Mathematical Programming manuscript No.
(will be inserted by the editor)

Van Anh Truong - Levent Tungel

Geometry of Homogeneous Convex Cones,
Duality Mapping, and Optimal Self-Concordant
Barriers

Received: date / Revised version: date

Abstract. We study homogeneous convex cones. We first characterize the extreme rays of
such cones in the context of their primal construction (due to Vinberg) and also in the context
of their dual construction (due to Rothaus). Then, using these results, we prove that every
homogeneous cone is facially exposed. We provide an alternative proof of a result of Giiler
and Tungel that the Siegel rank of a symmetric cone is equal to its Carathéodory number.
Our proof does not use the Jordan-von Neumann-Wigner characterization of the symmetric
cones but it easily follows from the primal construction of the homogeneous cones and our
results on the geometry of homogeneous cones in primal and dual forms. We study optimal
self-concordant barriers in this context. We briefly discuss the duality mapping in the context
of automorphisms of convex cones and prove, using numerical integration, that the duality
mapping is not an involution on certain self-dual cones.

1. Introduction

An elegant, powerful and modern theory of interior-point methods treats con-
vex optimization problems in conic form, as the problem of optimizing a linear
function over a convex cone intersected with an affine space (see Nesterov and
Nemirovskii [12], Nesterov and Todd [13], [14] and the exposition by Renegar
[17]). Also see [23] where symmetric primal-dual interior-point methods are gen-
eralized to all convex optimization problems in conic form.

In such formulations, we interpret the convex cone constraint as the “diffi-
cult” constraint and deal with the cone constraint by utilizing a smooth, strictly
convex barrier function for it. Successful modern theories imposed rather so-
phisticated conditions on these barriers (self-concordance by Nesterov and Ne-
mirovskii, self-scaledness by Nesterov and Todd). In return, powerful theoretical
convergence results as well as effective computational procedures emerged.
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Even though the fundamental theory developed by Nesterov and Nemirovskii
applies to all convex cones, the more specialized and sophisticated theory devel-
oped by Nesterov and Todd deals with symmetric cones (see the next section
for a definition). Such cones include the cones of symmetric positive semidefinite
matrices, second order cones and cones of Hermitian positive semidefinite ma-
trices over complex and quaternion numbers as well as arbitrary compositions of
the above under direct sums and nonsingular linear maps. Homogeneous cones
properly include symmetric cones. Giiler [5] was the first to point out connections
between the theory of self-concordant barriers and the theory of homogeneous
cones. This connection was further investigated by Giiler and the second author
in [7].

While not necessarily self-dual, homogeneous cones have very rich automor-
phisms. Such cones are interesting not only for their elegant structure but also
for the potential they have for more sophisticated interior-point-method theo-
ries and duality theories for convex optimization problems involving them as
convex cone constraints. For instance, Giiler [6] proved that certain long-step es-
timation property of self-scaled barriers of Nesterov-Todd extends to hyperbolic
barriers (every homogeneous cone admits a hyperbolic barrier). A nice example
of homogeneous cones is the epigraph of matrix norms. Such cones also arise
in applications (see for instance Ben-Tal and Nemirovskii’s book on engineering
applications [1]) as well as in strong duality theories (see Ramana [15] and [16]).

In the next section, we describe some background results and establish var-
ious definitions and notation. In Section 3, we characterize the extreme rays of
homogeneous convex cones in primal form (as described by Vinberg) as well as
in dual form (as described by Rothaus). Using these characterizations and other
techniques, we prove that every homogeneous cone is facially exposed. This gen-
eralizes the well-known property of the cone of symmetric positive semidefinite
matrices and the polyhedral cones. We also provide an alternative proof of an
earlier result of Giuler and the second author that for symmetric cones, the
Carathéodory number and the Siegel rank coincide. Qur proof does not use the
Jordan-von Neumann-Wigner classification of the irreducible, symmetric cones
but it easily follows from Vinberg and Rothaus’ descriptions of homogeneous
cones and our geometric results. In Section 4, we study optimal self-concordant
barriers for homogeneous convex cones. In Section 5, we prove that for self-
dual cones that are not homogeneous, the duality mapping is not necessarily an
involution.

2. Notation and Background

Let S be a subset of R™. Then, int(5), cl(S) and d(S) denote the interior, closure
and the boundary of S respectively. For a given linear operator A, R(A) and
N(A) denote the range and the null space of A respectively.

In this paper, K denotes a pointed, closed, convex cone in R™ with nonempty
interior. The set of extreme rays of K are denoted by Ext(K). Sometimes it is
more convenient to normalize those extreme rays; ext(K) denotes the set of
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normalized extreme rays of K. For a given inner product {-,-}, the dual cone of
K is given by
K" :={seR"(s,z) >0, Vo € K}.

K is self-dual if an inner product can be chosen so that K = K*. Self-duality is
indeed of interest since in the setting of convex conic optimization problems, the
primal and the dual problems have the same “domain” (cone) defining the “diffi-
cult” constraints. The cone is homogeneous if the group Aut(XK) of nonsingular,
linear maps on R” keeping K invariant acts transitively on int(K'). Homogeneity
is also of great interest, since it allows interior-point methods to use “scalings”
without changing the “difficult” cone constraints. Finally, K is symmetric if it
is both homogeneous and self-dual.

Our approach will involve geometric, algebraic and analytic structures related
to convex cones. The following analytic description of convex cones is fundamen-
tal in various areas of mathematics. The characteristic function of K is defined
to be

oK (2) := / e~ (o) ds,

where e denotes the base of the natural logarithm. The logarithm of the charac-
teristic function (after multiplication by an appropriate absolute constant), F,
is a self-concordant barrier function for K. That is, F is a

1
2
3

4

C3-smooth, strictly convex function on int(K);
F(a:(k)) — 00 as {x(k)} C int(K) approaches d(K);
there exists ¥ > 1 such that Va > 0, F(ax)= F(z)—9In(a);

(
(
(
and Vo € int(K),Vh € R", |D3F(z)[h, h, h]| < 2(D*F(x)[h, h])3.

)
)
)
)

The last condition ensures that the change in the second derivative of F' is
bounded by the size of its Hessian (hence, the name self-concordance). The def-
inition we gave above corresponds to what Nesterov and Nemirovskii call a
d-normal (self-concordant) barrier for K.

