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MIN-MAX THEOREMS RELATED TO GEOMETRIC

REPRESENTATIONS OF GRAPHS AND THEIR SDPS

MARCEL K. DE CARLI SILVA AND LEVENT TUNÇEL

Abstract. Lovász proved a nonlinear identity relating the theta num-
ber of a graph to its smallest radius hypersphere embedding where each
edge has unit length. We use this identity and its generalizations to
establish min-max theorems and to translate results related to one of
the graph invariants above to the other.

Classical concepts in tensegrity theory allow good interpretations of
the dual SDP for the problem of finding an optimal hypersphere embed-
ding as above. We generate a spectrum of structured SDPs on which
extensions of such interpretations are possible.

1. Introduction

Geometric representations of graphs is a beautiful area where combina-
torial optimization, graph theory, and semidefinite optimization meet and
connect with many other research areas. In this paper, we start by studying
geometric representations of graphs where each node is mapped to a point
on a hypersphere so that each edge has unit length and the radius of the
hypersphere is minimum. Lovász proved that this graph invariant, denoted
by th, is related to the Lovász ϑ number of the complement of the graph
via a simple nonlinear equation. This tight relationship leads to min-max
theorems and to a “dictionary” to translate existing results about the ϑ-
function and its variants to the hypersphere representation setting and vice
versa. Also, some properties of the hypersphere number th are more natu-
rally observed in its own context. These properties can also be “translated
back” to the ϑ-function setting.

We further illustrate that geometric representation setting allows the un-
derlying dual SDPs to be interpreted in a useful way. In combinatorial
optimization, min-max theorems and primal-dual algorithms rely heavily
on suitable interpretation of the dual problem (see, for instance, Euclidean
matching and generalizations [8], primal-dual method in approximation al-
gorithms [29]). Even though a general theory of dual interpretations exists
(even in the context of nonconvex nonlinear optimization) based on La-
grangian duals and/or perturbation theory, such interpretations are not as
sharp or clean as in the setting of linear optimization or more specifically
in the special cases of LPs related to combinatorial optimization problems.
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Using SDPs related to the geometric representations of graphs and their con-
nection to tensegrity theory, we generate a spectrum of structured SDPs on
which dual interpretations, extending those for special graph representations
problems, are possible. (This is related to [25].)

In Section 2, we remind the reader preliminary results from SDP the-
ory that we will use. In Section 3 we review relevant facts about Lovász ϑ
number. Section 4 covers the new results expressing the hypersphere graph
invariant th in terms of ϑ, min-max theorems, and translations of some re-
sults from one of the settings th, ϑ to the other. In Section 5, we discuss the
consequences of our observations in the context of graph homomorphisms
and sandwich theorems. We conclude the paper with Section 6 by present-
ing a spectrum of structured SDPs whose duals allow interpretations (of
varying degrees of sharpness) based on geometric representations of graphs
and tensegrity theory.

2. Preliminaries on Semidefinite Programming

Denote the set of symmetric n × n matrices by S
n, the set of symmetric

n× n positive semidefinite matrices by S
n
+, and the set of symmetric n× n

positive definite matrices by S
n
++. For a finite set V , the set of symmetric

V ×V matrices is denoted by S
V , and the notations SV+ and S

V
++ are defined

analogously. For A,B ∈ S
n, we write A � B if A−B ∈ S

n
+.

A semidefinite programming problem (SDP) is an optimization problem
of the form

inf 〈C,X〉
A(X) = b,
X ∈ S

n
+,

(2.1)

where the data is given by a matrix C ∈ S
n, a vector b ∈ R

m and a linear
transformation A : Sn → R

m. Here, 〈A,B〉 is the inner product of A and B
defined by the trace as follows: 〈A,B〉 := Tr(ATB) :=

∑

i

∑

j AijBij .

The dual of (2.1) is the following SDP:

sup bT y
A∗(y) + S = C,
y ∈ R

m, S ∈ S
n
+,

(2.2)

where A∗(·) is the adjoint of A(·) defined by 〈A∗(y),X〉 = 〈y,A(X)〉 for any
y ∈ R

m and X ∈ S
n. Note that we use interchangeably the notation aT b

and 〈a, b〉 for vectors a and b.
It is easy to see that weak duality holds, i.e., for every X feasible in (2.1)

and every (y, S) feasible in (2.2), we have 〈C,X〉 ≥ bT y. A Slater point
for (2.1) is a matrix X̄ ∈ S

n such that A(X̄) = b and X̄ ∈ S
n
++, i.e., a

feasible solution that is positive definite. Similarly, a Slater point for (2.2)
is a pair (ȳ, S̄) ∈ R

m⊕S
n such that A∗(ȳ)+ S̄ = C and S̄ ∈ S

n
++. Sometimes

we refer only to ȳ or to S̄ as a Slater point.
The following well-known result can be proved using a hyperplane sepa-

ration theorem (see, for instance, [27]):
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Theorem 2.1 (SDP Strong Duality). Suppose (2.2) has a Slater point. If
the objective value of (2.2) is bounded from above, then (2.1) attains its
optimal value and the optimal values of (2.1) and (2.2) coincide.

Under the definition of the dual of an SDP, the dual of (2.2) is equivalent
to (2.1). This fact yields the next corollary.

Corollary 2.2. If (2.1) and (2.2) both have Slater points, then they both
attain their optimal values and their optimal values coincide.

We shall use the following lemma:

Lemma 2.3. Let C ∈ S
n
+ \ {0} and C ′ ∈ S

n
++. Let A : Sn → R

m be a linear
transformation. Suppose that there exists X̄ ∈ S

n
++ such that A(X̄) = 0.

Define
β := sup 〈C,X〉

A(X) = 0,
〈C ′,X〉 = 1,
X ∈ S

n
+,

(2.3)

and
β′ := inf 〈C ′, Y 〉

A(Y ) = 0,
〈C, Y 〉 = 1,
Y ∈ S

n
+.

(2.4)

Then both β and β′ are attained, and ββ′ = 1.

Proof. The dual of (2.3) is

inf η
ηC ′ � C +A∗(y),
η ∈ R, y ∈ R

m,
(2.5)

which has (η̄, ȳ) := (M, 0) as a Slater point for sufficiently large M . Note
that 〈C ′, X̄〉 > 0, so (〈C ′, X̄〉)−1X̄ is feasible in (2.3) with positive objective
value, since 〈C, X̄〉 > 0. Thus, by Theorem 2.1,

β is attained and β > 0. (2.6)

The dual of (2.4) is

sup η
C ′ � ηC +A∗(y),
η ∈ R, y ∈ R

m,
(2.7)

which has (η̄, ȳ) := (0, 0) as a Slater point. In fact, for small enough ε > 0,
(η, y) := (ε, 0) is feasible for (2.7), so β′ > 0. Moreover, (〈C, X̄〉)−1X̄ is
feasible in (2.4), so Theorem 2.1 implies that

β′ is attained and β′ > 0. (2.8)

Finally, let X∗ be an optimal solution for (2.3). Then (〈C,X∗〉)−1X∗ is
feasible for (2.4), so β′ ≤ 1/β. Let Y ∗ be an optimal solution for (2.4). Then
(〈C ′, Y ∗〉)−1Y ∗ is feasible for (2.3), so β ≥ 1/β′. �
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Note that, if we replace Sn+ by an arbitrary pointed closed convex cone K
with nonempty interior, and modify the assumptions analogously (c ∈ K∗ \
{0}, c′ ∈ int(K∗), and there exists x̄ ∈ int(K) such that A(x̄) = 0), the
lemma continues to hold.

3. A quick review of Lovász’s theta number

Notation 3.1. For any function f on graphs, we denote by f the function
defined by f(G) := f(G) for every graph G, where G denotes the complement
of G.

Let G = (V,E) be a graph. An orthonormal representation of G is a
function p : V → R

d for some d ≥ 1 such that

(i) ‖p(i)‖ = 1 for every i ∈ V , and
(ii) 〈p(i), p(j)〉 = 0 for every {i, j} ∈ E(G).

These representations were introduced by Lovász in his seminal paper [19].
However, we shall mostly follow the slightly different treatment presented
in [12].

Define the theta body of G, denoted by TH(G), to be the set of all vectors
x ∈ R

V
+ such that

∑

i∈V

(

cT p(i)
)2
xi ≤ 1

for every orthonormal representation p of G and unit vector c of the appro-
priate dimension. For any weight function w ∈ R

V
+, define

ϑ(G,w) := max{wTx : x ∈ TH(G)}.
The theta number of G is ϑ(G) := ϑ(G, ē), where ē denotes the vector of all
ones.

