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ABSTRACT. A novel approach is presented for solving multi-reservoir operation planning (MROP)

problems. MROP is formulated as a multi-objective optimization model and solved by a sequential lin-

ear programming (SLP) technique. The resulting linear programming (LP) problem is often very large

and highly sparse. A constant-potential interior-point algorithm is developed for handling LP problems

in general. The efficiency of the algorithm is further improved by exploiting the structure of MROP. In

particular, the normal equation arising from the projection step of the algorithm is solved more effec-

tively, given the sparsity structure of this kind of LP problem. A good initial solution is also introduced

from which the algorithm converges to an optimal solution in much less computational time. Finally,

some experimental results demonstrate the fine performance capabilities of the algorithm.

1 INTRODUCTION

Determining the optimal operation of a multi-
reservoir system is a complex problem that con-
fronts decision makers on a regular basis. The
complexity of the system mainly stems from inter-
actions among several reservoirs located in series
and parallel, the existence of conflicting objectives,
and the stochastic nature of the system.

Most reservoir systems are operated to serve
Based on US Army Corps

of Engineers records, about 56% of the storage

multiple objectives.

capacities in the United States are designated
for multiple-purpose uses (Wurbs, 1991). Reser-
voir purposes include flood control, hydropower
generation, water supply, water quality enhance-
ment, navigation and recreation. The usefulness of
the model relies on how well the multi-objective
characteristic of the system is reflected in the
model. The primary purposes are usually dealt
with as individual objectives to be optimized by
the model. The secondary goals may be treated as

fixed constraints to be satisfied at certain levels.

Many multi-objective techniques have been pro-
posed and applied to reservoir operation problem
including Cohon and Marks (1975) and Ko et al.
(1992). Ko (1989) suggests that the e-constraint
method is the preferable approach. This method
places all the objectives but one into the con-

straints, subject to some specified bounds.

Successive linear programming (SLP) has been
extensively used as a viable approach in water
resources applications (Yeh, 1985; Loucks et al.,
1981). Grygier and Stedinger (1985) have com-
pared the performance of SLP with other opti-
mization techniques, based on experimenting with
three different reservoir systems. The authors con-
clude that SLP dominates the other methods in
terms of efficiency and global convergence. Soli-
man and Christensen (1986) propose a stochastic
SLP approach for the optimization of long-term
operation. Reznicek and Simonovic (1990) em-
ploy a similar model in their new algorithm for

hydropower optimization, named EMSLP.

SLP has become even more desirable because

of new advances recently made in solving linear



programming (LP) problems. Interior-point (IP)
methods have proven to be extremely efficient in
solving very large LP problems. The primary pur-
pose of this research is to develop a tailor-made IP
algorithm for multi-reservoir operation planning
(MROP) problems. A new constant-potential IP
algorithm is developed and further enhanced by
taking the sparsity structure of MROP into ac-
count. Ponnambalam et al. (1989) applied a gen-
eral dual-affine IP algorithm to a system of two
reservoirs in series. However, in this research, it is
intended to exploit the problem structure in order
to design a special IP algorithm. The authors be-
lieve that the high capability of IP methods can
effectively handle the dimensionality problem as-
sociated with this application.

In the next section, the mathematical formula-
tion of an MROP problem is given. In Section
3, after a brief review of previously developed IP
methods, the solution methodology as well as the
proposed algorithm are described. Section 4 fo-
cuses on exploiting the MROP structure while Sec-
tion 5 introduces a good initial solution for the
proposed algorithm. Section 6 presents some nu-
merical experiments and finally, some conclusions
are drawn in Section 7.

2 PROBLEM FORMULATION

The dynamics of a K-reservoir system are mathe-
matically described as:

S(t+1) = S(t) - F R(t) - D(t) - L(t) + I(t), (1)

where S(t) and R(t) represent vectors of storage
variables and turbine release variables at the pe-
riod t, respectively. D(t) denotes the vector of
direct releases for water supply. The (K x K) co-
efficient matrix of F is specified by the reservoir
system configuration. Its diagonal elements, fi,
are all equal to 1. The off-diagonal elements, f;,
are either -1, if releases from the upstream reser-
voir 7 are routed into the downstream reservoir k,
or 0 otherwise. L(¢) indicates the losses and I(¢)
denotes the vector of uncontrollable inflows to the
system at the period . The inflows are assumed to
be replaced by forecasted values which can be cal-
culated using techniques described by Hipel and
McLeod (1994). This allows a deterministic ap-

proach to be undertaken.

