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Abstract. Let F be a compact subset of the n-dimensional Euclidean space Rn represented by
(finitely or infinitely many) quadratic inequalities. We propose two methods, one based on successive
semidefinite programming (SDP) relaxations and the other on successive linear programming (LP)
relaxations. Each of our methods generates a sequence of compact convex subsets Ck (k = 1, 2, . . . )
of Rn such that
(a) the convex hull of F ⊆ Ck+1 ⊆ Ck (monotonicity),
(b) ∩∞

k=1
Ck = the convex hull of F (asymptotic convergence).

Our methods are extensions of the corresponding Lovász–Schrijver lift-and-project procedures with
the use of SDP or LP relaxation applied to general quadratic optimization problems (QOPs) with
infinitely many quadratic inequality constraints. Utilizing descriptions of sets based on cones of
matrices and their duals, we establish the exact equivalence of the SDP relaxation and the semi-
infinite convex QOP relaxation proposed originally by Fujie and Kojima. Using this equivalence, we
investigate some fundamental features of the two methods including (a) and (b) above.
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1. Introduction. Consider a maximization problem with a linear objective func-
tion cTx:

maximize cTx subject to x ∈ F,(1.1)

where c denotes a constant vector in the n-dimensional Euclidean space Rn and
F a subset of Rn. We can reduce a more general maximization problem with a
nonlinear objective function f(x) to a maximization problem having a linear objective
function represented by a new variable, xn+1, if we replace f(x) by xn+1 and then
add the inequality f(x) ≥ xn+1 to the constraint. Thus (1.1) covers such a general
optimization problem. Throughout the paper we assume that F is compact. Then
the problem (1.1) has a global maximizer whenever the feasible region F is nonempty.

For any compact convex set C containing F , the maximization problem

maximize cTx subject to x ∈ C(1.2)

serves as a convex relaxation problem, which satisfies the properties that
(i) the maximum objective value ζ of the problem (1.2) gives an upper bound

for the maximum objective value ζ∗ of the problem (1.1), i.e., ζ ≥ ζ∗, and
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(ii) if a maximizer x̂ ∈ C of (1.2) lies in F , it is a maximizer of (1.1).
Since the objective function of (1.1) is linear, we know that if we take the convex hull
c.hull(F ) (defined as the intersection of all the convex sets containing F ) for C in
(1.2), then

(i)′ ζ = ζ∗, and
(ii)′ the set of the maximizers of (1.2) forms a compact convex set whose extreme

points are maximizers of (1.1).
Therefore, if we solve the relaxation problem (1.2) with a convex feasible region C
which closely approximates c.hull(F ), we can expect to get not only a good upper
bound ζ for the maximum objective value ζ∗ but also an approximate maximizer of
the problem (1.1). We can further prove that for almost every c ∈ Rn (in the sense of
measure), any maximizer x′ ∈ C = c.hull(F ) of (1.2) is an extreme point of c.hull(F ),
which also lies in F ; hence x′ is a maximizer of (1.1). This follows from a result due
to Ewald, Larman, and Rogers [5] for consequences of related results; see also [17].
Furthermore, for many representations of various convex sets C, given x̂ ∈ C, we can
very efficiently find x∗, an extreme point of C, such that cTx∗ ≥ cT x̂.

Indeed, the relaxation technique mentioned above has been playing an essential
role in practical computational methods for solving various problems in the fields of
combinatorial optimization and global optimization. It is often used in hybrid schemes
with the branch-and-bound and branch-and-cut techniques in those fields. See, for
instance, [2].

The aim of this paper is to present a basic idea on how we can approximate the
convex hull of F . This is a quite difficult problem, and also too general. Before making
further discussions, we at least need to provide an appropriate (algebraic) representa-
tion for the compact feasible region F of the problem (1.1) and the compact convex
feasible region C of the relaxation problem (1.2). We employ quadratic inequalities
for this purpose.

Let Sn and Sn
+ ⊂ Sn denote the set of n × n symmetric matrices and the set of

n× n symmetric positive semidefinite matrices, respectively. Given Q ∈ Sn, q ∈ Rn,
and γ ∈ R, we write a quadratic function on Rn with the quadratic term xTQx, the
linear term 2qTx, and the constant term γ as p(·; γ, q,Q):

p(x; γ, q,Q) ≡ γ + 2qTx + xTQx ∀x ∈ Rn.

Then the set Q of quadratic functions on Rn and the set Q+ of convex quadratic
functions are defined as

Q ≡ {p(·; γ, q,Q) : Q ∈ Sn, q ∈ Rn and γ ∈ R}

and

Q+ ≡ {p(·; γ, q,Q) : Q ∈ Sn
+, q ∈ Rn and γ ∈ R},

respectively. We also write p(·) ∈ Q (or Q+) instead of p(·; γ, q,Q) ∈ Q (or Q+)
if Q ∈ Sn, q ∈ Rn, and γ ∈ R are irrelevant. Throughout the paper, we assume
that the feasible region F of the problem (1.1) is represented by a set of quadratic
inequalities such that

F = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ PF },
where PF denotes a set of quadratic functions, i.e., PF ⊆ Q, and we will derive convex
relaxations, C, represented by convex quadratic inequalities such that

C = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ PC},
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where PC denotes a set of convex quadratic functions, i.e., PC ⊆ Q+. We allow cases
where PF and/or PC involve infinitely many quadratic functions. Thus (1.1) or (1.2)
(or both) can be a semi-infinite quadratic optimization problem (QOP). Here we use
the word “semi-infinite” for optimization problems having a finite number of scalar
variables and possibly an infinite number of inequality constraints.

There are some reasons why we have chosen quadratic inequalities for the rep-
resentation of both problems, the maximization problem (1.1) that we want to solve
and its convex relaxation problem (1.2). First, quadratic inequalities form a class
of relatively easily manageable nonlinear inequalities, yet they have enough power
to describe any compact feasible region F in Rn. Indeed, if F is closed, then its
complement Rn\F is open so that it can be represented as the union of the open balls

{x ∈ Rn : (x− x′)T (x− x′) < ǫ(x′)} with ∃ǫ(x′) > 0

over all x′ ∈ G for some G ⊆ Rn\F ; hence

F = {x ∈ Rn : (x− x′)T (x− x′) ≥ ǫ(x′) ∀x′ ∈ G}.

We also know that any single polynomial inequality can be converted into a system
of quadratic inequalities; for example,

x2
1x2 + 2x1x

2
2 − 5 ≤ 0

can be converted into

x3 − x1x2 ≤ 0, −x3 + x1x2 ≤ 0 and x1x3 + 2x2x3 − 5 ≤ 0.

See [23, 24].
Second, we know that we can solve some classes of maximization problems hav-

ing linear objective functions and a convex-quadratic-inequality constrained feasible
region C efficiently. Among others, we can apply interior-point methods [1, 16] to the
problem (1.2) when either PC is finite or PC is infinite, but its feasible region C is
described as the projection of a set characterized by linear matrix inequalities in the
space Sn of n× n symmetric matrices onto the n-dimensional Euclidean space Rn.

Third, and also most importantly, we can apply the semidefinite programming
(SDP) relaxation, which was originally developed for 0-1 integer programming prob-
lems by Lovász and Schrijver [12] and later extended to nonconvex quadratic optimiza-
tion problems [6, 18, 19], to the entire class of maximization problems having a linear
objective function and finitely or infinitely many quadratic inequality constraints. See
also [1, 8, 9, 13, 15, 23, 24, 29].

In addition to the reasons above, we should mention that the maximization prob-
lem with a linear objective function and quadratic inequality constraints involves
various optimization problems such as 0-1 integer linear (or quadratic) program-
ming problems which, in principle, include all combinatorial optimization problems
[1, 9, 18]. Linear complementarity problems [4], bimatrix games, and bilinear matrix
inequalities [14, 20] are also included as special cases.

For some optimization problems, some of the semidefinite programming (SDP)
relaxations we provide may be solved in polynomially many iterations (of an interior-
point method or an ellipsoid algorithm) approximately. Such conclusion requires, in
the case of the ellipsoid method, the existence of a certain polynomial-time separation
oracle for the underlying convex cone constraint (see [9]). In the case of interior-
point algorithms (whose efficiency in the theory and practice of SDP has been well
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established), we need to have an efficiently computable self-concordant barrier for the
feasible solutions set or at least for the underlying cone constraints (see [16]).

Some of the most exciting activities in combinatorial optimization are currently
centered around the applications of SDP to combinatorial optimization problems (see
[7]). Such activity in theory and practice is fueled by theoretical results establish-
ing that certain simple SDP relaxations of a combinatorial optimization problem
can be effectively utilized in developing polynomial-time approximation algorithms
with worst-case approximation-ratio guarantees much better than those previously
proven using linear programming or other techniques. (See Goemans [7], Goemans
and Williamson [8], Nesterov [15], and Ye [29].) Also outstanding are the results
on the stable set problem establishing the fact that SDP techniques can be used in
optimizing over a relaxation of the stable set polytope which is contained in the poly-
tope defined by the clique inequalities. (Note that it is NP-hard to optimize over the
latter-mentioned polytope, whereas Grötschel, Lovász, and Schrijver [9] and Lovász,
and Schrijver [12] were able to utilize polynomial-time methods to achieve a better
goal, as far as the proof of approximate optimality of some feasible solutions of the
stable set problem is concerned.)

Given an initial approximation C0 of F , i.e., a compact convex set C0 containing
F , both of the methods, proposed in this paper, generate a sequence of compact
convex subsets Ck (k = 1, 2, . . . ) of Rn such that

(a) c.hull(F ) ⊆ Ck+1 ⊆ Ck (monotonicity),
(b) ∩∞

k=1Ck = c.hull(F ) (asymptotic convergence).

It should be noted that the compactness of each Ck and property (b) imply that

(c) if F = ∅, then ∩k∗

k=1Ck = ∅ for some finite number k∗ (detecting infeasibility).

To generate Ck+1 at each iteration, the SDP relaxation and the linear program-
ming (LP) relaxation play an essential role, and the entire method may be regarded
as an extension of the Lovász–Schrijver lift-and-project procedure for 0-1 integer pro-
gramming problems to semi-infinite nonconvex quadratic optimization problems, with
the use of the SDP relaxation in the first method and the LP relaxation in the sec-
ond method. The LP relaxation, referred to above, is essentially the same as the
reformulation-linearization technique developed for nonconvex quadratic optimiza-
tion problems by Sherali and Alameddine [21]; see also [2, 22]. However, we should
caution the reader that the methods presented here are mostly conceptual in the gen-
eral settings, because we need to solve a semi-infinite SDP (or a semi-infinite LP) at
each iteration. For such a task, an efficient practical algorithm may not be currently
available.

