 0* 0 0
A2000d5#1 662 1338 13 87 0 0 0* 0 0
A2000d5#2 657 1343 2 1 0 0 0* 0 0
A2000d5#3 1386 614 14 6 0 0 0* 0 0

Table 35: Wrongly assigned points for k-means, MVE, and Sample MVE with Prior Extreme Information

on Asymmetric Data with d = 5.

Problem k-means | MVEH3 | Sample MVE
A500d5#1 150.00 11.90 46.44
A500d5#2 159.81 33.03 206.72
A500d5#3 111.64 10.34 40.59
A1000d5#1 429.34 71.91 633.97
A1000d5#2 291.54 59.23 252.04
A1000d54#3 292.67 140.37 418.20
A2000d5#1 1214.17 526.26 2102.47
A2000d5#2 945.15 412.32 1639.48
A2000d54#3 1249.35 | 5127.23 2664.12

Table 36: Running Times for k-means, MVE, and Sample MVE with Prior Extreme Information on
Asymmetric Data with d = 5 and a time limit of 7200 CPU seconds.
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A Estimating R

Let aq,@aq,...,a44+1 be affinely independent such that all these points belong to the same cluster, wlog,

1. Hence they all lie in the ellipsoid defined by (M, z1). We have

Lemma A.1 Suppose a; € R? lies in the ellipsoid defined by (M1, z,). Then

21l = 1 < [[Mhaif| < lz]] + 1.

Proof. Since a; lies in the ellipsoid defined by (M7, z1), we have the following string of implications:

(Mld,' — Zl)T (Mld, — 21) g 1 <~ dZTM%dZ - QZ?Mldl' + Z?Zl -1 S 0

= [IMaail|® - 2 [z [ Maail| + [z]* ~ 1 < 0.

Now, treating the last expression as a quadratic function of ||Ma;||, we obtain that the following

bounds are implied (for every i € {1,2,...,d+ 1}):

21l = 1 < [[Mhaif| < |z + 1.

We can use this trivial lemma to get some rough bounds on R. For every ellipsoid (M, z;), we have
such set of @;. Suppose a, = Zflill A;a;, for e’ X = 1. That is, a, is expressed as an affine combination
of a1,aq,...,a4+1. We can do this for every r, since the affine combinations of a1, as,...,as41 span

the whole space R%. Then

2

d+1 d+1
(Mja, — z;)" (Mja, —z;) < > Ni(Mjai)|| +2) [\llIMjail| ||z + |21
=1 =1
d+1
< ST IMa [ Mad +2 3 [l Masl[125]] + 11211
il i=1
d+1
< S Pad Uzl + D2+ 23 Il (517 + 1231 + 12511
il i=1
< L@+ 1) (23] + 1) Amax + [1231012,

where Apay == max {|\;| 17 € {1,2,...,d+ 1}}.
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