


An improved interior-point approach for use in reservoir operationAbbas Seif iDepartment of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, CanadaLevent Tun�celDepartment of Combinatorics and Optimization, University of WaterlooKeith W. HipelDepartments of Systems Design Engineering and Statistics and Actuarial Science, University of WaterlooABSTRACT. A novel approach is presented for solving multi-reservoir operation planning (MROP)problems. MROP is formulated as a multi-objective optimization model and solved by a sequential lin-ear programming (SLP) technique. The resulting linear programming (LP) problem is often very largeand highly sparse. A constant-potential interior-point algorithm is developed for handling LP problemsin general. The e�ciency of the algorithm is further improved by exploiting the structure of MROP. Inparticular, the normal equation arising from the projection step of the algorithm is solved more e�ec-tively, given the sparsity structure of this kind of LP problem. A good initial solution is also introducedfrom which the algorithm converges to an optimal solution in much less computational time. Finally,some experimental results demonstrate the �ne performance capabilities of the algorithm.1 INTRODUCTIONDetermining the optimal operation of a multi-reservoir system is a complex problem that con-fronts decision makers on a regular basis. Thecomplexity of the system mainly stems from inter-actions among several reservoirs located in seriesand parallel, the existence of con
icting objectives,and the stochastic nature of the system.Most reservoir systems are operated to servemultiple objectives. Based on US Army Corpsof Engineers records, about 56% of the storagecapacities in the United States are designatedfor multiple-purpose uses (Wurbs, 1991). Reser-voir purposes include 
ood control, hydropowergeneration, water supply, water quality enhance-ment, navigation and recreation. The usefulness ofthe model relies on how well the multi-objectivecharacteristic of the system is re
ected in themodel. The primary purposes are usually dealtwith as individual objectives to be optimized bythe model. The secondary goals may be treated as�xed constraints to be satis�ed at certain levels.

Many multi-objective techniques have been pro-posed and applied to reservoir operation problemincluding Cohon and Marks (1975) and Ko et al.(1992). Ko (1989) suggests that the �-constraintmethod is the preferable approach. This methodplaces all the objectives but one into the con-straints, subject to some speci�ed bounds.Successive linear programming (SLP) has beenextensively used as a viable approach in waterresources applications (Yeh, 1985; Loucks et al.,1981). Grygier and Stedinger (1985) have com-pared the performance of SLP with other opti-mization techniques, based on experimenting withthree di�erent reservoir systems. The authors con-clude that SLP dominates the other methods interms of e�ciency and global convergence. Soli-man and Christensen (1986) propose a stochasticSLP approach for the optimization of long-termoperation. Reznicek and Simonovic (1990) em-ploy a similar model in their new algorithm forhydropower optimization, named EMSLP.SLP has become even more desirable becauseof new advances recently made in solving linear



programming (LP) problems. Interior-point (IP)methods have proven to be extremely e�cient insolving very large LP problems. The primary pur-pose of this research is to develop a tailor-made IPalgorithm for multi-reservoir operation planning(MROP) problems. A new constant-potential IPalgorithm is developed and further enhanced bytaking the sparsity structure of MROP into ac-count. Ponnambalam et al. (1989) applied a gen-eral dual-a�ne IP algorithm to a system of tworeservoirs in series. However, in this research, it isintended to exploit the problem structure in orderto design a special IP algorithm. The authors be-lieve that the high capability of IP methods cane�ectively handle the dimensionality problem as-sociated with this application.In the next section, the mathematical formula-tion of an MROP problem is given. In Section3, after a brief review of previously developed IPmethods, the solution methodology as well as theproposed algorithm are described. Section 4 fo-cuses on exploiting the MROP structure while Sec-tion 5 introduces a good initial solution for theproposed algorithm. Section 6 presents some nu-merical experiments and �nally, some conclusionsare drawn in Section 7.2 PROBLEM FORMULATIONThe dynamics of a K-reservoir system are mathe-matically described as:S(t+ 1) = S(t)� F R(t)�D(t)� L(t) + I(t); (1)where S(t) and R(t) represent vectors of storagevariables and turbine release variables at the pe-riod t, respectively. D(t) denotes the vector ofdirect releases for water supply. The (K �K) co-e�cient matrix of F is speci�ed by the reservoirsystem con�guration. Its diagonal elements, fkk,are all equal to 1. The o�-diagonal elements, fkj ,are either -1, if releases from the upstream reser-voir j are routed into the downstream reservoir k,or 0 otherwise. L(t) indicates the losses and I(t)denotes the vector of uncontrollable in
ows to thesystem at the period t. The in
ows are assumed tobe replaced by forecasted values which can be cal-culated using techniques described by Hipel andMcLeod (1994). This allows a deterministic ap-