The most striking motivation to study the theta number of a graph is that
it is a polynomial-time approximately computable graph invariant that lies
sandwiched between two graph invariants which are NP-hard to compute:

Theorem 3.2 (The Sandwich Theorem [19]). For any graph G, we have
ω(G) ≤ ϑ(G) ≤ χ(G).

Here ω(G) := α(G) is the clique number of G, and χ(G) is the chromatic
number of G.

We shall use the following SDP characterization from [12], which may be
used to prove that ϑ(G,w) can be computed up to an error of ε > 0 in time
polynomial in |V | and log(1/ε):

Theorem 3.3. Let G = (V,E) be a graph, and let w ∈ R
V
+. Then

ϑ(G,w) = max 〈W,X〉
〈I,X〉 = 1,

〈B{i,j},X〉 = 0, ∀{i, j} ∈ E,
X ∈ S

V
+,

(3.1)

where Wij :=
√
wiwj for all i, j ∈ V .
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Here we use the following notation. For i, j ∈ V , with ei denoting the ith
unit vector, we set B{i,j} := eie

T
j + eje

T
i .

We will also need the following facts (see, e.g., [12, Remark (9.3.20) and
Theorem (9.3.12)]):

Theorem 3.4. Let G = (V,E) be a graph, and let w ∈ R
V
+. Then there ex-

ists an orthonormal representation q of G and a unit vector c of appropriate
dimension such that

ϑ(G,w)
(

cT q(i)
)2

= wi, ∀i ∈ V.

Theorem 3.5. Let G = (V,E) be a graph, and let w ∈ R
V
+. Then

ϑ(G,w) = min
p,c

max
i∈V

wi

(cT p(i))2
,

where the minimum ranges over all orthonormal representations p of G and
unit vectors c of appropriate dimension.

The following combinatorial interpretation of ϑ(G,w) will also come in
handy (see [23, ch. 67]). Given a graph G = (V,E) and w ∈ Z

V
+, define the

graph Gw as follows. For each i ∈ V , let Vi := { (i, k) : k ∈ [wi]}, where
[n] := {1, . . . , n}. Note that Vi ∩ Vj = ∅ for all distinct i, j ∈ V . Then the
node set of Gw is

⋃

i∈V Vi and there is an edge in Gw joining (i, k) to (j, ℓ)
if and only if {i, j} ∈ E.

Theorem 3.6. Let G = (V,E) be a graph and let w ∈ Z
V
+. Then ϑ(G,w) =

ϑ(Gw).

4. Hypersphere representations

4.1. A minmax relation. Let G = (V,E) be a graph. A unit-distance
representation of G is a function p : V → R

d for some d ≥ 1 such that
‖p(i) − p(j)‖ = 1 whenever {i, j} ∈ E. A hypersphere representation of G
is a unit-distance representation p of G that is contained in a hypersphere
centered at the origin, i.e., ‖p(i)‖ = ‖p(j)‖ for every i, j ∈ V . The radius of
the hypersphere representation p is this common norm of the p(i)’s.

These geometric representations seem natural, and it is also natural to
consider problems of finding the “best” such representations. For instance,
we can consider the problem of finding the smallest radius of a hypersphere
representation of a graph G, that is, the smallest radius of a hypersphere
that contains a unit-distance representation of G. The usual Gram matrix
trick allows us to formulate this problem as an SDP, as follows (see for
instance, [17]):

th(G) := min t
diag(X) = tē,
Xii − 2Xij +Xjj = 1, ∀{i, j} ∈ E,
X ∈ S

V
+, t ∈ R.

(4.1)
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Here diag(·) maps a matrix to the vector formed by its diagonal entries.
Note that th(G) is actually the square of the smallest radius of a hypersphere
representation of G.

Before we write the dual of (4.1), let us set some notation. The Laplacian
of G is the linear transformation LG : RE → S

V defined by

(LG(z))ij :=











z(δ(i)), if i = j,

−z{i,j}, if {i, j} ∈ E,

0, otherwise.

Here δG(i) denotes the set of edges of G incident to the node i; sometimes
we write just δ(i) if the graph G is clear from the context. Also, for a
vector x indexed by a set S and a subset I of S, we denote x(I) :=

∑

i∈I xi.
Laplacians arise naturally in spectral graph theory and spectral geometry
(see [2]).

If we denote the adjoint of diag(·) by Diag(·), the dual of (4.1) can be
written as

max z(E)
Diag(y) � LG(z),
y(V ) = 1,
y ∈ R

V , z ∈ R
E,

(4.2)

which has (ȳ, z̄) := ( 1n ē, 0) as a Slater point, where n := |V |. Similarly,

(X̄, t̄ ) := 1
2(I, 1) is a Slater point of (4.1). Thus, by Corollary 2.2, SDP

Strong Duality holds for this dual pair of SDPs, so their optimal values
coincide and both optima are attained.

The Laplacian plays a key role in geometric representations of graphs, so
it is worthwhile to note that (4.1) may be rewritten as:

th(G) = min t
diag(X) = tē,
L∗
G(X) = ē,

X ∈ S
V
+, t ∈ R.

(4.3)

One nice feature of the SDP (4.1) is that it models the desired problem
exactly. Namely, every feasible solution (X, t) of (4.1) corresponds to a
hypersphere representation p of G, and its objective value t is precisely the
square of the radius of p. This is in contrast with many popular SDPs
related to graphs, which are usually just relaxations of integer programming
problems that model the combinatorial problem exactly.

This exact correspondence highlights some interesting properties of hyper-
sphere representations. Since (X̄, t̄ ) = 1

2 (I, 1) is a Slater point for (4.1), ev-

ery graph G = (V,E) has a hypersphere representation p : i 7→ 2−1/2ei ∈ R
V ,

and th(G) < 1/2.
It is well-known that the hypersphere representations of G are related to

orthonormal representations of G. To see this, note that, if p : V → R
d is a
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hypersphere representation of G with squared radius t ≤ 1/2, then the map

q : i 7→
√
2

[√

1/2 − t
p(i)

]

∈ R⊕ R
d (4.4)

is an orthonormal representation of G. Also, if q : V → R
d is an orthonormal

representation of G, then p : i → 2−1/2q(i) is a hypersphere representation
of G with squared radius 1/2.

However, the connection runs deeper, as shown via the following formula
mentioned by Lovász [18, p. 23]:

Theorem 4.1. For any graph G = (V,E), we have

2th(G) +
1

ϑ(G)
= 1. (4.5)

Proof. We have already observed above that SDP Strong Duality holds for
the pair of SDPs (4.1) and (4.2). We can rewrite the dual (4.2) as follows:

th(G) = max 〈12AG, Y 〉
〈I +AG, Y 〉 = 1,

〈B{i,j}, Y 〉 = 0, ∀{i, j} ∈ E(G),
Y ∈ S

V
+.

(4.6)

Here AG denotes the adjacency matrix of G.
For every feasible solution Y of (4.6), the first constraint allows us to

rewrite the objective value of Y as 〈12AG, Y 〉 = 1
2 (〈AG, Y 〉+ 〈I, Y 〉 − 〈I, Y 〉) =

1
2(1− 〈I, Y 〉). Moreover, by adding each constraint of the form 〈B{i,j}, Y 〉 =
0 to the first constraint, we can replace it by the constraint 〈ēēT , Y 〉 = 1.
Thus, we can write

th(G) =
1

2

(

1− t′h(G)
)

, (4.7)

where
t′h(G) := min 〈I, Y 〉

〈ēēT , Y 〉 = 1,

〈B{i,j}, Y 〉 = 0, ∀{i, j} ∈ E(G),
Y ∈ S

V
+.

(4.8)

To prove the theorem, it suffices to show that

t′h(G)ϑ(G) = 1, (4.9)

which follows from Lemma 2.3 and Theorem 3.3. �

We can view Theorem 4.1 as strong duality for a nonlinear minmax rela-
tion, in view of the following:

Proposition 4.2. Let G = (V,E) be a graph. Then, for every hypersphere
representation p of G with squared radius t and every nonzero x ∈ TH(G),
we have

2t+
1

ēTx
≥ 1,
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with equality if and only if t = th(G) and ēTx = ϑ(G).