In their paper [6], Fujie and Kojima proposed the semi-infinite convex QOP re-
laxation for nonconvex quadratic optimization problems and showed that the semi-
infinite convex QOP relaxation is not stronger than the SDP relaxation in general,
but the two relaxations are essentially equivalent under Slater’s constraint qualifica-
tion. We establish the exact equivalence between the two relaxations for semi-infinite
nonconvex quadratic optimization problems without any constraint qualification. Us-
ing this equivalence, we derive some fundamental features of our methods including
(a) and (b) above. One of the common themes in this paper is the usage of cones of
matrices (and duality) in our constructions. This was also one of the themes of [12].
The other themes of this paper are the successive applications of SDP relaxations and
LP relaxations. We call the related procedures the successive SDP relaxation method
and the successive semi-infinite LP relaxation method, respectively.

Section 2 is devoted to preliminaries, where we provide some basic definitions
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and properties on quadratic inequality representations for closed subsets of Rn, the
homogeneous form of quadratic functions, the SDP relaxation, etc. In section 3, we
present our first method in detail as well as the main results, including the features (a)
and (b). After we present some fundamental characterizations of the SDP relaxation
in section 4, we give proofs of the main results in section 5. In section 6, we apply our
method to 0-1 semi-infinite nonconvex quadratic optimization problems. Incorporat-
ing the basic results on the lift-and-project procedure given by Lovász and Schrijver
[12] for 0-1 integer convex optimization problems, we show that our method termi-
nates in at most (n + 1) iterations either to generate the convex hull of the feasible
region or to detect the emptiness of the feasible region, where n denotes the number
of 0-1 variables of the problem. Section 7 contains our second method, which is based
on semi-infinite LP relaxations. We establish the same theoretical properties as we
do for the successive SDP relaxation method. In section 8, we present two numerical
examples showing the worst-case behavior of some of our procedures. In particular,
we know from the second example that the best of our procedures requires infinitely
many iterations to generate the convex hull of F in the worst case.

2. Preliminaries.

2.1. Semi-infinite quadratic inequality representation. In this subsection,
we discuss some representations of a closed subset F of Rn in terms of (possibly
infinitely many) quadratic inequalities. If p(·; γ, q,Q) ∈ Q, and p(x; γ, q,Q) ≤ 0
holds for all x ∈ F , we say that p(x; γ, q,Q) ≤ 0 is a quadratic valid inequality for
F and that p(·; γ, q,Q) induces a quadratic valid inequality for F . A quadratic valid
inequality p(x; γ, q,Q) ≤ 0 for F is

linear if Q = O,
rank-1 quadratic if p(x) = (aTx− α)(aTx− β) for ∃a ∈ Rn, ∃α ∈ R

and ∃β ∈ R such that α ≤ aTx ≤ β ∀x ∈ F ,
rank-2 quadratic if p(x) = −(aTx−α)(bTx−β) for ∃a ∈ Rn, ∃b ∈ Rn, ∃α ∈ R

and ∃β ∈ R such that aTx ≤ α and bTx ≤ β ∀x ∈ F ,
spherical if p(x) = (x− d)T (x− d) − ρ for ∃d ∈ Rn and ∃ρ > 0,
ellipsoidal if p(x) = (x−d)TQ(x−d)−ρ for ∃Q ∈ Sn

++, d ∈ Rn and ∃ρ > 0,
convex quadratic if Q ∈ Sn

+,
respectively. It should be noted that if a quadratic valid inequality p(x; γ, q,Q) ≤ 0
for F is rank-2, then the rank of the matrix Q is at most 2 but that the converse is
not necessarily true.

We say that F has a (semi-infinite) quadratic inequality representation P ⊆ Q if

F = {x ∈ Rn : p(x; γ, q,Q) ≤ 0 ∀p(·; γ, q,Q) ∈ P}

holds. To designate the underlying representation P of F , we often write F (P) instead
of F . Whenever F is a closed proper subset of Rn, F has infinitely many represen-
tations. We allow the cases where P consists of infinitely many quadratic functions.
Hence p(x) ≤ 0 ∀p(·) ∈ P can be a semi-infinite system of quadratic inequalities. If
P ⊆ Q is a quadratic inequality representation of F and if p(·) ∈ c.cone(P), then
p(x) ≤ 0 is a quadratic valid inequality, where c.cone(P) denotes the closed convex
cone generated by P. Hence if P ⊆ P ′ ⊆ c.cone(P), then P ′ is a quadratic inequality
representation of F ; F (P) = F (P ′) = F (c.cone(P)). A quadratic inequality repre-
sentation P of F is finite if it consists of a finite number of quadratic functions, and
infinite otherwise. If F is a compact convex subset of Rn, it has a quadratic inequal-
ity representation; in fact, the set of all the linear (rank-2 quadratic or spherical)
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valid inequalities for F forms an inequality representation of F . If, in addition, F is
polyhedral, we can take a finite linear inequality representation.

Let C be a compact subset of Rn. We use the following symbols:

PL(C) = the set of p(·)’s that induce linear valid inequalities for C,

P1(C) = the set of p(·)’s that induce rank-1 quadratic valid inequalities for C,

P2(C) = the set of p(·)’s that induce rank-2 quadratic valid inequalities for C,

PS(C) = the set of p(·)’s that induce spherical valid inequalities for C,

PE(C) = the set of p(·)’s that induce ellipsoidal valid inequalities for C,

PC(C) = the set of p(·)’s that induce convex quadratic valid inequalities for C,

P♯(C) = the set of p(·)’s that induce all quadratic valid inequalities for C.

By definition, we see that
(

PL(C) ∪ P1(C) ∪ PS(C) ∪ PE(C)
)

⊂ PC(C) ⊂ P♯(C),
PS(C) ⊂ PE(C) and

(

PL(C) ∪ P1(C)
)

⊂ P2(C) ⊂ P♯(C).

Note that if C is convex, then the equality

C = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ P}

holds with each P = PL(C),P1(C),P2(C),PS(C),PE(C),PC(C),P♯(C). Among
these, P♯(C) is the strongest quadratic inequality representation of C.

2.2. Homogeneous form of quadratic functions—lifting to the space of

symmetric matrices. We introduce a different description of quadratic functions,
which we call the homogeneous form. This form leads us to a lifting of a quadratic
function defined on the Euclidean space to the space of symmetric matrices and to
the SDP relaxation (or to the semi-infinite LP relaxation in section 4.2). For every
quadratic function p(·; γ, q,Q) ∈ Q, we connect the variable vector x ∈ Rn to the
(1 + n) × (1 + n) rank-1 positive semidefinite matrix

(

1 xT

x xxT

)

=

(

1
x

)

(1,xT ) ∈ S1+n
+

and the triplet of the constant γ ∈ R, q ∈ Rn, and Q ∈ Sn to the (1 + n) × (1 + n)

symmetric matrix
(

γ qT

q Q

)

∈ S1+n. Then we have the identity

p(x; γ, q,Q) = (1,xT )

(

γ qT

q Q

)(

1
x

)

=

(

γ qT

q Q

)

•
(

1 xT

x xxT

)

∀x ∈ Rn.

Thus, if P ⊆ Q is a quadratic inequality representation of F , then

P ≡
{(

γ qT

q Q

)

: p(·; γ, q,Q) ∈ P
}

provides an equivalent representation of F ;

F (P) =

{

x ∈ Rn : P •
(

1 xT

x xxT

)

≤ 0 ∀P ∈ P
}

.

Now we have two kinds of description for a quadratic function on Rn: the usual
form p(·; γ, q,Q) = γ + 2qTx+ xTQx and the homogeneous form introduced above.
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The former is used in section 5, where we prove our main results, while the latter is
suitable for the compact description of the SDP relaxation in section 2.3 and the proof
of its equivalence to the semi-infinite convex QOP relaxation in section 4. We will use
both forms in parallel, choosing whichever is convenient to us in a given situation. It
should be noted that the correspondence

p(·; γ, q,Q) ∈ Q ⇐⇒
(

γ qT

q Q

)

∈ S1+n

is not only one-to-one but also linear. To save notation, we identify the set Q of
quadratic functions with the set S1+n of (1 + n) × (1 + n) symmetric matrices and
any subset of Q with the corresponding subset of S1+n. Specifically, we write P =
(

γ qT

q Q

)

∈ P whenever p(·; γ, q,Q) ∈ P and identify the set of (1 + n) × (1 + n)
symmetric matrices

{(

γ qT

q Q

)

: γ ∈ R, q ∈ Rn, Q ∈ Sn

}

with the set Q of quadratic functions from Rn to R.

2.3. SDP relaxation. Let P be a semi-infinite quadratic inequality represen-
tation of F :

F (P) = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ P}

=

{

x ∈ Rn : P •
(

1 xT

x xxT

)

≤ 0 ∀P ∈ P
}

.

The SDP relaxation F̂ (P) of F (P) with the quadratic inequality representation P is
given by

F̂ (P) ≡







x ∈ Rn :
∃X ∈ Sn such that

(

1 xT

x X

)

∈ S1+n
+ and

γ + 2qTx + Q •X ≤ 0 ∀p(·; γ, q,Q) ∈ P







=















x ∈ Rn :
∃X ∈ Sn such that

(

1 xT

x X

)

∈ S1+n
+ and

P •
(

1 xT

x X

)

≤ 0 ∀P ∈ P















.

If x ∈ F (P) and P ∈ P, then X = xxT satisfies that

(

1 xT

x X

)

=

(

1
x

)

(1,xT ) ∈ S1+n
+ and P •

(

1 xT

x X

)

≤ 0.

This implies that x ∈ F̂ (P) and F (P) ⊆ F̂ (P). We also see that F̂ (P) is convex.
Hence c.hull(F (P)) ⊆ F̂ (P). The SDP relaxation was originally proposed for combi-
natorial optimization problems and 0-1 integer programming problems [12], and later
extended to quadratic optimization problems. See [1, 6, 8, 9, 15, 19, 18, 23, 24, 29].

