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Abstract. It is well known that the duality theory for linear programming (LP) is powerful
and elegant and lies behind algorithms such as simplex and interior-point methods. However, the
standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps.

Semidefinite linear programming (SDP) is a generalization of LP where the nonnegativity con-
straints are replaced by a semidefiniteness constraint on the matrix variables. There are many
applications, e.g., in systems and control theory and combinatorial optimization. However, the La-
grangian dual for SDP can have a duality gap.

We discuss the relationships among various duals and give a unified treatment for strong duality
in semidefinite programming. These duals guarantee strong duality, i.e., a zero duality gap and dual
attainment. This paper is motivated by the recent paper by Ramana where one of these duals is
introduced.
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1. Introduction.

1.1. Semidefinite programming (SDP). We study strong duality theorems
for the semidefinite linear programming problem

(P)
p∗ = sup ctx

subject to Ax � b
x ∈ ℜm,

where c, x ∈ ℜm; b = Q0 ∈ Sn, the space of symmetric n × n matrices; the linear
operator Ax =

∑m

i=1 xiQi for Qi ∈ Sn, i = 1, . . . ,m; and � denotes the Löwner
partial order, i.e., X � (≺) Y means Y −X is positive semidefinite (positive definite).
We let P denote the cone of semidefinite matrices. By a cone we mean a convex
cone, i.e., a set K satisfying K + K ⊂ K and λK ⊂ K for all λ ≥ 0. We consider
the space of symmetric matrices, Sn, as a vector space with the trace inner product
〈U,X〉 := traceUX. (Over the space of n × n matrices, 〈U,X〉 := trace (U tX).) The

corresponding norm is the Frobenius matrix norm ||X|| =
√

traceX2.
We let F denote the feasible set of (P), and we assume that the optimal value p∗

is finite. (This implies that the feasible set F 6= ∅.)
1.2. Background.

1.2.1. Cone of semidefinite matrices. The cone of positive semidefinite ma-
trices has been studied extensively for both its importance and geometric elegance.
Positive definite matrices arise naturally in many areas, including differential equa-
tions, statistics, and systems and control theory. The cone P induces a partial order
on Sn called the Löwner partial order. Various monotonicity results were studied
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with respect to this partial order [28, 29]. An early paper in this area is the one by
Bohnenblust [9]. Optimization problems over cones of matrices are also discussed in
the monograph by Berman [8].

More recently, we have seen a strong renewed interest in semidefinite program-
ming. This is due to new applications in engineering (e.g., Ben-Tal and Nemirovskii
[7], Boyd et al. [14], and Vandenberghe and Boyd [36]) and combinatorial optimiza-
tion (e.g., Alizadeh [1], Goemans and Williamson [19], Lovász and Schrijver [27],
Nesterov and Nemirovskii [30], Delorme and Poljak [15], and Helmberg et al. [22]).
Other applications of SDP arise from the study of correlation matrices in statistics,
e.g., Pukelsheim [31]; matrix completion problems, see [20, 5, 24]; and multiquadratic
programs, e.g., [32].

Nesterov and Nemirovskii’s book provides a unifying framework for polynomial-
time interior-point algorithms in convex programming (which includes SDP). Cur-
rently, interior-point algorithms seem to be the best algorithms (from both theoreti-
cal and practical viewpoints) for solving SDP problems, e.g., [36]. An infeasible-start
interior-point algorithm was presented in Freund [17]. Complexity of the algorithm
depends on the distances (in a norm induced by the initial solution) of the initial solu-
tion to the sets of approximately feasible and approximately optimal solutions, where
approximate feasibility and optimality are defined in terms of given tolerances. The
algorithm does not assume that the zero duality gap (or even feasibility) is attainable.
Indeed, for the case when the given problem exhibits a finite nonzero duality gap, we
can ask for a tolerance in the duality gap that is not attainable (for such a tolerance,
the distance from the set of approximately optimal solutions would be infinite for
any starting point). This illustrates some of the difficulties encountered with nonzero
duality gaps. Our goal here is to study and unify the ways in which a dual problem
can be modified to ensure a zero duality gap at optimality.

1.2.2. Early duality results. Extensions of finite linear programming duality
to infinite dimensions and/or to optimization problems over cones have been studied
in the literature. We do not give a comprehensive survey, but we mention several
early results.

In [16], Duffin studies infinite linear programs, i.e., programs for which there are
an infinite number of constraints and/or an infinite number of variables. Also studied
in [16] is the notion of optimization with respect to a partial order induced by a cone.
Duality theory is also central in the related notion of continuous programming, e.g.,
[25, 26, 34], which is closely tied in with infinite programming. A major question
is the formulation of duals that close the duality gap. Infinite dimensional linear
programming is also studied in the books by Glashoff and Gustafson [18] and Anderson
and Nash [2].

