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ABSTRACT. A pair of squared, 1 matricesA, B such thatAB” = E + kI (whereFE is the

n x n matrix of all 1s andk is a positive integer) are callddehman matrices These matrices
figure prominently in Lehman’s seminal theorem on minimalbnideal matrices. There are two
choices ofk for which this matrix equation is known to have infinite faied of solutions. When

n = k?>+k+1andA = B, we get point-line incidence matrices of finite projectivares, which
have been widely studied in the literature. The other casarsavhenk = 1 andn is arbitrary,
but very little is known in this case. This paper studies théss of Lehman matrices and classifies

them according to their similarity to circulant matrices.
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1. INTRODUCTION

Let M, (K) denote the set of x n matrices with elements i, and letB denote the s€f0, 1}.
We say that matriced, B € M, (B) form a pair ofLehman matriced there exists a positive

integerk such that
(1) ABT = E + kI

where £/ denotes thex x n matrix of all 1s, and is the identity matrix. Matrix3 is called the
dual of matrix A. Note thatA is the dual ofB (indeedAB” = E + kI impliesBAT = E + kI
sinceE' + k1 is symmetric). Bridges and Ryser [1] showed that every Lehmatrix isr-regular

for some integer > 2, i.e. it has the same numbeof 1s in each row and column, see Section 2.
If the dual of A is A itself (i.e. AAT = E + kI) then A is the point-line incidence matrix of a
nondegenerate finite projective plamewidely studied topic [7]. Other infinite classes of Lehman
matrices occur wheh = 1 but very little is known in this case. The main purpose of ffaper

is to initiate a study of these matrices.

We say thatd isthinwhenk = 1 in equation (1) andatwhenk > 1 (this terminology refers to
the volume of the simplex defined by the column vectorslpfee Section 6.2). Nondegenerate
finite projective planes withh > 7 points give rise to fat Lehman matrices. Before presenting
examples of thin Lehman matrices, we introduce some natatio

Givenindiceg,t € [n| (where[n| = {1,...,n}), a(t,t')-intervalis the set of indices visited
following the cyclical ordering, starting fromand ending at’. We denote this interval bly, ¢'].

Its sizeist’ — t + 1 whent’ > ¢t andt’ — ¢t + n + 1 whent’ < t. Similarly, we denote the set
{0,1,...,m} by [0,m]. Giveni € [0,n — 1], we say that intervalt + i, + ] is ani-shift of
interval [t, ']. More generally, theé-shift of vector (v, ..., v,) is the vectouy, . .., u,) where
Ui = v; if j+4 <nandu;y;—, = v; if 74+ > n+ 1. Vectoru is ashift of vectorw if there

existsi € [0, n — 1] such that. is ani-shift of v.
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1.1. Examples. A matrix X € M, (B) is circulantif for all i € [n — 1], row 1 + ¢ is ani-shift

of row 1. Consider integers, s,n such thatr,s > 2 andrs = n + 1. We define matrices
Cr,D? € M,(B) as follows:C;* and D? are the circulant matrices with rowcorresponding to

[r]and{1,r,2r,..., (s — 1)r} respectively. Note that” D"’ = £ + I. Hence,

Remark 1.1. For all integers,, s, n such that, s > 2,rs = n+1, C* andD? form a pair of thin

Lehman matrices.

Two matricesX, Y areisomorphidf Y can be obtained fromX by permuting the columns and
the rows ofX. If a matrix A is isomorphic to a Lehman matrix, thehis also a Lehman matrix
(to see this, perform the same permutations on the dual asehabthat (1) still holds).

2-regular Lehman matrices are perfectly understood: Theyisamorphic toC} for n odd
(they are sometimes calledid hole$.

Luetolf and Margot [11] enumerated all nonisomorphic Lehmaatrices forn < 11. For
example, they found exactly two nonisomorphic Lehman roesriforn = 8 (to help visualize

0,1 matrices we do not write down the 0s):

f101 1 . 111 .

111 111

11 1 111

. 11 1 11 1
Cs 111 and 111
111 111
1 11 1 11
11 1] 11 1]

Note that the second matrix is obtained frathby adding &), +1 matrix of rank 1. The main
theme of this paper is that this is not a coincidence: thinnh&h matrices are either circulant
matricesC" or “similar” to them. We make this more precise below. Defimelévelof a thinr-
regularn xn Lehman matrix4 to be the minimum rank of’—C" over all matricesd’ isomorphic

to A. For example, the circulant matricé§' have level 0 and the second Lehman matrix with
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n = 8 above has level 1. To demonstrate that the notion of levehtsral in the study of thin

Lehman matrices, we appeal to information complexity (&lsmvn as Kolmogorov complexity).

1.2. Results. A parametelis anya € [n]. We say that am x n matrix A can bedescribed with
k parametersP = {p,...,px} if there exists an algorithm that, givén, constructs a matrix
isomorphic toA (note that there is no complexity restriction on the aldon}. We prove the

following theorem in Section 3.

Theorem 1.2.1f A is a thinn x n Lehman matrix of level, thenA can be described witt (#*)

parameters.

Thus thin Lehman matrices with constant level can be desdnfith a constant number of
parameters, whereas one may requilfe) parameters to describefat+1 matrix of constant
rank. This means that thin Lehman matrices with constarl lake similar toC} in terms of
information complexity.

In Section 4, we give a complete characterization of leve tiin Lehman matrices, using
only six parameters. This infinite class of Lehman matrisesew.

In Section 5, we prove the existence of thin Lehman matri¢estotrarily high level and we
give some constructions. In Section 6, we briefly discustdéfitman matrices and in Section 7

we state open problems and present some concluding remarks.

1.3. Motivation. Lehman matrices are key to understandingsitecovering problemin{c’z :
Mz > e,, © € B"}, a fundamental problem in combinatorial optimization éeis a given
vector inR", e, is them-vector all of whose components are 1, avids a givenm x n matrix
with entries equal to 0 or 17 is the vector of unknowns). A basic question is the following
when can the set covering problem be solved by linear progiagf This can be done for every

objective functiorn: exactly when theset covering polytop® := {x € R" : Mz > ¢, 0 <
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x < e,}isintegral i.e. all its extreme points have only 0,1 components. Whendccurs, the
matrix M is said to badeal.

If P is an integral polytope, then for glle [n] andf € B, so are its face®” := PN{z; = (}.
Let P” be the restriction of”’ to variables distinctfrom;, i.e. P” = {(x1,..., 21,241, .., Ty) :
(x1,...,2,) € P'}. It can readily be checked th&” is a set covering polytope as well, i.e.
Pl={x e R : Mz >e,n, 0<a <e, }forsome0,1 matrix M’. We say that
M’ is aminor of M. Thus if a matrix is ideal then so are all its minors.0Al matrix is min-
imally nonidealif it is not ideal but all its minors are. Thus i¥/ is minimally nonideal then
P={xeR": Mx >e, 0<uz<e,}isnotan integral polytope but all the polytopes
obtained fromP by fixing a variabler; to O or to 1 are.

An example of a minimally nonideal matrix is the point-limeidence matrix of @egenerate
finite projective plang¢one line containg — 1 pointsvy, ..., v,_1, and the remaining — 1 lines
contain exactly two points;, v,, for j = 1,...,n — 1). Define thecore of a minimally nonideal
matrix M to be the submatrix induced by those rows for which the inkigg Mz > e,, hold
as equality at a fractional extreme pointof P. Lehman [8] gave the following property of
minimally nonideal matrices: Ifi/ is a minimally nonideal matrix, then either it is the point-
line incidence matrix of a degenerate finite projective plan it has a unique core which is a
Lehman matrix. A complete characterization of minimallyniteal matrices or of their cores
seems extremely difficult. A step towards a better undedstgrof these matrices is to study the
Lehman equation (1). This is the purpose of this paper.

A 0,1 matrix M is Mengerianif for every nonnegative integral vectorthe linear program
min{c’x : Mz > e,, 0 < z < e,} and its dual both have integral solutions. Many clas-
sical minimax theorems are associated with an underlyinggdaan matrix [3]. If a matrix is
Mengerian then so are all its minors.0A1 matrix isminimally non-Mengeriaiif it is not Men-

gerian but all its minors are. Clearly, M is Mengerian then it is ideal. It follows that minimally
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non-Mengerian matrices are either minimally nonideal eaidIn [4] it is shown that if a matrix
is minimally non-Mengerian and minimally nonideal, thes @ore must be thin. Hence, thin
Lehman matrices are important in understanding minimaily-NMengerian matrices.

Finally, note the analogy between equation (1) and the @quatB” = E — [ that arises in
the study of perfect graphs: Lovasz [10] showed that mitliniperfect graphs satisfl B =
E — I whereA (B respectively) is the maximum clique (maximum stable sgieetvely) versus
vertex incidence matrix. Graphs that satisfy this matrixaopn are callegbartitionable graphs
and they were studied in the 1970s and following decades.

We will drop the subscript or superscriptfrom C*, D?, e,, etc. when the dimension is clear

from the context.

2. PRELIMINARIES

A classical result about the solutions of the Lehman matjia¢ion (1) was proved by Bridges

and Ryser [1].

Theorem 2.1.Let A, B € M, (B) be a Lehman pair. Then, there exist integers 2 ,s > 2 such

that A is r-regular, B is s-regular andrs = n + k. Moreover,A”, B” are also a Lehman pair.

Next, we establish that the notion lgfvel of a Lehman matrix is invariant under duality. A

matrix isO-regularif the sum of entries in each row and column is equal to 0.
Proposition 2.2. Let A, B € M, (B) be a thin Lehman pair. Thetgvel(A) = level(B).

Proof. By Theorem 2.1, there exist integers> 2 ,s > 2 such thatA is r-regular,B is s-regular
andrs =n+ 1.
Lett = level(A). By the definition of level, there exist x n permutation matrice®, () such

that PAQ — C, has rank.
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Claim 1. PBQ — D, has rankt.
Proof. We define

Ya:=PAQ —C,, Xp:=PBQ-D,.
SinceC, and D, form a thin Lehman pair, we have

E+1 = (PAQ-3.)(PBQ—3%5)"

= (PAQ)(PBQ)" — C.X} —SA(PBQ)".

SinceP(E + I)PT = F + I and A, B make a thin Lehman pair, so d®AQ and PBQ. We

obtain

YpCl' = —(PBQ)YY,.

By Theorem 2.1CT and DT are a Lehman pair. Multiplying both sides of the above equati

from right by D, and using the fact thai is 0-regular, we arrive at
Yp = —(PBQ)X%D,.

