MONOTONICITY OF PRIMAL AND DUAL OBJECTIVE VALUES
IN PRIMAL-DUAL INTERIOR-POINT ALGORITHMS *
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Abstract. We study monotonicity of primal and dual objective values in the framework of
primal-dual interior-point methods. The primal-dual affine-scaling algorithm is monotone in both
objectives. We derive a condition under which a primal-dual interior-point algorithm with a centering
component is monotone. Then we propose primal-dual algorithms that are monotone in both primal
and dual objective values and achieve polynomial time bounds. We also provide some arguments
showing that several existing primal-dual algorithms use parameters close to one that almost always
improves both objectives.
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1. Introduction. Recent interest in interior-point methods for linear program-
ming has focused on primal-dual interior-point algorithms. Numerical experiments
seem to indicate that primal-dual algorithms are superior to primal-only or dual-only
methods. Convergence of most of the primal-dual interior-point algorithms is based
on either the decrease in the duality gap or the decrease in a potential function. Nei-
ther of these two measures tells us anything about the change in the true primal and
true dual objective values. In primal-only (or dual-only) settings some work has been
done to show that polynomiality and strict improvement in the objective function at
each iteration can be achieved (see Anstreicher [An86, An91], Mizuno and Nagasawa
[MN92a]). In this paper we address the following question: Is it possible to achieve the
best polynomial bound with monotonicity in both primal and dual objective functions
for primal-dual algorithms?

When one implements a primal-dual interior-point algorithm, the step sizes are
often determined as a fixed ratio of the distance from the current iterate to the
boundary in the primal and dual feasible regions respectively, see [MMS89, LMS91]
for example. In that case, the next iterate may not be well-defined because one of
the primal and dual directions may be an unbounded direction of the corresponding
feasible region. In addition, when separate step sizes are taken in the primal and
dual spaces, the duality gap may increase at the next iterate. Since these phenomena
do not occur if the algorithm is monotone in both objective values, the analysis of
monotone algorithms is important from this practical point of view.
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First, we show that the primal-dual affine-scaling algorithm of Monteiro, Adler
and Resende [MARI0] (see also [KMNY91, MN92b, Tu92]) is (usually strictly) mono-
tone in both primal and dual objective values. This was proved by Monteiro et al.;
see p. 213 in [MAR90]. Then we derive a condition on the centering parameter
under which a primal-dual interior-point algorithm with a centering component is
monotone in both objective values. It seems that most primal-dual interior-point al-
gorithms (except for the affine-scaling algorithm) are not guaranteed to satisfy this
condition. We show how to control the centering parameter in a way that allows
monotonicity in both objectives and does not hurt the polynomial time bound proven
for the non-monotone version of a primal-dual algorithm. In particular, we study al-
gorithms using one-sided infinity neighborhoods and two-norm neighborhoods of the
central path and show that monotonicity can be achieved while keeping the iteration
bounds O(nt) and O(+/nt) respectively (where ¢ denotes the desired improvement in
precision). The algorithm proposed is not only monotone, but it may also enable us
to take a longer step in the sense that the centering parameter is less than in the
non-monotone version of the algorithm.

From the theoretical point of view, the complexity of primal-dual interior-point
algorithms is based on a bound on the second-order term in Newton’s method (see
[MTY90] for example). In this paper, we obtain a new bound on the second-order
term to show the polynomiality of the algorithm (see Lemma 9).

Finally, we study the anticipated critical value of the centering parameter and
show that several existing primal-dual algorithms use parameters close to one that
improves both objectives at almost every iteration.