More recently, duals that guarantee strong duality for general abstract convex
programs have been given in [13, 12, 11, 10]. The special case of a linear program
with cone constraints is treated in [38].

1.3. Outline. This paper is motivated by the recent paper of Ramana [33]. A
dual program, called an extended Lagrange–Slater dual program and denoted (ELSD),
is presented therein. Strong duality holds for this dual and, in addition, it can be
written down in polynomial time. Previous work on general (convex) cone constrained
programs [13, 38, 11, 10] also presented dual programs for which strong duality holds.
The results were based on regularization and on finding the so-called minimal cone
of the program (P). We denote these duals by (DRP). A procedure for defining the
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minimal cone was presented in [11]. This procedure started with an initial feasible
point and reduced the program, in a finite number of steps, to a regularized program.

The main result in this paper is to show that the extended Lagrange dual program
(ELSD) is equivalent to the regularized dual (DRP). This equivalence is in the sense
that the constraints and the set of Lagrange multipliers are the same. The difference
in the duals is the fact that the feasible set of Lagrange multipliers, denoted (Pf )+, is
expressed implicitly in (ELSD) as the solution of m systems of constraints included in
the dual, whereas it is defined explicitly in (DRP) as the output of the separate pro-
cedure mentioned above. This separate procedure finds the minimal cone by solving
a system of constraints equivalent to that in (ELSD). Also presented is an extended
dual of the dual; i.e., this closes the duality gap from the dual side.

The fact that the two duals (ELSD) and (DRP) are found using different tech-
niques and then result in being equivalent is more than a coincidence. In fact, we
show that such duals are uniquely identified in a certain sense.

In section 2 we discuss the geometry of the cone of semidefinite matrices. In
particular, we present old and new results on the faces of this cone. Lemmas 2.1
and 2.2 provide a description of the faces and characterization of the cases in which
the sum of the positive semidefinite cone and a subspace is closed. The two strong
duality schemes are outlined in section 3. The relationships between the duals is
presented in section 4. We include the results on the extended Lagrange–Slater dual
of the Lagrangian dual of (P). In section 5, we present a homogenized program which is
equivalent to SDP and provides a different view of optimality conditions. We conclude
with some remarks on perturbations of SDP and computational complexity issues.

2. Geometry of the SDP cone. We now outline several known and some new
results on the geometry of the cone P. More details can be found in [3, 4]. For an
introduction to the geometry of convex sets, see Rockafellar [35].

The cone K ⊂ T is a face of the cone T , denoted K < T , if

x, y ∈ T, x + y ∈ K ⇒ x, y ∈ K.(2.1)

The faces of P have a very special structure. Each face, K < P, is characterized by
a unique subspace, S ⊂ ℜn :

K = {X ∈ P : N (X) ⊃ S}.

Moreover,

relint (K) = {X ∈ P : N (X) = S}.

The complementary (or conjugate) face of K is Kc = K⊥ ∩ P and

Kc = {X ∈ P : N (X) ⊃ S⊥}.(2.2)

Moreover,

relint (Kc) = {X ∈ P : N (X) = S⊥}.

Equivalent characterizations for K and Kc are given in (2.6) and (2.7).
Two additional facts about the faces of the cone P are as follows:
(i) Each face K (respectively, Kc) is exposed; i.e., it is equal to the intersection

of P with a supporting hyperplane; the supporting hyperplane corresponds to any
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X ∈ relint (Kc) (respectively, relint (K)). Also, complementary faces are orthogonal
and satisfy XY = 0 for all X ∈ K,Y ∈ Kc.

(ii) The cone P is projectionally exposed (see [11]); i.e., every face of P is the image
of P under some projection. In fact, if Q ∈ Sn is the projection onto the subspace S,
the null space of matrices in relint (K), then the face K satisfies

K = (I −Q)P(I −Q).

The minimal cone of (P) is defined as

Pf = ∩{K < P : K ⊃ (b−A(F ))},(2.3)

i.e., the minimal cone is the intersection of all faces of P containing the feasible slacks.
The following lemma shows that we can express the orthogonal complement of

a face completely in terms of a system of semidefinite inequalities. The semidefinite
inequalities are based on the data of the original problem. The description is made
possible by using a semidefinite completion problem.

Lemma 2.1. Suppose that C is a convex cone and C ⊂ P. Let

K := {W + W t : U � WW t for some U ∈ C}.

