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t. We study homogeneous 
onvex 
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terize the extreme rays ofsu
h 
ones in the 
ontext of their primal 
onstru
tion (due to Vinberg) and also in the 
ontextof their dual 
onstru
tion (due to Rothaus). Then, using these results, we prove that everyhomogeneous 
one is fa
ially exposed. We provide an alternative proof of a result of G�ulerand Tun�
el that the Siegel rank of a symmetri
 
one is equal to its Carath�eodory number.Our proof does not use the Jordan-von Neumann-Wigner 
hara
terization of the symmetri

ones but it easily follows from the primal 
onstru
tion of the homogeneous 
ones and ourresults on the geometry of homogeneous 
ones in primal and dual forms. We study optimalself-
on
ordant barriers in this 
ontext. We brie
y dis
uss the duality mapping in the 
ontextof automorphisms of 
onvex 
ones and prove, using numeri
al integration, that the dualitymapping is not an involution on 
ertain self-dual 
ones.1. Introdu
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oni
 form, as the problem of optimizing a linearfun
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onvex 
one interse
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e (see Nesterov andNemirovskii [12℄, Nesterov and Todd [13℄, [14℄ and the exposition by Renegar[17℄). Also see [23℄ where symmetri
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onvex optimization problems in 
oni
 form.In su
h formulations, we interpret the 
onvex 
one 
onstraint as the \diÆ-
ult" 
onstraint and deal with the 
one 
onstraint by utilizing a smooth, stri
tly
onvex barrier fun
tion for it. Su

essful modern theories imposed rather so-phisti
ated 
onditions on these barriers (self-
on
ordan
e by Nesterov and Ne-mirovskii, self-s
aledness by Nesterov and Todd). In return, powerful theoreti
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2 Van Anh Truong, Levent Tun�
elEven though the fundamental theory developed by Nesterov and Nemirovskiiapplies to all 
onvex 
ones, the more spe
ialized and sophisti
ated theory devel-oped by Nesterov and Todd deals with symmetri
 
ones (see the next se
tionfor a de�nition). Su
h 
ones in
lude the 
ones of symmetri
 positive semide�nitematri
es, se
ond order 
ones and 
ones of Hermitian positive semide�nite ma-tri
es over 
omplex and quaternion numbers as well as arbitrary 
ompositions ofthe above under dire
t sums and nonsingular linear maps. Homogeneous 
onesproperly in
lude symmetri
 
ones. G�uler [5℄ was the �rst to point out 
onne
tionsbetween the theory of self-
on
ordant barriers and the theory of homogeneous
ones. This 
onne
tion was further investigated by G�uler and the se
ond authorin [7℄.While not ne
essarily self-dual, homogeneous 
ones have very ri
h automor-phisms. Su
h 
ones are interesting not only for their elegant stru
ture but alsofor the potential they have for more sophisti
ated interior-point-method theo-ries and duality theories for 
onvex optimization problems involving them as
onvex 
one 
onstraints. For instan
e, G�uler [6℄ proved that 
ertain long-step es-timation property of self-s
aled barriers of Nesterov-Todd extends to hyperboli
barriers (every homogeneous 
one admits a hyperboli
 barrier). A ni
e exampleof homogeneous 
ones is the epigraph of matrix norms. Su
h 
ones also arisein appli
ations (see for instan
e Ben-Tal and Nemirovskii's book on engineeringappli
ations [1℄) as well as in strong duality theories (see Ramana [15℄ and [16℄).In the next se
tion, we des
ribe some ba
kground results and establish var-ious de�nitions and notation. In Se
tion 3, we 
hara
terize the extreme rays ofhomogeneous 
onvex 
ones in primal form (as des
ribed by Vinberg) as well asin dual form (as des
ribed by Rothaus). Using these 
hara
terizations and otherte
hniques, we prove that every homogeneous 
one is fa
ially exposed. This gen-eralizes the well-known property of the 
one of symmetri
 positive semide�nitematri
es and the polyhedral 
ones. We also provide an alternative proof of anearlier result of G�uler and the se
ond author that for symmetri
 
ones, theCarath�eodory number and the Siegel rank 
oin
ide. Our proof does not use theJordan-von Neumann-Wigner 
lassi�
ation of the irredu
ible, symmetri
 
onesbut it easily follows from Vinberg and Rothaus' des
riptions of homogeneous
ones and our geometri
 results. In Se
tion 4, we study optimal self-
on
ordantbarriers for homogeneous 
onvex 
ones. In Se
tion 5, we prove that for self-dual 
ones that are not homogeneous, the duality mapping is not ne
essarily aninvolution.2. Notation and Ba
kgroundLet S be a subset of Rn. Then, int(S), 
l(S) and �(S) denote the interior, 
losureand the boundary of S respe
tively. For a given linear operator A, R(A) andN (A) denote the range and the null spa
e of A respe
tively.In this paper, K denotes a pointed, 
losed, 
onvex 
one in Rn with nonemptyinterior. The set of extreme rays of K are denoted by Ext(K). Sometimes it ismore 
onvenient to normalize those extreme rays; ext(K) denotes the set of



Geometry of Homogeneous Cones 3normalized extreme rays of K. For a given inner produ
t h�; �i, the dual 
one ofK is given by K� := fs 2 Rn: hs; xi � 0; 8x 2 Kg:K is self-dual if an inner produ
t 
an be 
hosen so that K = K�. Self-duality isindeed of interest sin
e in the setting of 
onvex 
oni
 optimization problems, theprimal and the dual problems have the same \domain" (
one) de�ning the \diÆ-
ult" 
onstraints. The 
one is homogeneous if the group Aut(K) of nonsingular,linear maps on Rn keeping K invariant a
ts transitively on int(K). Homogeneityis also of great interest, sin
e it allows interior-point methods to use \s
alings"without 
hanging the \diÆ
ult" 
one 
onstraints. Finally, K is symmetri
 if itis both homogeneous and self-dual.Our approa
h will involve geometri
, algebrai
 and analyti
 stru
tures relatedto 
onvex 
ones. The following analyti
 des
ription of 
onvex 
ones is fundamen-tal in various areas of mathemati
s. The 
hara
teristi
 fun
tion of K is de�nedto be �K(x) := ZK� e�hx;si ds;where e denotes the base of the natural logarithm. The logarithm of the 
hara
-teristi
 fun
tion (after multipli
ation by an appropriate absolute 
onstant), F ,is a self-
on
ordant barrier fun
tion for K. That is, F is aC3-smooth, stri
tly 
onvex fun
tion on int(K); (1)F (x(k))!1 as fx(k)g � int(K) approa
hes �(K); (2)there exists # � 1 su
h that 8� > 0, F (�x) = F (x)� # ln(�); (3)and 8x 2 int(K); 8h 2 Rn; ��D3F (x)[h; h; h℄��� 2(D2F (x)[h; h℄) 32 : (4)The last 
ondition ensures that the 
hange in the se
ond derivative of F isbounded by the size of its Hessian (hen
e, the name self-
on
ordan
e). The def-inition we gave above 
orresponds to what Nesterov and Nemirovskii 
all a#-normal (self-
on
ordant) barrier for K.Barrier fun
tions have been studied extensively be
ause they are a very usefultool in 
onvex optimization algorithms. In addition to proposing the usage ofself-
on
ordant barriers in the general, modern theory of interior-point methods,Nesterov and Nemirovskii [12℄ proved the ex
eptional result that every 
onvex
one in Rn admits a self-
on
ordant barrier with parameter # = O(n). In their
onstru
tive proof, they used the following fun
tion�K(x) := ln (volnfs 2 K� : hs; xi � 1g)(more pre
isely, a 
onstant multiple of it) whi
h they 
alled the universal barrierfor K. Here, voln denotes the n-dimensional Lebesgue measure.The barrier F 
oming from the 
hara
teristi
 fun
tion, whi
h we will subse-quently refer to only as the barrier of K, is in fa
t equal to the universal barrier(modulo a 
onstant), a result of G�uler [5℄. Moreover, the negation of the gradi-ent of F , i.e., �F 0(�), always determines a bije
tion from int(K) to int(K�). Its