2. Preliminaries. We consider linear programming problems in the following
primal (P) and dual (D) forms:

(P) minimize ¢’z

S
(VA1
=

(D) maximize b7y

S
~
<
+
AV
=

where A € R™*", b € R™, and ¢ € R". We assume A has full row rank (without
loss of generality) and that there exist interior solutions for both problems, i.e.,

Fo:={(z,s) >0:z€ F(P),sc F(D)} #0,

where F(P) and F(D) denote the sets of feasible solutions for the primal and dual
problems respectively. Most of the time we deal only with s as a dual feasible solution.
So, whenever we say s € F(D), we mean that s > 0 and there exists a y € R™ such
that ATy + s = c. Given a vector denoted by a lower-case roman letter (e.g. =),
the corresponding upper-case letter (e.g. X) will denote the diagonal matrix whose
entries are the components of that vector (i.e. X = diag(z)), and e will denote the
vector of ones. We denote the components of a vector using subscripts and the iterate
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numbers using superscripts. Whenever we ignore superscripts it will be clear from
the context what the iterate number should be.

Next we describe the central path and its neighborhoods. The central path is
given by the set of solutions to the following system of equations and inequalities (for
w>0):

(1) Az = b, >0,
(2) ATy+s = ¢, 5s>0,
(3) Xs = pe.

Note that when ¢ =0, (1) — (3) give necessary and sufficient conditions for optimal-
ity. Analyses of the central path have been performed by several authors (see, for
instance, Sonnevend [So85], Megiddo [Meg88], and Bayer and Lagarias [BL89]). Our
objective is to follow this path approximately to an optimal solution. We define some
neighborhoods of the central path using the notation of [MTY90]. Let 8 € (0,1) be a
constant; then a 2-norm neighborhood of the central path can be defined as

Ts

No(B) = {(z,5) € Fo : || Xs = puella < B for p= ==},

Henceforth, p always denotes st‘ Kojima et al. [KMY89], Monteiro and Adler
[MA89], and Mizuno et al. [MTY90] designed algorithms that use a 2-norm neigh-
borhood. Using the oo-norm or just one side of the oo-norm, wider neighborhoods
have been defined and used by Kojima et al. [KMY88], Mizuno et al. [MTY90], and
Zhang and Tapia [ZT90]. Using the oo-norm we have

Noo(B) :={(z,8) € Fo: || X5 — pe|lo <PBu}
and using only one side of the co-norm,
No(B) :=A{(z,5) € Fo: [|Xs — pell, < Bu}.

Here, for v € R", ||u||% := — min{0, min{u; }}. Clearly, for a given 8 € (0,1), N>2(3)
is the smallest and N (8) the largest of the three neighborhoods defined here.

Suppose we have an interior-point solution (z,s) € Fo. Then a search direction
(dz,ds) can be generated by solving the following set of equalities (see Kojima et al.

[KMY88]):

(4) Adz = 0,
(5) ATdy + ds
(6) Sde + Xds = ~ype— Xs,

I
i)
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where v € [0, 1] is a constant. The solution of (4) — (6) is

dib("}’) = _Xl/ZS—l/ZPA(Xl/Zsl/Z _ ’Y/iX_l/ZS_l/z)e’
ds(y) = —X V2SI py)(XV28Y? — yuxH2571/2)e,

where A := AXl/fS_l/z, and Pg := I — AT(AAT)~1A, the projection matrix into
the null space of A. The next iterates in terms of « can be written as

z + adz(y),
sla) = s+ ads(y).

8
£
|

A primal-dual interior-point algorithm is one that, given an iterate (z,s) € Fo,
defines the next iterate as (z(«a), s(a)) derived as above for some v € [0, 1] and some
a > 0 such that (z(a), s(or)) € Fo (the centering parameter y and the step size « may
vary from one iteration to the next). We define

1

v o= —Xl/zsl/ze,
Vi

w o= \/ﬁX_l/ZS_l/ze.