Proof. Let p : V → R
d be a hypersphere representation of G with squared

radius t. We may assume that t < 1/2. We have to prove that (1−2t)ēT x ≤ 1
for every x ∈ TH(G). Define an orthonormal representation q : V → R⊕R

d

of G from p as in (4.4). Put c := 1⊕ 0 ∈ R⊕ R
d. Then

(1− 2t)
∑

i∈V

xi =
∑

i∈V

(

cT q(i)
)2
xi ≤ 1

by the definition of TH(G).
The equality case now follows from Theorem 4.1. �

The equality case for Proposition 4.2 used Theorem 4.1, whose proof in
turn shows explicitly that ϑ(G) and orthonormal representations of G are
natural dual objects for th(G) and hypersphere representations of G. We can
also use a well-known result about theta number to derive (4.5) more quickly,
but in a way that hides duality. We shall use the following construction to
get hypersphere representations of G from a special class of orthonormal
representations of G.

Suppose that q : V → R
d is an orthonormal representation of G such that,

for some positive µ ∈ R and p : V → R
d−1, we have

q(i) =
√
2

[

(2µ)−1/2

p(i)

]

(4.10)

for every i ∈ V . Then p is a hypersphere representation of G with squared
radius 1

2(1− 1/µ).
Now the proof of equality in Proposition 4.2 goes as follows. By The-

orem 3.4, there exists an orthonormal representation q of G and a unit

vector c of appropriate dimension such that
(

cT q(i)
)2

= 1/ϑ(G) for every
i ∈ V . By rotation, we may assume that c = e1, and by replacing some q(i)’s
by their opposites if necessary, we may assume that q has the form (4.10)
with µ = ϑ(G). Thus, p is a hypersphere representation of G with squared
radius 1

2(1− 1/ϑ(G)).
It can thus be argued that the proof of (4.5) hinges essentially on the

transformations (4.4) and (4.10) between hypersphere representations of G
with squared radius smaller than 1/2 and a special class of orthonormal
representations of G together with unit vectors.

We shall now use these transformations to obtain a Gallai-type identity
involving these objects.

Proposition 4.3. Let G = (V,E) be a graph. Then

2th(G) + max
p,c

min
i∈V

(

cT p(i)
)2

= 1, (4.11)

where p ranges over all orthonormal representations of G and c over unit
vectors of the appropriate dimension.



MIN-MAX THEOREMS, GEOMETRY, GRAPHS, AND THEIR SDPS 9

Proof. We first prove “≤” in (4.11). It suffices to prove that

th(G) ≤ 1

2

(

1−min
i∈V

(

cTu(i)
)2
)

(4.12)

for any orthonormal representation u of G and unit vector c of appropriate
dimension. It is easy to see that there exists an orthonormal representation
q of G and a unit vector d such that

β :=
(

dT q(j)
)2

= min
i∈V

(

cTu(i)
)2
, ∀j ∈ V.

If β = 0, then i 7→ 2−1/2ei ∈ R
V shows that th(G) ≤ 1/2 as desired,

so assume that β > 0. By rotation, we may assume that d = e1, and
by replacing some q(i)’s by their opposites if necessary, we may assume
that dT q(i) ≥ 0 for every i ∈ V . Now use (4.10) with µ = 1/β to get
a hypersphere representation p of G from q with squared radius 1

2(1 − β).
This proves (4.12).

Next we prove “≥” in (4.11). It suffices to find an orthonormal represen-

tation q of G and a unit vector c such that
(

cT q(i)
)2 ≥ 1− 2th(G) for every

i ∈ V . Let p : V → R
d be a hypersphere representation of G with squared

radius th(G). Build an orthonormal representation q of G as in (4.4) and

pick c := 1⊕ 0 ∈ R⊕R
d. Then

(

cT q(i)
)2

= 1− 2th(G) for every i ∈ V . �

Note that (4.11) does not provide a good characterization of either th(G)
or the maximization problem. In this sense, Proposition 4.3 is akin to Gal-
lai’s identities for graphs, which say that α(G) + τ(G) = |V (G)| for every
graph G, and ν(G) + ρ(G) = |V (G)| for every graph G without isolated
nodes; see [20, Lemmas 1.0.1 and 1.0.2].

Thus, as expected, the proof of Proposition 4.3 makes no use of duality.
Together with Theorem 3.5, which has SDP duality at its core, we get yet
another proof of Theorem 4.1.

4.2. Unit-distance representations in hyperspheres and balls. For
a graph G = (V,E), let tb(G) be the square of the smallest radius of an
Euclidean ball containing a unit-distance representation of G. It is easy to
modify (4.1) to obtain an SDP formulation for tb(G):

tb(G) := min t
diag(X) ≤ tē,
Xii − 2Xij +Xjj = 1, ∀{i, j} ∈ E,
X ∈ S

V
+, t ∈ R.

(4.13)

Its dual is the same as (4.2), with the extra constraint that y ≥ 0. Thus,
(X̄, t̄) := (12I,

1
2 + ε) is a Slater point for (4.13) for every ε > 0, and (ȳ, z̄) :=

1
n(ē, 0) is a Slater point for the dual of (4.13), where n := |V |. Hence, Strong
Duality also holds for this dual pair of SDPs, and both optima are attained.
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It is obvious that tb(G) ≤ th(G) for every graph G. However, we now
point out that

tb(G) = th(G), for every graph G. (4.14)

To see this, first note that, if we mimic the proof of Theorem 4.1 for tb(G),
we find that

2tb(G) +
1

ϑb(G)
= 1, (4.15)

where ϑb(G) := ϑb(G, ē), and, for every w ∈ R
V
+,

ϑb(G,w) := max 〈W,X〉
〈I,X〉 = 1,

〈B{i,j},X〉 = 0, ∀{i, j} ∈ E,
〈Ci,X〉 ≥ 0, ∀i ∈ V,
X ∈ S

V
+,

(4.16)

with Wij :=
√
wiwj for all i, j ∈ V , as usual, and Ci := 1

2(eiē
T + ēeTi ) for all

i ∈ V .
Thus, by (4.5) and (4.15), it suffices to prove that

ϑb(G) = ϑ(G), for every graph G. (4.17)

This follows immediately from the following result from [7, Proposition 9]
(this was pointed out to the first author by Fernando Mário de Oliveira
Filho):

Proposition 4.4. Let K ⊆ S
n be a set such that Diag(h)X Diag(h) ∈ K

whenever X ∈ K and h ∈ R
n
+. If X̂ is an optimal solution to the optimization

problem

max
{

ēTXē : Tr(X) = 1, X ∈ K ∩ S
n
+

}

, (4.18)

then there exists a positive µ ∈ R such that diag(X̂) = µX̂ē.

4.3. Hypersphere proofs of ϑ facts. The formula (4.5) relating th(G) to
ϑ(G) allows us to regard some basic facts about the theta number from a
geometrically simpler viewpoint. Let us look, for instance, at Theorem 3.2,
known as the Sandwich Theorem. By Theorem 4.1, it is equivalent to the
inequalities th(Kω(G)) ≤ th(G) ≤ th(Kχ(G)) for every graph G, where Kn

denotes the complete graph on n nodes (note that th(Kn) = 1
2(1 − 1/n)).

The first inequality is obvious: whenever H is a subgraph of G, we have
th(H) ≤ th(G). The second one is also obvious: if we have a hyper-
sphere representation of Kℓ with radius t, say p : [ℓ] → R

d, and a colouring
c : V (G) → [ℓ] of G, then we can get a hypersphere representation of G with
radius t by mapping each node i of G to p(c(i)). This already hints at a
strong connection with homomorphisms, which we will look at more closely
in Section 5.

The next result shows that ϑmay be used to characterize bipartite graphs,
as pointed out by Lovász [18, p. 34]:
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Proposition 4.5. A graph G is bipartite if and only if ϑ(G) ≤ 2.

Proof. We will show that th(G) ≤ 1/4 precisely when G is bipartite.
If G is bipartite, then th(G) ≤ 1/4, with a hypersphere representation

of G with radius 1/2 even in R
1.

Suppose th(G) ≤ 1/4. If th(G) = 0, then G has no edges. If th(G) > 0,
then th(G) ≥ 1/4. The only pairs of points at distance 1 in a hypersphere
of radius 1/2 are the pairs of antipodal points. So G is bipartite. �

Another example where it seems much simpler to prove something about ϑ
through Theorem 4.1 is the behaviour of ϑ under direct cosums of graphs.
We briefly recall the definitions here. Given graphs G = (V,E) and H =
(W,F ), the direct sum of G and H is the graph G+H := (V ∪W,E ∪ F ),
where we assume, by relabeling if necessary, that V ∩W = ∅. The direct

cosum of G and H is the graph G +H defined by G+H := G +H. It is
easy to check that G + H is obtained from G + H by adding all possible
edges joining a node of G to a node of H.

