
Complexity Analyses of Discretized SuccessiveConvex Relaxation MethodsLevent Tun�cel� Song XuyResearch Report: CORR 99{37September 10, 1999Department of Combinatorics and OptimizationFaculty of MathematicsUniversity of WaterlooWaterloo, Ontario N2L 3G1CanadaAbstractWe investigate the computational complexity of discretized successive convex relaxation meth-ods in the way of upper bounding the number of major iterations required, in the worst case.Kojima and Takeda [2] earlier analyzed the computational complexity of semi-in�nite successiveconvex relaxation methods (these methods require the solution of in�nitely many linear pro-gramming or semide�nite programming problems with in�nitely many constraints to be solvedduring each major iteration). Our analyses extend Kojima-Takeda analysis to the discretizedsuccessive convex relaxation methods which require the solution of �nitely many ordinary linearprogramming or semide�nite programming problems in each major iteration. Our complexitybounds are within a small constant (four) multiple of theirs.Keywords: non-convex quadratic optimization, computational complexity, convex relaxation,semide�nite programming, linear programming, lift-and-project methodsAMS Subject Classi�cation: 52A27, 52B55, 90C25, 49M39, 90C05, 90C34�Research supported in part by a research grant from NSERC and by a PREA of Ontario, Canada. e-mail:ltuncel@math.uwaterloo.cayResearch supported in part by research grants from NSERC and by the PREA of the �rst author. e-mail:s2xu@math.uwaterloo.ca 1



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 21 IntroductionA very general problem in optimization is to compute the convex hull of non-convex sets. Bycompute, we mean to express the convex hull as the intersection of halfspaces or the intersection ofwell-understood convex cones and arbitrary a�ne subspaces. In the �rst case, we can essentiallyreduce the potentially very di�cult non-convex optimizationproblem (say we want to maximize alinear function over the non-convex set) to a potentially very very large scale linear programming(LP) problem. In the second case, we may take the convex cone as the cone of symmetric, positivesemide�nite matrices and essentially reduce the potentially very hard, non-convex optimizationproblem to a potentially very very large scale semide�nite programming (SDP) problem.Some such general methods were developed by Kojima and the �rst author [4]. These suc-cessive convex relaxation methods laid the foundations; however, they required the solution ofin�nitely many LP problems or SDP problems with in�nitely many linear inequality constraintsin every major iteration. Later, discretizations of these methods were proposed [5]. The dis-cretized methods required the solution of �nitely many (even though potentially a very largenumber of) ordinary LP problems or SDP problems (with very large number of linear inequal-ity constraints) in every major iteration and these methods are guaranteed to converge to anarbitrarily prescribed approximation of the convex hull in �nitely many major iterations (thenumber depending on the desired precision among other things in the input). These imple-mentable versions led to the development of heuristics and computer codes by Takeda, Dai,Fukuda and Kojima [3].Recently, Kojima and Takeda [2] studied the computational complexity of semi-in�nite suc-cessive convex relaxation methods of [4] for the �rst time and provided upper bounds on thenumber of major iterations, in terms of certain measures of the input, the feasible region, andthe desired precision.We use the approach of Kojima and Takeda [2] with essentially the same measures. Ouranalyses can also use their original measures. In this case, our complexity bounds are within asmall constant (four) multiple of theirs. Our analyses extend Kojima-Takeda analysis in thatdiscretized successive convex relaxation methods require the solution of �nitely many ordinaryLP or SDP problems in each major iteration.We follow much of the notation and the approaches in [5, 2].Sn := the set of n� n symmetric matrices:Sn+ := the cone of n � n symmetric positive semide�nite matrices:qf(�; 
; q;Q) := the quadratic function having the constant term 
;the linear term 2qTx; and the quadratic term xTQx;qf(x; 
; q; Q) := 
 + 2qTx+ xTQx for x 2 Rn;where 
 2 R; q 2 Rn; and Q 2 Sn:Q+ denotes the set of all qf(�; 
; q;Q) such that Q 2 Sn+:



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 3L denotes the set of all qf(�; 
; q;Q) such that Q = 0:kvk for v 2 Rn; denotes the Euclidean 2-norm:kMk for M 2 Rn�n; denotes the operator 2-norm:kMkF for M 2 Rn�n; denotes the Frobenius norm.vec(M) for M 2 Rn�n; denotes the n2-vector with elements Mij .ej 2 Rn denotes the jth unit vector.e 2 Rn denotes the vector of all ones.�D := fd 2 Rn : kdk = 1g:B(xc; r) := fx 2 Rn : kx� xck � rg: the closed Euclidean ball with center xc and radius r.D(c; r) := �D \ B(c; r):Given � � 0 and D � �D, a subset D0 of �D is a �-net of D if for every d 2 D, there existsd0 2 D0 such that kd� d0k � �:The input data are a nonempty compact convex subset C0 of Rn (e.g., an ellipsoid) and a setPF of �nitely many quadratic functions. The complexity bounds will depend on the diameters ofC0 and F denoted diam(C0) (and diam(F )), a given positive constant �, describing the desiredapproximation of the convex hull of F (c.hull(F )) and the complexity measures given below(also see [2]):�lip := �lip(PF ; C0) := sup� jp(x)� p(y)jkx� yk : x; y;2 C0; x 6= y; p(�) 2 PF� ;�nc := �nc(PF ) := maxf� inff�min(Q) : qf(�; 
; q;Q) 2 PF g; 0g;�nl := �nl(PF ) := sup8<: nXi=1 nXj=1 jQi;j j : qf(�; 
; q;Q)2 PF9=; :Here, �min(Q) denotes the minimum eigenvalue of Q 2 Sn. Note that �lip, �nc, and �nl are �nitenonnegative numbers. If �nl = 0, then we have a description of F in terms of the intersectionof halfspaces and F = c.hull(F ). Therefore, we can assume �nl > 0. Now, we can normalize thedata to ensure that that �nl = 1. Let's call the related measures of the scaled data ��lip, ��ncand ��nl. Note that ��nc � 1. Our analyses can also be used (with very minor modi�cations) forthe unscaled data (with �nl 6= 1).Let C be a compact subset of Rn. For every d; d1; d2 2 �D and for every x 2 Rn, de�ne�(C; d) := maxfdTx : x 2 Cg;lsf(x; C; d) := dTx� �(C; d);r2f(x; C; d1; d2) := �(dT1 x� �(d1; C0))(dT2 x� �(d2; C)):



