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1 IntroductionOur motivation is to �nd new ways of explaining the slow growth in the number of iter-ations required by interior{point methods as one of the dimensions (m := the numberof equality constraints) is �xed and the other (n := the number of variables) becomesvery large (see Bixby, Gregory, Lustig, Marsten, Shanno [2] and Lustig, Marsten andShanno [6]). We will use some recent results involving scaled projections to derivecomplexity bounds on the number of iterations that can be independent of n. Themain result is showing that when a vector is projected onto the null space of a matrix,in�nity norm of the projection cannot be more than a constant times the in�nity normof the initial vector, where the constant depends only on the entries and the numberof rows in the matrix. So, if the matrix has integral entries and m is O(1) then theconstant will be independent of n (so if the constant depends on n, it is implied thatthe matrix has some entries growing with n).We consider linear programming problems in the following primal (P ) and dual (D)forms: (P ) minimize cTxAx = b;x � 0;(D) maximize bT yAT y + s = c;s � 0;where A 2 IRm�n, b 2 IRm, and c 2 IRn. We will assume A has full row rank and thatthere exist interior solutions for both problems, i.e.,F0 := f(x; s) > 0 : x 2 F (P ); s 2 F (D)g 6= ;;where F (P ) and F (D) denote the sets of feasible solutions for the primal and dualproblems respectively. Most of the time we will deal only with s as a dual feasiblesolution. So, whenever we say s 2 F (D), we mean that s � 0 and there exists ay 2 IRm such that AT y + s = c. Given a vector denoted by a lower-case roman letter(e.g. x), the corresponding upper-case letter (e.g. X) will denote the diagonal matrixwhose entries are the components of that vector (i.e. X = diag(x)), e will denotethe vector of ones, and t will denote the desired improvement in the precision of thesolution. We will denote the components of a vector using subscripts and the iteratenumbers using superscripts. Note that given x 2 F (P ) and s 2 F (D) duality gapcorresponding to the pair (x; s) is xT s. Henceforth, we will use � to denote xT sn .We �rst describe a generic primal{dual algorithm (see Kojima, Mizuno and Yoshise[4], Monteiro and Adler [10], and Mizuno, Todd and Ye [9]). The search direction2



is chosen as a linear combination of the primal{dual a�ne{scaling direction and theprimal{dual centering direction. dx and ds will denote the components of the searchdirection in the primal feasible region and the dual feasible region respectively.Suppose we have an interior-point solution (x; s) 2 F0 and we are given a valuefor the centering parameter 
 (
 2 [0; 1]). Then a search direction (dx; ds) at (x; s) isgiven by the following set of equalities (see Kojima et al. [3]):dx(
) := �X1=2S�1=2P �A(X1=2S1=2� 
�X�1=2S�1=2)e;ds(
) := �X�1=2S1=2(I � P �A)(X1=2S1=2 � 
�X�1=2S�1=2)e;where �A := AX1=2S�1=2, and P �A := I � �AT ( �A �AT )�1 �A; the projection matrix onto thenull space of �A. The next iterates in terms of � can be written asx(�) = x + �dx(
);s(�) = s + �ds(
):A primal-dual interior-point algorithm takes an iterate (x; s) 2 F0 and de�nes thenext iterate as (x(�); s(�)) derived as above for some 
 2 [0; 1] and some � > 0 suchthat (x(�); s(�)) 2 F0. The centering parameter 
 and the step size � may varyfrom one iteration to the next. When 
 is set to zero for all iterations (no centeringcomponent in the search direction) we have a primal{dual a�ne{scaling algorithm andthe corresponding search direction is called primal{dual a�ne{scaling direction. When
 is set to 1, we have what is called primal{dual centering direction (along this directionthe duality gap stays constant).Indeed, the interiority of the iterates is one of the most important issues for thesealgorithms. Given a positive constant �, `the most central pair' (x; s) with duality gapn� is usually de�ned by (x; s) 2 F0 such that xjsj = � 8j. Taking di�erent values for� we can de�ne a path of central solutions or the central path (see Megiddo [7]). Usingthe 1-norm (also the 2-norm), neighbourhoods of the central path have been de�nedand used by Mizuno et al. [9]. Using the 1-norm, we getN (�) := f(x; s) 2 F0 : kXs� �ek1 � (1� �)�g:Here, � 2 [0; 1]. Alternatively, we can write:N (�) := f(x; s) 2 F0 : minj fxjsjg � �� and maxj fxjsjg � (2� �)�g:LetN be a neighbourhood of the central path and 
 0 2 (0; 1) be a constant. Suppose(x0; s0) 2 N with (x0)Ts0 � 2t is given. We can now state a generic primal{dualalgorithm that uses the neighbourhood N as follows:3