proach to be undertaken.The storage and release variables are subjectto lower and upper bounds, due to physical con-straints of the system:lS � S(t) � uS; (2)lR � R(t) � uR: (3)Without loss of generality, the variables can beadjusted to set the lower bounds equal to zero.For many reservoir systems, the maximizationof hydropower generation appears to be the pri-mary objective. The hydroelectric generatingfunction, P(t), is a nonlinear function of the re-lease and the water head, H(t), which itself is afunction of the storage. So, the �rst objective canbe stated as:max J1 = KXi=1 TXt=1Pi(t); where (4)Pi(t) = 
 Hi(t) Ri(t) ei ; (5)where 
 indicates the speci�c weight of water andei is the e�ciency of the i-th power generating sys-tem. The following objectives could also be con-sidered in an optimization model:1. Satisfying water supply demand at the pointj (J2):Xi2h(j)(Ri(t) +Dj(t)) � Xk2g(j)Wk(t); (6)where h(j) is the set of reservoirs upstream ofpoint j. Wk(t) denotes the nonpower water de-mand and g(j) is the set of demand points downto and including point j.2. Maximization of the �rm power generated ateach time period (J3):max f min1�t�T KXi=1Pi(t)g: (7)3. Maximizing the reliability for acheiving totaltarget release, TR(t), at the downstream area (ifthe in
ows are assumed to be random variables):max J4 = Prf TXt=1TR(t)� KXi=1(Si(1)� Si(T + 1))+ KXi=1 TXt=1Di(t) � KXi=1 TXt=1 Ii(t)g � (1� p);



where p denotes the risk level of violating this tar-get.4. Maximization of a �rm 
ow for low 
ow aug-mentation at the downstream area j (J5):max f min1�t�T Rj(t)g: (8)5. Minimization of evaporation losses:min J6 = KXi=1 TXt=1Li(t); where (9)Li(t) = er(t) ARi(t); (10)where er(t) is the monthly average evaporationrate and ARi(t) represents the surface area ofreservoir i. The relationship between the area andthe storage can be found using regression analysis.The �-constraint formulation of the MROPproblem is then given by:(MROP) max J1 (11)s.t. : Fi � �i; i = 2; 3; � � � ; 6 (12)and subject to (1) to (3). The feasible ranges oftarget levels �i's are obtained by solving the prob-lem with the individual corresponding objectivefunctions. A nondominated solution set (Paretoinferior) is generated by changing �i's in their fea-sible ranges.This model contains the main features of a com-plicated reservoir system. It can be successivelylinearized by taking the �rst-order Taylor seriesapproximation of nonlinear functions. Interior-point methods (IPM's) are capable of solving theresulting general LP problem e�ciently. However,a simpli�ed LP version of this model is used inthe following sections. All the constraints corre-sponding to the secondary objectives are relaxed.D(t) is assumed to be contained in R(t) and L(t)is neglected.Linearizing the energy equation (5) results in alinear function of the release as:Pt = Ct Rt; (13)in which the constant Ct would only depend onthe estimated storage volumes. Consequently, theMROP model can be reduced to a sequence of LPproblems with bounded variables as:(LMROP)

max J = KXk=1 TXt=1Ck(t) Rk(t) (14)s.t. :Sk(t)=Sk(t� 1) + Ik(t)�Rk(t) + KXj=1j 6=k fkjRj(t)(15)0 � Sk(t) � ukS (16)0 � Rk(t) � ukR (17)t = 1; � � � ; T ; k = 1; � � � ; K :3 SOLUTION METHODOLOGYThe �eld of interior-point methods was activatedby Karmarkar's projective algorithm (Karmarkar,1984). Since then, there have been many advancesto the theory and implementation of IPM. Primal-dual path-following and potential reduction meth-ods are two classes of IPM which both have provento possess low complexity and perform very wellin practice. Kojima et al. (1989) and Monteiroand Adler (1989) developed the �rst polynomial-time primal-dual interior-point algorithm. The al-gorithm has been revised by other researchers in-cluding Kojima et al. (1991) and Mizuno (1992).Consider the standard primal LP problem withbounded variables x:min cTx (18)s.t. : Ax = b (19)x+ z = u (20)x � 0; z � 0; (21)where A 2 Rm�n;b 2 Rm, and c 2 Rn. The ma-trix A is assumed to have full row rank. u is thevector of upper bounds and z denotes the associ-ated slack variables. The corresponding dual prob-lem is given by:max bTy� uTw (22)s.t. : ATy�w + s = c (23)w � 0; s � 0; (24)where w and y are dual variables and s representsdual slack variables. It is also assumed that thereexists an interior solution in the primal-dual fea-sible region.