It is proved in [14] that ϑ(G+H) = max{ϑ(G), ϑ(H)}. The proof is short,
but the construction is a bit convoluted and does not seem to offer much in-
sight into the geometry of the problem. Now note that this equation is equiv-
alent to the geometrically obvious equation th(G+H) = max{th(G), th(H)}
by Theorem 4.1.

Let us mention a few more geometric constructions that look simple from
the point of view of hypersphere representations.

For every graph G, we have

th(G) = max{ th(C) : C a component of G}. (4.19)

Moreover,

th(G) = max{ th(B) : B a block of G}.
This follows from the following result:

Proposition 4.6. Let G = (V,E) be a graph, and suppose G = G1 ∪G2 for
graphs G1 and G2, with G1 ∩G2 a complete graph. Then

th(G) = max{th(G1), th(G2)}.
Proof. We obviously have ‘≥’ in the desired equation. Assume th(G1) ≥
th(G2). Note that, by convexity of the feasible region of (4.1) and the
fact that (X̄, t̄ ) = 1

2(I, 1) is feasible for (4.1), there is a hypersphere rep-
resentation q of G2 with squared radius th(G1). Let p be a hypersphere
representation of G1 with squared radius th(G1). We may assume that the
images of p and q live in the same Euclidean space.

Since the nodes of G1 ∩ G2 are mapped into points with squared norm
th(G1) and they are pairwise one unit apart, there is an orthogonal matrix Q
such that Qq(i) = p(i) for every i ∈ V (G1 ∩ G2). Thus, if we take the
hypersphere representation q′ : i 7→ Qq(i) of G2 and glue it with p, we get a
hypersphere representation of G with squared radius th(G1). �
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Let us briefly describe the ϑ counterparts of (4.19) and Proposition 4.6.
Given a graph G = (V,E), call a subset S ⊆ V friendful if every node of S
is adjacent to every node of V \ S. Note that V is friendful. It is easy to
check that (4.19) is equivalent to

ϑ(G) = max
{

ϑ(G[S]) : S a minimal friendful subset of V
}

.

The ϑ counterpart of Proposition 4.6 is as follows:

Proposition 4.7. Let G = (V,E) be a graph. Suppose V1, V2 ⊆ V have the
following properties:

(i) V = V1 ∪ V2,
(ii) G[V1 ∩ V2] has no edges,
(iii) every node of V1 \ V2 is adjacent in G to every node of V2 \ V1.

Then

ϑ(G) = max
{

ϑ(G[V1]), ϑ(G[V2])
}

.

The next proposition concerns the behaviour of th with respect to edge
contraction:

Proposition 4.8. Let G = (V,E) be a graph and let e ∈ E. Let (ȳ, z̄) be
an optimal solution for (4.2). Then

z̄e ≥ th(G)− th(G/e).

Proof. It suffices to show a feasible solution for (4.2) applied to G/e with
objective value th(G)−z̄e. Assume e = {a, b} and V ′ := V (G/e) = V \{b}, so
we are denoting the contracted node of G/e by a. Let P be the V ′×V matrix
defined by P := eae

T
b +

∑

i∈V ′ eie
T
i . It is easy to check that PLG(z̄)P

T =
LG/e(ẑ), where ẑ : E(G/e) → R is obtained from z̄ as follows. In taking
the contraction G/e from G, immediately after we identify the ends of e,
but before we remove resulting parallel edges, there are at most two edges
between each pair of nodes of G/e, as we assume that G is simple. If there is
exactly one edge between nodes i and j, we just set ẑ{i,j} := z̄{i,j}. If there
are two edges joining nodes i and j, say f and f ′, we put ẑ{i,j} := z̄f + z̄f ′ .

Similarly, if we define ŷ : V ′ → R by putting ŷi := ȳi for i ∈ V ′ \ {a} and

ŷa := ȳa + ȳb, then P Diag(ȳ)P T = Diag(ŷ). Since PS
V
+P

T ⊆ S
V ′

+ , we see
that (ŷ, ẑ) is a feasible solution for (4.2) applied to G/e, and its objective
value is ẑ(E(G/e)) = z̄(E)− z̄e. �

The ϑ counterpart of this is as follows.

Proposition 4.9. Let G = (V,E) be a graph and let i, j be distinct non-
adjacent nodes of G. Let X̄ an optimal solution for (3.1) applied to ϑ(G, ē).
Let G′ be the graph obtained from G by creating a new node adjacent to all
common neighbours of i and j, and then deleting i and j. Then

ϑ(G)

ϑ(G′)
≤ 2X̄ij + 1.
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Next we show that one obvious property of the stability number α(G)
and the clique covering number χ(G) remains true for ϑ(G). Given a graph
G = (V,E) and i ∈ V , it is obvious that α(G) ≥ α(G − i − N(i)) + 1
and χ(G) ≥ χ(G − i − N(i)) + 1, where N(·) := NG(·) denotes the set of
neighbours of the node · in G. It is also easy to show that

χ∗(G) ≥ χ∗(G− i−N(i)) + 1,

where χ∗(G) denotes the fractional chromatic number of G. The following
is somewhat based on [13, Lemma 4.3]:

Proposition 4.10. Let G = (V,E) be a graph and i ∈ V . Then

ϑ(G) ≥ ϑ(G− i−N(i)) + 1.

Proof. The inequality holds if G is complete, so assume G is not complete.
Note that G− i−NG(i) = G[NG(i)]. By Theorem 4.1, the equation ϑ(G) ≥
ϑ(G[NG(i)]) + 1 is equivalent to

th

(

G
[

NG(i)
]

)

≤ 1− 1

4th(G)
.

Thus, it suffices to prove that, for every graph G = (V,E) with at least one
edge, and every i ∈ V , we have

th(G[NG(i)]) ≤ 1− 1

4th(G)
. (4.20)

Let p : V → R
d be a hypersphere representation of G with squared radius

t := th(G). We may assume that p(i) =
√
te1. For every j ∈ N(i), we have

1 = ‖p(i)− p(j)‖2 = ‖p(i)‖2 + ‖p(j)‖2 − 2〈p(i), p(j)〉 = 2t− 2
√
tp

(j)
1 . Hence,

p
(j)
1 =

2t− 1

2
√
t
, ∀j ∈ N(i). (4.21)

Define the following hypersphere representation of G[N(i)]: for each j ∈
N(i), let q(j) be obtained from p(j) by dropping the first coordinate. The
squared radius of the resulting hypersphere representation is

t−
(

2t− 1

2
√
t

)2

= 1− 1

4t
.

This proves (4.20), and thus the theorem. �

We point out that Proposition 4.10 is easy to prove from well-known
results about ϑ, but the proof above involves a nice geometric construction.

4.4. A weighted version. We can use the proof of Theorem 4.1 as a guide
to find a definition of a weighted hypersphere number. Namely, we want to
define th(G,w) so that the following remains true for every graph G = (V,E)
and nonzero w ∈ R

V
+:

2th(G,w) +
1

ϑ(G,w)
= 1. (4.22)
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Let us follow the proof of Theorem 4.1 backwards. We want to define

th(G,w) =
1

2

(

1− t′h(G,w)
)

,

for a parameter t′h(G,w) that satisfies

t′h(G,w)ϑ(G,w) = 1

for the same reason as (4.9) holds. Using Theorem 3.3 in its full generality,
we can define

t′h(G,w) := min 〈I, Y 〉
〈W,Y 〉 = 1,

〈B{i,j}, Y 〉 = 0, ∀{i, j} ∈ E(G),
Y ∈ S

V
+,

(4.23)

where Wij :=
√
wiwj for every i, j ∈ V .

Thus, we want the dual SDP for th(G,w) (the one corresponding to (4.2))
to be:

th(G,w) = max 1
2

(

〈W,Y 〉 − 〈I, Y 〉
)

〈W,Y 〉 = 1,
Y = Diag(y)− LG(z) � 0,
y ∈ R

V , z ∈ R
E.

(4.24)

So it is reasonable to define th(G,w) as the dual of (4.24):

th(G,w) = min t
diag(X) = 1

2 ē+ (t− 1
2)w,

L∗
G(X) = ē+ (t− 1

2 )L∗
G(W ),

X ∈ S
V
+, t ∈ R.

(4.25)

Note that (X̄, t̄ ) := 1
2(I, 1) and (ȳ, z̄) := ( 1

ēTw
ē, 0) are Slater points

for (4.25) and (4.24), respectively, so we still have SDP Strong Duality in
place.

