
Monotonicity of Löwner Operators and Its

Applications to Symmetric Cone

Complementarity Problems

Lingchen Kong∗, Levent Tunçel†, and Naihua Xiu‡
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1. Introduction. In 1934, Löwner [15] defined a matrix-valued operator G, which is
later called Löwner Operator by Sun and Sun [18], as

G(x) :=
n
∑

i=1

g (λi(x)) uiu
T
i if x =

n
∑

i=1

λi(x)uiu
T
i

where g is a real-valued scalar function, λi(x) and ui (i = 1, 2, · · · , n) are the eigenvalues and
the corresponding eigenvectors of the symmetric matrix x, respectively. In the same paper,
Löwner studied the operator-monotonicity of the operator G in the setting of symmetric
matrices where the partial order is induced by the cone of positive semidefinite matrices.
These concepts and corresponding theoretical results have become fundamental ingredients
in Matrix Analysis.

In 1984, Korányi [7] gave a full generalization of Löwner’s theorem to the setting where
the underlying algebra is a simple Euclidean Jordan algebra and the partial order is induced
by the underlying symmetric cone. In the setting of Euclidean Jordan algebras, Löwner
operator has recently attracted much attention. For example, Sun and Sun [18] established its
differentiability and semismoothness; Baes [1] studied its convexity using techniques similar
to Lewis [12, 13].
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Note that operator-monotonicity of G is different from the usual concept of monotonicity
of G. The latter is much weaker, which plays a crucial role in the theory and algorithms
for complementarity problems, variational inequality problems and equilibrium problems
[4, 17]. However, to the best of our knowledge, monotonicity of Löwner operator G has
not been considered even in the cases of the cone of positive semi-definite matrices and the
second-order cone. An interesting and important question arises:

What is the connection between the monotonicity of the real-valued function g and its
corresponding Löwner operator G?

On another front, in the area of nonlinear complementarity problem (NCP), there is an
elegant result of Mangasarian [16] which provides a very general tool for reformulation of
NCPs based on Mangasarian class of NCP-functions which is defined as φM : R × R → R,

φM (a, b) := θ (|a − b|) − θ(a) − θ(b),

where θ : R → R is strictly increasing with θ(0) = 0. The above function has attracted
much attention, see, e.g., [4, 20]. In particular, Tseng [20] asked whether Mangasarian class
of NCP-functions above can be generalized to complementarity functions (C-functions) for
the semidefinite complementarity problems (SDCPs).

In this note, we prove that the locally Lipschitz Löwner operator G is (strictly/strongly)
monotone on the a Euclidean Jordan algebra J if and only if the scalar function g is
(strictly/strongly) increasing on R. We also give an important application of the result
which ties in the theorems of Löwner, Korányi and Mangasarian. Namely, we generalize
Mangasarian class of NCP-functions to the case of symmetric cone complementarity prob-
lem (SCCP for short). Therefore, not only does our result answer Tseng’s question in the
affirmative, but it also establishes the positive answer in the more general and unifying
setting of symmetric cones. Here, SCCP is to find a vector x ∈ J such that

x ∈ K, F (x) ∈ K, 〈x, F (x)〉 = 0,

where F : J → J is a continuous mapping. SCCP provides a simple, natural, and unified
framework for various existing complementarity problems, such as the NCP, SDCP and the
second-order cone complementarity problem (SOCCP); see, e.g., [3, 5, 6, 8, 11, 14, 21].

This note is organized as follows. In the next section, we establish the preliminaries. In
Section 3, we prove our main equivalence result. As an application, we extend the Man-
gasarian class of NCP-functions in Section 4. We only briefly present our main results in
this note, see the long version [9] for further details.

2. Preliminaries. A Euclidean Jordan algebra is a triple (J , 〈·, ·〉, ◦) (A for short),
where (J , 〈·, ·〉) is a finite-dimensional inner product space over real field R and (x, y) 7→
x ◦ y : J × J → J is a bilinear mapping which satisfies the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ J ,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J where x2 := x ◦ x and
(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉 for all x, y, z ∈ J .