4 Van Anh Truong, Levent Tun�
elinverse is �F�0(�) where F� is the slightly modi�ed Legendre-Fen
hel 
onjugateof F : F�(s) := supf�hs; xi � F (x) : x 2 int(K)g:Some additional properties of general self-
on
ordant barrier fun
tions are givenbelow.Proposition 1. (Nesterov and Nemirovskii [12℄) Let F be a self-
on
ordant bar-rier for K with parameter #. Then F� is a self-
on
ordant barrier for K� withparameter #. Also, for all x 2 int(K) and s 2 int(K�), F and F � satisfy thefollowing 8k 2Z++ and � > 0; DkF (�x) = 1�kDkF (x); (5)h�F 0(x); xi = #; (6)F 00(x)x = �F 0(x); (7)F�(�F 0(x)) = �#� F (x) and F (�F 0�(s)) = �#� F�(s); (8)F 00� (�F 0(x)) = [F 00(x)℄�1 and F 00(�F 0�(s)) = [F 00� (s)℄�1; (9)DkF (Ax)[Ah;Ah; : : :; Ah℄ = DkF (x)[h; h; : : :; h℄; (10)8h 2 Rn; k 2Z++; A 2 Aut(K): utWe denote the set of n � n symmetri
 matri
es over the reals by �n. The
losed 
onvex 
one of n� n symmetri
 positive semide�nite matri
es is denotedby �n+. The interior of �n+ is the set of symmetri
 positive de�nite matri
es ofthe same order, denoted by �n++ . For x; y 2 �n we write x � y to mean that(x� y) 2 �n+.3. Homogeneous 
ones, their geometry, and Siegel domains3.1. Elements of the algebrai
 theory of homogeneous 
onesFor a more detailed exposure to this theory see G�uler [5℄ and G�uler and Tun�
el[7℄. In this subse
tion, we give a brief summary of this theory to serve ourpurposes in this paper.De�nition 1. Let K be a 
losed 
onvex 
one in Rn. A K-bilinear symmetri
form B(u; v) in Rp is a mapping from Rp � Rp to Rn satisfying the followingproperties (here the trivial bilinear form, that is p = 0, is allowed)1. B(�1u(1) + �2u(2); v) = �1B(u(1); v) + �2B(u(2); v); 8u(1); u(2) 2 Rp; and8�1; �2 2 R;2. B(u; v) = B(v; u); 8u; v 2 Rp;3. B(u; u) 2 K; 8u 2 Rp;4. B(u; u) = 0 implies u = 0, 8u 2 Rp.



Geometry of Homogeneous Cones 5Let B and K satisfy the 
onditions (1)-(4) in De�nition 1. Then the Siegeldomain 
orresponding to K and B is the setSD(K;B) := f(x; u) 2 Rn�Rp : x� B(u; u) 2 Kg:The Siegel 
one 
orresponding to the Siegel domain SD(K;B) isSC(K;B) := 
l�(x; u; t) 2 Rn�Rp�R : t > 0; �x� B(u; u)t � 2 K� :Therefore,SC(K;B) = f(x; u; t) 2 Rn�Rp�R : x 2 K; t � 0; [tx� B(u; u)℄ 2 Kg :A fundamental example isK := �p+ (n = p(p+1)=2),B(u; v) := 12 �uvT + vuT �resulting inSC(K;B) = �(x; u; t) : x 2 �p+; t � 0; �tx� uuT� 2 �p+	= �(x; u; t) : � t uTu x � 2 �p+1+ � :Here, SD(K;B) = ��xu� : � 1 uTu x � � 0� :De�nition 2. A K-bilinear symmetri
 form B is 
alled homogeneous if K is ahomogeneous 
one and there exists a transitive subset G � Aut(K) su
h that forevery g 2 G, there exists a linear transformation �g of Rp su
h thatg B(u; v) = B(�gu; �gv); for all u; v 2 Rp:The above de�nition isolates an important property of K and the bilinearformB. It means that as far as the bilinear formB is 
on
erned, the e�e
t on Rnof every element g in the transitive subset G 
an be simulated by a 
orrespondinglinear transformation �g a
ting on Rp.The following lemma des
ribes how to 
onstru
t a transitive subset of theautomorphism group of SC(K;B) based on a transitive subset of the automor-phism group of K (and of 
ourse the bilinear form B).Lemma 1. (Vinberg [26℄) If K is a homogeneous 
one and B is a homogeneousK-bilinear symmetri
 form, then the 
one SC(K;B) is homogeneous, and thefollowing linear maps generate a transitive subgroup of Aut(SC(K;B)), (for ea
h(x; u; t) 2 int(SC(K;B)))T1(x; u; t) := (x;p�u; �t); � > 0;T2(x; u; t) := (x+ 2B(u; v) + tB(v; v); u + tv; t); v 2 Rp;T3(x; u; t) := (gx; �gu; t); g 2 G � Aut(K);where G is the transitive subset of Aut(K) from De�nition 2 and �g is the 
orre-sponding linear transformation from the same de�nition.



6 Van Anh Truong, Levent Tun�
elutThe above lemmades
ribes a re
ursive 
onstru
tion of homogeneous 
ones. Ahomogeneous 
one K and a homogeneousK-bilinear symmetri
 formB togethergive rise to a homogeneous 
one SC(K;B) in a higher dimensional spa
e. A moreimpressive fa
t is that the 
onverse is also true. For every homogeneous 
one K ofdimension at least 2, there exists a lower dimensional 
one �K and a homogeneous�K-bilinear symmetri
 form B su
h that K is linearly isomorphi
 to SC( �K;B),see for example Gindikin [4℄ (page 75). Therefore, an arbitrary homogeneous 
one
an be 
onstru
ted, re
ursively, using lower dimensional homogeneous 
ones,starting from the real half-line R+. The minimum number of steps required to
onstru
t K in this way is 
alled the Siegel rank of K. We denote that integerinvariant of the 
one by rank(K) and we de�ne rank(R+) := 1.K is homogeneous if and only if K� is. So, the above 
lassi�
ation theoryof Vinberg also applies to K�. In fa
t, the Siegel ranks of K and K� 
oin
ide.Rothaus [19℄ worked out the theory from the dual side, paralleling the algebrai
stru
tures in the primal 
onstru
tion of Vinberg. Rothaus' dual Siegel 
one 
on-stru
tion begins by de�ning, for ea
h y 2 Rn, the symmetri
 linear mappingU (y) : Rp! Rp, hU (y)u; vi := hB(u; v); yi; for all u; v 2 Rp: (11)Remark 1. Note that a

