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1 Introduction

A very general problem in optimization is to compute the convex hull of non-convex sets. By
compute, we mean to express the convex hull as the intersection of halfspaces or the intersection of
well-understood convex cones and arbitrary affine subspaces. In the first case, we can essentially
reduce the potentially very difficult non-convex optimization problem (say we want to maximize a
linear function over the non-convex set) to a potentially very very large scale linear programming
(LP) problem. In the second case, we may take the convex cone as the cone of symmetric, positive
semidefinite matrices and essentially reduce the potentially very hard, non-convex optimization
problem to a potentially very very large scale semidefinite programming (SDP) problem.

Some such general methods were developed by Kojima and the first author [4]. These suc-
cessive convex relaxation methods laid the foundations; however, they required the solution of
infinitely many LP problems or SDP problems with infinitely many linear inequality constraints
in every major iteration. Later, discretizations of these methods were proposed [5]. The dis-
cretized methods required the solution of finitely many (even though potentially a very large
number of) ordinary LP problems or SDP problems (with very large number of linear inequal-
ity constraints) in every major iteration and these methods are guaranteed to converge to an
arbitrarily prescribed approximation of the convex hull in finitely many major iterations (the
number depending on the desired precision among other things in the input). These imple-
mentable versions led to the development of heuristics and computer codes by Takeda, Dai,
Fukuda and Kojima [3].

Recently, Kojima and Takeda [2] studied the computational complexity of semi-infinite suc-
cessive convex relaxation methods of [4] for the first time and provided upper bounds on the
number of major iterations, in terms of certain measures of the input, the feasible region, and
the desired precision.

We use the approach of Kojima and Takeda [2] with essentially the same measures. Our
analyses can also use their original measures. In this case, our complexity bounds are within a
small constant (four) multiple of theirs. Our analyses extend Kojima-Takeda analysis in that
discretized successive convex relaxation methods require the solution of finitely many ordinary
LP or SDP problems in each major iteration.

We follow much of the notation and the approaches in [5, 2].

S™ = the set of n X n symmetric matrices.
St = the cone of n X n symmetric positive semidefinite matrices.
gf(:;7v,9,Q) = the quadratic function having the constant term 7,

the linear term 2¢” z, and the quadratic term z? Qz;
9f(2;7,4,Q) =7+ 2¢"2z + 2" Qz for z € R",
where y e R, g€ R", and Q € S™.

o denotes the set of all ¢f(-;7, ¢,Q) such that Q € S%.
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L denotes the set of all ¢f(-;7v, ¢,Q) such that @ = 0.
|[v]| for v € R", denotes the Euclidean 2-norm.
||M]| for M € R™*", denotes the operator 2-norm.
||M | F for M € R™*", denotes the Frobenius norm.
vec(M) for M € R™", denotes the n’-vector with elements M;;.
e; €ER" denotes the jth unit vector.
e € R" denotes the vector of all ones.
D = {deR": |d|| =1}
B(z,,7) = {z eR": ||z — .| <r}
: the closed Euclidean ball with center z. and radius .
D(c,r) := DnB(ec,r).

Given 6 > 0 and D C D, a subset D’ of D is a é-net of D if for every d € D, there exists
d' € D' such that ||d — d'|| < 4.

The input data are a nonempty compact convex subset Cy of R™ (e.g., an ellipsoid) and a set
Pr of finitely many quadratic functions. The complexity bounds will depend on the diameters of
Cy and F' denoted diam(Cy) (and diam(F)), a given positive constant ¢, describing the desired
approximation of the convex hull of F' (c.hull(F')) and the complexity measures given below
(also see [2]):

I/lip = Vlip(PF,CO) = SUP{W 223,3/,600,23753/,]?(‘) < PF}’
vne = vne(Pr) = max{— inf{A\,n(Q) : ¢f(;7,9,@Q) € Pr},0},
vpl = vy)(Pr) :=sup ZZ Qi 4| 4f(57,4,Q) € Pr

=1 5=1

Here, Apin(Q) denotes the minimum eigenvalue of Q € §™. Note that Y]ip» ¥nc; and v,)) are finite
nonnegative numbers. If v,; = 0, then we have a description of F' in terms of the intersection
of halfspaces and F' = c.hull(F'). Therefore, we can assume v,; > 0. Now, we can normalize the
data to ensure that that v;; = 1. Let’s call the related measures of the scaled data Dlip’ Unc

and 7,]. Note that 7nc < 1. Our analyses can also be used (with very minor modifications) for
the unscaled data (with v) # 1).

Let C be a compact subset of R™. For every d,d;,ds € D and for every z € R", define
o(C,d) = max{dTz:zecC},
Isf(z,C,d) = d¥z— a(C,d),
r2f(z,C,dy,ds) = —(dfz - a(di,Co))(dsz — a(ds, C)).
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Let D1, Dy C D, we also define
PL(CaD) {lsf(-;C,d):dE D}a
P*(C,Dy,Ds) = {r2f(;C,dy,dy): dy € Dy,dy € D5}

Now, we describe the algorithms based on successive SDP relaxations and successive semi-
infinite LP relaxations.