In the original primal-dual algorithms, it wasassumed that the given initial solution (x0; s0)is both primal and dual feasible. Then, re-searchers developed infeasible-interior-point (IIP)algorithms to start directly from an infeasiblepoint. The algorithms have been studied by sev-eral researchers including Lustig (1988) and Lustiget al. (1992) and have turned out to be highly ef-�cient in practice. Zhang (1992) and later Mizuno(1992) have proved the polynomial-time conver-gence of certain IIP algorithms.The idea of using a potential function as a mea-sure of progress of an LP algorithm was �rst intro-duced by Karmarkar (1984). Potential reductionmethods are motivated by searching along the pro-jected gradient of an appropriate potential func-tion to directly reduce that function at each iter-ation. In this section, the derivation of the searchdirection for an LP problem with upper bounds isexplained �rst. Then, the method of choosing thestepsizes is discussed.Applying Newton's method to the perturbedsystem of �rst-order optimality conditions for theprimal and dual problems results in:dx = �P�A�(�(�) + rd) + �AT(�A�AT)�1�1=2rp; (25)where dx is the search direction along x and�(�) = 
�(Z�1 �X�1)e� (W � S)e. The pa-rameter � is the average duality gap, de�ned by� = (xTs+ zTw)=2n, 
 is the centering param-eter and e is a vector of ones with appropriatesize. �A is the scaled matrix of A, �A = A�1=2,in which � is de�ned as � = (X�1S+ Z�1W)�1.P�A is the projection matrix onto the null space of�A, given by P�A = I� �AT(�A�AT)�1 �A. The primaland dual feasibility residuals are respectively ex-pressed as rp = b�Ax; rd = c�ATy +w � s.Once dx has been computed, the other compo-nents of the search direction can be easily obtainedby substituting for dx in the following equations:dz = �dx; (26)dw = 
�Z�1e�We+ Z�1Wdx; (27)ds = 
�X�1e� Se�X�1Sdx: (28)It is implicitly assumed that the starting point al-ways satis�es x+ z = u; z > 0:The method of chosing stepsizes plays a crucialrole in distinguishing di�erent IP algorithms.
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Figure 1: The stepsizes in a constant potentialfunction algorithm.Tuncel (1992) proposes a constant-potential IPalgorithm in which the stepsizes are chosen suchthat all iterates are kept on the same contour ofa potential function. As a result, larger stepsizescan be taken while the global convergence is guar-anteed . Figure 1 shows an example of such acontour in a two dimensional space.Mizuno et al. (1992) suggest a potential func-tion algorithm that may start from an infeasibleinterior-point. Their algorithm seeks a constantreduction in the following potential function ateach iteration: (x;y; s) =(n+ � + 1) ln(xTs+ zTw) � n ln n� nXj=1 ln(xjsj)� nXj=1 ln(zjwj) (29)� ln(xTs+ zTw ��k(Ax� b;ATy + s� c)k);where � and � are some positive constant. Thisfunction involves three major components: theoptimality, complementarity and feasibility parts.The balance between the optimality and comple-mentarity parts prevents the generated solutionsfrom getting too close to the boundary beforeachieving optimality. The inclusion of the infea-sibility norm guarantees that the algorithm de-creases the infeasibility faster than the duality gap.This prohibits the algorithm from converging to aninfeasible complementary solution. In general, anypotential function containing the desirable balanceamong these three parts may be used in the algo-rithm. The main idea of the proposed method is