ording to the above de�nition, the inner produ
t on Rpand the linear mapping U (y) are determined by the inner produ
t on Rn (whi
his 
entral to our study) and the bilinear form B. We 
an easily 
hoose any innerprodu
t on Rp and rede�ne U (y) via the above equations. These 
hanges do nota�e
t the following results (i.e., the following results are valid for any 
hoi
e ofthe inner produ
t on Rp so long as the de�nition of U (y) is 
onsistent with theabove equations).Proposition 2. (Rothaus [19℄) Let G be a transitive subset of Aut(K) su
hthat for every g 2 G, there exists a linear mapping �g : Rp ! Rp satisfyinggB(u; v) = B(�gu; �gv) whenever u; v 2 Rp. Then, for every g 2 G there exists alinear operator T�g : �p ! �p su
h that the following diagramRn g��! RnU??y ??yU�p T�g�! �p
ommutes. If y 2 K�, then the operator U (y) is positive semide�nite. Moreover,if y 2 int(K�), then U (y) is positive de�nite. utRothaus proves thatint (SC(K;B)�) = f(y; v; s) 2 Rn�Rp�R : y 2 int(K�), s > hU (y)�1v; vig;where the inner produ
t on (Rn�Rp�R) is de�ned byh(x; u; t); (y; v; s)i := hx; yi + 2hu; vi+ st: (12)



Geometry of Homogeneous Cones 7Note that an arbitrary inner produ
t on (Rn�Rp�R) 
an be handled as fol-lows: Suppose S 2 �n+p+1++ su
h that h(x; u; t); (y; v; s)i := (xT ; uT ; t)S0� yvs1A(in some appli
ation SC(K;B) may be self-dual, and this may be the innerprodu
t). Then we 
an map SC(K;B) ! S1=2SC(K;B) and [SC(K;B)℄� !S1=2 [SC(K;B)℄� and assume the standard inner produ
t on (Rn�Rp�R).Sin
e the transformed 
ones are still homogeneous, they will admit de
ompo-sitions to slightly di�erent 
one K and bilinear form B; however, the essential
hara
teristi
s of the 
ones we deal with here remain un
hanged under su
htransformations. From now on, in our presentation, we 
hoose a level of gener-ality somewhere in between the arbitrary inner produ
t and the standard one.Namely, we 
hoose an inner produ
t that 
an be represented by (12).We now des
ribe the generators of a transitive subgroup of Aut(SC(K;B)�)derived from a transitive subset of Aut(K).Lemma 2. (Rothaus [19℄) Let G � Aut(K) be a transitive subset. Then for ev-ery point (�y; �v; �s) 2 int (SC(K;B)�) the following maps are in Aut(SC(K;B)�):T1(y; v; s) = �y; v � �v; s� 2hU (y)�1�v; vi+ hU (y)�1�v; �vi� ;T2(y; v; s) = (g�y; �g�v; s); g 2 G;T3(y; v; s) = �y; vp�; s�� ; � > 0;where the linear transformation �g is the one des
ribed in Proposition 2. ut3.2. Geometry of homogeneous 
onesA fa
e P of K is 
alled a d-fa
e of K if the dimension of the aÆne hull of P isd. An exposed d-fa
e of K is a d-fa
e of K whi
h is exposed.Theorem 1. Let K be a pointed, 
losed 
onvex 
one with nonempty interior.Also let A 2 Aut(K). Then(a) v 2 Ext(K) () A(v) 2 Ext(K);(b) v 2 Ext(K) is exposed () A(v) 2 Ext(K) is exposed;(
) f0g � P � K is an exposed d-fa
e of K () A(P ) is an exposed d-fa
e ofK.Proof. For part (a) see [7℄, for (b) see [24℄. We give below a proof of (
) whi
hgeneralizes the arguments of [24℄.Let f0g � P � K be an exposed d-fa
e of K. Then there exists a supportinghyperplane H := fx 2 Rn : ha; xi = �g
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elsu
h that K \H = P and ha; xi � �; 8x 2 K: (13)Let A 2 Aut(K). Then we haveA(H) = fAx 2 Rn : ha; xi = �g= fx 2 Rn : ha;A�1xi = �g= fx 2 Rn : hA��a; xi = �g:Moreover, hA��a; xi = ha;A�1xi � � for all x 2 K by (13) and the fa
t that\A 2 Aut(K) i� A�1 2 Aut(K)."A(H) \K = fx 2 K : hA��a; xi = �g= fx 2 K : ha;A�1xi = �g= A(P ):We proved that A(H) is a hyperplane supporting K at A(P ). Sin
e P is a fa
eof K, for all x; y 2 K, (x+ y) 2 P implies x and y are both in P . Let x; y 2 Ksu
h that (x+y) 2 A(P ). Then using A 2 Aut(K), we �nd A�1(x); A�1(y) 2 P .Thus, x; y 2 A(P ). Clearly, dim(A(P )) = dim(P ). Therefore, f0g � A(P ) � Kis an exposed d-fa
e of K. The 
onverse also follows from the above argument,sin
e A 2 Aut(K) () A�1 2 Aut(K). utUsing the algebrai
 
onstru
tion for homogeneous 
ones des
ribed in theprevious se
tion, we seek a more detailed des
ription of homogeneous 
onesin terms of the lower-dimensional 
ones and the symmetri
 bilinear forms fromwhi
h they arise. First, we des
ribe the set ext(SC(K;B)) of normalized extremerays of SC(K;B). This next theorem generalizes Theorem 5.1 of [24℄ and itsproof.Theorem 2. Let K be a homogeneous 
one and let B be a homogeneous K-bilinear symmetri
 form. Thenext(SC(K;B)) = f(x; 0; 0) 2 Rn�Rp�R : x 2 ext(K)g[� (B(u; u); u; 1)k(B(u; u); u; 1)k : u 2 Rp� :Proof. It 
an be readily 
he
ked that the two types of rays above are in SC(K;B)and have norm 1. To show that (x; 0; 0) is an extreme ray, suppose that we 
anwrite (x; 0; 0) = (Æx; u; t) + (�x;�u;�t);as a sum of two ve
tors in SC(K;B), where Æ; � � 0. Sin
e t and (�t) are bothnonnegative, t = 0. We also have[Ætx� B(u; u)℄ 2 K:



Geometry of Homogeneous Cones 9Thus, �B(u; u) 2 K and by the pointedness of K, we must have u = 0. There-fore, the only way to express (x; 0; 0) as su
h a nonnegative 
ombination is tolet u = 0, t = 0, Æ; � � 0, Æ + � = 1. Hen
e, (x; 0; 0) must be an extreme ray.To show that (B(u; u); u; 1) is an extreme ray, by Theorem 1, it suÆ
esto 
onsider the 
ase u = 0, for every ve
tor (B(u; u); u; 1) is the image of(B(0; 0); 0; 1) = (0; 0; 1) under the automorphism T2 des
ribed in Lemma 1,with v := u. So, suppose that(0; 0; 1) = (x; u; t1) + (�x;�u; t2)for t1, t2 > 0. Sin
e [t1x�B(u; u)℄ , [�t2x�B(u; u)℄ 2 K;we must have �x 2 K. Therefore, x = 0 be
ause K is pointed. But now�B(u; u) 2 K, so that u = 0 for the same reason. Thus, (0; 0; 1) and everyve
tor of the form (B(u; u); u; 1) are extreme rays.Finally, we must show that every extreme ray of SC(K;B) is one of the twotypes des
ribed. Let r := (x; u; t) 2 Ext(K). If t = 0 then, sin
e �B(u; u) 2 K,u = 0. Thus, r = (x; 0; 0) for some x 2 Ext(K). Otherwise, we 
an assumewithout loss of generality that t = 1. We write x = B(u; u) + w for w 2 K toobtainr = (B(u; u); u; 1)+ (w; 0; 0) 2 
onef(B(u; u); u; 1); (x; 0; 0) : x 2 ext(K)g;so that r must be a positive multiple of one of these rays. utThe dual 
hara
terization for SC(K;B)� given in Proposition 2 allows us togive a parallel des
ription of the extreme rays of SC(K;B)� in terms of K� andB. Re
all thatSC(K;B)� = 
lf(y; v; s) 2 Rn�Rp�R : y 2 int(K�), s > hU (y)�1v; vig:(14)However, this 
hara
terization des
ribes only the interior of SC(K;B)� expli
-itly, relying on the positive-de�niteness of the map U (y) for y 2 int(K�). Wheny 2 �(K�), U (y) may not be invertible. To pro
eed, we �rst address the de�n-ability of the quantity hU (y)�1v; vi when y 2 �(K�).Remark 2. Let y 2 �(K�) and v 2 R(U (y)). Then hU (y)�1v; vi exists and iswell-de�ned.Proof. By assumption, there exists ~u 2 Rp with U (y)~u = v. Sin
e U (y) is linear,every u satisfying U (y)u = v has form u = ~u+ w where w 2 N (U (y)). Now,hu; vi = h~u; vi+ hw; vi = h~u; vi + hw;U (y)ui = h~u; vi+ hU (y)w; ui = h~u; vi:Therefore, we are justi�ed in writing hU (y)�1v; vi. This quantity has a uniqueinterpretation ashU (y)�1v; vi = hu; vi, 8u su
h that U (y)u = v= h~u; vi: ut
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elHen
eforth we will write hU (y)�1v; vi without justi�
ation whenever v 2R(U (y)). As we shall see, this happens for all (y; v; s) 2 SC(K;B)�, so that weobtain an expli
it des
ription for SC(K;B)�.Theorem 3. Let K be a homogeneous 
one and let B be a homogeneous K-bilinear symmetri
 form. Also let U be de�ned as in (11). ThenSC(K;B)� = f(y; v; s) : y 2 K�, v 2 R(U (y)), s � hU (y)�1v; vig:Proof. Let (�y; �v; �s) be in SC(K;B)� and suppose that �v 62 R(U (�y)). Let us write�v = vR + vN where vN 6= 0 is the orthogonal proje
tion of �v onto N (U (�y)). Forall � > 0, (B(�vN ; �vN );��vN ; 1) 2 SC(K;B):However,h(�y; �v; �s); (B(�vN ; �vN );��vN ; 1)i = h�y;B(�vN ; �vN )i + 2�h�v;�vN i + �s= �2hU (�y)vN ; vN )i � 2�kvNk2 + �s= �2�kvNk2 + �s< 0for large enough �. This is a 
ontradi
tion to the fa
t that (�y; �v; �s) 2 SC(K;B)�:We have established that v 2 R(U (y)) for all (y; v; s) 2 SC(K;B)�.Now, let (y; v; s) satisfy v 2 R(U (y)). Then(y; v; s) 2 SC(K;B)� i� h(x; u; t); (y; v; s)i � 0 for all (x; u; t) 2 SC(K;B):By substituting for (x; u; t) ea
h of the extreme rays found in Theorem 2, weobtain that (y; v; s) 2 SC(K;B)� i� y 2 K� andhU (y)u; ui+ 2hu; vi+ s � 0 for all u 2 Rp: (15)This happens i� y 2 K� and over all u's, the minimum value of (15) is non-negative: �hU (y)�1v; vi + s � 0: utWe are now ready to des
ribe the extreme rays of SC(K;B)�.Theorem 4. Let K be a homogeneous 
one and let B be a homogeneous K-bilinear symmetri
 form. Also let U be de�ned as in (11). ThenExt(SC(K;B)�) = f(y; v; hU (y)�1v; vi) : y 2 Ext(K�), v 2 R(U (y))g[f(0; 0; s) : s 2 R++g:



Geometry of Homogeneous Cones 11Proof. The above rays are 
learly in SC(K;B)� by Theorem 3. Suppose that(0; 0; s) = (y; v; s1) + (�y;�v; s2)is a sum of two ve
tors in SC(K;B)�. Then,h(x; 0; 0); (y; v; s1)i, h(x; 0; 0); (�y;�v; s2)i � 0; 8x 2 Kimply that �y 2 K�; thus, y = 0. Now, �v 2 R(U (y)) = f0g, so v = 0 as well.Therefore, (0; 0; s) is an extreme ray.To see that a ve
tor of the form (y; v; hU (y)�1v; vi), y 2 Ext(K�), v 2R(U (y)) is an extreme ray, we note that su
h a ve
tor 
an be mapped to (y; 0; 0)via the automorphism T1 of Lemma 2. Therefore, it suÆ
es to prove that (y; 0; 0)is an extreme ray of SC(K;B)� for y 2 Ext(K�). Again, suppose that we 
anwrite (y; 0; 0) = (�y; v; s) + (Æy;�v;�s) (16)as a sum of ve
tors in SC(K;B)�. Then the relationsh(0; 0; 1); (�y; v; s)i, h(0; 0; 1); (Æy;�v;�s)i � 0imply that s = 0 and hU (y)�1v; vi � 0;so that the de
omposition in (16) holds when we repla
e y with any positivemultiple of itself. Buth(B(v; v);�v; 1); (�y; v; 0)i, h(B(v; v); v; 1); (Æy;�v; 0)i � 0imply that hB(v; v); yi � 4kvk2 � 0: (17)Unless v = 0, this inequality fails when y is 
ontra
ted (by multipli
ation witha positive s
alar) to an appropriately small magnitude while v is kept 
onstant.Therefore, (y; 0; 0) is an extreme ray.Finally, let r := (y; v; s) be an extreme ray of SC(K;B)�. Writingr = (y; v; hU (y)�1v; vi) + (0; 0; s� hU (y)�1v; vi)2 
onef(y; v; hU (y)�1v; vi), (0; 0; s) : s > 0,y 2 Ext(K�), v 2 R(U (y))gwe immediately see that r must 
oin
ide with one of the rays in the generatingset. utThe proof of the following theorem illustrates the power of the algebrai

onstru
tion for homogeneous 
ones.Theorem 5. All extreme rays of every homogeneous 
one are exposed.