Algorithm 1(SSDP Relaxation Method [4, 5])

Step 0 : Choose a pair of direction sets D;, Dy C D. Let k = 0.
Step 1 : If C;, = 0 then stop.
Step 2 : Compute a(Cy, d) = max{d’z : € C}} (Vd € Dy U Ds).
Step 3 : Let Py, = PL(Cy, D1) U P?(Cy, D1, D5).
Step 4 : Let

Cry1 = 13’ (Co, PrUPr)
1 27
X
7+2q z+QeX <0 (Vgf(57,4,Q) € PrUPr)

Step 5 : Let k =k + 1, and go to Step 1.

‘ 3X € 8™ such that ( ) € 8_1|_+"and

8

Algorithm 2 (SSILP Relaxation Method [4, 5])

Step 0, 1, 2, 3: The same as Steps 0, 1, 2, 3, of Algorithm 1, respectively.

Step 4 : Let
Crr1 = FL(Co,PrUPy)

JdX € 8™ such that
= 136003 T .
Y+2¢z+ Qe X <0 (Ygf(-57,4,Q) € PrU Py)

Step 5 The same as step b of Algorithm 1.

In Section 2, we extract the skeleton of the analysis of Kojima and Takeda [2] by separating
it from the more technical part (which requires the construction of certain valid inequalities
for Euclidean Balls containing the current convex relaxation) and make it slightly more general
and abstract to enhance the understanding of the analyses. In Section 3, we cite two technical
results also used in [5] and [2]. In Section 4, we present our technical results for Algorithm 1 and
complete the analysis using the results of Sections 2 and 3. Section b serves the same purpose
for Algorithm 2 in the same way.
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2 The frame of the complexity analyses

In this section, we go over the skeleton of the complexity analysis of Kojima and Takeda [2].
We slightly unify a few of the ideas of the analysis.

Given £ € R" and G C R",

p(§,G) = sup{fle - &[|: =€ G},

the radius of the smallest Euclidean ball, centered at &, containing G. Given € > 0 and ¥ > 0,
two relaxations of F' are used:

F(e) = F(Co,Pr) = {2 €Cy: p(e) < ¢ forall p(-) € Pr}

and

crelax (F(y),G) = () B( p(& F(¥)).

¢eG
Note that by definition, c.relax (F(¢),G) DO c.hull(F(¢)) D c.hull(F). The first relaxation,

F(e), is used in describing the desired output of the algorithm, which is a convex set Cj,
containing F' and contained in the convex approximation c.hull(F(¢)). The second relaxation,
c.relax (F(¢), G), even though implicit, is currently much easier to deal with in the complexity
analyses than the first relaxation (see [5] and [2]). Kojima and Takeda [2] connected these two
relaxations with the following result.

Lemma 2.1 (Corollary 2.5 of [2]) Assume that

viipdiam(Cy)

& €eChand0<e< 5 . (1)

[1]

€

_ 3 (fo, 2Vlip(diam(00))2) ‘ (2)

Then c.relaz (F(e/2),E) C c.hull(F(¢)).

We see from the conclusion of the above lemma that to establish the convergence in k
iterations, it suffices for us to prove that Cj, C c.relax (F(¢/2), E) for the Algorithms 1 and 2.

Given 7 (to be described later, in terms of ip and 7pc), we define

8 ifp < —m?
. { ™ BV i, (diam(cn)”
— 62 .
——*¢ — — oth
27np(diam(Cy))’ orherwise,
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™ : = 62
g ,_ { 8 if 7 < 247rn(dia.m(00))3’
= 2 i
m otherw1se,
§ = 1-&0
Note that § > 0,
= e
6=0 iff o< 3 (3)
210n (diam(Cy))
and
- e
0<é6<1 iff #> <. (4)
210n (diam(Cy))
In particular, if
me? _ €
. 3 < < ; 3
210n (diam(Cy)) 247n (diam(Cy))
then
_ 71'2
0 <4 < (1 — 2—6) (5)
If
_ e
v - 3
2%7n (diam(Cy))
then
_ _ 54
—In(é) > RO = - (6)
2M14n2p2? (diam(Cy))
It is also easy to compute
- e
(R +06)7 26n(diam(Cq))3 @

For every £ € =2 and k > 0, define

P (€) = max{p (& F(e/2)),3p(&,Ch)}

Definition 2.1 A successive convez relazation algorithm is said to have the §-shrinking property
if for every iteration k > 0,

Cry1 C m B (&, p41(€)) -

£€E
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Suppose we prove that an algorithm has the é-shrinking property for some value of §, bounded
away from 1. Then, we see that for each £ € = either the termination condition holds, or the
corresponding p value decreases as

p(€,Cri1)) < 6p(€,Ch). (8)

