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Abstract

We compare the relative strength of valid inequalities for the integer hull of the feasible
region of mixed integer linear programs with two equality constraints, two unrestricted
integer variables and any number of nonnegative continuous variables. In particular, we
prove that the closure of Type 2 triangle (resp. Type 3 triangle; quadrilateral) inequalities,
are all within a factor of 1.5 of the integer hull, and provide examples showing that the
approximation factor is not less than 1.125. There is no fixed approximation ratio for
split or Type 1 triangle inequalities however.
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1 Introduction

We consider mixed integer linear programs with n unrestricted-in-sign integer variables x and
k non-negative continuous variables s. We assume that the n variables x are expressed in
terms of the variables s as follows,

x = f +
∑k

j=1 r
jsj

x ∈ Zn
s ∈ Rk+.

(1)

We assume f ∈ Qn \Zn, k ≥ 1, and rj ∈ Qn \ {0} for all j ∈ [k] 1. In particular, s = 0 is not
a solution of (1). Denote by Γ the ordered set r1, . . . , rk; we write R(f ; Γ) for the convex hull
of all vectors s ∈ Rk+ such that f +

∑k
j=1 r

jsj is integral. It follows from [18] that R(f ; Γ) is

an upper comprehensive polyhedron (a set C ⊆ Rk+ is upper comprehensive if for all x ∈ C,
x′ ≥ x implies x′ ∈ C). Therefore, R(f ; Γ) is defined by the inequalities s ≥ 0 and a finite
number of inequalities of the form

∑k
j=1 γjsj ≥ 1 where γ ≥ 0. The study of R(f ; Γ) when

n = 2 was initiated in the seminal paper [1]. In this paper, we also mainly consider the case
n = 2.

Given a pure integer linear program (IP) with a fractional optimal basic solution to its
linear programming relaxation, we can construct a relaxation of (IP) of the form R(f ; Γ) that
does not contain the current basic solution. In particular, valid constraints for R(f ; Γ) where
n = 2 can be used in cutting plane algorithms. One can proceed as follows: (a) express the
basic variables x as a linear combination of the non-basic variables s; (b) select a pair of
constraints associated with a pair of basic variables xi, xj where xi, xj are not both integer;
and finally, (c) relax the conditions that the basic variables be non-negative and that the
non-basic variables be integer.

Following [1], [3], [10], and [13] we will use the classification of minimal valid constraints
of R(f ; Γ) for n = 2. Our goal in this paper is to compare the relative strength of these
different classes of constraints. As in [3], our emphasis is on worst-case bounds. The infinite
family of minimal valid inequalities arising from triangles will play an important role. For a
proof that such triangle inequalities always define a polyhedron, see [6]. For computational
work, see [4], [12] and [17]. For a probabilistic analysis, see [5], [11], [15].

1.1 Classifying constraints of R(f ; Γ)

By a lattice-free convex set we mean a convex set with no integral point in its relative interior.
A lattice-free convex set B is maximal if no proper superset of B is a lattice-free convex set.
Given a lattice-free convex set B ⊆ Rn and f ∈ Qn \ Zn that is an interior point of B we
define the function, ψf ;B : Rn → R as follows: for r ∈ Rn, if there is a positive scalar λ such
that the point f + λr is on the boundary of B, ψf ;B(r) := 1

λ . Otherwise, if there is not such
λ, ψf ;B(r) := 0. Whenever f is clear from the context, we may drop f from the notation for
ψ and simply write ψB.

Let f ∈ Qn \Zn and Γ be an ordered set r1, . . . , rk ∈ Qn \{0}. For any lattice-free convex

1[k] := {1, 2, . . . , k}.
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set B containing f in its interior the inequality

k∑

j=1

ψf ;B(rj)sj ≥ 1, (2)

is a valid constraint for R(f ; Γ), called intersection cut [2]. We say that inequality (2) is
the intersection cut of B, f,Γ. The trivial inequalities sj ≥ 0 are also valid for R(f ; Γ).
Given an upper comprehensive closed convex set C ∈ Rn+ \ {0}, a nontrivial valid inequality∑k

j=1 γjsj ≥ 1 for C is said to be a minimal constraint if, for any vector γ′ ≤ γ distinct from

γ, the inequality
∑k

j=1 γ
′
jsj ≥ 1 is violated by some s ∈ C. It is proved in [8] that all the

nontrivial minimal constraints for R(f ; Γ) are intersection cuts.

Theorem 1.1. Let f ∈ Qn \Zn and Γ be an ordered set r1, . . . , rk ∈ Qn \{0}. If R(f ; Γ) 6= ∅,
all nontrivial minimal constraints for R(f ; Γ) are intersection cuts.

Thus, by characterizing maximal lattice-free convex sets, we can obtain a classification of the
minimal constraints for R(f ; Γ). Lovász [16] classified maximal lattice-free convex sets. The
classification for the case n = 2 is as follows:

Theorem 1.2. In the plane, a maximal lattice-free convex set with nonempty interior is one
of the following:

1. A split
{
x ∈ R2 : c ≤ ax1 + bx2 ≤ c+ 1

}
where a and b are coprime integers and c is an

integer;

2. A triangle with at least one integral point in the interior of each of its edges;

3. A quadrilateral containing exactly four integral points, with exactly one of them in the
interior of each of its edges; Moreover, these four integral points are vertices of a paral-
lelogram of area 1.

Moreover, see [13], the maximal lattice-free triangles are of one of three possible types,

Type 1: triangles with integral vertices and exactly one integral point in the relative interior
of each edge;

Type 2: triangles with at least one fractional vertex v, exactly one integral point in the
relative interior of the two edges incident to v and at least two integral points on
the third edge;

Type 3: triangles with exactly three integral points on the boundary, one in the relative
interior of each edge.

We illustrate the three types of triangles in Figure 1. Consider f ∈ Q2 \Z2 and Γ an ordered
set r1, . . . , rk ∈ Q2 \ {0}. We define S(f ; Γ) to be the set of points s ∈ Rk+ which satisfy
all the intersection cuts for B, f,Γ where B is a maximal lattice-free split. Similarly, for
i ∈ {1, 2, 3} we denote by 4i(f ; Γ) the set of points which satisfy all the intersection cuts for
B, f,Γ where B is a Type i triangle. Finally, �(f ; Γ) denotes the set of points which satisfy
all the intersection cuts for B, f,Γ where B is maximal lattice-free quadrilateral.
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(a)
(b)

(c)

v

Figure 1: (a) Type 1, (b) Type 2, (c) Type 3.

Then, Theorem 1.1 together with Theorem 1.2 imply that

R(f ; Γ) = S(f ; Γ) ∩4(f ; Γ) ∩�(f ; Γ),

where
4(f ; Γ) := 41(f ; Γ) ∩42(f ; Γ) ∩43(f ; Γ).

One of our goals is to compare R(f ; Γ) to each of S(f ; Γ), 41(f ; Γ), 42(f ; Γ), 43(f ; Γ),
�(f ; Γ). Before we can state our results, we need to review some tools to compare the
strength of different relaxations.

1.2 Comparing relaxations

Let α > 0 be a scalar and let C ⊆ Rn+ be an upper comprehensive convex set. We denote by
αC the set

{αx : x ∈ C} .
Note that since C is upper comprehensive, if α ≤ 1 then αC ⊇ C. Consider now a pair
C1, C2 ⊆ Rn+ that are both convex and upper comprehensive. We define,

ρ[C1, C2] := inf

{
1

α
: αC2 ⊇ C1

}
.

I.e., ρ[C1, C2] indicates by how much we need to inflate C2 to contain C1. Thus C2 is a
relaxation of C1 if and only if ρ[C1, C2] ≤ 1. If no α > 0 exists such that αC2 ⊇ C1, the value
of ρ[C1, C2] is defined to be +∞. In this context, for nonempty upper comprehensive convex
sets C ⊆ Rn+, for consistency and convenience, we define 0 · C := Rn+.

For i ∈ {1, 2}, let Li denote a family of maximal lattice-free convex sets of Rn. Consider
f ∈ Qn \ Zn,Γ = r1, . . . , rk ∈ Qn \ {0} for k ≥ 1. Then, denote by Li(f,Γ) the set of points
s ∈ Rk+ which satisfy all the intersection cuts of B, f,Γ for all B ∈ Li that contain f in
their interior. Note that Li(f,Γ) is an upper comprehensive convex set, but it need not be a
polyhedron. The following parameter gives a worst-case measure for pairs of classes of sets
defined by intersection cuts,

ρ [L1,L2]
= sup

{
ρ [L1(f,Γ),L2(f,Γ)] : f ∈ Qn \ Zn, Γ = r1, . . . , rk ∈ Qn \ {0}, k ≥ 1

}
.