Barrier functions have been studied extensively because they are a very useful
tool in convex optimization algorithms. In addition to proposing the usage of
self-concordant barriers in the general, modern theory of interior-point methods,
Nesterov and Nemirovskii [12] proved the exceptional result that every convex
cone in R™ admits a self-concordant barrier with parameter ¥ = O(n). In their
constructive proof, they used the following function

P () :=In(vol{s € K*: (s,z) <1})

(more precisely, a constant multiple of it) which they called the universal barrier
for K. Here, vol,, denotes the n-dimensional Lebesgue measure.

The barrier F' coming from the characteristic function, which we will subse-
quently refer to only as the barrier of K, is in fact equal to the universal barrier
(modulo a constant), a result of Giiler [5]. Moreover, the negation of the gradi-
ent of F, i.e., —FI(-), always determines a bijection from int(K) to int(K™*). Its
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inverse is —F*I(-) where F, is the slightly modified Legendre-Fenchel conjugate
of F:
F,(s) :=sup{—{(s,z) — F(z) : € int(K)}.

Some additional properties of general self-concordant barrier functions are given
below.

Proposition 1. (Nesterov and Nemirovskii [12]) Let F be a self-concordant bar-
rier for K with parameter 9. Then F, is a self-concordant barrier for K* with
parameter ¥. Also, for all x € int(K) and s € int(K*), F and F* satisfy the
following

1
Vk € Zyy and a > 0, D" F(ax) = — D" F(x); (5)
(0%

(~F (2), 2) = 0

F (z)x = —Fl(x);
F.(—=F'(2)) = =0 — F(2) and F(—F.(s)) = =9 — F.(s);

6
7

(6)
(7)
(8)
-1 " '

FA(=F ()= ()] and F (=F.(s)) = [F. (s)] ; (9)
DFF(Ax)[Ah, Ah, ..., Ah] = D*F(z)[h, h, ..., h], (10)

Vh c Rn, ]{7 c Z++, A € Aut(K)
O
We denote the set of n X n symmetric matrices over the reals by X". The
closed convex cone of n x n symmetric positive semidefinite matrices is denoted
by X%. The interior of X% is the set of symmetric positive definite matrices of
the same order, denoted by X%, . For z,y € L™ we write x > y to mean that

(r—y)eXn.

3. Homogeneous cones, their geometry, and Siegel domains
3.1. Elements of the algebraic theory of homogeneous cones

For a more detailed exposure to this theory see Giiler [5] and Giiler and Tuncel
[7]. In this subsection, we give a brief summary of this theory to serve our
purposes in this paper.

Definition 1. Let K be a closed convex cone in R™. A K-bilinear symmetric
form B(u,v) in R? is a mapping from RP @& RP to R"™ satisfying the following
properties (here the trivial bilinear form, that is p = 0, is allowed)

1. B(ajuM) 4+ asu? v) = a1 B(uM,v) + a2 B(u?,v), Yu® ) € R?, and
Val, a9y € ]R,’

2. B(u,v) = B(v,u), Vu,v € R?;
3. B(u,u) € K, YueR?P;
4. B(u,u) =0 impliesu =10, VYueR?P,
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Let B and K satisfy the conditions (1)-(4) in Definition 1. Then the Siegel
domain corresponding to K and B is the set

SD(K,B) :={(z,u) e R"®R?:  — B(u,u) € K}.

The Siegel cone corresponding to the Siegel domain SD(K, B) is
B
SC(K,B) := cl{(x,u,t) ER"PRPPHR:t >0, [a:— @] € K}.

Therefore,
SC(K,B) ={(x,u,t) eER"PRPPpR:z € K,t > 0,[tx — B(u,u)] € K}.

A fundamental example is K := X (n = p(p+1)/2), B(u,v) := % (uvT + vuT)
resulting in

SC(K,B) = {(m,u,t):xEZf_,tZ 0, (ta:—uuT) EZf_}

_ {(m,u,t): <Z “;) c 2{;“}.
SD(K,B) = {(2) : <i “;) 30}.

Definition 2. A K-bilinear symmetric form B is called homogeneous if K is a
homogeneous cone and there erists a transitive subset G C Aut(K) such that for
every g € G, there exists a linear transformation g of RY such that

Here,

g B(u,v) = B(gu, gv), for all u,v € RP,

The above definition isolates an important property of K and the bilinear
form B. It means that as far as the bilinear form B is concerned, the effect on R”
of every element g in the transitive subset G can be simulated by a corresponding
linear transformation g acting on RP.

The following lemma describes how to construct a transitive subset of the
automorphism group of SC(K, B) based on a transitive subset of the automor-
phism group of K (and of course the bilinear form B).

Lemma 1. (Vinberg [26]) If K is a homogeneous cone and B is a homogeneous
K -bilinear symmetric form, then the cone SC(K, B) is homogeneous, and the
following linear maps generate a transitive subgroup of Aut(SC(K, B)), (for each
(z,u,t) € int(SC(K, B)))

Ti(z,u,t) := (z,vau,at), o >0,

Ta(x,u,t) := (x + 2B(u,v) + tB(v,v),u + tv,t), v €RP,

Ts(x,u,t) := (g, gu,t), ¢ € G C Aut(K),
where G is the transitive subset of Aut(K) from Definition 2 and g is the corre-
sponding linear transformation from the same definition.
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O

The above lemma describes a recursive construction of homogeneous cones. A
homogeneous cone K and a homogeneous K-bilinear symmetric form B together
give rise to a homogeneous cone SC(K, B) in a higher dimensional space. A more
impressive fact is that the converse is also true. For every homogeneous cone K of
dimension at least 2, there exists a lower dimensional cone K and a homogeneous
K-bilinear symmetric form B such that K is linearly isomorphic to SC(K, B),
see for example Gindikin [4] (page 75). Therefore, an arbitrary homogeneous cone
can be constructed, recursively, using lower dimensional homogeneous cones,
starting from the real half-line R. The minimum number of steps required to
construct K in this way is called the Siegel rank of K. We denote that integer
invariant of the cone by rank(K) and we define rank(R ) := 1.