We call x ◦ y the Jordan product of x and y. In addition, we assume that there is an element
e (called the identity element) such that x ◦ e = e ◦ x = x for all x ∈ J . Define the set of
squares as K := {x2 : x ∈ J }. It is well known that K is a symmetric cone.
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An element c ∈ J is idempotent if c2 = c 6= 0. It is also primitive if it cannot be written
as a sum of two idempotents. A complete system of orthogonal idempotents is a finite set
{c1, c2, · · · , ck} of idempotents with ci ◦ cj = 0 (i 6= j) and

∑k
i=1 ci = e. A complete system

of orthogonal primitive idempotents is called a Jordan frame of A. In the Euclidean Jordan
algebra A, for any element x ∈ J , the degree of x is the smallest positive integer such
that the set {e, x, x2, · · · , xm} is linearly dependent, denoted by deg(x). The rank of A is
defined as rank(A) := max{deg(x) : x ∈ J }. Thus, we have the following important spectral
decomposition theorems.

Spectral Decomposition Type I (Theorem III.1.1, [2])) Let A be a Euclidean Jordan
algebra. Then for x ∈ J there exist unique real numbers µ1(x), µ2(x), · · · , µr̄(x), all distinct,
and a unique complete system of orthogonal idempotents {b1, b2, · · · , br̄} such that x =
µ1(x)b1 + · · · + µr̄(x)br̄.

Spectral Decomposition Type II (Theorem III.1.2, [2])) Let A be a Euclidean Jordan
algebra of rank r. Then for x ∈ J there exist a Jordan frame {c1, c2, · · · , cr} and real
numbers λ1(x), λ2(x), · · · , λr(x), the eigenvalues of x, such that

x = λ1(x)c1 + λ2(x)c2 + · · · + λr(x)cr. (1)

We call (1) the spectral decomposition of x.

Note that the Jordan frame {c1, c2, · · · , cr} and the unique complete system of orthog-
onal idempotents {b1, b2, · · · , br̄} in the above theorems depend on x. Let σ(x) be the set
consisting of all distinct eigenvalues of x. It follows that σ(x) contains at least one element
and at most r. For each µi(x) ∈ σ(x), denoting Ni(x) := {j : λj(x) = µi(x)}, we can verify
that r̄ is the number of elements in {bi : µi(x) ∈ σ(x)} and bi =

∑

j∈Ni(x) cj .

Given a real interval (a, b) with a < b (a, b ∈ R ∪ {−∞} ∪ {+∞}), we denote by J (a, b)
the set of all x in J such that x−ae, be−x ∈ int(K), and call it the open box in A. Letting g :
(a, b) → R be a real-valued function, for x ∈ J (a, b) with x =

∑r
j=1 λj(x)cj =

∑r̄
i=1 µi(x)bi,

we define the corresponding Löwner operator as

G(x) :=

r
∑

j=1

g(λj(x))cj =

r̄
∑

i=1

g(µi(x))bi.

When g(t) is taken as t+ := max{0, t} or |t| (t ∈ R), respectively, we have

x+ :=

r
∑

i=1

(λi(x))+ci, |x| :=

r
∑

i=1

|λi(x)|ci.

We recall the Peirce decomposition of Euclidean Jordan algebras. Let {c1, c2, · · · , cr} be
a Jordan frame of A. For i, j ∈ {1, 2, · · · , r}, define the subspaces

Jii := {y ∈ J : y ◦ ci = y}, and Jij :=

{

y ∈ J : y ◦ ci =
1

2
y = y ◦ cj

}

, i 6= j.

Theorem 1 (Theorem IV.2.1, [2]) Let A be a Euclidean Jordan algebra of rank r and
{c1, c2, · · · , cr} be a given Jordan frame. Then J is the orthogonal direct sum of spaces
Jij (i ≤ j). Furthermore,
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(i) Jij ◦ Jij ⊆ Jii + Jjj;

(ii) Jij ◦ Jjk ⊆ Jik, if i 6= k;

(iii) Jij ◦ Jkl = {0}, if {i, j} ∩ {k, l} = Ø.

For each x ∈ J , we define the corresponding Lyapunov transformation L(x) : J → J
by L(x)y = x ◦ y for all y ∈ J . Thus, L(x) is a symmetric operator with respect to the
inner product in the sense that 〈L(x)y, z〉 = 〈y, L(x)z〉,∀y, z ∈ J . We say two elements
x, y ∈ J operator commute if L(x)L(y) = L(y)L(x). For each x ∈ J , define the quadratic
representation of x as Q(x) := 2L2(x) − L(x2). Lemma X.2.2 [2] shows that the elements
x, y ∈ J operator commute if and only if they share a common Jordan frame.