The storage and release variables are subject
to lower and upper bounds, due to physical con-

straints of the system:
lS S S(t) S us, (2)
lR S R(t) S uR. (3)

Without loss of generality, the variables can be
adjusted to set the lower bounds equal to zero.

For many reservoir systems, the maximization
of hydropower generation appears to be the pri-
mary objective. The hydroelectric generating
function, P(t), is a nonlinear function of the re-
lease and the water head, H(t), which itself is a
function of the storage. So, the first objective can

be stated as:

max J; = ;;Pi(t), where (4)
Pi(t) = v Hi(t) Ri(t) e , (3)

where « indicates the specific weight of water and
e; is the efficiency of the ¢-th power generating sys-
tem. The following objectives could also be con-
sidered in an optimization model:

1. Satisfying water supply demand at the point

7 (J2):

> (Ri(t) +Dy(t)) > > Wi(t), (6)

ich(j) keg(j)

where h(j) is the set of reservoirs upstream of
point j. Wy(t) denotes the nonpower water de-
mand and g(7) is the set of demand points down
to and including point j.

2. Maximization of the firm power generated at

each time period (J3):

K

> Pi(t)}. (7)

max { min
1<4<T

3. Maximizing the reliability for acheiving total
target release, TR(t), at the downstream area (if
the inflows are assumed to be random variables):

T K

max J4 = Pr{)_ TR(t) - Z(Si(l) — Si(T + 1))
K7 X T
£222Di) < 33 L} = (1-p),



where p denotes the risk level of violating this tar-
get.
4. Maximization of a firm flow for low flow aug-

mentation at the downstream area j (J5):

R;(t)}- (8)

max { min
1<4<T

5. Minimization of evaporation losses:

> ) Li(t), where (9)

=1 t=1

er(t) AR;(¢), (10)

min Jg =
Li(t) =

where er(t) is the monthly average evaporation
rate and AR;(¢) represents the surface area of
reservoir ¢. The relationship between the area and
the storage can be found using regression analysis.

The e-constraint formulation of the MROP
problem is then given by:

(MROP) max J; (11)

FiZEi; i:2,3,---,6 (12)

s.t. :

and subject to (1) to (3).
target levels ¢;’s are obtained by solving the prob-

The feasible ranges of

lem with the individual corresponding objective
functions. A nondominated solution set (Pareto
inferior) is generated by changing €;’s in their fea-
sible ranges.

This model contains the main features of a com-
plicated reservoir system. It can be successively
linearized by taking the first-order Taylor series
approximation of nonlinear functions. Interior-
point methods (IPM’s) are capable of solving the
resulting general LP problem efficiently. However,
a simplified LP version of this model is used in
the following sections. All the constraints corre-
sponding to the secondary objectives are relaxed.
D(t) is assumed to be contained in R(¢) and L(¢)

is neglected.

Linearizing the energy equation (5) results in a
linear function of the release as:

P, = C; Ry, (13)

in which the constant C; would only depend on
the estimated storage volumes. Consequently, the
MROP model can be reduced to a sequence of LP
problems with bounded variables as:

(LMROP)

max J =
k=1t=1
s.t. :

K
Sk(t) =Sk(t — 1) + I(t) — Ri(t) + Y fisR;(2)

17k
(15)
0 < Sip(t)<uf (16)
0 < Rip(t)<u (17)

t = 1,---,T; k=1,---,K

3 SOLUTION METHODOLOGY

The field of interior-point methods was activated
by Karmarkar’s projective algorithm (Karmarkar,
1984). Since then, there have been many advances
to the theory and implementation of IPM. Primal-
dual path-following and potential reduction meth-
ods are two classes of IPM which both have proven
to possess low complexity and perform very well
in practice. Kojima et al. (1989) and Monteiro
and Adler (1989) developed the first polynomial-
time primal-dual interior-point algorithm. The al-

gorithm has been revised by other researchers in-

cluding Kojima et al. (1991) and Mizuno (1992).

Consider the standard primal LP problem with
bounded variables x:

T

min c'xX (18)
st.: Ax=b (19)
X+z=u (20)
x>0,z>0, (21)

where A € R™*™* b € R™, and ¢ € R™. The ma-
trix A is assumed to have full row rank. u is the
vector of upper bounds and z denotes the associ-
ated slack variables. The corresponding dual prob-

lem is given by:

max bty — uTw (22)
st.: ATy —wis=c (23)
w>0,s>0, (24)

where w and y are dual variables and s represents
dual slack variables. It is also assumed that there
exists an interior solution in the primal-dual fea-
sible region.



