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2 S. MIZUNO, M. TODD, AND L. TUNC�ELFirst, we show that the primal-dual a�ne-scaling algorithm of Monteiro, Adlerand Resende [MAR90] (see also [KMNY91, MN92b, Tu92]) is (usually strictly) mono-tone in both primal and dual objective values. This was proved by Monteiro et al.;see p. 213 in [MAR90]. Then we derive a condition on the centering parameterunder which a primal-dual interior-point algorithm with a centering component ismonotone in both objective values. It seems that most primal-dual interior-point al-gorithms (except for the a�ne-scaling algorithm) are not guaranteed to satisfy thiscondition. We show how to control the centering parameter in a way that allowsmonotonicity in both objectives and does not hurt the polynomial time bound provenfor the non-monotone version of a primal-dual algorithm. In particular, we study al-gorithms using one-sided in�nity neighborhoods and two-norm neighborhoods of thecentral path and show that monotonicity can be achieved while keeping the iterationbounds O(nt) and O(pnt) respectively (where t denotes the desired improvement inprecision). The algorithm proposed is not only monotone, but it may also enable usto take a longer step in the sense that the centering parameter is less than in thenon-monotone version of the algorithm.From the theoretical point of view, the complexity of primal-dual interior-pointalgorithms is based on a bound on the second-order term in Newton's method (see[MTY90] for example). In this paper, we obtain a new bound on the second-orderterm to show the polynomiality of the algorithm (see Lemma 9).Finally, we study the anticipated critical value of the centering parameter andshow that several existing primal-dual algorithms use parameters close to one thatimproves both objectives at almost every iteration.2. Preliminaries. We consider linear programming problems in the followingprimal (P ) and dual (D) forms:(P ) minimize cTxAx = b;x � 0;(D) maximize bTyATy + s = c;s � 0;where A 2 IRm�n, b 2 IRm, and c 2 IRn. We assume A has full row rank (withoutloss of generality) and that there exist interior solutions for both problems, i.e.,F0 := f(x; s) > 0 : x 2 F (P ); s 2 F (D)g 6= ;;where F (P ) and F (D) denote the sets of feasible solutions for the primal and dualproblems respectively. Most of the time we deal only with s as a dual feasible solution.So, whenever we say s 2 F (D), we mean that s � 0 and there exists a y 2 IRm suchthat AT y + s = c. Given a vector denoted by a lower-case roman letter (e.g. x),the corresponding upper-case letter (e.g. X) will denote the diagonal matrix whoseentries are the components of that vector (i.e. X = diag(x)), and e will denote thevector of ones. We denote the components of a vector using subscripts and the iterate



MONOTONICITY IN PRIMAL-DUAL ALGORITHMS 3numbers using superscripts. Whenever we ignore superscripts it will be clear fromthe context what the iterate number should be.Next we describe the central path and its neighborhoods. The central path isgiven by the set of solutions to the following system of equations and inequalities (for� > 0): Ax = b; x � 0;(1) AT y + s = c; s � 0;(2) Xs = �e:(3)Note that when � = 0, (1) { (3) give necessary and su�cient conditions for optimal-ity. Analyses of the central path have been performed by several authors (see, forinstance, Sonnevend [So85], Megiddo [Meg88], and Bayer and Lagarias [BL89]). Ourobjective is to follow this path approximately to an optimal solution. We de�ne someneighborhoods of the central path using the notation of [MTY90]. Let � 2 (0; 1) be aconstant; then a 2-norm neighborhood of the central path can be de�ned asN2(�) := f(x; s) 2 F0 : kXs � �ek2 � �� for � = xT sn g:Henceforth, � always denotes xT sn . Kojima et al. [KMY89], Monteiro and Adler[MA89], and Mizuno et al. [MTY90] designed algorithms that use a 2-norm neigh-borhood. Using the 1-norm or just one side of the 1-norm, wider neighborhoodshave been de�ned and used by Kojima et al. [KMY88], Mizuno et al. [MTY90], andZhang and Tapia [ZT90]. Using the 1-norm we haveN1(�) := f(x; s) 2 F0 : kXs � �ek1 � ��gand using only one side of the 1-norm,N�1(�) := f(x; s) 2 F0 : kXs � �ek�1 � ��g:Here, for u 2 IRn, kuk�1 := �minf0;minfujgg. Clearly, for a given � 2 (0; 1), N2(�)is the smallest and N�1(�) the largest of the three neighborhoods de�ned here.Suppose we have an interior-point solution (x; s) 2 F0. Then a search direction(dx; ds) can be generated by solving the following set of equalities (see Kojima et al.[KMY88]): Adx = 0;(4) ATdy + ds = 0;(5) Sdx+Xds = 
�e �Xs;(6)