We could not offer a very nice direct interpretation for this definition of
th(G,w). However, by construction, we get the following weighted version
of Proposition 4.2:

Theorem 4.11. Let G = (V,E) be a graph and w ∈ R
V
+ be nonzero. Then,

for every feasible solution (X, t) of (4.25) and every nonzero x ∈ TH(G),
we have

2t+
1

wTx
≥ 1,

with equality if and only if (X, t) is an optimal solution for (4.25) and wTx =
ϑ(G,w).

Proof. We may assume that t < 1/2. We have to prove that (1−2t)wTx ≤ 1.
First decompose X � 0 as X = P TP for some [d]× V matrix P , and define
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p : V → R
d by p(i) := Pei for every i ∈ V . Define q : V → R⊕R

d by

q : i 7→
√
2

[√

wi(1/2 − t)
p(i)

]

.

It is easy to check that q is an orthonormal representation of G. Put c :=
1⊕ 0 ∈ R⊕ R

d. Then

(1− 2t)wTx =
∑

i∈V

(

cT q(i)
)2
xi ≤ 1

by the definition of TH(G).
The equality case now follows by construction. �

Next, we present a geometric construction that provides a reasonable
interpretation for th(G,w) based on Theorem 3.6. First, we need to define
another graph operation. Let G = (V,E) be a graph, and let w ∈ Z

V
+.

Following the notation from Section 3, define the graph Gw to be the graph
obtained from Gw by adding all the edges of the form {(i, k), (i, ℓ)} for i ∈ V
and k 6= ℓ. Note that Gw is the graph complement of (G)w. Thus, by (4.22)
and Theorem 3.6, we get

th(G,w) =
1

2

(

1− 1

ϑ(G,w)

)

=
1

2

(

1− 1

ϑ
(

(G)w
)

)

= th(G
w).

Now we show how to obtain a hypersphere representation of Gw from a
feasible solution (X̄, t̄ ) for (4.25) with squared radius t̄. Write X̄ = P TP for
some [d]× V matrix P , and define p : V → R

d by p(i) := Pei for i ∈ V . For
each i ∈ V , let qi : Vi → R

di be an optimal hypersphere representation of
the complete graph on node set Vi. Here we note that such a representation
is easy to compute from |Vi| = wi, and the square of the optimal radius is
1
2(1− 1/wi) by Theorem 4.1.

Let us build a hypersphere representation u : V (Gw) → R
d⊕
(

⊕

i∈V R
di
)

.

We may assume that wi > 0 for every i ∈ V . For (i, k) ∈ V (Gw), with
i ∈ V and k ∈ [wi], set u(i, k) to be the following vector. Its block in R

d

is w
−1/2
i p(i). Its block in R

di is qi(i, k). All the other blocks of u(i, k) are
zero. It is easy to check that u is a hypersphere representation of Gw with
squared radius t̄.

So we can think of th(G,w) as a more economical way of computing the
hypersphere number of a graph that can be encoded as Gw for some smaller
graph G.

5. Graph homomorphisms and sandwich theorems

Let G and H be graphs. Recall that a homomorphism from G to H
is a function f : V (G) → V (H) such that {f(i), f(j)} ∈ E(H) whenever
{i, j} ∈ E(G). If there is a homomorphism from G to H, we write G → H.
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We have seen that the sandwich theorem for ϑ(G) is equivalent to the
inequality th(Kω(G)) ≤ th(G) ≤ th(Kχ(G)) by Theorem 4.1. Moreover, the
only property that we required from th(·) to prove this easy geometric in-
equality was the fact that th is monotone under taking homomorphisms,
namely, we have th(G) ≤ th(H) whenever G → H. To see why this is
enough, note that we obviously have Kω(G) → G → Kχ(G).

Let us now prove that th(G) ≤ th(H) if G → H. Let f : V (G) → V (H)
be a homomorphism from G to H, and let v : V (H) → R

d be a hypersphere
representation of H. It is now easy to check that the map i 7→ v(f(i)) is a
hypersphere representation of G with the same radius as v.

Motivated by this, we are led to study graph invariants that are monotone
under taking homomorphisms. We say a real-valued graph invariant f is
hom-monotone if

(i) f(G) ≤ f(H) whenever G → H, and
(ii) there is a non-decreasing function g : Im(f) → R such that g(f(Kn)) =

n for every integer n ≥ 1.

Using these properties for an arbitrary graph G and the fact that Kω(G) →
G → Kχ(G), we get f(Kω(G)) ≤ f(G) ≤ f(Kχ(G)), and thus

ω(G) ≤ g(f(G)) ≤ χ(G). (5.1)

Note that the function g(x) := 1/(1− 2x) is non-decreasing on [0, 1/2) ⊇
Im(th), so f := th is hom-monotone. In this case, we recover from (5.1) the
sandwich theorem for Lovász’s theta number.

The second condition for a graph invariant to be hom-monotone does
not seem completely natural, but it is a reasonable property to expect from
“nondegenerate” graph invariants f satisfying the first condition, namely,
f(G) ≤ f(H) whenever G → H.

If we track down the reason why th satisfies the first condition of hom-
monotonicity, we see that it roughly comes from the fact that we are looking
for a geometric representation minimizing a certain parameter, and the only
constraint on the geometric representation is for pairs of adjacent nodes of
the graph. Moreover, the constraints for distinct edges are uniform. We are
thus led to define other SDPs of the same type.

One such example is the parameter tb(·). However, as we have seen
in (4.14), this parameter is equal to th(·). Let us now define a new pa-
rameter:

t′(G) := min t
diag(X) = tē,
Xii − 2Xij +Xjj ≥ 1, ∀{i, j} ∈ E,
X ∈ S

V
+, t ∈ R.

(5.2)
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The dual of (5.2) can be written as

max z(E)
Diag(y) � LG(z),
y(V ) = 1,
y ∈ R

V , z ∈ R
E
+.

(5.3)

Thus, (X̄, t̄ ) := (12 + ε)(I, 1) is a Slater point for (5.2) for any ε > 0, and

(ȳ, z̄) := 1
n(ē, εē) is a Slater point for (5.3) for ε > 0 small enough, where

n := |V |. Thus, Strong Duality for this dual pair of SDPs, and both optima
are attained.

Clearly, t′(G) ≤ t(G) for every graph G. Moreover, by applying the usual
symmetrization operator (sometimes called the Reynolds operator)

X 7→ 1

|Aut(G)|
∑

P ·PT∈Aut(G)

PXP T ,

we see that t′(G) = th(G) if G is node-transitive. In particular, t′(Kn) =
th(Kn) for every n. Thus, the function g(x) := 1/(1 − 2x) proves that t′ is
hom-monotone.

Using (5.1), we obtain

ω(G) ≤ 1

1− 2t′(G)
≤ 1

1− 2th(G)
≤ χ(G) (5.4)

for every graph G.
If we now mimic the proof of Theorem 4.1 for t′(G), we obtain

2t′(G) +
1

ϑ′(G)
= 1. (5.5)

where ϑ′(G) := ϑ′(G, ē) and, for any w ∈ R
V
+,

ϑ′(G,w) := max 〈W,X〉
〈I,X〉 = 1,

〈B{i,j},X〉 = 0, ∀{i, j} ∈ E,
X ∈ S

V
+,

X ≥ 0,

(5.6)

with Wij :=
√
wiwj for all i, j ∈ V (G). Note that ϑ′(G) is the graph

parameter introduced in [21] and [24].
Let us point out one drawback for this framework of hom-monotone

graph invariants yielding sandwich inequalities. The following strengthen-
ing of Sandwich Theorem holds: for any graph G, we have ω(G) ≤ ϑ(G) ≤
χ∗(G) ≤ χ(G). This stronger inequality fails for the hom-monotone graph
invariant χ.

5.1. Hypersphere representations and vector colourings. The fol-
lowing relaxation of graph colouring was introduced in [13]. Let G = (V,E)
be a graph. For a real number k ≥ 1, a vector k-colouring of G is a function
p : V → R

d for some d ≥ 1 such that
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(i) ‖p(i)‖ = 1 for every i ∈ V , and
(ii) 〈p(i), p(j)〉 ≤ −1/(k − 1) for every {i, j} ∈ E,

where we consider the fraction to be −∞ if k = 1. In other words, the only
graphs that have a vector 1-colouring are the graphs with no edges. A vector
k-colouring p of G is strict if 〈p(i), p(j)〉 = −1/(k − 1) for every {i, j} ∈ E,
and a strict vector k-colouring p of G is strong if 〈p(i), p(j)〉 ≥ −1/(k − 1)
for every {i, j} ∈ E(G).

The vector chromatic number of G is the smallest k ≥ 1 for which there
exists a vector k-colouring of G, and the strict vector chromatic number and
strong vector chromatic number are defined analogously.