(3)
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Denote by S the set of all (lattice-free) splits in R2; denote by 4i the set of all Type i
triangles (i ∈ {1, 2, 3}); denote by � the set of all quadrilaterals that are maximal lattice-
free; denote by 4 the set 41 ∪42 ∪43, and denote by R the set S ∪4 ∪�, i.e., the set of
all full-dimensional, maximal lattice-free convex sets in R2. Then we can define,

ρ[S,R], ρ[4i,R], ρ[�,R], ρ[S,4i], ρ[4i, S], ρ[4i,4j ], ρ[�,4i], ρ[4i,�],

where i, j ∈ {1, 2, 3}, and i 6= j. For instance, ρ[42,R] measures by how much, in the worst
case, we have to inflate R(f ; Γ) to contain 42(f ; Γ). The value is at least 1 as the latter set is
a relaxation of the former set. Basu et al. [3] proved ρ[S,41] = 2, ρ[42,�] ≤ 2, ρ[4,R] ≤ 2
and ρ[�,R] ≤ 2.

1.3 A summary of the main results

In this section, we present the main results of the paper (all these results are for n = 2). The
proofs are given in the subsequent sections. We will use the following convention throughout
the paper: unless specified otherwise, f will denote a vector of Q2 \ Z2 and Γ a sequence
r1, . . . , rk ∈ Q2 \ {0} for some k ≥ 1.

First, we show inclusions between various relaxations of R(f ; Γ).

Theorem 1.3. For all f ∈ Q2 \ Z2 and Γ = r1, . . . , rk ∈ Q2 \ {0}. We have,

1. 42(f ; Γ) ⊆ 41(f ; Γ) and

2. 42(f ; Γ) ⊆ S(f ; Γ).

Theorem 1.4. For all f ∈ Q2 \ Z2 and Γ = r1, . . . , rk ∈ Q2 \ {0}. We have,

1. �(f ; Γ) ⊆ 42(f ; Γ) and

2. 43(f ; Γ) ⊆ 42(f ; Γ).

⇤(f ;�) 43(f ;�)

41(f ;�)S(f ;�)

42(f ;�)

Figure 2: Inclusion lattice for all families of inequalities

Theorem 1.4 in [3], states that 4(f ; Γ) ⊆ S(f ; Γ). However, their proof in fact establishes
the stronger statement Theorem 1.3(2). We summarize the content of Theorems 1.3 and 1.4
by drawing the associated subset inclusion lattice in Figure 2. Note, in that figure, sets that
appear higher are included in sets that appear lower. In other words, the higher the set in
the figure the tighter the relaxation. The next two theorems show that, in general, both the
pairs S(f ; Γ),41(f ; Γ) and �(f ; Γ),43(f ; Γ) are incomparable.
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Theorem 1.5. (1) ρ[41, S] = +∞ and (2) ρ[S,41] = 2.

Theorem 1.6. (1) ρ[43,�] ≥ 1.125 and (2) ρ[�,43] ≥ 1.125.

Next we wish to compare the strength of the following relaxations of R(f ; Γ), namely:
S(f ; Γ), 41(f ; Γ), 42(f ; Γ), 43(f ; Γ), and �(f ; Γ). The next table summarizes these results.
We give upper and lower bounds for ρ[#,R] where # denotes one of S,41,42,43,�. Entries

S 41 42 43 �
Lower bound +∞ a© +∞ b© 1.125 c© 1.125 d© 1.125 e©
Upper bound +∞ f© +∞ g© 1.5 h© 1.5 i© 1.5 j©

Table 1: Strength of different relaxations of R(f ; Γ)

a© and b© indicate that there are instances where the relaxations S(f ; Γ) and 41(f ; Γ) of
R(f ; Γ) can be arbitrarily poor. In other words, only using intersection cuts arising from
Splits and Type 1 triangles does not always give a good approximation of R(f ; Γ). Thus, it
is sometimes necessary to use intersection cuts arising from either: Type 2 triangles, Type 3
triangles or quadrilaterals. Entries c©, d©, e© indicate that if we are using only one class of
these cuts, then there are instances where we will have at least a gap of 12% between the
relaxation and R(f ; Γ). Entries h©, i©, j© indicate that by using a single class of cuts arising
from Type 2 triangles, Type 3 triangles or quadrilaterals, we will be able to guarantee that
the associated relaxation of R(f ; Γ) is within a factor of 3

2 .
In light of the results in Table 1 and Figure 2, intersection cuts arising from triangles

of Type 2 are a natural class of cuts to investigate from an implementation point of view.
Moreover, these cuts are simpler to describe than the classes of cuts arising from Type 3
triangles as well as those arising from quadrilaterals. This motivates further investigation of
the parameter ρ[42,R]. Entries c© and h© imply that 1.125 ≤ ρ[42,R] ≤ 1.5. The problem
of finding the exact value of ρ[42,R] remains open.

1.4 Organization of the remainder of the paper

Section 2 proves that the inclusion lattice is as given in Figure 2, i.e. it proves Theorem 1.3 and
Theorem 1.4. Section 3 expresses the quantities ρ[#1,#2], for various parameters #1,#2, as
the infimum of a semi-infinite linear program. The derivation is done for arbitrary dimension
n and general families of maximal lattice-free convex sets.

Section 4 proves the following result,

Theorem 1.7. ρ[42,�] ≤ 1.5.

As we mentioned above, Basu et al. [3] proved the weaker bound ρ[42,�] ≤ 2. Section 5
proves the following result,

Theorem 1.8. ρ[42,43] ≤ 1.5.

Section 6 proves Theorems 1.5(1) and 1.6. Theorem 1.5(2) follows from Theorem 1.6 in [3].
We conclude this section by showing (assuming Theorems 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8)

that Table 1 is correct. Before we proceed, observe that if for a pair of sets C1, C2 ⊆ Rn+ and
a scalar α > 0 we have αC2 ⊇ C1, then for every C ′1 ⊆ C1 and C ′2 ⊇ C2, αC

′
2 ⊇ C ′1. It follows

in particular that,
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Remark 1.9. Let C1, C2, C
′
1, C

′
2 ⊆ Rn+ be upper comprehensive convex sets where C ′1 ⊆ C1

and C ′2 ⊇ C2. Then
ρ[C ′1, C

′
2] ≤ ρ[C1, C2].

Theorem 1.10. Table 1 is correct.

Proof. Theorem 1.8 in [3] says that ρ[S,R] = +∞, i.e. entry a© is correct. Theorem 1.5(1)
states that ρ[41,S] = ∞. As S(f ; Γ) ⊇ R(f ; Γ), it follows from Remark 1.9 that ρ[41,R] =
∞. Thus, entry b© holds. Clearly, a© and b© imply respectively that f© and g© are correct.
Theorem 1.6(1) states ρ[43,�] ≥ 1.125. As �(f ; Γ) ⊇ R(f ; Γ), Remark 1.9 implies that
ρ[43,R] ≥ 1.125. This proves entry d©. Theorem 1.4(2) states that 43(f ; Γ) ⊆ 42(f ; Γ).
Thus, Remark 1.9 and entry d© imply entry c©. Theorem 1.6(2) states ρ[�,43] ≥ 1.125. As
43(f ; Γ) ⊇ R(f ; Γ), Remark 1.9 implies e©.

Consider entry h©. Consider a fixed pair of f and Γ. Theorem 1.7 implies that 2
3�(f ; Γ) ⊇

42(f ; Γ). Theorem 1.8 implies that 2
343(f ; Γ) ⊇ 42(f ; Γ). By Theorem 1.3(1), 41(f ; Γ) ⊇

42(f ; Γ), in particular, 2
341(f ; Γ) ⊇ 42(f ; Γ). Similarly, Theorem 1.3(2) implies that

2
3S(f ; Γ) ⊇ 42(f ; Γ). It follows that,

2

3

[
S(f ; Γ) ∩41(f ; Γ) ∩42(f ; Γ) ∩43(f ; Γ) ∩�(f ; Γ)

]
⊇ 42(f ; Γ).

Hence, 2
3R(f ; Γ) ⊇ 42(f ; Γ), proving h©. Finally, i©, j© follow from h©, Remark 1.9 and the

facts that 42(f ; Γ) ⊇ 43(f ; Γ), 42(f ; Γ) ⊇ �(f ; Γ) (see Theorem 1.4).

2 The inclusion lattice

For B ⊂ Rn, we define its ε-relaxation by

relax(B; ε) := {s ∈ Rn : ‖s− s̄‖ ≤ ε, for some s̄ ∈ B} .