Algorithm:k := 0While ((xk)Tsk > 2�t) do(x; s) := (xk; sk),compute dx(
), ds(
)choose the maximum step size � 2 (0; 1) such that (x+ �dx(
); s+ �ds(
)) 2 N ,(xk+1; sk+1) := (x+ �dx(
); s+ �ds(
)),k := k + 1endIn the next section we describe some recent results related to scaled projections andshow how one might use these results to get new complexity bounds for interior{pointalgorithms. Section three includes two analyses : one for the algorithm stated here andone for a primal{dual a�ne{scaling algorithm. Section four provides a way of relatingthe complexity bound more directly to the input (namely the entries of A). The �fthsection is a brief conclusion.2 Oblique ProjectionsLet D be the set of all real n � n diagonal positive de�nite matrices. De�neN := fx : AD2x = 0; D 2 Dg;Rp := fy : y = ATw; kykp = 1g:Let cl(:) denote the closure of a set and d( : ; : ) denote the Euclidean distance betweentwo sets in IRn. Stewart [13] and Todd [14] independently proved the following:Theorem 2.1. cl(N)\R2 = ; and d(cl(N); R2) = �2 > 0:4



We will see that the distance between the closure of N and Rp yields interestingrelations on the norms of projections and the projected vectors. First, we would liketo note that we can take x̂ := 0 2 IRn (x̂ 2 N) to show that the distance is at mostone in any p�norm. Let columns of U form an orthonormal basis for the range of AT .Then UJ will denote the submatrix formed by the rows of U whose index set is de�nedby J . Stewart [13] provided an estimate for �2 by proving the following:�2 � min;6=J�f1;2;:::;ng�min(UJ);where �min(UJ ) denotes the smallest nonzero singular value of UJ . O'Leary [12] latershowed that �2 � min;6=J�f1;2;:::;ng�min(UJ);hence, establishingTheorem 2.2. �2 = min;6=J�f1;2;:::;ng�min(UJ):We will show that when we measure the distances with the1-norm and take p =1in the de�nition of the set Rp, the resulting distance �1 can be easily related to theiteration complexity of interior{point methods.Let r 2 IRn, r =2 N . De�ney := AT (AD2AT )�1AD2r; note y 6= 0: (1)We have r = y + r � yrkyk1 = ykyk1 + r � ykyk1 :Now, note ykyk1 2 R1 and AD2(r� y) = 0; so, r�ykyk1 2 N . Hence, we havekrk1kyk1 = 



 ykyk1 + r � ykyk1 



1 � �1:From which we get 5



kyk1 � krk1�1 : (2)Getting from (1) to (2) we used the analysis given by Vavasis [16]. For a properlychosen r and D, inequality (2) provides a new way of estimating the coe�cients ofthe second order terms in the complexity analysis of interior{point methods. We willcon�ne ourselves to the analysis of primal{dual algorithms.Given v 2 IRn, and A and D as before, vp denotes the orthogonal projection of vonto the null space of AD and vq := v� vp denotes the orthogonal projection of v ontothe range of DAT . Let �(D) be the condition number of D. With these de�nitions wehave:Lemma 2.3. kvpk1kvqk1 � 2�2(D)kvk21�21 :Proof: Choosing y as in (1), we getDy = DAT (AD2AT )�1AD2r= (Dr)q:If kDrk1 is zero then there is nothing to prove. Otherwise, we havek(Dr)qk1kDrk1 = kDyk1kDrk1� �(D)kyk1krk1� �(D)�1 :To get the last inequality we used (2). Now, we let v = Dr, to getkvqk1 � �(D)kvk1�1 :Since vp + vq = v, we getkvpk1kvqk1 = kvqk1kv � vqk1� kvqk1 (kvk1 + kvqk1)� �(D)kvk21�1 + �2(D)kvk21�21� 2�2(D)kvk21�21 :The last inequality uses the fact that �1 � 1 and �(D) � 1. 26