12 Van Anh Truong, Levent Tun�
elProof. We use indu
tion on the Siegel rank of a 
one. When the rank is 1, the
one is, by de�nition, the real half-line R+ and the statement holds trivially.Assume that our 
one is SC(K;B). Let r 2 ext(SC(K;B)).First, if r has the form (0; 0; 1) then we 
hoose x(0) 2 �int(K) and de�neH := f(x; u; t) 2 Rn�Rp� R : h(x; u; t); (x(0); 0; 0)i = 0g:Clearly,H is a supporting hyperplane for SC(K;B); for all (x; u; t) 2 SC(K;B),h(x; u; t); (x(0); 0; 0)i = hx; x(0)i � 0;with equality holding i� x = 0, i� (x; u; t) = (0; 0; t) = tr for t � 0. Therefore, ris exposed: f�r : � � 0g = H \ SC(K;B):Moreover, every extreme ray of the form (B(v; v); v; 1) is an automorphi
 imageof (0; 0; 1), and hen
e, must also be exposed (see Theorem 1).It remains to show that r is exposed if it has the form (~x; 0; 0) for ~x 2 Ext(K).Sin
e rank(K) < rank(SC(K;B)), we 
an use the indu
tion hypothesis to obtainx(0) su
h that f�~x : � � 0g = K \ fx 2 Rn : hx; x(0)i = 0gand K � fx 2 Rn : hx; x(0)i � 0g:Now, de�neH := f(x; u; t) 2 Rn�Rp� R : h(x; u; t); (x(0); 0;�1)i = 0gas above. Then for all (x; u; t) 2 SC(K;B),h(x; u; t); (x(0); 0;�1)i = hx; x(0)i � t � 0:Equality o

urs i� t = 0 (implying u = 0) and x 2 f�~x : � � 0g: In otherwords, H \ SC(K;B) = f�r : � � 0g:Therefore, r is an exposed ray. By indu
tion, the theorem is established. utThe above result does not immediately imply that all proper fa
es of allhomogeneous 
ones are exposed. There are 
onvex 
ones having every one oftheir extreme rays exposed, but also having some higher dimensional properfa
e unexposed (for this, one has to 
onsider at least four-dimensional 
onvex
ones). See, for instan
e, the example in Tam [21℄ (page 50).In the 
ase of homogeneous 
onvex 
ones however, we do have every properfa
e exposed. The next result generalizes the 
orresponding well-known resulton the 
one �n+ (and of 
ourse, it implies the pre
eding theorem).Theorem 6. All proper fa
es of every homogeneous 
one are exposed.



Geometry of Homogeneous Cones 13Proof. Again, we use indu
tion on the Siegel rank of a 
one. When the rank is 1,the 
one is the real half-line R+, whi
h has all of its fa
es exposed (if the readeris bothered by the fa
t that R+ has no nontrivial exposed proper fa
e, then itis possible to start with R2+). Assume that the 
one is SC(K;B) where K is ahomogeneous 
one and B is a homogeneous K-bilinear symmetri
 form. Let Pbe a fa
e of SC(K;B) and de�ne a set Q in K byQ := fx 2 K : (x; 0; 0) 2 Pg:Q is 
learly a fa
e of K be
ause whenever x = y + z for y, z 2 K, we have(x; 0; 0) = (y; 0; 0) + (z; 0; 0):Both ve
tors on the right hand side are in SC(K;B), implying that y and zbelong to Q. Sin
e rank(K) < rank(SC(K;B)) and Q is a fa
e of K, Q isexposed by the indu
tion hypothesis. Therefore, there is a �y 2 K� su
h thath�y; xi � 0 8x 2 K;h�y; xi = 0 for x 2 K () x 2 Q:We distinguish between two 
ases. First, suppose that P does not 
ontain aray of the form (B(u; u); u; 1). In this 
ase,H := f(x; u; t) 2 Rn�Rp�R : h(�y; 0; 1); (x; u; t)i= 0gis a supporting hyperplane for SC(K;B) exposing the fa
e P . That H is asupporting hyperplane follows from the fa
t that (�y; 0; 1) 2 SC(K;B)�. We
he
k the extreme rays of SC(K;B). If x 2 Ext(K) thenh(�y; 0; 1); (x; 0; 0)i= 0 () h�y; xi = 0() x 2 Q() (x; 0; 0) 2 P:If u 2 Rp thenh(�y; 0; 1); (B(u; u); u; 1)i> 0 () (B(u; u); u; 1) 62 P:Note that the trivial 
ase Q = f(0; 0; 0)g is in
luded in the above.In the se
ond 
ase, P 
ontains a ray of form (B(u; u); u; 1). By 
onsideringan automorphi
 image of P and applying Theorem 1, we may assume withoutloss of generality that (0; 0; 1) 2 P . Then we 
laim that (B(u; u); 0; 0) 2 P ()(B(u; u); u; 1) 2 P :If (B(u; u); 0; 0) 2 P thenP 3 2(B(u; u); 0; 0)+ 2(0; 0; 1)= (B(u; u); u; 1) + (B(�u;�u);�u; 1):



14 Van Anh Truong, Levent Tun�
elBoth of the above are in SC(K;B), so (B(u; u); u; 1) 2 P . On the other hand,if (B(u; u); u; 1) 2 P thenP 3 (B(u; u); u; 1)+ (0; 0; 1)= �12B(u; u); u; 2�+ 12(B(u; u); 0; 0)= 2�B �u2 ; u2� ; u2 ; 1�+ 12(B(u; u); 0; 0):Both of the above are in SC(K;B); thus (B(u; u); 0; 0) 2 P .Now, it is easy to show thatH := f(x; u; t) 2 Rn�Rp�R+ : h(�y; 0; 0); (x; u; t)i= 0gis a supporting hyperplane for SC(K;B) whi
h exposes P :If x 2 Ext(K) thenh(�y; 0; 0); (x; 0; 0)i= 0 () h�y; xi = 0() x 2 Q() (x; 0; 0) 2 P:If u 2 Rp thenh(�y; 0; 0); (B(u; u); u; 1)i= 0 () h�y;B(u; u)i = 0() B(u; u) 2 Q() (B(u; u); 0; 0) 2 P() (B(u; u); u; 1) 2 P;where the last statement follows from the 
laim. We have shown that every fa
eof SC(K;B) is exposed. By indu
tion, the theorem is proved for all homogeneous
ones. utWhile this paper was in preparation, Chua [2℄, using the 
lassi�
ation theoryof Vinberg, showed that homogeneous 
ones are representable as feasible regionsof semide�nite programming (SDP) problems (illustrating yet another powerfulappli
ation of Vinberg's 
lassi�
ation theory). Hen
e, any 
oni
 optimizationproblem with a homogeneous 
one as the 
one 
onstraint 
an be expressed as anSDP problem in prin
iple. This result is a step towards the important questionof what (
onvex) optimization problems 
an be eÆ
iently formulated as SDPproblems.3.3. Appli
ations to the geometry of symmetri
 
onesAs an appli
ation of Theorems 2 and 4, we ask what 
ondition must be imposedon K and B for SC(K;B) to be symmetri
.