PBQ and D, are nonsingular; thereforeynk (> 5) = rank(34) = ¢ as desired. <&

The above claim implies thatvel(B) < ¢. Since the roles ofi and B are symmetric in the
Lehman equation, ifevel(B) < t — 1, we would arrive atevel(A) < ¢ — 1, a contradiction.

Therefore Jevel (B) must equat. O

Remark 2.3. Supposed, B € M, (B) make a thin Lehman pair. Then using the Lehman equa-

tion,

(2) Al =BT - 1E.
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Supposed, B also satisfyd = C, + ¥4 andB = D, + X, whereX, andX g are0-regular
matrices. Using the proof of Proposition 2.2, the ident®y, @nd thed-regularity ofX 4, we

deduce

©) Yp = —BYLD, = —ATTSID, = — (C7'5,A47H) "

3. INFORMATION COMPLEXITY

As we hinted in the introduction, thin Lehman matrices carlbssified with respect to their
relation to the circulant matrices via the notiori@fel. In particular, we will prove in this section
that low level, thin Lehman matrices are very similar to giamt matrices. In this context, two
matrices are “similar” or “close” to each other if only “lgf’ extra information is sufficient to
describe one in terms of the other. Our approach focusesedescriptional complexityf
0,1 matrices which is in the general domain of well-knowniomd of Kolmogorov complexity
and Shannon information theoryln such studies one has to decide ahead of time what the
communicated data or the computer input “mean.” (How widdtinterpreted?) For our purposes,
we will require that the input be treated as “positions” inadimensional vector. While both of
these areas (Kolmogorov complexity and Shannon informakieory) are close to what we need,
neither one is exactly suitable. Therefore, we set up our gyatial model below. For detailed
information on Kolmogorov complexity, see [9]; for a comigan of Kolmogorov complexity
and Shannon information theory, see [5].

In our approach, we are interested in describing 0,1 matoce, +1 matrices. Our complex-
ity model allows the usage of parametersgiih However, we require that any algorithm that is
allowed in our model must treat these parameters as “positiof ann-dimensional vector (or
treat a pair of parameters as a position imar n matrix). For instance, to describe a 0,1 vector

of lengthn, we may list the positions where contiguous ones start addsrch a representation
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would requiref)(n) parameters in the worst case). However, we do not allow thgeusf param-
eters to encode the 0,1 elements as the digits of a numbey (if this were allowed, ther: -
parameters would suffice to describe any 0,1 vector of length

As we explained in the introduction, our classification ttyeeats isomorphic matrices as
equivalent (so does our notion kfvel of a thin Lehman matrix). Given thin Lehman matrices
A, A" € M, (B), bothr-regular, we are interested in the significant intrinsic bamatorial differ-
ences betweed and A’. So, classification up to isomorphism also serves us welércurrent
section.

Let A, B € M, (B) be a Lehman pair withl beingr-regular and3 beings-regular. To describe
the 1s inA, rn parameters suffice. Since we allow computation (any algorinay be used),
andA, B satisfy the Lehman equation, each thin Lehman matrix carebertbed bymin{r, s}n
parameters. E.g., i < r, we describe3 usingsn parameters and compute= (E+1)B~7. In
contrast, one parameter suffices to descfibenamelyr. Indeed, iflevel(A) = O(1) thenO(1)
parameters suffice to descrideg(see Corollary 3.8).

Givenu € Z", u,,u_ € 7" are the positive (negative resp.) partsuafuch that, = v, — u_
andu,, u_ have disjoint supports. (Sometimes, we define a vactoy first defining its positive
and negative parts, andu_ and then by letting: := u, — u_; in this latter definition, the
supports ofz, andu_ need not be disjoint.) We denote the support of a vectoy supp(u).

We say that, € Z" is (t, C,)-compactf

supp(uy) < union oft intervals of size-, and

supp(u_) C union oft intervals of size-.
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We say that, € Z" is (t, D,)-compactf

supp(uy) C  union of the supports afcolumns ofD,, and

supp(u—) < union of the supports dfcolumns ofD;.

Proposition 3.1. LetY € M, ({0, £1}), be0-regular withrank(X) = ¢. If C,. + X is nonnegative

then every column and row &fis (¢, C,.)-compact.

Proof. We only prove that every column &fis (¢, C,.)-compact (our arguments directly apply to
the rows ofY as well). First, we note that for any colummof 3, x_ is (1, C}.)-compact (since
C, + ¥ is nonnegative). Next, we prove that is (¢, C,)-compact: Let: be then x (n—1)

matrix obtained front: by deleting columrne. SinceY is 0-regular, the system:

(4) Ya=—-z, «a>0

has a solution, namely := e. Sincerank(X) < ¢, there exists an extreme point solutiof (4)

such that supp(a)| < t. In particular,
supp(z,) C U supp <[coli(i)] _) )
i€supp(a)

We conclude that ., and hence;, is (¢, C,.)-compact. O

Corollary 3.2. LetX € M, ({0, £1}), beO-regular withrank(3) = ¢. If C,. + ¥ is nonnegative

then every € rowspace(X) is (12, C,.)-compact.

Proof. Choose a set of rows, /s, . . ., ¢; of ¥ which forms a basis for the row spaceXf Then

v = Zﬁzl a;/T, for some coefficientsy;, as, ..., a;. By Proposition 3.1, each; is (¢, C,)-

compact; hence; is (12, C,)-compact as desired. O
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Forp € Z™ and an(i, j)-interval S C [n], thetransition ofp over S is
j
trans(p, S) := »  |p(k) —p(k + 1),
k=i—1
where the indices are interpreted cyclicallyjir.
Fori, j € [n], dist(i, 7) is the size of a smallest interval containing bo#nd;. Thus, ifj > i,

thendist(s,j) =min{j —i+ 1,71 —j+n+ 1}.

Proposition 3.3. Letr > 2, s > 2 be integers and let := rs — 1. Also lety € {0, £1}" be

(1, D,)-compact and := C*y. Then
trans(¢, S) < 12, for every intervalS of sizer — 1.

Proof. Let

2y = Z row;(C,) andz_ := Z row;(C,.).

€Y+ 1EY—
We say that € [n] is specialif z; (i) > 2 orz_(i) > 2. Note,{ =z, — z_.

Claim 1. Leti, j € supp(¢,) be such thatlist(z, j) < r — 1 and neitheri nor j is special. Then

i andj lie in the same interval ofupp (/).

Proof. Clearly, i, j € supp(z,). Sincei, j are not special;, (i) = 1 andz,(j) = 1. Let S be
the smallest interval containing botfand;. Sincey is (1, D,)-compact, the rows indexed lkyy
are each shifted by or » — 1. Sincedist(i, j) < r — 1, this implies thatS C supp(z;). Since
z (i) = z_(j) = 0 anddist(z,7) < r —1, SNsupp(z_) = 0. We conclude thatupp(¢,) 2 S
and that the same interval 6f containss.

&

Claim 2. There exist at most two special elements. If a special elemappears inz, then

zy(v) = 2; if it appears inz_ thenz_(v) = 2.
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Proof. The claim follows from the matrix equatiafi’ D, = F + I. &

Let S be an interval of sizee — 1. The following includes all potential contributions to
trans(¢, S):
e at most4 for each special element (by Claim 2, there are at most twb sle&nents),

e at most2 for each of’,, /_ (by Claim 1).

The total is bounded above by 12. O

The next two remarks are useful in estimating the total nunobéransitions over sums of

vectors and unions of intervals.
Remark 3.4. Let/, ¢’ € Z" and letS C [n] be an interval. Then
trans(¢ + ¢, S) < trans(¢, S) + trans(¢', S).
Remark 3.5. Let/ € Z" andS, S’ C [n] be intervals. Then
trans(¢, S U S’) < trans(¢, S) + trans(¢, S").

Proposition 3.6. Lety € {0, £1}" be(t, D,)-compact. Definé := CTy. If Zis (¢, C,)-compact,
then

trans(/, [n]) < 48tq.
Proof.

Claim 1. For every intervalS C [n] of sizer — 1, trans(¢, S) < 12t.

Proof. Sincey is (¢, D,)-compact, there exigt € {0, £1}" such that each; is (1, D;)-compact
and>>'_, p; = y. Let; := CTp,;, for alli € [t]. By Proposition 3.6frans(¢;, S) < 12. Since
¢ =3%"'_, ¢; Remark 3.4 implies the claim. o
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Sincel is (¢, C,.)-compact,

supp(¢4) C union ofq intervals of sizer,

supp(¢/_) < union ofq intervals of size-.

Therefore,

supp(¢) C union of4q intervals of sizg 2] < r — 1.

By the claim, every such interval contains at mbt transitions for/. Hence, by Remark 3.5,
we havetrans(/, [n]) < (4q)(12t)

as desired. O
Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2Let A be ann x n thin Lehman matrix of level. Then (by Theorem 2.1)
A is r-regular for some integer > 2 and by our definition of level, there exist permutation
matricesP, () such thatank(PAQ — C,) = t. LetX, := PAQ — C,.. Denote byB the dual of
A (thenB is s-regular wheres > 2 is the integer satisfyings = n + 1). LetXz := PBQ — D,.
We will describeXz with O(t*) parameters. Since the rolesfind B are symmetric, the same
arguments also apply @0 ,.

By the proof of Proposition 2.2 (or (3)}yank(Xg) = ¢. So, there exists &x ¢ nonsingular
submatrixi” of Xz with row index set/,,, column index sef.. such that after a suitable reordering,

51— r M,
B= 0 My MM, |-

We define

Y::{]\Z], Ul = M].

Further letL := C'Y, X := C,U. GivenL, X, J,, J. as the input, the following algorithm

computes.z:
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e ComputeD? X, D,L

(this givesl’, M; and M, as follows:

T
zfX:Dﬂuh4E+UU=U=[&?y

similarly,
mL:Dﬁﬁu4E+nY:Y:[F}y
e computeM, M.

We claim that(L, X, J,, J,) can be represented l6y(¢*) parameters. Clearly], and.J. can be
represented by parameters each. So, it suffices to prove the upper bound feince forX we
simply transpose the matrix). By Corollary 3.2, every columhof L is (t?, C,)-compact. Since
every columry of Y is a column of 3, Proposition 3.1 implies thatis (¢, D,)-compact. Now,
Proposition 3.6 impliesrans(/, [n]) < 48t3. Every transition can be described by one parameter;

hence/ can be described b9 (¢®), L can be described b9 (¢*) parameters. O

Remark 3.7. Theorem 1.2 also applies to partitionable matrices (thatsfging ABT = E—1I).