It is easy to show (see, e.g., [15]) that the vector chromatic number of G
is ϑ′(G), the strict vector chromatic number of G is ϑ(G), and the strong

vector chromatic number of G is ϑ+(G), known as Szegedy’s number [26],
and defined as ϑ+(G) := ϑ+(G, ē) and, for any w ∈ R

V
+,

ϑ+(G,w) := max 〈W,X〉
〈I,X〉 = 1,

〈B{i,j},X〉 ≤ 0, ∀{i, j} ∈ E,
X ∈ S

V
+.

(5.7)

Here we note that a scaling map yields a correspondence between these
variations of vector colourings and unit-distance representations, provided
that the graph G has at least one edge.

Let p be a strict vector k-colouring of G. Then the map i 7→ tp(i), where
t2 = 1

2(1− 1/k), is a hypersphere representation of G with squared radius t.
Conversely, if q is a hypersphere representation of G with squared radius
t < 1/2, then the map i 7→ t−1/2q(i), is a strict vector k-colouring ofG, where
k = 1/(1 − 2t). This correspondence shows that th(G) = 1

2(1 − 1/χv(G)),
where χv(G) denotes the strict vector chromatic number of G.

The same scaling maps as above yield correspondences between vector
k-colourings and the geometric representations arising from the graph in-
variant t′, and also between strong vector k-colourings and geometric repre-
sentations arising from the graph invariant

t+(G) := min t
diag(X) = tē,
Xii − 2Xij +Xjj = 1, ∀{i, j} ∈ E(G),
Xii − 2Xij +Xjj ≤ 1, ∀{i, j} ∈ E(G),
X ∈ S

V
+, t ∈ R.

(5.8)

Note however, that the parameter t+ does not fit into the framework of hom-
monotone graph invariants since the SDP (5.8) has non-edge constraints.

We point out here that, while these equivalences between variants of vec-
tor chromatic number and variants of theta number are easy to prove, they
are not as widely known as they should be. For instance, in [1] it is shown
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that the vector chromatic number χ′
v(G) of G satisfies

χ′
v(G) ≥ max

{

1− λmax(B)

λmin(B)
: B ∈ AG, B ≥ 0

}

, (5.9)

where λmax(·) and λmin(·) denote the largest and smallest eigenvalue, respec-
tively, and AG denotes the set of all weighted adjacency matrices of G, i.e.,
all symmetric V × V matrices A such that Aij 6= 0 =⇒ {i, j} ∈ E. How-

ever, since χ′
v(G) = ϑ′(G), it is possible to adapt the proof of the Hoffman

bounds for ϑ(G) (see, e.g., [14, Corollary 33]) to show that (5.9) actually
holds with equality.

Also, in [22, Remark 3.1] it is reported that a certain graph G has vector
chromatic number strictly smaller than its strict vector chromatic number,
and that it was unknown whether some such graph existed. However, this
statement about the vector chromatic numbers is equivalent to ϑ′(G) <
ϑ(G), and the existence of graphs satisfying this strict inequality was already
known as far back as 1979 (see [24]).

We also mention that one of the characterizations of ϑ′(G) in [6] is inac-
curate. Define an obtuse representation of a graph G = (V,E) to be a map
p : V → R

d for some d ≥ 1 such that

(i) ‖p(i)‖ = 1 for every i ∈ V , and
(ii) 〈p(i), p(j)〉 ≤ 0 for every {i, j} ∈ E(G).

In [6, p. 133] it is claimed that

ϑ′(G) = min
p,c

max
i∈V

1
(

cT p(i)
)2 , (5.10)

where p ranges over obtuse representations of G and c ranges over unit
vectors of appropriate dimension. Let G be a 2n-partite graph with color
classes C1, . . . , C2n such that ω(G) = 2n. Thus, by (5.4) and (5.5), we
have ϑ′(G) ≥ 2n. Let p(j) := ei ∈ R

n for every j ∈ Ci and i ∈ [n], and

p(j) := −ei ∈ R
n for every j ∈ Cn+i and i ∈ [n]. Set c := n−1/2ē ∈ R

n.
By (5.10), we get ϑ′(G) ≤ n, a contradiction.

Now we show how to fix the formula (5.10). Given an obtuse represen-
tation p : V → R

d of a graph G = (V,E), we say that a vector c ∈ R
d

is consistent with p if cT p(i) ≥ 0 for every i ∈ V . The next result is a
Gallai-type identity involving t′(G), parallel to Proposition 4.3 for th(G).

Proposition 5.1. Let G = (V,E) be a graph. Then

2t′(G) + max
p,c

min
i∈V

(

cT p(i)
)2

= 1, (5.11)

where p ranges over all obtuse representations of G and c over unit vectors
consistent with p.

Proof. This proof is analogous to the proof of Proposition 4.3, with the
following slight adjustments. In the notation of the proof of (4.12), the
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vector d may be chosen to be consistent with the obtuse representation q,
so we do not need to replace any of the q(i)’s by their opposites. �

Corollary 5.2. Let G = (V,E) be a graph. Then ϑ′(G) is given by (5.10),
where p ranges over obtuse representations of G and c ranges over unit
vectors consistent with p.

Proof. This follows from Proposition 5.1 together with (5.5). �

5.2. Optimal hypersphere dimension. For a graph G = (V,E), let
dimh(G) denote the smallest d for which G has a hypersphere represen-
tation in R

d. A related parameter was introduced by Erdőos, Harary, and
Tutte [4]: they defined dim(G) to be the smallest d for which there is an
injective unit-distance representation of G in R

d. In [5] a geometric construc-
tion is presented that shows that dim(G) ≤ ∆(G)+2. In fact, this geometric
construction embeds G into a hypersphere, so that the same proof implies
dimh(G) ≤ ∆(G) + 2.

Here we point out that a better bound for dimh(G) may be obtained from
the fact that G → H implies dimh(G) ≤ dimh(H). Since G → Kχ(G), we
get dimh(G) ≤ dimh(Kχ(G)) ≤ χ(G) − 1 ≤ ∆(G). In fact, we get a slight
improvement using Brooks’ Theorem: if G is connected, and G is not a
clique nor an odd cycle, then dimh(G) ≤ ∆(G)− 1.

6. Duality and energy functions

In polyhedral combinatorics, one of the most fundamental tools for gain-
ing insight into problems is duality. Often a good understanding of the dual
problem allows one to improve a polyhedral description, or obtain better
approximation algorithms.

For several natural combinatorial optimization problems, the dual of a
natural formulation of the problem as an LP turns out to be a natural-
looking combinatorial optimization problem, i.e., a problem that is interest-
ing in its own right, regardless of it being the dual of another problem. An
example of this is the dual pair of LPs associated with α∗(G) and χ∗(G).

The situation seems to be different for SDP duality. For instance, even
though problem (4.1) seems extremely natural, it is not obvious why anyone
would be interested in solving (4.2) in the first place, were it not for the fact
that it is the dual of (4.1). Namely, it is not obvious how to interpret (4.2) as
a natural-looking problem on graphs, or as an SDP-free problem on graphs;
recall that the original problem of computing th(G) can be formulated in a
natural way not as an SDP.

This is not surprising, as SDP duality theory is more complex than LP
duality theory. Indeed, LP duality applied to combinatorial optimization
problems often reduces to double counting, so the resulting dual problems
are usually natural. Since SDP duality theory is richer, we may expect that
obtaining nice interpretations from SDP duals to be harder, but to pay off
perhaps even more significantly.
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In this section, we investigate a possible interpretation of the dual (4.2)
of (4.1) related to graph rigidity. We note that some attempts in this di-
rection of interpreting duals of SDPs have already been made; see, e.g., [11,
Remark 1] and [10, Remark 1].

6.1. Optimal energy functions. Let G = (V,E) be a graph and let
p : V → R

d for some d ≥ 1. A function σ : E → R is a stress function
for p (describing a stress coefficient for each edge) if

∑

j∈N(i)

σ{i,j}
(

p(j)− p(i)
)

= 0, ∀i ∈ V. (6.1)

This condition, for a fixed i ∈ V , can be interpreted as follows. For an edge
{i, j} ∈ E with σ{i,j} > 0, we regard the edge {i, j} as a rubber band pulling
node i towards node j. If σ{i,j} < 0, then the edge {i, j} can be thought of
as a strut pushing nodes i and j apart. An edge {i, j} ∈ E with σ{i,j} = 0
is effectively non-existing. Then each of the terms of the sum in (6.1) can
be seen as the force acting on node i arising from the physical structure
associated with the corresponding edge. In this context, condition (6.1)
means that the physical structure is in equilibrium.