In this section, we shall derive Theorems 1.3 and 1.4 from the following result.

Proposition 2.1. Let L,L′ denote families of bounded, lattice-free convex sets in Rn. Let
f ∈ Qn \Zn and let Γ = r1, . . . , rk ∈ Qn \{0}. Suppose that for every ε > 0 and every B ∈ L,
there exists B′ ∈ L′ such that B ⊆ relax(B′; ε). Then L′(f,Γ) ⊆ L(f,Γ).

Proof. Suppose the assumption holds. Let s̄ ∈ Rn \ L(f,Γ), we will prove that s̄ /∈ L′(f,Γ).
Since s̄ /∈ L(f,Γ), there exists B ∈ L such that the intersection cut

k∑

i=1

ψB(ri)si ≥ 1

is violated by s̄. Let δ := 1−∑k
i=1 ψB(ri)s̄i > 0. Since for every ε > 0, there exists B′ ∈ L′

such that B ⊆ relax(B′; ε), and B is bounded, we can choose ε such that

k∑

i=1

ψB′(r
i)s̄i ≤

k∑

i=1

ψB(ri)s̄i +
δ

2
= 1− δ

2
< 1.

Thus, s̄ /∈ L′(f,Γ), as desired.
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A function φ : Rn → R is an affine unimodular transformation if φ(x) = c + Mx where
c ∈ Zn, M ∈ Zn×n and M is unimodular, i.e. det(M) = ±1. It can be readily checked that
x is integral if and only if φ(x) is integral.

A Type 1 triangle is normalized if it has corners (0, 0)T , (2, 0)T and (0, 2)T . A Type 2
triangle is normalized if one of its edges contains the points (0, 0)T , (0, 1)T and the other two
edges contain in their interior the points (1, 1)T and (1, 0)T respectively. See Figure 3 (a)
and (b) for examples of normalized triangles of Type 1 and Type 2 respectively (consider the
triangles where the boundary is indicated by a thick line).

We leave the following to the reader.

Remark 2.2. Let T be a triangle of Type i where i ∈ {1, 2}. Then, there exists an affine
unimodular transformation φ : R2 → R with the property that φ(T ) is a normalized triangle
of Type i.

The next remark shows that Type 1 triangles can be approximated by Type 2 triangles, and
that Type 2 triangles can be approximated by both Type 3 triangles and quadrilaterals.

Remark 2.3. Let B ⊂ R2 be a normalized triangle of Type i for some i ∈ {1, 2}. Then, for
every ε > 0,

1. If i = 1 there exists a Type 2 triangle B′ such that B ⊆ relax(B′; ε).

2. If i = 2 there exists a Type 3 triangle B′ such that B ⊆ relax(B′; ε).

3. If i = 2 there exists a quadrilateral B′ such that B ⊆ relax(B′; ε).

The proof is illustrated in Figure 3. Part (a) indicates how a Type 2 triangle can approximate

(a) (b) (c)

✓
0
0

◆ ✓
2
0

◆

✓
0
2

◆

✓
0
0

◆

✓
0
1

◆

✓
1
0

◆

✓
1
1

◆

Figure 3: Approximating Type 1 and Type 2 triangles.

a Type 1 triangle. The triangle B where the boundary is indicated by a thick line is the Type 1
triangle. The shaded triangle B′ is the Type 2 triangle. It is obtained by tilting one of the
edges of the Type 1 triangle around one of the lattice points in the interior of that edge.
Similarly, part (b) indicates how a quadrilateral can approximate a Type 2 triangle, and part
(c) shows how a Type 3 triangle can approximate a Type 2 triangle.

We are now ready to prove Theorem 1.3(1), i.e. that 42(f ; Γ) ⊆ 41(f ; Γ) for any f,Γ.
Because of Proposition 2.1, it suffices to show that for every ε > 0 and every triangle B of
Type 1, there exists a triangle B′ of Type 2 such that B ⊆ relax(B′; ε). Moreover, because
of Remark 2.2, it suffices to prove the result for the case where B is normalized. This result
follows from Remark 2.3(1). (Recall from Section 1.3 that Theorem 1.3(2) follows from
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Theorem 1.4 in [3].) Similarly, Theorem 1.4(1) and (2) follows from Proposition 2.1 and
Remark 2.3 part (3) and (2) respectively.

3 Expressing ρ[#1,#2] as an optimization problem

We write B ∼ B′ for B,B′ ⊆ Rn if B′ can be obtained from B by some affine unimodular
transformation. Let L be a family of lattice-free convex sets in Rn. We say that L is closed
under unimodular transformations if for all B ∈ L and B′ ∼ B, B′ ∈ L. As ∼ defines
an equivalence relation, we can, in that case, partition L into equivalence classes. A set
of representatives of L is a subset of L which consists of one lattice-free convex set for each
equivalence class. Given a set A ⊆ Rn and a ∈ Rn, we write a+A for the set {a+a′ : a′ ∈ A}.

We are now ready to state the main result of this section.

Theorem 3.1. For i ∈ {1, 2}, Li denotes a family of lattice-free convex sets in Rn. Suppose
that L2 is closed under unimodular transformations and let L̂2 denote a set of representatives
of L2. Suppose that all sets of L2 are polytopes with exactly ` extreme points. Then

1

ρ[L1,L2]
= inf

∑̀

i=1

si

subject to

s ∈ L1
(
f ; r1, . . . , r`

)

f + conv
{
r1, . . . , r`

}
∈ L̂2

f ∈ Qn \ Zn; r1, . . . , r` ∈ Qn \ {0}; cone
{
r1, . . . , r`

}
= Rn.

Note, this optimization problem has variables s1, . . . , s` and potentially an infinite number of
constraints as we get a constraint of L1

(
f ; r1, . . . , r`

)
for each B ∈ L1, for each f and for each

set of ri satisfying the conditions listed. The condition that cone
{
r1, . . . , r`

}
= Rn ensures

that f is in the interior of the polytope f + conv
{
r1, . . . , r`

}
.

A normalized quadrilateral is a maximal lattice-free quadrilateral, where each of the points
(0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T is in the interior of a different edge of the quadrilateral. A
Type 3 triangle is normalized if each of the points (0, 0)T , (1, 0)T , (0, 1)T is in the interior of
a different edge of the triangle. Moreover, we require that (0, 0)T and (1, 1)T be on different
sides of the line containing the edge of the triangle with the point (1, 0)T in its interior. See
Figure 6. We leave the following to the reader.

Remark 3.2. Let B be a quadrilateral (resp. a triangle of Type 3). There exists an affine
unimodular transformation φ : R2 → R with the property that φ(B) is a normalized quadri-
lateral (resp. triangle of Type 3).

Observe that both � and 43 are families of lattice-free convex sets that are closed under
affine unimodular transformations. We now obtain readily the following corollaries of Theo-
rem 3.1 and Remark 3.2.
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Corollary 3.3. Let �̂ be the set of all normalized quadrilaterals. Then, we have

1

ρ[42,�]
= inf s1 + s2 + s3 + s4

subject to

s ∈ 42(f ; r1, r2, r3, r4)

f + conv
{
r1, r2, r3, r4

}
∈ �̂

f ∈ Q2 \ Z2; r1, r2, r3, r4 ∈ Q2 \ {0}; cone
{
r1, r2, r3, r4

}
= R2.

Corollary 3.4. Let 4̂3 be the set of all normalized triangles of Type 3. Then, we have

1

ρ[42,43]
= inf s1 + s2 + s3

subject to

s ∈ 42fr
1, r2, r3

f + conv
{
r1, r2, r3

}
∈ 4̂3

f ∈ Q2 \ Z2; r1, r2, r3 ∈ Q2 \ {0}; cone
{
r1, r2, r3

}
= R2.

Corollary 3.3 will be used in the proof of Theorem 1.7, Corollary 3.4 will be utilized in
the proof of Theorem 1.8. We present a number of preliminaries before we proceed with
the proof of Theorem 3.1. Given a nonempty upper comprehensive convex set C ⊆ Rn+ and
a ∈ Rn+ we define,

τ [a;C] = inf
{
aTx : x ∈ C

}
.

Theorem 3.5. Let C1, C2 ⊆ Rn+ be nonempty, upper comprehensive, closed convex sets.
Assume 0 6∈ C2. Then,

1

ρ[C1, C2]
= inf

{
τ [a,C1] : aTx ≥ 1 is a minimal constraint for C2

}
.

Here, we define ρ[C1, C2] to be +∞ when the infimum is 0.