We simply redefine the notion of “special” used in the prooPobposition 3.3.

Corollary 3.8. Every pair of thin Lehman matrices with fixed level (level(A) = t = O(1))

can be described bg (1) parameters.

The next section gives a complete characterization of allltehman matrices of level one,

using only 6 parameters.

4. COMPLETE CHARACTERIZATION OF LEVEL ONE MATRICES

Throughout this sectionl, B € M, (B) denote level one matrices ariglis the dual ofA.
MoreoverA is r-regular andB is s-regular. A matrix in),,(B) is identified with the set of pairs

in [n] x [n] corresponding to its nonzero entries.
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A (t,q;t',¢')-blockis the set of pairgi, j) wherei is in the (¢, ¢')-interval andj is in the

(q,¢")-interval. A (p,o)-shiftof a(t, q;t', ¢')- block is the(t + p,q + o;t' + p, ¢’ + o)-block. A

configurationC is a 6-tuple(s, j, ng, nc, p, o) associated with 4 blocks as follows. Thiecksof

C are denoted3y;, Bis, B, Boy WhereBy; isthe(i, j;i +nr — 1,7 + ne — 1)-block, By, is a

(p, 0)-shift of By, Bys is a(0, o)-shift of By; and By, is a(p, o)-shift of By;. The matrixX(C)
is defined as-B;; — By + By + Bio.

Theorem 4.1. A matrix A is a level one (Lehman) matrix if and only 4 is isomorphic to
C, + X(C) whereC is the configuratior(1, 1 + ng,ng,r — ng,tr,tr — 1) whereng € [r — 1]

andt € [s — 1].

We call any configuration of the form given in Theorem 4 .hasicconfiguration. Consider,

for instance, the basic configuration with= 14,7 = 5,np = 2,t = 1 andC = (1, 3,2, 3,5, 4).

f11 111
1 1111
11111
11111
11111
1111 1
Cr+3(C) = P 11}}1
11111
11111
1 1111
11 111
111 11
1111 1

Next we describe briefly the major steps of the proof of Theodel. The “if” part is easy to
check using the duab defined in Remark 4.3 below. The proof of the “only if” part s@ts of
the following steps. Sincd has level one it can be written &+x¢* wherex, ¢ € {0, +1}". We
first show in Section 4.2 that, ¢ have a simple structure, i.e. only a small number of parammete

are needed to describe them. This result is refined in Segt®where we show that ¢ define a



16 GERARD CORNUEJOLS, BERTRAND GUENIN, LEVENT TUNGEL
special type of configuration. In Section 4.4 it is proved thare exists a bijection between the
configurations forA and those forB (after isomorphism). The proof is completed after a brief

case analysis in Section 4.5.

4.1. Preliminaries. In this section, the support of a 0,1 vectowill also be denoted by, i.e.
we use the same notation for a 0,1 vector and its support.
We say that P, Q) define thestandard( D;, C;)-isomorphismf P, () are permutation matrices

(of ordern) such that for all indices, P(i, (i — 1)r + 1) = 1 andQ(i, is) = 1.
Remark 4.2. PD,Q = C.,.

Proof. By definition of D, row,;(D;) = {i—1+tr : t € [s]}. SinceQ(i,is) = 1 andrs = n+1,
it follows thatQ(ri,i) = 1 for all indices:. Now (PD;());; = row;(P)Dscol;(Q) = D,((i —
1)r+1,rj) which is equal td ifand only ifrj = (i — 1)r + 1 — 1 + ¢tr for somet € [s]. We can
rewrite this last condition asj = r(i+t) wheret € [0, s—1]. Thusj =i+t wheret € [0, s—1],

i.e.j € row;(Cs). O

We say that a permutation matrix defines asimpleisomorphism if there exist$ € [0,n — 1]
suchthat”(i,i+4d) = 1 for all indicesi. Observe thaPC, PT = C,. Let P, Q be the permutation
matrices such that for all indicés P(i,n — i) = 1 andQ(i,n — i +r — 1) = 1. Then given
X € M,({0,£1}), PXQ is called thereverseof X. Note that the reverse df. is C,. Given
a vectorz € {0,+1}" thereverseof = is Pz. We say that) defines thestandard(C”, C,)-
isomorphisnif Q(i,i+r—1) = 1 for all indicesi. Note thatC” () = C, and that the isomorphism
maps columry to columnj + r — 1.

For the remainder of this section when we talk abdutB, we mean isomorphic copies
PAQ, PBQ such thatlevel(A) = rank(PAQ — C,) (and by Proposition 2.2level(A) =
level(B) = rank(PBQ — Dy)).
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Remark 4.3. There are vectors, /,y,u € {0,+1}" and® = +1 such thatd = C, + z/(7,

B = D,+®yu” andl = CTy,z = Cou, ® = —ﬁ. Moreoverp®e = (Te = yTe = ule = 0.

+

Proof. SinceA has level one, there exist vectary such thatd = C, +z¢*. SinceA is r-regular
zTe = (Te = 0. Definey := C; "¢ andu := C;'z. By (2) we havey = (D, — 2E){ = Dl
andu = (DI — 1E)xz = DTx. Moreovery”e = (" DTe = (Tse = 0 and similarly we can show

uTe = 0. We have,
A=Co4alt = (I +20'C7H0, = (I +2y")C,.

Using Remark 6.2(1) and the above equation, we concludetthat det (7 + zy”) = 1 + 27y.
Thereforexy € {0, -2} and® = —ﬁ is well-defined and ist1. Then it can be checked

that B = (I + ®y2T)D, (multiply ABT and use the fact that'e = yTe = 0). Thus
B =D, + ®yz"D, = D, + dyu’.

Since A is a0, 1 matrix, we havec/” € M, ({0,+1}). Thus, we can choosg ¢ € {0, +1}".
SinceB is a0, 1 matrix and® = +1, we must haveu® € M, ({0, £1}). We established above
thaty = D,/ andu = DTz. Since we haver,/ € {0,41}", y andu are integral vectors.

Thereforey, u € {0, £1}" as desired. O

Let (P, Q) define the standar@,, C,)-isomorphism. Sincd3 = D, + ®yu! it implies that
PBQ = P(D, + oyu”)Q = PD,Q + POyu’Q = C, + (®Py)(Q*u)T. Definey := ®Pu and
@ = QTuthenPBQ = C, + yu’. Hence all results about, ¢ and A apply tog, & and PBQ.

The notatior?, z, y, u, ®, y anda will be used throughout the remainder of this section.

Remark 4.4. Suppose that, is a(j, j')-interval and that _ is ac-shift of /,. Suppose that_
is an(i,')-interval and that: . is ap-shift of z_. Then we can define two distinct configurations

C,C’ from z and/ such thate/” = ¥(C) = X(C') where:C = (i,j,i' —i+ 1,5 —j +1,p,0)
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with bIOCkSBll = I‘_E{_, B = I‘_EZ, By = I+€£, Bsyy = .CE‘_i_gz, andC’ = ('l +p, J+o, 7 —i+

1,7 —j+1,n—p,n—o)withblocksB}, = z (T, B\, =2 (1 Bl =x_(_, By = x_{4.

Observe thaf andC’ are determined from, ¢ and the choice oB3;;. Thus, we will say thaf is

the(z, ¢)-configuration withB;; = x_¢, and that’ is the(x, ¢)-configuration withB,; = =, ¢_.

4.2. r-structures. We use the notion of vector shift given in the introduction. véctor in
{0,£1}" is atype |, r-structureif it is a shift of a vectorv whose positive and negative parts
are the intervals, = [1,q¢|, v = [1 + tr,q + tr] whereq € [r — 1],t € [s — 1]. A vector
v € {0,£1}" is aType Il,r-structureif v or —v is a shift of a vector’ wherev’, = [1,¢| U {r},
v =[tr,q+tr]andq € [r — 2],t € [s — 1]. Avector in{0, £1}" is aType Ill, r-structureif it
is a shift of a vectow wherev, = [1,q] U {r}, v_ = [tr,q+tr — 1] U {q+ (t — 1)r}, where
q € [r— 2] andt € [s — 1]. Theorder of anr-structurev is given by the parameter If there
exists an index such thaty ando + r — 1 are both indices o, (resp.y_) then{d, +r — 1}

form aspecial pairof y, (resp.y_) andy, (resp.y_) is special

Lemma 4.5. ¢ or its reverse is am-structure of ordeljy.|. Moreover, it is of type | if and only if
neithery, nory_ are special; it is of type Il if and only if exactly one®f, y_ is special; it is of

type Il if bothy, andy_ are special.
Proof. Since A does not have levé), z_, =, ¢_, ¢, are all non-empty.

Claim 1.

(1) ¢, (resp.f_) is contained in an interval of cardinality.

(2) ¢, (resp./_) is not an interval of cardinality-.

Proof. A = C, + (T > 0. In particular,C, — z_(%1 > 0, thus¢Z C row,(C,) forall o € z_.

This implies (1). Furthermore i, is an interval of size-, thenx_ contains a unique element
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a. Sincee’s = 0, z, contains a unique element As C, — z (X > 0, and/Te = 0, /_ is an
interval of sizer. ThenA is obtained fronC,. by permuting the rows, /3, contradicting the fact

that A has levell. &

Claim 2.

(1) If & = +1theny, C cols(Dy), Vo € u_. If & = —1theny, C cols(Dy), Vi € u,.
(2) Considers such thaty. C cols(D;). ThenVi, j € y4, i # j, row;(C,) Nrow;(C,) C {d}.

Moreover, "C” holds with "=" if and only if {i,j} is a special pair ofy. .

Proof. D, + ®yu” > 0. Supposeb = 1 as the cas@® = —1 is similar. ThenD, — ®y, ul >0
which implies (1). Considef such thaty, C cols(D,). We haveE + I = CT D, thuse + ¢; =

CT cols(Dys) > CTy, = > row;(C,.). Moreover, ifé € row;(C,.) Nrow,;(C,) theni, j must

€Y+

be a special pair. This implies (2). &
We define,

P = Z row;(C,) and N := Z row;(C,.).

1€Y 4+ 1€Y—

Then/T = y'C, = P — N. LetP denote the support d? and let\/ denote the support df.
We will show thatP and are both intervals. PartitioR into maximal intervals?,, . . ., P, and
partition /' into maximal intervalsVy, . .., Ns.