K is homogeneous if and only if K* is. So, the above classification theory
of Vinberg also applies to K*. In fact, the Siegel ranks of K and K* coincide.
Rothaus [19] worked out the theory from the dual side, paralleling the algebraic
structures in the primal construction of Vinberg. Rothaus’ dual Siegel cone con-
struction begins by defining, for each y € R™, the symmetric linear mapping
Uly) : RF > R?,

(U(y)u,v) := {(B(u,v),y), for all u,v € RP, (11)

Remark 1. Note that according to the above definition, the inner product on R?
and the linear mapping U(y) are determined by the inner product on R” (which
is central to our study) and the bilinear form B. We can easily choose any inner
product on R? and redefine U(y) via the above equations. These changes do not
affect the following results (i.e., the following results are valid for any choice of
the inner product on R” so long as the definition of U(y) is consistent with the
above equations).

Proposition 2. (Rothaus [19]) Let G be a transitive subset of Aut(K) such
that for every g € G, there exists a linear mapping g : RY — RP satisfying
gB(u,v) = B(gu, gv) whenever u,v € RP. Then, for every g € G there exists a
linear operator Ty : X7 — X¥ such that the following diagram

r" L, @n
v |
sr Loy

commutes. If y € K*, then the operator Ul(y) is positive semidefinite. Moreover,
if y € int(K™), then U(y) is positive definite.
O
Rothaus proves that

int (SC(K, B)*) = {(y,v,8) ER"GRF G R : y€int(K*), s > (U(y) v, v)},
where the inner product on (R" @ RP ¢ R) is defined by

((x,u,1), (y,v,8)) = {x, y) + 2{u, v) + st. (12)
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Note that an arbitrary inner product on (R” @ RP ¢ R) can be handled as fol-

)
lows: Suppose S € Ziip-l'l such that {(z,u,t), (y,v,s)) := (27«7, )S | v

s
(in some application SC(K,B) may be self-dual, and this may be the inner
product). Then we can map SC(K,B) — S'2SC(K, B) and [SC(K, B)]" —
SY2[SC(K,B)]" and assume the standard inner product on (R™@ RP @ R).
Since the transformed cones are still homogeneous, they will admit decompo-
sitions to slightly different cone K and bilinear form B; however, the essential
characteristics of the cones we deal with here remain unchanged under such
transformations. From now on, in our presentation, we choose a level of gener-
ality somewhere in between the arbitrary inner product and the standard one.
Namely, we choose an inner product that can be represented by (12).

We now describe the generators of a transitive subgroup of Aut(SC(K, B)*)

derived from a transitive subset of Aut(K).

Lemma 2. (Rothaus [19]) Let G C Aut(K) be a transitive subset. Then for ev-
ery point (§,9,5) € int (SC (K, B)*) the following maps are in Aut(SC(K, B)*):

Ti(y,v,s) = (y, v—0,8— 2<U(y)_117, vy + <U(y)_16, 17>) ,
Tg(y,U,S) = (g*yag*vas)a g € Ga
v

S
Tg(y,U,S) = <y7 ﬁa E) 9 a > 07

where the linear transformation g is the one described in Proposition 2.

3.2. Geometry of homogeneous cones

A face P of K is called a d-face of K if the dimension of the affine hull of P is
d. An exposed d-face of K is a d-face of K which is exposed.

Theorem 1. Let K be a pointed, closed convexr cone with nonempty interior.

Also let A € Aut(K). Then

(a) v € Ext(K) <= A(v) € Ext(K);

(b) v € Ext(K) is exposed <= A(v) € Ext(K) is exposed;

(¢){0} C P C K is an exposed d-face of K <= A(P) is an exposed d-face of
K.

Proof. For part (a) see [7], for (b) see [24]. We give below a proof of (¢) which
generalizes the arguments of [24].

Let {0} C P C K be an exposed d-face of K. Then there exists a supporting
hyperplane

H:={xeR":{a,2) = o}
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such that K N H = P and
(a, 2y <, Ve €K. (13)
Let A € Aut(K). Then we have

AH) ={Az e R" : {a,2) = a}
={r€R":{a, A z) = a}
={reR": (A7 a,z) = a}.

Moreover, (A™*a,z) = {a, A™12) < a for all x € K by (13) and the fact that
“A e Aut(K) iff A=t € Aut(K).”

AH)NK ={z e K : (A "a,2) = o}
={r €K :{a, A z) =a}
— A(P).

We proved that A(H) is a hyperplane supporting K at A(P). Since P is a face
of K, for all #,y € K, (x+ y) € P implies # and y are both in P. Let z,y € K
such that (z+y) € A(P). Then using A € Aut(K), we find A=1(z), A=1(y) € P.
Thus, z,y € A(P). Clearly, dim(A(P)) = dim(P). Therefore, {0} C A(P) C K
is an exposed d-face of K. The converse also follows from the above argument,
since A € Aut(K) <= A~! € Aut(K). O

Using the algebraic construction for homogeneous cones described in the
previous section, we seek a more detailed description of homogeneous cones
in terms of the lower-dimensional cones and the symmetric bilinear forms from
which they arise. First, we describe the set ext(SC(K, B)) of normalized extreme
rays of SC(K, B). This next theorem generalizes Theorem 5.1 of [24] and its
proof.

Theorem 2. Let K be a homogeneous cone and let B be a homogeneous K-
bilinear symmetric form. Then

ext(SC(K,B)) = {(z,0,0) ER"®RPHR : x € ext(K)}

(Blwwl)
U{||<B<u,u>,u,1>|| ek }

Proof. Tt can be readily checked that the two types of rays above are in SC(K, B)
and have norm 1. To show that (x,0,0) is an extreme ray, suppose that we can
write

(2,0,0) = (§z,u,t) + (Az, —u, —1),

as a sum of two vectors in SC(K, B), where 6, A > 0. Since ¢ and (—t) are both
nonnegative, { = 0. We also have

[0tx — B(u,u)] € K.
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Thus, —B(u,u) € K and by the pointedness of K, we must have v = 0. There-
fore, the only way to express (z,0,0) as such a nonnegative combination is to
let w=0,t=0,d,A>0,6+A=1. Hence, (,0,0) must be an extreme ray.

