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Abstract

We provide a pseudo—polynomial iteration complexity analysis for interior—point
methods under the assumption that the smaller of the dimensions is fired. We show
that the bounds proven can be independent of the larger of the dimensions defining the
problem instance. The complexity analysis is based on the distance between two sets
defined by some underlying oblique projections.
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1 Introduction

Our motivation is to find new ways of explaining the slow growth in the number of iter-
ations required by interior—point methods as one of the dimensions (m := the number
of equality constraints) is fixed and the other (n := the number of variables) becomes
very large (see Bixby, Gregory, Lustig, Marsten, Shanno [2] and Lustig, Marsten and
Shanno [6]). We will use some recent results involving scaled projections to derive
complexity bounds on the number of iterations that can be independent of n. The
main result is showing that when a vector is projected onto the null space of a matrix,
infinity norm of the projection cannot be more than a constant times the infinity norm
of the initial vector, where the constant depends only on the entries and the number
of rows in the matrix. So, if the matrix has integral entries and m is O(1) then the
constant will be independent of n (so if the constant depends on n, it is implied that
the matrix has some entries growing with n).

We consider linear programming problems in the following primal (P) and dual (D)
forms:

(P) minimize cTe
Az = b,
z > 0,
(D) maximize b7y
ATy + s = ¢
> 0,

where A €¢ R™*", b ¢ R™, and ¢ € IR". We will assume A has full row rank and that
there exist interior solutions for both problems, i.e.,

Fo:={(z,8) >0:2 € F(P),s € F(D)} #0,

where F(P) and F(D) denote the sets of feasible solutions for the primal and dual
problems respectively. Most of the time we will deal only with s as a dual feasible
solution. So, whenever we say s € F(D), we mean that s > 0 and there exists a
y € R™ such that ATy 4+ s = ¢. Given a vector denoted by a lower-case roman letter
(e.g. z), the corresponding upper-case letter (e.g. X) will denote the diagonal matrix
whose entries are the components of that vector (i.e. X = diag(z)), e will denote
the vector of ones, and ¢ will denote the desired improvement in the precision of the
solution. We will denote the components of a vector using subscripts and the iterate
numbers using superscripts. Note that given z € F(P) and s € F(D) duality gap

T~ 8

corresponding to the pair (z, s) is 2Ts. Henceforth, we will use p to denote

We first describe a generic primal-dual algorithm (see Kojima, Mizuno and Yoshise
[4], Monteiro and Adler [10], and Mizuno, Todd and Ye [9]). The search direction



is chosen as a linear combination of the primal-dual affine—scaling direction and the
primal-dual centering direction. dz and ds will denote the components of the search
direction in the primal feasible region and the dual feasible region respectively.

Suppose we have an interior-point solution (z,s) € Fo and we are given a value
for the centering parameter v (v € [0,1]). Then a search direction (dz, ds) at (z,s) is
given by the following set of equalities (see Kojima et al. [3]):

dﬂ)(’)’) = _X1/2S_1/2PA(X1/251/2 _ ')’,U«X_1/2S_1/2)e,
ds(y) = —X7VESYAI - Pr)(XV28M? — quX V25 72e,

where A := AX1/2§-1/2 and P;:=1— AT(AAT)1 4, the projection matrix onto the
null space of A. The next iterates in terms of a can be written as

oa) = @+ ade(y),
s(a) = s+ ads(y).

A primal-dual interior-point algorithm takes an iterate (z,s) € Fo and defines the
next iterate as (z(a), s(a)) derived as above for some v € [0,1] and some o > 0 such
that (z(a),s(a)) € Fo. The centering parameter ¥ and the step size a may vary
from one iteration to the next. When v is set to zero for all iterations (no centering
component in the search direction) we have a primal-dual affine—scaling algorithm and
the corresponding search direction is called primal-dual affine-scaling direction. When
7 is set to 1, we have what is called primal-dual centering direction (along this direction
the duality gap stays constant).

Indeed, the interiority of the iterates is one of the most important issues for these
algorithms. Given a positive constant y, ‘the most central pair’ (z, s) with duality gap
nu is usually defined by (z,s) € Fo such that z;s; = p Vj. Taking different values for
p we can define a path of central solutions or the central path (see Megiddo [7]). Using
the co-norm (also the 2-norm), neighbourhoods of the central path have been defined
and used by Mizuno et al. [9]. Using the co-norm, we get

N(r) i={(2,5) € ot | Xs — pelloo < (1 - m)ui}
Here, m € [0,1]. Alternatively, we can write:
N(r):={(z,s) € Fo : min{z;s;} > mp and max{z;s;} < (2 —7)u}.
j J
Let A/ be a neighbourhood of the central path and 4’ € (0, 1) be a constant. Suppose