We say that setS, 7" C [n] crossif S\ T"andT"\ S are both non-empty.
Claim 3. P,, N; cross for every paif € [, € [7].

Proof. SupposeP;, N; do not cross. We consider the case where> N, as the casé; C N;
can be proved in the same way. For some indicésc,d, P; = [a,b] andN; = [c,d]. Since
row,(C,) = [a,a +r — 1], a € y,. Sincerow.(C,) = [c,c+7r —1],c € y_. Asy. Ny_ =0,
a # c. We omit the proof that # d as it is similar. Consider indiceg = ¢ — 1 andd = d + 1.
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Then{ca',0'} € ¢,. By Claim 1,d’,V are contained in an interval of size at most. SinceN; is
a union of rows ofC,, |N;| > r. Hence we may assunte= [/, «’]. Sincel_ # (), there exists

Nj wherej # j' € [3]. ButN;, C S\ {«’,0'}. A contradiction agN;/| > r. <&

Claim 4. P and\ are both intervals.

Proof. Suppose for a contradictigR or N\ is not an interval. I\ is not an interval, relabel
by —¢ andz by —z (asA = C, + " = C, + (—z)(—¢)"). ThenP becomes\ and vice-
versa. Thus, we may assume there eKkist P, wherei,, i, € [o] andi, # iy. Since|P;, | > r,
Claim 1 implies that there exists < [3] such thatP, N N;, # (. Similarly, there exists
J2 € [0] such thatP,, N N;, # 0. Note thatN;,, N;, need not be distinct. There exist indices
ar, by, ag, by, c1,dy, c2,dy SUCh thatP,, = [a1,b1], P, = [ag, b2, N;, = [c1,di], Nj, = [c2,da).
SinceP;,, N;, cross (by Claim 3) exactly one of, d; is in P,,. We may assume;, € P, for
otherwise we consider the reversedinstead ofA, this exchanges the roles @fandd;. Since
P,,, N;, cross, exactly one of,, d, is in P,,. Thus there are two cases: (&) € P, and (2)
dy € P,,.

Consider case (1). Not€;, # N,,. Thenc;—1, c;—1 € £,. Claim 1implies that; —1,c,—1
are contained in an interval of cardinalityr. But S must contain strictly one oV;, or V;,. A
contradiction asn;, |, | Nj,| > r.

Consider case (2). Notg — 1, d, + 1 € /.. Claim 1 impliesc; — 1, d» + 1 are contained
in an intervalS of cardinalityr. Similarly,b; + 1, a; — 1 € /_ impliesb; + 1, dy — 1 are in an
interval S’ of cardinalityr. ThenS U S U (Nj, \ {b1 + 1}) U (N}, \ {a2 — 1}) D [n]. Hence,
2r + |Ny|+ [Nyl —2 > n=rs—1,ie |N| > |N;| + |Nj| > (s —2)r + 1. It follows
that|y_| > s — 1. If |yy| = |y_| = s then it can be readily checked tha&tis obtained from
D, by permuting two columns, a contradiction as this implie¢ghenceA) has level zero. Thus

ly+] = ly—| = s — 1. Claim 2(1) implies that there exists an ind&such thaty, C cols(Ds).
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Leti be the unique element ils(D;) \ y,.. ThenP = e+ es — row;(C,). SinceP decomposes
into at least two interval®;,, P;,, we must haveé € row,;(C,) withi < § <i+r —1,i.e. one
of the intervalsP;,, P, is {¢}. But this contradict$P;,| > r for all j € [a]. It follows thatP is

an interval. SimilarlyV is an interval. <&

By Claim 4, there are indices b, ¢, d such thatP = [a,b] and N = [¢,d]. Since|P| > r,
Claim 1 implies thatP N /' = (). Since by Claim 3? and\ cross, exactly one af, d is in
P. If d € P then consider the reverse dfinstead ofA. This will exchange the roles efand
d, proving the result for the reverse 6f As the statement is symmetric with respect tand
its reverse, this is acceptable. Thus, we may assumeP andd ¢ P. Lett := |y.| = |y_|.
Label elements iy, by {i;,...,i;} and elements ig_ by {ji,...,j:}. We may assume that,
starting froma and ending ak, we visit rowsiy, . . ., i; of C,. when following the cyclic ordering.
Similarly, starting from: and ending ad, we visit rowsj, . . ., j; of C, when following the cyclic

ordering.

Claim 5.
(1) if y, is special themow;, (C,) Nrow,;,(C,) = {a+r — 1},
(2) if y_ is special thenow;, ,(C,) Nrow,,(C,) ={d —r + 1}.

Proof. Supposey, is special. Claim 2(2) implies that for some € [t — 1], row;, (C;) N
row; ., (C,) # . The unique element common to these rowsdsp—1. SinceP(a+rp—1) =
2,a+rp—1¢€{,.Sincea € ¢, Claim 1 implies thafa, a + rp — 1} is contained in an interval
S of sizer. ThusS does not contairow; ., (C.). It follows thata € row;,(C,),i.e.p = 1. Then
clearlyrow;, (C,) Nrow,,(C,.) = {a+r — 1}. This proves (1). The proof for (2) can be obtained

by considering the reverse df. &

Sincer-structures are invariant under shifting we may assume 1. Letq := ¢ — 1, then

[1,¢q] €4y and[b+1,d] C (_.
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In the remainder of the proof we consider cases dependinghethery, andy_ are special.

Case 1.Neithery, nory_ are special.

Then/, =[1,¢| and/_ = [b+ 1,d]. Since rows, . .., i, of C, are disjointp +1 =1+ ¢tr and

d=q+tr. Hence/_ = [1 + tr,q + tr] and/ is a type |,r-structure.
Case 2.Bothy, ,y_ are special.

By Claim 5,row;, (C,) Nrow,,(C,) = {r}, androw,, ,(C,) Nrow;,(C,) = {d —r + 1}. Then
(p = [1,qqu{r},l- =[b+1,d/U{d—r+1}. Noteq € [r — 1]. Butq # r — 1 because
of Claim 1. Since rows,, i, of C, intersect exactly in one position and since all other pdirs o
rows among, ..., are disjointb+1 = 1+ (tr — 1) = tr andd = ¢ + (tr — 1). Thus
(_=[tr,q+tr—1U{q+ (tr —1)—r+1} whereqg+ (tr —1) —r+1=q+ (¢t — 1)r. Hence

¢is atype lll,r-structure.

Case 3.y, is special and,_ is not special.

By Claim 5,row;, (C,) Nrow;,(C,) = {r}. Thenl, = [1,q] U {r}, and/_ = [b+ 1,d]. By the
same argument as in Caseb2;- 1 = tr. Thend = ¢ + tr (as we must have, | = |(_]|). Thus

(_ = [tr,q + tr]. Hencel is an type Il,r-structure.

Case 4.y, is not special and,_ is special.

We want to show is a type Il,r-structure. Since if is a type Il,r-structure, so is-¢, we redefine
¢ by —¢ andx by —z. This exchanges the roles Bfand /. But nowd € P andc € P, so we

consider the reverse of instead ofd. As we exchangeg for —y we are in Case 3. O

4.3. Block configuration. The goal of this section is to prove:
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Lemma 4.6. Let A be a level one matrix. TheA = C, + X(C) whereC is a configuration

(i, 4,nRr,nc, tr,t'r — 0). wheret, t' € [s — 1] andd € {0, 1}.
GivenS C [n] x [n] we defineval(S) to be|S N Dy].
Remark 4.7. 27y = — val(z_(1) — val(x (1) + val(z,.01) + val(z_(T) € {0, —2}.
Proof. Sincel = CTy,
oty =27C7 T =27 (D, — %E)E =a2"Dyl

= — xTDSEJF — xiDSET + xIDSEJF +2I'D_

= —val(z_(T) — val(z,.0T) + val(z £1) + val(z_(T).

Remark 4.3 states thét = ——~— = +1. Thusz”y € {0, —2} and the result holds. O

T T4y
Let S, S" C [n] x [n]. We say thatS” is ahorizontal translatiorof S if S’ is a (0, tr)-shift of S
wheret € [s — 1] and¥(i, j) € S the numberg,i,i +r — 1, j + ¢tr do not appear in that cyclical
order (note these numbers need not be all distinct). We saysths avertical translationof S
if S"is a(tr,0)-shift of S wheret € [s — 1] andV(i, j) € S the numbers, j —r + 1, 4,7+ tr do

not appear in that cyclical order.
Remark 4.8. If S’ is a horizontal (resp. vertical) translation®thenval(S’) = val(.5).

Proof. Let S’ be a horizontal translation . ThenS'is a (0, ¢tr)-shift of S. Then(:,j) € S
if and only if (i,7 + tr) € S’. Moreover,(i,j) € D; if and only if (i,5 + tr) € D, since

row;(Dg) = {i,i+r—1,...,i+ (s—1)r —1}. The case for vertical translations is similat]

Remark 4.9. Let S, S’ be intervals. Thery’ is atr-shift of S for somet € [s — 1] if and only if
Sisa(t'r — 1)-shift of S’ wheret’ = s — ¢t € [s — 1].
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Proof. S’ is atr-shift of S if and only if S is an(n — tr)-shift of S’ andn — tr =rs — 1 —tr =
t'r — 1. O

GivenS C [n] x [n] and(i, j) € [n] x [n] we abbreviates \ {(4,7)} by S\ (4, j).
Lemma 4.10. 7 is not a type Il,--structure.

Proof. Suppose for a contradictioi,is a type Il,r-structure. By considering eitheror ¢ or
—z, —¢ and A or its reverse we may assume (after a simple isomorphisrjtha [1,q] U {r},
that/_ = [tr,q + tr], and thaty € [r — 2],t € [s — 1]. Since the smallest interval containing
has cardinality, |z_| = |z,| = 1 andz_ = {1}. Applying Lemma 4.5 toA, it follows thatx
or its reverse is a type t-structure. Lety be the unique element in,_. Remark 4.9 implies that
x =1+1tr—0wheret' € [s — 1] andé € {0, 1} (6 = 1 corresponds to the case wherés a

Type |, r-structurey = 0 corresponds to the case where the reverseisy.
Claim. ¢t =t andd = 1.