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 4Let D1; D2 � �D, we also de�nePL(C;D) := flsf(�;C;d) : d 2 Dg;~P2(C;D1; D2) := fr2f(�;C;d1; d2) : d1 2 D1; d2 2 D2gNow, we describe the algorithms based on successive SDP relaxations and successive semi-in�nite LP relaxations.Algorithm 1(SSDP Relaxation Method [4, 5])Step 0 : Choose a pair of direction sets D1; D2 � �D. Let k = 0.Step 1 : If Ck = ; then stop.Step 2 : Compute �(Ck; d) = maxfdTx : x 2 Ckg (8d 2 D1 [D2).Step 3 : Let Pk = PL(Ck; D1) [ ~P2(Ck; D1; D2).Step 4 : LetCk+1 = F̂ (C0;PF [ Pk):= 8><>:x 2 C0 : 9X 2 Sn such that  1 xTx X ! 2 S1+n+ and
 + 2qTx+ Q �X � 0 (8qf(�; 
; q;Q)2 PF [ Pk) 9>=>; :Step 5 : Let k = k + 1, and go to Step 1.Algorithm 2 (SSILP Relaxation Method [4, 5])Step 0, 1, 2, 3: The same as Steps 0, 1, 2, 3, of Algorithm 1, respectively.Step 4 : LetCk+1 = F̂L(C0;PF [ Pk):= (x 2 C0 : 9X 2 Sn such that
 + 2qTx+ Q �X � 0 (8qf(�; 
; q;Q)2 PF [ Pk) ) :Step 5 The same as step 5 of Algorithm 1.In Section 2, we extract the skeleton of the analysis of Kojima and Takeda [2] by separatingit from the more technical part (which requires the construction of certain valid inequalitiesfor Euclidean Balls containing the current convex relaxation) and make it slightly more generaland abstract to enhance the understanding of the analyses. In Section 3, we cite two technicalresults also used in [5] and [2]. In Section 4, we present our technical results for Algorithm 1 andcomplete the analysis using the results of Sections 2 and 3. Section 5 serves the same purposefor Algorithm 2 in the same way.



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 52 The frame of the complexity analysesIn this section, we go over the skeleton of the complexity analysis of Kojima and Takeda [2].We slightly unify a few of the ideas of the analysis.Given � 2 Rn and G � Rn,�(�; G) := sup fkx� �k : x 2 Gg ;the radius of the smallest Euclidean ball, centered at �, containing G. Given � > 0 and  > 0,two relaxations of F are used:F (�) := F (�;C0;PF ) := fx 2 C0 : p(x) � �; for all p(�) 2 PF gand c.relax (F ( ); G) := \�2GB (�; �(�; F ( )) :Note that by de�nition, c.relax (F ( ); G) � c.hull(F ( )) � c.hull(F ): The �rst relaxation,F (�), is used in describing the desired output of the algorithm, which is a convex set Ckcontaining F and contained in the convex approximation c.hull(F (�)): The second relaxation,c.relax (F ( ); G), even though implicit, is currently much easier to deal with in the complexityanalyses than the �rst relaxation (see [5] and [2]). Kojima and Takeda [2] connected these tworelaxations with the following result.Lemma 2.1 (Corollary 2.5 of [2]) Assume that�0 2 C0 and 0 < � � �lipdiam(C0)2 : (1)Let � := B �0; 2�lip (diam(C0))2� ! : (2)Then c.relax (F (�=2);�) � c.hull(F (�)):We see from the conclusion of the above lemma that to establish the convergence in kiterations, it su�ces for us to prove that Ck � c.relax (F (�=2);�) for the Algorithms 1 and 2.Given �� (to be described later, in terms of ��lip and ��nc), we de�ne�� := 8<: 8� if �� � ��2210n(diam(C0))3 ;�227n��(diam(C0))3 otherwise;



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 6�� := 8<: �8 if �� � �224�n(diam(C0))3 ;�227n��(diam(C0))3 otherwise;�� := 1� ����:Note that �� � 0, �� = 0 i� �� � ��2210n (diam(C0))3 (3)and 0 < �� < 1 i� �� > ��2210n (diam(C0))3 : (4)In particular, if ��2210n (diam(C0))3 < �� < �224�n (diam(C0))3 ;then 0 < �� < �1� �226� : (5)If �� � �224�n (diam(C0))3then � ln(��) � ���� = �4214n2��2 (diam(C0))6 : (6)It is also easy to compute (��+ ��)�� � �226n(diam(C0))3 : (7)For every � 2 � and k � 0, de�ne�0k+1(�) := max�� (�; F (�=2)) ; ���(�; Ck)	 :De�nition 2.1 A successive convex relaxation algorithm is said to have the ��-shrinking propertyif for every iteration k � 0, Ck+1 � \�2�B ��; �0k+1(�)� :