Considering the relations (6) and (8), we can establish

Lemma 2.2 (/2]) Suppose diam(F) > 0, the assumptions of Lemma 2.1 hold and that the
successive conver relaxzation algorithm at hand has the §-shrinking property for the above defined
value of §. Define

2

1 if v < 210n(d27'rc;m(00))3’
k= T di a2 87y d1am(Co)? . (9)
[(2 (dzgm(co)) ) In :pdiam(F) “ otherwise.
If k> k*, then Ct, C c.hull(F(€)).
Proof. For every £ € E and k= 0,1,..., define
p(6) i= max{p(&, F(4)),p(é, Cu)}
It suffices to show that if £ > k* then
pr(€) < p(§, F(¥)), V€ €E. (10)

In fact, if (10) holds, then

Cr C [ B pr(€)) € [) B(& p(&, F())) = c.relax(F(¢), E).

£eE ¢ex
By the é-shrinking property,
pre1(€) < max{p(¢, F(¥)), opr(€)}

This implies that

pr(€) < max{p(¢, F(¥)),0%po(€)} V€ € E and Yk =0,1,2,....

Hence, for each £ € =, if k satisfies the inequality

8 po(€) < p(&, F(¥)), (11)
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2

then pi(€§) < p(&, F(¢)). When 7 < m, we see from (3) that § = 0. Hence (10)
: e? = €2 :
holds for & = 1. Next, we consider the case W < v < 24wn(diam(co))3' In this
case, we have, by (5),
_ 71'2

Using this, and the below arguments for the third remaining case, we can prove that k™ can be

taken as
96 Sﬂlipdiam(00)2

2 diam(F) ’

. re? _ &2 . . .
if m < v < —24wn(diam(co))3' This bound is clearly better than the claim of the
lemma. Now finally, assume that 7 > 7 ___ Thend >0 by (4). Since

210 (diam(Cy))3
FCF(y)CCoCE,

we see that

diam(F)/2 < p(&, F($)) < pol€) < diam(), for V¢ € &,

_ { ap:_(diam(Cy))?
Hence, if §* ( ip - ’ ) < diam(F')/2, or equivalently, if

8711p(diam(Co))?
¢ diam(F) '’
then (11) holds. Using (6) we conclude that if £ > k&, then
Cr C crelax(F(€/2),2) C c.hull(F(e))

E(—1Iné) > In

as desired. O

3 Some technical results from the previous work

First we cite a theorem establishing the equivalence of two types of relaxations for each of the
algorithms.

Theorem 3.1 (see Theorem 2.1 of [1], and Theorem 4.2 and Corollary 4.3 of [{]) Under our
assumptions, for Algorithm 1, we have for every k > 1,

F(Co,PFUPL) = {2 €R™: p(z) < 0, ¥p(-) € (c.cone(PrUPr) N Q4)}.
Under our assumptions, for Algorithm 2, we have for every k > 1,

F(Co,PrUPL) = {2z €R™: p(z) < 0, Vp(-) € (c.cone(PrUPr)NL)}.
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Next, we will cite a result about the rank two valid inequalities for Euclidean balls. For
every 0 € (0,7/8],w € D, and i = 1,2,...,n, define

v;(0,w) = ||wcosf + e;sinb||, v;(0,w):=||wcosh —e;sinb|,

bi(0,w) = wesfdesind € D bi(,w) = wefasnd ¢ D, (12)
v (0w 3 7; (6,w

A0, w) = 2(sin9)’ (0, w) = 2(sin9'

For every z € R, p > 0,6 € (0,7/8,we€ D,i=1,2...,n,and j = 1,2,...,n, define

fi(z,p,0,w) = Xi(0,w)r2f(e, —e;, b:(0,w), B(0,p))
FXi(0, w)r2f (2, ), bi(6, w), B(0, p))
= N, w)Te - p) (—eTa - a(—e;, Co))
X6, 0)(B:(6,0) 2 — p) (2 — ale;, C0)) |
fij @, p,0,w) = X(0,w)r2f(z,e;b (9 w), B(0, p))
FXi(0, w)r2f(z, —e;, b:(6,w), B(0, p))
= (0, w) (b0, w) z - p) (¥ — a(ej, Cy))
—Xi(0, w)(b:(8, w) Tz — p) (—e & — a(—e;, Co))

We use the following further extension of Lemma 4.3 of [5], which was also used by [2].

Lemma 3.1 (Lemma 4.1 of [2]) Let p > 0,6 € (0,7/8],w € D,i € {1,2,...,n} and j €
{1,2,...,n}.
(i) Let D' == {b;(8,w),b;(8,w)}. Then
f@—‘l;(a pa 0’ w)a f@;(a pa 0, w) € c.cone(’P2(B(0, p)a Dla D/))a

for every p > 0,0 € (0,7/8] and w € D.