3 Analysis of Iteration ComplexityThe following results (Lemma 3.1 - 3.2 ) are quite standard in the primal-dual frame-work (see for instance Kojima et al. [4], Monteiro and Adler [10], Mizuno, Todd andYe [9]).Lemma 3.1.(a) xj(�)sj(�) = (1� �)xjsj + �
�+ �2dxj(
)dsj(
):(b) �(�) := x(�)Ts(�)=n = [1� �(1� 
)]�.Lemma 3.2.(x; s) 2 N (�) and � � minn (1��)
�kdX(
)ds(
)k1 ; 1o implies (x(�); s(�)) 2 N (�):We will show that the second-order term kdXdsk1 can be bounded by a multipleof �2(D)��21 . This is yet a new way of estimating the second-order terms which enablesus to present a complexity analysis giving bounds that can be independent of n.Theorem 3.1. A generic primal{dual interior{point algorithm using wide neighbour-hoods terminates in O(�2(D)t�21 ) iterations.Proof: De�ne v := (X1=2S1=2 � 
�X�1=2S�1=2)e. Then dX(
)ds(
) = Vpvq: We havekdX(
)ds(
)k1 � kvpk1kvqk1� 2kvk21�2(D)�21 :To get the last inequality, we used Lemma 2.3. Now we can bound kvk21:kvk21 = maxj (xjsj � 2
�+ 
2�2xjsj )� (2� �)�� 2
�+ 
2��= � "2(1� 
)� � + 
2� # :De�ne C := h2(1� 
)� � + 
2� i : Since � and 
 are in (0; 1) constants, C is a constantdepending only on � and 
; for instance, if � � 
=2 then C < 2: So, kdX(
)ds(
)k1 �7



2C�2(D)�=�21. By Lemma 3.2, the step size � can be taken as at least (1��)
�212C�2(D) :Hence,by Lemma 3.1.(b), the duality gap decreases at least by a fraction of (1��)
(1�
)�212C�2(D) ateach iteration. Therefore, in O(�2(D)t�21 ) iterations we must have xT s < 2�t: 23.1 Constant{Potential A�ne{Scaling AlgorithmIn this subsection we illustrate how primal{dual a�ne{scaling algorithm (see Monteiro,Adler and Resende [11]) will terminate in at most O(�2(D)t2=�21) iterations. Thereare many ways of choosing a step size (see for instance Kojima, Megiddo, Noma andYoshise [5]). To simplify the analysis, we will focus on an algorithm that keeps apotential function value �xed (hence the name constant{potential) to determine thestep size (see Mizuno and Nagasawa [8], and Tun�cel [15]). Since our analysis is based onthe1�norm neighbourhoods, we will use the following potential function to determinethe step size: (x; s; q) := q log xT sn !� log�min�minfxjsjg� ; 2� maxfxjsjg� �� :Using Theorem 4.1 from [15] for q := 1=2t andM := 4�2(D)=�21, we have the followingresult:Theorem 3.2. A constant{potential primal{dual a�ne{scaling algorithm using thepotential function  terminates in O(�2(D)t2�21 ) iterations.Proof: De�ne v := X1=2S1=2e. Then dX(0)ds(0) = Vpvq: We havekdX(0)ds(0)k1 � kvpk1kvqk1� 2�2(D)kvk21�21To get the last inequality, we used Lemma 2.3. Now we can bound kvk21:kvk1 = maxj fxjsjg� (2� �)�:So, kdX(
)ds(
)k1 � 4�2(D)�=�21. By Theorem 4.1 of [15] (taking q := 1=2t andM := 4�2(D)=�21) we conclude that O(�2(D)t2�21 ) iterations su�ces. 2Note that �(D) may be scale dependent; but in the following section we give ananalysis which provides a lower bound on �1 in terms of the number of equality con-straints, m, and the entries of A. Henceforth we will assume that all the entries of Aare integral which also makes the overall measure of complexity invariant under scaling.8



4 Analysis for �1Let columns of V form an orthonormal basis for the null space of A. Then �1 is theoptimal objective function value of the following optimization problem:(OPT1) inf kD�2V v � ATwk1D 2 D; v 2 IRn�m ; w 2 IRmkATwk1 = 1:For any choice of v 2 IRn�m and w 2 IRm such that kATwk1 = 1, the signs ofthe entries of the vectors V v and ATw must disagree on a set of indices J such that; 6= J � f1; 2; : : : ; ng. Otherwise, we can pick D 2 D to makeD2V v�ATw = 0 (whichcontradicts Theorem 2.1). For a given pair of v and w the best D is found by settingd2ii := (V v)i(ATw)i for i =2 J (note that if i =2 J and (ATw)i = 0 then any dii will do) andarbitrarily large if i 2 J . Given x 2 IRn, let sign(x) be the vector in f�1; 0; 1gn suchthat (sign(x))j = �1 () xj < 0; (sign(x))j = 0 () xj = 0; (sign(x))j = 1 ()xj > 0. Let fvk; wk; Dkg be a sequence of feasible solutions of (OPT1) converging to(v�; w�; D�) such that inf kD�2k V vk�ATwkk1 converges to optimal objective functionvalue of (OPT1). So, if the signs of V v� and ATw� disagree on a set of indices J thenthe optimal objective function value of (OPT1) is k(ATw�)Jk1. Let �� be the signvector of ATw�, i.e., �� := sign(ATw�). Then �1 is the optimal objective functionvalue of the following optimization problem:�1 = infw : kATwk1 = 1sign(ATw) = �� k(ATw)Jk1:Note that the in�mum given above is bounded away from zero, by the previous ar-guments. So, far we followed O'Leary [12] (O'Leary uses similar arguments for the2-norm to get Theorem 2.2). Equivalently, we can solve (OPT2) to get 1�1 as theoptimal objective function value of the objective function:(OPT2) max kATwk1sign(ATw) = ��;k(ATw)Jk1 � 1:9