The case where both C1 and C2 are polyhedra appeared in [14]. The case where only C1 is
required to be a polyhedron appeared in [3].

Proof. Note that every upper comprehensive closed convex set C in Rn+\{0} can be expressed
as

C =
{
x ∈ Rn+ : aTx ≥ 1, a ∈ A(C)

}
,

where A(C) ⊆ Rn+ is the set of all a such that aTx = 1 defines a supporting hyperplane for
C. The assumption 0 6∈ C implies that A(C) is nonempty. Let

α := inf {τ [a,C1] : a ∈ A(C2)} .

First, we prove C1 ⊆ αC2. Since C1,A(C2) ⊆ Rn+ are nonempty, we have 0 ≤ α < +∞.
If α = 0, then for every ε > 0, there exist aε ∈ A(C2) and xε ∈ C1 such that (aε)Txε < ε.

Equivalently, (aε)T
(
1
εx

ε
)
< 1. The latter implies, there does not exist β > 0 such that

10



βC1 ⊆ C2. We have defined ρ[C1, C2] to be +∞ in this case. Therefore the theorem holds
when α = 0.

Hence, we may assume α ∈ (0,+∞). Let x̄ ∈ C1. Then,

aT x̄ ≥ α, ∀a ∈ A(C2).

The latter is equivalent to

aT
(

1

α
x̄

)
≥ 1, ∀a ∈ A(C2).

Since in addition, 1
α x̄ ∈ Rn+, we have 1

α x̄ ∈ C2. Hence, C1 ⊆ αC2.

Second, we prove that there does not exist ᾱ ∈ (α,+∞) such that C1 ⊆ ᾱC2. Suppose
there is such a ᾱ (we are seeking a contradiction). By the definition of α, for every ε > 0,
there exist xε ∈ C1 and aε ∈ A(C2) such that

(aε)Txε < α+ ε. (4)

Since C1 ⊆ ᾱC2, we must have

(aε)T
(

1

ᾱ
xε
)
≥ 1. (5)

Now, the relations (4) and (5) imply

α+ ε > (aε)Txε ≥ ᾱ, for every ε > 0;

i.e., α = ᾱ, a contradiction. Therefore, the above characterization of ρ is correct.

Lemma 3.6. Let L denote a family of lattice-free convex sets in Rn. Let f ∈ Qn \ Zn and
consider Γ,Γ′ finite sequences of vectors in Qn \ {0}. Suppose that Γ′ ⊆ Γ and that every
vector in Γ is a convex combination of vectors in Γ′. Then

inf
{

1lT s : s ∈ L(f ; Γ)
}

= inf
{

1lT s : s ∈ L(f ; Γ′)
}
. (6)

For the case where L is finite the above lemma specializes to Theorem 4.2 in [3].

Proof. Suppose every vector in Γ is a convex combination of vectors in Γ′ = r1, r2, . . . , rk.
So, we may assume, Γ = r1, r2, . . . , rk+`, and rk+i =

∑k
j=1 λijr

j with
∑k

j=1 λij = 1, ∀i ∈ [`],
where λij ≥ 0, ∀i ∈ [`], j ∈ [k].

Every feasible solution of the semi-infinite linear program in the RHS of (6) may be
appended by ` zeros to make up a feasible solution of the semi-infinite linear program in the
LHS of (6) with the same objective value. Thus, LHS ≤ RHS.

Let s̄ ∈ Rk+`+ be a feasible solution of the problem in the LHS. Define

ŝj := s̄j +
∑̀

i=1

λij s̄k+i, ∀j ∈ [k].

Note that

1lT ŝ =
k∑

j=1

(
s̄j +

∑̀

i=1

λij s̄k+i

)
=

k∑

j=1

s̄j +
∑̀

i=1

s̄k+i = 1lT s̄.

11



Consider an arbitrary inequality among the constraints in the LHS:

k+∑̀

j=1

ψf ;B(rj)sj ≥ 1.

We have

1 ≤
k+∑̀

j=1

ψf ;B(rj)s̄j

=
k∑

j=1

ψf ;B(rj)s̄j +
∑̀

i=1

ψf ;B




k∑

j=1

λijr
j


 s̄k+i

≤
k∑

j=1

ψf ;B(rj)

(
s̄j +

∑̀

i=1

λij s̄k+i

)

=

k∑

j=1

ψf ;B(rj)ŝj ,

where the second inequality above uses the convexity of ψf ;B(·) (see [7] for example). Hence,
ŝ is a feasible solution of the problem in the RHS with the same objective value as s̄ (in the
LHS). Therefore, LHS ≥ RHS.

The next remark characterizes the effect of scaling vectors.

Remark 3.7. Let L denote a family of lattice-free convex sets in Rn. Let f ∈ Qn \ Zn and
let r1, . . . , rk ∈ Qn \ {0} such that cone

{
r1, . . . rk

}
= Rn. Consider µj > 0 for all j ∈ [k] and

let D = Diag (µ1, . . . , µk). Suppose that aT s ≥ 1 is a minimal constraint of L(f ; r1, . . . , rk)
and let s ∈ L(f ; r1, . . . , rk). Then

1. (Da)T s ≥ 1 is a minimal constraint of L(f ;µ1r
1, . . . , µkr

k), and

2. D−1s ∈ L(f ;µ1r
1, . . . , µkr

k).

Proof. (1) By definition of L(f ; r1, . . . , rk), aT s ≥ 1 is an intersection cut for B ∈ L, f and
r1, . . . , rk, i.e. for all j ∈ [k], aj = ψf ;B(rj). It suffices to show that (Da)T s ≥ 1 is an
intersection cut for B, f , and µ1r

1, . . . , µkr
k, i.e. that for all j ∈ [k], ψf ;B(µjr

j) = µjaj =
µjψf ;B(rj). If there is no positive scalar λ such that f + λrj is on the boundary of B then
ψf ;B(rj) = ψf ;B(µjr

j) = 0 as required. Otherwise, f + λrj is on the boundary of B, and
ψf ;B(rj) = 1

λ . Hence, f+ λ
µj

(µjr
j) is on the boundary of B, and ψf ;B(µjr

j) =
µj
λ as required.

(2) follows from (1) as every minimal constraint of L(f ; r1, . . . , rk) distinct from s ≥ 0 is of
the form aT s ≥ 1, for a ≥ 0.

The next remark shows invariance under affine unimodular transformations.

Remark 3.8. Let L denote a family of lattice-free convex sets in Rn that is closed un-
der unimodular transformations. Let f ∈ Qn \ Zn and let r1, . . . , rk ∈ Qn \ {0} such that
cone

{
r1, . . . rk

}
= Rn. Let M ∈ Zn × Zn be a unimodular matrix and let c ∈ Zn. Then

L(f ; r1, . . . , rk) = L(c+Mf ;Mr1, . . . ,Mrk).

12



Proof. Since M−1 is unimodular, it suffices to show that every intersection cut for f,B ∈ L
and r1, . . . , rk, is an intersection cut for f,B′ and Mr1, . . . ,Mrk where B′ is some set in L.
This follows immediately from the fact that f + λrj is on the boundary of B, if and only if
(c+Mf) + λ(Mrj) = c+M(f + λrj) is on the boundary of B′ = c+ {Mb : b ∈ B}. Finally,
as L is closed under unimodular transformations, B′ ∈ L as well.

Suppose B ⊂ Rn is a lattice-free convex set and let f be in the interior of B. We say that
r ∈ Qn \ {0} is a boundary ray (for f,B) if f + r is on the boundary of B, and that r is a
corner ray if f + r is an extreme point of B.

Proof of Theorem 3.1. By definition of ρ, see (3), 1
ρ[L1,L2] is equal to,

inf

{
1

ρ
[
L1(f ; Γ),L2(f ; Γ)

] : f ∈ Qn \ Zn; Γ = r1, . . . , rk ∈ Qn \ {0}; k ≥ 1; cone{Γ} = Rn
}
.

(7)
It follows from Theorem 3.5 and the fact that every minimal constraint of L2(f ; Γ) is an
intersection cut that (7) can be written as,

inf τ
[
a,L1(f ; Γ)

]

subject to

aT s ≥ 1 intersection cut for f,B ∈ L2 and Γ

f ∈ Qn \ Zn; Γ = r1, . . . , rk ∈ Qn \ {0}; k ≥ 1; cone{Γ} = Rn.