(11)T The Hessian matriz of the quadratic function fl‘;(, p,0,w) : R™ — R coincides with the
8i8T+8‘8T

n X n matric —5""—.

(1)~ The Hessian matriz of the quadratic function fi(.,p,0,w) : R™ — R coincides with the

T T
eje; +eje;
2

(iii) Suppose that &k > 0,1 > §>1—7%0>0 and Spw € Cy. Then
fl‘lj' (6pw, p, 8, w), fi;(gpw, p,0,w) € [—2pdiam(Cy) (% + 6),0].

n X n matriz —
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4 Complexity analyses for SDP based algorithms

In this section, when we use the results from Section 2, we always let v := Dlipﬂnc' Also, in this
section, we can assume 7pc > 0. (If Inc = 0, then F is convex and the first SDP relaxation is
exact.)

Let 7prw € Cp with 7 < 1 and ||w|| = 1. Then
bl(o_, w) and 51(0_, w) € D.

Let

5 < mi sin 6 e2sinf (13)
= T ’26m71ip17nc(diam(00))3

and D, be a §—net of D. Choose
a; € D(b;(6,w),8) N D,

a; € D(b;(0,),8) N Ds.

Let A :=[a1,as,...,a,] € R™", A :=[a;,as,...,0a, € R"¥",

gii(z) = A + 1(9,@)7“2f(l' ej, @i, C)
, W) (aT:L' al,Ck ) ( e?m e],Co))
)

(e ale;, Co))

Let

= Z Z HijGij

=1 5=1

where M := [p;;] € S™.

2ﬂlip(diam(co))2

€

5 c [0.mi sin e2sinf
T T4 ’26n17[ip17nc(diam(00))3

such that when we take Dy to be a §*-net of D, we have the following properties: There exists
[ij] € 8™ such that

Proposition 4.1 Let p;, € (0, ) and Cy, C B(0, pr). Then there exists a

(i) pij >0, for alli,j,
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(ii) the Hessian of g(z) is Unc <I + %eeT»
(13) ||vec(M)||, < 4ninc.
Proof.
The Hessian of g(z) is
_ _ _ _ T
non (<Xl @) el + X8 @)@l ) + (—2i(8 D)aieT + X6, w)ae] )
-~ ZZ'MU 9
=1 j=1
"L (N0, @)a — A, @)a) €T + e; (Mi(f, @)a; — M0, @)a;) T
= 2D M 3
=1 j=1
"o~ hi(8,@, A, A)el +e;hi(0,w, A, A)T
= 2D M 3
=1 j=1
_ H(8,w, A AM+ MH(G,®, A, AT
= 5 ,
where
hi(0,w, A, A) :== \;(0,w)a; — \;(0,w)a;, i=1,2,...,n (14)
and
H(0,w, A, A) = (h1(8,®, A, A), ho(0,@, A, A),..., h,(0,w, A, A)) (15)
Since
hi(0,w, A, A) = X(0,®)a; — \(0, ®)a;
= }\i(_, ﬂ))bz(o_a _) - 5\1(0_, ’lf))i)i(_, ’II))
+Xi(8, @) (a; — b;(8, ®)) — Xi(6, @) (a; — b;(6, w)),
and
A, D)bi(F, ®) — (G, 0)5i(B,0) = 1 (i=1,2,...,n)
we have H = I — P with P := [p1,ps,...,pn) and
pi == Xi(0,®) (a; — b;(8, w)) — Xi(6, @) (a; — b;(6, w)) (16)

Using (16) and the definitions, we obtain

1Pl < IPlle

Il + psll” + -+ llpa?
Il + sl + -+ gl

Z(M )| [|a; — bs(8, )| + |Xi(8, @)| ||a: — b:(0

=1

IA

IA

o))
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<

D)

sin
1

2

"L 926*

<

I

[

where the second to last inequality follows from

N M\

2sinf

Hﬁ) cosf + e; sin G_H
2sind

(Hu‘) cos 0_H2 + Hei sin 0_H2 + 2wTe; sin § cos 0_)%

2sind
(1+ 2w7e; sin f cos 0_)%
2sinf

1+ 1I)Tei cosfsinf
2sind

1+ 0.5w7e; sin 20
2sind

1
sin@’

and

|}‘i( ’ﬂ))| <

|
—

sinf’
So, the real parts of the eigenvalues of H are at least % and by Lyapunov Theorem, the equation
H(,w,A AM+ MH(@,o,A AT

5 = Fnc (I + %eeT) (17)

has a unique solution [y;;] € 8. Note that when we set
a; = b;(0,w), and a;:=b;(0,w),

we obtain H = I. In this case, the unique solution of (17) is inc <I—|— \/LﬁeeT>. Clearly,

every component of this matrix is positive. By continuity of the solution with respect to the
perturbations in H (and hence a;, @;), we see that there exists §* > 0 depending on 8, @ such
that for every a; € D(b;(#, ), "), and for every a; € D(b;(6, @), 5*), the solution matrix M has
all of its entries non-negative.