(29, s%) € N with (2°)Ts® < 2t is given. We can now state a generic primal-dual
algorithm that uses the neighbourhood N as follows:



Algorithm:

k:=0

While ((z%)Ts* > 27t) do
(z,8) := (2", "),
compute dz(y), ds(7y)
choose the maximum step size a € (0,1) such that (z + adz(y), s+ ads(y)) € N,
(241, s51) i= (2 + adz(v), s + ads(v)),
k=Fk+1

end

In the next section we describe some recent results related to scaled projections and
show how one might use these results to get new complexity bounds for interior—point
algorithms. Section three includes two analyses : one for the algorithm stated here and
one for a primal-dual affine—scaling algorithm. Section four provides a way of relating
the complexity bound more directly to the input (namely the entries of A). The fifth
section is a brief conclusion.

2 Oblique Projections

Let D be the set of all real n x n diagonal positive definite matrices. Define

N := {z:AD?¢ =0, D € D},
R, = {y:y=Aw, |yll, =1}
Let cl(.) denote the closure of a set and d( ., .) denote the Euclidean distance between

two sets in IR™. Stewart [13] and Todd [14] independently proved the following:

Theorem 2.1.
c(N)N Ry =0 and d(cl(N),R3) = p2 > 0.



We will see that the distance between the closure of N and R, yields interesting
relations on the norms of projections and the projected vectors. First, we would like
to note that we can take & := 0 € R™ (¢ € N) to show that the distance is at most
one in any p—norm. Let columns of U form an orthonormal basis for the range of AT.
Then Uy will denote the submatrix formed by the rows of U whose index set is defined
by J. Stewart [13] provided an estimate for p, by proving the following:

< i min U.
P2 S o lpin yomin(Ur),
where omin(Us) denotes the smallest nonzero singular value of Uy. O’Leary [12] later
showed that

P2 > Umin(UJ);

min
T 0#£JC{1,2,...,n}

hence, establishing

Theorem 2.2.

P2 Umin( UJ)

= min
0£JC{1,2,...,n}

We will show that when we measure the distances with the co-norm and take p = oo
in the definition of the set R,, the resulting distance p,, can be easily related to the
iteration complexity of interior—point methods.

Let » ¢ R™, » ¢ N. Define

y = AT(AD?AT)"'AD%r, note y # 0. (1)
We have
r = y+r—y
ro oy r—y
[19lleo 19lleo  [19lloo

Now, note IIyﬁm € Ry and AD?(r — y) = 0; so, ﬁ € N. Hence, we have

L T
lole = Molloe ™ Tioleo o

> Poo-

From which we get



[I7[] oo
Yoo < . 2
Yl ; (2)

o

Getting from (1) to (2) we used the analysis given by Vavasis [16]. For a properly
chosen r and D, inequality (2) provides a new way of estimating the coefficients of
the second order terms in the complexity analysis of interior—point methods. We will
confine ourselves to the analysis of primal-dual algorithms.

Given v € IR", and A and D as before, v, denotes the orthogonal projection of v
onto the null space of AD and v, := v — v, denotes the orthogonal projection of v onto
the range of DAT. Let (D) be the condition number of D. With these definitions we
have:

Lemma 2.3.
2:*(D)| |15
[2plloollvgllec < ———5—=-
P
Proof: Choosing y as in (1), we get
Dy = DAT(AD?*AT)"'AD?r

= (Dr),.
If ||Dr||so is zero then there is nothing to prove. Otherwise, we have
[(Pr)gllo  _ 1Dyl
| D[] oo | D[] oo
_ w(D)lyls
7]l oo
_ WD)
Poo
To get the last inequality we used (2). Now, we let v = Dr, to get
~(D)||v]]
[Vgllec < ————.
Poo
Since v, + v, = v, we get
[%plloollvgllec = [|0gllcol|v — vglloo
< vglloo ([[2llco + [1glloo)
k(D)||v||2 k2(D)||v]|?
< D)l | < )2H o
P P
2:*(D)| |15
— p2 M
The last inequality uses the fact that po, < 1 and (D) > 1. O



3 Analysis of Iteration Complexity

The following results (Lemma 3.1 - 3.2 ) are quite standard in the primal-dual frame-
work (see for instance Kojima et al. [4], Monteiro and Adler [10], Mizuno, Todd and

Ye [9]).

Lemma 3.1.

(a) zj(e)sj(@) = (1 = a)z;s; + ayp+ a’dz;(y)ds;(v).

(b) (@) := a(a)Ts(a)/n = [1 - a(l 7).