3. Main results. Now we are ready to describe our method for approximat-
ing a quadratic-inequality-constrained compact feasible region F of the minimization
problem (1.1). Before running the method, we need to fix a semi-infinite quadratic
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inequality representation PF of F , and choose an initial approximation C0 of the con-
vex hull of F , i.e., a compact convex set which contains c.hull(F ). Starting from C0,
the method generates a sequence of compact convex sets Ck (k = 0, 1, 2, . . . ), which
we expect to converge to c.hull(F ). At each iteration, we choose a semi-infinite quad-
ratic inequality representation Pk of the kth approximation Ck of c.hull(F ). Since
c.hull(F ) ⊆ Ck, the union (PF ∪ Pk) forms a semi-infinite quadratic inequality rep-
resentation of F . We then apply the SDP relaxation to (PF ∪ Pk) to generate the
next iterate Ck+1 = F̂ (PF ∪ Pk). It should be emphasized that during none of the
iterations do we modify or strengthen the representation PF directly. We only utilize
the semi-infinite quadratic inequality representation of the compact convex set Ck

that has been computed in the previous iteration.
Successive SDP Relaxation Method.

Step 0: Let k = 0.
Step 1: If Ck = ∅ or Ck = c.hull(F ), then stop.
Step 2: Choose a semi-infinite quadratic inequality representation Pk for Ck.
Step 3: Let

Ck+1 = F̂ (PF ∪ Pk)(3.1)

=























x ∈ Rn :

∃X ∈ Sn such that

(

1 xT

x X

)

∈ S1+n
+

and

P •
(

1 xT

x X

)

≤ 0 ∀P ∈ PF ∪ Pk























.

Step 4: Let k = k + 1, and go to Step 1.
We state two convergence theorems below. We choose the spherical inequality

representation PS(Ck) for Ck at Step 2 of each iteration in the first theorem, while
we choose the rank-2 quadratic inequality representation P2(Ck) for Ck at Step 2 of
each iteration in the second theorem. Their proofs will be given in section 5.

Theorem 3.1. Assume that PF is a semi-infinite quadratic inequality represen-
tation of a compact subset F of Rn, and that C0 ⊇ F is a compact convex subset
of Rn. If we choose Pk = PS(Ck) at Step 2 of each iteration in the successive SDP
relaxation method, then the monotonicity property (a) and the asymptotic convergence
property (b) stated in the introduction hold.

Theorem 3.2. Under the same assumptions as in Theorem 3.1, if we choose
Pk = P2(Ck) at Step 2 of each iteration in the successive SDP relaxation method,
then (a) and (b) remain valid.

We know that if P ⊂ Q and P ′ ⊂ Q are semi-infinite quadratic inequality rep-
resentations of Ck and if P ⊂ P ′, then F̂ (P ′) ⊆ F̂ (P). Hence, even if we replace
“Pk = PS(Ck)” in Theorem 3.1 by “Pk ⊇ PS(Ck)” (or “Pk = P2(Ck)” in Theo-
rem 3.2 by “Pk ⊇ P2(Ck)”), the properties (a) and (b) remain valid. In particular,
(a) and (b) remain valid when we choose any of PE(Ck), PC(Ck), and P♯(Ck) for Pk.

If we take the linear representation PL(Ck) of Ck at every iteration, then we can
prove that

C1 = F̃ (PF ∪ P0) = F̃ (PF ) ∩ C0 and Ck+1 = F̃ (PF ) ∩ Ck = C1 (k = 1, 2, . . . ).

(See Lemma 4.1.) Hence (b) does not follow in general.
In section 8, we will give two numerical examples. The first example shows that

the rank-1 quadratic inequality representation Pk = P1(Ck) is not strong enough
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to ensure (b). The second example shows that even when we choose the strongest
quadratic inequality representation P♯(Ck) of Ck for Pk at every iteration, not only
does the convergence “Ck → c.hull(F )” require infinitely many iterations, but its
speed also becomes extremely slow in the worst case.

4. Fundamental characterization of successive convex relaxation.

4.1. Semi-infinite convex QOP relaxation and its equivalence to SDP

relaxation. The semi-infinite convex QOP relaxation of F (P) with the semi-infinite
quadratic inequality representation P is defined as

F̃ (P) ≡ {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ c.cone(P) ∩Q+}

=

{

x ∈ Rn : P •
(

1 xT

x xxT

)

≤ 0 ∀P ∈ c.cone(P) ∩Q+

}

.

We observe that

F (P) =

{

x ∈ Rn : P •
(

1 xT

x xxT

)

≤ 0 ∀P ∈ c.cone(P)

}

⊆ F̃ (P)

and that the set F̃ (P) is a closed convex set. Hence F (P) ⊆ c.hull(F (P)) ⊆ F̃ (P).
The semi-infinite convex QOP relaxation was introduced by Fujie and Kojima

[6]. It was called the relaxation using convex-quadratic valid inequalities for F (P) in
their paper [6]. The following basic properties of the relaxation are essentially due to
them.

Lemma 4.1. Let PF be a semi-infinite quadratic inequality representation of a
closed set F ⊂ Rn.

(i) Let P be a set of convex quadratic valid inequalities for F , i.e., P ⊆ PC(F ).
Then

F̃ (PF ∪ P) ⊆ F̃ (P) = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ P}.
(ii) Let P be a set of linear valid inequalities for F , i.e., P ⊆ PL(F ). Then

F̃ (PF ∪ P) = F̃ (PF ) ∩ {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ P}.
(iii) Let x′ 6∈ c.hull(F ). Suppose that p(x′; γ, q,Q) ≥ 0 for some p(·; γ, q,Q) ∈ PF

with a positive definite Q. Then x′ 6∈ F̃ (PF ).
Proof. Part (i) follows directly from the definition of the semi-infinite convex

QOP relaxation. Now we show (ii). Let C = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ P}. Then
we see that

F̃ (PF ∪ P) ⊆ F̃ (PF ) ∩ F̃ (P) = F̃ (PF ) ∩ C.

Hence it suffices to show that F̃ (PF )∩C ⊆ F̃ (PF ∪P). Let p(·) ∈ c.cone(PF ∪P)∩Q+.
Then there exist p(·)i ∈ PF (i = 1, 2, . . . , ℓ), p(·)j ∈ P (j = ℓ+1, . . . ,m), and positive
numbers λi (i = 1, 2, . . . ,m) such that

p(·) =

ℓ
∑

i=1

λip(·)i +

m
∑

j=ℓ+1

λip(·)i ∈ Q+.

Since p(·)j ∈ P (j = ℓ + 1, . . . ,m) are linear functions, we see that

ℓ
∑

i=1

λip(·)i ∈ c.cone(PF ) ∩Q+; hence,

ℓ
∑

i=1

λip(x)i ≤ 0 ∀x ∈ F̃ (PF ).
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Moreover,

m
∑

j=ℓ+1

λip(·)i ∈ c.cone(P) ∩Q+; hence,

m
∑

j=ℓ+1

λip(x)i ≤ 0 ∀x ∈ C.

Therefore,

p(x) =

ℓ
∑

i=1

λipi(x) +

m
∑

j=ℓ+1

λipi(x) ≤ 0 ∀x ∈ F̃ (PF ) ∩ C.

This proves (ii). Finally we will show (iii). Since x′ 6∈ F , there is a p′(·) ∈ PF such
that p′(x′) > 0. Hence, if ǫ > 0 is sufficiently small, we obtain that

ǫp(·)′ + p(·) ∈ c.cone(PF ) ∩Q+ and ǫp′(x′) + p(x′) > 0.

This implies x′ 6∈ F̃ (PF ), and proves (iii).
When P is finite and F (P) satisfies Slater’s constraint qualification, Fujie and Ko-

jima [6] showed that the semi-infinite convex QOP relaxation is essentially equivalent
to the SDP relaxation in the sense that F̃ (P) coincides with the closure of F̂ (P). The
theorem below shows the exact equivalence between them, without any constraint
qualification, for more general semi-infinite quadratic inequality representation cases.
Since F̃ (P) is closed, one of the consequences of the next theorem is that F̂ (P) is
always closed. Note that we can assume without loss of generality that P is a closed
convex cone, since every closed set F admits such a representation.

Theorem 4.2. Let P be a closed convex cone, giving a semi-infinite quadratic
inequality representation of a closed subset F of Rn; F (P) = {x ∈ Rn : p(x) ≤
0 ∀p(·) ∈ P}. Then its SDP relaxation and its semi-infinite convex QOP relaxation
coincide with each other; F̂ (P) = F̃ (P).

Proof. Using the dual cone

P∗ = {V ∈ S : V •U ≥ 0 ∀U ∈ P}

of P, we can express the sets F̂ (P) and F̃ (P) as follows:

F̂ (P) =

{

x ∈ Rn : ∃X ∈ Sn such that

(

1 xT

x X

)

∈ (−P∗) ∩ S1+n
+

}

and

F̃ (P) =

{

x ∈ Rn :

(

1 xT

x xxT

)

∈ − (P ∩Q+)
∗

}

=

{

x ∈ Rn :

(

1 xT

x xxT

)

∈ −
[

P∗ +

(

0 0T

0 Sn
+

)]}

.

For the last identity above, we have used the fact that for any pair of closed convex
cones K1 and K2 in Rm, we have (K1 ∩ K2)

∗ = K∗
1 + K∗

2.

First let x ∈ F̂ (P). Then there exists an X ∈ Sn such that

(

1 xT

x X

)

∈ (−P∗) ∩ S1+n
+ .
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Consider the identity

(

1 xT

x xxT

)

= −
[(

−1 −xT

−x −X

)

+

(

0 −0T

−0 X − xxT

)]

.

The first matrix on the right-hand side is in P∗ and in the second matrix of the
right-hand side, we have X − xxT ∈ Sn

+ since it is the Schur complement of 1 in

the symmetric, positive semidefinite matrix
(

1 xT

x X

)

. We have proved x ∈ F̃ (P) and

hence F̂ (P) ⊆ F̃ (P).

For the converse, let x ∈ F̃ (P); that is, there exists some H ∈ Sn
+ such that

(

1 xT

x xxT + H

)

∈ −P∗.

The matrix
(

1 xT

x xxT + H

)

is positive semidefinite if and only if (H + xxT − xxT ) = H is. But the latter was
already established. So,

(

1 xT

x xxT + H

)

∈ (−P∗) ∩ S1+n
+ .

Therefore x ∈ F̂ (P), and F̃ (P) ⊆ F̂ (P) is proved.

4.2. Semi-infinite LP relaxation. In section 7, we will also need an analog of
the above theorem for our successive semi-infinite LP relaxation method. For every
semi-infinite quadratic inequality representation P of a compact subset F of Rn, let
us define

F̂L(P) ≡
{

x ∈ Rn : ∃X ∈ Sn such that P •
(

1 xT

x X

)

≤ 0 ∀P ∈ P
}

and

F̃L(P) ≡
{

x ∈ Rn : γ + 2qTx ≤ 0 ∀p(·; γ, q,Q) ∈ c.cone(P) ∩ L
}

of Sherali and Alameddine [21]. Here, L denotes the set of linear functions on Rn:

L ≡ {p(·; γ, q,Q) ∈ Q : Q = O}.