4 S. MIZUNO, M. TODD, AND L. TUNC�ELwhere 
 2 [0; 1] is a constant. The solution of (4) { (6) isdx(
) := �X1=2S�1=2P �A(X1=2S1=2 � 
�X�1=2S�1=2)e;ds(
) := �X�1=2S1=2(I � P �A)(X1=2S1=2 � 
�X�1=2S�1=2)e;where �A := AX1=2S�1=2, and P �A := I � �AT ( �A �AT )�1 �A; the projection matrix intothe null space of �A. The next iterates in terms of � can be written asx(�) = x+ �dx(
);s(�) = s + �ds(
):A primal-dual interior-point algorithm is one that, given an iterate (x; s) 2 F0,de�nes the next iterate as (x(�); s(�)) derived as above for some 
 2 [0; 1] and some� > 0 such that (x(�); s(�)) 2 F0 (the centering parameter 
 and the step size � mayvary from one iteration to the next). We de�nev := 1p�X1=2S1=2e;w := p�X�1=2S�1=2e:Note that kvk22 = n and vTw = n. Also observe that (x; s) is on the central path ifand only if v = w = e. We use vp to denote the projection of v onto the null space of�A, etc., and vq to denote the projection of v onto the image space of �AT , etc. Thenwe have that Xs � �e = �V (v � w);dx(
) = �p�X1=2S�1=2(vp � 
wp);(7) ds(
) = �p�X�1=2S1=2(vq � 
wq);where V = diag(v). From these equalities, we see thatN2(�) = f(x; s) 2 F0 : kV (v � w)k2 � �g;(8) N�1(�) = f(x; s) 2 F0 : kV (v � w)k�1 � �g;(9) dX(
)ds(
) = �(Vp � 
Wp)(vq � 
wq);(10)where dX(
) = diag(dx(
)), Vp = diag(vp), and Wp = diag(wp).3. Monotonicity. First we show that the primal-dual a�ne-scaling algorithms(see Monteiro, Adler and Resende [MAR90], Kojima, Megiddo, Noma, and Yoshise[KMNY91], Mizuno and Nagasawa [MN92b], and Tun�cel [Tu92]) are (usually strictly)monotone in both objectives. As mentioned in the introduction, this was essentiallyproved in [MAR90].