In the original primal-dual algorithms, it was
assumed that the given initial solution (x°,s°)
Then, re-

searchers developed infeasible-interior-point (IIP)

is both primal and dual feasible.

algorithms to start directly from an infeasible
point. The algorithms have been studied by sev-
eral researchers including Lustig (1988) and Lustig
et al. (1992) and have turned out to be highly ef-
ficient in practice. Zhang (1992) and later Mizuno
(1992) have proved the polynomial-time conver-

gence of certain IIP algorithms.

The idea of using a potential function as a mea-
sure of progress of an LP algorithm was first intro-
duced by Karmarkar (1984). Potential reduction
methods are motivated by searching along the pro-
jected gradient of an appropriate potential func-
tion to directly reduce that function at each iter-
ation. In this section, the derivation of the search
direction for an LP problem with upper bounds is
explained first. Then, the method of choosing the
stepsizes is discussed.

Applying Newton’s method to the perturbed
system of first-order optimality conditions for the
primal and dual problems results in:

dx = -PzO(p(p) +ra) + AT(AAT)_I('DI/zrp, (25)

where dx is the search direction along x and
p(p) = yu(Z7" —X"')e — (W —S8)e.  The pa-
rameter p is the average duality gap, defined by
p = (xTs +2zTw)/2n, v is the centering param-
eter and e is a vector of ones with appropriate
size. A is the scaled matrix of A, A = A®1/2,
in which © is defined as ® = (XS + Z_IW)_l.
Py is the projection matrix onto the null space of
A, givenby Pz =1~ AT(AAT) ' A. The primal
and dual feasibility residuals are respectively ex-
pressed as T, =b — Ax, rg=c— ATy + w —s.
Once dx has been computed, the other compo-
nents of the search direction can be easily obtained

by substituting for dx in the following equations:

dz = -dx, (26)
dw = yuZ 'e — We + Z7'Wdx, (27)
ds = yuX'e—Se— X 'Sdx. (28)

It is implicitly assumed that the starting point al-
ways satisfies x+z =u, z > 0.

The method of chosing stepsizes plays a crucial
role in distinguishing different IP algorithms.

Potential Funtion
Contour

Figure 1: The stepsizes in a constant potential

function algorithm.

Tuncel (1992) proposes a constant-potential IP
algorithm in which the stepsizes are chosen such
that all iterates are kept on the same contour of
a potential function. As a result, larger stepsizes
can be taken while the global convergence is guar-
anteed . Figure 1 shows an example of such a

contour in a two dimensional space.

Mizuno et al. (1992) suggest a potential func-
tion algorithm that may start from an infeasible
interior-point. Their algorithm seeks a constant
reduction in the following potential function at

each iteration:
Y(x,y,8) =(n+v+1)In(xTs+2zTw) —nlnn
— > In(xgs;5) — D In(z;wj) (29)
7=1 7=1

—In(xTs + zTw —

ol|(Ax—b, ATy +5 —c)||),

where v and o are some positive constant. This
function involves three major components: the
optimality, complementarity and feasibility parts.
The balance between the optimality and comple-
mentarity parts prevents the generated solutions
from getting too close to the boundary before
achieving optimality. The inclusion of the infea-
sibility norm guarantees that the algorithm de-
creases the infeasibility faster than the duality gap.
This prohibits the algorithm from converging to an
infeasible complementary solution. In general, any
potential function containing the desirable balance
among these three parts may be used in the algo-
rithm. The main idea of the proposed method is



to extend the constant-potential algorithm to the
infeasible context. Denoting the size of a problem
instance by L, the statement of the algorithm is

as follows:
Algorithm:
1. Start from any(x°,z°,w°,s°)such that

(x°)Ts® + (z°)Twe® < 2L, Set k := 0.

2. While (x¥)Tsk 4 (z5)Twk > 271
do the following;:

3. Set 4 := min[0.2, uz] and compute
(dx,dz,dw,ds) from (25, 26, 27, 28).

4. Tf (x* + dx,z* + dz,wk + dw, sk + ds) is fea-
sible, then it is optimal. Set

(Xk+1, Zk-|—1 k+1 , Sk-|—1) o

s W

(x* + dx,z* + dz,w* + dw, s* + ds)
and stop.