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 7Suppose we prove that an algorithmhas the ��-shrinking property for some value of ��, boundedaway from 1. Then, we see that for each � 2 � either the termination condition holds, or thecorresponding � value decreases as�(�; Ck+1)) � ���(�; Ck): (8)Considering the relations (6) and (8), we can establishLemma 2.2 ([2]) Suppose diam(F ) > 0, the assumptions of Lemma 2.1 hold and that thesuccessive convex relaxation algorithm at hand has the ��-shrinking property for the above de�nedvalue of ��. De�nek� = 8>><>>: 1 if �� � ��2210n(diam(C0))3 ;&�27n��(diam(C0))3�2 �2 ln 8��lipdiam(C0)2� diam(F ) ' otherwise. (9)If k � k�, then Ck � c.hull(F (�)).Proof. For every � 2 � and k = 0; 1; : : : ; de�ne�k(�) := maxf�(�; F ( )); �(�;Ck)g:It su�ces to show that if k � k� then�k(�) � �(�; F ( )); 8� 2 �: (10)In fact, if (10) holds, thenCk � \�2�B(�; �k(�)) � \�2�B(�; �(�; F ( ))) = c.relax(F ( );�):By the ��-shrinking property, �k+1(�) � maxf�(�; F ( ));���k(�)gThis implies that�k(�) � maxf�(�; F ( ));��k�0(�)g 8� 2 � and 8k = 0; 1; 2; : : : :Hence, for each � 2 �, if k satis�es the inequality��k�0(�) � �(�; F ( )); (11)



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 8then �k(�) � �(�; F ( )). When �� � ��2210n(diam(C0))3 , we see from (3) that �� = 0. Hence (10)holds for k = 1. Next, we consider the case ��2210n(diam(C0))3 < �� � �224�n(diam(C0))3 : In thiscase, we have, by (5), � ln(��) � �226 :Using this, and the below arguments for the third remaining case, we can prove that k� can betaken as & 26�2 ln 8��lipdiam(C0)2� diam(F ) ' ;if ��2210n(diam(C0))3 < �� � �224�n(diam(C0))3 : This bound is clearly better than the claim of thelemma. Now �nally, assume that �� > ��2210n(diam(C0))3 : Then �� > 0 by (4). SinceF � F ( ) � C0 � �;we see that diam(F )=2 � �(�; F ( ))� �0(�) � diam(�); for 8� 2 �;Hence, if ��k  4��lip(diam(C0))2� ! � diam(F )=2, or equivalently, ifk(� ln ��) � ln 8��lip(diam(C0))2� diam(F ) ;then (11) holds. Using (6) we conclude that if k � k�, thenCk � c.relax(F (�=2);�) � c.hull(F (�))as desired. 23 Some technical results from the previous workFirst we cite a theorem establishing the equivalence of two types of relaxations for each of thealgorithms.Theorem 3.1 (see Theorem 2.1 of [1], and Theorem 4.2 and Corollary 4.3 of [4]) Under ourassumptions, for Algorithm 1, we have for every k � 1,F̂ (C0;PF [ Pk) = fx 2 Rn : p(x) � 0; 8p(�) 2 (c.cone(PF [ Pk)\ Q+)g :Under our assumptions, for Algorithm 2, we have for every k � 1,F̂ (C0;PF [ Pk) = fx 2 Rn : p(x) � 0; 8p(�) 2 (c.cone(PF [ Pk) \ L)g :



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 9Next, we will cite a result about the rank two valid inequalities for Euclidean balls. Forevery � 2 (0; �=8], w 2 �D, and i = 1; 2; : : : ; n, de�nevi(�; w) := kw cos � + ei sin �k ; �vi(�; w) := kw cos � � ei sin �k ;bi(�; w) := w cos �+ei sin �vi(�;w) 2 �D; �bi(�; w) := w cos ��ei sin ��vi(�;w) 2 �D;�i(�; w) := vi(�;w)2 sin � ; ��i(�; w) = �vi(�;w)2 sin � : (12)For every x 2 Rn; � > 0; � 2 (0; �=8]; w 2 �D; i = 1; 2 : : : ; n; and j = 1; 2; : : : ; n, de�nef+ij (x; �; �; w) := �i(�; w)r2f(x;�ej; bi(�; w); B(0; �))+��i(�; w)r2f(x; ej;�bi(�; w); B(0; �))= ��i(�; w)(bi(�; w)Tx � �) ��eTj x� �(�ej ; C0)����i(�; w)(�bi(�; w)Tx � �) �eTj x� �(ej ; C0)� ;f�ij (x; �; �; w) := �i(�; w)r2f(x; ej; bi(�; w); B(0; �))+��i(�; w)r2f(x;�ej;�bi(�; w); B(0; �))= ��i(�; w)(bi(�; w)Tx� �) �eTj x� �(ej ; C0)����i(�; w)(�bi(�; w)Tx� �) ��eTj x� �(�ej ; C0)� :We use the following further extension of Lemma 4.3 of [5], which was also used by [2].Lemma 3.1 (Lemma 4.1 of [2]) Let � > 0; � 2 (0; �=8]; w 2 �D; i 2 f1; 2; : : : ; ng and j 2f1; 2; : : : ; ng:(i) Let D0 := fbj(�; w);�bj(�; w)g. Thenf+ij (:; �; �; w); f�ij (:; �; �; w) 2 c.cone(P2(B(0; �); D1; D0));for every � > 0; � 2 (0; �=8] and w 2 �D.(ii)+ The Hessian matrix of the quadratic function f+ij (:; �; �; w) : Rn ! R coincides with then� n matrix eieTj +ejeTi2 .(ii)� The Hessian matrix of the quadratic function f�ij (:; �; �; w) : Rn ! R coincides with then� n matrix � eieTj +ejeTi2 .(iii) Suppose that ~� � 0; 1 � ~� � 1� ~�� � 0 and ~��w 2 C0. Thenf+ij (~��w; �; �; w); f�ij(~��w; �; �; w)2 [�2�diam(C0)(~�+ �); 0]:



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 104 Complexity analyses for SDP based algorithmsIn this section, when we use the results from Section 2, we always let �� := ��lip��nc: Also, in thissection, we can assume ��nc > 0. (If ��nc = 0, then F is convex and the �rst SDP relaxation isexact.)Let ��k �w 2 C0 with � � 1 and k �wk = 1. Thenbi(��; �w) and �bi(��; �w) 2 �D:Let � � min(sin ��4n ; �2 sin ��26n��lip��nc(diam(C0))3) (13)and D2 be a ��net of �D. Choose ai 2 D(bi(��; �w); �)\D2;�ai 2 D(�bi(��; �w); �)\D2:Let A := [a1; a2; : : : ; an] 2 Rn�n, �A := [�a1; �a2; : : : ; �an] 2 Rn�n;gij(x) := �i(��; �w)r2f(x;�ej; ai; Ck) + ��i(��; �w)r2f(x; ej; �ai; Ck)= ��i(��; �w) �aTi x� �(ai; Ck)� ��eTj x � �(�ej ; C0)����i(��; �w) ��aTi x� �(�ai; Ck)� �eTj x� �(ej ; C0)� :Let g(x) := nXi=1 nXj=1 �ijgij ;where M := [�ij ] 2 Sn.Proposition 4.1 Let �k 2  0; 2��lip(diam(C0))2� ! and Ck � B(0; �k): Then there exists a�� 2  0;min(sin ��4n ; �2 sin ��26n��lip��nc(diam(C0))3)!such that when we take D2 to be a ��-net of �D, we have the following properties: There exists[�ij ] 2 Sn such that(i) �ij � 0, for all i; j,



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 11(ii) the Hessian of g(x) is ��nc �I + 1pneeT�,(iii) kvec(M)k1 � 4n��nc.Proof. The Hessian of g(x) is= � nXi=1 nXj=1 �ij ���i(��; �w)aieTj + ��i(��; �w)�aieTj �+ ���i(��; �w)aieTj + ��i(��; �w)�aieTj �T2= nXi=1 nXj=1 �ij ��i(��; �w)ai � ��(��; �w)�ai� eTj + ej ��i(��; �w)ai � ��(��; �w)�ai�T2= nXi=1 nXj=1 �ij hi(��; �w;A; �A)eTj + ejhi(��; �w;A; �A)T2= H(��; �w;A; �A)M +MH(��; �w;A; �A)T2 ;where hi(��; �w;A; �A) := �i(��; �w)ai � ��i(��; �w)�ai; i = 1; 2; : : : ; n; (14)and H(��; �w;A; �A) := �h1(��; �w;A; �A); h2(��; �w;A; �A); : : : ; hn(��; �w;A; �A)� : (15)Since hi(��; �w;A; �A) = �i(��; �w)ai � ��(��; �w)�ai= �i(��; �w)bi(��; �w)� ��i(��; �w)�bi(��; �w)+�i(��; �w) �ai � bi(��; �w)�� ��i(��; �w) ��ai � �bi(��; �w)� ;and �i(��; �w)bi(��; �w)� ��i(��; �w)�bi(��; �w) = ei (i = 1; 2; : : : ; n):we have H = I � P with P := [p1; p2; : : : ; pn] andpi := �i(��; �w) �ai � bi(��; �w)�� ��i(��; �w) ��ai � �bi(��; �w)� : (16)Using (16) and the de�nitions, we obtainkPk � kPkF= qkp1k2 + kp2k2 + : : :+ kpnk2� kp1k+ kp2k+ : : :+ kpnk� nXi=1 �j�i(��; �w)j 

ai � bi(��; �w)

+ j��i(��; �w)j 

�ai � �bi(��; �w)

�



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 12� nXi=1 2��sin ��� 12 ;where the second to last inequality follows fromj�i(��; �w)j = ����vi(��; �w)2 sin �� ����= 

 �w cos �� + ei sin ��

2 sin ��= (

 �w cos ��

2 + 

ei sin ��

2 + 2 �wTei sin �� cos ��) 122 sin ��= (1 + 2 �wTei sin �� cos ��) 122 sin ��� 1 + �wTei cos �� sin ��2 sin ��= 1+ 0:5 �wTei sin 2��2 sin ��� 1sin �� ;and j��i(��; �w)j � 1sin �� :So, the real parts of the eigenvalues of H are at least 12 and by Lyapunov Theorem, the equationH(��; �w;A; �A)M +MH(��; �w;A; �A)T2 = ��nc �I + 1pneeT� (17)has a unique solution [�ij ] 2 Sn. Note that when we setai := bi(��; �w); and �ai := �bi(��; �w);we obtain H = I . In this case, the unique solution of (17) is ��nc �I + 1pneeT�. Clearly,every component of this matrix is positive. By continuity of the solution with respect to theperturbations in H (and hence ai; �ai), we see that there exists �� > 0 depending on ��; �w suchthat for every ai 2 D(bi(��; �w); ��), and for every �ai 2 D(�bi(��; �w); ��), the solution matrixM hasall of its entries non-negative.We now show the boundedness of [�ij ]. Using the Kronecker product, the Lyapunov equation(17) can be rewritten as follows:I 
H(��; �w;A; �A) +H(��; �w;A; �A)T 
 I2 vec(M) = vec���nc �I + 1pneeT�� : (18)