Then

((F(C))c)⊥ = K

=

{

W + W t :

[

I W t

W U

]

� 0 for some U ∈ C

}

.(2.4)

Proof. Suppose that W + W t ∈ K, i.e., U � WW t for some U ∈ C. Since
xt(U −WW t)x ≥ 0 for all x, we get N (U) ⊂ N (W t). Equivalently, R(U) ⊃ R(W ).
Since UU† is the orthogonal projection onto the range of U , where U† denotes the
Moore–Penrose generalized inverse of U , we conclude that W = UU†W. We have
shown that

U � WW t ⇒ W = UH for some H.(2.5)

(See, e.g., [33].) Therefore, traceWV = 0 for all V ∈ (F(C))c, i.e., W + W t ∈
((F(C))c)⊥. To prove the converse inclusion, suppose that V ∈ ((F(C))c)⊥ and U ∈
C ∩ relint (F(C)). Let U be orthogonally diagonalized by Q = [Q1, Q2] :

U = QDiag (d1 0)Qt, QtQ = I,

with Q1, n×r, d1 > 0. Therefore, the minimal face can be written using block matrices
as follows:

F(C) = {Q1BQt
1 : B � 0, B ∈ Sr}

=

{

Q

[

B 0
0 0

]

Qt : B � 0, B ∈ Sr

}

(2.6)

and

(F(C))c = {Q2BQt
2 : B � 0, B ∈ Sn−r}

=

{

Q

[

0 0
0 B

]

Qt : B � 0, B ∈ Sn−r

}

.
(2.7)
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This implies that V in ((F(C))c)⊥ can be written in terms of blocks as

V = Q

([

.5T C
0 0

]

+

[

.5T 0
Ct 0

])

Qt.

We then have

X = Q

([

T 2 + CCt 0
0 0

])

Qt � αU

for sufficiently large α, i.e., V + V t ∈ K.
The alternate expression for K in (2.4) follows from the Schur complement.
Now, we note the following interesting and surprising closure property of the faces

of P. This is surprising because it is not true in general that the sum of a cone and
a subspace is closed.

Lemma 2.2. Suppose that the face K satisfies

{0} 6= K<P, K 6= P.

Then

P + K⊥ = P + spanKc;(2.8)

P + spanK is not closed.(2.9)

Proof. Since spanKc ⊂ K⊥, we get

P + K⊥ ⊃ P + spanKc.

From the characterization of faces in [3, 4], there exists a subspace S ⊂ ℜn, with
dimension k, such that

K = {X � 0 : N (X) ⊃ S}.

After applying an orthogonal transformation to ℜn, we can assume that S is the span
of the first k unit vectors. Therefore, X ∈ K has a k × k zero block, i.e.,

X =

[

0k 0
0 X̄

]

.

Moreover, for X in the relative interior of K, we have X̄ ≻ 0. This implies that

K⊥ =

{

Y : Y =

[

C D
Dt 0

]

, C ∈ Sk, D ∈ Mk,n−k

}

.

Now suppose that we are given Tn ∈ K⊥, Pn ∈ P, n = 1, 2, . . . and the sequence

Tn + Pn → L =

[

L1 L2

Lt
2 L3

]

.

Comparing the corresponding bottom right blocks, we see that necessarily L3 � 0.
Therefore,

L =

[

L1 L2

Lt
2 0

]

+

[

0 0
0 L3

]

,
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i.e., L ∈ K⊥ + P. This proves that P + K⊥ is closed, i.e.,

P + K⊥ ⊃ P + spanKc.

To prove the converse inclusion, suppose that

W ∈ (P + K⊥) \ (P + spanKc).

Then there exists a separating hyperplane, i.e., there exists Φ such that

trace ΦW < 0 ≤ trace Φ(P + w) ∀P ∈ P, w ∈ spanKc.(2.10)

This implies that Φ � 0 and Φ ∈ (Kc)⊥. But then trace ΦW = trace ΦP + trace Φw,
with P ∈ P, w ∈ K⊥. From Lemma 2.1 and (2.5) we get that w = UH + HtU for
some U ∈ Kc, so trace Φw = 0. This implies that trace ΦW = trace ΦP ≥ 0, which
contradicts (2.10). This completes the proof of (2.8).

Now suppose that X ∈ relint (K) and X = QDQt, Q = [Q1, Q2] , QQt = I,
is an orthogonal diagonalization of X with the columns of Q1 spanning N (X) and
the columns of Q2 spanning R(X). Then K = {Q2BQt

2 : B � 0} , and spanK =
{Q2BQt

2 : B ∈ S} . Now let B ≻ 0, T ≻ 0, and n = 1, 2, . . . . Choose T,L so that

[Q1 Q2]

[

1
n
T L

Lt nB

] [

Qt
1

Qt
2

]

∈ P.