To show that (B(u,u),u,1) is an extreme ray, by Theorem 1, it suffices
to consider the case v = 0, for every vector (B(u,u),u,1) is the image of
(B(0,0),0,1) = (0,0,1) under the automorphism 7T, described in Lemma 1,
with v := u. So, suppose that

(0,0,1) = (=, u, t1) + (—=, —u, t2)
for t1, t3 > 0. Since
[tz — B(u,u)], [—tex — B(u,u)] € K,

we must have & € K. Therefore, £ = 0 because K is pointed. But now
+B(u,u) € K, so that u = 0 for the same reason. Thus, (0,0,1) and every
vector of the form (B(u,u), u, 1) are extreme rays.

Finally, we must show that every extreme ray of SC'(K, B) is one of the two
types described. Let r := (z,u,?) € Ext(K). If ¢t = 0 then, since £B(u,u) € K,
v = 0. Thus, r = (x,0,0) for some z € Ext(K). Otherwise, we can assume
without loss of generality that ¢ = 1. We write # = B(u,u) + w for w € K to
obtain

r = (B(u,u),u, 1)+ (w,0,0) € cone{(B(u,u),u, 1), (#,0,0) : = € ext(K)},
so that » must be a positive multiple of one of these rays. a

The dual characterization for SC(K, B)* given in Proposition 2 allows us to
give a parallel description of the extreme rays of SC(K, B)* in terms of K* and
B. Recall that

SC(K,B)* =cl{(y,v,8) ER"GRF SR : y€int(K*), s> (U(y) ‘v,v)}14)
However, this characterization describes only the interior of SC(K, B)* explic-
itly, relying on the positive-definiteness of the map U(y) for y € int(K ™). When
y € d(K*), U(y) may not be invertible. To proceed, we first address the defin-
ability of the quantity (U(y)~tv,v) when y € d(K*).

Remark 2. Let y € 9(K*) and v € R(U(y)). Then (U(y)~lv,v) exists and is
well-defined.

Proof. By assumption, there exists & € R? with U(y)@ = v. Since U(y) is linear,
every u satisfying U(y)u = v has form u = @ + w where w € A (U(y)). Now,

<u, U> = <ﬂ, U> + <w7 U> = <ﬂ, U> + <w7 U(y)u> = <ﬂ, U> + <U(y)wv u> = <ﬂ, U>'

Therefore, we are justified in writing (U(y)~1v, v). This quantity has a unique
interpretation as

(U(y)tv,v) = (u,v), Yu such that U(y)u = v
= (@, v).
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Henceforth we will write (U(y)~'v,v) without justification whenever v €
R(U(y)). As we shall see, this happens for all (y,v,s) € SC(K, B)*, so that we
obtain an explicit description for SC(K, B)*.

Theorem 3. Let K be a homogeneous cone and let B be a homogeneous K-
bilinear symmetric form. Also let U be defined as in (11). Then

SC(K,B)* = {(y,v,s) : y€ K*, vEeR(U(y)), s > (U(y) v, v)}.

Proof. Let (y,v,5) bein SC(K, B)* and suppose that v ¢ R(U(y)). Let us write
¥ = vg + vy where vy # 0 is the orthogonal projection of o onto A/ (U(y)). For
all A> 0,

(B(/\UN, /\UN), — vy, 1) S SC(I(, B)

However,

(9,9, 58), (B(Avy, Aow), =Aon, 1)) = (g, B(Avn, Aon)) + 200, —on) + §
= A (U(g)on, on)) = 2\Jon||* + 5
= -2)\|on|*+ 5
<0

for large enough A. This is a contradiction to the fact that (y, v, s) € SC(K, B)*.
We have established that v € R(U(y)) for all (y,v,s) € SC(K, B)*.
Now, let (y, v, s) satisfy v € R(U(y)). Then

(y,v,8) € SC(K, B)" iff {(=,u,t), (y,v,5)) > 0 for all (z,u,t) € SC(K, B).

By substituting for (z,u,t) each of the extreme rays found in Theorem 2, we
obtain that (y,v,s) € SC(K, B)* iff y € K* and

(U(y)u, uy + 2{u,v) + s > 0 for all u € R?. (15)

This happens iff y € K* and over all «’s, the minimum value of (15) is non-
negative:

—(U(y) v, v) + 5> 0.

*

We are now ready to describe the extreme rays of SC'(K, B)*.

Theorem 4. Let K be a homogeneous cone and let B be a homogeneous K-
bilinear symmetric form. Also let U be defined as in (11). Then

Ext(SC(K, B)*) = {(y, v, (U(y) " v,v)) : y € Ext(K*), v € R(U(y))}
U{(0,0,s) : se Ry}
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Proof. The above rays are clearly in SC(K, B)* by Theorem 3. Suppose that
(0,0,8) = (y,v,s1) + (—y, —v, 52)
is a sum of two vectors in SC(K, B)”. Then,
{(#,0,0), (y,v,51)), {(%,0,0), (—y, —v,82)) >0, Vo € K

imply that £y € K*; thus, y = 0. Now, +v € R(U(y)) = {0}, so v = 0 as well.
Therefore, (0,0, s) is an extreme ray.

To see that a vector of the form (y,v,(U(y)~tv,v)), y € Ext(K*), v €
R(U(y)) is an extreme ray, we note that such a vector can be mapped to (y, 0, 0)
via the automorphism 7} of Lemma 2. Therefore, it suffices to prove that (y, 0, 0)
is an extreme ray of SC'(K, B)* for y € Ext(K*). Again, suppose that we can
write

(yaoao) = (/\y,U,S) + (6y7_va_5) (16)
as a sum of vectors in SC'(K, B)*. Then the relations

<(07 07 1)7 (Aya v, 5)>7 <(07 07 1)7 (6y7 -0, _5)> Z 0
imply that s = 0 and
(U(y)~tv,v) <0,

so that the decomposition in (16) holds when we replace y with any positive
multiple of itself. But

{((B(v,v),—v,1), (Ay,v,0)), {(B(v,v),v,1), (dy,—v,0)) >0
imply that
(B(0,0), ) — 4] > 0. (17)
Unless v = 0, this inequality fails when y is contracted (by multiplication with
a positive scalar) to an appropriately small magnitude while v is kept constant.