to extend the constant-potential algorithm to theinfeasible context. Denoting the size of a probleminstance by L, the statement of the algorithm isas follows:Algorithm:1. Start from any(xo; zo;wo; so)such that(xo)Tso + (zo)Two � 2L. Set k := 0:2. While (xk)Tsk + (zk)Twk > 2�L,do the following:3. Set 
k := min[0:2; �k] and compute(dx;dz;dw;ds) from (25, 26, 27, 28).4. If (xk + dx; zk + dz;wk + dw; sk + ds) is fea-sible, then it is optimal. Set(xk+1; zk+1;wk+1; sk+1) :=(xk + dx; zk + dz;wk + dw; sk + ds)and stop.5. Otherwise, choose the stepsize � 2 (0; 1) suchthat: (xk + �dx; zk + �dz;wk + �dw; sk + �ds; �)=  (xk; zk;wk; sk; �)and �nd the next iterate by:(xk+1; zk+1;wk+1; sk+1) :=(xk + �dx; zk + �dz;wk + �dw; sk + �ds):6. Set k := k + 1:7. EndThis algorithm enjoys many attractive features.First, it may start from any infeasible initial so-lution and thus avoids the computational di�cul-ties associated with using arti�cial variables. Sec-ondly, it bene�ts from the nice properties of thepotential function contour. Therefore, larger step-sizes can be taken relative to the path-followingalgorithms. In practice, these properties wouldusually coincide with faster convergence of the al-gorithm.Monteiro and Wright (1993) present a superlin-early convergent IIP algorithm that can be used

for solving LP problems. The authors show thatTuncel's constant-potential algorithm (1992) takesequal or larger stepsizes than those taken by theiralgorithm and thus achieves the superlinear con-vergence. Their results certainly support the ca-pability of the proposed algorithm in solving prac-tical problems with a superlinear rate of conver-gence.4 EXPLOITING PROBLEM STRUCTUREEvery implementation of an interior-point algo-rithm requires a linear system of equations (so-called as normal equation) to be solved at eachiteration. Solving this linear system e�ciently, in-
uences the overall performance of the algorithm.The staircase structure of a multi-stage operationproblem introduces a very sparse linear system ateach iteration of the algorithm. A thorough ex-amination of the sparse matrix arising from thisapplication reveals how one can take advantage ofthe problem structure to solve the normal equa-tion e�ectively. Rewrite the LMROP problem ina more compatible form with the standard LP no-tation as:max cTR xR (30)s.t. : ASxS +ARxR = b; (31)0 � xS � uS ; (32)0 � xR � uR; (33)where AS and AR are the coe�cient matrices as-sociated with storage and release variables, respec-tively. There are two sets of variables in the modelcorresponding to storage volumes, xS, and releaserates, xR. The vector b indicates the in
ows anduS and uR are as de�ned earlier in Section 2.The matrix AS is a (K � K) block diagonalmatrix with each block itself being a (T � T ) bi-diagonal matrix, as shown below. The structure ofAR depends on the system con�guration matrix,F = [fij], de�ned in Section 2. In general, AR is a(K�K) block lower triangular matrix, as follows:ASz }| {0BBB@ 1�1 1. . . . . .�1 1 1CCCA ARz }| {0BBB@ B11B21 B22... ... . . .BK1 BK2 � � � BKK 1CCCA



where Bij = fij I, and I denotes a (T�T ) identitymatrix.As discussed earlier, the computation of thesearch direction at each iteration of an IP algo-rithm requires solving the following normal equa-tion:(A�AT ) d = �; (34)where � is a diagonal matrix, d is the search di-rection and � is a constant right hand side. Thestructure of matrix A allows one to partition thecoe�cient matrix (A�AT ) as:(AS�SATS +AR�RATR) d = �: (35)The matrix (AS�SATS ) is a block diagonal matrixwith its components being as:Di�Si DTi =0BBBBBB@ �S1 ��S1��S1 �S1 + �S2 ��S2. . . . . . . . .��ST�2 �ST�2 + �ST�1 ��ST�1��ST�1 �ST�1 + �ST 1CCCCCCAIt is easy to show that (AR�RATR) is a symmet-ric block matrix whose diagonal component of rowk equals �Ri +Pi�1j=1 fij�Rj . The o�-diagonal block(i; j) of this matrix is �fij�Ri .Given the con�guration of the reservoir system,a special data structure for solving the normalequation (35) can be designed. This contains agreat potential of speeding up the algorithm forsolving very large LMROP problems.5 A GOOD INITIAL SOLUTIONAlthough the proposed algorithm can handle anyarbitrary initial solution, it would be more advan-tageous to �nd a good starting point. One wouldlike to �nd an initial set of primal-dual solutionswhich would be as close to the feasible region aspossible, be near the central path and have a goodobjective value. It turns out that there is always agood starting solution for LMROP problems. Thefollowing solution satis�es the upper bound con-straints in the LMROP model. However, it mightviolate the equality constraints due to having veryhigh in
ows. In that case, one could let the al-gorithm handle the initial infeasibility and �nd a

