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─ABSTRACT ─ 
 
We consider various axioms for customer behaviour using utility functions and so-
called “reservation prices” and then based on these axioms, we discuss some 
mathematical models (employing integer programming, convex programming and 
classical nonlinear programming) for deciding on product prices to maximize the total 
profit (or perhaps another suitable objective function also involving minimization of 
risk).  We also share some of our experiences from a recent collaborative research 
project involving a company in the tourism sector. 
 
JEL Classificiation: C61, C63, L11, L83  
 
 

1. INTRODUCTION 
 
Consider a company with multiple products in the same market.  Let us focus on the 
sales and revenue for our company.  We will direct our attention to pricing our products 
so that we maximize the total revenue.  To begin, let us assume that all the products are 
ready (we already committed the production costs and the corresponding capacities) so 
that our current problem is only about maximizing the total revenue which at this stage 
will maximize the total profit. 
 
We must be very careful about two main issues.  The first issue is rather obvious: to 
make a sale, one of our products must win a customer over all the products of the 
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competing companies. The second one is slightly less obvious: suppose a group of 
potential customers are going to buy a product of our company, then we must make sure 
that our prices do not motivate the customers to move from high revenue products to 
low revenue products.  When this second issue is not managed properly, we say that 
cannibalization occurred.  In such a case, the lower revenue generating product 
cannibalizes the higher revenue generating product (or products).  Interestingly enough, 
there are genetic algorithm based optimization approaches that try to weed-out pricing 
policies with these types of cannibalistic tendencies (see Fruchter et al. (2006)). 
 
Now, let us try to make the problem more general (and more realistic) by including 
decisions about production levels (and the related capacity allocation).  This new level 
of decision making can usually be accommodated by existing optimization models.  
Indeed, a key point is to make sure that the part of the optimization model dealing with 
the pricing decisions is compatible with the existing optimization models which deal 
with production planning (and capacity constraints).  The underlying optimization 
models and techniques in the literature involve heuristics, dynamic programming 
approaches, mixed integer programming models and classic nonlinear programming 
models. 
 
To be able to employ the above optimization machinery, one needs to do a lot of work 
with the data using data mining techniques.  These come into play when we try to model 
customer behaviour and preferences (in a nut shell, the demand). However, we also 
need to extract enough information from the decision makers in the company about the 
preferences of the top management so that we can construct a suitable objective 
function.  In addition, the competitors’ products and customers’ view of them must also 
be quantified and incorporated into the optimization model.  
 
In this paper, I will take a high-level view of optimization techniques in product pricing 
and advocate certain new approaches as promising avenues of further research.  In 
particular, for incorporating the customer preferences, I like the use of reservation prices.  
One of the ways of using the reservation price concept is to segment the potential 
customers into groups so that the customers within each segment have similar behaviour 
as far as their preferences and buying power are concerned.  Then, for each customer 
segment, we try to deduce the price that the customers are willing and able to pay for 
each of our products as well as the products of competing companies.  Clearly, the 
notion of reservation price lies in the general realm of the well-established concept of 
utility. 
 
In the next section, we discuss ways of modelling customer preferences that are suitable 
for optimization models.  Then in the following four sections we mention various 
optimization models and approaches.  Section 7 is a brief discussion of the 
computational state-of-the-art. In Section 8, we discuss a few aspects of a recent 
collaborative research project with a company in the tourism sector.  Concluding 
remarks featuring some future research and application directions are in Section 9.  
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Understanding the demand for our products and the competing products in the market is 
always extremely important.  How do we quantify the customer behaviour in a useful, 
robust way?  This is the question we address next. 
 

2. CUSTOMER BEHAVIOUR 
 
The first question is: “how many potential customers do we have?”  In some settings 
this number may be extremely large (e.g., on the order of a hundred thousand or even 
millions).  One effective approach is to create customer segments.  That is, we group the 
customers so that within each group, the customers have strong common characteristics 
about their preferences and financial power (this implies that customers within each 
segment behave essentially like a single customer) and across different groups 
(segments) there are some significant differences and distinguishing features.   
 