(8)

Because of Remark 3.8 we may restrict in (7) B ∈ L2 to B ∈ L̂2. Since aT s ≥ 1 is an
intersection cut and f is in the interior of B, and B is bounded, aj > 0 for all j ∈ [k]. Let
D = Diag (a1, . . . , ak). Then

τ
[
a,L1(f ; Γ)

]
= inf

{
aT s : s ∈ L1(f ; r1, . . . , rk)

}

= inf

{
1lTDs : Ds ∈ L1

(
f ;

1

a1
r1, . . . ,

1

ak
rk
)}

,

where the first equality follows from the definition of τ and the second from Remark 3.7(2).

Moreover, by Remark 3.7(1), 1lT s ≥ 1 is a minimal constraint of L1
(
f ; 1

a1
r1, . . . , 1

ak
rk
)

. Since

in (8) the infimum is taken over all r1, . . . , rk ∈ Qn \ {0}, after redefining Ds as s, we can
rewrite (8) as follows,

inf 1lT s

subject to

s ∈ L1
(
f ; r1, . . . , rk

)

1lT s ≥ 1 intersection cut for f,B ∈ L̂2 and Γ

f ∈ Qn \ Zn; Γ = r1, . . . , rk ∈ Qn \ {0}; k ≥ 1; cone{Γ} = Rn.

(9)
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Let B ∈ L̂2 for which the intersection cut for f,B,Γ is of the form 1lT s ≥ 1. Then all
vectors of Γ must be boundary rays for f,B. Let Γ′′ be the corner rays for B and f , and let
Γ′ = Γ ∪ Γ′′. Then

inf{1lT s : s ∈ L1(f ; Γ)} ≥ inf{1lT s : s ∈ L1(f ; Γ′)} = inf{1lT s : s ∈ L1(f ; Γ′′)}.

The inequality arises from the fact that the second optimization problem is a relaxation of the
first as setting variables for the second problem to zero for all vectors in Γ′ \Γ yields the first
problem. The equality follows by Lemma 3.6. Thus, in (9) we can restrict Γ to correspond
to the set of all corner rays of B, i.e. that B = f + conv{r1, . . . , r`} where ` is the number of
extreme points of each B ∈ L2. Then, the resulting problem is as required.

4 Upper bound for ρ[42,�]

Let Q be a normalized quadrilateral with corners v1, v2, v3, v4. We may assume (after possibly
relabelling v1, v2, v3, v4) that (see Figure 4),

edge v1, v2 contains (1, 0)T and has slope β,
edge v2, v3 contains (0, 0)T and has slope −α,
edge v3, v4 contains (0, 1)T and has slope γ, and
edge v4, v1 contains (1, 1)T and has slope −δ,
where α, β, γ, δ > 0.

(10)

✓
1
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◆✓
0
0

◆

✓
1
1

◆✓
0
1

◆
��

��↵

�

v1

v2

v3

v4

Figure 4: Quadrilateral with corners v1, v2, v3, v4.

Note that Q is completely described by α, β, γ, δ. The following can be readily checked.

Remark 4.1. Let Q be a normalized quadrilateral as in (10). Then

v1 =

(
1 +

1

β + δ
,

β

β + δ

)T
v2 =

(
β

α+ β
,
−αβ
α+ β

)T

v3 =

( −1

α+ γ
,

α

α+ γ

)T
v4 =

(
δ

δ + γ
, 1 +

γδ

δ + γ

)T
.
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Let Q be a normalized quadrilateral as in (10) and let `1, `2, `3, `4 be distinct elements of
{1, 2, 3, 4}. The fixed triangle T`1 associated with Q is the unique maximal lattice-free triangle
that has v`2 , v`3 , v`4 on the boundary of T`1 and that contains all of (0, 0)T , (0, 1)T , (1, 0)T ,
(1, 1)T . See Figure 5.

T1

T2

T3

T4

v1

v2

v3

v4

Figure 5: Associated triangles T1, T2, T3 and T4.

Remark 4.2. Let Q be a normalized quadrilateral as in (10). For all i ∈ {1, 2, 3, 4}, let Ti
denote a fixed triangle associated with Q and let ri = vi − f where f ∈ Q2 \Z2 is an interior
point of Ti ∩Q. For all i, j ∈ {1, 2, 3, 4}, i 6= j, ψf ;Ti(r

j) = 1. Moreover,

ψf ;T1(r1) = 1 +
1

a
, ψf ;T2(r2) = 1 +

1

b
, ψf ;T3(r3) = 1 +

1

c
, ψf ;T4(r4) = 1 +

1

d
,

where
a = (1− f1)(β + δ) b = f2(

1
α + 1

β )

c = f1(α+ γ) d = (1− f2)(1δ + 1
γ ).

(11)

Proof. Suppose j 6= i. Then f + rj is on the boundary of Ti, and by definition, ψf ;Ti(r
j) = 1

as required. Suppose i = j. We only consider the case where i = 1 as the other cases
are analogous. For some scalar λ > 0, f + λr1 is on the boundary of T1. In particular,
f1 + λr11 = 1, thus

ψf ;T1(r1) =
1

λ
=

r11
1− f1

=
v11 − f1
1− f1

= 1 +
v11 − 1

1− f1
.
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By Remark 4.1, v11 = 1 + 1
β+δ , and the result follows.

We consider the functions h, h′ : R6 → R with variables f1, f2, α, β, δ, γ where,

h(f1, f2, α, β, δ, γ) = a+ b+ c+ d and h′(f1, f2, α, β, δ, γ) = b+ c+ d, (12)

where a, b, c, d are defined as in (11).

Lemma 4.3. For h, h′ defined as in (12),

1. inf {h : f1, f2 ∈ [0, 1], α, β, γ, δ > 0} ≥ 2, and

2. inf
{
h′ : f1 ≥ 1, f2 ∈ [0, 1], α, β, γ, δ > 0

}
≥ 2.

The proof will require the following observation. In what follows, R++ denotes the positive
reals, i.e., R++ := R+ \ {0}.

Remark 4.4. For every pair of constants c1, c2 > 0, the function f : R++ → R where

f(x) = c1
1
x + c2x attains its minimum value 2

√
c1c2 uniquely at x =

√
c1
c2

. In particular,

min

{
x+

1

x
: x > 0

}
= 2.

Proof of Lemma 4.3. Consider part 1. Let us define the function g : (0, 1)→ R2 where

g(ε) = inf

{
h : f1, f2 ∈ [0, 1], α, β, γ, δ ∈

[
ε,

1

ε

]}
.

Claim. For all ε ∈ (0, 1), g(ε) ≥ 2.

Proof of claim: Consider a fixed ε > 0. Then g(ε) is obtained by minimizing the continuous
function h, over the compact set {(f1, f2, α, β, γ, δ) : f1, f2 ∈ [0, 1], α, β, γ, δ ∈

[
ε, 1ε
]
}. It

follows that h attains its minimum for say values f̂1, f̂2, α̂, β̂, δ̂, γ̂. For fixed values α̂, β̂, δ̂, γ̂,
h is a linear function in f1, f2. Thus it attains its minimum for one of the following values
(f1, f2): (0, 0)T , (1, 0)T , (0, 1)T , (1, 1)T . Observe that by symmetry of h (with respect to
these four point values), it suffices to consider the case (f1, f2) = (0, 0)T . In that case h
becomes,

β̂ + δ̂ +
1

δ̂
+

1

γ̂
≥ δ̂ +

1

δ̂
≥ 2,

where the first inequality follows from β̂, γ̂ ≥ ε and the second from δ̂ > ε and Remark 4.4.
3

Finally, if for some f̂1, f̂2 ∈ [0, 1] and α̂, β̂, δ̂, γ̂ > 0, h has value < 2, then for ε > 0 small
enough, g(ε) < 2, contradicting the Claim. Hence, part 1. holds.

2(a, b) denotes the open interval between a and b.
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For part 2., consider α̂, β̂, δ̂, γ̂ > 0 and f1 ≥ 1, f2 ∈ [0, 1]. Then

h′(f1, f2, α, β, δ, γ) = f2(
1

α
+

1

β
) + f1(α+ γ) + (1− f2)(

1

δ
+

1

γ
)

≥ f2(
1

α
+

1

β
) + (α+ γ) + (1− f2)(

1

δ
+

1

γ
)

= h(1, f2, α, β, δ, γ) ≥ 2,

where the first inequality follows from δ, γ > 0 and the second from part (1).

We are now ready for the main proof of this section (i.e., the proof of ρ[42,�] ≤ 1.5).

Proof of Theorem 1.7. Choose arbitrary fixed r1, r2, r3, r4 ∈ Q2\{0} and f ∈ Q2\Z2 such that
Q = f+conv{r1, r2, r3, r4} is a normalized quadrilateral. Consider the following minimization
problem,

inf s1 + s2 + s3 + s4

subject to

s ∈ 42(f ; r1, r2, r3, r4).