Lemma 3.2.

(z,8) € N(x )anda<m1n{m 1}1mp11es( (a),s(a)) € N(x).

We will show that the second-order term ||dX ds|| can be bounded by a multiple
of %22&. This is yet a new way of estimating the second-order terms which enables
us to present a complexity analysis giving bounds that can be independent of n.

Theorem 3.1. A generic primal-dual interior—point algorithm using wide neighbour-

2
hoods terminates in O(%) iterations.

Proof: Define v := (X1/2§1/2 — yuX~1/2§-1/2)e. Then dX (y)ds(7) = V,v,. We have

14X (1)ds()llo < ol
2 .2

)
P

To get the last inequality, we used Lemma 2.3. Now we can bound ||v||%:

loflz, = max{mgsj—mﬂ“}
J szj

(2—m)p—2yp+ M

IN

2

= p 2(1—7)—7f+7—
K

Define C' := [2(1 —7)—7+ 1—2] . Since 7 and 7 are in (0, 1) constants, C' is a constant
depending only on = and +; for instance, if # > v/2 then C' < 2. So, [|[dX (7)ds(7)]|eo <



2Ck%(D)u/p%,. By Lemma 3.2, the step size a can be taken as at least (Lom)yp% Hence,

2Ck2(D)

by Lemma 3.1.(b), the duality gap decreases at least by a fraction of % at

2
each iteration. Therefore, in O(%) iterations we must have 27s < 27%. O

3.1 Constant—Potential Affine—Scaling Algorithm

In this subsection we illustrate how primal-dual affine-scaling algorithm (see Monteiro,
Adler and Resende [11]) will terminate in at most O(x?(D)t?/p2,) iterations. There
are many ways of choosing a step size (see for instance Kojima, Megiddo, Noma and
Yoshise [5]). To simplify the analysis, we will focus on an algorithm that keeps a
potential function value fixed (hence the name constant—potential) to determine the
step size (see Mizuno and Nagasawa [8], and Tungel [15]). Since our analysis is based on
the co—norm neighbourhoods, we will use the following potential function to determine
the step size:

T i ¥ > . .
P(z,s;9) 1= qlog (%) _log <min{mm{5383},2 B maxEj:JsJ} }) -

Using Theorem 4.1 from [15] for ¢ := 1/2t and M := 4k%(D)/p2,, we have the following
result:

Theorem 3.2. A constant—potential primal-dual affine—scaling algorithm using the
2 2
potential function v terminates in O("/()fD)t) iterations.

Proof: Define v := X'/2§'/2¢. Then dX (0)ds(0) = V,v,. We have
1dX (0)ds(0)lleo < [[p]loo[vg]leo
262(D)[|v]5

<
P2

To get the last inequality, we used Lemma 2.3. Now we can bound ||v||%:

lollo = max{z;s;}
< 2-7)p
So, ||dX (7)ds(Y)||ec < 4x%*(D)p/p2,. By Theorem 4.1 of [15] (taking ¢ := 1/2t and
M := 4x*(D)/p?%,) we conclude that O(Kzf)?o)ﬁ) iterations suffices. 0

Note that x(D) may be scale dependent; but in the following section we give an
analysis which provides a lower bound on p., in terms of the number of equality con-
straints, m, and the entries of A. Henceforth we will assume that all the entries of A
are integral which also makes the overall measure of complexity invariant under scaling.



4 Analysis for p

Let columns of V' form an orthonormal basis for the null space of A. Then p is the
optimal objective function value of the following optimization problem:

(OPTy) inf ||D72Voe — ATw||w
D e D, veR™™, welR™

| ATwl| o = 1.

For any choice of v € R™™™ and w € IR™ such that ||ATw| = 1, the signs of
the entries of the vectors Vv and ATw must disagree on a set of indices J such that
0 #J C{1,2,...,n}. Otherwise, we can pick D € D to make D*Vv — ATw = 0 (which
contradicts Theorem 2.1). For a given pair of v and w the best D is found by setting
d;; := % for i ¢ J (note that if i ¢ J and (ATw); = 0 then any d;; will do) and
arbitrarily large if ¢ € J. Given # € IR", let sign(z) be the vector in {—1,0,1}" such
that (sign(z)); = -1 <= ; < 0; (sign(z)); =0 < z; = 0; (sign(z)); =1 —
z; > 0. Let {v*,w*, D;} be a sequence of feasible solutions of (OPT;) converging to
(v*,w*, D*) such that inf || Dy 2Vv* — ATw*| o converges to optimal objective function
value of (OPTy). So, if the signs of Vo* and ATw* disagree on a set of indices J then
the optimal objective function value of (OPT}) is ||(ATw*) || Let o* be the sign
vector of ATw*, i.e., o* := sign(ATw*). Then po, is the optimal objective function
value of the following optimization problem:

oo = inf (A7) e
w: ||[ATw]|e =1
sign(ATw) = o*

Note that the infimum given above is bounded away from zero, by the previous ar-
guments. So, far we followed O’Leary [12] (O’Leary uses similar arguments for the
2-norm to get Theorem 2.2). Equivalently, we can solve (OPT:) to get p%o as the
optimal objective function value of the objective function:

(OPT,) max [|[ATw||s

sign(ATw) = o*,

1(ATw) ]l

IA
—



The sign constraint, sz'gn(ATw) = o*, can be written as a system of linear inequalities;
for instance, there exists an € > 0 (¢ can be chosen as min{|(4Tw*);| : (ATw*); # 0})
such that the constraint
sign(ATw) = o*

can be replaced by the linear inequality constraints:

(ATw); > eif or =1,

(ATw)j = 0if o} =0,

(ATw); < —eif o7 = —1.

Now, it is clear that (O PT») can be solved by solving a sequence of linear programming
problems over the same feasible solution set. Let F(o*,J) denote the set of feasible
solutions for the optimization problem (OPT>) when the sign constraint is expressed
as a system of linear inequalities as described above. Let a” be a row of AT for which
|aTw*| equals the optimal objective function value of (OPT,) (note w* € F(a*,J)).
So, w* solves the following linear programming problem:

(LP;) max afw

w € F(o*,J),
where & is either a or (—a). (LP;) is equivalent to

(LP;) max n

Clearly, F(o*,J) is a polyhedron in IR™. Our first claim is that F(¢*,J) is pointed
and hence has extreme points. Suppose not. Then there must exist a line L contained
in F(o*,J). This implies, there exists d € R™, d # 0 such that ATd = 0 (which
contradicts the assumption that A has full row rank). Since (LP) has an optimum
solution and F'(o*,J) is a pointed polyhedron, (L P,) must have a basic feasible solution
that is optimal. Let n* correspond to such a basic feasible solution. We immediately
get (using Cramer’s rule)

subdet[AT, f(e)]
subdet[ AT]

*

< mmax ‘subdet[AT]

bl

10



where f(¢€) is the vector representing the right-hand—side values in (LP,) (entries of

f(e) are 0, £1, and ¢). So, defining A := max ‘subdet[AT]

, we get

Theorem 4.3. Let A € Z™*" such that rank(A) = m and define A := max ‘subdet[AT]‘
and po, as before. Then

1
— < mA.
Poo

H. Wolkowicz pointed out to us that the estimation of p,, can be directly obtained
from a result of Ben-Tal and Teboulle [1]. Indeed, they prove that the weighted least
squares solution of an overdetermined system of linear equations lies in the convex hull
of solutions to square subsystems of the original system.

Now, using Theorem 3.1 and 3.2 we have

Corollary 4.1. A generic primal-dual interior—point algorithm using an oo—norm
neighbourhood terminates in O(m?k*(D)A? t) iterations.

Corollary 4.2. A constant—potential primal-dual affine-scaling algorithm using the
potential function v terminates in O(m2x?(D)A? t?) iterations.

5 Conclusion

We provided a different way of estimating the second order terms for primal-dual
interior—point algorihtms. When the number of constraints, m, is constant O(1) the
iteration bound depends (pseudo-polynomially) on the numbers in the coefficient matrix
A and the scaling D. Indeed, no matter what the initial solution or the problem is as the
iterates approach the optimal set, x?(D) will go to infinity. So, the analysis presented
here does not aim at replacing the existing analysis, but rather propose a new view
which might help in explaining the practical performance of primal-dual interior—point
algorithms. In particular, the results presented here should be interpreted for each
iteration together with the existing analysis (rather than being interpreted as a global
analysis).

Existing complexity analyses for the first algorithm prove that the step size is at
least C'; /n for all iterations, where C is a constant independent of the problem instance.
Here we proved that the step size is at least Cy/(m2x?(D)A?), where C; is again a
constant independent of the problem instance. So, we have (for all iterations)

a > max{ﬁ L}
- n’ m?k?(D)A%["

11



We would finally like to remark that as it is pointed here, this analysis can be useful
in explaining the good behaviour only for problems with small m and small A and
for the iterates that have small k(D). However, as k(D) grows very large we know
that the iterates must be getting close the set of optimal solutions and at this phase
the behaviour of the algorithm can better be explained by asymptotic superlinear and
quadratic convergence properties.
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