The next step can be the determination of quantitative techniques that will translate the 
raw data about these customer segments into computable quantities.  One general 
approach is to determine a distribution of the demand for our products from the above 
mentioned data.  A common implementation is to assume a normal distribution (with 
certain mean and variance) for each customer segment.  The mean and the variance for 
the distribution would be computed from the raw data for each segment and/or it could 
be tempered with, using the historical expert knowledge from the marketing/sales 
department of the company.  In such an implementation, the optimizer samples from the 
demand distribution and then applies a dynamic programming or a Monte-Carlo 
integration technique.  For detailed descriptions of such fundamental approaches and 
the most commonly used heuristic algorithms, see the comprehensive book (van Ryzin 
and Talluri (2004)). 
 
Note that it is unclear whether there is a probability distribution that governs the 
customer preferences (in fact the most likely answer is “no”).  So, the probabilistic 
approach above is really meant to deal with the fact that the information available to the 
company is far from perfect.  Therefore, the quantification of customer segmentation, 
customer preferences and customers’ financial capacity is a very rough procedure, only 
leading to rough estimates.  By randomly sampling from a “representative” probability 
distribution (determined by these rough estimates), we attempt to protect our approach 
from yielding irrelevant and misleading results. 
 
Now, we are faced with the final step in determining the customer behaviour: How do 
we decide whether a customer or a customer segment buys a specific product in the 
market?  If we assume an underlying utility function for each customer segment, under 
the axiom that a customer will buy the product which maximizes his/her utility, we can 
arrive at some concrete mathematical models which in turn lead to optimization 
problems.  To make the discussion more specific, let n denote the number of products of 
our company, name the products 1, 2, . . . , n and let πj denote the price of our product j 
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(note that πj is a decision variable in our context).  Since we have our customer 
segments, let us name them similarly: 1, 2, . . . ,m.  We denote by Rij the reservation 
price of customer segment i for product j.   I believe that if we employ an approach 
which treats Rij as data, then we must be mindful of the fact that we simply accepted the 
following as an axiom: 
  
Axiom 0.  Rij the reservation price of customer segment i for product j (or a reasonable 
approximation of it), is available to the company for every customer segment i and 
every product j. 
 
We will consider the applications where a certain simple principle of fairness is 
observed. 
 
Axiom 1. For each product, every customer pays the same price. 
 
The next axiom allows for simplifications in the theory.  Moreover, it is not very 
restrictive (there are heuristic ways of modifying the optimization models to deal with 
the general case; usually replicating a customer many times---let us call the copies of 
the customer clones---and making suitable changes to the Rij values of the clones of the 
customer can be satisfactory). 
 
Axiom 2. Each customer buys at most one product. 
 
Now, we can define the surplus based on the reservation prices and the unknown 
decision variable as the difference (Rij - πj).  It is reasonable to assume that customer 
segment i will not buy product j if the corresponding surplus is negative. 
 
Axiom 3. No product with negative surplus is bought. 
 
Thus, only (customer segment, product) pairs that are in-play are those (i,j) with 
(Rij - πj) ≥ 0.   
 
Our next step will cause multiple branches in our reasoning.  So, we will name the 
axioms accordingly: 
 
Axiom 4.a. (Maximum Surplus) If customer segment i has nonnegative surplus for 
some products then the segment will buy the product with the largest surplus. 
 
Note that Axiom 4.a. may need a tie-breaking rule if for a customer segment i, there are 
multiple products which attain the maximum nonnegative surplus.  Shioda, Tunçel and 
Myklebust (2007) propose a tie-breaking rule based on a parameter called utility 
tolerance.  This tolerance is a positive amount by which the surplus of the winning 
product must beat all the other competing products.  One consequence of this rule is that 
there are prices that the company may choose for which the surplus may be positive but 
the utility tolerance tie-breaking rule may not be met (this would imply that the 
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customer segment would buy none of the products).  This in turn results in a pessimistic 
(but more robust) estimation of the total potential revenue.  However, not having such a 
tie-breaking rule could result in the assumption that the customer segment i buys the 
most expensive product among all products with maximum positive surplus, perhaps 
yielding to gross over-estimation of the total potential revenue as well as sales. 
 