We now show the boundedness of [y;;]. Using the Kronecker product, the Lyapunov equation
(17) can be rewritten as follows:

IQH@,w A A+ HO o, A 0TI 1
® (,w, , )‘|’2 (,w, ) ) ® vec(M):VGC (DIIC (I—|—\/_66T)) (18)
n
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The coefficient matrix can be written as

I HO,w, A A+ HO,w, A, 4TI  IUI-P)+(I-P)7TeI
2 B 2
I@P+PT®I
_ 191--2 +2 oL (19)
Since
2nd*
I® Pll-< < _
I1@ Pl < <
and
i 2nd*
PTeI|,. < (17 <
P71l < \|n Dl < 5
we have
I@P+PT®I I@P+PT®I
2 = 2 .
1 1y 1
< slePlp+5 [P ey
2nd* 1
< <
— sinf — 2
By (19),
ToH®@O,w,A A)+H@O, 0,407\ "|| _ I®I_I®P+PT®I -
2 B 2
1
<
© ]
2
< 1
= 2.
Therefore,
IQH@ A A +H@, o A AHTQI\ " 1
HVGC(M)H S Tne ( ® (awa ) )—I_ (awa ) ) ® ) VeC(I—|——€€T)H
2 \/ﬁ
< 4y/nimc.

So, [[vec(M)|, < /7 |[vec(M)]| < 4n7nc. 0
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Note that by the above construction and the above proposition (implying g;; > 0) we have
that g(-) € c.cone <732(Ck, Dy, D2)> .

Proposition 4.2 Under the same conditions as in Proposition 4.1, we have

g(Tprw) > —€/2. (20)

Proof.
gij(Tprw) = (0, @) (G?Tpk’u_) — afa;, Ck)) (—e?Tpku_) — a—e;, Co))
(0, @) (L_‘L?Tpk’u_) — a(a;, Ck)) (E?Tpk’lf) — afe;, Co))
= —X(0,) (bi(0_, ﬂ))TTpkw - (ai,Ck)) (—e?TkaI) - a(—ej,Co))
(0, @) (i)i(g, ﬂ))TTkaI) — afa;, Ck)) (e?TkaI) — af(e;, Co))
—X;(0, @) (a; — (8, ’lI)))TTpk’u_) (—e?Tpku_) — a—e;, Co))
—X:i(0,w)(a; — b;(8, ’lI)))TTpk’u_) (E?Tpk’lf) — afe;, Co))
> —X;(0, ) (bi(0_, ﬂ))TTkaI) - pk) (—e?TkaI) — af—ej, Co))
(0, @) (i)i(g, ﬂ))TTkaI) - pk) (ej TPrW — ale;, Co))
~Xi(8,@)(a; — b;(8, @) rprw (— ?Tpku_) — a(—e;,Co))
—X:i(0,w)(a; — b;(8, ’lI)))TTpk’u_) (e?Tpkﬁ) — afe;, Co))
= [ (rpx®; pr, 0, @)
~X;i(0,@)(a; — b;(0, @) Tprw (—ej TprW — a—e;, Co))
—j\i(0_, w)(a; — T)i(_, w))* TPRW (E?Tpk’lf) — afe;, Co))
where the inequality above follows from the assumption that C, C B(0, pr) and the facts that
llail| = [l = 1.
Therefore,

gror®) = D (pijgii(ror®))

=1 5=1

> D wii £ (roiw; pr, 9, )

=1 5=1

v

k3 k3

+ Z Z ij [—}\i(g, w)(a; — b;(0, ’lI)))TTpk’lI) (—e?TkaI) — af—ej, Co))

=1 j=1

—Xi(0, @) (a; — b:(0, @) rprw (e?TkaI) — a(e;,Co))] .
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By Lemma 3.1 and Proposition 4.1

XD wii £ (rpws pi, 0, w)

=1 5=1
= —2prdiam(Cy)(k + 6 Z Z,u”
=1 5=1
> —2pdiam(Co)(% + 0) ||vecM]|,
—2*7}j57nc (diam(Co))* (% + 0)n
>
- €
€
> ——.
- 4

where the last inequality follows from (7). It is easy to see that

—diam(Cy)
—diam(Cy)

(Tpkw) a(—e?,Ch) <0,

< -
<e (Tpkw) — a(e?,Cy) < 0.