Note that ||v]|? = n and vTw = n. Also observe that (z,s) is on the central path if
and only if v = w = e. We use v, to denote the projection of v onto the null space of
A, etc., and vg to denote the projection of » onto the image space of AT, etc. Then
we have that

Xs—pe = pViv—w),
(7) dz(y) = _\/lel/ZS_l/z(vp — ywp),
ds(y) = —\/ﬁX_l/zsl/z(vq — ywg),

where V' = diag(v). From these equalities, we see that
(8 No(B) = {(z,s) € Fo:||[V(v—w)l|l2 < B},
(9 NLB) = {(zs) € Fo: V(v —w)ll5 < B
(10) dX(y)ds(y) = w(Vp = 1Wp)(vg —yuwy),

where dX (y) = diag(dz(y)), V, = diag(vp), and W, = diag(w,).

o — —

3. Monotonicity. First we show that the primal-dual affine-scaling algorithms
(see Monteiro, Adler and Resende [MAR90], Kojima, Megiddo, Noma, and Yoshise
[KMNY91], Mizuno and Nagasawa [MN92b], and Tuncel [Tu92]) are (usually strictly)
monotone in both objectives. As mentioned in the introduction, this was essentially

proved in [MAR90].
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Note that for any (z, s) € Fo we have X1/28-1/2ATy 4 X1/281/2¢ = x1/26-1/2¢
or

ATy + Jpw = ¢,

where ¢ := lezs_l/zc. Projecting the vectors on both sides of the equality onto the
null space of A, we see that

(11) v, = —— Cp.

An affine-scaling algorithm results from setting v = 0 at each iteration. Then we get
Tr(a) =Tz = acldz(0)

—Oé\//j(Xl/ZS_l/ZC)TUp

—a\/ﬁETvp
(12) = —apllvlh.

For each s(a), there is a y(a) such that (y(«), s(e)) is feasible for (D). In the same
way, we get

Vya)—=bTy = (Az)Ty(a) — (Azx)Ty
= —:BTs(a) + 27
= —azTds(0)
13) = anllll

We immediately have the following theorem.

THEOREM 1. A primal-dual affine-scaling algorithm is strictly monotone in both
problems unless all the primal or all the dual solutions are optimal.

Proof. Since a primal-dual affine-scaling algorithm is monotone in both objectives
by (12) and (13), we only prove strict monotonicity.

Suppose ||vp]l2 = 0. Then ¢, = 0 by (11). So § := 0 is feasible in (D); there-
fore, for any z € F(P), = is optimal in (P) and § in (D) by complementary slackness.

Now suppose ||vg]l2 = 0. Then b = Az = \/ﬁfiv = 0, which implies £ := 0 is
feasible in (P). Hence, for any s that is feasible in (D), s is optimal in (D) and Z is
optimal in (P) by complementary slackness. a

From now on, without loss of generality we assume that

0 < llll; < n
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In the same way as we obtained (12), we have
Trea)—cfz = —a\/ﬁ(Xl/ZS_l/zc)T(vp — ywp)
= —a/wg (vp — ywp).

So we have the following identities for improvements in the objective function values:
(14) Ta(@) = To = —ap (ol — vl w,),

and, similarly,

(15) Wy(a) =Ty = an(|logll3 —vo5 w,) -

We define yp and yp as constant-cost centering values for the primal and dual prob-
lems respectively so that ¢cTz(a) = Tz and bTy(a) = bTy:

2
v
(16) ¥p — ||TP||2’
v, Wp
2
)
o o Il
vy Wq
where we define yp := 400 or yp := +0co when the corresponding denominator is 0.

Note that if (z, s) is on the central path (v = w) then yp =yp = 1. The next lemma
describes a relation between yp and ~vp.

LEMMA 2. Either yp =vp =1

or
yp € (0,1) and yp € (—o0,0) U (1, 0]
or
D € (07 1) and yp € (—O0,0) U (1700]
Proof. We see that n = vTv = ||v,||2 + |[vg|? and n = vTw = vgwp + vgwq.
If vgwp = ||vp||3 then vgwq = ||vgl|3, so we have yp = yp = 1. If vgwp > |vpll3
then yp € (0,1) and yp € (—00,0) U (1,00]. Otherwise yp € (0,1) and yp €
(—00,0) U (1, 0] O
Define

5y :=4p if yp € (0,1], and ¥ := yp otherwise .