Axiom 4.b.  (Maximum Utility) For each customer segment i, there is a utility function 
ui(.) which determines (as a function of the surplus) the probability that customer 
segment i buys product j.  Moreover, the function ui(.) is monotone nondecreasing. 
 
In terms of generality, Axiom 4.b. is clearly at the more abstract end of the spectrum in 
relation to Axiom 4.a.  The subject of utility theory, in the context of customer 
behaviour, is well-studied in mathematical economics and there exist many interesting 
choices for utility functions.  However, we are interested in large-scale revenue 
management problems and for such problems, maximization of complicated nonlinear 
functions might not allow for obtaining near-optimal solutions (prices) with reasonable 
computational resources.  This motivates the next axiom (which is an over 
simplification). 
 
Axiom 4.c. (Uniform Buyer) Probability that the customer segment i buys product j is 
uniformly distributed among all products for which the customer segment has 
nonnegative surplus (this probability is zero for all products for which surplus is 
negative). 
 
We said Axiom 4.c. was an over-simplification, because if  the customer segment i has 
only two products, say 1 and 2, with surplus 0 and 100 respectively, according to 
Axiom 4.b., the customer segment i will buy product 1 with probability half (and the 
same probability for product 2).  Clearly, this axiom is almost impossible to justify.  
However, Shioda, Tunçel and Hui (2007) report computational experiments (with the 
same randomly generated data or with data from applications) indicating that actual 
optimal prices delivered by a revenue optimization model operating under Axiom 4.c 
are generally very close to the optimal prices delivered by a revenue optimization model 
operating under Axiom 4.d. below: 
 
Axiom 4.d. (Share-of-Surplus) Probability that the customer segment i buys product j is 
the ratio of the surplus for product j to the sum of positive surpluses for customer i over 
all products. (This probability is zero for all products for which surplus is nonpositive). 
 
For example, if customer i has surpluses 10, 90 and 100 for products 1, 2, 3 
respectively, then the probability that customer i buys product j is 0.05, 0.45, 0.50 
respectively (see for instance, Kraus and Yano (2003)).  Share-of Surplus axiom seems 
quite reasonable; however, it has at least two drawbacks: 
 

• The optimal prices obtained under this axiom are sensitive to the 
number of competing products with substantial surpluses. 
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• The resulting optimization problem is hard to solve (especially for 
large number of customer segments and products). 

 
For an optimization model related to Axioms 4.c. and 4.d. see the weighted-uniform 
model of Shioda, Tunçel and Hui (2007). 
 
Now, let us turn to the axioms relating to the competition from other companies.  
Perhaps one of the strongest is: 
 
Axiom 5.a. (Static Competition) Competitors’ prices are fixed for the duration of the 
planning horizon and are accessible to us. 
 
This axiom, while very unreasonable looking, makes the optimization models much 
easier to state and solve.  Moreover, if we keep our planning horizon very short (say we 
monitor the market daily and re-optimize our prices every night), then the underlying 
optimization models (with the unreasonable Axiom 5.a.) might still give a workable set 
of optimal prices.  Another approach might be to build the optimization model 
conservatively so that optimal prices delivered by the optimization model are robust 
under small perturbations of competitors’ prices. 
 
Axiom 5.b. (Game Theory in the main market as well as in the closely related markets) 
Competitors’ prices are dynamic and are influenced not only by our price changes but 
also by the changes in the other markets with significant input-output relations to our 
market.  All competitors aim to maximize their total profit in a four year planning 
horizon, where the principles of basic game theory govern their tactical moves. 
 