Geometry of Homogeneous Cones 15Theorem 7. Let K � Rn be a homogeneous 
one and let B be a homogeneousK-bilinear symmetri
 form in Rp. Then SC(K;B) is symmetri
 i� K is sym-metri
 and B satis�es(a) hx; yiU (y)�1 � U (x) � 0; 8 y 2 int(K�); 8 x 2 K;(b) u 2 R(U (B(u; u))) and hU (B(u; u))�1u; ui � 1; 8u 2 Rp:Proof. Suppose SC(K;B) is symmetri
. Then SC(K;B) = SC(K;B)� (by Re-mark 1, SC(K;B) = SC(K;B)� under the 
urrent inner produ
t). By Theorems2 and 4, Ext(K) = Ext(K�). Therefore, K = K�. Sin
e K is assumed to be ho-mogeneous, K must be symmetri
.By the des
ription of int(SC(K;B)�) and by Theorem 3, we have that forevery y 2 int(K�) and every v 2 Rp, (y; v; hU (y)�1v; vi) 2 SC(K;B)�. Sin
e weknow that SC(K;B) is self-dual, by the de�nition of SC(K;B), we obtain�hU (y)�1v; viy �B(v; v)� 2 K; 8y 2 int(K�); and 8v 2 Rp:Sin
e K = K�, we havehU (y)�1v; vihx; yi � hU (x)v; vi � 0; 8x 2 K; 8y 2 int(K�); 8v 2 Rp:This is pre
isely, 
ondition (a).Sin
e Ext (SC(K;B)) = Ext (SC(K;B)�), using Theorems 2, 3 and 4 we seethat (b) must hold.To prove the 
onverse, we assume K is symmetri
 and that B satis�es (a)and (b). Then for every v 2 Rp, we have (from (a))hU (y)�1v; vihx; yi � hx;B(v; v)i � 0; 8x 2 K; 8y 2 int(K):Sin
e K is self-dual, the last statement implies�hU (y)�1v; viy �B(v; v)� 2 K; 8y 2 int(K); 8v 2 Rp: (18)Let (�y; �v; �s) 2 int(SC(K;B)�). Then �y 2 int(K) and �s > hU (�y)�1�v; �vi � 0: By(18), we 
an 
on
lude (�y; �v; �s) 2 int(SC(K;B)) sin
e�s�y �B(�v; �v) = 8>>>>>><>>>>>>:(�s � hU (�y)�1�v; �vi)| {z }>0 �y| {z }2int(K) + �hU (�y)�1�v; �vi�y �B(�v; �v)�| {z }2K 9>>>>>>=>>>>>>; 2 int(K):We proved SC(K;B)� � SC(K;B). Next, we verify that ext(SC(K;B)) �SC(K;B)�. Theorem 2 gives a 
omplete 
hara
terization of the extreme raysof SC(K;B). Clearly, for every x 2 K, we have (x; 0; 0) 2 SC(K;B)�, sin
e Kis self-dual. Trivially, (0; 0; 1) 2 SC(K;B)�. Finally, let u 2 Rpnf0g and 
onsider(B(u; u); u; 1).We know by (b) that u 2 R(U (B(u; u))) and hU (B(u; u))�1u; ui �1:Hen
e, (B(u; u); u; 1) 2 SC(K;B)�; for every u 2 Rpnf0g.We proved, SC(K;B)� SC(K;B)�. Thus, SC(K;B) is self-dual. Sin
e K is homogeneous and B isa homogeneous K-bilinear symmetri
 form in Rp, SC(K;B) is homogeneous.Therefore, SC(K;B) is symmetri
. ut
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elNote that the ne
essary and suÆ
ient 
onditions of the above fa
t 
an beeasily veri�ed for K := �p+, B(u; v) := 12 �uvT + vuT �, therefore SC(K;B) :=�p+1+ . For x 2 �p, let tr(x) denote the tra
e of x. In this 
ase, we 
an representU (y) by the symmetri
 positive de�nite matrix y. (We are using here x; y bothfor n-ve
tors, n = p(p+1)=2, and for p� p symmetri
 matri
es inter
hangeably,the relevant format should be 
lear from the 
ontext.) So, U (y) applied to h 2Rp, results in the ve
tor given by the matrix-ve
tor multipli
ation yh. We useRemark 2. Note that B(u; u) = uuT 2 � ��p+�, U (B(u; u)) = uuT and u 2R (U (B(u; u))). Thus, [U (B(u; u))℄�1 u exists and is well-de�ned as follows (foru 6= 0):[U (B(u; u))℄�1 u = 1uTuu; so, h[U (B(u; u))℄�1 u; ui = 1uTu hu; ui = 1;verifying 
ondition (b) of the theorem. Also, for all y 2 int(K); 8 x 2 K; we havehx; yiy�1 � x � 0 () hTxh � (hT y�1h)tr(y1=2xy1=2); 8 h 2 Rp() hT (y1=2xy1=2)h � (hTh)tr(y1=2xy1=2); 8 h 2 Rp; khk = 1:The last statement is 
learly true, verifying 
ondition (a) of the theorem. Forthe equivalen
e of the se
ond and third statements, we used the isomorphismh! y1=2h (and y 2 int(K)).Lemma 3. If SC(K;B) is symmetri
 then for every u 2 Rp, either B(u; u) = 0or B(u; u) is an extreme ray of K.Proof. Suppose that B(u; u) 6= 0. Then (B(u; u); u; 1) is an extreme ray ofSC(K;B). Now, the extreme rays of SC(K;B) 
oin
ide with those of SC(K;B)�be
ause SC(K;B) = SC(K;B)�. (Note that by Remark 1, we 
an assume thatSC(K;B) = SC(K;B)� under the 
urrent inner produ
t.) Thus, (B(u; u); u; 1)must be either (0; 0; �) for some � > 0 or (y; v; hU (y)�1v; vi) for y 2 Ext(K�) =Ext(K). It is 
lear that the latter 
ase must be true be
ause we assumed thatB(u; u) 6= 0. Therefore, B(u; u) = y 2 Ext(K). utGiven K in Rn, we de�ne the Carath�eodory number of K as the minimumnumber of extreme rays of K needed to express any interior point of K as a
onvex 
ombination. We denote this invariant of K by �(K). By a 
lassi
altheorem of Carath�eodory, this number is at most n; however, in many 
ases it
an be mu
h less. G�uler and the se
ond author noti
ed that this number is equalto the algebrai
 invariant rank(K) when K is symmetri
. They note that both�(K) and rank(K) are invariant under linear isomorphisms of Rn and that forany pair of homogeneous 
onvex 
ones K1, K2,�(K1 �K2) = �(K1) + �(K2) and rank(K1 �K2) = rank(K1) + rank(K2)hold. Therefore, they pro
eed to prove the 
laim using the 
lassi�
ation of ir-redu
ible symmetri
 
ones (this is the 
lassi�
ation based on the Jordan-vonNeumann-Wigner 
lassi�
ation of Eu
lidean Jordan Algebras, see Faraut and