feasible solution.Sk(t) = S0k (36)Rk(t) = maxfukR; Ik(t) + KXj=1 fkjRj(t)g (37)Denoting the dual variables corresponding to pri-mal equality constraints and upper bound con-straints by y, wS and wR, respectively, the dualLMROP problem may be written as:min bTy + uTSwS + uTRwR (38)s.t. : ATSy +wS � zS = 0 (39)ATRy+wR � zR = cR (40)wS ;wR; zS ; zR � 0 (41)where zS; zR are the dual surplus variables. Forthe dual problem, the following solution is alwaysfeasible:zS; zR = arbitrary positive numbers (42)y1 = y2 = � � � = ym = � (43)wS = zS (44)wR = maxf�; cR + zRg (45)where � is a small positive number. Since zS andzR may be chosen arbitrarily, one can choose themso that the above solution lies partially on the cen-tral path, i.e., zS = x�1S ; zR = x�1R ; where xS andxR are the initial solutions to the primal problem.In order to make this solution as close as possibleto the optimum, the constant � is chosen to be avery small positive number. As a result, the set ofprimal-dual initial solution introduced here, is al-ways dual feasible and primal feasible if a 
oodingin
ow does not occur. It is also close to the centralpath, thus allowing one to take large stepsizes andattain the optimal solution faster.6 NUMERICAL RESULTSIn order to test the behavior of the proposed algo-rithm on a typical LMROP formulation, a bench-mark problem was adopted from Chara and Pant(1984). Figure 2 shows the physical con�gura-tion of the reservoir system. In these experiments,the e�ects of exploiting the LMROP structure andstarting from a good initial solution, were inves-tigated. In order to test large size problems, the
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10Figure 2: Network of the reservoir system.Table 1: Computational results on solving theproblem using UBPD and ESPD.T UBPD ESPD# of Itns # of Flops # of Itns # of Flops12 18 2.456E+07 18 9.774E+0524 17 8.662E+07 17 2.109E+0648 21 6.477E+08 21 5.915E+06benchmark problem was simulated for longer timeperiods. The simulated problems had 10� T con-straints and 2 � 10 � T variables, where T de-notes the number of periods (in months). Thelargest problem solved was of size 12000�24000. Aconstant-potential IIP algorithm was implementedfor handling the upper bounds in an e�ective way.In all experimental runs, the primal and dual fea-sibility as well as the optimality tolerances wereset equal to 10�6.The �rst code (named UBPD) uses Matlab de-composition routine to solve the normal equation.It treats the coe�cient matrixA as a general densematrix. This code is modi�ed to take advantageof the special structure of the matrix A associatedwith LMROP problems as explained in Section 4.The modi�ed code (called ESPD) is expected tosolve the normal equation much faster than UBPDat each iteration, thus solving a typical LMROPproblem in much less overall time.Table 1 compares the number of 
ops (
oatingpoint operations) required to solve the problemwith UBPD and ESPD. The same initial solutionwas used when running the ESPD code. As ex-

Table 2: Computational results on solving theproblem using ESPD from di�erent initial solu-tion.T Random Initial Solution Good Initial Solution#of Itns #of Flops #of Itns #of Flops12 18 9.923E+05 18 9.774E+0524 22 2.778E+06 17 2.109E+0648 24 6.898E+06 21 5.915E+06120 32 2.565E+07 28 2.197E+07240 40 5.002E+07 30 3.645E+07480 44 1.118E+08 32 7.899E+071200 45 2.886E+08 32 1.993E+08pected, the number of iterations taken by bothcodes are the same. However, the number of 
opsthat ESPD requires to solve these problems rangesfrom 1.0% to 3.9% of those needed by UBPD. Thesecond set of experiments investigates the com-putational advantages of starting the algorithmfrom a good initial solution, as explained in Sec-tion 5. Table 2 shows that a remarkable savingin the number of iterations and 
ops is attained.The most interesting result of these experimentsis that the number of iterations required by thealgorithm grows very slowly as the problem sizebecomes larger. This is a good indication of thecapability of the algorithm for solving large prac-tical problems.7 CONCLUSIONThis research introduces an application of IPMto the �eld of reservoir operation planning. Aconstant-potential interior-point algorithm is pro-posed to overcome the dimensionality problem.The preliminary numerical results demonstratethat a large amount of computational saving canbe achieved by exploiting the problem structureand by starting from a good initial solution. Afuture avenue of research would be to consider thestochasticity of the in
ows into the MROP model.Then, the resulting structure can be exploited toe�ciently solve the normal equation.
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