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 13The coe�cient matrix can be written asI 
H(��; �w;A; �A) +H(��; �w;A; �A)T 
 I2 = I 
 (I � P ) + (I � P )T 
 I2= I 
 I � I 
 P + PT 
 I2 : (19)Since kI 
 PkF �vuutn nXi=1 kpik2 � 2n��sin ��and 

PT 
 I

F �vuutn nXi=1 kpik2 � 2n��sin �� ;we have 



I 
 P + PT 
 I2 



 � 



I 
 P + PT 
 I2 



F� 12 kI 
 PkF + 12 

PT 
 I

F� 2n��sin �� � 12 :By (19),




�I 
H(��; �w;A; �A) +H(��; �w;A; �A)T 
 I2 ��1




 = 




�I 
 I � I 
 P + PT 
 I2 ��1




� 11� 


 I
P+PT
I2 


� 11� 12= 2:Therefore,kvec(M)k � ��nc 




�I 
H(��; �w;A; �A) +H(��; �w;A; �A)T 
 I2 ��1




 



vec�I + 1pneeT�



� 4pn��nc:So, kvec(M)k1 � pn kvec(M)k � 4n��nc. 2



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 14Note that by the above construction and the above proposition (implying �ij � 0) we havethat g(�) 2 c.cone� ~P2(Ck; D1; D2)� :Proposition 4.2 Under the same conditions as in Proposition 4.1, we haveg(��k �w) � ��=2: (20)Proof. gij(��k �w) = ��i(��; �w) �aTi ��k �w � �(ai; Ck)� ��eTj ��k �w � �(�ej ; C0)����i(��; �w) ��aTi ��k �w � �(�ai; Ck)� �eTj ��k �w � �(ej ; C0)�= ��i(��; �w) �bi(��; �w)T��k �w � �(ai; Ck)� ��eTj ��k �w � �(�ej ; C0)����i(��; �w) ��bi(��; �w)T��k �w � �(�ai; Ck)� �eTj ��k �w� �(ej ; C0)���i(��; �w)(ai � bi(��; �w))T ��k �w ��eTj ��k �w � �(�ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T ��k �w �eTj ��k �w � �(ej ; C0)�� ��i(��; �w) �bi(��; �w)T��k �w � �k� ��eTj ��k �w � �(�ej ; C0)����i(��; �w) ��bi(��; �w)T��k �w � �k� �eTj ��k �w � �(ej ; C0)���i(��; �w)(ai � bi(��; �w))T ��k �w ��eTj ��k �w � �(�ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T ��k �w �eTj ��k �w � �(ej ; C0)�= f+ij (��k �w; �k; ��; �w)��i(��; �w)(ai � bi(��; �w))T ��k �w ��eTj ��k �w � �(�ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T ��k �w �eTj ��k �w � �(ej ; C0)�where the inequality above follows from the assumption that Ck � B(0; �k) and the facts thatkaik = k�aik = 1:Therefore,g(��k �w) = nXi=1 nXj=1 (�ijgij(��k �w))� nXi=1 nXj=1 �ijf+ij (��k �w; �k; ��; �w)+ nXi=1 nXj=1 �ij ���i(��; �w)(ai � bi(��; �w))T ��k �w ��eTj ��k �w � �(�ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T ��k �w �eTj ��k �w � �(ej ; C0)�� :



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 15By Lemma 3.1 and Proposition 4.1nXi=1 nXj=1 �ijf+ij (��k �w; �k; ��; �w)= �2�kdiam(C0)(��+ ��) nXi=1 nXj=1 �ij� �2�kdiam(C0)(��+ ��) kvecMk1� �24��lip��nc(diam(C0))3(��+ ��)n�� � �4 :where the last inequality follows from (7). It is easy to see that�diam(C0) � �eTj (��k �w)� �(�ej ; C0) � 0;�diam(C0) � eTj (��k �w)� �(ej ; C0) � 0:We also have ������ nXi=1 nXj=1 �ij ���i(��; �w)(ai � bi(��; �w))T ��k �w ��eTj ��k �w � �(�ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T ��k �w �eTj ��k �w � �(ej ; C0)����� nXi=1 nXj=1 �ij ����(��; �w)�� 

ai � bi(��; �w)

 ��k k �wk j � eTj ��k �w� �(�ej ; C0)j+ ����(��; �w)�� 

�ai � �bi(��; �w)

 ��k k �wk jeTj ��k �w � �(ej ; C0)j� ;� nXi=1 nXj=1 �ij � 2sin �� ����kdiam(C0)�� 2sin �����kdiam(C0) nXi=1 nXj=1 �ij� 2sin �����kdiam(C0) (kvecMk1)� 8nsin �����kdiam(C0)��nc� �4 :Therefore, g(��k �w) � � �4 � �4 � ��=2: 2