LeEmMMA 3. If0 < v < ¥ (0 < v < 7), then the primal objective function is
non-increasing (decreasing) along the direction dz(y) and the dual objective function
is non-decreasing (increasing) along the direction ds(vy).
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Proof. Follows from Lemma 2 and equations (14) and (15). a

Now we have a sufficient condition under which a primal-dual interior-point algorithm
is monotone in both objective values.

THEOREM 4. An algorithm whose search directions are dz(y) and ds(y) for
0 <y <7 (0<y <) at each iterate is (strictly) monotone in both primal and dual
objective values.

Proof. Directly follows from Lemma 3. a

If the exceptional case (||vp||3 = 0 or ||v,||3 = n) is excluded, Theorem 1 is a special
case of Theorem 4. Although the condition in Theorem 4 is simple, none of the primal-
dual interior-point algorithms, except for the affine-scaling algorithm, seems to use
values for the centering parameter that are guaranteed to satisfy it. Here we describe a
strictly monotone algorithm, which is a simple variant of a primal-dual path-following
algorithm [KMY88, KMY89, MA89, MTY90]. Let M be a neighborhood of the central
path and 4’ € (0,1) be a constant. Suppose (z°,5°) € N with (2°)Ts° < 2¢ is given.

Algorithm:

k:=0

While ((z%)Ts* > 27%) do
(z, ) := (z*, s%),
compute v, vq, Wy, Wq, Yp and yp,
5y :=vp if yp € (0,1] and ¥ := yp otherwise,
Y=
choose the maximum step size a € (0, 1) such that (z + adz(y), s + ads(y)) € N,
(o1, $441) = (2 + adaly), s + ads(y),
k=k+1

end

If we use v := 4’ in the algorithm above, it becomes a well known path-following
algorithm. In that case, the algorithm terminates in O(nt) iterations when N =
NZ(B) and 4" € (0,1) is a constant and it terminates in O(y/nt) iterations when
N = N3(B) and ¥/ = 1 — §/4/n for a positive constant J (for suitable values of
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the constants see [KMY88, KMY89, MA89, MTY90]). Taking N := N (8) and
v" € (0,1) in the algorithm above will define Algorithm I. Algorithm II will be defined
by setting N' := N3(8) and 4 := 1 — §/y/n. In the next section, we show that
Algorithm I terminates in O(nt) iterations and Algorithm II terminates in O(y/nt)
iterations.

Note that if v is small, the centering parameter v in the algorithm is small even
if 4/ is close to 1. This observation distinguishes Algorithms I and II from the path-
following algorithms in [KMY88, KMY89, MA89, MTY90].

4. Analysis. The following results (Lemma 5 and Lemma 6) are standard in the
primal-dual framework (see for instance Mizuno, Todd and Ye [MTY90]).

)sj(e) = pl(1 = a)vi + ay] + o®dx;(y)ds; (y).
&)fn = (1- a +ay)p.
(b) directly follow from the definitions and dz(y)T ds(y) = 0.

LEMMA 5. (a) z;(a)s

(b) p(er) == ()T s(

Proof. Both (a) and
O

Part (b) of this lemma shows how the duality gap varies with the step size a. We
would like (1 — ) to be large. The next result shows how large o can be.

LEMMA 6. (a) (z,5) € N (B) and a < mm{ﬁ 1} implies (z(a), s(a)) €
NS (B)-

(b) (z,s) € N2(B) and a < mln{m, 1} implies (z(a), s(a)) € Ng(ﬁ)

Proof. (a) Suppose (z,5) € N (8) and a < mln{wﬁ%, 1} By (9

||V (v — w)||x < . By using Vw = e, we see that
(17) vjz» >1—p foreach j.