MONOTONICITY IN PRIMAL-DUAL ALGORITHMS 5Note that for any (x; s) 2 F0 we have X1=2S�1=2AT y+X1=2S1=2e = X1=2S�1=2cor �AT y +p�v = �c;where �c := X1=2S�1=2c. Projecting the vectors on both sides of the equality onto thenull space of �A, we see that vp = 1p� �cp:(11)An a�ne-scaling algorithm results from setting 
 = 0 at each iteration. Then we getcTx(�)� cTx = �cTdx(0)= ��p�(X1=2S�1=2c)Tvp= ��p��cTvp= ���kvpk22:(12)For each s(�), there is a y(�) such that (y(�); s(�)) is feasible for (D). In the sameway, we get bTy(�) � bTy = (Ax)Ty(�) � (Ax)Ty= �xT s(�) + xT s= ��xTds(0)= ��kvqk22:(13)We immediately have the following theorem.Theorem 1. A primal-dual a�ne-scaling algorithm is strictly monotone in bothproblems unless all the primal or all the dual solutions are optimal.Proof. Since a primal-dual a�ne-scaling algorithm is monotone in both objectivesby (12) and (13), we only prove strict monotonicity.Suppose kvpk2 = 0. Then �cp = 0 by (11). So ŝ := 0 is feasible in (D); there-fore, for any x 2 F (P ), x is optimal in (P ) and ŝ in (D) by complementary slackness.Now suppose kvqk2 = 0. Then b = Ax = p� �Av = 0, which implies x̂ := 0 isfeasible in (P ). Hence, for any s that is feasible in (D), s is optimal in (D) and x̂ isoptimal in (P ) by complementary slackness. 2From now on, without loss of generality we assume that0 < kvpk22 < n:



6 S. MIZUNO, M. TODD, AND L. TUNC�ELIn the same way as we obtained (12), we havecTx(�)� cTx = ��p�(X1=2S�1=2c)T (vp � 
wp)= ���vTp (vp � 
wp):So we have the following identities for improvements in the objective function values:cTx(�)� cTx = ��� �kvpk22 � 
vTp wp� ;(14)and, similarly, bTy(�) � bT y = �� �kvqk22 � 
vTq wq� :(15)We de�ne 
P and 
D as constant-cost centering values for the primal and dual prob-lems respectively so that cTx(�) = cTx and bT y(�) = bT y:
P := kvpk22vTp wp ;(16) 
D := kvqk22vTq wq ;where we de�ne 
P := +1 or 
D := +1 when the corresponding denominator is 0.Note that if (x; s) is on the central path (v = w) then 
P = 
D = 1. The next lemmadescribes a relation between 
P and 
D .Lemma 2. Either 
P = 
D = 1or 
P 2 (0; 1) and 
D 2 (�1; 0)[ (1;1]or 
D 2 (0; 1) and 
P 2 (�1; 0)[ (1;1].Proof. We see that n = vT v = kvpk22 + kvqk22 and n = vTw = vTp wp + vTq wq.If vTp wp = kvpk22 then vTq wq = kvqk22, so we have 
P = 
D = 1. If vTp wp > kvpk22then 
P 2 (0; 1) and 
D 2 (�1; 0) [ (1;1]. Otherwise 
D 2 (0; 1) and 
P 2(�1; 0) [ (1;1]. 2De�ne �
 := 
P if 
P 2 (0; 1]; and �
 := 
D otherwise :Lemma 3. If 0 � 
 � �
 (0 � 
 < �
), then the primal objective function isnon-increasing (decreasing) along the direction dx(
) and the dual objective functionis non-decreasing (increasing) along the direction ds(
).



MONOTONICITY IN PRIMAL-DUAL ALGORITHMS 7Proof. Follows from Lemma 2 and equations (14) and (15). 2Now we have a su�cient condition under which a primal-dual interior-point algorithmis monotone in both objective values.Theorem 4. An algorithm whose search directions are dx(
) and ds(
) for0 � 
 � �
 (0 � 
 < �
) at each iterate is (strictly) monotone in both primal and dualobjective values.Proof. Directly follows from Lemma 3. 2If the exceptional case (kvpk22 = 0 or kvpk22 = n) is excluded, Theorem 1 is a specialcase of Theorem 4. Although the condition in Theorem 4 is simple, none of the primal-dual interior-point algorithms, except for the a�ne-scaling algorithm, seems to usevalues for the centering parameter that are guaranteed to satisfy it. Here we describe astrictly monotone algorithm, which is a simple variant of a primal-dual path-followingalgorithm [KMY88, KMY89, MA89, MTY90]. Let N be a neighborhood of the centralpath and 
0 2 (0; 1) be a constant. Suppose (x0; s0) 2 N with (x0)T s0 � 2t is given.Algorithm:k := 0While ((xk)T sk > 2�t) do(x; s) := (xk; sk),compute vp, vq, wp, wq, 
P and 
D ,�
 := 
P if 
P 2 (0; 1] and �
 := 
D otherwise,
 := 
0�
,choose the maximum step size � 2 (0; 1) such that (x+�dx(
); s+�ds(
)) 2 N ,(xk+1; sk+1) := (x+ �dx(
); s + �ds(
)),k := k + 1end If we use 
 := 
0 in the algorithm above, it becomes a well known path-followingalgorithm. In that case, the algorithm terminates in O(nt) iterations when N =N�1(�) and 
0 2 (0; 1) is a constant and it terminates in O(pnt) iterations whenN = N2(�) and 
0 = 1 � �=pn for a positive constant � (for suitable values of