But

[Q1 Q2]

[

0 0
0 −nB

] [

Qt
1

Qt
2

]

∈ spanK.

However, the limit of the sum of the two sequences is

[Q1 Q2]

[

0 L
Lt 0

] [

Qt
1

Qt
2

]

,

which is not in the sum (P + spanK).
Corollary 2.1.

(Pf )+ = P+ + (Pf )⊥ = P + (Pf )⊥ = P + span (Pf )c.

Proof. From the definition of a face and the closure condition above, we get

(Pf )+ = (P ∩ Pf )+

= (P ∩ span (Pf ))+

= P+ + (Pf )⊥.

3. Duality schemes.

3.1. Lagrangian duality. The Lagrangian for (P) is

L(x, U) = ctx + traceU(b−Ax).

Consider the max-min problem

p∗ = max
x

min
U�0

L(x, U).
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The inner minimization problem has the hidden constraint Ax � b; i.e., the minimiza-
tion problem is unbounded otherwise. Once this hidden constraint is added to the
outer maximization problem, the minimization problem has optimum U = 0. There-
fore we see that this max-min problem is equivalent to the primal (P). This illustrates
that we have the correct constraint on the dual variable U . (See, for instance, the
arguments in Duffin [16] and Alizadeh [1].)

The Lagrangian dual to (P) is obtained by reversing the max-min to a min-max
and rewriting the Lagrangian, i.e.,

p∗ ≤ d∗ = min
U�0

max
x

{

L(x, U) = trace bU + xt(c−A∗U)
}

.

Here A∗ denotes the adjoint of the linear operator A, i.e.,

(A∗U)i = traceQiU.(3.1)

The inner maximization now has the hidden constraint c − A∗U = 0. Once this
hidden constraint is added to the outer minimization problem, the inner maximization
has optimum x = 0. Therefore, we see that this min-max problem is equivalent to the
following dual program:

(D)
d∗ = min trace bU

subject to A∗U = c
U � 0.

3.1.1. Linear programming special case. We note that the SDP pair (P)
and (D) look exactly like LP duals but with ≥ replaced by � . In fact, if the adjoint
operator A∗ includes constraints that force U to be diagonal, then we see that LP is
a special case of SDP.

Now suppose that we consider (P) and (D) as LPs, i.e., suppose that we replace
� with ≥ . Then the operator A is an n×m matrix, and U ∈ ℜn. In this special case
(since we assumed that the primal feasible set is nonempty), we always have strong
duality, i.e., p∗ = d∗ and d∗ is attained. Moreover, we can have more than one dual of
(P). Let P= denote the set of indices of the rows of A corresponding to the implicit
equality constraints, i.e.,

P= := {i : x ∈ F implies Ai:x = bi},
where Ai: denotes the ith row of A. Then we can consider the equality constraints
Ai:x = bi for any subset of P=, without changing (P). This is equivalent to allowing
the dual variables Ui, i ∈ P=, to be free rather than nonnegative. Thus we see that
we can have different duals for (P) while maintaining strong duality. In fact, there
are an infinite number of duals, since the space of dual variables can be any set which
includes the nonnegative orthant and restricts Ui ≥ 0, i /∈ P=.

It is clearly better to have a smaller set of dual variables. In fact, in the case
of LP discussed above, if some of the inactive constraints at the optimum can be
identified, then we can restrict the corresponding dual variables to be 0. This is
equivalent to ignoring the inactive constraints. Of course, we do not in general know
which constraints will be active at the optimum.

Having more than one dual program occurs because there is no strictly feasible
solution for (P). We see below that a similar phenomenon occurs for (P) in the SDP
case but with the additional complication of possible loss of strong duality. In addition,
the semidefinite constraint is not as simple as the nonnegativity constraint in LP. The
question arises whether or not we get the same dual if we treat the semidefinite
constraint U � 0 as a functional constraint using the smallest eigenvalue of U .
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3.2. Strong duality and regularization. If a constraint qualification, denoted
CQ (see section 5), holds for P, then we have strong duality for the Lagrange dual
program; i.e., p∗ = d∗ and d∗ is attained. The usual CQ is Slater’s condition: there
exists x̂ such that (b−Ax̂) ∈ intP. Examples where p∗ < d∗ and/or one of d∗, p∗ is not
attained have appeared in the literature; see, e.g., [17]. One can close the duality gap
by using the minimal cone of P. Therefore, an equivalent program is the regularized
primal program; see [11, 38]:

(RP)
p∗ = max ctx

subject to Ax �Pf b
x ∈ ℜm.