The next result can be obtained by following the steps of the proof of Theorem 4.2.

Corollary 4.3. Let P be a closed convex cone, giving a semi-infinite quadratic
inequality representation of a closed subset F of Rn; F (P) = {x ∈ Rn : p(x) ≤
0 ∀p(·) ∈ P}. Then F̂L(P) = F̃L(P).

Proof. We observe that

F̂L(P) =

{

x ∈ Rn : ∃X ∈ Sn such that

(

1 xT

x X

)

∈ −P∗

}
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and

F̃L(P) =

{

x ∈ Rn :

(

1 xT

x xxT

)

∈ − (P ∩ L)
∗

}

=

{

x ∈ Rn :

(

1 xT

x xxT

)

∈ −
[

P∗ +

(

0 0T

0 Sn

)]}

.

Since it is easy to see that ∃X ∈ Sn such that
(

1 xT

x X

)

∈ −P∗ if and only if

(

1 xT

x xxT

)

∈ −
[

P∗ +

(

0 0T

0 Sn

)]

,

the proof is complete.

4.3. Invariance under one-to-one affine transformation. Let f(x) = Ax+
b be an arbitrary one-to-one affine transformation on Rn, where A is an n × n non-
singular matrix and b ∈ Rn.

Then

f(F̂ (P)) = f(F̃ (P)) = {y ∈ Rn : p′(y) ≤ 0 ∀p′(·) ∈ c.cone(P ′) ∩Q+},
f(F̂L(P)) = f(F̃L(P)) = {y ∈ Rn : p′(y) ≤ 0 ∀p′(·) ∈ c.cone(P ′) ∩ L},

where P ′ ≡ {p(f−1(·)) : p(·) ∈ P} forms a semi-infinite quadratic inequality repre-
sentation of f(F (P)). This means that the semi-infinite SDP and LP relaxations are
invariant under the one-to-one affine transformation f(x) = Ax + b.

We also see that

PU (f(C)) = {p(f−1(·)) : p(·) ∈ PU (C)}

holds, where U ∈ {L, 1, 2, E, C, ♯}. Therefore, PL(C), P1(C), P2(C), PE(C),
PC(C), and P♯(C) are invariant under one-to-one affine transformations on Rn. If in
addition A is a scalar multiple of an orthogonal matrix, then the above identity also
holds for U = S; hence PS(C) is invariant under such a one-to-one affine transforma-
tion on Rn.

At each iteration of the successive SDP relaxation method, we observe that

f(Ck+1) = {y ∈ Rn : p′(y) ≤ 0 ∀p′(·) ∈ c.cone(P ′
F ∪ P ′

k) ∩Q+} ,

where P ′
F ≡ {p(f−1(·)) : p(·) ∈ PF } forms a semi-infinite quadratic inequality repre-

sentation of f(F ) and P ′
k ≡ {p(f−1(·)) : p(·) ∈ Pk} forms a semi-infinite quadratic

inequality representation of f(Ck). Furthermore, if we choose one of the invariant
semi-infinite quadratic inequality representations PL(Ck), P1(Ck), P2(Ck), PE(Ck),
PC(Ck), and P♯(Ck) of Ck under any one-to-one affine transformation for Pk, we see
that PU (f(C)) = {p(f−1(·)) : p(·) ∈ PU (C)}; hence the identity above turns out to
be

f(Ck+1) =
{

y ∈ Rn : p′(y) ≤ 0 ∀p′(·) ∈ c.cone(P ′
F ∪ PU (f(Ck))) ∩Q+

}

.

Here U ∈ {L, 1, 2, E, C, ♯}. Therefore the successive SDP relaxation method is
invariant under any one-to-one affine transformation. The same comment applies to
the successive semi-infinite LP relaxation method, which we will present in section 7.
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5. Proofs of Theorems 3.1 and 3.2. We present three lemmas, Lemma 5.1 in
section 5.1, Lemma 5.2 in section 5.2, and Lemma 5.3 in section 5.4. Lemma 5.1 proves
the monotonicity property (a) in Theorems 3.1 and 3.2 simultaneously. Lemma 5.2
is used to prove Theorem 3.1 in section 5.3, and Lemma 5.3 to prove Theorem 3.2 in
section 5.5.

5.1. Monotonicity. We first establish the monotonicity in general.
Lemma 5.1. Let C0 be a compact convex set containing F . Fix a closed convex

cone S1+n
+ ⊆ K ⊆ S1+n and U ∈ {L, 1, 2, S, E,C, ♯}. Define

Ck+1 ≡















x ∈ Rn :
∃X ∈ Sn such that

(

1 xT

x X

)

∈ K and

P •
(

1 xT

x X

)

≤ 0 ∀P ∈ PF ∪ PU (Ck)















for k = 1, 2, . . . . Assume that

C0 =















x ∈ Rn :
∃X ∈ Sn such that

(

1 xT

x X

)

∈ K and

P •
(

1 xT

x X

)

≤ 0 ∀P ∈ PU (C0)















.

Then c.hull(F ) ⊆ Ck+1 ⊆ Ck for all k = 0, 1, 2, . . . .
Proof. Since K ⊇ S1+n

+ , it contains all symmetric rank-1 matrices of the form

(

1 xT

x xxT

)

.

Now, as in the arguments in section 2.3, it follows that c.hull(F ) ⊆ Ck for all k =
0, 1, 2, . . . . We will show by induction that Ck+1 ⊆ Ck for all k = 0, 1, . . . . By
the construction of C1 and the assumption imposed on C0, we first observe that
C1 ⊆ C0. Now assume that Ck ⊆ Ck−1 for some k ≥ 1. Then PU (Ck−1) ⊆ PU (Ck),
which implies that PF ∪ PU (Ck−1) ⊆ PF ∪ PU (Ck). Therefore, Ck+1 ⊆ Ck, as
desired.

5.2. Separating hypersphere. The following lemma easily follows from the
separating hyperplane theorem, and the proof is omitted here.

Lemma 5.2. Let C be a compact convex subset of Rn and x′ 6∈ C. Then there
exists a hypersphere S ≡ {x ∈ Rn : ‖x−d‖ = η} which strictly separates the point x′

and C such that

‖x′ − d‖ > η > ‖x− d‖ ∀x ∈ C,(5.1)

where d ∈ Rn and η > 0.

5.3. Proof of Theorem 3.1. The monotonicity property (a) follows from Lem-
ma 5.1 by letting K ≡ S1+n

+ and U ≡ S. Let C ≡ ∩∞
k=0Ck. We know by (a) that

c.hull(F ) ⊆ C ⊆ Ck+1 ⊆ Ck (k = 0, 1, . . . ), and that all the sets c.hull(F ), C, and Ck

are compact sets. To prove (b), we have the following left to show: C ⊆ c.hull(F ).
Assume on the contrary that there exists some x′ ∈ C such that x′ 6∈ c.hull(F ). Then,
by Lemma 5.2, there exists a hypersphere S ≡ {x ∈ Rn : ‖x − d‖ = η} that strictly
separates the point x′ ∈ C from c.hull(F ) such that

‖x′ − d‖ > η > ‖x− d‖ ∀x ∈ c.hull(F ),
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where d ∈ Rn and η > 0. Let η∗ ≡ sup{‖x − d‖ : x ∈ C}. Obviously, η < η∗ =
‖x∗ − d‖ for some x∗ ∈ C. Since x∗ 6∈ c.hull(F ), there is a quadratic function,
p1(·; γ, q,Q) ∈ PF that cuts off x∗; 0 < p1(x

∗; γ, q,Q). Note that if p1(·; γ, q,Q) is
such a quadratic function, then so is αp1(·; γ, q,Q) for any α > 0. Hence we may
assume that the minimum eigenvalue of the matrix Q ∈ Sn is at least (−1). Now
consider a quadratic function p2(·) defined by

p2(x) = (x− d)T (x− d) − (η∗)2 − p1(x
∗; γ, q,Q)/2 ∀x ∈ Rn.

By the definition of η∗, we see that

p2(x) ≤ −p1(x
∗)/2 < 0 ∀x ∈ C.

This means that the open ball B+ ≡ {x ∈ Rn : p2(x) < 0} with the center d and the
radius

√

(η∗)2 + p1(x∗; γ, q,Q)/2 forms a neighborhood of the compact set C. On
the other hand, the sequence {Ck} of compact subsets of Rn satisfies

Ck+1 ⊆ Ck (k = 0, 1, 2, . . . ) and C = ∩∞
k=0Ck.

So, we can find a finite positive number ℓ such that the open ball B+ contains Cℓ.
Hence, p2(x) ≤ 0 is a convex quadratic valid inequality for Cℓ; p2(·) ∈ Pℓ. We also
see that

p1(x
∗; γ, q,Q) + p2(x

∗) = p1(x
∗; γ, q,Q)/2 > 0 and p1(·; γ, q,Q) + p2(·) ∈ Q+.

Thus we have shown that

p1(x
∗; γ, q,Q) + p2(x

∗) > 0 and p1(·; γ, q,Q) + p2(·) ∈ c.cone(PF ∪ Pℓ) ∩Q+.

Therefore, x∗ 6∈ Cℓ+1 = F̃ (PF ∪ Pℓ), so that x∗ 6∈ C = ∩∞
k=0Ck. This is a contradic-

tion. The theorem is proved.

5.4. A family of inequalities of the convex cone of rank-2 quadratic

valid inequalities for the unit ball. Let B denote the unit ball {x ∈ Rn : ‖x‖ ≤
1}. Let Q be an arbitrary n × n symmetric matrix, and let u ∈ Rn be an arbitrary
vector on the boundary of B; ‖u‖ = 1. We will construct a family of quadratic
valid inequalities, which lie in the convex cone of rank-2 quadratic valid inequalities,
pθ(x) ≤ 0, with a parameter θ ∈ (0, π/8) for the unit ball B satisfying the properties
(i), (ii), and (iii) listed in Lemma 5.3.