 The last axiom gets closer to modelling reality; nevertheless, it is far from complete.  
The basic principles of game theory require further axioms about whether some of the 
companies are cooperating and to what degree.  Some of the competing companies (or 
our company) may be a part of a holding which includes main players in a closely 
related market with very large input-output coefficients in relation to the market under 
study (we do not even attempt to get into discussing the possibility of the companies in 
the market trying to create an oligopy or government intervention in the market which 
in turn can make non-price based competition a very important factor in the market).  
All these factors, if directly included in the model, would make the revenue 
management problem unmanageable!  We do not advocate ignoring these important 
aspects of the problem, but rather recommend that these aspects be dealt by the “art” 
side of operations research techniques instead of the very concrete and computationally 
well-established “optimization machinery.”  The main problem can be decomposed, 
those individual pieces amenable to computational optimization techniques can be dealt 
with and then the individual “optimal policies” can be pasted together by using an artful 
form of an optimization approach that is relatively robust to possible small changes in 
the circumstances of the subproblems. 
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3. GENERAL APPROACH TO OPTIMIZATION PROBLEMS 
 
 
Some of the traditional approaches for revenue management tend to use stochastic 
dynamic programming techniques.  In this paper, we have been gearing our axioms and 
models towards the techniques of mixed integer programming and modern convex 
relaxation approaches.  Maximum utility based pricing models in particular seem very 
amenable to mixed integer programming techniques.  Nevertheless, some recent work 
(see Dussault et al. (2006)) used a bi-level pricing model.  In this setting, one relaxes 
Axiom 5.a. and treats our company as the “leader” and accounts for reactions of the 
competitors to our prices (this approach has good potential in oligopy markets).  In the 
absence of favourable special structure, the underlying optimization problems become 
very hard indeed.  Dussault et al. (2006) use heuristics and ideas from interior-point 
methods to compute good prices in a reasonable computation time.  The number of 
products in their computational experiments is not in the order of millions but is 
bounded by 500. 
 
It seems that we have discussed too many axioms already.  However, to make our 
approach more widely applicable, we need to expand on the question “what makes a 
product” some more.  In many interesting applications of revenue management, optimal 
product pricing problem is intertwined with the optimal bundling problem.  Companies 
offer products singly and/or in bundles.  For example, consider a company in the 
tourism sector.  The company offers 2-day weekend get-away packages (with airline 
tickets, hotel, car rental), 5-day, 7-day, 14-day vacation packages, 5-day, 7-day, 9-day 
cruises (with airline tickets, cruise tickets, excursions included), etc.  As we drill down 
further into the details, the number of product bundles increase very fast (very modest 
numbers such as 6 type of airline tickets, 24 type hotel rooms, 5 options for car rentals, 
12 vacation locations, 10 potential departure cities, 4 different departure days, 4 
different return days lead to more than 5.2 million product bundles, a number which 
does not even include the cruise option or other travel options).  Thus, we see that a 
detailed optimization model should be able to deal with millions of variables (since the 
bundles in the above example, which are in the millions, are represented by “products” 
in our axiomatic revenue management models).  In such applications, we can have the 
number of customer segments on the order of thousands or tens of thousands.  It is 
possible to write mixed integer programming models which deal with the exponentially 
many product bundles implicitly (see Hanson and Martin (1990)); however, these mixed 
integer programs are very hard to solve since their linear programming relaxations 
provide very poor approximations to the convex hull of feasible solutions of the original 
mixed integer programming problem.   
 
On the positive side, there was already some encouraging news in the early 1990’s as 
the heuristic algorithm of Dobson and Kalish (1988, 1990) arrived at the scene.  This 
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heuristic algorithm has been implemented to run very fast in practice and usually 
delivers prices that yield close to the maximum revenue.  The main subroutine of 
Dobson-Kalish heuristic solves a shortest path problem in a directed network (without a 
negative cost cycle), where the number of nodes is bounded by the number of products 
n.  Together with such heuristic algorithms (that are fast in practice), mixed integer 
programming approach becomes more promising with the introduction of strong valid 
cuts which significantly strengthen the linear programming relaxations and allow 
fathoming of a very large number of subproblems in the branch-and-bound algorithms 
applied.  For some of the new cuts, see Shioda, Tunçel, Myklebust (2007).  
 