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 16Theorem 4.1 Assume that �0 2 C0 and 0 < � � ��lipdiam(C0)2 and diam(F ) > 0. Then there ex-ists �� 2  0;min( sin ��4n ; �2 sin ��26n��lip��nc(diam(C0))3)! such that using D2, a ��-net of �D in Algorithm1, yields the iterates fCk : k � 1g such thatc.hull(F ) � Ck+1 � Ck for all k � 0;and Ck � c.hull(F (�)) for all k � k�;where k� = O n2��2lip��2nc(diam(C0))6�4 ln 8��lip(diam(C0))2� diam(F ) !! :Proof. The monotonicity of the iterates fCk : k � 1g was proved in [5]. Let�0(�) := maxf�(�; F ( ));���(�; Ck)g:We will �rst prove Ck+1 � \�2�B(�; �0(�)):It su�ces to show that Ck+1 � B(�; �0(�)) for every � 2 �. For an arbitrarily �xed � 2 �, let�k = �(�; Ck) and �0 = maxf�(�; F ( ));���kg:We may assume without loss of generality that � = 0 because both of the algorithms (1 and2) are invariant under parallel transformation. See [5] for more details. Since � = 0 2 � andCk � C0 � �, we see that �k � 2��lip(diam(C0))2� :If �(0; F ( )) � �k, then �0 = �(0; F ( )) � �k. In this case, the desired result follows fromCk+1 � Ck. Now, suppose that �(0; F ( )) < �k. Assuming that �x =2 B(0; �0), we will derivethat �x =2 Ck+1. If �x =2 Ck, we obviously see �x =2 Ck+1 because Ck+1 � Ck. Hence we only needto deal with the case that�x 2 Ck � C0; �(0; F ( ))� �0 < k�x� 0k � �k: (21)The relations (21) imply that �x 2 C0 and �x =2 F (�=2): Hence there exists a quadratic functionqf(:; �
; �q; �Q) 2 PF such that qf(�x; �
; �q; �Q) > �. Let �w = �x= k�xk, and � = k�xk =�k. Then we seethat �x = k�xk �w = ��k �w;1 � � = k�xk =�k > �0=�k � �� = 1� ����:



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 17By Propositions 4.1, there exists a �� positive, bounded away from zero, such that when wetake D2 to be a ��-net of �D, we can �nd g(�) 2 c.cone� ~P2(Ck; D1; D2)� with Hessian matrix��nc �I + 1pneeT� : By the de�nition of ��nc, and since every eigenvalue of the Hessian matrixof g(�) is at least ��nc , all eigenvalues of qf(�; �
; �q; �Q) + g(�) are non-negative. Moreover, byProposition 4.2 such g(�) can be chosen to satisfyqf(�x; �
; �q; �Q) + g(�x) > 0:Therefore, �x =2 Ck+1 (we used Theorem 3.1). We proved Ck+1 � T�2�B(�; �0(�)): Thus, Al-gorithm 1 has the ��-shrinking property for certain �� > 0 described above. Now, choosing�� := ��lip��nc in Lemma 2.2 implies the claimed bound on the number of iterations. 25 Complexity analysis for LP based methodsIn this section, when we use the results from Section 2, we always let �� := 2��lip: Let ��k �w 2 C0with � � 1. Then bi(��; �w) and �bi(��; �w) 2 �D:Let � � min(sin ��4n ; �2 sin ��27n��lip(diam(C0))3) (22)and D2 be a �-net of �D. Choose ai 2 D(bi(��; �w); �)\D2;�ai 2 D(�bi(��; �w); �)\D2:Let A := [a1; a2; : : : ; an] 2 Rn�n, �A := [�a1; �a2; : : : ; �an] 2 Rn�n;g+ij(x) := �i(��; �w)r2f(x;�ej; ai; Ck) + ��i(��; �w)r2f(x; ej; �ai; Ck)= ��i(��; �w) �aTi x� �(ai; Ck)� ��eTj x� �(�ej ; C0)����i(��; �w) ��aTi x� �(�ai; Ck)� �eTj x� �(ej ; C0)� ;g�ij(x) := �i(��; �w)r2f(x; ej; ai; Ck) + ��i(��; �w)r2f(x;�ej; �ai; Ck)= ��i(��; �w) �aTi x� �(ai; Ck)� �eTj x� �(ej ; C0)����i(��; �w) ��aTi x� �(�ai; Ck)� ��eTj x� �(�ej ; C0)� :



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 18Proposition 5.1 Let g+(x) := nXi=1 nXj=1 �+ijg+ij ;g�(x) := nXi=1 nXj=1 ��ijg�ij ;g(x) := g+(x) + g�(x);where M+ := h�+iji 2 Sn and M� := h��iji 2 Sn. Let �k > 0 and Ck � B(0; �k): Then thereexists a �� 2  0;min(sin ��4n ; �2 sin ��26n��lip��nc(diam(C0))3)!such that when we take D2 to be a ��-net of �D, we have the following properties:(i) Given �Q� 2 Sn with all entries positive, satisfying 