We end this section with the following theorem which is important in the subsequent
analysis. Observing carefully the proof of Theorem 2.14 in [8], we found that it is still valid
when “semismoothness” property of G(·) is weakened to “local Lipschitzian” property of
G(·).

Theorem 2 If g(·) is locally Lipschitz on (a, b), then the function G(·) is locally Lipschitz on
J (a, b). Furthermore, the Clarke generalized Jacobian ∂G(x) of G(x) for every x ∈ J (a, b)
is a set of symmetric linear operators from J into itself, and satisfies

∂G(x) ⊇ ∂G(x) ⊇ ∂G(x)

with the sets ∂G(x) and ∂G(x) being given respectively by

∂G(x) := conv





⋃

{c1,··· ,cr}∈C(x)

∂c1,··· ,crG(x)





and

∂G(x) :=







2

r̄
∑

i6=j, i,j=1

[µi(x), µj(x)]gL(bi(x))L(bj(x)) +

r̄
∑

i=1

∂g(µi(x))Q(bi(x))







,

where ∂c1,··· ,crG(x) :=
{

2
∑r

i6=j, i,j=1{[λi(x), λj(x)]g}L(ci)L(cj) +
∑r

i=1 ∂g(λi(x))Q(ci)
}

, C(x)

is the set consisting of all Jordan frames in the spectral decomposition type II of x, and

[τi, τj ]g :







=
g(τi)−g(τj )

τi−τj
if τi 6= τj,

∈ ∂g(τi) if τi = τj.

3. Monotonicity. This section establishes that the monotonicity of g is equivalent to that
of the Löwner operator G.

Theorem 3 Let g be a locally Lipschitz function from (a, b) into R, and let G be the corre-
sponding Löwner operator from J (a, b) into J . Then the following hold:

(a) G is monotone on J (a, b) if and only if g is monotone on (a, b).

(b) G is strictly monotone on J (a, b) if and only if g is strictly monotone on (a, b).
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(c) G is strongly monotone with modulus µ > 0 on J (a, b) if and only if g is strongly
monotone with modulus µ > 0 on (a, b).

Proof. Part (a): “ ⇒ ” It is trivial from the definition of monotonicity.
“ ⇐ ” Since g(·) is locally Lipschitz, by Theorem 2 the Clarke generalized Jacobian ∂G(·)

exists. Since g is monotone, the subdifferential ∂g(t) ⊆ R+ for every t ∈ (a, b). Hence, the
conclusion follows immediately from Theorem 2 and Theorem 2.17 in [8].

Part (b): “ ⇒ ” It is similar to the proof of Part (a).
“ ⇐ ” For any x, y ∈ J (a, b), we consider the following two cases.
Case 1: If x, y operator commute, then there is a Jordan frame {e1, · · · , er} such that x =

∑r
i=1 xiei, y =

∑r
i=1 yiei. Then, x 6= y if and only if there exists an index i ∈ {1, 2, · · · , r}

such that xi 6= yi. By strict monotonicity of g, 〈yi − xi, g(yi)− g(xi)〉 > 0 for yi 6= xi. Thus,
we derive that if x 6= y

〈y − x,G(y) − G(x)〉 =

〈

r
∑

i=1

yiei −
r
∑

i=1

xiei, G

(

r
∑

i=1

yiei

)

− G

(

r
∑

i=1

xiei

)〉

=

r
∑

i=1

〈yi − xi, g(yi) − g(xi)〉‖ei‖
2 > 0.

Case 2: If x, y do not operator commute, then setting h := y−x, we have y = x+h. For
any z in the convex hull [x, y] of x and y, it is easy to show that z and h do not operator
commute either.