(13)

It suffices to show that some relaxation of (13) has a lower bound of 2
3 , for as r1, r2, r3, r4, f

were chosen arbitrarily, it implies by Corollary 3.3 that 2
3 is a lower bound for 1

ρ[42,�] ; i.e.,

that ρ[42,�] ≤ 1.5 as required. For i ∈ {1, 2, 3, 4}, vi = f + ri is a corner of Q. We may
assume that Q is described by α, β, γ, δ as in (10). After possibly rotating by multiples of
π/2 (see Remark 3.8) either, 0 < f1, f2 < 1 or f1 ≥ 1 and 0 < f2 < 1. Thus, it will suffice to
consider Case 1 and Case 2.

Case 1: 0 < f1, f2 < 1.

Let T1, T2, T3, T4 be the fixed triangles associated with Q (see Figure 5). The following linear
program is a relaxation of (13),

min s1 + s2 + s3 + s4

subject to

4∑

j=1

ψf ;Ti(r
j)sj ≥ 1 i ∈ {1, 2, 3, 4}

s ∈ R4
+.

(14)

Since 0 < f1, f2 < 1 and α, β, γ, δ > 0 we have, a, b, c, d > 0, where a, b, c, d are defined as
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in (11). Remark 4.2 implies that (14) can be written as,

min s1 + s2 + s3 + s4

subject to



1 + 1
a 1 1 1

1 1 + 1
b 1 1

1 1 1 + 1
c 1

1 1 1 1 + 1
d


 s ≥ 1l

s ≥ 0.

(15)

The dual of (15) is given by,

max ν1 + ν2 + ν3 + ν4

subject to



1 + 1
a 1 1 1

1 1 + 1
b 1 1

1 1 1 + 1
c 1

1 1 1 1 + 1
d


 ν ≤ 1l

ν ≥ 0.

(16)

Consider,

ν̂ =
1

1 + a+ b+ c+ d




a
b
c
d


 .

As a, b, c, d > 0, ν̂ ≥ 0 and it can be readily checked that constraints of (16) corresponding
to each of the primal variables s1, s2, s3, s4 are satisfied with equality. Thus ν̂ is feasible for
(16). Moreover, it has objective value,

ν̂T 1l = 1− 1

1 + a+ b+ c+ d
.

By (12) h = a + b + c + d. Lemma 4.3 part 1. shows that for all f1, f2, α, β, γ, δ where
0 < f1, f2 < 1 and α, β, γ, δ > 0, we have h ≥ 2. Thus ν̂T 1l ≥ 2

3 . In particular, 2
3 is a lower

bound for (16) and in turn by weak duality to (14) as required.

Case 2: f1 ≥ 1 and 0 < f2 < 1.

Let T2, T3, T4 be the fixed triangles associated with Q (see Figure 5). Note, that f is in the
interior of T2, T3 and T4. The following linear program is a relaxation of (13),

min s1 + s2 + s3 + s4

subject to

4∑

j=1

ψf ;Ti(r
j)sj ≥ 1 i ∈ {2, 3, 4}

s ∈ R4
+.

(17)
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This differs from (14) as we omitted the constraint corresponding to T1. Since f1 ≥ 1,
0 < f2 < 1 and α, β, γ, δ > 0 we have, b, c, d > 0, where b, c, d are defined as in (11).
Remark 4.2 implies that (17) can be written as,

min s1 + s2 + s3 + s4

subject to



1 1 + 1
b 1 1

1 1 1 + 1
c 1

1 1 1 1 + 1
d


 s ≥ 1l

s ≥ 0.

(18)

The dual of (18) is given by,

max ν1 + ν2 + ν3

subject to



1 1 1
1 + 1

b 1 1
1 1 + 1

c 1
1 1 1 + 1

d


 ν ≤ 1l

ν ≥ 0.

(19)

Consider,

ν̂ =
1

1 + b+ c+ d



b
c
d


 .

As b, c, d > 0, ν̂ ≥ 0 and it can be readily checked that constraints of (19) corresponding
to each of primal variables s2, s3, s4 are satisfied with equality, and that since b, c, d > 0
the constraint corresponding to s1 also holds. Thus ν̂ is feasible for (19). Moreover, it has
objective value,

ν̂T 1l = 1− 1

1 + b+ c+ d
.

By (12), h′ = b + c + d. Lemma 4.3 part 2. shows that for all f1, f2, α, β, γ, δ where f1 ≥ 1,
0 < f2 < 1 and α, β, γ, δ > 0, we have h′ = b+ c+ d ≥ 2. Thus ν̂T 1l ≥ 2

3 . In particular, 2
3 is

a lower bound for (19) and in turn by weak duality to (17) as required.

5 Upper bound for ρ[42,43]

Let T be a normalized Type 3 triangle with corners v1, v2, v3. We may assume (after possibly
relabelling v1, v2, v3) that (see Figure 6),

edge v1, v2 contains (0, 1)T and has slope δ,
edge v2, v3 contains (0, 0)T and has slope −α, and
edge v3, v1 contains (1, 0)T and has slope −β,
where β > 1, α, δ > 0, and α < 1.

(20)
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Note, by definition, as T is a normalized Type 3 triangle, (0, 0)T and (1, 1)T are on different
sides of the line containing v1, v3. This implies β > 1. Since (1, 0)T is an interior point of the
edge v1, v3 of T , α > 0. As (1,−1)T /∈ T , α < 1. Finally, since (−1, 1)T /∈ T , δ > 0.
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1
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Figure 6: Normalized triangle of Type 3

Remark 5.1. Let T be a normalized Type 3 triangle as in (20). Then

v1 =

(
β − 1

β + δ
,
β(δ + 1)

δ + β

)T
v2 =

( −1

δ + α
,

α

δ + α

)T
v3 =

(
β

β − α,
αβ

α− β

)T
.

Let T be a normalized Type 3 triangle as in (20). The fixed triangle T1 associated with T has
vertices corresponding to the pairwise intersection of the lines going through respectively:
v3, v1; v3, v2; and (0, 1)T , (−1, 1)T . The fixed triangle T2 associated with T has vertices
corresponding to the pairwise intersection of the lines going through respectively: v1, v2;
v1, v3; and (0, 0)T , (1,−1)T . The fixed triangle T3 associated with T has vertices correspond-
ing to the pairwise intersection of the lines going through respectively: v2, v1; v2, v3; and
(1, 1)T , (1, 0)T . See Figure 7. As T is a lattice-free convex set, so is the triangle with corners
v3, (0, 0)T and (1, 0)T . As T1 is obtained from that triangle by sliding the line L1 going
through (0, 0)T , (1, 0)T to the line L2 going through (0, 1)T , (1, 1)T and as there is no integer
point in the interior of the region between L1 and L2, it follows that T1 is a lattice-free convex
set. Moreover, as it has exactly one integer point in the interior of edges v3, v1 and v3, v2

and at least two integer points on the third edge, it is a triangle of Type 2. Similarly, we can
show that T2, T3 are of Type 2.

Remark 5.2. Let T be a normalized Type 3 triangle as in (20). For all i ∈ {1, 2, 3}, let Ti
denote a fixed triangle associated with T and let ri = vi − f where f ∈ Q2 \Z2 is an interior
point of Ti ∩Q. For all i, j ∈ {1, 2, 3}, i 6= j, ψf ;Ti(r

j) = 1. Moreover,

ψf ;T1(r1) = 1 +
1

a
, ψf ;T2(r2) = 1 +

1

b
, ψf ;T3(r3) = 1 +

1

c
,

where

a = (1− f2)
δ + β

δ(β − 1)
b = (f1 + f2)

α+ δ

1− α c = (1− f1)
β − α
α

. (21)
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Figure 7: Triangle of Type 3 and associated triangles

We consider the functions h, h′ : R5 → R with variables α, β, δ, f1, f2 where,

h(α, β, δ, f1, f2) = a+ b+ c and h′(α, β, δ, f1, f2) = b+ c, (22)

where a, b, c are defined as in (21).

Lemma 5.3. Let v4 =
(
β−1
β , 1

)
(see Figure 6). For h, h′ defined as in (22),

1. inf

{
h : β > 1, α, δ > 0, α < 1; f ∈ conv

{(
0
0

)
,

(
0
1

)
,

(
1
0

)
, v4
}}
≥ 2, and

2. inf

{
h′ : β > 1, α, δ > 0, α < 1; f ∈ conv

{(
0
1

)
, v1, v4

}}
≥ 2.

The proof will require the following easy observation.