We also have

Z Z’uij [—}\i(g, w)(a; — b;(0, QI)))TTpk’lI) (—e?TkaI) — af—ej, Co))

=1 5=1
—X;(0,@)(a; — b;(8, QI)))TTpk’lI) (e?TkaI) — afe;, Co))] ‘
< 30D i [[MO @) ||as — (6, ) || Tox |0 | - €f Tprw — a(—ej, Co)l
=1 5=1
+ |A(6, @)| ||a; — bi(0 HTpkHwH|e Tpr® — afej, Co)l]
< ZZ/‘I’U [ : Tpkdlam(Co)]
=1 5=1
< D)
=1 5=1
< .2 5" prdiam(Co) (|vecM]],)
sin 0
< ,Sn_(s*pkdiam(Co)ﬁnc
sin 0
€
< -,
- 4
Therefore,
i)>-—S- 5> —€/2
g(rpr) 2 =y = 7 2 :
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Uiip diam(Co)
2

Theorem 4.1 Assume that § € Cy and 0 < € < and diam(F) > 0. Then there ex-

. * : sin§ €2 sinf . * N . .
ists 6* € | 0, min { "%, 26nﬂlip9nc(diam(co))3 }) such that using D, a 6*-net of D in Algorithm

1, yields the iterates {Cy : k > 1} such that
c.hull(F) C Cry1 C Cy for allk >0,

and

Cr C c.hull(F(€)) forallk > k",

where

. o n2ﬂ?ipﬂ%c(diam(00))6 | 817h~p(diam(00))2
- et n € diam(F) '

Proof. The monotonicity of the iterates {C) : k > 1} was proved in [5]. Let

§/(§) == max{p(, F()), 3p(€, i)}

We will first prove
Cr1 € (1) B, (9)).

éeE
It suffices to show that Cry1 C B(&, p/(€)) for every & € E. For an arbitrarily fixed & € E, let

pi = p(&,Cy) and o' = max{p(&, F(4)), 3p1}-

We may assume without loss of generality that £ = 0 because both of the algorithms (1 and
2) are invariant under parallel transformation. See [5] for more details. Since £ = 0 € E and
Cr C Cp C E, we see that

27ip, (diam(Cy))?

P <
€

If p(0,F(¢)) > pi, then p’ = p(0, F(¢))) > pr. In this case, the desired result follows from
Cr+1 € Cr. Now, suppose that p(0, F(¢)) < pr. Assuming that Z ¢ B(0, p’), we will derive

that Z ¢ Cryq1. If Z ¢ Cy, we obviously see ¢ Cyy1 because Cr11 C Cp. Hence we only need
to deal with the case that

zecCrCCo p(0,F())<p <||2—0| < pr. (21)

The relations (21) imply that Z € Cy and Z ¢ F(e/2). Hence there exists a quadratic function

¢f(;7,q,Q) € Pr such that ¢f(Z;7,q,Q) > €. Let w = z/||Z||, and 7 = ||Z|| /pr- Then we see
that

&l

= |lgllo = rprw,

T =zl /px > p'/pr > 6 =1~ RO.

—
v
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By Propositions 4.1, there exists a 6* positive, bounded away from zero, such that when we
take Dy to be a §*-net of D, we can find g(-) € c.cone <732(Ck, D, D2)> with Hessian matrix

Unc <I—|— ﬁeeT> . By the definition of 7,,., and since every eigenvalue of the Hessian matrix

of g(+) is at least #,,., all eigenvalues of qf(+;%,q,@) + g(-) are non-negative. Moreover, by
Proposition 4.2 such g(-) can be chosen to satisfy

af(%;7,7,Q) + g(z) > 0.

Therefore, Z ¢ Cry1 (we used Theorem 3.1). We proved Cki1 C (eeg B(§, p'(€))- Thus, Al-
gorithm 1 has the é-shrinking property for certain §* > 0 described above. Now, choosing
V= ’71ip’7nc in Lemma 2.2 implies the claimed bound on the number of iterations. a

5 Complexity analysis for LP based methods

In this section, when we use the results from Section 2, we always let v := 2V11p Let rprw € Cy
with 7 < 1. Then
bl(o_, w) and 51(0_, w) € D.

5 < mi sin 6 e2sinf (22)
= Ty ’27m71ip(diam(00))3

Let

and D5 be a §-net of D. Choose
a; € D(b;(0,®),8) N Dy,

a; € D(b;(0,),8) N Ds.

Let A :=[a1,as,...,a,] € R™", A :=[a;,as,...,0a, € R"¥",

gl‘;(a}) = ( ,’lf))r?f( ej,ai,Ck) + }\1(0_, )7'2f(33;ejaai,0k)
= —X(0,®) (T2 — a(a;, C)) (T2 — a(—e;,Co))
(0_ ) (a z — a(al,Ck)) (e? — a(ej,Co)) ,
9;@) = N

9, w)r2f(z; e;, ai, C) + \i(0, ®)r2f(z; —e;, a;, Cr)
0, w) (a?il) o(a;, C)) (e z — a(e;, Co))
~Xi(0,@) (@l — a(a;, Cr)) (—efz — a(—e;j,Co)) .