We will show 〈h, V h〉 > 0 for all V ∈ ∂G(z) with z ∈ [x, y] and h = y−x when x, y do not
operator commute. By Theorem 2 and the definition of ∂G, it suffices to demonstrate that
〈h, V h〉 > 0 for every {c1, · · · , cr} ∈ C(z) and V ∈ ∂c1,··· ,crG(z). In this case, we take z =
∑r

i=1 λi(z)ci, and V = 2
∑r

i6=j, i,j=1 νijL(cj)L(ci)+
∑r

i=1 νiiQ(ci) with νij ∈ {[λi(z), λj(z)]g}.
For every i, j ∈ {1, 2, · · · , r}, we define wij := min {[λi(z), λj(z)]g} . Then νij − wij ≥ 0 and

wij =







g(λi(z))−g(λj (z))
λi(z)−λj(z) > 0 if λi(z) 6= λj(z),

wii = wjj ≥ 0 if λi(z) = λj(z),

by the strict monotonicity of g. Based on this, we further define

W := 2

r
∑

i6=j, i,j=1

wijL(ci)L(cj) +

r
∑

i=1

wiiQ(ci).

As in the proof of Theorem 2.11 in [8], we conclude that 〈h, V h〉 − 〈h,Wh〉 ≥ 0. Thus, it
suffices to verify 〈h,Wh〉 > 0.

Consider Spectral Decomposition Type I of z, i.e., z =
∑r̄

i=1 µi(z)bi as in Section 2 with
Ni(z) := {j : λj(z) = µi(z)} and bi :=

∑

j∈Ni(z) cj . It holds by Theorem 1 and the argument
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after Spectral Decomposition Type II that

h =

r
∑

i=1

hici +
∑

1≤j<l≤r

hjl

=

r̄
∑

i=1

∑

k∈Ni(z)

hkck +
∑

1≤j≤l≤r̄





∑

m∈Nj(z),k∈Nl(z),m<k

hmk





=
r̄
∑

i=1

∑

k∈Ni(z)

hkck +
∑

1≤j=l≤r̄





∑

m∈Nj(z),k∈Nl(z),m<k

hmk



+
∑

1≤j<l≤r̄





∑

m∈Nj(z),k∈Nl(z),m<k

hmk





=

r̄
∑

i=1





∑

k∈Ni(z)

hkck +
∑

m,k∈Ni(z),m<k

hmk



+
∑

1≤j<l≤r̄





∑

m∈Nj(z),k∈Nl(z),m<k

hmk



 .

Letting J(bi, 1) := {s ∈ J : s◦bi = s}, from Lemma 20 in [5], we know that for all 1 ≤ i ≤ r̄,
(

∑

k∈Ni(z) hkck +
∑

m,k∈Ni(z),m<k hmk

)

∈ J(bi, 1). This means that there exists a Jordan

frame {ej : j ∈ Ni(z)} in J(bi, 1) such that





∑

k∈Ni(z)

hkck +
∑

m,k∈Ni(z),m<k

hmk



 =
∑

j∈Ni(z)

h̄jej with bi =
∑

j∈Ni(z)

ej .

Therefore, we obtain

r̄
∑

i=1





∑

k∈Ni(z)

hkck +
∑

m,k∈Ni(z),m<k

hmk



 =

r̄
∑

i=1

∑

j∈Ni(z)

h̄jej , and z =

r̄
∑

i=1

∑

j∈Ni(z)

µi(z)ej ,

which implies that

r̄
∑

i=1





∑

k∈Ni(z)

hkck +
∑

m,k∈Ni(z),m<k

hmk



 and z operator commute

because {ej , j ∈ Ni(z)} (i ∈ {1, · · · , r̄}) form a Jordan frame in A by Proposition 2.6 in [10].
Since z and h do not operator commute, it follows that

∑

1≤j<l≤r̄





∑

m∈Nj(z),k∈Nl(z),m<k

hmk



 6= 0. (2)
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Utilizing the linearity of L(·) and the definition of Q(·), we rewrite the above W as

W = 2

r
∑

i6=j, i,j=1

min{[λi(z), λj(z)]g}L(ci)L(cj) +

r
∑

i=1

min{[λi(z), λi(z)]g}Q(ci)

= 2

r
∑

i,j=1

min{[λi(z), λj(z)]g}L(ci)L(cj) −

r
∑

i=1

min{∂g(λi(z))}L(ci)