5. Otherwise, choose the stepsize a € (0,1) such
that:

P(x* + adx,z* + adz, w* + adw,s* + ads;v)
= ¢(Xk7 Zk7 Wk7 Sk; V)
and find the next iterate by:

(Xk+1, Zk-|—1 , wk-|—1 , Sk-|—1) .

(x* + adx, z* + adz, w* + adw,s* + ads).

6. Set k:=Fk+ 1.

7. End

This algorithm enjoys many attractive features.
First, it may start from any infeasible initial so-
lution and thus avoids the computational difficul-
ties associated with using artificial variables. Sec-
ondly, it benefits from the nice properties of the
potential function contour. Therefore, larger step-
sizes can be taken relative to the path-following
algorithms. In practice, these properties would
usually coincide with faster convergence of the al-

gorithm.

Monteiro and Wright (1993) present a superlin-
early convergent IIP algorithm that can be used

for solving LP problems. The authors show that
Tuncel’s constant-potential algorithm (1992) takes
equal or larger stepsizes than those taken by their
algorithm and thus achieves the superlinear con-
vergence. Their results certainly support the ca-
pability of the proposed algorithm in solving prac-
tical problems with a superlinear rate of conver-

gence.

4 EXPLOITING PROBLEM STRUCTURE

Every implementation of an interior-point algo-
rithm requires a linear system of equations (so-
called as normal equation) to be solved at each
iteration. Solving this linear system efficiently, in-
fluences the overall performance of the algorithm.
The staircase structure of a multi-stage operation
problem introduces a very sparse linear system at
each iteration of the algorithm. A thorough ex-
amination of the sparse matrix arising from this
application reveals how one can take advantage of
the problem structure to solve the normal equa-
tion effectively. Rewrite the LMROP problem in
a more compatible form with the standard LP no-

tation as:

max ck xgr (30)

s.t. : A5XS + ARXR = b, (31)
0 < x5 < ug, (32)
0 < xg < ug, (33)

where Ag and Apg are the coeflicient matrices as-
sociated with storage and release variables, respec-
tively. There are two sets of variables in the model
corresponding to storage volumes, xg, and release
rates, Xxg. The vector b indicates the inflows and

ug and ug are as defined earlier in Section 2.

The matrix Ag is a (K x K) block diagonal
matrix with each block itself being a (7' x T') bi-
diagonal matrix, as shown below. The structure of
AR depends on the system configuration matrix,
F = [fi;], defined in Section 2. In general, Ag is a
(K x K) block lower triangular matrix, as follows:

As -A-R
B
-1 1 Bs1  Bao
-1 1 BK1 BKz BKK



where B;; = f;; I, and I denotes a (T x T') identity
matrix.

As discussed earlier, the computation of the
search direction at each iteration of an IP algo-
rithm requires solving the following normal equa-
tion:

(A@AT) d = ¢, (34)

where ® is a diagonal matrix, d is the search di-
rection and ¢ is a constant right hand side. The

structure of matrix A allows one to partition the
coeflicient matrix (A@AT) as:

(As@°AL + AR@fAT)d =¢. (35)

The matrix (A ®@5AY) is a block diagonal matrix
with its components being as:

o7 67
—07 67 +65 65
D,0; D] = - - .
S Gt e,
—07_4 07_1 + 07

It is easy to show that (AgR®@®AT) is a symmet-
ric block matrix whose diagonal component of row
k equals @F + 23;11 iij. The oft-diagonal block
(1,7) of this matrix is — f;;OF.

Given the configuration of the reservoir system,
a special data structure for solving the normal
equation (35) can be designed. This contains a
great potential of speeding up the algorithm for
solving very large LMROP problems.

5 A GOOD INITIAL SOLUTION

Although the proposed algorithm can handle any
arbitrary initial solution, it would be more advan-
tageous to find a good starting point. One would
like to find an initial set of primal-dual solutions
which would be as close to the feasible region as
possible, be near the central path and have a good
objective value. It turns out that there is always a
good starting solution for LMROP problems. The
following solution satisfies the upper bound con-
straints in the LMROP model. However, it might
violate the equality constraints due to having very
high inflows. In that case, one could let the al-
gorithm handle the initial infeasibility and find a

feasible solution.