The above interpretation shows why stress functions show up naturally in
graph rigidity. A related concept is that of an “energy function” (see, e.g.,
[17, ch. 4] and [3]). Fix a function σ : E → R. We can associate to each map
p : V → R

d the energy of p as

Eσ(p) :=
∑

{i,j}∈E

σ{i,j}‖p(j)− p(i)‖2.

A nice interpretation of this energy is given as follows. Suppose σe > 0 for
every e ∈ E. Then, as above, we can interpret each edge as a rubber band
pulling its ends closer together, and the term σ{i,j}‖p(j)−p(i)‖2 can be seen
as the contribution of edge {i, j} to the total potential energy Eσ(p) of the
system.

In [16], the following problem is considered, in connection with Tutte’s
barycentric mappings [28]: for a certain subset S ⊆ V of nodes, fix a position
p0 : S → R

d, and find an extension p : V → R
d of p0 that minimizes the

energy Eσ(p), where σ : E → R++ is fixed. This corresponds to nailing
down the nodes of S into their prescribed positions, then taking each edge
as a rubber band with “constant of elasticity” given by σ, and letting the
system vibrate until it reaches equilibrium. Thus, an optimal solution p
of the above optimization problem corresponds to a configuration in static
equilibrium. Optimality conditions then show that σ is “close to” a stress
function for p, namely, (6.1) holds for all i ∈ V \ S.

The situation is a bit more complicated when we allow some entries of σ to
be negative. Indeed, if σe < 0, then we should interpret e as a strut pushing
its ends further apart, but then the contribution σe‖p(j) − p(i)‖2 of edge e
to the total potential energy Eσ(p) of the system is negative. This might
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seem counterintuitive, but given the fact that edge e is constantly pushing
its ends apart, it somewhat makes sense. The most important property that
we must preserve for the above ideas to carry through is that the energy
function Eσ must have a minimum.

Let us briefly investigate for which functions σ : E → R the energy func-
tion Eσ has a minimum. Given p : V → R

d, define a [d] × V matrix P by
setting Pei := p(i) for every i ∈ V . Let D be an arbitrary orientation of G,
and let BD denote its node-arc incidence matrix. Then

Eσ(p) =
d
∑

k=1

∑

{i,j}∈E

(

p
(j)
k − p

(i)
k

)

σ{i,j}
(

p
(j)
k − p

(i)
k

)

=

d
∑

k=1

eTk PBD Diag(σ)BT
DP

T ek = Tr
(

PLG(σ)P
T
)

where we used the fact that

LG(z) = BD Diag(z)BT
D. (6.2)

Now it is easy to see that

Eσ has a minimum if and only if LG(σ) � 0. (6.3)

Indeed, suppose LG(σ) � 0. Then Eσ(p) ≥ 0 for every p : V → R
d, so

p = 0 is a minimum of Eσ. Now suppose hTLG(σ)h < 0 for some h ∈
R
V . Set P := e1h

T , and define p : V → R
d accordingly. Then Eσ(p) =

hTLG(σ)hTr
(

e1e
T
1

)

= hTLG(σ)h < 0, so Eσ(λp) → −∞ as λ → ∞.
Let us go back to our SDP (4.1). In fact, we will start by looking at the

augmented SDP

th(G) = min t
X00 − 2X0i +Xii = t, ∀i ∈ V,
Xii − 2Xij +Xjj = 1, ∀{i, j} ∈ E,

X ∈ S
{0}∪V
+ , t ∈ R,

(6.4)

and its dual
max −σ(E(G))

LH(σ) � 0,
σ(δH(0)) = 1,

σ ∈ R
E(H),

(6.5)

where H denotes the cosum of G and the graph containing a single node,
called 0.

Note that (6.4) really models th(G), and the only difference between this
formulation of th(G) and the one given by (4.1) is that here we do not insist
that the optimal hypersphere is centered at the origin. Thus, (6.4) has an
optimal solution. Moreover, since (X̄, t̄ ) := (12I, 1) is a Slater point of (6.4)
and (6.5) is feasible, it follows from SDP Strong Duality that there is no
duality gap, and the dual is attained.
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It should be easy to interpret (6.5) from our previous discussion of energy
functions. Among all vectors σ : E(H) → R giving rise to an energy function
Eσ that has a minimum, normalized so that σ(δH (0)) = 1, choose one that
minimizes σ(E(G)).

Let (X, t) be an optimal solution for (6.4) and let σ be an optimal solution
for (6.5). Write X = P TP for some [d]×V (H) matrix P , and put p(i) := Pei
for every i ∈ V (H). Now t = −σ(E(G)) is equivalent to 0 = Tr(XLH(σ)) =
Tr(PLH(σ)P T ). Since LH(σ) � 0, we have PLH(σ)P T � 0, and thus
PLH(σ)P T = 0. Hence, for each h ∈ R

d, we have ‖LH(σ)1/2P Th‖2 = 0, so

LH(σ)1/2P T = 0, and PLH(σ) = 0. It is easy to see that this is equivalent
to the fact that σ is a stress function for p.

Note that, if we decompose σ : E(H) → R by setting σ = y ⊕ −z, with
y : V → R and z : E(G) → R in an obvious way, then

LH(σ) =

[

y(V ) −yT

−y Diag(y)− LG(z),

]

so the matrix Diag(y)−LG(z) that appears in the positive semidefiniteness
constraint of (4.2) is a principal submatrix of LH(σ).

Let us now translate these interpretations to the original dual prob-
lem (4.2). Let y : V → R and z : E(G) → R be such that y(V ) = 1. Given
any function p : V → R

d, define a [d] × V matrix P by setting Pei := p(i)
for every i ∈ V and define the energy of p to be

Ey,z(p) := Tr
(

P (Diag(y)− LG(z))P
T
)

=
∑

i∈V

yi‖p(i) − 0‖2 +
∑

{i,j}∈E

(−z{i,j})‖p(i) − p(j)‖2.

This can be seen as the energy function of p on the augmented graph H
arising from σ := y ⊕ −z that considers the node 0 as mapped into the
origin.

As before, the parameters (y, z) that give rise to energy functions that
have a minimum are precisely the ones for which Diag(y) � LG(z). Thus,
(4.2) can be seen as the search for the “best” such parameters, normalized
so that y(V ) = 1. The optimal solution (y, z) to (4.2) also yields a stress
function for any optimal hypersphere representation of G, where we assume
an extra node has been placed at the origin.

6.2. Dual interpretation in more general frameworks. We can extend
the interpretation of duality presented above by regarding the constraint
y(V ) = 1 as an instance of a general constraint of the form y ⊕ z ∈ P for
some polyhedron P .
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Thus, in our extended formulation, the dual SDP is defined as:

sup 〈w(0), y〉+ 〈w(1), z〉
Diag(y) � LG(z)

A00y +A01z ≤ b(0)

A10y +A11z = b(1),
y ∈ R

V , z ∈ R
E .

(6.6)

Here

(i) G = (V,E) is a graph,
(ii) k and ℓ are nonnegative integers,
(iii) R0 := [k] and R1 := [ℓ],
(iv) C0 := V and C1 := E,

(v) w(j) ∈ R
Cj ,

(vi) Aij is an Ri × Cj matrix,

(vii) b(i) ∈ R
Ri ,

The primal SDP is thus:

inf 〈b(0), u〉+ 〈b(1), v〉
diag(X)−AT

00u−AT
10v = −w(0)

L∗
G(X) +AT

01u+AT
11v = w(1)

X ∈ S
V
+, u ∈ R

k
+, v ∈ R

ℓ.

(6.7)

Note that, whenever SDP Strong Duality holds for this pair of SDPs,
e.g., whenever both (6.7) and (6.6) have Slater points, our interpretation
via energy functions still makes sense. That is, among all energy functions
Ey,z(·) that have a minimum, and such that y⊕z lies in a certain polyhedron,

choose one that maximizes the objective function 〈w(0), y〉+ 〈w(1), z〉.
It is easily seen that the parameters th, tb, t

′, and t+ can be modelled in
this framework. Moreover, for each of these parameters, the weight vectors
w(0) and w(1) and the polyhedron P where we require y ⊕ z to lie in are
symmetric in the following sense: for any V × V permutation matrix P (0)

and any E × E permutation matrix P (1), and for any y ⊕ z ∈ R
V ⊕ R

E we
have

(i) 〈w(0), y〉+ 〈w(1), z〉 = 〈w(0), P (0)y〉+ 〈w(1), P (1)z〉, and
(ii) y ⊕ z ∈ P if and only if P (0)y ⊕ P (1)z ∈ P .