J
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Proposition 5.1 Let

where MT := [,uj;] €S" and M~ = [,ul_]] € 8™. Let pr, > 0 and Ci C B(0, px). Then there

erists a ~ ~
5 c {0 mi sin 6 e2sind
A NP 26m7hp17nc(diam(00))3

such that when we take Dy to be a 6*-net of D, we have the following properties:

(i) Given Q= € 8™ with all entries positive, satisfying HQ_HF < 2, there exists [,U;I;] c Sn
such that p;; > 0 for all i, j, the Hessian of gt (z) is @~ and H [,uj;]

<4.
F

(ii) Given QF € S™ with all entries positive, satisfying HQ"’HF

such that p;; > 0 for alli,j, the Hessian of g~ (z) is —QF and H [,ul_]] HF <4,

< 2, there exists [,ul_]] e s

Proof. We prove that part (i) holds and part (ii) can be proved similarly. As in the proof of
Proposition 4.1, we obtain

The Hessian of g* () is
H0,w, A AMt + M+tH(#,w, A, A)T

— : ,
where ) ) ) o
hi(8,w, A, A) := X\(0, w)a; — Xi(8, w)a;, i=1,2,...,n, (23)
and B B B B
H(0,w, A, A) = (h1(0,1f;, A, fl), hs(8,w, A, fl), , hee(0,w, A, fl)) (24)
Since
hi(0,w, A, A) = X(0,®)a; — A0, ®)a;
= X(0,@)b;(0, @) — X (0, w)b; (8, W)
+Xi(8, @) (a; — b;(8, ®)) — Xi(6, @) (a; — b;(6, w)),
and
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we have H = I — P with P := [p1,ps,...,pn) and
pi = }\1(0_, ’II)) (ai — bl(o_, ’II))) — 5\1(0_, ’II)) (L_li — 51(0_, ’II))) . (25)
As in the proof of Proposition 4.1, we obtain

1P|l <

N | =

So the real parts of the eigenvalues of H are at least % and by Lyapunov Theorem, the equation

H0,w, A AMt+ MtH(#,w, A, A)T

. -G (26)

has a unique solution [,uj;] € §™. Note that when we set
a; = b;(0,w), and a;:=b;(0,w),

we obtain H = I. In this case, the unique solution of (26) is Q. Every component of this matrix
is positive. By continuity of the solution with respect to the perturbations in H (and hence
a;, @;), we see that there exists §* > 0 depending on 6, @ such that for every a; € D(b;(9, w), §%),
and for every a; € D(b;(6,w),8"), the solution matrix M+ has all of its entries non-negative.
We now show the boundedness of ,uj'j . Using the Kronecker product, the Lyapunov equation

(26) can be rewritten as follows.

IQHB,w, A A+ H@O,0 A ATQT
2

vec(M™) = vec(Q7). (27)

As in the proof of Proposition 4.1, we obtain

H(I@H(é,w,A,A)+H(§,w,A,A)T®I)_1 <y
. < 2.
Therefore,
IQH@, @, A A +H@, o A HT oI\ -
freciary < |(FEAERRALAORLD OL) )|
< 2[Q7[|g
< 4.
So ||M*|[p < 4. o

Proposition 5.2 Under the same conditions as in Proposition 5.1, we have

g(Tprw) > —€/2. (28)
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Proof. As in the proof of Proposition 4.2, we obtain

gk (ror@) > f (Toxd; pr, 0, @)
—X;(0, @) (a; — b;(8, QI)))TTpk’lI) (—e?TkaI) — af—ej, Co))
—Xi(0, @) (a; — b;(0, @) rprw (e?TkaI) — a(ej, Co))

where the second to last inequality follows from the assumption that Cj C B(0, pr).

Similarly,

9;;(Tor@) > [ (Tok®; pr, 0, @)

~X:i(0, @) (a; — b;(8, @) Tprw (e?Tpkw — af(e;, Co))
—X:i(0,w)(a; — (8, QI)))TTpk’w (—e?Tpkw — af—ej, Co))
Therefore,
9(7prw) ZZ (u”f” (TPx@; pr, 0, @) + pi; fi; (TPr; pi:, b, w))

=1 5=1

Zz,uj; [—}\i(g, w)(a; — b;(0, QI)))TTpk’lI) (—e?Tpku_) — a—e;, Co))

=1 5=1

—j\i(0_, w)(a; — T)i(g, ’lI)))TTpk’u_) (e?Tpku_) — af(e;, Co))]

+ Zz,ul_] [—}\i(g, @) (a; — b;(0, ’II))) TPRW (e?TkaI) — afe;, Co))

=1 5=1

By Lemma 3.1 and Proposition 5.1 we obtain

(u”fJ (Tpx@; pr, 0, @) + pi; 55 (Tpr@; pi, b, w))

.M:
NE

-
Il

—
.,
Il

—

> (15 (~2pudiam(Co) (% + 8)) + p5; (~2pxdiam(Co) (& + 7)) )

.M:
NE

-
Il

—
.,
Il

—

= —2prdiam(Cy) (R + 0_) zn: zn: <'ul—l; + ,u;)

i=1 j=1

> —2ppdiam(Co) (R + O)n (| M ||z + || M~ ||7)
*n(diam(Co))*(% + 0)(27;p,)