= 2

r̄
∑

k,l=1

∑

i∈Nk(z),j∈Nl(z)

min{[λi(z), λj(z)]g}L(ci)L(cj) −

r̄
∑

k=1

∑

i∈Nk(z)

min{∂g(λi(z))}L(ci)

= 2
r̄
∑

k,l=1

min{[µk(z), µl(z)]g}L





∑

i∈Nk(z)

ci



L





∑

j∈Nl(z)

cj





−

r̄
∑

k=1

min{∂g(µk(z))}L





∑

i∈Nk(z)

ci





= 2

r̄
∑

k 6=l,k,l=1

min{[µk(z), µl(z)]g}L(bk)L(bl) +

+2

r̄
∑

k=1

min{[µk(z), µk(z)]g}L(bk)L(bk) −

r̄
∑

k=1

min{∂g(µk(z))}L(bk)

= 2
r̄
∑

k 6=l, k,l=1

[µk(z), µl(z)]gL(bk)L(bl) +
r̄
∑

k=1

wkkQ(bk).

Then,

〈h,Wh〉 =

〈

h, 2
r̄
∑

i6=j,i,j=1

[µi(z), µj(z)]gL(bj)L(bi)h

〉

+

〈

h,

r̄
∑

i=1

wiiQ(bi)h

〉

=
∑

1≤j<l≤r̄

[µj(z), µl(z)]g

∥

∥

∥

∥

∥

∥

∑

m∈Nj(z),k∈Nl(z),m<k

hmk

∥

∥

∥

∥

∥

∥

2

+

r̄
∑

i=1

wii〈h,Q(bi)h〉,

where the last equality holds by Spectral Decomposition Type I and the fact that

L(bj)L(bi)h = bj ◦ (bi ◦ h) =
1

4

∑

m∈Nj(z),k∈Ni(z),m6=k

hmk

=
1

2

∑

m∈Nj(z),k∈Ni(z),m<k

hmk.

Using [µj(z), µl(z)]g > 0 for 1 ≤ j < l ≤ r̄ and wii ≥ 0 for i ∈ {1, 2, · · · , r̄}, and applying
the inequality 〈h,Q(bi)h〉 ≥ 0 (see, e.g., [19] ), we derive that

〈h,Wh〉 = 0 ⇒
∑

1≤j<l≤r̄

[µj(z), µl(z)]g

∥

∥

∥

∥

∥

∥

∑

m∈Nj(z),k∈Nl(z),m<k

hmk

∥

∥

∥

∥

∥

∥

2

= 0.
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Moreover,

∑

1≤j<l≤r̄

∥

∥

∥

∥

∥

∥

∑

m∈Nj(z),k∈Nl(z),m<k

hmk

∥

∥

∥

∥

∥

∥

2

= 0,

a contradiction to (2). So, in this case, 〈h,Wh〉 > 0 and hence 〈h, V h〉 > 0 for all V ∈ ∂G(z).

By the mean value theorem, G(y) − G(x) ∈ conv{∂G(z)(y − x) : z ∈ [x, y]}. Therefore,

〈y − x,G(y) − G(x)〉 ∈ conv







〈h, V h〉 : V ∈
⋃

z∈[x,y]

∂G(z)







.

The last inclusion implies in this case that 〈y − x,G(y) − G(x)〉 > 0, ∀x 6= y.

Combining the above two cases, we conclude the proof of Part (b).

Part (c): “ ⇒ ” It is similar to the proof of Part (a).
“ ⇐ ” Let ḡ(t) := g(t)−µ for t ∈ (a, b). Then ḡ(·) is monotone on (a, b) by the assumption.

Applying the sufficiency result of Part (a), we observe that Ḡ(x), the corresponding Löwner
operator of ḡ(·), is monotone on the box set J (a, b) (it is easy to verify Ḡ(x) = G(x)− µI).
The desired conclusion therefore follows immediately. �

4. Application: Mangasarian C-function. Recall the Mangasarian class of NCP-
functions φM (a, b) = θ(|a − b|) − θ(a) − θ(b), ∀a, b ∈ R, where θ is a strictly increasing
function from R into R with θ(0) = 0. Let Θ denote the corresponding Löwner operator of
θ. We define Mangasarian C-function ΦM : J × J → J by

ΦM (x, y) := Θ(|x − y|) − Θ(x) − Θ(y). (3)

By employing Theorem 3, we obtain the following theorem, which shows that ΦM is a C-
function for SCCP.