So, using Lemma 5 and the bound on «, we get (for all j)

pl(1 =) (1= B) + o] — afyp
p(l—a+ay)(l-p)
= pa)(1-p).
Since « € [0, 1] and v > 0, the right hand side is always positive. So (z(«a), s(a)) € Fo.
Hence (z(a), s(a)) € N (B).
(b) Suppose (z,5) € N2(8) and a < mln{”dxi

M=

zj(a)s;(e)

v

1} Then feasibility of

(z(ar), s(e)) can be verified as in (a). Using (6), the bound on «, and Lemma 5, we
obtain



MONOTONICITY IN PRIMAL-DUAL ALGORITHMS 9

(1= a)Xs + aype + a®dX (y)ds(y) — (1 — a +ay)pell:
(1= @) (Xs — pe) + a”dX (y)ds(y)]|2

(1—a)||Xs — pellz + abyn

(1 —a)Bpu+ afyp

B(cx).

X (@)s(a) = plaells

IAIA

One way of showing a bound on the number of iterations while keeping the algo-
rithm monotone is to show that there exists an € > 0 such that 4 > ¢ for all iterates.
It seems hard to find such an € that is close to 1 (or even bounded away from zero).
Instead, we will show that the second-order terms ||dXds||5, and ||dXds||2 can be
bounded by a multiple of yu. This is a new way of estimating the second-order terms.
Since the bound we will show is a multiple of 4, it will imply that whenever ¥ is small,
the second-order terms will be small, hence allowing us to take a larger step and still
stay in the desired neighborhood. Since dX(y)ds(y) = pu(Vy — YW,)(vg — yuwg) by
(10), we get bounds on ||v, — ywp||2 and ||vg — ywg||2 in the following two lemmas.

LEMMA 7. Ifyp < 400, then ||v, —ypwpll2 < |vp||lvp — wp||2; if vp < +00, then
llvg — ypwll2 < yplllvg — wyll2-
Proof. Note that vg (vp — ypwp) = 0 from the definition (16) of yp. So,

llvp — ’YPpr% = (vp— ’YPwp)T(Up — Ypwy)
(ypop — ’YPwp)T(”p — Ypwp)

lve vy — wpll2l|vp — vPwpl|2-

IA

If ||vp — ypwp|l2 = O the first inequality holds; otherwise, we divide both sides by
|[vp — ypwpl|2 to get the result. In the same way, we can prove the second inequality.
O

LEMMA 8. (a) Let v € (0,1]. If (z,s) € N3 (B) then ||v — yw||2 < ,/12_—%.

(b) Let v € [1 = 8/ 1]. If (2, 5) € N3(B) then [[o — yulls < L2 and
B

llv —wlz < Vi
Proof. (a) If (z,5) € N3 (B), we have (17). Using (17) and Vw = e, we get

(18) wjz» <1/(1—-p) foreach j.
Hence |[v —ywl||3 = vTv — 2907w + y*wTw < n 4+ wlw < 2n/(1 - B).

(b) Since (z,5) € Na(B) C N3 (B), we have (17) and ||V (v — w)||2 < B (see (8)).
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So,

(L=oll2 + llv — wll2

(L =7V +AV (v = w)ll2][V" el
§+v8/V/1-8

(0+P)/V1-P.

If y = 1, we can set 6 = 0 to get the last inequality. a

v —ywll2

IAIA AN IA

LEMMA 9. Let 5 € (0,1) and § > 0 be constants, and let ¥ = yp if yp € (0,1]
and ¥ = yp otherwise.

(a) If (z,5) € N3 (B), v € (0,1], and v = 4’7, then we have

14X (v)ds(y)ll < 4ynp/(1 - B).

(b) If (z,s) € N2(B), ¥ =1—46/+/n, and v = 'Y, then we have

[dX (v)ds(y)ll2 < Fu(3 +0)*/(1 = B).

Proof. Without loss of generality, we assume that yp € (0, 1] and ¥ = yp in the
analysis below.