In other words, except possibly for the constraint Diag(y) � LG(z), the
SDP (6.6) treats all the nodes of G in the same way, and similarly for all
the edges.

This symmetry makes the dual interpretation look very natural. For
instance, consider the following modification of (5.2):

min t
diag(X) ≤ tē,
Xii − 2Xij +Xjj ≥ 1, ∀{i, j} ∈ E,
X ∈ S

V
+, t ∈ R.

(6.8)
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Its dual is the same as (5.3), with the extra constraint that y ≥ 0. (In fact,
the constraint y ≥ 0 is implied in (5.3).) Thus, besides the normalization
constraint y(V ) = 1, all we require is that y ≥ 0 and that z ≥ 0, that is, we
require the edges joining the nodes of G to the new node at the origin to be
rubber bands, whereas the edges in the original graph should be struts.

The parameter t+(G) can also be formulated in this model, where the
graph in the SDP is taken to be the complete graph on node set V (G). How-
ever, then the resulting polyhedron P would not have the above symmetry
property, since the dual variables corresponding to edges are free, whereas
the dual variables corresponding to non-edges are nonpositive. Neverthe-
less, the dual SDP of t+(G) still has a large amount of symmetry, namely,
all edges are treated in the same way, and all non-edges are treated in the
same way. Thus, this dual would fit the following format:

sup 〈w(0), y〉+ 〈w(1), z〉+ 〈w(2), z̄〉
Diag(y) � LG(z) + LG(z̄)

A00y +A01z +A02z̄ ≤ b(0)

A10y +A11z +A12z̄ = b(1),

y ∈ R
V , z ∈ R

E, z̄ ∈ R
E(G),

(6.9)

where the following type of symmetry is “required.” Let P denote the
corresponding polyhedron. For every V ×V permutation matrix P (0), every
E×E permutation matrix P (1), and every E×E permutation matrix P (2),

and for any y ⊕ z ⊕ z̄ ∈ R
V ⊕ R

E ⊕ R
E, we have

(i) 〈w(0), y〉+〈w(1), z〉+〈w(2), z̄〉 = 〈w(0), P (0)y〉+〈w(1), P (1)z〉+〈w(2), P (2)z̄〉,
and

(ii) y ⊕ z ⊕ z̄ ∈ P if and only if P (0)y ⊕ P (1)z ⊕ P (2)z̄ ∈ P .

The interpretation for (6.9) extends easily. Namely, among all vectors
y⊕ z ⊕ z̄ in a certain polyhedron that treats all the components of y, z and
z̄ in the same way, and such that the energy function

Ey,z,z̄(p) := Tr
(

P (Diag(y)− LG(z)− LG(z̄))P
T
)

=
∑

i∈V

yi‖p(i) − 0‖2 +
∑

{i,j}∈E

(−z{i,j})‖p(i) − p(j)‖2

+
∑

{i,j}∈E

(−z̄{i,j})‖p(i)− p(j)‖2

has a minimum, choose one that maximizes a certain linear function of
y ⊕ z ⊕ z̄, where the linear function also treats each component of y, z and
z̄ in the same way.



26 MARCEL K. DE CARLI SILVA AND LEVENT TUNÇEL

To illustrate the symmetry in this case, consider the following variant
of t+(G):

min t
diag(X) ≤ tē,
Xii − 2Xij +Xjj ≥ 1, ∀{i, j} ∈ E(G),
Xii − 2Xij +Xjj ≤ 1, ∀{i, j} ∈ E(G),
X ∈ S

V
+, t ∈ R.

(6.10)

If we now formulate this SDP as the primal of (6.9), then the constraints of
the dual, besides the normalization constraint y(V ) = 1, are equivalent to
requiring the edges joining the nodes of G to the new node at the origin and
the non-edges of G to be rubber bands, whereas the edges of G are required
to be struts.

Thus, in moving from the model (6.6) to (6.9), and assuming both have
the corresponding symmetry properties in their polyhedra, we are allowing
two types of edges, namely, the edges of G and the edges of G, each of which
has to be treated in the same way. Also, there is no need to assume that
the two types of edges partition the edge set of the complete graph on the
same node set. With this in mind, we propose the following model.

Let V be a finite set, and let KV be the complete graph on node set V .
For some nonnegative integer q, let E1, . . . , Eq be disjoint subsets of E(KV ).
Let Gj := (V,Ej) for each j ∈ [q]. Our dual SDP is defined as:

sup 〈w(0), y〉+∑e
j=1〈w(j), z(j)〉

Diag(y) �∑q
j=1LGj

(z(j))

A00y +
∑q

j=1A0jz
(j) ≤ b(0)

A10y +
∑q

j=1A1jz
(j) = b(1),

y ∈ R
V ,

z(j) ∈ R
Ej , ∀j ∈ [q].

(6.11)

Here

(i) k and ℓ are nonnegative integers,
(ii) R0 := [k] and R1 := [ℓ],
(iii) C0 := V and Cj := Ej ,

(iv) w(j) ∈ R
Cj ,

(v) Aij is an Ri × Cj matrix,

(vi) b(i) ∈ R
Ri ,

and we “require” the following symmetry property. Let P denote the corre-
sponding polyhedron P . For each choice of Cj×Cj permutation matrix P (j)

for j = 0, . . . , q, and for every y ⊕⊕q
j=1 z

(j), we have

(i) 〈w(0), y〉+
∑q

j=1〈w(j), z(j)〉 = 〈w(0), P (0)y〉+
∑q

j=1〈w(j), P (j)z(j)〉, and
(ii) y ⊕⊕q

j=1 z
(j) ∈ P if and only if P (0)y ⊕⊕q

j=1 P
(j)z(j) ∈ P .
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The primal SDP is:

inf 〈b(0), u〉+ 〈b(1), v〉
diag(X) −AT

00u−AT
10v = −w(0)

L∗
Gj

(X) +AT
0ju+AT

1jv = w(j), ∀j ∈ [q],

X ∈ S
V
+, u ∈ R

k
+, v ∈ R

ℓ.

(6.12)

We could even relax the symmetry property by allowing for several types
of nodes, i.e., we would fix a partition of V . The generalization would be
done in a straightforward way.

Note that any SDP can be written in the form (6.11) with the relaxed
symmetry property, even if the cost is to have the symmetry property to
become meaningless. Indeed, consider a general SDP with variable X ∈ S

V
+

for some finite set V , with constraints 〈Ai,X〉 = bi for i = 1, . . . ,m, and
with objective function 〈C,X〉. For each {i, j} ∈ E(KV ), let E{i,j} be the
singleton set with element {i, j}, and write G{i,j} := (V,E{i,j}). We can

use the change of variables X = Diag(y) −
∑

f∈E(Kn)
LGf

(z(f)). Now each

constraint 〈Ai,X〉 = bi becomes an affine constraint on the variables y and zf
for each f ∈ E(Kn), and similarly for the objective function. Moreover, the
relaxed symmetry property holds trivially if we consider each element of V
to have its own type.

This implies that any SDP can have its dual interpreted using energy
functions. We have a spectrum of dual interpretations, with one end of the
spectrum being the case where all nodes and all edges are treated in the same
way, and on the other end, each node and each edge is treated differently.
As we move along the spectrum, the quality of the interpretation can be
seen as degrading, until we reach a point where all the symmetry is lost.

However, even for some highly structured SDPs, this type of symmetry
could be nonexistent and we could still have a very nice dual interpretation.
For instance, the SDP used in the approximation algorithm for MaxCut [9]
is

max 〈14LG(w),X〉
diag(X) = ē
X ∈ S

V
+,

(6.13)

and its dual is
min 〈14 ē, y〉

Diag(y) � LG(w),
y ∈ R

V .
(6.14)

Here we restrict ourselves to energy functions Ey,z(·) that have a minimum
and such that y ⊕ z lies in the polyhedron R

V ⊕ {w}. If all edges have
distinct weights, the symmetry for the edges is lost, but we still have a very
natural dual interpretation.

Another nice feature of the general model is that it sometimes allows us to
preserve the block-diagonal structure of some SDPs. For instance, if we have
the constraints Diag(y(1)) � LG(z

(1)) and Diag(y(2)) � LH(z(2)), where G
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and H are graphs on disjoint node sets, we can replace these constraints by
the equivalent constraint Diag(y(1) ⊕ y(2)) � LG+H(z(1) ⊕ z(2)). It is clear
that a constraint of this type encodes several constraints in block-diagonal
form.
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[4] P. Erdős, F. Harary, and W. T. Tutte. On the dimension of a graph. Mathematika,
12:118–122, 1965.
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