Remark 5.4.

min

{
1

x
+

1

1− x : 0 < x < 1

}
= 4.

Proof of Lemma 5.3. Consider part 1. Let us define the function g : (0, 1)→ R where

g(ε) = inf {h : (f1, f2, α, β, δ) ∈ S} ,

where S is the set of tuples (f1, f2, α, β, δ) that satisfy,

f ∈ conv

{(
0
0

)
,

(
1
0

)
,

(
0
1

)
, v4
}

and 1 + ε ≤ β ≤ 1

ε
, α, δ ≥ ε, α ≤ 1− ε, δ ≤ 1

ε
.
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Claim. For all ε ∈ (0, 1), g(ε) ≥ 2.

Proof of claim: Then, g(ε) is obtained by minimizing the continuous function h, over the
compact set S. It follows that h attains its minimum for say values f̂1, f̂2, α̂, β̂, δ̂. For fixed
values α̂, β̂, δ̂, h is a linear function in f1, f2. Thus, it attains its minimum for one of the
following values (f1, f2): (0, 0)T , (0, 1)T , (1, 0)T , v4. Using Remarks 4.4 and 5.4, one can
verify that in each of the above four cases, h ≥ 2.

3

Finally, if for some f̂1, f̂2 ∈ [0, 1] and α̂, β̂, δ̂, h has value < 2, then for ε > 0 small enough,
g(ε) < 2, contradicting the Claim.

For part 2., consider α̂, β̂, δ̂ with β̂ > 1, α̂, δ̂ > 0, α̂ < 1 and f̂ ∈ conv{(0, 1)T , v1, v4}.
Then

h′ =(f̂1 + f̂2)
α̂+ δ̂

1− α̂ + (1− f̂1)
β̂ − α̂
α̂

≥(f̂1 + 1)
α̂+ δ̂

1− α̂ + (1− f̂1)
β̂ − α̂
α̂

= h(f̂1, 1, α̂, β̂, δ̂) ≥ 2,

where the first inequality follows from f̂2 ≥ 1, α̂, β̂, 1 − α̂ > 0, the second equality from the
definitions of h, h′, and the second inequality from part (1).

We are now ready for the main proof of this section (i.e., the proof of ρ[42,43] ≤ 1.5).

Proof of Theorem 1.8. Choose arbitrary fixed r1, r2, r3 ∈ Q2 \ {0} and f ∈ Q2 \Z2 such that
T = f+conv{r1, r2, r3} is a normalized Type 3 triangle. Consider the following minimization
problem,

inf s1 + s2 + s3

subject to

s ∈ 42(f ; r1, r2, r3).

(23)

It suffices to show that some relaxation of (23) has a lower bound of 2
3 , for as r1, r2, r3, f were

chosen arbitrarily it implies by Corollary 3.4 that 2
3 is a lower bound for 1

ρ[42,43]
; i.e., that

ρ[42,43] ≤ 1.5 as required. For i ∈ {1, 2, 3}, vi = f + ri is a corner of T . We may assume
that T is described by α, β, δ as in (20). After possibly applying a unimodular transformation
(see Remark 3.8), we may assume that

f ∈ conv

{(
0
0

)
,

(
1
0

)
,

(
0
1

)
, v1
}
∩ R2

++.

As f is in the interior of T , we are either in Case 1 or Case 2.

Case 1: f is in the interior of conv{(0, 0)T , (1, 0)T , (0, 1)T , v4}.
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Let T1, T2, T3 be the fixed triangles associated with T (see Figure 7). The following linear
program is a relaxation of (23),

min s1 + s2 + s3

subject to

3∑

j=1

ψf ;Ti(r
j)sj ≥ 1 i ∈ {1, 2, 3}

s ∈ R3
+.

(24)

Since f ∈ conv{(0, 0)T , (1, 0)T , (0, 1)T , v4} and β > 1, α, δ > 0 and α < 1, it follows that
a, b, c > 0, where a, b, c are defined as in (21). Remark 5.2 implies that (24) can be written as,

min s1 + s2 + s3

subject to



1 + 1
a 1 1

1 1 + 1
b 1

1 1 1 + 1
c


 s ≥ 1l

s ≥ 0.

(25)

Consider,

ν̂ =
1

1 + a+ b+ c



a
b
c




which is a feasible solution for the dual of (25). Moreover, it has objective value,

ν̂T 1l = 1− 1

1 + a+ b+ c

By (22), h = a+ b+ c. Lemma 5.3 part 1. implies that h ≥ 2. Thus, ν̂T 1l ≥ 2
3 . In particular,

2
3 is a lower bound for the optimal objective value of the dual of (25) and in turn by weak
duality to (24), as required.

Case 2: f ∈ conv{(0, 1)T , v1, v4}.

Let T2, T3 be the fixed triangles associated with T (see Figure 7). Note, that f is in the
interior of T2 and T3. The following linear program is a relaxation of (23),

min s1 + s2 + s3

subject to

3∑

j=1

ψf ;Ti(r
j)sj ≥ 1 i ∈ {2, 3}

s ∈ R3
+.

(26)
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It can be readily checked that in this case b, c > 0. Remark 5.2 implies that (26) can be
written as,

min s1 + s2 + s3

subject to
(

1 1 + 1
b 1

1 1 1 + 1
c

)
s ≥ 1l

s ≥ 0.

(27)

Consider,

ν̂ =
1

1 + b+ c

(
b
c

)

which is a feasible solution to the dual of (27) with objective value 1 − 1
1+b+c . Lemma 5.3

part 2. shows that h′ = b+ c ≥ 2. In particular, 2
3 is a lower bound for the dual of (27) and

in turn by weak duality to (26) as required.

6 Lower bounds

We start this section with a proof of Theorem 1.5(1): ρ[41,S] = +∞. To prove this, it
suffices to exhibit an instance f ∈ Qn \ Zn, Γ = r1, . . . , rk ∈ Qn \ {0}, k ≥ 1 for which there
is no α > 0 satisfying αS(f ; Γ) ⊇ 41(f ; Γ).

Let f := (12 , 0)T , k := 2, r1 := (1, 0)T , r2 := (0, 1)T .
Since the integer point (1, 0)T is the midpoint between f and f + r1, every intersection

cut ψ(r1)s1 +ψ(r2)s2 ≥ 1 satisfies ψ(r1) ≥ 2. The split cut generated by the split 0 ≤ x1 ≤ 1
is the inequality 2s1 ≥ 1. Therefore it dominates all other intersection cuts. In particular,
we have shown that S(f ; r1, r2) = {s ∈ R2

+ : s1 ≥ 1
2}.

We claim that the point (0, 32)T is in 41(f ; r1, r2). This will complete the proof since
(0, 32)T 6∈ α{s ∈ R2

+ : s1 ≥ 1
2} for any α > 0. To prove the claim, consider any Type 1

triangle T . Not all three vertices of T can lie on the two lines x1 = 0 and x1 = 1. Therefore
T has a vertex with coordinate x1 ≤ −1 or x1 ≥ 2, say x1 ≥ 2. Since T is lattice-free, of Type
1 and contains f in its interior, the intersection of T with the line x1 = 1

2 has length at most
3
2 . Since f is in the interior of this segment, we conclude that ψ(r2) ≥ 2

3 in all intersection
cuts arising from Type 1 triangles. This proves (0, 32)T ∈ 41(f ; r1, r2).

Proof of Theorem 1.6 in [3] contains a proof of Theorem 1.5(2).

Next we prove Theorem 1.6(1), namely that ρ[43,�] ≥ 1.125. Because of Remark 1.9 it
will suffice to show the following result,

Theorem 6.1. ρ[4,�] ≥ 1.125.

Proof. Define, f := (0.5, 0.5)T and

r1 := (0.9, 0.3)T r2 := (0.3,−0.9)T r3 := (−0.9,−0.3)T r4 := (−0.3, 0.9)T .

We will show ρ
[
4(f ; r1, r2, r3, r4),�(f ; r1, r2, r3, r4)

]
≥ 9/8 = 1.125. We first claim that it

suffices to show that s̄ := (2/9, 2/9, 2/9, 2/9)T ∈ 4(f ; r1, r2, r3, r4). Let Q denote the square
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Figure 8: Square Q and vectors f, r1, r2, r3, r4.

with vertices vi = f+ri for i = 1, 2, 3, 4 (see Figure 8). Since r1, r2, r3, r4 are corner rays of Q,
the intersection cut for f and Q is given by s1+s2+s3+s4 ≥ 1, in particular, that constraint
is valid for �(f ; r1, r2, r3, r4). It follows that if s̄ ∈ α �(f ; r1, r2, r3, r4) then α ≤ 8/9. Thus,
ρ
[
4(f ; r1, r2, r3, r4),�(f ; r1, r2, r3, r4)

]
≥ 9/8, as required.