Proof. row, (C,) = [1 + t'r — §, (' + 1)r — §]. SinceC, — z, ¢~ >0, (T C row,(C,). Thus, (1)
tr >1+tr—3dand (2)q+tr < (¥ +1)r — 6. We write (2) ag < ¢ + 1 — (6 + ¢). Hence
t <. Wewrite (1) ag > ¢ + (1 —4). Ast < ¢ this impliest = ¢’ andé = 1. O

The claim implies thaty = ¢r. Remark 4.9 implies that_¢ is a ((s — t)r, 0)-shift of
x0T It follows thatz_¢ is a vertical translation of £ ¢~. Hence by Remark 4.val(z, (*) =
val(z_¢T). Similarly z_¢% \ (1,1) is a vertical translation of , ¢~ \ (¢r,1). Henceval(z_/¢1 \
(1,1)) = val(x¢X \ (¢r,1)). Moreover,(1,1) € D, and(tr,1) ¢ D,. Thusval(z (1) =
val(z_¢Y) — 1. It follows that—val(z_¢%) — val(x (1) + val(z:01) + val(z_(T) = -1, a

contradiction to Remark 4.7. O
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A simpleC4 is the matrix¥X(C) where( is the configuratior{1, 1,1, 1,¢r, (t + 1)r — 1). A
twin-C4 is the matrixz¢” wheret, = {1} U {r}, (- = {tr} U{(t — 1)r + 1} andz_ = {1},

zy = {(t —1)r + 1} wheret € [2, s — 1]. Theorder of the twin-C4 is given byt.

Remark 4.11. Supposed = C,. + I wherel is a twin<C'4 of order2, or a simple€’4. ThenA is

isomorphic toC, 4 3(C) whereC is a basic configuration.

Proof. By permuting columng andr + 1 of a twinC'4 of order2 we obtain a simple&->4. By
permuting rowd and¢r+1 of a simple twin€'4 we obtain(C) whereC = (1,2, 1,r—1, tr, tr—
1). O

Lemma 4.12. Supposé is a type Ill,r-structure. Then after a simple isomorphism/) defines

a twin-C4 of order |y | > 2.

Proof. ¢ From the hypothesis we may assume-= [1,¢| U {r}, and/_ = [tr,q+ tr — 1] U {q +
(t — 1)r}. Proceeding as in the proof of Lemma 4.10 we showthat {1} andx consists of

a single elemen{ wherex = 1 + t'r — § wheret’ € [s — 1] andd € {0, 1}.
Claim. ¢ =t —1,6 =0, andq = 1.

Proof. SinceC,, — z (T > 0, (X C row,(C,) = [1 +tr — ¢, (¢ + 1)r — §] and the following
relation must holdy + (¢t — 1)r > 1 +t'r —dandg+tr — 1 < (¢ 4+ 1)r — 6. We can rewrite
these relations as: — 1 > ¢/ — L(¢+d — 1) andt — 1 < ' — 1(¢+ & — 1). It follows that
t—1=1t— %(q +d —1). Sincet an integerg + § — 1 is a multiple ofr. But1 < ¢ <r—2and
0<¢§<1. Itfollowsthatg+ 0 —1=0henceg =1andj =0. Thent’ =t — 1. O

The result follows immediately from the claim. O

Consider gt, ¢;t', ¢')-block D. We use the following notatiorlb = (¢,q), D' = (t,¢),.D =
(t',q) andD, = (¥, ¢'). We say thalD, D', D and D, are thecornersof D.
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Lemma 4.13.1f AT = C, + ¥(C) where(C is a basic configuration, ther is isomorphic to

C, 4+ X(C") whereC’ is a basic configuration.

Proof. SupposeA” = C, + ¥(C) whereC = (1,1 + ng,ng, 7 — ng,tr,tr — 1) whereny €
[r — 1] andt € [s — 1]. Let Byy, Bio, By, B be blocks ofC. Then the support oE(C)”
can be partitioned into blockB?,, BL,, BL,, BL,. DefineB|, = Bl,, B,, = Bl,, B}, = B}
and B}, = Bi;. Ba is a(0,tr — 1)-shift of By, in X(C). Remark 4.9 implies thaB,, is a
(0, (s — t)r)-shift of By in X(C). ThusBL, = Bj, is an((s — t)r,0)-shift of B, = B}, in
Y(C)T. By is a(tr,0)-shift of B;,. Remark 4.9 implies thabBy, is a ((s — t)r — 1,0)-shift
of By, in 3X(C). ThusB], = Bj,is a(0, (s — t)r — 1)-shift of B, = B}, in X(C)”. Block
B}, = BL, hasr — ny rows andny columns. Lety define the standar@””, C,)-isomorphism
and let P define the simple isomorphism mapping remy + tr to row 1. Then PAQPT =
C.+PE(C)TQPT = C.+3(C") whereC' = (1,1+ (r —ng),r —ng,ng, (s —t)r, (s —t)r — 1)
asBj, = (1,(1+tr)+ (r —1) — (ng +tr — 1)) wherer — 1 arises from and—(np — tr — 1)

arises fromP. Observe thaf’ is basic. O

Proof of Lemma 4.6Lemma 4.5 implies that or its reverse is am-structure. Let) be the
permutation matrix which defines the standéftf , C,.)-isomorphism. Theorem 2.1 implies that
AT is a Lehman matrix. We havé” = CT + (27 thusATQ = CTQ + (27Q = C, + £(Q"x)™.
Note thatQ”z is an(r — 1)-shift of z. Lemma 4.5 implies that or the reverse of is anr-
structure. Lemma 4.10 implies that none/of,, or the reverse of or x are type Il,r-structures.
Suppos€’ or its reverse is a type k-structure. Consider the case wheres a type |,r-

structure. Ther_ is atr-shift of z,.. LetC be the configuration defined Ry, ¢) with By; =
r, (T (see Remark 4.4). Remark 4.9 implies thatis a(t'r — §)-shift of /_ wheret’ € [s — 1]
andd € {0,1}. ThenC is as required in the statement of Lemma 4.6. Consider treewhsre

the reverse of is a type I,r-structure. Then, is atr-shift of x_. LetC be the configuration
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defined by(z, ¢) with B;; = z_(%. Remark 4.9 implies that_ is a (¢'r — §)-shift of £, where
t" € [s—1]andd € {0,1}. ThenC is as required in Lemma 4.6.

Thus one of the following holds: (1) neithénor its reverse is a type #;structure, (2) neither
x Nor its reverse is a type#;structure. We will show that if (1) holds theh= C,. + ¥(C) where
C is a basic configuration. If (2) holds, then, using the sargaraent (applied to1” instead of
A, x instead of?, and/ instead ofr) we also obtain thati” = C, + X(C’) whereC’ is basic. But
then Lemma 4.13 implies that = C, + X(C) whereC is basic. Thus Theorem 4.1 holds far
and so does the weaker Lemma 4.6.

Hence it suffices to consider that (1) holds. Tkus its reverse is a type lli;-structure. We
can assume we are in the former case, for if we are in the ateerit suffices to consider/ and
—x instead of andz. Lemma 4.12 implies thdt:, ¢) defines a twinc'4 of order|y, |. Let (P, Q)
define the standard,, C,)-isomorphism. Remarks 4.2 and 4.3 imply t#aBQ = C, + ga’.

Claim. g, is not an interval of cardinality< s — 1.

Proof. Lemma 4.5 implies that, is special, i.e. there exists an indeguch that, 6+r—1 € y,.
We havey = &Py whereP(i, (i — 1)r + 1) = 1 for all indices: or equivalentlyP(si, i) = 1 for
all indicesi. Asé,d +r — 1 € y,, Py contains elementsy, s + sr —s = sd — s+ 1. Thus the

smallest interval containing, has cardinality at least &

Lemma 4.5 applied t®®BQ and its transpose implies thatu are s-structures or their re-
verse (note the reverse of a type dHstructure is equal to the inverse of a type distructure).
Lemma 4.10 implies that is not of type Il. Because of the claim,is not of type | either. Hence
g is of type Ill and Lemma 4.12 implies théti, ;) define a twin€'4 of (PBQ)T. In particu-
lar |74 = |y;+| = 2. Hence(z, /) is a twin<C'4 of order 2. Then Remark 4.11 completes the

proof. O

4.4. Block configurations in the dual. The goal of this section is to prove the following result.
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Lemma 4.14. Supposel = C,. + 3(C) whereC is a configuration(i, j, ng, nc, tr, t'r — 0) where
t,t' € [s—1] andé € {0,1}. Let(P,Q) define the standardD;, C;)-isomorphism. Then
PBQ = Cs + X(C') whereC’ has the following parameters:

(1) If ® =+1andd = 0thenC’ = (3,7,t',t,ncs, ngs),

(2) If ® = —1andj = 0thenC’ = (7,7 + ngs,t',t,nes, (r —ng)s — 1),

) Ifd=+1andd =1thenC’ = (j— (s —t'),i +ngrs,s —t',t,ncs, (r —ng)s — 1),
(4)If®=—1andé =1thenC’ = (j— (s —t'),7,s —t',t,ncs,nrs),

wherei = (i —1)s+1landj= (j —1)s + 1.
We will need a number of preliminary results.

Lemma 4.15. Supposé P, ) defines the standartD;, C;)-isomorphism. Let be an(a,b)-

interval and|v| < r — 1. Leta = (a — 1)s + 1 and letb = bs. Then

(1) PDsv is an(a, b)-interval,

(2) QT DTv is an(a, b)-interval.

Proof. Consider part (1). Not#®D.Q = C,, thusPD, = C,QT which implies thatPD,v =
C.Q"v. SinceQ(i,si) = 1, coly(C,QT) = coly(Cy). ThusC,QTv = >
col;(Cs) = [(i — 1)s + 1, is]. Thus for any index, col,; (C;) Ncolyiiy1)(Cs) = @ andcoly; (C) U

ie0 €0lsi (Cs). Note
coly(i4+1)(Cs) forms an interval. It follows that’,Q” v is the required interval.

Consider part (2). Not®” DT PT = CT, thusQ? DT = CT P which implies thatQ” DTy =
CT Pv. SinceP(i, (i—1)r+1) = 1 we have thaf’(is,i—1+s) = 1 andP((i—1)s+1,4) = 1 for
all indicesi. Hencerow,(CT P) = row(;i_1)54+1(Cs) = [(i — 1) + 1,is] andQ” DTv = CT Pv =

Y ico TOW(i—1)541(C5). Proceed now as in part (1). O

Lemma 4.16.Lett, A € [s—1] anda € [n] and lety € {0, 1}. Supposé, isan(a,a+ A —1)-

interval and/_ is a (tr — §)-shift of ¢, . Definey by ¢ = CTy and leta = (a — 1)s + 1.
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(1) If 6 = 0then(Py)y = [a,a +t — 1] and(Py)_ is a As-shift of (Py).
(2) If 6 = 1then(Py)_ = [a— (s +t),a — 1] and (Py), is a As-shift of (Py)_.