Therefore, (y,0,0) is an extreme ray.
Finally, let r := (y, v, s) be an extreme ray of SC(K, B)*. Writing

r= (yv v, <U(y)_1vv U>) + (07 0,s— <U(y)_1vv U>)
€ cone{(y, v, (U(y) " v, v)), (0,0,5) : s >0,
y € Ext(K"), v e R(U(y))}

we immediately see that r must coincide with one of the rays in the generating
set. a

The proof of the following theorem illustrates the power of the algebraic
construction for homogeneous cones.

Theorem 5. All extreme rays of every homogeneous cone are exposed.
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Proof. We use induction on the Siegel rank of a cone. When the rank is 1, the
cone is, by definition, the real half-line R and the statement holds trivially.
Assume that our cone is SC(K, B). Let r € ext(SC(K, B)).

First, if 7 has the form (0,0, 1) then we choose #(°) € —int(K) and define

H:={(x,u,t) eER"GRP R : ((x,u,1),(?,0,0)) = 0}.
Clearly, H is a supporting hyperplane for SC(K, B); for all (z, u,t) € SC(K, B),

(2, u, ), (2, 0,0)) = (, ) <
(

with equality holding iff # = 0, iff (x,u,t) = (0,0,¢) = ¢r for t > 0. Therefore, r

is exposed:

{Ar : A>0}=HnNSC(K,B).

Moreover, every extreme ray of the form (B(v,v), v, 1) is an automorphic image
of (0,0,1), and hence, must also be exposed (see Theorem 1).

It remains to show that r is exposed if it has the form (%, 0, 0) for Z € Ext(K).
Since rank(K) < rank(SC(K, B)), we can use the induction hypothesis to obtain
2(©) such that

AF :A>0=Kn{zeR" : (¢2?)=0)}
and
KC{zeR" : (x,29) <0}.
Now, define
H:={(z,u,t) eER" &R & R : ((x,u,t), (z(”,0,—-1)) = 0}
as above. Then for all (z,u,t) € SC(K, B),
((z,u, 1), (29,0, =1)) = (&, 20y -t < 0.

Equality occurs iff ¢ = 0 (implying v = 0) and # € {A\& : X > 0}. In other
words,

HnNSC(K,B)={Ar : A>0}.
Therefore, r is an exposed ray. By induction, the theorem is established. a

The above result does not immediately imply that all proper faces of all
homogeneous cones are exposed. There are convex cones having every one of
their extreme rays exposed, but also having some higher dimensional proper
face unexposed (for this, one has to consider at least four-dimensional convex
cones). See, for instance, the example in Tam [21] (page 50).

In the case of homogeneous convex cones however, we do have every proper
face exposed. The next result generalizes the corresponding well-known result
on the cone X7 (and of course, it implies the preceding theorem).

Theorem 6. All proper faces of every homogeneous cone are exposed.
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Proof. Again, we use induction on the Siegel rank of a cone. When the rank is 1,
the cone is the real half-line R, which has all of its faces exposed (if the reader
is bothered by the fact that R, has no nontrivial exposed proper face, then it
is possible to start with [R2). Assume that the cone is SC(K, B) where K is a
homogeneous cone and B is a homogeneous K-bilinear symmetric form. Let P

be a face of SC(K, B) and define a set @) in K by
Q:={reK : (z,0,0) € P}.

@ is clearly a face of K because whenever # = y + z for y, z € K, we have
(2,0,0) = (y,0,0) + (2,0,0).

Both vectors on the right hand side are in SC(K, B), implying that y and =z
belong to Q. Since rank(K) < rank(SC(K,B)) and @ is a face of K, @ is
exposed by the induction hypothesis. Therefore, there is a y € K* such that

(g,2y >0 Ve € K,

(g,2y=0forz € K <= z € Q.

We distinguish between two cases. First, suppose that P does not contain a
ray of the form (B(u,u),u,1). In this case,

H = {(m,u,t) ER"ORPOR <(§,0, 1)7 (l‘,u,t)>: 0}

is a supporting hyperplane for SC(K, B) exposing the face P. That H is a
supporting hyperplane follows from the fact that (¢,0,1) € SC(K,B)". We
check the extreme rays of SC'(K, B). If # € Ext(K) then

((%,0,1),(2,0,0)) =0 <= (y,z)=0
= z€q
< (z,0,0) € P.

If w € RP then
(7,0, 1), (B(u, u),u, 1)) > 0 <= (B(u,u),u,1) & P.

Note that the trivial case @ = {(0,0,0)} is included in the above.

In the second case, P contains a ray of form (B(u,u),u,1). By considering
an automorphic image of P and applying Theorem 1, we may assume without
loss of generality that (0,0,1) € P. Then we claim that (B(u,u),0,0) € P <—
(B(u,u),u, 1) € P:

If (B(u,u),0,0) € P then

P > 2(B(u,u),0,0)+2(0,0,1)
= (B(u,u),u, 1)+ (B(—u,—u), —u, 1).
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Both of the above are in SC(K, B), so (B(u,u),u,1) € P. On the other hand,
if (B(u,u),u,1) € P then

P> (B(u,u),u, 1)+ (0,0,1)
1 1
= <§B(u,u),u,2> + §(B(u,u),0,0)
(TR TANT] 1
—9 (B (5, §) 5 1) + 5(B(u,u),0,0).
Both of the above are in SC(K, B); thus (B(u, u),0,0) € P.

Now, it is easy to show that
Hi={(z,u0) €R" & BT & Ry ((7,0,0), (2, u,1)) = 0}

is a supporting hyperplane for SC(I, B) which exposes P:
If # € Ext(K) then

((%,0,0),(2,0,0)) =0 <= (y,z)=0
= z€q
< (z,0,0) € P.
If w € RP then
<(§,0,0),(B(u,u),u, 1)>:0 — <§,B(u,u)>:0
< B(u,u) €Q
< (B(u,u),0,0) € P
<— (B(u,u),u,1) € P,

where the last statement follows from the claim. We have shown that every face
of SC(K, B) is exposed. By induction, the theorem is proved for all homogeneous
cones. O

While this paper was in preparation, Chua [2], using the classification theory
of Vinberg, showed that homogeneous cones are representable as feasible regions
of semidefinite programming (SDP) problems (illustrating yet another powerful
application of Vinberg’s classification theory). Hence, any conic optimization
problem with a homogeneous cone as the cone constraint can be expressed as an
SDP problem in principle. This result is a step towards the important question
of what (convex) optimization problems can be efficiently formulated as SDP
problems.