We first apply the eigenvalue decomposition to the matrix Q ∈ Sn. We may
assume that the first m eigenvalues are nonnegative and the last n − m eigenvalues
are nonpositive for some nonnegative integer m ≤ n. Then we can write the matrix
Q ∈ Sn as

Q =

m
∑

j=1

µjrjr
T
j −

n
∑

j=m+1

µjrjr
T
j ,

where ‖rj‖ = 1 (j = 1, 2, . . . , n) and µj ≥ 0 (j = 1, 2, . . . , n), rj (j = 1, 2, . . . , n)
denote eigenvectors of Q, which are orthogonal to each other, and µj (j = 1, 2, . . . ,m)
and −µj (j = m + 1, . . . , n) denote the eigenvalues corresponding to them.
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For each θ ∈ (0, π/8), we define







































































aj(θ) ≡ u cos θ + rj sin θ (j = 1, 2, . . . , n),

āj(θ) ≡ u cos θ − rj sin θ (j = 1, 2, . . . , n),

bj ≡ +rj , b̄j ≡ −rj (j = 1, 2, . . . ,m),

bj ≡ −rj , b̄j ≡ +rj (j = m + 1, . . . , n),

αj(θ) ≡ max{aj(θ)
Tx : x ∈ B} = ‖aj(θ)‖ (j = 1, 2, . . . , n),

ᾱj(θ) ≡ max{āj(θ)
Tx : x ∈ B} = ‖āj(θ)‖ (j = 1, 2, . . . , n),

βj ≡ max{bTj x : x ∈ B} = ‖bj‖ = 1 (j = 1, 2, . . . , n),

β̄j ≡ max{b̄Tj x : x ∈ B} = ‖b̄j‖ = 1 (j = 1, 2, . . . , n),

λj(θ) ≡ µj

2 sin θ
≥ 0 (j = 1, 2, . . . , n).

(5.2)

Then, ∀θ ∈ (0, π/8) and j = 1, 2, . . . , n, aj(θ), āj(θ), bj(θ), and b̄j(θ) are nonzero
vectors, and

{

aj(θ)
Tx− αj(θ) ≤ 0, bTj x− βj ≤ 0,

āj(θ)
Tx− ᾱj(θ) ≤ 0, b̄

T
j x− β̄j ≤ 0

(5.3)

are linear valid inequalities for the unit ball B. For all θ ∈ (0, π/8), define

pθ(x) ≡ −
n
∑

j=1

λj(θ)
(

(aj(θ)
Tx− αj(θ))(b

T
j x− βj)(5.4)

+ (āj(θ)
Tx− ᾱj(θ))(b̄

T
j x− β̄j)

)

.

Then pθ(·) ∈ c.cone(P2(B)) for all θ ∈ (0, π/8). In particular, pθ(u) ≤ 0 ∀θ ∈ (0, π/8).
Lemma 5.3.

(i) pθ(·) ∈ c.cone(P2(B)).
(ii) pθ(u) → 0 as θ ∈ (0, π/8) tends to 0.
(iii) The Hessian matrix of pθ(·) coincides with −Q.
Proof. Part (i) was already shown.

(ii) Let j be fixed. It suffices to show that

ǫj(θ) ≡ λj(θ)(aj(θ)
Tu− αj(θ))(b

T
j u− βj) and

ǭj(θ) ≡ λj(θ)(āj(θ)
Tu− ᾱj(θ))(b̄

T
j u− β̄j)

converge to zero as θ ∈ (0, π/8) tends to 0. First, we derive that ǫj(θ) converges to
zero as θ ∈ (0, π/8) tends to 0. We see from (5.2) that

ǫj(θ) =
µj(cos θ + uTrj sin θ − ‖u cos θ + rj sin θ‖)

2 sin θ
(bTj u− 1)(5.5)

=
µj

(

cos θ + uTrj sin θ − (cos2 θ + 2uTrj sin θ cos θ + sin2 θ)
1

2

)

2 sin θ

× (bTj u− 1).

Since both the numerator and the denominator above converge to zero as θ ∈ (0, π/8)
tends to 0, we calculate their derivatives at θ = 0. The derivative of the numerator
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turns out to be

µj

(

− sin θ + uTrj cos θ +
uTrj(sin

2 θ − cos2 θ)

(2uTrj sin θ cos θ + 1)1/2

)

(bTj u− 1),

which vanishes at θ = 0. On the other hand, the derivative “2 cos θ” of the de-
nominator “2 sin θ” in (5.5) does not vanish at θ = 0. Thus, ǫj(θ) converges to 0 as
θ ∈ (0, π/8) tends to 0. Similarly, we can prove that ǭj(θ) converges to 0 as θ ∈ (0, π/8)
tends to 0.

(iii) It follows from the definitions (5.2) and (5.4) that the Hessian matrix of
the quadratic function pθ(·)

= −
n
∑

j=1

λj(θ)
aj(θ)b

T
j + bja

T
j (θ) + āj(θ)b̄

T
j + b̄jāj(θ)

T

2

= −
m
∑

j=1

µjrjr
T
j +

n
∑

j=m+1

µjrjr
T
j

= −Q.

From the lemma above, we see that the cone P2(B) is rich enough to contain
rank-2 quadratic functions with any prescribed Hessian, leading to valid inequalities
that are tight at any given point on the boundary of B.

5.5. Proof of Theorem 3.2. The monotonicity property (a) follows from
Lemma 5.1 by letting K ≡ S1+n

+ and U ≡ 2. To derive (b), it suffices to show
that C ≡ ∩∞

k=0Ck ⊆ c.hull(F ) as in the proof of Theorem 3.1. Assume on the con-
trary that x′ 6∈ c.hull(F ) for some x′ ∈ C. By Lemma 5.2, there exists a hypersphere
S ≡ {x ∈ Rn : ‖x− d‖ = η} which strictly separates the point x′ ∈ C and c.hull(F )
such that

‖x′ − d‖ > δ > ‖x− d‖ ∀x ∈ c.hull(F ),

where d ∈ Rn and δ > 0. Let δ∗ ≡ sup{‖x − d‖ : x ∈ C}. Obviously, δ∗ =
‖u− d‖ > δ for some u ∈ C. Since the successive SDP relaxation method using the
rank-2 quadratic representation for Ck at each iteration is invariant under the affine
transformation (x − d)/δ∗ → x′, which maps d to the origin and the hypersphere
S ≡ {x ∈ Rn : ‖x − d‖ = δ∗} onto the unit hypersphere {x′ ∈ Rn : ‖x′‖ = 1}, we
may assume that d = 0 and δ∗ = 1. Thus, we have obtained that

C ⊆ B ≡ {x ∈ Rn : ‖x‖ ≤ 1} and u ∈ C, u 6∈ c.hull(F ), ‖u‖ = 1.

Since u 6∈ F , there is a quadratic function p1(·; γ, q,Q) ∈ PF that cuts off u;
p1(u; γ, q,Q) > 0. Now, let pθ(·) ∈ P2(B) ∩ Q+ be the quadratic function intro-
duced in section 5.4. See (5.2) and (5.4). By Lemma 5.3, we can choose a θ ∈ (0, π/8)
for which pθ(u) ≥ −p1(u; γ, q,Q)/3 holds. Now we define

αk
j = max{aj(θ)

Tx : x ∈ Ck}, βk
j = max{bj(θ)Tx : x ∈ Ck} (1 ≤ j ≤ n),

ᾱk
j = max{āj(θ)

Tx : x ∈ Ck}, β̄k
j = max{b̄j(θ)Tx : x ∈ Ck} (1 ≤ j ≤ n),

p′k(x) = −
n
∑

j=1

λj(θ)
(

(aj(θ)
Tx− αk

j )(bj(θ)
Tx− βk

j )

+(āj(θ)
Tx− ᾱk

j )(b̄j(θ)
Tx− β̄k

j )
)
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for k = 0, 1, 2, . . . . By construction, we know that p′k(·) ∈ c.cone(P2(Ck)). Since both
quadratic functions pθ(·) and p′k(·) have the common Hessian matrix −Q,

p1(·; γ, q,Q)+p′k(·)∈c.cone(PF ∪ Pk) ∩ L ⊂ c.cone(PF ∪ Pk) ∩Q+ ∀k=0, 1, 2, . . . .

We will show that

p1(u) + p′k(u) ≥ p1(u)/3 > 0(5.6)

for every sufficiently large k. Then the above two relations imply u 6∈ Ck+1 for such
a large k. This contradicts the fact u ∈ C = ∩∞

k=0Ck.

Since the sequence of compact convex subsets Ck (k = 0, 1, 2, . . . ) satisfies

Ck+1 ⊆ Ck (k = 0, 1, 2, . . . ) and ∩∞
k=0 Ck = C ⊆ B = {x : ‖x‖ ≤ 1},

we see that

αk
j →α∗

j ≡ max{aj(θ)
Tx : x ∈ C} ≤ αj(θ), βk

j → β∗
j ≡ max{bj(θ)Tx : x ∈ C} ≤ βj ,

ᾱk
j → ᾱ∗

j ≡ max{āj(θ)
Tx : x ∈ C} ≤ ᾱj(θ), β̄k

j → β̄∗
j ≡ max{b̄j(θ)Tx : x ∈ C} ≤ β̄j

as k → ∞ (j = 2, 3, . . . , n). By continuity, we see then that for every sufficiently large
k

p′k(u) ≥ −p1(u)/3 −
n
∑

j=1

λj(θ)
(

(aj(θ)
Tu− α∗

j )(bj(θ)
Tu− β∗

j )

+(āj(θ)
Tu− ᾱ∗

j )(b̄j(θ)
Tu− β̄∗

j )
)

≥ −p1(u)/3 + pθ(u)

≥ −2p1(u)/3 (since pθ(u) ≥ −p1(u)/3).

Thus we have shown that (5.6) holds for every sufficiently large k. This completes
the proof of Theorem 3.2.

6. Application to 0-1 semi-infinite, nonconvex quadratic optimization

problems. We briefly recall two of the Lovász–Schrijver procedures for 0-1 integer
programming problems, and relate them to our successive SDP relaxation method.
Let F be a subset of {0, 1}n whose convex hull is to be approximated. In the Lovász–
Schrijver procedures, we assume that a compact convex subset C0 of Rn satisfying
F = C0 ∩ {0, 1}n is given in advance. We define

K0 ≡ {(λ, λxT ) ∈ R1+n : λ ≥ 0, and x ∈ C0}.

Let KI denote the convex cone spanned by the 0-1 vectors in K0:

KI = {(λ, λxT ) ∈ R1+n : λ ≥ 0, and x ∈ c.hull(F )}.

Here the 0th coordinate is special. It is used in homogenizing the sets of interest in
Rn. Clearly

C0 = {x ∈ Rn : (1,xT ) ∈ K0} and c.hull(F ) = {x ∈ Rn : (1,xT ) ∈ KI}.