Theorem 4 Let A be a Euclidean Jordan algebra of rank r, and K be the symmetric cone.
If ΦM is given by (3) with θ being a strictly increasing function from R into R with θ(0) = 0,
then the following statements are equivalent:

(a) x ∈ K, y ∈ K, and x ◦ y = 0.

(b) ΦM(x, y) = 0.

Proof. “(a) ⇒ (b)” Since (a) holds, the elements x, y operator commute by Proposition 6 in
[5]. Thus, there is a Jordan frame {e1, · · · , er} such that x =

∑r
i=1 xiei and y =

∑r
i=1 yiei.

So, x ◦ y =
∑r

i=1 xiyiei, and (a) implies that xi ≥ 0, yi ≥ 0 and xiyi = 0 for all i ∈
{1, 2, · · · , r}. Then θ(|xi − yi|) − θ(xi) − θ(yi) = 0 for all i ∈ {1, 2, · · · , r}. Thus, we have

ΦM (x, y) = Θ(|x − y|) − Θ(x) − Θ(y)

=
r
∑

i=1

θ(|xi − yi|)ei −
r
∑

i=1

θ(xi)ei −
r
∑

i=1

θ(yi)ei

=

r
∑

i=1

[θ(|xi − yi|) − θ(xi) − θ(yi)]ei = 0.
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“(b) ⇒ (a)” Let the spectral decompositions of x − y and |x − y| be given by

x − y =

r
∑

i=1

ziei and |x − y| =

r
∑

i=1

|zi|ei, (4)

where {e1, · · · , er} is a Jordan frame in A. Then, by Theorem 1 we have

x =

r
∑

i=1

xiei +
∑

1≤j<l≤r

xjl, y =

r
∑

i=1

yiei +
∑

1≤j<l≤r

yjl, (5)

where xi, yi ∈ R, and xjl, yjl ∈ Jjl. Furthermore,

〈

∑

1≤j<l≤r

xjl, u

〉

= 0,

〈

∑

1≤j<l≤r

yjl, u

〉

= 0 (6)

for any u ∈ span{e1, · · · , er}. Comparing (4) with (5), we obtain that

∑

1≤j<l≤r

xjl =
∑

1≤j<l≤r

yjl. (7)

Take u in (6) as u :=
∑r

i=1 θ(|zi|)ei −
∑r

i=1 θ(xi)ei −
∑r

i=1 θ(yi)ei. Then, by the definition
of Θ and 0 = ΦM (x, y) = Θ(|x − y|) − Θ(x) − Θ(y), we conclude

u = Θ(|x−y|)−Θ

(

r
∑

i=1

xiei

)

−Θ

(

r
∑

i=1

yiei

)

= Θ(x)+Θ(y)−Θ

(

r
∑

i=1

xiei

)

−Θ

(

r
∑

i=1

yiei

)

,

from which we deduce using (6) and (7) that

0 =

〈

∑

1≤j<l≤r

xjl, u

〉

=

〈

∑

1≤j<l≤r

xjl,Θ(x) − Θ

(

r
∑

i=1

xiei

)

+ Θ(y) − Θ

(

r
∑

i=1

yiei

)〉

=

〈

x −

r
∑

i=1

xiei,Θ(x) − Θ

(

r
∑

i=1

xiei

)〉

+

〈

y −

r
∑

i=1

yiei,Θ(y) − Θ

(

r
∑

i=1

yiei

)〉

.

This along with Theorem 3 and the strict monotonicity of θ yields x −
∑r

i=1 xiei = 0, y −
∑r

i=1 yiei = 0. Hence, |x − y| =
∑r

i=1 |xi − yi|ei and

0 = ΦM(x, y) = Θ(|x − y|) − Θ(x) − Θ(y) =
r
∑

i=1

[θ(|xi − yi|) − θ(xi) − θ(yi)]ei.

Thus, for all i ∈ {1, 2, · · · , r} we have θ(|xi − yi|) − θ(xi) − θ(yi) = 0. Note that θ is strictly
monotone on R. The desired conclusion follows immediately from Mangasarian’s original
result [16]. �
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