3.3. Applications to the geometry of symmetric cones

As an application of Theorems 2 and 4, we ask what condition must be imposed
on K and B for SC(K, B) to be symmetric.
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Theorem 7. Let K C R"™ be a homogenecous cone and let B be a homogeneous
K -bilinear symmetric form in R?. Then SC(K, B) is symmetric iff K is sym-
metric and B satisfies

(a){z,)U(y)~t = U(xz) = 0, V y € int(K*),V 2 € K,

(b) uw € R(U(B(u,u))) and (U(B(u,u)) " tu,u) < 1, Yu € RP.

Proof. Suppose SC(K, B) is symmetric. Then SC(K, B) = SC(K, B)* (by Re-
mark 1, SC(K, B) = SC(K, B)* under the current inner product). By Theorems
2 and 4, Ext(K) = Ext(K™*). Therefore, K = I{*. Since K is assumed to be ho-
mogeneous, K must be symmetric.

By the description of int(SC(K, B)*) and by Theorem 3, we have that for
every y € int(K*) and every v € R?, (y,v,(U(y)~tv,v)) € SC(K, B)*. Since we
know that SC(K, B) is self-dual, by the definition of SC(K, B), we obtain

[(U(y)~'v,v)y — B(v,v)] € K, Yy € int(K*), and Vv € R”.
Since K = K*, we have
(U(y) Yo, o)z, y) — (U(x)v,v) >0, Vo € K,Vy € int(K*),Vv € RP.

This is precisely, condition (a).

Since Ext (SC(K, B)) = Ext (SC(K, B)*), using Theorems 2, 3 and 4 we see
that (b) must hold.

To prove the converse, we assume K is symmetric and that B satisfies (a)
and (b). Then for every v € R?, we have (from (a))

(U(y) v, o)z, y) — (&, B(v,v)) >0, Ve € K,Vy € int(K).
Since K is self-dual, the last statement implies
[(U(y)_lv, vyy — B(v, v)] € K, Vy € int(K), Vv € R?. (18)

Let (y,,5) € int(SC(K, B)*). Then y € int(K) and 5 > (U(y)~'v,v) > 0. By
(18), we can conclude (¢, 9, 5) € int(SC(K, B)) since

59— B(e,%) = (s — (U(@)"0,0) g+ [(U@) "0, 5)5 - B(,)] { € int(K).

cint(K)

We proved SC(K,B)* C SC(K,B). Next, we verify that ext(SC(K,B)) C
SC(K, B)*. Theorem 2 gives a complete characterization of the extreme rays
of SC(K, B). Clearly, for every € K, we have (x,0,0) € SC(K, B)*, since K
is self-dual. Trivially, (0,0,1) € SC(K, B)*. Finally, let « € RP\{0} and consider
(B(u, ), u, 1). We know by (b) that u € R(U(B(u,u))) and (U (B(u,u)) " u,u) <
1. Hence, (B(u, u),u, 1) € SC(K, B)*, for every u € RP\{0}. We proved, SC(K, B)
C SC(K, B)*. Thus, SC(K, B) is self-dual. Since K is homogeneous and B is
a homogeneous K-bilinear symmetric form in ®?, SC(K, B) is homogeneous.
Therefore, SC(K, B) is symmetric. O
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Note that the necessary and sufficient conditions of the above fact can be
easily verified for K := X%, B(u,v) := % (uvT + vuT), therefore SC(K, B) :=
Zf_-l'l. For x € X7, let tr(z) denote the trace of . In this case, we can represent
U(y) by the symmetric positive definite matrix y. (We are using here z,y both
for n-vectors, n = p(p+1)/2, and for p X p symmetric matrices interchangeably,
the relevant format should be clear from the context.) So, U(y) applied to h €
RP, results in the vector given by the matrix-vector multiplication yh. We use
Remark 2. Note that B(u,u) = uu! € 9 (Zf_), U (B(u,u)) = uu? and u €
R (U (B(u,u))). Thus, [U (B(u, u))]_1 u exists and is well-defined as follows (for
u#0):

[U(B(u,u))]  u= Lu, s0, {[U(B(u,u))]” " u,u)y = ﬁ@,w =1,

uTu
verifying condition (b) of the theorem. Also, for all y € int(K),V # € K, we have

(g, )y =2 >0 <= hleh< (hTy_lh)tr(yl/nyl/Z),V h € R?P
— hT(yl/nyl/Z)h < (hTh)tr(yl/Qxyl/z),V h € R ||h]| = 1.

The last statement is clearly true, verifying condition (a) of the theorem. For
the equivalence of the second and third statements, we used the isomorphism
h — y'%h (and y € int(K)).

Lemma 3. If SC(K, B) is symmetric then for every u € RP, either B(u,u) =0
or B(u,u) is an extreme ray of K.

Proof. Suppose that B(u,u) # 0. Then (B(u,u),u,1) is an extreme ray of
SC(K, B). Now, the extreme rays of SC(K, B) coincide with those of SC (K, B)*
because SC(K, B) = SC(K, B)*. (Note that by Remark 1, we can assume that
SC(K,B) = SC(K, B)* under the current inner product.) Thus, (B(u,u),u,1)
must be either (0,0, ) for some A > 0 or (y, v, {U(y)~tv,v)) for y € Ext(K*) =
Ext(K). Tt is clear that the latter case must be true because we assumed that
B(u, u) # 0. Therefore, B(u, u) = y € Ext(K). O

Given K in R™, we define the Carathéodory number of K as the minimum
number of extreme rays of K needed to express any interior point of K as a
convex combination. We denote this invariant of K by &(K). By a classical
theorem of Carathéodory, this number is at most n; however, in many cases it
can be much less. Giiler and the second author noticed that this number is equal
to the algebraic invariant rank(K) when K is symmetric. They note that both
k(K) and rank(K) are invariant under linear isomorphisms of R™ and that for
any pair of homogeneous convex cones Ky, K,

k(K1 @ K32) = k(K1) 4+ £(K3) and rank(Ky & K3) = rank(K7) + rank(K3)

hold. Therefore, they proceed to prove the claim using the classification of ir-
reducible symmetric cones (this is the classification based on the Jordan-von
Neumann-Wigner classification of Euclidean Jordan Algebras, see Faraut and
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Koranyi [3]). Four of the cases in the proof are rather elementary but they rely
on the existence of generalized eigenvalue decompositions and the fifth utilizes a
result of Freudenthal on the existence of certain automorphismsin the algebra of
Albert. Our new proof below is based on the geometric insights that we provided
for homogeneous cones. First, we need an elementary fact. Let £ € K. We define
£(Z) as the minimum number of extreme rays of K required to express T as a
convex combination. Then Proposition 2.3 of [7] establishes that x(x) = «(K)
for every x € int(K), for every homogeneous convex cone K.