The closed convex cone K0 serves as an initial relaxation of KI . Given the current
relaxation Kk of KI , first a convex cone M+(Kk,Kk) in the space of (1 + n)× (1 + n)
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symmetric matrices is defined (the lifting operation). Then a projection of this cone
gives the next relaxation N+(Kk) of KI .

Now, we define the lifting operation in general. Let K and T be closed convex
cones in R1+n. A (1 + n) × (1 + n) symmetric matrix, Y , with real entries is in
M+(K, T ) if

(i) Y ∈ S1+n
+ ,

(ii) Y e0 = Diag(Y ),
(iii) uTY v ≥ 0 ∀u ∈ K∗, v ∈ T ∗. (This condition is equivalent to Y K∗ ⊆ T .)
Here, e0 denotes the unit vector with 0th coordinate 1. Item (ii) above serves

an important role in Lovász–Schrijver procedures as well as in some of the SDP
relaxations used by Goemans and Williamson [8], Nesterov [15], and Ye [29]. This
equation is valid simply because for each j for which xj ∈ {0, 1}, the equation x2

j = xj

is valid. Indeed, our general framework applies to any compact set in Rn, and the
equation Y e0 = Diag(Y ) was not utilized in earlier sections (as it is not valid). In
this section, however, the equation is valid and we utilize it. As will be noted in the
proof of Theorem 6.3, the inclusion of this equation will be guaranteed by our choice
of the initial formulation.

The third condition of Lovász–Schrijver procedures is very interesting. They
present a couple of possibilities for the choice of cone T in 0-1 integer programming.
Among them is the cone spanned by all 0-1 vectors with the first component x0 = 1.
This choice, since the cone T ∗ has a very simple set of generators, allows for the
development of polynomial-time algorithms for approximately solving the successive
SDP relaxations as long as the number of iterations of the successive procedure is
O(1). Their result only assumes that a polynomial-time weak separation oracle is
available for K. The key is that since T ∗ has only O(n) extreme rays, it becomes
trivial to check condition (iii) in polynomial time. On the other hand, Lovász and
Schrijver [12] note that the choice T ≡ K is also possible and leads to at least as good
relaxations as the former choice for T . (In many cases the successive relaxations for
T ≡ K are significantly tighter than the successive relaxations with the simpler choice
of T .) In the case of the latter choice, the possibility of polynomial-time solvability
of the first few successive relaxations depends on the availability of polynomial-time
algorithms to check Y K∗ ⊆ K. Our procedure uses T ≡ K.

Now, we describe the projection step.

N+(K) ≡ {Y e0 : Y ∈ M+(K,K)}.

We also define the iterated operators Nk
+(K) as follows: N0

+(K) := K and Nk
+(K) :=

N+(Nk−1
+ (K)) for all integers k ≥ 1. (We use the notation N+(K), whereas N+(K,K)

is used in [12].)
Another procedure studied in [12] uses a weaker relaxation by removing the con-

dition (i) in the lifting procedure. Let M(K,K) and N(K) denote the related sets for
this procedure. We will refer to the first procedure using the lifting M+(K,K) (and
the projection N+) as the N+ procedure. We will call the other (using M(K,K), and
N) the N procedure. Lovász and Schrijver prove the following.

Theorem 6.1.

K ⊇ N+(K) ⊇ N2
+(K) ⊇ · · · ⊇ Nn

+(K) = KI

and

K ⊇ N(K) ⊇ N2(K) ⊇ · · · ⊇ Nn(K) = KI .
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Let us see how our successive SDP relaxation method applies to 0-1 nonconvex
quadratic optimization problems. Consider a 0-1 nonconvex quadratic program:

minimize cTx

subject to x ∈ F ≡ {x ∈ {0, 1}n : p(x) ≤ 0 ∀p(·) ∈ P ′}.(6.1)

We may assume that the set P ′ contains the quadratic functions xi(xi − 1), i =
1, 2, . . . , n. Then we can replace the 0-1 constraint imposed on the variable xi by the
inequality −xi(xi − 1) ≤ 0. Thus by adding the quadratic functions −xi(xi − 1), i =
1, 2, . . . , n, to P ′, we obtain a quadratic inequality representation PF of the feasible
region F . Let C0 ≡ [0, 1]n. Note that F 6= C0∩{0, 1}n = {0, 1}n in our general setting
here. However, F = C0 ∩ {0, 1}n has been assumed for some compact convex subset
C0 of Rn in the Lovász–Schrijver procedures discussed above.

Lemma 6.2. Suppose that we take C0 = [0, 1]n and P0 ≡ {xi(xi − 1) : i =
1, 2, . . . , n} ⊂ P2(C0). Then F = C1 ∩ {0, 1}n, where

C1 =







x ∈ Rn :
∃X ∈ Sn such that Y =

(

1 xT

x X

)

∈ S1+n
+ and

P • Y ≤ 0 ∀P ∈ PF ∪ P0







.

Proof. Let C ′
1 be the semi-infinite convex QOP relaxation of the set F with the

quadratic inequality representation PF ∪ P0:

C ′
1 ≡ {x ∈ Rn : p(x; γ, q,Q) ≤ 0 ∀p(·; γ, q,Q) ∈ c.cone (PF ∪ P0) ∩Q+} .

In view of Theorem 4.2 and Lemma 5.1, we know that

F ⊆ c.hull(F ) ⊆ C1 = C ′
1 ⊆ C0.

Hence it suffices to show that

{x ∈ C1 : xi = 0 or 1, i = 1, 2, . . . , n} ⊆ F.

If F contains all the 0-1 vectors, the inclusion relation above obviously holds. Now
assume that x′ 6∈ F is a 0-1 vector. Then there is a quadratic function p1(·, γ, q,Q) ∈
PF such that

p1(x
′, γ, q,Q) > 0.

On the other hand, we know that the quadratic function

p2(x) ≡
n
∑

i=1

xi(xi − 1),

with the identity matrix as its Hessian matrix, is a member of c.cone(P0), and that
p2(x

′) = 0. Hence if ǫ > 0 is sufficiently small, then

ǫp1(·, γ, q,Q) + p2(·) ∈ c.cone (PF ∪ P0) ∩Q+,

ǫp1(x
′, γ, q,Q) + p2(x

′) > 0.

This implies that x′ 6∈ C ′
1.
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As a consequence of the lemma above, we see that the 0-1 nonconvex quadratic
optimization problem (6.1) is equivalent to the 0-1 convex quadratic optimization
problem

minimize cTx

subject to x ∈ F = C1 ∩ {0, 1}n.(6.2)

Using this observation, we can prove that in the case of 0-1 nonconvex quadratic
optimization problem (6.1), our successive SDP relaxation method converges in (1+n)
iterations.

Theorem 6.3. The successive SDP relaxation method, applied to the 0-1 non-
convex quadratic optimization problem (6.1), using C0 = [0, 1]n as the initial approxi-
mation of c.hull(F ) and Pk = P2(Ck) in each iteration, terminates in at most (1+n)
iterations with C1+n = c.hull(F ).

Proof. We note that by Lemma 6.2, after one iteration of the successive SDP
relaxation method, we obtain the 0-1 convex quadratic optimization problem (6.2)
that can be used with the original Lovász–Schrijver procedure. We only have to note
that the successive SDP relaxation method becomes the Lovász–Schrijver procedure
after the first iteration. For this purpose, we compare conditions (i), (ii), and (iii) of
the Lovász–Schrijver procedure for K = T = Kk to the conditions used to construct
Ck+1 = F̂ (PF ∪ Pk) in the successive SDP relaxation method. Here

Kk ≡ {(λ, λxT ) ∈ R1+n : λ ≥ 0, x ∈ Ck}.

First, we observe that ∃X ′ ∈ Sn such that Y ′ =
(

1 xT

x X′

)

∈ S1+n
+ if and only if ∀λ ≥ 0,

∃X ∈ Sn such that Y =
(

λ λxT

λx X

)

∈ S1+n
+ . Hence (i) is satisfied. For (ii), note that

xi(xi − 1) ∈ PF ∀ i implies the constraint Y e0 ≥ Diag(Y ) and −xi(xi − 1) ∈ PF ∀ i
implies Y e0 ≤ Diag(Y ). Finally, for (iii), note that a linear inequality aTx ≤ α is
valid for Ck if and only if (α,−aT ) ∈ K∗

k (recall Ck = {x ∈ Rn : (1,xT ) ∈ Kk}).
Therefore, we see that

P2(Ck) = c.cone{−uvT : u,v ∈ K∗
k}.

Step (3.1) of the successive SDP relaxation method implies that Y =
(

1 xT

x X

)

∈
−(P2(Ck))

∗. Thus, we conclude by noting that

Y ∈ −(P2(Ck))
∗ if and only if Y • uvT = uTY v ≥ 0 ∀u,v ∈ K∗.

Now, Theorem 6.1 implies that n more steps of the procedure is sufficient.
The above discussion and the results show that our successive SDP relaxation

method generalizes the Lovász–Schrijver N+ procedure by ignoring condition (ii),
which is no longer valid. Our results in the previous sections already showed that
in this full generality, we still have the asymptotic convergence of the method. It is
therefore interesting to investigate the same questions about the weaker procedure N :

• What is the generalization of procedure N?
• Does the generalization of procedure N satisfy the same theoretical properties

as the successive SDP relaxation method?
We answer both of these questions in the next section. As is shown in [12], in

some cases the procedure N+ is significantly better than N . Procedure N is weaker,
but the relaxations given by it are always polyhedral sets (so LP techniques can be
employed) and N+ requires more general techniques. Hence, sometimes procedure N
might be more manageable even if the procedure N+ is not.
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We should expect that the generalization of procedure N should be only using
condition (iii), Y K∗ ⊆ K, in the definition of the lifting. We would also expect that
the generalization should lead to semi-infinite LP (rather than SDP) relaxations. We
show in the next section that the above-mentioned generalization of procedure N
leads to successive semi-infinite LP relaxations and all the analogs of the theoretical
properties established for our successive SDP relaxations can also be established for
the successive semi-infinite LP relaxations.

7. Successive semi-infinite LP relaxation.

Successive Semi-Infinite LP Relaxation Method.