8 S. MIZUNO, M. TODD, AND L. TUNC�ELthe constants see [KMY88, KMY89, MA89, MTY90]). Taking N := N�1(�) and
0 2 (0; 1) in the algorithm above will de�ne Algorithm I. Algorithm II will be de�nedby setting N := N2(�) and 
0 := 1 � �=pn. In the next section, we show thatAlgorithm I terminates in O(nt) iterations and Algorithm II terminates in O(pnt)iterations.Note that if �
 is small, the centering parameter 
 in the algorithm is small evenif 
0 is close to 1. This observation distinguishes Algorithms I and II from the path-following algorithms in [KMY88, KMY89, MA89, MTY90].4. Analysis. The following results (Lemma 5 and Lemma 6) are standard in theprimal-dual framework (see for instance Mizuno, Todd and Ye [MTY90]).Lemma 5. (a) xj(�)sj(�) = �[(1� �)v2j + �
] + �2dxj(
)dsj(
):(b) �(�) := x(�)T s(�)=n = (1� �+ �
)�.Proof. Both (a) and (b) directly follow from the de�nitions and dx(
)T ds(
) = 0.2 Part (b) of this lemma shows how the duality gap varies with the step size �. Wewould like �(1� 
) to be large. The next result shows how large � can be.Lemma 6. (a) (x; s) 2 N�1(�) and � � minn �
�kdX(
)ds(
)k�1 ; 1o implies (x(�); s(�)) 2N�1(�):(b) (x; s) 2 N2(�) and � � minn �
�kdX(
)ds(
)k2 ; 1o implies (x(�); s(�)) 2 N2(�).Proof. (a) Suppose (x; s) 2 N�1(�) and � � minn �
�kdX(
)ds(
)k�1 ; 1o. By (9),kV (v � w)k�1 � �. By using V w = e, we see thatv2j � 1� � for each j:(17)So, using Lemma 5 and the bound on �, we get (for all j)xj(�)sj(�) � �[(1� �)(1� �) + �
]� ��
�= �(1� �+ �
)(1 � �)= �(�)(1� �):Since � 2 [0; 1] and 
 > 0, the right hand side is always positive. So (x(�); s(�)) 2 F0.Hence (x(�); s(�)) 2 N�1(�):(b) Suppose (x; s) 2 N2(�) and � � minn �
�kdX(
)ds(
)k2 ; 1o. Then feasibility of(x(�); s(�)) can be veri�ed as in (a). Using (6), the bound on �, and Lemma 5, weobtain