Geometry of Homogeneous Cones 17Kor�anyi [3℄). Four of the 
ases in the proof are rather elementary but they relyon the existen
e of generalized eigenvalue de
ompositions and the �fth utilizes aresult of Freudenthal on the existen
e of 
ertain automorphisms in the algebra ofAlbert. Our new proof below is based on the geometri
 insights that we providedfor homogeneous 
ones. First, we need an elementary fa
t. Let �x 2 K. We de�ne�(�x) as the minimum number of extreme rays of K required to express �x as a
onvex 
ombination. Then Proposition 2.3 of [7℄ establishes that �(x) = �(K)for every x 2 int(K), for every homogeneous 
onvex 
one K.Theorem 8. (G�uler and Tun�
el [7℄) For all symmetri
 
ones K, �(K) = rank(K).Proof. We will pro
eed by indu
tion on rank(K). If rank(K) = 1 then K isR+ and the statement of the theorem is true. Suppose �(K) = rank(K) forall symmetri
 
ones K with rank(K) � k. Let K be a symmetri
 
one withrank(K) = k + 1. Then there exists a symmetri
 
one �K and a homogeneous�K-bilinear symmetri
 form B su
h that rank( �K) = k and K = SC( �K;B).By the indu
tion hypothesis �( �K) = k. Consider e 2 int( �K). Then �(e) = k,(e; 0; 1) 2 int(K) and�(e; 0; 1) � k+1 sin
e (e; 0; 1) = (0; 0; 1)+ kXi=1(v(i); 0; 0) for some v(i) 2 Ext( �K):Suppose for a 
ontradi
tion(e; 0; 1) = qXi=1(w(i); 0; 0)+ kXi=q+1�i �B(u(i); u(i)); u(i); 1� ;where � � 0, w(i) 2 Ext( �K) and u(i) 2 Rpnf0g. Sin
e B(u(i); u(i)) 2 Ext( �K)and �(e) = k, we have � > 0. We also haveq � (k � 2); kXi=q+1 �i = 1; kXi=q+1�iu(i) = 0:Without loss of generality (by rede�ning u(i) if ne
essary) we havee = qXi=1 w(i) + kXi=q+1B(u(i); u(i)) and k�1Xi=q+1 �iu(i) = u(k) for some � 6= 0:Using the linear dependen
e on u(i) and the properties of the bilinear form, we
omputekXi=q+1B(u(i); u(i)) = k�1Xi=q+1(1 + �2i )B(u(i); u(i)) + 2 Xq+1�i<j�k�1�i�jB(u(i); u(j)):
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elWe 
laim that we 
an �nd �u(q+1); �u(q+2); : : : ; �u(k�1) 2 Rp su
h thatqXi=1 w(i) + k�1Xi=q+1B(�u(i); �u(i)) = ewhi
h would be a 
ontradi
tion. In fa
t, we 
laim that we 
an 
hoose�u(i) 2 spanfu(q+1); u(q+2); : : : ; u(k�1)g. If we 
an �nd � 2 R(k�q�1)�(k�q�1) su
hthat k�1Xl=q+1B0� k�1Xi=q+1 
liu(i); k�1Xi=q+1 
liu(i)1A = kXi=q+1B(u(i); u(i))then the 
laim would follow. Expanding the left hand side and 
omparing terms,we see that if � T� = I + ��Tthen the desired equality above holds. Sin
e (I+��T ) is symmetri
 positive de�-nite, su
h matrix � always exists. Thus, we expressed e as a 
onvex 
ombinationof (k� 1) extreme rays of �K, a 
ontradi
tion. This 
ompletes the indu
tion andthe proof. ut4. Optimal BarriersIn this se
tion, we are interested in the stru
ture of the optimal barriers forhomogeneous 
onvex 
ones (for a �xed 
one K, those #-self-
on
ordant barrierswith the smallest possible parameter value #). Available eviden
e suggests thatperhaps there is a unique way to 
onstru
t su
h barriers. For example, all of thewell-known optimal barriers for homogeneous 
ones arise, in the 
ontext of thealgebrai
 
onstru
tion by Vinberg, from the extension of the optimal barrierson homogeneous 
ones of lower ranks. More pre
isely, an optimal barrier F onSC(K;B) is generally 
onstru
ted from an optimal barrier ~F on K by settingF (x; u; t) := ~F �x� B(u; u)t �� ln(t); 8 (x; u; t) 2 int (SC(K;B)) : (19)This 
onstru
tion always yields optimalbarriers for SC(K;B) (see [12℄).Whetherthe 
onstru
tion a

ounts for all optimal barriers is less well-understood. Whenwe restri
t K to the set of symmetri
 
ones, then we have the notion of self-s
aledbarriers for K. In this 
ontext, the other most relevant results are those given by�rst Nesterov-Todd [13℄, [14℄ (on the foundations of self-s
aled barriers) then byHauser [8℄, S
hmieta [20℄, Hauser-G�uler [9℄, and Hauser-Lim [10℄ (also see [22℄about a geometri
-mean like 
hara
terization of self-s
aled barriers). It followsfrom these works that an optimal self-s
aled barrier is unique up to an additive
onstant. Here, we formalize the ne
essary and suÆ
ient 
onditions for an opti-mal barrier F to be derivable from (19). We do not know whether homogeneous
ones admit any optimal barriers whi
h do not arise from the re
ursive formula(19).



Geometry of Homogeneous Cones 19Proposition 3. Let K be a homogeneous 
onvex 
one and B be a homogeneousK-bilinear symmetri
 form su
h that rank(SC(K;B)) = rank(K) + 1 � 2: Alsolet F be a k-self-
on
ordant, optimal barrier for SC(K;B). Then there is a(k � 1)-self-
on
ordant optimal barrier ~F of K su
h thatF (x; u; t) = ~F �x� B(u; u)t �� ln(t); 8 (x; u; t) 2 int (SC(K;B))if and only if F (�x;p�u; t) = F (x; u; t)� (k � 1) ln(�); 8 � > 0 (20)andF (x+ B(u; u); u; 1) = F (x; 0; 1); 8 (x; 0; 1) 2 int (SC(K;B)) , 8 u 2 Rp: (21)Proof. If there is ~F as in the statement of the proposition then the above two
onditions are ne
essarily true, (20) by the (k�1)-logarithmi
 homogeneity of ~Fand (21) by the well-de�nedness of ~F . On the other hand, if both (20) and (21)hold for F then we 
an spe
ify ~F by letting~F (x) := F (x; 0; 1); 8 x 2 int(K):The properties required for ~F to be an optimal self-
on
ordant barrier for K 
anbe easily proved from the 
orresponding properties for F . Also, we 
an utilizethe general aÆne restri
tion result of Nesterov and Nemirovskii [12℄. utNote that only (20) is needed if we wish merely to de�ne an optimal barrierfor K in terms of F as we showed in the proof. It is instru
tive to 
onsider whathappens when we produ
e ~F from F in this way, then extend ~F again by (19)to form an optimal barrier F̂ on SC(K;B). In this 
ase, F̂ will satisfy (21) andF̂ = F if and only if F satis�es (21) as well.5. Duality Mapping and HomogeneityRe
all the (universal) barrier �K of a 
one K. Let x� := ��0K(x) for x 2 int(K).Faraut and Kor�anyi [3℄ showed that for homogeneous 
ones, the relation(x�)� = ��0K�(��0K(x)) = x (22)holds for every x 2 int(K). They asked whether the relation is true in general.The se
ond author and Xu [24℄ answered the question in the negative, giving as
ounter example the 
one of the L1-norm. From their result, it appears that invo-lutive property of the duality mapping may depend in a fundamental way on thehomogeneity of the 
one. We would like to investigate whether this 
onne
tion issuÆ
iently strong that (22), alone or in 
ombination with other properties, 
anbe used to formulate a new (analyti
) 
hara
terization for homogeneous 
ones.We obtain some useful fa
ts for investigating this question.
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el5.1. Self-dual 
onesHere, we 
onsider self-dual 
ones for whi
h the duality mapping is an involution.Sin
e in this subse
tion K = K�, we use � for �K (and �K�). This 
lass of 
onesis a useful starting point be
ause a 
andidate for the set of automorphisms ofsu
h 
ones a
ting transitively on the interiors of these 
ones is already known.This is the set H(K) := fD2�(x) : x 2 Kgof images of the Hessian of the barrier fun
tion evaluated at points in K.Rothaus [18℄ noted that H(K) is a transitive subset of Aut(K) i� K is sym-metri
. To present his argument, we �rst state three preliminary results (the�rst proposition 
ontains two of them):Proposition 4. D2�(x) is positive de�nite for ea
h x 2 int(K). Moreover, forevery pair (y; s) 2 (int(K)� int(K�)) ; 9x 2 int(K) su
h that D2�(x)y = s.The �rst part follows easily from the de�nition of self-
on
ordan
e (see [12℄).The se
ond part is due to Rothaus (as well as Nesterov-Todd [13℄ even though[13℄ is 
on
erned with symmetri
 