Si(t) = SO (36)

Ri(t) = max{up, Ik(t)+2fijj(t)} (37)

Denoting the dual variables corresponding to pri-
mal equality constraints and upper bound con-
straints by y, wg and wg, respectively, the dual
LMROP problem may be written as:

min by + uiws + ukwg

s.t. : Agy—l—ws—zs:()
A%y—l—wR—zR:cR
Ws,WR,Z25,ZR Z 0

where zg,zg are the dual surplus variables. For

the dual problem, the following solution is always
feasible:

%Zs,Zr = arbitrary positive numbers (42)
Y1 = Y2=-"=Y¥m =€ (43)
Wg = 1Zg (44)
wgr = max{e, cg+ Zgr} (45)

where € is a small positive number. Since zg and
zg may be chosen arbitrarily, one can choose them
so that the above solution lies partially on the cen-
tral path, i.e., zs = xg', Zr = Xz', where x5 and
Xg are the initial solutions to the primal problem.
In order to make this solution as close as possible
to the optimum, the constant e is chosen to be a
very small positive number. As a result, the set of
primal-dual initial solution introduced here, is al-
ways dual feasible and primal feasible if a flooding
inflow does not occur. It is also close to the central
path, thus allowing one to take large stepsizes and
attain the optimal solution faster.

6 NUMERICAL RESULTS

In order to test the behavior of the proposed algo-
rithm on a typical LMROP formulation, a bench-
mark problem was adopted from Chara and Pant
(1984).
tion of the reservoir system. In these experiments,
the effects of exploiting the LMROP structure and
starting from a good initial solution, were inves-

Figure 2 shows the physical configura-

tigated. In order to test large size problems, the
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Figure 2: Network of the reservoir system.

Table 1: Computational results on solving the

problem using UBPD and ESPD.

T UBPD ESPD

7t of Itns | # of Flops || # of Itns | # of Flops
12 18 2.456E+07 18 9.774E405
24 17 8.662E+07 17 2.109E+06
48 21 6.477E+08 21 5.915E+06

benchmark problem was simulated for longer time
periods. The simulated problems had 10 x T con-
straints and 2 x 10 x T variables, where T de-
notes the number of periods (in months). The
largest problem solved was of size 12000 x 24000. A
constant-potential ITP algorithm was implemented
for handling the upper bounds in an effective way.
In all experimental runs, the primal and dual fea-
sibility as well as the optimality tolerances were

set equal to 107,
The first code (named UBPD) uses Matlab de-

composition routine to solve the normal equation.
It treats the coefficient matrix A as a general dense
matrix. This code is modified to take advantage
of the special structure of the matrix A associated
with LMROP problems as explained in Section 4.
The modified code (called ESPD) is expected to
solve the normal equation much faster than UBPD
at each iteration, thus solving a typical LMROP
problem in much less overall time.

Table 1 compares the number of flops (floating

point operations) required to solve the problem
with UBPD and ESPD. The same initial solution

was used when running the ESPD code. As ex-

Table 2:
problem using ESPD from different initial solu-

Computational results on solving the

tion.

T Random Initial Solution || Good Initial Solution
Ftof Itns Ftof Flops || #of Itns | #of Flops

12 18 9.923E405 18 9.774E+05
24 22 2.778E+06 17 2.109E+06
48 24 6.898E+06 21 5.915E+406
120 32 2.565E4+07 28 2.197E+07
240 40 5.002E4-07 30 3.645E+07
480 44 1.118E+08 32 7.899E+07
1200 45 2.886E4-08 32 1.993E+08

pected, the number of iterations taken by both
codes are the same. However, the number of flops
that ESPD requires to solve these problems ranges
from 1.0% to 3.9% of those needed by UBPD. The
second set of experiments investigates the com-
putational advantages of starting the algorithm
from a good initial solution, as explained in Sec-
tion 5. Table 2 shows that a remarkable saving
in the number of iterations and flops is attained.
The most interesting result of these experiments
is that the number of iterations required by the
algorithm grows very slowly as the problem size
becomes larger. This is a good indication of the
capability of the algorithm for solving large prac-

tical problems.

7 CONCLUSION

This research introduces an application of IPM
to the field of reservoir operation planning. A
constant-potential interior-point algorithm is pro-
posed to overcome the dimensionality problem.
The preliminary numerical results demonstrate
that a large amount of computational saving can
be achieved by exploiting the problem structure
and by starting from a good initial solution. A
future avenue of research would be to consider the
stochasticity of the inflows into the MROP model.
Then, the resulting structure can be exploited to

efficiently solve the normal equation.
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