The sign constraint, sign(ATw) = ��, can be written as a system of linear inequalities;for instance, there exists an � > 0 (� can be chosen as minfj(ATw�)j j : (ATw�)j 6= 0g)such that the constraint sign(ATw) = ��can be replaced by the linear inequality constraints:(ATw)j � � if ��j = 1;(ATw)j = 0 if ��j = 0;(ATw)j � �� if ��j = �1:Now, it is clear that (OPT2) can be solved by solving a sequence of linear programmingproblems over the same feasible solution set. Let F (��; J) denote the set of feasiblesolutions for the optimization problem (OPT2) when the sign constraint is expressedas a system of linear inequalities as described above. Let aT be a row of AT for whichjaTw�j equals the optimal objective function value of (OPT2) (note w� 2 F (��; J)).So, w� solves the following linear programming problem:(LP1) max ~aTww 2 F (��; J);where ~a is either a or (�a). (LP1) is equivalent to(LP2) max �w 2 F (��; J);~aTw � � � 0:Clearly, F (��; J) is a polyhedron in IRm. Our �rst claim is that F (��; J) is pointedand hence has extreme points. Suppose not. Then there must exist a line L containedin F (��; J). This implies, there exists d 2 IRm, d 6= 0 such that ATd = 0 (whichcontradicts the assumption that A has full row rank). Since (LP2) has an optimumsolution and F (��; J) is a pointed polyhedron, (LP2) must have a basic feasible solutionthat is optimal. Let �� correspond to such a basic feasible solution. We immediatelyget (using Cramer's rule) �� = �����subdet[AT ; f(�)]subdet[AT ] ������ mmax ���subdet[AT ]��� ;10



where f(�) is the vector representing the right{hand{side values in (LP2) (entries off(�) are 0, �1, and �). So, de�ning � := max ���subdet[AT ]���, we getTheorem 4.3. LetA 2 Zm�n such that rank(A) = m and de�ne � := max ���subdet[AT ]���and �1 as before. Then 1�1 � m�:H. Wolkowicz pointed out to us that the estimation of �1 can be directly obtainedfrom a result of Ben-Tal and Teboulle [1]. Indeed, they prove that the weighted leastsquares solution of an overdetermined system of linear equations lies in the convex hullof solutions to square subsystems of the original system.Now, using Theorem 3.1 and 3.2 we haveCorollary 4.1. A generic primal{dual interior{point algorithm using an 1�normneighbourhood terminates in O(m2�2(D)�2 t) iterations.Corollary 4.2. A constant{potential primal{dual a�ne{scaling algorithm using thepotential function  terminates in O(m2�2(D)�2 t2) iterations.5 ConclusionWe provided a di�erent way of estimating the second order terms for primal{dualinterior{point algorihtms. When the number of constraints, m, is constant O(1) theiteration bound depends (pseudo-polynomially) on the numbers in the coe�cient matrixA and the scalingD. Indeed, no matter what the initial solution or the problem is as theiterates approach the optimal set, �2(D) will go to in�nity. So, the analysis presentedhere does not aim at replacing the existing analysis, but rather propose a new viewwhich might help in explaining the practical performance of primal{dual interior{pointalgorithms. In particular, the results presented here should be interpreted for eachiteration together with the existing analysis (rather than being interpreted as a globalanalysis).Existing complexity analyses for the �rst algorithm prove that the step size is atleast C1=n for all iterations, where C1 is a constant independent of the problem instance.Here we proved that the step size is at least C2=(m2�2(D)�2), where C2 is again aconstant independent of the problem instance. So, we have (for all iterations)� � max�C1n ; C2m2�2(D)�2� :11
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