Theorem 8. (Giiler and Tungel [7]) For all symmetric cones K, k(K) = rank(K).

Proof. We will proceed by induction on rank(K). If rank(K) = 1 then K is
R, and the statement of the theorem is true. Suppose x(K) = rank(K) for
all symmetric cones K with rank(K) < k. Let K be a symmetric cone with
rank(K) = k + 1. Then there exists a symmetric cone K and a homogeneous
K-bilinear symmetric form B such that rank(K) = k and K = SC(K, B).
By the induction hypothesis x(K) = k. Consider e € int(K). Then x(e) = k,
(€,0,1) € int(K) and

k
k(e,0,1) < k+1 since (e,0,1) = (0,0, 1)—1—2(0(“, 0,0) for some o) e Ext(K).
i=1
Suppose for a contradiction
(e,0,1) = > (w,0,0)+ 3 A (B, ul),ul, 1),
i=1 i=g+1

where A > 0, w(?) € Ext(K) and u(?) € BP\{0}. Since B(u(),u?)) € Ext(K)
and k(e) = k, we have A > 0. We also have

k k
i=g+1 i=q+1

Without loss of generality (by redefining ul® if necessary) we have

q k k-1
e = Zw(i) + Z B(u(i), u(i)) and Z piu' = u®) for some p # 0.
i=1 i=q+1 i=q+1

Using the linear dependence on u(?) and the properties of the bilinear form, we
compute

k k-1

> B )= 3 (Bt 3 B, a),

i=q+1 i=q+1 g+1<i<j<k—1
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We claim that we can find @t gle+2) 4 =1) ¢ P such that
q k—1
Sl 4 Y B, ) = .
i=1 i=g+1

which would be a contradiction. In fact, we claim that we can choose
a € span{ul4t?) y@t2) yF=D} If we can find I' € R(F—a-D)x(k=g=1) gych
that

= iy - k-1 . k . .
STB Y i YT ) = >0 B, ul)
I=q+1 i=q+1 i=q+1 i=qt1

then the claim would follow. Expanding the left hand side and comparing terms,
we see that if
I''r=1+uu”

then the desired equality above holds. Since (I +pp?) is symmetric positive defi-
nite, such matrix I" always exists. Thus, we expressed e as a convex combination
of (k—1) extreme rays of K, a contradiction. This completes the induction and
the proof. a

4. Optimal Barriers

In this section, we are interested in the structure of the optimal barriers for
homogeneous convex cones (for a fixed cone K, those ¥-self-concordant barriers
with the smallest possible parameter value ). Available evidence suggests that
perhaps there is a unique way to construct such barriers. For example, all of the
well-known optimal barriers for homogeneous cones arise, in the context of the
algebraic construction by Vinberg, from the extension of the optimal barriers
on homogeneous cones of lower ranks. More precisely, an optimal barrier F' on
SC(K, B) is generally constructed from an optimal barrier F on K by setting

F(z,u,t):=F <x - M) —1In(t), V (2, u,t) € int (SC(K, B)) . (19)

This construction always yields optimal barriers for SC'(K, B) (see [12]). Whether
the construction accounts for all optimal barriers is less well-understood. When
we restrict K to the set of symmetric cones, then we have the notion of self-scaled
barriers for K. In this context, the other most relevant results are those given by
first Nesterov-Todd [13], [14] (on the foundations of self-scaled barriers) then by
Hauser [8], Schmieta [20], Hauser-Giiler [9], and Hauser-Lim [10] (also see [22]
about a geometric-mean like characterization of self-scaled barriers). Tt follows
from these works that an optimal self-scaled barrier is unique up to an additive
constant. Here, we formalize the necessary and sufficient conditions for an opti-
mal barrier F' to be derivable from (19). We do not know whether homogeneous
cones admit any optimal barriers which do not arise from the recursive formula

(19).
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Proposition 3. Let K be a homogenecous convex cone and B be a homogeneous
K -bilinear symmetric form such that rank(SC(K, B)) = rank(K) + 1 > 2. Also
let F be a k-self-concordant, optimal barrier for SC(K,B). Then there is a
(k — 1)-self-concordant optimal barrier F of K such that

Flz,u,t)=F <x - M) —1In(t), V (x,u,t) € int (SC(K, B))

if and only if
Flow, Vau,t) = F(z,u,t) — (k- 1)Ina), ¥ a > 0 (20)

and
F(x+ B(u,u),u, 1) = F(2,0,1), ¥ (,0,1) € int (SC(K, B)), ¥V u € RP. (21)

Proof. If there is F as in the statement of the proposition then the above two
conditions are necessarily true, (20) by the (k — 1)-logarithmic homogeneity of F
and (21) by the well-definedness of F. On the other hand, if both (20) and (21)
hold for F' then we can specify F by letting

F(z):= F(z,0,1), V € int(K).

The properties required for F to be an optimal self-concordant barrier for K can
be easily proved from the corresponding properties for F. Also, we can utilize
the general affine restriction result of Nesterov and Nemirovskii [12]. O

Note that only (20) is needed if we wish merely to define an optimal barrier
for K in terms of F' as we showed in the proof. It is instructive to consider what
happens when we produce F from F in this way, then extend F again by (19)
to form an optimal barrier F' on SC(K, B). In this case, F will satisfy (21) and
F = F if and only if F satisfies (21) as well.