 

4. MIXED INTEGER PROGRAMMING MODELS 
 
Under Axioms 0., 1., 2., 3., 4.a. (or 4.c.), and 5.a., defining a binary decision variable θij 
which takes the value 1 when customer segment i buys product j and takes the value 0 
otherwise, allows formulating the revenue management problem as a mixed integer 
programming problem with continuous decision variables πj (representing the prices to 
be decided) and 0,1 variables θij (representing the assignment of the customer segments 
to products under the axioms and based on the prices πj).  We think of θij and prices πj as 
the main variables of the formulations, but typically some additional auxiliary variables 
are also needed.  Note that the number of binary variables is at least mn. 
 
 
 
 

5. NONLINEAR, NONCONVEX FORMULATIONS 
 
Now, let us assume Axioms 0., 1., 2., 3., 4.d., and 5.a.  This allows formulating the 
revenue management problem as a nonlinear programming problem.  We can easily 
reformulate the problem to make the objective function linear, but this transformation 
leaves the feasible region highly nonconvex.  Moreover, finding tractable convex 
relaxations which provide very good approximations for these nonconvex formulations 
seem very hard.  For computational experience with such nonlinear optimization 
problems in small scale, see Kraus and Yano (2003).   
 
Some of the current best formulations put the problem into a mixed-integer fractional 
programming problem with linear constraints.  In these formulations, the number of 0,1 
variables is mn and the objective function is nonconvex.  Even if we consider relaxing 
the integrality condition on the 0,1 variables, the underlying relaxation still seems 
intractable for large or even moderate scale problems (even though the feasible region 
of the relaxation is a polyhedron, the objective function is still nonconvex).  Despite the 
above-mentioned difficulties, this approach still holds significant promise. 
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6. CONVEX RELAXATIONS OF NONLINEAR, 
NONCONVEX FORMULATIONS 

 
The previous section motivates reformulations of these problems as mixed 0,1 nonlinear 
programming problems with the property that upon relaxing 0,1 variables to take any 
value on [0,1], the relaxation becomes convex.  These approaches allow the 
employment of modern second order cone programming and semidefinite programming 
techniques.  While the latter techniques do not behave as well as linear programming 
when incorporated into a branch-and-bound or branch-and-cut scheme, they have the 
potential of providing much stronger relaxations resulting in stronger bounds and 
fathoming a large number of subproblems. 
 

7. COMPUTATIONAL STATE-OF-THE-ART 
 
For most of the computational work on the models based on our axioms, the number of 
products and the number of customer segments both seem to be bounded by 500.  This 
even includes heuristic algorithms with no guarantees in terms of proximity to the 
optimal value.  On the side of extremely large-scale problems, Shioda, Tunçel, 
Myklebust (2007)  solve some mixed integer programming problems coming from a 
class of maximum utility revenue management problem with about 100 million 
variables and about 800 million constraints in roughly one hour (on a fast computer 
circa 2006) to within 6% provable optimality.  Typically such solutions (the underlying 
revenue/pricing strategy to be implemented by the company) are obtained within an 
hour of computation time.  However, proving computationally that the generated 
solution is near-optimal requires about a week of CPU time. 
 
When we discussed Axiom 5.a. (Static Competition), we mentioned that one remedy (to 
relax the axiom) would be to adjust our optimal prices to the changes in the market by 
periodically reviewing them (e.g., daily).  To make our optimization approach with 800 
million variables viable in applications, we should be able to very quickly re-optimize 
the prices in the face of small changes in the market.  Shioda et al. (2007) also report on 
such experiments.  Their implementation of the algorithms was able to re-optimize 
within a matter of minutes when there were moderate changes (10 to 20 percent) in the 
prices in the market and in the preferences of the customers. 
 