Let T be an arbitrary maximal lattice free triangle containing f in its interior. It suffices
to show that s̄ satisfies the intersection cut for f and T . Consider the three lines defined by
the edges of T . After a suitable unimodular transformation, at least one of these lines must
have two of the points (0, 0)T , (0, 1)T , (1, 0)T , (1, 1)T on one side (in the closed halfspace)
and f on the opposite side (in the open halfspace). Without loss of generality, assume that
an edge of T defines a line L with (1, 0)T and (1, 1)T on the opposite side of f . This implies

ψf ;T (r1) ≥ 9

5
. (28)

Let r := 1
3r

1 + 2
3r

2. Then,

1

3
ψf ;T (r1) +

2

3
ψf ;T (r2) ≥ ψf ;T (r) ≥ 1, (29)

where the first inequality arises from convexity of ψf ;T , and the second one from the fact that
f + r = (1, 0)T is not in the interior of T .

Let r′ := 1
3r

3 + 2
3r

4. Then,

1

3
ψf ;T (r3) +

2

3
ψf ;T (r4) ≥ ψf,T (r′) ≥ 1, (30)

where the first inequality arises from convexity of ψf ;T , and the second one from the fact that
f + r = (0, 1)T is not in the interior of T .

We break the remainder of the proof in two cases.

Case 1. ψf ;T (r3) ≥ 6
5 .

Then using (29) and (30), we get

2

3

[
ψf ;T (r1) + ψf ;T (r2) + ψf ;T (r3) + ψf ;T (r4)

]
≥ 2 +

1

3
(ψf ;T (r1) + ψf ;T (r3)).
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Using (28) and ψf ;T (r3) ≥ 6
5 , we get

2

9

[
ψf ;T (r1) + ψf ;T (r2) + ψf ;T (r3) + ψf ;T (r4)

]
≥ 1. (31)

It follows that s̄ satisfies the intersection cut for f and T .

Case 2. ψf ;T (r3) ≤ 6
5 .

Then, the intersection point w of the triangle T with the half-line H defined by f +λr3 with
λ ≥ 0, has negative first coordinate x1. By convexity of T , two distinct sides of T separate
the segment wf from the points (0, 0) and (0, 1). Let L1 be the line containing the side of T
that separates (0, 0) and L2 the line containing the side of T that separates (0, 1). We may
assume that w is the vertex of T at the intersection of L1 and L2 since, otherwise, we can
modify the triangle by changing L1 or L2 and get an inequality at least as strong.

Notice that the line passing through w and (0, 0) intersects f +λr2 with λ ≥ 0, at a point
with first coordinate at most 1, by our assumption on ψf ;T (r3) (e.g., express w as f + λ̄r3

with λ̄ ≥ 5
6 and compute the first coordinate of the intersection with f + λr2). So, we may

also assume without loss of generality that the line L defined earlier is the line x1 = 1. It
follows that

ψf ;T (r1) =
9

5
. (32)

Furthermore, by maximality of T , the lines L1 and L2 go through (0, 0)T and (0, 1)T respec-
tively. Let r′′ := 1

3r
2 + 2

3r
3. Then,

1

3
ψf ;T (r2) +

2

3
ψf ;T (r3) = ψf ;T (r′′) = 1, (33)

where the first equality arises from convexity of ψf ;T and the fact that r2, r3, r′′ are all on
the line L1 and on the boundary of T ; and the second equality follows from the fact that r′′

is on the boundary of T . Similarly, as r3, r4, r are on the line L2 and on the boundary of T ,
equality holds throughout in (30). Together with (33) we get,

ψf ;T (r2) + ψf ;T (r3) + ψf ;T (r4) =
9

2
− 3

2
ψf ;T (r3).

Using (32) we get

2

9
(ψf ;T (r1) + ψf ;T (r2) + ψf ;T (r3) + ψf ;T (r4)) =

7

5
− 1

3
ψf ;T (r3) ≥ 1.

It follows again that s̄ satisfies the intersection cut for f and T .

Next we prove Theorem 1.6(2).

Theorem 6.2. ρ[�,43] ≥ 1.125.

Proof. Define, f := (1/3, 1/3)T and

r1 := (1,−1)T r2 := (0, 1)T r3 := (−1, 0)T .
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Figure 9: Triangle T and vectors f, r1, r2, r3.

We will show ρ
[
�(f ; r1, r2, r3),43(f ; r1, r2, r3)

]
≥ 9/8 = 1.125. We first claim that it suffices

to show that s̄ := (8/27, 8/27, 8/27)T ∈ �(f ; r1, r2, r3). Let T denote the triangle of Type 3
with vertices vi = f + ri for i = 1, 2, 3. (See Figure 9.) Since r1, r2, r3 are corner rays of T ,
the intersection cut for f and Q is given by s1 + s2 + s3 ≥ 1, in particular, that constraint
is valid for 43(f ; r1, r2, r3). It follows that if s̄ ∈ α 43(f ; r1, r2, r3) then α ≤ 24/27. Thus
ρ
[
�(f ; r1, r2, r3),43(f ; r1, r2, r3)

]
≥ 27/24 = 9/8, as required.

Let Q be an arbitrary maximal lattice free quadrilateral containing f in its interior. It
suffices to show that s̄ satisfies the intersection cut for f and Q.

Let r := 2
3r

1 + 1
3r

2. Then,

2

3
ψf ;Q(r1) +

1

3
ψf ;Q(r2) ≥ ψf ;Q(r) ≥ 1, (34)

where the first inequality arises from convexity of ψf ;Q, and the second one from the fact
that f + r = (1, 0)T is not in the interior of Q.

Similarly
2

3
ψf ;Q(r2) +

1

3
ψf ;Q(r3) ≥ 1, (35)

and
2

3
ψf ;Q(r3) +

1

3
ψf ;Q(r1) ≥ 1. (36)

Case 1. ψf ;Q(ri) ≥ 3
2 for i ∈ {1, 2, 3}.

We may assume,
ψf ;Q(r1) ≥ 3/2. (37)

Then, 3
2×(35)+3

4×(36)+3
4×(37) gives

ψf ;Q(r1) + ψf ;Q(r2) + ψf ;Q(r3) ≥ 27/8.

Therefore, the point s̄ = ( 8
27 ,

8
27 ,

8
27)T satisfies the intersection cut for f and Q. Note that it

is possible to satisfy all three inequalities (35), (36) and (37) at equality. So, the bound of
9/8 can be achieved.
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Case 2. ψf ;Q(ri) < 3
2 for all i ∈ {1, 2, 3}.

By convexity of Q, the only integer points that can be on the boundary of Q are (0, 0)T ,
(0, 1)T , (1, 0)T . However, this contradicts the property that maximal lattice-free quadrilat-
erals contain four integral points on their boundary.

7 Concluding remarks

We refer the reader to Figure 2 and Table 1 in the Introduction. In Table 2, we give lower
and upper bounds on ρ[#1,#2] values for every pair of families of intersection cuts. If a cell
contains only one value, then that is the exact value of the approximation ratio ρ. So, Table 1
corresponds to the last column of Table 2. Those entries in the table which are stated as some
of the main results in this paper are in bold face. The other numbers were either proved in
previous work or are elementary consequences of our results (e.g., by utilizing Remark 1.9).

ρ[#1,#2] S 41 42 43 � R

S – 2 +∞ +∞ +∞ +∞
41 +∞ – +∞ +∞ +∞ +∞
42 1 1 – 1.125, 1.5 1.125, 1.5 1.125, 1.5

43 1 1 1 – 1.125, 1.5 1.125, 1.5

� 1 1 1 1.125, 1.5 – 1.125, 1.5

Table 2: Lower bounds and upper bounds on ρ[row set, column set] values.

We proved that Type 2 triangle closure is within 50% of the convex hull of integer points,
R, and no single family (among the five families) can guarantee better than a 12.5% approx-
imation to R. Moreover, the inclusion lattice Figure 2 together with the facts that Split and
Type 1 closures can give arbitrarily bad approximations of R, and to close in on R with a
tighter than 12% approximation, one needs both Type 3 triangle closure and the quadrilat-
eral closure, indicate that Type 2 triangles provide a natural compromise for implementation.
The additional fact that one needs fewer parameters to describe Type 2 triangles compared
to the union of Type 3 triangles and quadrilaterals, adds to the argument for focusing on
Type 2 triangles for implementations [4], [12], [17].
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