(a) Let (z,s) € NZ(B) and v’ € (0,1]. Since v = v'yp, we have
(19) lop —ywpllz < lvp — yPwpllz + 2 (1= ¥)[Jwpll2-

Using Lemma 7, Lemma 8(a), and (18), we get

lop —yuplls < vpy) 4 yp(l =)y
S N S -5
2n
< 2 .
< 215

Using Lemma 8(a) we also have

2n
llvg — ywgl2 < -5
By (10), we obtain

14X (7)ds(9)ll

pl| (Vo = yWp) (v — ywg)ll%
NHUP - ’pr||2||vq - ’qu||2
dypnp/(1 - B).

IA A
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(b) Let (z,s) € N2(B) and ¥/ =1 —§//n. Using (18), (19), and Lemma 7 we have

n

1-p

A

lvp —ywplla < vpllv —wll2 +yp(1—=7)

(At )

The last inequality follows from Lemma 8(b). We also see

[[vg = Ytqlloo [1(v = yw) = (vp = ywp)llos

< lvllee + llwlloe + llop = ywp|l2
1 0
< 1+p —5 + j;r__ﬁ
(3+4+9)
V=P

So

ldX (v)ds(v)]2 pl|(Vg = vyWq) (vp — ywp)||2
NHUq - ’quHOOHUP - ’pr||2

vpu(3+6)*/(1 - B).

IAIA

THEOREM 10. Let 8 € (0,1) and & > 0 be constants independent of the input
data of (P) and (D).

(a) Algorithm I (N = NZ(B) and 4" € (0,1) is independent of the input data) termi-

nates in O(nt) iterations and is strictly monotone in both objectives.

(b) Algorithm II (N = N2(B) and v' = 1 — §/+/n) terminates in O(y/nt) iterations
and is strictly monotone in both objectives.
Proof. The strict monotonicity follows from Theorem 4.
(a) Since (z,s) € N3 (B) throughout Algorithm I, by Lemma 6(a), Lemma 9(a), and
v =7'y we get
1 _ !
(a(a). s(a)) € NS () for o< 22T

Then by Lemma 5(b), we have

(2T M (1= (L=7)B(1 = )y /4n)(z")Ts*
(1= (1 =) = By /4n) (=")T 5"

which implies (z¥)T 2% < 271 for k = O(nt).

<
<

(b) As in the proof of (a), the result follows from Lemma 5(b), Lemma 6(b), Lemma
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9(b), and v = 4'y. In particular, since (z,s) € N3(83) throughout Algorithm II and
v = 4"y, we find

(z(a), s(a)) € N2(B) for a< pl -

O

5. Typical values of yp and yp. Consider Algorithm II. The proof of Theorem
10(b) above shows that we can choose « at least equal to some constant (independent
of n) value & € (0,1] when (z,s) € N2(B), ¥ = 1 —d/y/n and v = 4'y. Hence,
whenever 4 < 4 for some constant ¥ € (0,1), we could achieve a constant factor
reduction in the duality gap by Lemma 5. In this section we consider whether this is
likely to occur.

Note that in Algorithm I, we always have v < ¥ for constant ¥ € (0,1) (in fact,
4 = '), but we can only guarantee that « is at least some constant divided by n by
Lemma 6 and Lemma 9; hence typical values of yp and yp are of less interest.

For definiteness, choose 3 = 1/3, and suppose (z, s) € N2(8). By (8), we have

Vo —ellz <5,
and so
(20) lo—ell2 <p
since each v; is at least as close to 1 as is 0]2». In addition, w — e = W(e — v), so

o —=ellz < [[wlloollo = ell2

(21) < p
< =5
using (18). Since 8 = 1/3, we get
1 1
(22) lo—ellz < 55 llw—ell < 3,

[\

2
and from |le]|s = /1 we deduce

(23) f(v,e) < arcsin <%> f(w,e) < arcsin <%>

where (¢, u) denotes the angle between vectors ¢t and w.