(3) Statement (1) remains true if we replaidey 2, y by« and Py by Q7' wherex’ = C,u/'.

Proof. Consider part (1). We have= C!y. Thusy = C,; "¢ = (D, — E){ = D where
the last equality follows from the fact théais 0-regular. DefineP = PD¢, andN = PD,(_.
Sincel = ¢, — (_ it follows thatPy = PD ./, — PD,_ =P — N. Applying Lemma 4.15(1)
we obtain tha® = [a, b] whereid = (a —1)s+ 1 andb = (a + A —1)s = a+ As — 1. Applying
Lemma 4.15(1) we also obtain thaf = [@/, b'] whered’ = (a +tr —1)s+1=a+trs =a+t
andd/ = (a+ A —1+1tr)s = b+t = (a+ As — 1) + t. Hence, NV is at-shift of P.
Sincet < 5,0 # PNN = [a+t,b]. It follows that(Py),. = P — N = [a,a+t — 1] and
(Py)- =N —P=1[b+1,b+1t] =[a+ As,a+ As -+t — 1]. Hence (1) holds.

Consider case (2). We defifieand V' in the same manner as in case (1). Applying Lemma 4.15(1)
to P we obtain that (as in case () = [a, E] whereb = @ + As — 1. Applying Lemma 4.15(1)
to A we obtain that\" = [@/,] where@ = (a +tr —1 —1)s+1 = a+t — s and
V=(a+A-1+tr—1)s=a+As—1—(s—t)=0b— (s —t). ThusN is a(t — s)-shift of
P.Ast < s, PONN = [a,b— (s —t)]. Itfollows that(Py)_ = N\ P = [a — (s —t),a — 1]
and(Py). = P\N =[a— (s—t),a— 1] and(Py)y = P\N = [b—(s—t)+ 1,b] =
la+ As — (s —t),a+ As — 1]. This proves (2).

Consider case (3). We havé = C,u/, thusu’ = C; 12/ = (DT — 1E)2’ = DTa’. Define
P = QTDIa/, andN = QTDI2’ . Sincex’ = 2/, — ' it follows thatQ”v' = QT DIz, —
QTDTx' =P — N. Using Lemma 4.15(2) we obtain thRt A/ are the same intervals that as in

part (1). The proof now proceeds in the same way. O

We are now ready for the main result of this section.
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Proof of Lemma 4.14We haveC = (i, j,ng, nc, tr,t'r — §) andX(C) = z(* for somexz, ¢ €
{0, £1}". We can choose, ¢ such thatr_ = [i,i + ng — 1], 4 is atr-shift of x_; ¢, =
[j,j + nc — 1], _is a(t'r — 6)-shift of ¢,. Recall that>(C') = ga’ whereg = ®Py and
@ = QTu. Leta’ = —x andu’ = —u. Sincer = C,u, v’ = C,u’. Lemma 4.16(3) implies that
(Q™u)y =u_ =[1,i+t—1]and(Q"v')_ = u, is angs-shift of u_ wherei = (i — 1)s + 1.

Consider part (1), i.@ = 1,6 = 0. Then the relatioy = Py and Lemma 4.16(1) imply that
gy = (Py)y = [}, ]+t — 1] andy_ = (Py)_ is ancs-shift of g, wherej = (j — 1)s + 1.
Let C’ be the configuration defined Wy, @) with B;, = ¢, u” (see Remark 4.4). The first two
parameters of’ are given by the cornéB;, = (j,7) and each of the blocks haverows andt
columns.

Consider part (2), i.,ed = —1 andd = 0. Theny = —Py and Lemma 4.16(1) implies that
y- = (Py)_=[j3,)+t —1]andy, = (Py)_ is anncs-shift of y_ (andjis as above). Lef’ be
the configuration defined by, @) with B}, = y_uZ. The first two parameters 6f are given by
the cornefB;, = (j,7 + ngs) and each of the blocks haverows andt columns. Sincéi, is an
nrs-shift of a_, Remark 4.9 implies that_ is an((r — ng)s — 1)-shift of @

Consider part (3), i.e® = 1 andd = 1. Theny = Py and Lemma 4.16(2) implies that
g- = (Py)- = [j—(s—1t),7— 1] andg, = (Py), is anncs-shift of g_. LetC’ be the
configuration defined by, @) with Bj, = j_u”. Note thatB}, = (j— (s—t'),i+ngs) and that
the blocks have — ¢’ rows andt columns. Sincei, is annys-shift of u_, Remark 4.9 implies
thata_ isan((r — ng)s — 1)-shift of a..

Consider part (4), i.,e® = —1 andd = 1. Theny = —Py and Lemma 4.16(2) implies
thaty, = (Py)- = [j— (s —1t'),7— 1] andy_ = (Py). is anncs-shift of y,. LetC’ be the
configuration defined by, @) with B;, = 5, a”. Note thatB,; = (7— (s —t'),7) and the blocks

haves — ' rows andt columns. O
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4.5. Case analysis.Lemma 4.6 implies (after possibly a simple isomorphismj tha= C,. +
¥(C) where( is a configuration(1, b, ng, nc, tr,t'r — 0) whereb is an index,ng,nc € [r —
1],t,t € [s — 1] andd € {0,1}. Let Byy, Bia, Ba1, Bay denote the blocks af. The variables

b,ngr,nc, t,t andéd are used throughout the remainder of this section.

Lemma 4.17.We may assume=t'.

Proof. Note Byy = (1-+tr, b+t'r—0). Thusb+t'r—§ € row;,4,(C,) i.e. there existg € [0, r—1]
suchthab+tr—d6=1+tr+q,ier(t —t)=q—b+0+1.Asb<r,q—b+0do+1> —r;
hencet/ —t > 0. Suppose’ —t > 1. Theng—b+ 0+ 1is a multiple ofr, butasg < r—1,0 > 1
andj < 1wemusthavey = r —1,b = § = 1. AsBy; = (1,b) = (1,1),ng = 1 and as
Byy = (1 +tr, (t+ 1)r),nc = 1. ThusC = (1,1,1,1,tr,(t + 1)r — 1), i.e. it is a simplec’4.
We are then done by Remark 4.11. O

Thus throughout the remainder of the sectica t'.

Lemma 4.18.1f § = 0 thenval(B;;) = val(Byy) andval(B;;) # 1.

Proof. Since B;; C C,, Bi; N Dy C {By,,.Bi1}. Similarly, By, N D, C {B,,, Bsy}. Since
t =t andd = 0,B;, N D, # 0 if and only if B,, N D, # 0 and By;; N D, # 0 if and
only if By # . It follows thatval(B;;) = val(Bsy). Supposeval(Bi;) = val(Bg) = 1.
AssumeB,, € D, as the caseB;; € D, can be dealt with similarly. The®,, € D,. Since
d = 0, By is a horizontal translation d8,;, hence Remark 4.8 implies thatl(B;;) = val(Bj»).
Bsys \ By, is a horizontal translation a8y, \ B,,, hence Remark 4.8 implies thatl( By, \ B,,) =
val(Bay \ B,,). Moreover,B,, ¢ D, andB,, € D,. It follows thatval(By;) — val(Bgy) = —1.

Hence— val(By;) + val(Bi2) + val(Bs;) — val(Bss) = —1, contradicting Remark 4.7. O
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Lemma 4.19.Let (P, ) define the standar@”, D,)-isomorphism. (1) Suppose= C, +3(C)
whereC is basic, thenPBQ = C; + X(C’) whereC’ is basic. (2) SupposBBQ = C + X(C')
whereC' is basic themrd = C, + ¥(C) whereC is basic.

Proof. Since we can interchange the roles/bfind PBQ it suffices to prove (1).By; \ By, is

a vertical translation of3;; \ B;,. Remark 4.8 implies thatal(B;; \ B;,) = val(Ba; \ By).
Moreover, B, € Ds; but By, ¢ D,. Thus,val(Bj;) = val(By;) + 1. Similarly, we prove
that val(By) = val(Bia) + 1. Hence—val(Bi1) + val(Bia) + val(Ba;) — val(Bag) = —2.
Remark 4.7 implies that”y = —2 hence (Remark 4.3p = +1. Thus, we are in case (3)
of Lemma 4.14 withi = 1 andj = 1 + ngz. Theni = 1 andj = ngs + 1. ThusC' =
(nps +1—(s—1t),ngs+ 1,s —t,t,(r — ng)s, (r —ng)s — 1). After a simple isomorphism,
mapping romngs+1—(s—t)tol,we havel’ = (1, (s—t)+1,s—t,t, (r—ng)s, (r—ng)s—1).

Definen, = s—tandq = r—ng, thenC’ = (1, 1+n'y, n’z, s—n'y, gs, gs—1) whichis basic. [
We can now prove the main theorem of this section.

Proof of Theorem 4.1The "if” part of the statement follows from Lemma 4.19. l&tbe the
configuration obtained fror@ = (i, j, ng, nc, tr,t'r — §) in Lemma 4.14 where = 1 (we will
consider each of the 4 cases of the lemma separately). Neté, Denote byB,;, Bio, Ba1, Bas

the blocks corresponding to
Casel1l.® =1andé = 0.

ThenC' = (7,1,t,t,ncs,ngs). By applying Lemma 4.17 t&®B( instead of A we obtain
thatne = ngi. Supposeval(B;;) = val(By) = 0. Then By, is a horizontal translation of
By1 and Bsy, is a horizontal translation aBy;. Remark 4.8 implies thatal(B;;) = val(B;,) and
val(Ba1) = val(Bsgy). Then—val(By;)+val(Bi2)+val(Ba ) —val(Bye) = 0. Remark 4.7 implies

thatz”y = 0. Remark 4.3 implies that = —1, a contradiction. Lemma 4.18 impliesl(B;;) =
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val(Bgy) # 1. Henceval(By;) = val(Bg) > 2. Thusval(By;) = 2 and{ B, B,,} C D,. It
follows thatnc = np = 2+ and that- is odd. Since = 1 we must havg = r —n¢ + 1 = ==,
It follows thatj = (“5%)s + 1 = 3(n+1—s) + 1. We must havéz, ) € C; thusj € col; (C;) =
{n—s+2,...,n}U{l}ie.t(n+1-5)+1>n—s+2 whichimpliesl >n—s+2 a

contradiction.
Case2.® = —1andj = 0.