5. Duality Mapping and Homogeneity

Recall the (universal) barrier @x of a cone K. Let #* := —@IK(l‘) for z € int(K).
Faraut and Koranyi [3] showed that for homogeneous cones, the relation

(27)" = —Ppa (~ P (2)) = (22)

holds for every = € int(K). They asked whether the relation is true in general.
The second author and Xu [24] answered the question in the negative, giving as
counter example the cone of the Li-norm. From their result, it appears that invo-
lutive property of the duality mapping may depend in a fundamental way on the
homogeneity of the cone. We would like to investigate whether this connection is
sufficiently strong that (22), alone or in combination with other properties, can
be used to formulate a new (analytic) characterization for homogeneous cones.
We obtain some useful facts for investigating this question.
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§.1. Self-dual cones

Here, we consider self-dual cones for which the duality mapping is an involution.
Since in this subsection K = K*, we use @ for @i (and $x~). This class of cones
is a useful starting point because a candidate for the set of automorphisms of
such cones acting transitively on the interiors of these cones is already known.
This is the set

H(K) = {D*®(z): x € K}

of images of the Hessian of the barrier function evaluated at points in K.
Rothaus [18] noted that () is a transitive subset of Aut(K) iff K is sym-
metric. To present his argument, we first state three preliminary results (the
first proposition contains two of them):

Proposition 4. D*®(z) is positive definite for each = € int(K). Moreover, for
every pair (y,s) € (int(K) @ int(K*)), 3z € int(K) such that D*®(z)y = s.

The first part follows easily from the definition of self-concordance (see [12]).
The second part is due to Rothaus (as well as Nesterov-Todd [13] even though
[13] is concerned with symmetric cones, their proof technique is general and
applies to all convex cones; see [23] Theorem 3.1). The following result is well-
known (see for instance [3]).

Proposition 5. The map © — x* has a unique fized point.
Let e € int(K) denote the fixed point of the map » — z*.

Theorem 9. (Rothaus [18]) H(K) is a transitive subset of Aut(K) iff K is
symmelric.

Proof. The forward direction is clear. Let K be symmetric. Then the duality
mapping is an involution with unique fixed point e. Differentiating equality (22),
we obtain

D*¢(z)D*®(2*) = I, Yz € int(K). (23)
Thus, [D?*®(e)]? = I. Because D*®(e) is symmetric and positive definite, it is
easy to see that D?@(e) = I € Aut(K).
Now, for every @ € K, there exists A € Aut(K) such that x = A(e). By
property (10) of general barrier functions,

D*®(x) = D*®(Ae) = A~ D*P(e) A~ € Aut(K).

Hence, H(K) C Aut(K). That H(K) forms a transitive subset follows from
Proposition 4. a

In view of Theorem 9, to show that equality (22) implies homogeneity for
self-dual cones, we can show that #(K) is a transitive subset of Aut(K). Propo-
sition 4 already proves that elements of H(K) are linear, positive definite, and
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can be chosen to map any point in K to any other point. Moreover, if we as-
sume (22), (23) gives, for every z € K,

[D?®(z)]"! = D*®(x*) € H(K).
So, it suffices to show that D*@®(x) maps K into K. That is,

(D?*®(x)u,v) > 0, for all z € int(K), and for all u, v € K. (24)

Note that (24) does not, in general, hold for self-dual cones. To this end,
consider the following family of convex cones presented by Koecher [11]:

Kye=c{ | v ] €R%:u>0,v>0,|w <uv'™"5. (25)

These cones, parameterized by p € (0, 1), are self-dual under the inner prod-
uct

(x,y) := w1y1 + x2y2 + ar3ys,

()

However, K, is not homogeneous unless p = % See the Appendix for the details
of the numerical calculations showing that when p # %, the condition (24) can
fail. Therefore, we established that the duality mapping is not necessarily an
involution even if K = K*.

Acknowledgment. We thank the referees and the associate editor for their
very useful comments.

where

APPENDIX

Let = (21, %2,23) := (1,1,%). Set p := % The characteristic function for

Koecher’s cone is given by

[e) [e) w=ufvt=P
oy —y— W
é(x) :/ / / e 2 dwdvdu
u=0 Juv=0 Jw=—urvl=-r

where « is as defined in (26). We show that
d(x)p(x™) > 1.263548762 > ¢(1,1,0)¢(1,1,0)* = 0.7560. (27)

Since the property
(z*)" =z, ¥V z € int(K)

is equivalent to (see [3])

é(x)¢(z”) = constant, V z € int(K),
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(27) shows that the duality mapping is not an involution for the Koecher cone
having the chosen p as parameter.

The value 0.7560 can be obtained by direct integration. We calculated the
bound 1.263548762 by a series of upper and lower estimates as shown below.

Term | Lower bound | Upper bound
é(x) 2.403166504 2.524866182

—99 (z) | 4.002586762 | 4.201473719
—29.() | 5.553655036 | 5.904058796

- %(1‘) —5.305267296 | —4.245920848

1 * = Z:Elx) 1.585266891 1.748307373

xo* = 30 2.199583914 2.456783076

x3* = Z}?C‘;) —2.207615364 | —1.681641934

é(z*) | 0.5257849423

é(x)(z*) |  1.263548762

The following is a sample calculation showing how the bounds on ¢(x) were

obtained:
[} [} w=uPyl=r
é(x) :/ / / e "7'" 2 dwdvdu
u=0Jv=0Jw=—urvl-r
— 1—p _ _a 1—p
— / / uv+uv _euv uv )dvdu
Ozl‘g u=0Jv=0
— 1—p _ _a 1—p
— / / uv+uv _euv uv )dvdu
Ozl‘g u=0Jv=0
— 1—p _ _a 1—p
/ / uv+uv _euv uv )dudv
Ozl‘g v=0 Ju=0
Put n :=70.

u=0
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= 2.524866182.
n o0 *u 1—p —Duyl—p
z) > e u—vtIu =R T e_“_v_%“p( =) dvdu
TOEDY ot
k=1 u=0 v:k%lu

k
+z”:/oo /nv (e_u_v_l_%(gk—nl)v)l’vl—p _e_u_v_%(gk—n1)u)pv1—p) dudv
k=1 v=0 :kzl’u

= 2.403166504.
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