Now vp and yp are related to the angles between the projections of v and w into
the null space U of A or its orthogonal complement. If v # w, it is possible to choose
U (or U™) so that vgwp (or vgwq) is negative. However, since from (23)

o < v (1),

it appears that for “most” subspaces U, vgwp will be close to ||vp||3 and hence yp
close to 1. Here we would like to make this statement in some sense precise. As in
[MTY90], we assume that
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U is a random subspace of IR" of dimension d := n — m, drawn
(24) from the unique distribution on such subspaces that is invariant
under orthogonal transformations.

In order to analyze this situation, we proceed as in the proof of Lemma 6 of
[MTY90]. The orthogonal invariance of the subspace U implies that we can instead
assume that U is the fixed subspace

U = {zeR":z441=...=2, =0}
and that e, v, and w are replaced by €, v, and w, where these vectors are the results

of applying the orthogonal transformation 9 taking U to U to the vectors e, v, and
w. Hence

(25) € is uniformly distributed on the unit sphere of radius /n in R",

and
.. 1 . 1
(26) -l < 5 lo—élb < 5
(27) 6(5,8) < arcsin(=—=), 0(5,8) < arcsin (=
v,€) < arcsin NI ,€) < arcsin NI

Let €,, v,, and w, denote the projections of €, ¥, and w onto U; they are also the
images under 9 of e,, vy, and wy. Hence

T iy
Now ||0p, — ép||2 < 1/2 from (26), so that
- - 1 1
(29) 1opllz € {llepll2 = 5 llepll2 + 5| 5
2 2

and similarly

- . 1 .. 1
(30) faple & Il = 3. el + 3]
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Also, o7 wp = 3 (|[5p]13 + [[2pl3 — |15, — wp|[3), so since [|5, —pllz < |5 — wb]|2 <
1,

. N 1N 1/, 1)?
5) i, e l<||€p||2—§> - 5 (el + )

Hence, if ||é,]]2 > 3/2,

52) e [(IIépllz—z> ’(gnépnzjg) ]

llepll2 + 3 l[ép]la — 3)* — 1
2
(33) v > 1-——7.
llepll2 + 3

THEOREM 11. Suppose assumption (24) holds, and d = Q(n). Then, with proba-
bility approaching 1 as n — oo,

“YPZl—i

NG

for some constant £.

Proof. We use (33). As in Lemma 6 of [MTY90], we can suppose

= ()

1RV P
from (25), where Aq,..., A, are independent normal random variables with mean 0
and variance 1. Then
. M Ad >T
€ :\/ﬁ< ooy ,00...,0)
! (R[> (R[>

and

A2 N2
~ (2 __ 1 d
leal=n (G

The quantity in parenthesis is a beta random variable with parameters d/2 and m/2,
which has mean d/n and variance 2dm/n?(n + 2) > 1/(2n + 4). Using Chebyshev’s

inequality,
d
~ 12
> R
lepl > n ( 55)

with probability approaching 1 as n — cc. Since d = Q(n), this shows ||é,]|2 = Q(v/n)
with high probability, and hence completes the proof. a

Since U~ satisfies (24) if U does, the same result shows that yp > 1—£//n with
high probability as long as m = Q(n). These results suggest that we cannot expect to
find ¥ (= v'yp or ¥'vp) smaller than 1 — x/+/n for some constant « very often. Note
that several primal-dual interior-point algorithms use a value for 4 that is 1 — {//n
for some constant ¢ (e.g., [KMY89], [MA89]); our result indicates that this value is
close to one that improves both objectives at almost every iteration.
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6. Concluding remarks. In an implementation of the strictly monotone algo-
rithm described in Section 3, we may use a small parameter value of ¥ (for example
v = 1/n) and long step sizes such that the next primal and dual iterates are lo-
cated a fixed ratio (say .99) of the way from the current point to the boundary of
the corresponding feasible region. In that case, the next iterate is well-defined and
the duality gap decreases strictly, although these phenomena have not been shown in
non-monotone versions of the algorithm.
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