ThenC’' = (7,1 + ngs,t, t,ncs, (r — ng)s — 1). By applying Lemma 4.17 t&®B() instead
of A we obtain thatnc = r — np. It follows that exactly one ofB,;, By, is in Dy, i.e. that

val(Bj1) = 1. But this contradicts Lemma 4.18.
Case 3. =1andé = 1.

ThenC' = (j—(s—t),1+ngs,s—t,t,nes, (r—ng)s—1). By applying Lemma 4.17 t& BQ
instead ofA we obtain that.c = » —ng. Then exactly one of3,,, B, isin D,. By Lemma 4.18
exactly one ofB,,, B,, is in D,. Moreover, sincé = 1, we must haveB,, € D, and By, € D,.
Sincei = 1,j =r—nc+1 =r—(r—ng)+1 = ng+1. ThusC = (1, ng+1,ng, r—ng, tr, tr—1),

i.e. itis a basic configuration.
Case 4.9 = —1andj = 1.

ThenC' = (j— (s—t),1,s—t,t,ncs, ngs). By applying Lemma 4.17 t& B() instead ofA we
obtain thatn = ngi. Since forC’ the last parameter iszs and notngzs — 1, C’ is of the same
form of C as in either case 1 or case 2 (the two cases #vith(0). But we excluded these cases

already. m

5. HIGHER LEVEL MATRICES

In this section, we address the following questions:
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e Are there simple composition techniques for constructiigd thevel thin Lehman matri-
ces from low level thin Lehman matrices?

e Are there thin Lehman matrices of arbitrarily high level?

5.1. Compositions. We describe ways of composing Lehman matrices to obtain careli-

cated, potentially higher level, Lehman matrices.

Proposition 5.1.Let A, B € M, (B), ¥4, Y4, X5, Y5 € M,({0,£1}) such that(A, B), (A +
Y4, B+3g), (A+X 4, B+Xp)are all Lehman pairsand+X 4, +X 4, B+Xp+Yp € M,(B).
Then(A+ X4+ X4, B+ Xp + Xp) is aLehman pair iff

YAXL +SaXh =0,
Proof. Since(A4, B), (A+ X4, B+ X5p), (A+ X4, B+ Xp ) are all Lehman pairs, we have
AYE 4+ 4B+ Xp)f =0andAXL, + Y 4(B +Xp)" = 0.
Using these two matrix equations and the fact th&t’ = £ + I, we find that
(A+S4+34)(B+Sp+3p) = (E+1)+ S, + Sa S

Therefore,(A + X4 + Y4, B + X5 + Yp) is a Lehman pair iff£,3%, + $43L = 0, as
desired. 0

Corollary 5.2. Let A, B € M, (B), ¥4, X4, %Xp,Xp € M,({0,£1}) such that(A, B), (A +
Ya4,B + Xp),(A+ Xa, B+ Xp) are all Lehman pairs andupp(X4) (\supp(X4) = 0,
supp(Xg) (supp(Xp) = 0. Then(A + X4 + X4, B+ Xp + Xp/) is a Lehman pair iff

YaAXh +Sa¥h =0,
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Proof. Since,X 4, andX 4 have disjoint support,A+X 4+ X 4/) € M, (B) follows. Similarly, X5
andX g have disjoint supportimpligs3 + Xz + Xp) € M, (B). Now, we can apply Proposition
5.1. O

5.2. Long cycles. In some sense, the simplest level-1 update is the one givarcbyfiguration

in which all blocks ard x 1. (Seesimple€'4 in Section 4.) There is a nice generalization of this
simple combinatorial structure to an arbitrary level. W# t& general structurgj-cycle for

5 €{2,3,...,s—1}. We define the underlying update by describing the prim&Llpleation> 4
and the dual perturbationp.

The nonzero entries ai 4 are given as follows:

(Xa)y =1 (EA)(5_1)7«+1,1 =1

(ZA)kr-i-l,(k—i-l)r =1 (ZA)(k—l)r-i-l,(k:-i-l)r =1Vke{l,2,....0 -1}

All nonzero entries ok 5 are in the following 2-by-2 block structure:

r fr+1
kr | =1 +1 |foralll < /¢ <k < suchthat/+ k) is odd.
kr+11+1 -1

We denote the above matrices By (5) andX ().

Proposition 5.3. Letr > 2, s > 2 be arbitrary integers and let := rs — 1. Then for every

€{2,3,...,s— 1}, A:=C,.+X4(0) and B := D, + X5(0) make a thin Lehman pair.

Proof. It is easy to verify thatd, B € M, (B). To verify thatABT = E + I, it suffices to check

the matrix equation

C, [25(0)]" +Z4(8) DT +24(8) [Z5(6)]" = 0.
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It is easily seen that (restricted to their nonzero rows admns),

2r 2r+1 3r 3r+1 4r 4r+1 --- Or or+1
1[-1 1 0 0 —1 0 0
r+1| 1 -1 -1 1 1 -1 - -1 1
C. [2p(0)]" = 2r+1| 0 0 1 -1 -1 1 - 1 1
3r+1] 0 0 O 0 1 -1 - =1 1
6—Dr+1] 0 0 0 0 O 0 --- 1 -1
2r 2r+1 3r 3r+1 4r 4r+1 --- Or or—+1
1 1 —1 1 —1 1 -1 .- 1 —1
r+1|-—1 1 0 0 O 0 0 0
ZA((S)DST: 2r+1| 0 0 —1 1 0 0 --- 0 0
3r+1| 0 0 O 0 —1 1 0 0
6—Dr+1] 0 0 0 0 O 0o --- -1 1
3r 3r+1 4r 4r+1 5r S5r+1 --- Oor or+1
1(-—1 1 0 0 —1 1 --- —1 1
r+1 1 -1 -1 1 1 -1 .- 1 -1
S4(0) [25(0)]" = 2r+1] 0 0 1 -1 -1 1 - =1 1
3r+1| 0 0 0 0 1 -1 ... 1 1
0—Lr+1] 0 0 0 0 O 0o --- 0 0

where we illustrated the last two columns and the last roth@Mmatrices fop odd. Therefore,

ABT = E + I and(A, B) is a thin Lehman pair. O

What is the level of the thin Lehman matriX. + X 4(J) defined above? A likely answer is
d — 1 but we could not prove it. It is easy to see that the level'pft- ¥ 4(9) is at mosty — 1:
Indeed> 4 (&) haso nonzero rows (and columns). When restricted to its supgrostmatrix is the
node-arc incidence matrix of a circuit dmodes. Thereforeank(>4(6)) = 6 — 1. Hence, the
level of A is at most0 — 1). Note that the highest possible level@f+ X 4(9) is max{r, s} — 2.

Proving lower bounds is much harder. In the next section,iweaglower bounding technique.

Note however that the resulting lower bounds are typicadiytight.
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5.3. Lower bounding the level of thin Lehman matrices. Let A € M, (B) be r-regular for
somer > 2. We define the simple undirected gra@h := (V(G4), E(G4)) by

o V(G,):={i:iisarowofA},

o ij € E(G4)iff [row;(A) Nrow;(A)| =7 — 1.
Then, the maximum degree of any nodedin is at most 2. Thus(z4 can be partitioned into
vertex-disjoint paths callesegmentsWe denote byegment(A) the number of segments 6f,4.

This parameter is invariant under the isomorphismd of
Remark 5.4. Let A be as above and Iét and(@ ben x n permutation matrices. Then
segment(A) = segment(PAQ).

Lemma 5.5. Let A, P, and be as above. Defing := PAQ — C,, t := rank(X). ThenX has

at most2¢r non-zero rows.

Proof. Suppose for a contradiction thathas more thatr non-zero rows. Leb be a minimal

set of columns ob such that the union of their supports covers all non-zercrofi..
Claim1l. |[S| >t+ 1.

Proof. By definition, the number of£1”s as well as the number of+“1”s in each column ok
is at most-. So,

|supp [col;(X)]| < 2r, forall j.

Thus,|S| >t + 1 as desired. <&
Claim 2. col;(X) for j € S are linearly independent.

Proof. For every columnj € S, the minimality of S implies that there exists a row;) that
is covered by column only. Consider the submatrix of indexed by the column-row pairs

(7,4(7)). This submatrix is théS| x |.S| identity matrix. &
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We haverank(X) > |S| > ¢ + 1 (where the first inequality uses Claim 2 and the second uses

Claim 1), a contradiction. O

Lemma5.6. LetX € M, ({0,+1}) be0-regular withg non-zero rows. The@'. + X has at most

2g segments.
Proof. Note thatG¢. is then-circuit. The next elementary observation is all we need.

Claim 1. Let A € M, (B) ber-regular. Also let’ € {0, £1}" be0-regular. Lete; denote theth

unit vector. Then the only edgesahy possibly not inz 4, .., are incident to vertex.

We apply the above claim repeatedly, starting with.. There are at mosly edges ofG¢,
that are not inG¢, . ». Since the edges @i, . that are not inG¢, can only decrease the total

number of segments; ,» has at mos2q segments. O

Proposition 5.7. Let A € M,,(B) be a thin Lehman matrix that isregular. Then

segment(A)

level(A) >
evel(A) > ™

Proof. Let ¢ := level(A). Then, there exist x n permutation matrice®, ) such that® :=
PAQ — C, € M,({0,£1}) is 0-regular and has rank Now, Lemma 5.5 implies that has at

most2¢r non-zero rows. Lemma 5.6 implies that

segment(PAQ) < 4tr.
Using Remark 5.4 we conclude> segment(A)/(4r). O
Theorem 5.8. There exist thin Lehman matrices of arbitrarily high level.