Step 0: Let k = 0.
Step 1: If Ck = ∅ or Ck = c.hull(F ), then stop.
Step 2: Choose a quadratic inequality representation Pk for Ck.
Step 3: Let

Ck+1 = F̂L(PF ∪ Pk)

≡







x ∈ Rn :

∃X ∈ Sn such that

P •
(

1 xT

x X

)

≤ 0 ∀P ∈ PF ∪ Pk







= F̃L(PF ∪ Pk)

≡
{

x ∈ Rn : γ + 2qTx ≤ 0 ∀p(·; γ, q,Q) ∈ (c.cone(PF ∪ Pk)) ∩ L
}

.

(The equalities above follow from Corollary 4.3.)
Step 4: Let k = k + 1, and go to Step 1.
Theorem 7.1. Assume that PF is a semi-infinite quadratic inequality represen-

tation of a compact subset F of Rn, and that C0 ⊇ F is a compact convex subset of
Rn. If we choose Pk = P2(Ck) at Step 2 of each iteration in the successive semi-
infinite LP relaxation method, then the monotonicity property (a) and the asymptotic
convergence property (b) stated in the introduction hold.

Proof. We can apply the same proof as the one given for Theorem 3.2 in section 5.5
to the theorem.

Note that we can define another semi-infinite LP relaxation based on the semi-
infinite convex QOP relaxation. Clearly, if Q ∈ Sn

+, then

γ + 2qTx + xTQx ≤ 0 implies γ + 2qTx ≤ 0 ∀x ∈ Rn.

So, we can define a semi-infinite LP relaxation based on the above observation:

F̂L
+ ≡



















x ∈ Rn :

∃X ∈ Sn,

(

γ qT

q O

)

•
(

1 xT

x X

)

≤ 0,

∀
(

γ qT

q Q

)

∈ c.cone(P) ∩Q+



















and

F̃L
+ ≡



















x ∈ Rn :

(

γ qT

q O

)

•
(

1 xT

x xxT

)

≤ 0,

∀
(

γ qT

q Q

)

∈ c.cone(P) ∩Q+



















.
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In this case, the equivalence F̂L
+ = F̃L

+ is evident. The convergence of the successive

semi-infinite LP relaxation method using F̂L
+ can be established by following the proofs

of Theorems 3.1 and 3.2. Instead, we note F̃L
+ ⊆ F̃L. Therefore, Theorem 7.1 also

implies that this particular semi-infinite LP relaxation method has the properties (a)
and (b) mentioned in the theorem.

8. Further discussions on successive convex relaxations.

8.1. Conic quadratic inequality representation. The conic quadratic in-
equality presented below is a generalization of the linear matrix inequality [3, 28] and
the bilinear matrix inequality [14, 20]. It will be shown that any conic quadratic
inequality can be reduced to a semi-infinite system of standard quadratic inequalities
and vice versa.

Let K and K∗ = {v ∈ Rm : v · u ≥ 0 ∀u ∈ K} be a closed convex cone in Rm

and its dual. Here u · v denotes an inner product of u ∈ Rm and v ∈ Rm. For all
u ∈ Rm, we write u �K 0 when −u lies in K. Now we introduce a conic quadratic
inequality :

x = (x1, x2, . . . , xn)
T
,

n
∑

i=0

n
∑

j=0

gijxixj �K 0 and x0 = 1.(8.1)

Here gij , i = 0, 1, . . . , n, j = 0, 1, . . . , n, are constant vectors in Rm. We may assume
without loss of generality that gij = gji. The inequality (8.1) turns out to be a system
of m usual quadratic inequalities on Rn if we take the nonnegative orthant Rm

+ of Rm

for the cone K. The inequality (8.1) turns out to be a quadratic matrix inequality,
which is a generalization of linear and bilinear matrix inequalities [3, 28] if we identify
the space of ℓ× ℓ symmetric matrices with Rm and we take the positive semidefinite
cone Sℓ

+ of matrices for the cone K, where m = ℓ× (ℓ + 1)/2 for some ℓ ≥ 1.
We can rewrite the conic quadratic inequality (8.1) as a semi-infinite system of

standard quadratic inequalities in the homogeneous form.

P •
(

1 xT

x xxT

)

≤ 0 ∀P ∈ P(8.2)

for some P ⊆ Q = S1+n. This means that we can easily include any conic quadratic
inequality in the semi-infinite quadratic inequality representation of the feasible region
F of the maximization problem (1.1). To see the equivalence between (8.1) and (8.2)
for some P ⊆ Q = S1+n, we observe that (8.1) can be rewritten as

x = (x1, x2, . . . , xn)
T
,





n
∑

i=0

n
∑

j=0

gijxixj



 · v ≤ 0 ∀v ∈ K∗ and x0 = 1.

Therefore, if we define

P (v) ≡











g00 · v g01 · v · · · g0n · v
g10 · v g11 · v · · · g1n · v

...
...

...
...

gn0 · v gn2 · v · · · gnn · v











∈ Q = S1+n ∀v ∈ K∗,

P ≡ {P (v) : v ∈ K∗},
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we obtain the desired semi-infinite system (8.2) of standard quadratic inequalities,
which is equivalent to (8.1).

Let F (P) denote the solution set of (8.2) with its quadratic inequality represen-
tation P ≡ {P (v) : v ∈ K∗}. Applying the SDP relaxation to F (P), we obtain
that

F̂ (P) ≡







x ∈ Rn :
∃X ∈ Sn such that Y =

(

1 xT

x X

)

∈ S1+n
+ and

P (v) • Y ≤ 0 ∀v ∈ K∗







=























x ∈ Rn :

∃X ∈ Sn such that Y =

(

1 xT

x X

)

∈ S1+n
+ and





n
∑

i=0

n
∑

j=0

gijYij



 · v ≤ 0 ∀v ∈ K∗























=



















x ∈ Rn :

∃X ∈ Sn such that Y =

(

1 xT

x X

)

∈ S1+n
+ and

n
∑

i=0

n
∑

j=0

gijYij �K 0



















.

The set in the last line corresponds to the SDP relaxation to the solution set of (8.1).
This implies that we can apply the SDP relaxation directly to the conic quadratic
inequality (8.1) without converting it into the semi-infinite system (8.2) of standard
quadratic inequalities.

Conversely, we can reduce any semi-infinite system of standard quadratic inequal-
ities to a conic quadratic inequality. To show this, consider a semi-infinite system (8.2)
of standard quadratic inequalities in the homogeneous form. We may assume without
loss of generality that P ⊆ S1+n is a closed convex cone. We can rewrite (8.2) as

((

1
x

)

(1,xT )

)

�P∗ O,(8.3)

which is a conic quadratic inequality.
Let F denote the solution set of the conic quadratic inequality (8.3) that we have

derived from (8.2) above. Applying the SDP relaxation to F , we obtain that

F̂ ≡
{

x ∈ Rn : ∃X ∈ Sn such that Y =

(

1 xT

x X

)

∈ S1+n
+ and Y �P∗ O

}

=







x ∈ Rn :
∃X ∈ Sn such that Y =

(

1 xT

x X

)

∈ S1+n
+ and

P • Y ≤ 0 ∀P ∈ P







.

Note that the set in the last line corresponds to the SDP relaxation of the solution
set of the semi-infinite system (8.2) of standard quadratic inequalities.

In view of the discussions above, we know that the conic quadratic inequality
representation is as general as the semi-infinite quadratic inequality representation
and that the SDP relaxations to both representations are equivalent. When we deal
with the semi-infinite convex QOP relaxation, however, the semi-infinite quadratic
inequality representation seems more convenient than the conic quadratic inequality
representation.
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8.2. A counterexample to the convergence for the rank-1 quadratic

inequality representation case. The example below shows that the rank-1 quad-
ratic inequality representation is not strong enough to ensure the convergence of the
successive SDP relaxation method. Let

F ≡ {x = (x1, x2)
T : p0(x) ≤ 0, ‖x‖2 ≤ 1},

S ≡ {a ∈ R2 : a2
1 + a2

2 = 1},
B ≡ {x = (x1, x2)

T ∈ R2 : x2
1 + x2

2 ≤ 1},
C0 ≡ B,

p0(x) ≡ −(x1 − 1)2 − (x2 − 1)2 + 1,

PF ≡ {p0(x)} ∪ P1(B),

where P1(B) denotes the rank-1 quadratic inequality representation of the unit ball,
which consists of all quadratic functions such that (aTx− 1)(aTx + 1) (a ∈ S). We
see that

c.hull(F ) = {x = (x1, x2)
T ∈ B : x1 + x2 ≤ 1}.

Theorem 8.1. Suppose that we take Pk = P1(Ck) (the rank-1 quadratic in-
equality representation of Ck) in the successive SDP relaxation method applied to the
example above. Then Ck = B (k = 0, 1, 2, . . . ).

Proof. By definition, C0 = B. We will prove C1 = B, which suffices to establish
the theorem. First observe that C1 ⊆ B. Hence it suffices to show B ⊆ C1 or
equivalently for all p(·) ∈ c.cone(PF ) ∩Q+,

p(x̄) ≤ 0 ∀x̄ ∈ B.

Let p(·) ∈ c.cone(PF ∪ Pk) ∩ Q+ and x̄ ∈ B be fixed. Then we can choose λi ≥ 0
(i = 0, 1, . . . , ℓ) and ai ∈ S (i = 1, 2, . . . , ℓ) such that

p(x) = λ0p0(x) +

ℓ
∑

i=1

λi(a
T
i x− 1)(aT

i x + 1) ∀x ∈ Rn.

If λ0 = 0, then p(x̄) ≤ 0. Now assume that λ0 > 0. In this case, we may further
assume without loss of generality that λ0 = 1; hence, for all x ∈ Rn,

p(x) = p0(x) +

ℓ
∑

i=1

λi(a
T
i x− 1)(aT

i x + 1)

= xT

(

ℓ
∑

i=1

λiaia
T
i − I

)

x−
ℓ
∑

i=1

λi + 2eTx− 1.

It follows from p(·) ∈ Q+ that the Hessian matrix
(
∑ℓ

i=1
λiaia

T
i − I

)

is positive
semidefinite. Hence if we denote the largest and the smallest eigenvalues of the matrix
∑ℓ

i=1
λiaia

T
i by µmax and µmin, then 1 ≤ µmin ≤ µmax. We also see that

µmax + µmin = trace

(

ℓ
∑

i=1

λiaia
T
i

)

=

ℓ
∑

i=1

λia
T
i ai =

ℓ
∑

i=1

λi.
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Hence

p(x̄) = x̄T

(

ℓ
∑

i=1

λiaia
T
i − I

)

x̄−
ℓ
∑

i=1

λi + 2eT x̄− 1

≤ µmax − 1 −
ℓ
∑

i=1

λi + 2eT x̄− 1

= 2eT x̄− µmin − 2

≤ 2
√

2 − 3

< 0.