 

8. ON THE TOURISM SECTOR APPLICATIONS 
 
There are very large bodies of existing work in the areas of “airline revenue 
management” and “hotel revenue management.”  (See, for instance, McGill and van 
Ryzin (1999), van Ryzin and Talluri (2004) and Siguaw and Kimes (2003).)  However, 
combination of these two components with the addition of car rental, cruise, etc. options 
generate new challenges.  One of my recent consulting experiences was with a company 
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in the tourism sector which sold vacation packages.  The company was a branch of a 
parent company which is a major airline.  The companies which sell vacation packages 
in the tourism sector are sometimes called “tour operators.”  Tour operators’ revenue 
management problem is essentially packaging the components: airline tickets, hotel 
rooms, car rentals, cruises, excursions, etc.  Each company may present a different 
situation than the average tour operator.   
 
For example, if the tour operator has a very close relationship to a major airline, the 
nature of this relationship can have a profound effect on what the objective function of 
the revenue management problem should be.  However, the general structure of the 
optimization problem mostly stays the same and the computation times for the solution 
techniques do not seem to be negatively affected. 
 
An important complication with one of our axioms arises in the airline industry (where 
this version of revenue management was born).  One of the pioneers in the industry has 
been American Airlines (AA).  Since the late 1970’s, low-cost airlines kept penetrating 
into the airline market in a substantial way buy cutting prices and providing direct 
flights to small airports.  Major airlines quickly realized that they could not win a price 
war against these low-cost companies.  One response by AA was to create purchase 
restrictions, booking limits and capacity controlled fares.  This response now is widely 
used as a main pricing strategy for essentially every major airline in the World.  For our 
purposes, we must notice that this pricing policy does not seem to obey Axiom 1.  
(Different customers on the same flight pay different amounts for essentially the same 
type of seat and service.)  However, all is not lost.  From a mathematical standpoint, we 
simply define a different product for each of these price incentives (e.g., buy ticket at 
least one month in advance, sleep over on a Saturday).  Therefore, even though our 
Axiom 1. looks very restrictive, it does not mathematically exclude the treatment of the 
above pricing situation seen in the major airlines. 
 
   
So far, we have not discussed the capacity constraints.  One reason is that we are able to 
incorporate them to all mathematical models that we discussed with relative ease.  
Moreover, we are also able to deal with different “types” of capacity.  For instance, 
many tour operators reserve blocks of hotel rooms in various vacation destinations.  
These reservations are done with respect to different agreements and can contain 
different sets of cancellation rules (and penalties).  Optimization approaches have a 
positive role to play here as well.  On the one hand, if these agreements have already 
been signed then they should lead to concrete cost analysis.  Since our objective 
function is in terms of revenue, costs and capacities can be easily incorporated to our 
optimization models (without making the optimization problem intractable).  On the 
other hand, having the optimization model and data ready allows the company to better 
negotiate these hotel reservation agreements with the suppliers (for the next planning 
horizon) by using what-if scenerio analyses on the latest data and forecasts.  
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9. CONCLUSION 

 
One of the most important challenges of revenue management problems that we 
considered is the lack of knowledge about the data.  We can only hope to get a rough 
estimate of what the reservation prices are for our potential customers.  So, whatever 
optimization model/technique combination is used, it must be designed to be robust 
with respect to the changes in the data.  In particular, the optimal or near-optimal prices 
delivered by the optimization techniques should be robust under modest perturbations of 
the reservation prices of the potential customers and the competitors’ prices.   
 
In optimization theory, there are areas such as sensitivity analysis, stochastic 
programming, chance-constrained programming and (more recently) robust 
optimization each of which deals with the lack of knowledge in the data.  Among these, 

• multi-stage recourse models in a stochastic optimization framework and 
• robust optimization 

are very promising for product pricing problems. 
 
 
With the World-Wide-Web sales becoming the main interface between the companies 
and the consumer, the emergence of the optimal pricing tools as discussed in the current 
paper makes it very tempting to directly connect the optimal price computing 
algorithms to the websites that the customers use.  While it is very useful to receive and 
record all possible website activity by the potential customers, it is indeed very 
dangerous for companies to blindly rely on the optimizing software to directly respond 
to the changes via the WWW.  Every pricing change suggested by the optimization 
software must be watched and carefully scrutinized by an experienced (human) revenue 
manager before any final pricing decisions are made.   
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