Proof. We letr := 3 and for large integers, setn := rs — 1. We defineA from C,. by applying

the configurations

(1,2,1,1,3,3),(6,7,1,1,3,3),(11,12,1,1,3,3), (16,17,1,1,3,3), - - -
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Itis easy to verify thatd is a Lehman matrix. Indeed the dualfis defined fromD, by applying

the configurations
(2,3,1,1,1,1),(7,8,1,1,1,1),(12,13,1,1,1,1),(17,18,1,1,1,1), - - -

as can be checked by multiplying these two matrices. Con#iise integers satisfying the
above condition and = 5k, for some integek > 4. Thensegment(A) > 2k. Using Proposition

5.7, we conclude that
n
level(A) > —.
evel(A) > 30

ThereforeJevel(A) = Q(n) for this construction. O

Remark 5.9. Consider the long cycle construction. Létbe as defined in Proposition 5.3. It
is easy to check that 2v-cycle creates segments, the largest valdean take iss — 1. Thus,

Proposition 5.7 implies
s—1
dr
for the largest value of. If » = 3, then3s = n + 1 and the long cycle construction also yields a

level(A) >

proof of Theorem 5.8:
n—2

level(A) >
evel(A) > %

6. FAT MATRICES

6.1. Examples.

i 1 1 17
SR - 1 11
111
11 1
111
11 1 . -
(5) F; = 11 1 Py =
1 1 1
1 11
1 1 1
1 11
11 1 1 1 1
i i 1 11
|1 11 |
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Matrices F; and P, are fat Lehman matrices. Matrik; is the point-line incidence matrix
of the Fano planeF; is self-dual, thug = 2 in (1). Matrix Py is the matrix whose columns
correspond to the edges &f; and whose rows are the incidence vectors of the triangles of
Kj5. Equivalently,P;, can be viewed as the vertex-vertex incidence matrix of therBen graph

(hence the notation)?;,, Piq + I form a Lehman pair, thus = 2 in (1).
6.2. Determinant.

Remark 6.1. In this sectionE,, denotes the: x n matrix of 1s. Forn > 2 andk > 1, the
matrix £,, + k1, has two distinct eigenvalues, namelyvith multiplicity » — 1, andn + £ with

multiplicity 1. In particular,
det(E, + kI,) = k" '(n + k).

Proof. Since(E,,+kI,)—kI, = E, and there ara—1 linearly independent vectors uli{e,},
the multiplicity of & is at least: — 1. Vectore,, is the eigenvector for the eigenvalue- k. Since
the total multiplicity is at most, the result about eigenvalues follows. Finally, the deteamt

is the product of the eigenvalues. O

As an example, considdr; in (5). Thenn = 7 and sincef; is self-dual,k = 2. Hence

det(E7 + 2]7) =9 x 26 and det(F7) =3 X 23.

Remark 6.2. Let A be anr-regular Lehman matrix.

(i) If Aisthin, then|det(A)| =r,

r(r—1)

(i) If Ais self-dual, thendet(A)| = (r—1)"=z r.

Proof. (i) By Theorem 2.1, the dual ofl is ans-regular matrixB such that's = n + 1. Re-
mark 6.1 implies thadlet(E,, + I,,) = n+ 1 = rs. Thusdet(A) det(B) = det(E, + I,,) = rs.
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Since A is anr-regular nonsingular integral matrix, it follows that itetdrminant is a nonzero
integer multiple ofr. Thus|det(A)| > r and similarly|det(B)| > s, and the result follows.

(ii) Since A is self-dualk = r — 1. By Theorem 2.13* = n +r — 1. Remark 6.1 implies that
det(A)? = det(E, + (r — 1)1,,) = (r — 1)""=Y¢2, The result follows. O

Recall thatdet(A)| equals the volume of the parallelopiped defined by the cofuohA (viewed
as vectors ofR™). This justifies our terminology othin Lehman matrix (the parallelopiped
formed by its columns has the smallest possible volume aralbngnsingular-regular matrices
in M,(B)). By contrastfat Lehman matrices give rise to parallelopipeds with largdunves,

the extreme case being that of nondegenerate finite pnagguitines.

6.3. Lehman matrices from projective planes. A projective planeonsists of points and lines
such that any two distinct points belong to exactly one lame any two distinct lines intersect in
exactly one point. A projective plane diegeneratéf at least three of any four points belong to
the same line. It can be shown that all the lines of a nondegtnnite projective plane have the
same number of points. Therefore, point-line incidenceiceg A € M, (B) of nondegenerate
finite projective planes are exactly the solutions of theagign AA” = E + kI, i.e. they are
the self-dual Lehman matrices. We review known results atiese matrices. First note that
Theorem 2.1 implies that = k2 + &k + 1. The integek is called theorder of the projective plane.

Not all ordersk are possible, as proved by Bruck and Ryser [2] in the foll@gireorem.

Theorem 6.3.1f k = 1,2 (mod 4) andy? + 22 = k has no solution in integers, then there is no

projective plane of ordek.

For example, this implies that there are no projective damieorders 6 and 14. What is
the idea of the proof of the Bruck-Ryser theorem? Observefiha kI is a positive definite
matrix. Therefore it always has a decompositibA” = E + kI. Bruck and Ryser [2] address

the question of whether there exists such a decompositi@mevhhasrational entries. (When
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n = 1, this question reduces to: When does there exist a ratiamabera such that? = 1+ £?)
By clever arguments, Bruck and Ryser massage the quadoaticaf’ AATz = 27 (E + kI )z
(which has nonzero rational solutions) until they everyualduce it toy? + 22 = k in integers.
Does this line of proof carry over to the general Lehman déqnat B” = E + kI, i.e. can
we use the fact tha and B have rational entries to exclude certain valuegdfUnfortunately
not: For any nonsingular rational matrik we can se3” = A~'(E + kI) which is also ratio-
nal. In order to prove the nonexistence of Lehman matricesdaain values of;, one needs
combinatorial arguments using the fact thatB are 0,1 matrices.

The following table gives the number of projective planassimall orders:.

k 23456 789 10 11 12 13 14 15 16
Numberf1 1 1 1 0 1 14 0 >1 7?2 >1 0 7?7 >22

Next we describe an infinite family of projective planes dedoby PG2, k). LetV be a
3-dimensional vector space over a finite field witkelements. The points of RG k) are the
1-dimensional subspaces¥éfand its lines are the 2-dimensional subspacéds.ofhen PG2, k)
is a projective plane of orddr. For example, whehk = 2 we get the Fano plang;.

This construction implies that a projective plane of orklexists whenever is a prime power,
since there always exists a finite field withelements in this case. Interestingly, all known

examples of finite projective planes have an order which isragppower.

6.4. Nearly self-dual Lehman matrices. We callnearly self-duab Lehman matrix4 with the
following properties:

(i) A= AT and

(i) the dual of A is A + 1.

Theorem 6.4.Let A be a nearly self-dual Lehman matrix whichrisegular. Then- = 2,3, 7 or 57.
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Proof. Since A + I is a 0,1 matrix, the entries in the diagonal 4fare all equal to 0. Since
A = AT the matrixA is the vertex-vertex incidence matrix of a gra@h SinceA is r-regular,

G is r-regular.
Claim 1. The graph’ has girth at least 5.

Proof. Suppose otherwise. The# contains a triangle with vertices j, & or a 4-cycle with
verticesi, k, 7, 1 in that order. In both cases, the scalar produet’;(A), row;(A + I)) > 2. But

this contradicts Lehman’s equation, which impliesw;(A), row,;(A+ 1)) =1fori#j. <

An (r,g)-cageis a graph that (i) is--regular, (i) has girth at least, and has the smallest

possible number of vertices among all graphs satisfyingn@ (ii).
Claim 2. The graphG is an(r, 5)-cage withl + r2 vertices.

Proof. Consider any--regular graphf with girth at least 5, and let be a vertex offf. Vertex
v hasr neighborsuy, ..., v, and each of these verticeshasr — 1 neighbors distinct from.
Furthermore, all these vertices are distinct sificeontains no 4-cycle. Thereforf, has at least
1+7r+r(r—1)=1+r?vertices.

SinceA, Ay is a Lehman pair, it follows from Theorem 2.1 (i) thdt- + 1) = n+ (r — 1), i.e.

the graph? hasn = 1 + r? vertices. Thug is an(r, 5)-cage. O

Atheorem of Hoffman and Singleton [6] states that, for &ny)-cagen > 1+r% and equality

holds if and only ifr € {2,3,7,57}. O

Hoffman and Singleton [6] show that there is a unique sotufig to isomorphism) for each
of the cases = 2, 3, 7. The existence of a solution for the case 57 is unknown.

The case = 2 (i.e. n = 5) is the circulanC3.

The case = 3 (i.e. n = 10) is the Petersen matrik,, mentioned earlier.

The case: = 7 (i.e. n = 50) was constructed by Hoffman and Singleton [6].
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6.5. Fat Lehman matrices and minimally nonideal matrices. The point-line matrices of de-
generate finite projective planes are minimally nonidedle €ores of most other known mini-
mally nonideal matrices are thin Lehman matrices. We knoly timee exceptionst, P, and

its dual. These three fat Lehman matrices play a centraimd@ymour’s conjecture about ideal
binary matrices [13]. A 0,1 matrix isinaryif the sum modulo 2 of any three of its rows is greater
than or equal to at least one row of the matrix. Seymour'sexinye states that there are only
three minimally nonideal binary matriceg{, O, whose columns are indexed by the edges of
K5 and whose rows are the characteristic vectors of the odeésydlK 5, and its blocker): Their

cores arefF;, Pg and its dual respectively.

7. OPEN PROBLEMS AND CONCLUDING REMARKS

The Lehman matrix equation (1) occurs prominently in thelgtof minimally nonideal ma-
trices. Bridges and Ryser [1] give basic properties of itstsans (Theorem 2.1). Two infinite
families of solutions are known: thin Lehman matrices antdiprojective planes. In this paper,
we classify thin Lehman matrices according to their sintyao the circulant matrice§”": Level
t matrices are isomorphic t@@" plus a rank matrix. We were able to describe explicitly all level
1 matrices and we showed that levehatrices can be described by a number of parameters that
only depends on (independent of, andr). We also gathered results from the literature that are

relevant to our understanding of fat Lehman matrices. Therain many open problems.

Question 1: Are there other infinite families of Lehman matrices beskiia matrices and

projective planes?

Question 2: Can Theorem 1.2 be strengthened as follows4 i a thin Lehman matrix of
levelt, thenA can be described witt(¢) parameters?

In particular, can every thin x n matrix be described with onl§(n) parameters?
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Question 3: Do all thin Lehman matrices have level at mest—"?

min(r,s)

Question 4: Is there a decomposition theorem stating that a thin Lehmatnixreither is in
a well-described family (such as matrices with low levelanrd cycles) or has a decomposition

(such as presented in Section 5)?
Question 5:1s a thin Lehman matrix always the core of some minimally deal matrix?

Question 6: s F; the only nondegenerate finite projective plane whose gwiatmatrix is the
core of a minimally nonideal matrix? Beth Novick [12] anseeithis question positively when

“the core of” is removed from the statement.
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