MONOTONICITY IN PRIMAL-DUAL ALGORITHMS 9kX(�)s(�) � �(�)ek2 = k(1� �)Xs + �
�e + �2dX(
)ds(
) � (1� �+ �
)�ek2= k(1� �)(Xs � �e) + �2dX(
)ds(
)k2� (1� �)kXs � �ek2 + ��
�� (1� �)�� + ��
�= ��(�): 2One way of showing a bound on the number of iterations while keeping the algo-rithm monotone is to show that there exists an � > 0 such that �
 � � for all iterates.It seems hard to �nd such an � that is close to 1 (or even bounded away from zero).Instead, we will show that the second-order terms kdXdsk�1 and kdXdsk2 can bebounded by a multiple of �
�. This is a new way of estimating the second-order terms.Since the bound we will show is a multiple of �
, it will imply that whenever �
 is small,the second-order terms will be small, hence allowing us to take a larger step and stillstay in the desired neighborhood. Since dX(
)ds(
) = �(Vp � 
Wp)(vq � 
wq) by(10), we get bounds on kvp � 
wpk2 and kvq � 
wqk2 in the following two lemmas.Lemma 7. If 
P < +1, then kvp� 
Pwpk2 � j
P jkvp�wpk2; if 
D < +1, thenkvq � 
Dwqk2 � j
Djkvq � wqk2.Proof. Note that vTp (vp � 
Pwp) = 0 from the de�nition (16) of 
P . So,kvp � 
Pwpk22 = (vp � 
Pwp)T (vp � 
Pwp)= (
P vp � 
Pwp)T (vp � 
Pwp)� j
P jkvp �wpk2kvp � 
Pwpk2:If kvp � 
Pwpk2 = 0 the �rst inequality holds; otherwise, we divide both sides bykvp � 
Pwpk2 to get the result. In the same way, we can prove the second inequality.2 Lemma 8. (a) Let 
 2 (0; 1]. If (x; s) 2 N�1(�) then kv � 
wk2 �q 2n1�� .(b) Let 
 2 [1� �=pn; 1]. If (x; s) 2 N2(�) then kv � 
wk2 � �+�p1�� andkv �wk2 � �p1�� .Proof. (a) If (x; s) 2 N�1(�), we have (17). Using (17) and V w = e, we getw2j � 1=(1� �) for each j:(18)Hence kv � 
wk22 = vT v � 2
vTw + 
2wTw � n +wTw � 2n=(1� �):(b) Since (x; s) 2 N2(�) � N�1(�), we have (17) and kV (v � w)k2 � � (see (8)).



10 S. MIZUNO, M. TODD, AND L. TUNC�ELSo, kv � 
wk2 � (1� 
)kvk2 + 
kv � wk2� (1� 
)pn+ 
kV (v � w)k2kV �1ek1� � + 
�=p1� �� (� + �)=p1� �:If 
 = 1, we can set � = 0 to get the last inequality. 2Lemma 9. Let � 2 (0; 1) and � > 0 be constants, and let �
 = 
P if 
P 2 (0; 1]and �
 = 
D otherwise.(a) If (x; s) 2 N�1(�), 
0 2 (0; 1]; and 
 = 
0�
, then we havekdX(
)ds(
)k�1 � 4�
n�=(1� �):(b) If (x; s) 2 N2(�), 
0 = 1� �=pn, and 
 = 
0�
, then we havekdX(
)ds(
)k2 � �
�(3 + �)2=(1� �):Proof. Without loss of generality, we assume that 
P 2 (0; 1] and �
 = 
P in theanalysis below.(a) Let (x; s) 2 N�1(�) and 
0 2 (0; 1]. Since 
 = 
0
P , we havekvp � 
wpk2 � kvp � 
Pwpk2 + 
P (1� 
0)kwpk2:(19)Using Lemma 7, Lemma 8(a), and (18), we getkvp � 
wpk2 � 
Pr 2n1� � + 
P (1� 
0)r n1� �� 2
Pr 2n1� � :Using Lemma 8(a) we also havekvq � 
wqk2 �r 2n1� � :By (10), we obtainkdX(
)ds(
)k�1 = �k(Vp � 
Wp)(vq � 
wq)k�1� �kvp � 
wpk2kvq � 
wqk2� 4
Pn�=(1� �):