 �Q�

F � 2, there exists h�+iji 2 Snsuch that �ij � 0 for all i; j, the Hessian of g+(x) is �Q� and 


h�+iji


F � 4.(ii) Given �Q+ 2 Sn with all entries positive, satisfying 

 �Q+

F � 2, there exists h��iji 2 Snsuch that �ij � 0 for all i; j, the Hessian of g�(x) is � �Q+ and 


h��iji


F � 4.Proof. We prove that part (i) holds and part (ii) can be proved similarly. As in the proof ofProposition 4.1, we obtain The Hessian of g+(x) is= H(��; �w;A; �A)M+ +M+H(��; �w;A; �A)T2 ;where hi(��; �w;A; �A) := �i(��; �w)ai � ��i(��; �w)�ai; i = 1; 2; : : : ; n; (23)and H(��; �w;A; �A) := �h1(��; �w;A; �A); h2(��; �w;A; �A); : : : ; hn(��; �w;A; �A)� : (24)Since hi(��; �w;A; �A) = �i(��; �w)ai � ��(��; �w)�ai= �i(��; �w)bi(��; �w)� ��i(��; �w)�bi(��; �w)+�i(��; �w) �ai � bi(��; �w)�� ��i(��; �w) ��ai � �bi(��; �w)� ;and �i(��; �w)bi(��; �w)� ��i(��; �w)�bi(��; �w) = ei (i = 1; 2; : : : ; n):



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 19we have H = I � P with P := [p1; p2; : : : ; pn] andpi := �i(��; �w) �ai � bi(��; �w)�� ��i(��; �w) ��ai � �bi(��; �w)� : (25)As in the proof of Proposition 4.1, we obtainkPk � 12 :So the real parts of the eigenvalues of H are at least 12 and by Lyapunov Theorem, the equationH(��; �w;A; �A)M+ +M+H(��; �w;A; �A)T2 = �Q� (26)has a unique solution h�+iji 2 Sn. Note that when we setai := bi(��; �w); and �ai := �bi(��; �w);we obtainH = I . In this case, the unique solution of (26) is �Q�. Every component of this matrixis positive. By continuity of the solution with respect to the perturbations in H (and henceai; �ai), we see that there exists �� > 0 depending on ��; �w such that for every ai 2 D(bi(��; �w); ��),and for every �ai 2 D(�bi(��; �w); ��), the solution matrix M+ has all of its entries non-negative.We now show the boundedness of h�+iji. Using the Kronecker product, the Lyapunov equation(26) can be rewritten as follows.I 
H(��; �w;A; �A) +H(��; �w;A; �A)T 
 I2 vec(M+) = vec( �Q�): (27)As in the proof of Proposition 4.1, we obtain




�I 
H(��; �w;A; �A) +H(��; �w;A; �A)T 
 I2 ��1




 � 2:Therefore,

vec(M+)

 � 




�I 
H(��; �w;A; �A) +H(��; �w;A; �A)T 
 I2 ��1




 

vec( �Q�)

� 2 

 �Q�

F� 4:So kM+kF � 4: 2Proposition 5.2 Under the same conditions as in Proposition 5.1, we haveg(��k �w) � ��=2: (28)



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 20Proof. As in the proof of Proposition 4.2, we obtaing+ij(��k �w) � f+ij (��k �w; �k; ��; �w)��i(��; �w)(ai � bi(��; �w))T ��k �w ��eTj ��k �w � �(�ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T ��k �w �eTj ��k �w � �(ej ; C0)�where the second to last inequality follows from the assumption that Ck � B(0; �k).Similarly,g�ij(��k �w) � f�ij (��k �w; �k; ��; �w)��i(��; �w)(ai � bi(��; �w))T ��k �w �eTj ��k �w � �(ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T ��k �w ��eTj ��k �w � �(�ej ; C0)� :Therefore,g(��k �w) � nXi=1 nXj=1 ��+ijf+ij (��k �w; �k; ��; �w) + ��ijf�ij (��k �w; �k; ��; �w)�nXi=1 nXj=1 �+ij ���i(��; �w)(ai � bi(��; �w))T��k �w ��eTj ��k �w � �(�ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T��k �w �eTj ��k �w � �(ej ; C0)��+ nXi=1 nXj=1 ��ij ���i(��; �w)(ai � bi(��; �w))T ��k �w �eTj ��k �w � �(ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T��k �w ��eTj ��k �w� �(�ej ; C0)�� :By Lemma 3.1 and Proposition 5.1 we obtainnXi=1 nXj=1 ��+ijf+ij (��k �w; �k; ��; �w) + ��ijf�ij (��k �w; �k; ��; �w)�� nXi=1 nXj=1 ��+ij ��2�kdiam(C0)(��+ ��)�+ ��ij ��2�kdiam(C0)(��+ ��)��= �2�kdiam(C0)(��+ ��) nXi=1 nXj=1 ��+ij + ��ij�� �2�kdiam(C0)(��+ ��)n �

M+

F + 

M�

F �� �24n(diam(C0))3(��+ ��)(2��lip)�� � �4 :



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 21where the last inequality follows from (7). As in the proof of Proposition 4.2, we obtain������ nXi=1 nXj=1 �+ij ���i(��; �w)(ai � bi(��; �w))T ��k �w ��eTj ��k �w � �(�ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T��k �w �eTj ��k �w � �(ej ; C0)��+ nXi=1 nXj=1 ��ij ���i(��; �w)(ai � bi(��; �w))T ��k �w �eTj ��k �w� �(ej ; C0)����i(��; �w)(�ai � �bi(��; �w))T��k �w ��eTj ��k �w � �(�ej ; C0)���� ;� nXi=1 nXj=1 �+ij � 2sin ������kdiam(C0)�+ nXi=1 nXj=1 ��ij � 2sin �� ����kdiam(C0)�� 2sin �����kdiam(C0) nXi=1 nXj=1(�+ij + ��ij)� 2sin �����kdiam(C0)n �

M+

F + 

M�1

F �� 24nsin �����kdiam(C0)� �4 :Therefore, g(��k �w) � � �4 � �4 � ��=2: 2Theorem 5.1 Assume that �0 2 C0 and 0 < � � ��lipdiam(C0)2 and diam(F ) > 0. Then thereexists �� 2  0;min(sin ��4n ; �2 sin ��27n��lip(diam(C0))3)! such that using D2, a ��-net of �D in Algorithm2, yields the iterates fCk : k � 1g such thatc.hull(F ) � Ck+1 � Ck for all k � 0;and Ck � c.hull(F (�)) for all k � k�;where k� = O n2��2lip(diam(C0))6�4 ln 8��lip(diam(C0))2� diam(F ) !! :



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 22Proof. The monotonicity of the iterates fCk : k � 1g was proved in [5]. The �rst half of theproof is identical to the proof of Theorem 4.1. Let�0(�) := maxf�(�; F ( ));���(�; Ck)g:We will �rst prove Ck+1 � \�2�B(�; �0(�)):It su�ces to show that Ck+1 � B(�; �0(�)) for every � 2 �. For an arbitrarily �xed � 2 �, let�k = �(�; Ck) and �0 = maxf�(�; F ( ));���kg:We may assume without loss of generality that � = 0 because both of the algorithms (1 and2) are invariant under parallel transformation. See [5] for more details. Since � = 0 2 � andCk � C0 � �, we see that �k � 2��lip(diam(C0))2� :If �(0; F ( )) � �k, then �0 = �(0; F ( )) � �k. In this case the desired result follows fromCk+1 � Ck. Now, suppose that �(0; F ( )) < �k. Assuming that �x =2 B(0; �0), we will derivethat �x =2 Ck+1. If �x =2 Ck, we obviously see �x =2 Ck+1 because Ck+1 � Ck. Hence we only needto deal with the case that�x 2 Ck � C0; �(0; F ( ))� �0 < k�x� 0k � �k: (29)The relations (29) imply that �x 2 C0 and �x =2 F (�=2): Hence there exists a quadratic functionqf(:; �
; �q; �Q) 2 PF such that qf(�x; �
; �q; �Q) > �. Let �w = �x= k�xk, and � = k�xk =�k. Then we seethat �x = k�xk �w = ��k �w;1 � � = k�xk =�k > �0=�k � �� = 1� ����:Note that 

 �Q

1 � 1. Therefore, we can �nd symmetric matrices �Q+; �Q� with all entriespositive such that 

 �Q+

 � 2, 

 �Q�

 � 2, and �Q = �Q+ � �Q�. Now, Proposition 5.1 impliesthat there exists a �� > 0, bounded away from zero, such that when we take D2 to be a ��-netof �D, we can �nd g(�) 2 c.cone� ~P2(Ck; D1; D2)� with Hessian matrix �Q� � �Q+ = � �Q: Hence,qf(�; �
; �q; �Q) + g(�) is a linear function. Moreover, by Proposition 5.2, such g(�) can be chosento satisfy qf(�x; �
; �q; �Q) + g(�x) > 0:Therefore, �x =2 Ck+1 (we used Theorem 3.1). We proved Ck+1 � T�2�B(�; �0(�)): Thus, Al-gorithm 1 has the ��-shrinking property for certain �� > 0 described above. Now, choosing�� := ��lip��nc in Lemma 2.2 implies the claimed bound on the number of iterations. 2



COMPLEXITY ANALYSES OF DISCRETIZED SCRMs 236 ConclusionFor the given input PF (�nite), C0, and � > 0, there exists a largest value of � > 0 for whichthe convergence analysis of [5] proves the (correctness and) �niteness of both algorithms. Let'scall this critical value of �, �cr. In our analysis in the current paper, we established that for thesame input, there exists �� > 0 such that our complexity bounds apply. The proof techniqueswe used here are very similar to those of [5], and as a result, the values of �cr and �� implied bythe respective proofs are essentially the same (even though, we clearly have �cr � ��).As in the previous analysis by Kojima and Takeda [2] of the semi-in�nite successive convexrelaxation methods, our analyses of the implementable, discretized versions, also indicate thatthe current complexity bounds can be much better for SDP based algorithms than for LP basedalgorithms if ��nc << 1:References[1] T. Fujie and M. Kojima, Semide�nite relaxation for nonconvex programs, Journal ofGlobal Optimization 10 (1997) 367{380.[2] M. Kojima and A. Takeda, Complexity analysis of successive convex relaxation of noncon-vex sets, Technical Report B-350, Dept. of Mathematical and Computing Sciences, TokyoInstitute of Technology, Meguro, Tokyo, Japan, April 1999, revised July 1999.[3] A. Takeda, Y. Dai, M.Fukuda and M. Kojima, Towards the implementation of succes-sive convex relaxation method for nonconvex quadratic optimization problems, TechnicalReport B-347, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Tech-nology, Meguro, Tokyo, Japan, March 1999, revised August 1999.[4] M. Kojima and L. Tun�cel, Cones of matrices and successive convex relaxations of noncon-vex sets, to appear in SIAM J. Optimization.[5] M. Kojima and L. Tun�cel, Discretization and localization in successive convex relaxationmethods for nonconvex quadratic optimization problems, Technical Report, Dept. of Math-ematical and Computing Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan,July 1998, revised July 1999. Also issued as CORR 98-34, Dept. of Combinatorics andOptimization, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario N2L3G1, Canada.