ones, their proof te
hnique is general andapplies to all 
onvex 
ones; see [23℄ Theorem 3.1). The following result is well-known (see for instan
e [3℄).Proposition 5. The map x! x� has a unique �xed point.Let e 2 int(K) denote the �xed point of the map x! x�.Theorem 9. (Rothaus [18℄) H(K) is a transitive subset of Aut(K) i� K issymmetri
.Proof. The forward dire
tion is 
lear. Let K be symmetri
. Then the dualitymapping is an involution with unique �xed point e. Di�erentiating equality (22),we obtain D2�(x)D2�(x�) = I, 8x 2 int(K): (23)Thus, [D2�(e)℄2 = I. Be
ause D2�(e) is symmetri
 and positive de�nite, it iseasy to see that D2�(e) = I 2 Aut(K).Now, for every x 2 K, there exists A 2 Aut(K) su
h that x = A(e). Byproperty (10) of general barrier fun
tions,D2�(x) = D2�(Ae) = A�1D2�(e)A�� 2 Aut(K):Hen
e, H(K) � Aut(K). That H(K) forms a transitive subset follows fromProposition 4. utIn view of Theorem 9, to show that equality (22) implies homogeneity forself-dual 
ones, we 
an show that H(K) is a transitive subset of Aut(K). Propo-sition 4 already proves that elements of H(K) are linear, positive de�nite, and
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an be 
hosen to map any point in K to any other point. Moreover, if we as-sume (22), (23) gives, for every x 2 K,[D2�(x)℄�1 = D2�(x�) 2 H(K):So, it suÆ
es to show that D2�(x) maps K into K. That is,hD2�(x)u; vi � 0, for all x 2 int(K); and for all u, v 2 K: (24)Note that (24) does not, in general, hold for self-dual 
ones. To this end,
onsider the following family of 
onvex 
ones presented by Koe
her [11℄:K� := 
l8<:0� uvw1A 2 R3 : u > 0, v > 0, jwj < u�v1��9=; : (25)These 
ones, parameterized by � 2 (0; 1), are self-dual under the inner prod-u
t hx; yi := x1y1 + x2y2 + �x3y3;where � := 1�� 11� ��1��: (26)However, K� is not homogeneous unless � = 12 . See the Appendix for the detailsof the numeri
al 
al
ulations showing that when � 6= 12 , the 
ondition (24) 
anfail. Therefore, we established that the duality mapping is not ne
essarily aninvolution even if K = K�.A
knowledgment.We thank the referees and the asso
iate editor for theirvery useful 
omments.APPENDIXLet x = (x1; x2; x3) := (1; 1; 12). Set � := 13 . The 
hara
teristi
 fun
tion forKoe
her's 
one is given by�(x) = Z 1u=0 Z 1v=0 Z w=u�v1��w=�u�v1�� e�u�v��w2 dwdvduwhere � is as de�ned in (26). We show that�(x)�(x�) � 1:263548762> �(1; 1; 0)�(1; 1;0)� := 0:7560: (27)Sin
e the property (x�)� = x; 8 x 2 int(K)is equivalent to (see [3℄)�(x)�(x�) = 
onstant; 8 x 2 int(K);
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el(27) shows that the duality mapping is not an involution for the Koe
her 
onehaving the 
hosen � as parameter.The value 0:7560 
an be obtained by dire
t integration. We 
al
ulated thebound 1:263548762 by a series of upper and lower estimates as shown below.Term Lower bound Upper bound�(x) 2:403166504 2:524866182� ���x1 (x) 4:002586762 4:201473719� ���x2 (x) 5:553655036 5:904058796� ���x3 (x) �5:305267296 �4:245920848x1� = � ���x1 (x)�(x) 1:585266891 1:748307373x2� = � ���x2 (x)�(x) 2:199583914 2:456783076x3� = � ���x3 (x)�(x) �2:207615364 �1:681641934�(x�) 0:5257849423�(x)�(x�) 1:263548762The following is a sample 
al
ulation showing how the bounds on �(x) wereobtained:�(x) = Z 1u=0 Z 1v=0 Z w=u�v1��w=�u�v1�� e�u�v��w2 dwdvdu= 1�x3 Z 1u=0 Z 1v=0 �e�u�v+�2 u�v1�� � e�u�v��2 u�v1���dvdu= 1�x3 Z 1u=0 Z uv=0 �e�u�v+�2 u�v1�� � e�u�v��2 u�v1���dvdu+ 1�x3 Z 1v=0 Z vu=0 �e�u�v+�2 u�v1�� � e�u�v��2 u�v1��� dudv:Put n := 70.�(x) � nXk=1Z 1u=0 Z kn uv= k�1n u �e�u�v+�2 u�( kun )1�� � e�u�v��2 u�( kun )1��� dvdu+ nXk=1Z 1v=0 Z knvu= k�1n v �e�u�v+�2 ( kvn )�v1�� � e�u�v��2 ( kvn )�v1��� dudv



Geometry of Homogeneous Cones 23_= 2:524866182:�(x) � nXk=1Z 1u=0 Z kn uv= k�1n u �e�u�v+�2 u�( (k�1)un )1�� � e�u�v��2 u�( (k�1)un )1��� dvdu+ nXk=1Z 1v=0 Z knvu= k�1n v �e�u�v+�2 ( (k�1)vn )�v1�� � e�u�v��2 ( (k�1)vn )�v1��� dudv_= 2:403166504:Referen
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