MONOTONICITY IN PRIMAL-DUAL ALGORITHMS 11(b) Let (x; s) 2 N2(�) and 
0 = 1� �=pn. Using (18), (19), and Lemma 7 we havekvp � 
wpk2 � 
P kv � wk2 + 
P (1� 
0)r n1� �� 
P � �p1� � + �p1� �� :The last inequality follows from Lemma 8(b). We also seekvq � 
wqk1 = k(v � 
w) � (vp � 
wp)k1� kvk1 + kwk1 + kvp � 
wpk2� p1 + � + 1p1� � + � + �p1� �� (3 + �)p1� � :So kdX(
)ds(
)k2 = �k(Vq � 
Wq )(vp � 
wp)k2� �kvq � 
wqk1kvp � 
wpk2� 
P�(3 + �)2=(1� �): 2Theorem 10. Let � 2 (0; 1) and � > 0 be constants independent of the inputdata of (P ) and (D).(a) Algorithm I (N = N�1(�) and 
0 2 (0; 1) is independent of the input data) termi-nates in O(nt) iterations and is strictly monotone in both objectives.(b) Algorithm II (N = N2(�) and 
0 = 1 � �=pn) terminates in O(pnt) iterationsand is strictly monotone in both objectives.Proof. The strict monotonicity follows from Theorem 4.(a) Since (x; s) 2 N�1(�) throughout Algorithm I, by Lemma 6(a), Lemma 9(a), and
 = 
0�
 we get (x(�); s(�)) 2 N�1(�) for � � �(1 � �)
04n :Then by Lemma 5(b), we have(xk+1)T sk+1 � (1 � (1� 
)�(1 � �)
0=4n)(xk)T sk� (1 � (1� 
0)�(1 � �)
0=4n)(xk)T skwhich implies (xk)T zk � 2�t for k = O(nt).(b) As in the proof of (a), the result follows from Lemma 5(b), Lemma 6(b), Lemma



12 S. MIZUNO, M. TODD, AND L. TUNC�EL9(b), and 
 = 
0�
. In particular, since (x; s) 2 N2(�) throughout Algorithm II and
 = 
0�
, we �nd (x(�); s(�)) 2 N2(�) for � � �(1 � �)
0(3 + �)2 : 25. Typical values of 
P and 
D . Consider Algorithm II. The proof of Theorem10(b) above shows that we can choose � at least equal to some constant (independentof n) value �̂ 2 (0; 1] when (x; s) 2 N2(�), 
0 = 1 � �=pn and 
 = 
0�
. Hence,whenever �
 � 
̂ for some constant 
̂ 2 (0; 1), we could achieve a constant factorreduction in the duality gap by Lemma 5. In this section we consider whether this islikely to occur.Note that in Algorithm I, we always have 
 � 
̂ for constant 
̂ 2 (0; 1) (in fact,
̂ = 
0), but we can only guarantee that � is at least some constant divided by n byLemma 6 and Lemma 9; hence typical values of 
P and 
D are of less interest.For de�niteness, choose � = 1=3, and suppose (x; s) 2 N2(�). By (8), we havekV v � ek2 � �;and so kv � ek2 � �(20)since each vj is at least as close to 1 as is v2j . In addition, w � e = W (e � v), sokw � ek2 � kwk1kv � ek2� �p1� �(21)using (18). Since � = 1=3, we getkv � ek2 � 12 ; kw � ek2 � 12 ;(22)and from kek2 = pn we deduce�(v; e) � arcsin� 12pn� ; �(w; e) � arcsin� 12pn� ;(23)where �(t; u) denotes the angle between vectors t and u.Now 
P and 
D are related to the angles between the projections of v and w intothe null space U of �A or its orthogonal complement. If v 6= w, it is possible to chooseU (or U?) so that vTp wp (or vTq wq) is negative. However, since from (23)�(v; w) � arcsin� 1pn� ;it appears that for \most" subspaces U , vTp wp will be close to kvpk22 and hence 
Pclose to 1. Here we would like to make this statement in some sense precise. As in[MTY90], we assume that