8.3. A counterexample to the finite termination for the strongest quad-

ratic inequality representation case. The example below shows that in the worst
case, even when we take the strongest quadratic inequality representation P♯(Ck) for
Ck at every iteration,

• the successive SDP relaxation method requires infinitely many iterations, and
• the convergence is extremely slow.

For every x = (x1, x2)
T ∈ R2, let

p1(x) ≡ x2
1 + x2

2 − 4,

p2(x) ≡ −(x1 − 1)2 − (x2 − 2)2 + 5,

p3(x) ≡ p2(−x1, x2) = −(x1 + 1)2 − (x2 − 2)2 + 5.

Define

F ≡ {x = (x1, x2)
T ∈ R2 : pi(x) ≤ 0 (i = 1, 2, 3)},

PF ≡ {p1(·), p2(·), p3(·)},
C0 = {x = (x1, x2)

T ∈ R2 : p1(x) ≤ 0}.

Then

c.hull(F ) = {x = (x1, x2)
T ∈ R2 : p1(x) ≤ 0, x2 ≤ 0}

= {x = (x1, x2)
T ∈ R2 : x2

1 + x2
2 ≤ 4, x2 ≤ 0}.

Theorem 8.2. Suppose that we take Pk = P♯(Ck) (the strongest quadratic in-
equality representation of Ck) in the successive SDP relaxation method applied to the
example above.

(i) Ck is symmetric with respect to the x2 axis:

(x1, x2)
T ∈ Ck if and only if (−x1, x2)

T ∈ Ck.

(ii) Let

ξk ≡ max{x2 : (0, x2)
T ∈ Ck}.

Then

0 < ξk ≤ 2,(8.4)

0 < ξ̄k+1 ≡ ξk
1 + ξk(1 − ξk/4)

≤ ξk+1.(8.5)
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Proof. We will prove (i) and (ii) by induction.
(i) Obviously the assertion is true for k = 0. Assume that Ck is symmetric with

respect to the x2 axis. Then we know that

p(x1, x2) ∈ c.cone(PF ∪ Pk) ∩Q+ if and only if p(−x1, x2) ∈ c.cone(PF ∪ Pk) ∩Q+.

This ensures that Ck+1 is symmetric with respect to the x2 axis.
(ii) By definition, we know that ξ0 = 2. Hence (8.4) holds for k = 0. Assuming

that (8.4) holds, we prove that (8.5) holds. We first observe that

(2, 0)T ∈ c.hull(F ) ⊆ Ck, (0, ξk)
T ∈ Ck and (0, ξ̄k+1)

T ∈ Ck.(8.6)

It suffices to show that (0, ξ̄k+1)
T ∈ Ck+1 or equivalently

p(0, ξ̄k+1) ≤ 0 ∀p(x1, x2) ∈ c.cone(PF ∪ Pk) ∩Q+.

Assume on the contrary that

p(0, ξ̄k+1) > 0 for ∃p(·) ∈ c.cone(PF ∪ Pk) ∩Q+.

Since p(·) ∈ c.cone(PF ∪ Pk) ∩Q+, we can choose λi ≥ 0 (i = 2, 3) and

p′(x) ≡ Q11x
2
1 + 2Q12x1x2 + Q22x

2
2 + 2q1x1 + 2q2x2 + γ ∈ Pk

such that

p(x) =

3
∑

i=2

λipi(x) + p′(x) ∈ c.cone(PF ∪ Pk) ∩Q+.

Here we remark that p1(·) can be incorporated into p′(·) since p1(·) ∈ Pk. By the
symmetry with respect to the x2 axis, we see that

p(−x1, x2) =

3
∑

i=2

λipi(−x1, x2) + p′(−x1, x2) ∈ c.cone(PF ∪ Pk) ∩Q+.

Thus, defining p̃(x) = (p(x1, x2) + p(−x1, x2))/2, µ = λ2 + λ3, and p′′(x1, x2) =
(p′(x1, x2) + p′(−x1, x2))/2, we obtain that

p̃(0, ξ̄k+1) = p(0, ξ̄k+1) > 0,(8.7)

p′′(x1, x2) = Q11x
2
1 + Q22x

2
2 + q2x2 + γ ∈ Pk,

p̃(x1, x2) = µ(−x2
1 − (x2 − 2)2 + 4) + p′′(x1, x2) ∈ Q+.

It follows from p′′(x1, x2) ∈ Pk and the third inclusion relation of (8.6) that p′′(0, ξ̄k+1)
≤ 0. Hence µ > 0. We may further assume without loss of generality that µ = 1;
redefine p(x) = p(x)/µ, p′′(x) = p′′(x)/µ, . . . , etc.; then all the relations above
remain valid. Since p̃(x1, x2) ∈ Q+, we see that Q11 ≥ 1 and Q22 ≥ 1. By (8.6) and
p′′(x1, x2) ∈ Pk,

0 ≥ p′′(2, 0) = 4Q11 + γ ≥ 4 + γ and 0 ≥ p′′(0, ξk);

hence

p̃(0, 0) = (−02 − 22 + 4) + p′′(0, 0) = γ ≤ −4 and

p̃(0, ξk) = (−02 − (ξk − 2)2 + 4) + p′′(0, ξk) ≤ (4 − ξk)ξk.
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Therefore, by the convexity of the quadratic function p̃(x), we obtain that

p̃(0, ξ̄k+1) = p̃

(

ξk − ξ̄k+1

ξk
(0, 0)T +

ξ̄k+1

ξk
(0, ξk)

T

)

≤ ξk − ξ̄k+1

ξk
p̃(0, 0) +

ξ̄k+1

ξk
p̃(0, ξk)

≤ ξk − ξ̄k+1

ξk
(−4) +

ξ̄k+1

ξk
(4 − ξk)ξk

=
4ξ̄k+1

ξk
(1 + (1 − ξk/4)ξk) − 4

= 0.

This contradicts (8.7).
The above example is simple, yet it illustrates great difficulties for the successive

SDP relaxation method. For example, ξk+1/ξk → 1. Therefore, the convergence is
slower than linear.

Note that, in any dimension, if we take a pair of ball constraints, one convex
(inclusion), the other nonconvex (exclusion), then both of the successive SDP and
semi-infinite LP relaxation methods stop in one iteration, returning the convex hull
of the intersection. Also, in the above example, if we knew that p2(·) affects only
the definition of F in the region x1 ≥ 0 and that p3(·) is only effective in the region
x1 ≤ 0, we could do elementary modifications to the method to speed up convergence
tremendously. This is a good elementary example to illustrate the fact that for such
methods to become more efficient in practice, hybrid approaches including branch-
and-bound and branch-and-cut seem necessary. We make further remarks in the next
section.

9. Concluding remarks. We propose extensions of two fundamental lift-and-
project procedures N and N+ of Lovász and Schrijver [12]. The original procedures
were proposed for 0-1 integer programming problems to compute the convex hull
of feasible (integer) solutions. Our procedure applies to any nonconvex region and
as a result we do not use the key equations, Y e0 = Diag(Y ), used in N and N+

procedures. Therefore, our relaxations are based either on two conditions: Y is
positive semidefinite and Y K∗ ⊆ K (successive SDP relaxation method), or on only
one condition: Y K∗ ⊆ K (successive semi-infinite LP relaxation method). In both
cases we established the properties (a) monotonicity and (b) asymptotic convergence.
The weakest version of our procedures satisfying the properties (a) and (b) uses only
rank-2 quadratic valid inequalities. We showed in section 6 that such inequalities
ensure the condition Y K∗ ⊆ K. Finally, in section 8 we showed that even the strongest
of such relaxation procedures (using all quadratic valid inequalities) uses infinitely
many iterations to converge. In the above sense, the strongest positive result is given
in section 7 by the successive semi-infinite LP relaxation method based on rank-2
valid inequalities.

On the one hand, theoretically speaking, the best results are given in section 7:
the weakest algorithm achieving the strongest results. Moreover, the successive semi-
infinite LP relaxation method is more likely to be practical for a given general problem.
On the other hand, the relative value of SDP relaxations has been quite impressive
so far on some very special problems (e.g., the stable set problem [12]) and less
impressive on others (e.g., the matching problem [25]). Therefore, one interesting
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research direction is to search for interesting classes of nonconvex sets for which the
successive SDP relaxation method is significantly better than the successive semi-
infinite LP relaxation method. For the same reason, (partial) characterizations of
nonconvex sets on which both methods perform comparably are also important.

Our convergence proofs are by contradiction, but the main argument is about
cutting off a point using valid inequalities induced by the underlying construction.
The strongest convergence result (for the weakest algorithm) uses separating hyper-
spheres. In the other proofs, for the bad points, the separating hyperspheres may have
huge radii and converge to hyperplanes. However, for certain points and shapes, the
advantage of using more general convex quadratic inequalities is clear. This discussion
motivates us to suggest another avenue for research. It would be interesting to find
certain invariants and measures of the input of our procedures that lead to nontriv-
ial, descriptive convergence rates for our methods, perhaps only for some interesting
subclass of problems.

Recently, Kojima and Takeda [11] discussed the computational complexity of the
successive SDP and semi-infinite LP relaxation methods. They gave an upper bound
on the number of iterations which the methods require to attain a convex relaxation of
a quadratically constrained compact set F with a given accuracy ǫ > 0, in terms of ǫ,
the diameter of the initial relaxation C0, the diameter of F , and some other quantities
characterizing the Lipschitz continuity and the nonconvexity and nonlinearity of the
quadratic inequality representation PF of F .

The major difficulty in implementing the idea of the successive SDP (or semi-
infinite LP) relaxation method in practice is the solution of a continuum of semi-
infinite SDPs (or semi-infinite LPs) to generate a new approximation Ck+1 of the
convex hull of the feasible region F of a nonconvex quadratic program at each itera-
tion. In their succeeding paper [10], the authors propose implementable variants by
introducing two new techniques, a discretization technique for approximating contin-
uum of semi-infinite SDPs (or semi-infinite LPs) by a finite number of standard SDPs
(or LPs) with a finite number of linear inequality constraints, and a localization tech-
nique for generating a convex relaxation of F that is accurate only in certain directions
in a neighborhood of the objective direction c. They established that, Given any posi-
tive number ǫ, there is an implementable discretized-localized variant of the successive
SDP (or semi-infinite LP) relaxation method which generates an upper bound of the
objective values within ǫ of their maximum in a finite number of iterations. See also
[27] for a practical implementation of this variant and some numerical results.
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