2 N €

> _E

- 4

20
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where the last inequality follows from (7). As in the proof of Proposition 4.2, we obtain

Zz,uj; [—}\i(g, @) (a; — b;(8, @) rppw (—e?TkaI) — af—ej, Co))

=1 5=1

—j\i(0_, w)(a; — T)i(é, ’lI)))TTpk’w ( ?Tpkw — afe;, Co))]

+ Z Z,ul_] [—}\i(g, w)(a; — b;(0, QI)))TTpk’lI) (e?TkaI) — af(e;, Co))
=1 5=1

||M:
||M:

i

2::2:: oy [_—5 Tpkdlam(co)]

Tpkdlam(Co)]

< s1n05 prdiam(Cy) z::z:: ,u” + #i5)
< g pdism(Copn (M -+ 217
4
< 2n 5 prdiam(Cy)
sin
€
< -
- 4
Therefore,
€ €
g(Tprw) > “17" 12 —€/2.

Utip diam(Co)
2

Theorem 5.1 Assume that § € Cy and 0 < € < and diam(F) > 0. Then there

4 2 si.né
4n ! 27nﬂlip(dwm(co))3

2.
=]

such that using Dy, a 6*-net of D in Algorithm

exists 6% € (0, min {
2, yields the iterates {Cy : k > 1} such that
c.hull(F) C Cry1 C Cy for allk >0,

and

Cr C c.hull(F(€)) forallk > k",

* ntih, (diam(Co))° (85 (diam(C))?
k=0 ( et In ( fdiam(F) )) '

where
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Proof. The monotonicity of the iterates {C) : k > 1} was proved in [5]. The first half of the
proof is identical to the proof of Theorem 4.1. Let

§/(§) == max{p(, F()), 3p(€, i)}

We will first prove
Cr1 € () B P(€))-

£€E

It suffices to show that Cj11 C B(&, p'(§)) for every £ € E. For an arbitrarily fixed £ € Z, let

pi = p(&,Cy) and o' = max{p(&, F(4)), 3p1}-

We may assume without loss of generality that £ = 0 because both of the algorithms (1 and
2) are invariant under parallel transformation. See [5] for more details. Since £ = 0 € E and
Cr C Cp C E, we see that
2171ip(diam(00))2
€

If p(0,F(¥)) > pi, then p’ = p(0,F(¢¥)) > pr. In this case the desired result follows from
Cr+1 € Cr. Now, suppose that p(0, F(¢)) < pr. Assuming that Z ¢ B(0, p’), we will derive
that Z ¢ Cryq1. If Z ¢ Cy, we obviously see ¢ Cyy1 because Cr11 C Cp. Hence we only need
to deal with the case that

P <

zecCrCCo p(0,F())<p <||2—0| < pr. (29)

The relations (29) imply that Z € Cy and Z ¢ F(e/2). Hence there exists a quadratic function

¢f(;7,q,Q) € Pr such that ¢f(Z;7,q,Q) > €. Let w = z/||Z||, and 7 = ||Z|| /pr- Then we see
that

2]l @ = prw,

T =zl /px > p'/pr > 6 =1~ RO.

- &l
Il

v

Note that HQHl < 1. Therefore, we can find symmetric matrices Q,Q~ with all entries
positive such that HQ"’H < 2, HQ_H < 2, and Q = Qt — Q. Now, Proposition 5.1 implies
that there exists a §* > 0, bounded away from zero, such that when we take D, to be a §*-net
of D, we can find g(-) € c.cone <732(Ck, D;, D2)> with Hessian matrix Q~ — Q7 = —Q. Hence,

qf(%,4,Q) + g(-) is a linear function. Moreover, by Proposition 5.2, such g(-) can be chosen
to satisfy

¢f(%;%,4,Q) +g(2) > 0.
Therefore, Z ¢ Ciy1 (we used Theorem 3.1). We proved Ciy1 C ﬂéeEB(f,p’(S)). Thus, Al-
gorithm 1 has the é-shrinking property for certain §* > 0 described above. Now, choosing
U= ’71ip’7nc in Lemma 2.2 implies the claimed bound on the number of iterations. O
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6 Conclusion

For the given input Pr (finite), Co, and € > 0, there exists a largest value of § > 0 for which
the convergence analysis of [5] proves the (correctness and) finiteness of both algorithms. Let’s
call this critical value of 8, é¢cr. In our analysis in the current paper, we established that for the
same input, there exists 6* > 0 such that our complexity bounds apply. The proof techniques
we used here are very similar to those of [5], and as a result, the values of dcr and 6* implied by
the respective proofs are essentially the same (even though, we clearly have dcr > 6%).

As in the previous analysis by Kojima and Takeda [2] of the semi-infinite successive convex
relaxation methods, our analyses of the implementable, discretized versions, also indicate that
the current complexity bounds can be much better for SDP based algorithms than for LP based
algorithms if vpe << 1.
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