MONOTONICITY IN PRIMAL-DUAL ALGORITHMS 13U is a random subspace of IRn of dimension d := n � m, drawnfrom the unique distribution on such subspaces that is invariantunder orthogonal transformations.(24)In order to analyze this situation, we proceed as in the proof of Lemma 6 of[MTY90]. The orthogonal invariance of the subspace U implies that we can insteadassume that U is the �xed subspace~U := fx 2 IRn : xd+1 = : : : = xn = 0gand that e, v, and w are replaced by ~e, ~v, and ~w, where these vectors are the resultsof applying the orthogonal transformation # taking U to ~U to the vectors e, v, andw. Hence~e is uniformly distributed on the unit sphere of radius pn in IRn,(25)and k~v � ~ek2 � 12 ; k ~w � ~ek2 � 12 ;(26) �(~v; ~e) � arcsin� 12pn� ; �( ~w; ~e) � arcsin� 12pn� :(27)Let ~ep, ~vp, and ~wp denote the projections of ~e, ~v, and ~w onto ~U ; they are also theimages under # of ep, vp, and wp. Hence
P = k~vpk22~vTp ~wp :(28)Now k~vp � ~epk2 � 1=2 from (26), so thatk~vpk2 2 �k~epk2 � 12 ; k~epk2 + 12� ;(29)and similarly k ~wpk2 2 �k~epk2 � 12 ; k~epk2 + 12� :(30)



14 S. MIZUNO, M. TODD, AND L. TUNC�ELAlso, ~vTp ~wp = 12 �k~vpk22 + k ~wpk22 � k~vp � ~wpk22�, so since k~vp� ~wpk2 � k~v� ~wk2 �1, ~vTp ~wp 2 "�k~epk2 � 12�2 � 12 ;�k~epk2 + 12�2# :(31)Hence, if k~epk2 � 3=2,
P 2 "�k~epk2 � 12k~epk2 + 12�2 ; �k~epk2 + 12�2�k~epk2 � 12�2 � 12 # ;(32) 
P � 1� 2k~epk2 + 12 :(33)Theorem 11. Suppose assumption (24) holds, and d = 
(n). Then, with proba-bility approaching 1 as n!1, 
P � 1� �pnfor some constant �.Proof. We use (33). As in Lemma 6 of [MTY90], we can suppose~e = pn� �1k�k2 ; : : : ; �nk�k2�Tfrom (25), where �1; : : : ; �n are independent normal random variables with mean 0and variance 1. Then ~ep = pn� �1k�k2 ; : : : ; �dk�k2 ; 0; : : : ; 0�T ;and k~epk22 = n��21 + : : :+ �2d�21 + : : :+ �2n� :The quantity in parenthesis is a beta random variable with parameters d=2 and m=2,which has mean d=n and variance 2dm=n2(n + 2) � 1=(2n+ 4). Using Chebyshev'sinequality, k~epk22 � n� d2n�with probability approaching 1 as n!1. Since d = 
(n), this shows k~epk2 = 
(pn)with high probability, and hence completes the proof. 2Since U? satis�es (24) if U does, the same result shows that 
D � 1� �=pn withhigh probability as long as m = 
(n). These results suggest that we cannot expect to�nd �
 (= 
0
P or 
0
D) smaller than 1� �=pn for some constant � very often. Notethat several primal-dual interior-point algorithms use a value for 
 that is 1� �=pnfor some constant � (e.g., [KMY89], [MA89]); our result indicates that this value isclose to one that improves both objectives at almost every iteration.



MONOTONICITY IN PRIMAL-DUAL ALGORITHMS 156. Concluding remarks. In an implementation of the strictly monotone algo-rithm described in Section 3, we may use a small parameter value of 
0 (for example
0 = 1=n) and long step sizes such that the next primal and dual iterates are lo-cated a �xed ratio (say :99) of the way from the current point to the boundary ofthe corresponding feasible region. In that case, the next iterate is well-de�ned andthe duality gap decreases strictly, although these phenomena have not been shown innon-monotone versions of the algorithm.
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