Moreover, by the definition of faces, there exists x̂ such that (b − Ax̂) ∈ relint (Pf ).
Therefore, the generalized Slater’s constraint qualification holds; i.e., strong duality
holds for this program. (This is proved in detail in [11, 38].) Thus, the following is a
dual program for (P) for which strong duality holds:

(DRP)
p∗ = min trace bU

subject to A∗U = c
U �(Pf )+ 0,

where the polar cone

(Pf )+ := {U : traceUP ≥ 0 ∀P ∈ Pf}.

One can also close the duality gap from the dual side. Let FD denote the feasible
set of (D). The minimal cone of (D) is defined as

Pf
D = ∩{K : K < P,K ⊃ FD}.(3.2)

Therefore, an equivalent program is the regularized dual program

(RD)

d∗ = min trace bU
subject to A∗U = c

U �
P

f

D

0.

Strong duality holds for this program. We therefore get the following strong dual of
(D).

(DRD)

d∗ = max ctx
subject to Ax �(Pf

D
)+ b

x ∈ ℜm.

The above presents two pairs of symmetric dual programs: (RP) and (DRP);
(RD) and (DRD). The following theorem states that these dual pairs have all the
nice properties of dual pairs in ordinary linear programming, i.e., [38, Theorem 4.1].
(Part 3 of Theorem 3.1 modifies and corrects the statement in [3.8].) This extends
the duality results over polyhedral cones presented in [6].

Theorem 3.1. Consider the paired regularized programs (RP) and (DRP ).
1. If one of the problems is inconsistent, then the other is inconsistent or un-

bounded.
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2. Let the two problems be consistent, and let x0 be a feasible solution for (P) and
U0 be a feasible solution for (DRP). Then

ctx0 ≤ trace bU0.

3. If both (RP) and (DRP) are consistent, then their optimal values are equal
and (DRP) has an optimal solution.

4. Let x0 and U0 be feasible solutions of (RP) and (DRP), respectively. Then x0

and U0 are optimal if and only if

traceU0(b−Ax0) = 0

and if and only if

U0(b−Ax0) = 0.

5. The vector x0 ∈ ℜm and matrix U ∈ Sn are optimal solutions of (RP) and
(DRP), respectively, if and only if (x0, U0) is a saddle point of the Lagrangian L(x, U)
for all (x,U) in ℜm × (Pf )+. Then,

L(x0, U0) = ctx0 = trace bU0.

3.3. Extended duals. The above dual program (DRP) uses the minimal cone
explicitly. In [33], the extended Lagrange–Slater dual program, (ELSD), is proposed.
First define the following sets:

Ck = {(Ui,Wi)
k
i=1 : A∗(Ui + Wi−1) = 0, trace b(Ui + Wi−1) = 0,

Ui � WiW
t
i ∀i = 1, . . . , k,W0 = 0},

Uk = {Uk : (Ui,Wi)
k
i=1 ∈ Ck},(3.3)

Wk = {Wk : (Ui,Wi)
k
i=1 ∈ Ck}.

Note that Schur complements imply that

Ui � WiW
t
i ⇐⇒

[

I W t
i

Wi Ui

]

� 0.

In [33] it is shown that strong duality holds for the following (ELSD) dual of (P):

(ELSD)

p∗ = min trace b(U + W )
subject to A∗(U + W ) = c

W ∈ Wm

U � 0.

The advantage for this dual is that it is stated completely in terms of the data of the
original program, whereas (DRP) uses the minimal cone explicitly. Moreover, the size
of (ELSD) is bounded by a polynomial function of the size of the input problem (P).

At a first glance, the duals (DRP) and (ELSD) appear very different. This is
especially true in light of the fact that the matrices W do not have to be symmetric.
However, the adjoint operator A∗ involves traces which are unchanged by taking
the symmetric part of the matrices. Therefore, we can replace W by W + W t or,
equivalently, replace Wm by Ws

m. We show below that after this change, the two
duals are actually the same, i.e., P + W = (Pf )+, where

W = WS
m = {W + W t : W ∈ Wm}.
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4. Relationship between duals.

4.1. Duals of (P). We now show the relationships between the above two strong
dual programs.

The algorithm to find the minimal cone is based on [11, Lemma 7.1], which we
now phrase for our specific problem (P). We include a proof for completeness.

Lemma 4.1. Suppose Pf < K < P. For every solution U of the system

A∗U = 0, U �K+ 0, traceUb = 0,(4.1)

we have

the minimal cone Pf ⊂ {U}⊥ ∩K < K.(4.2)

Proof. Since traceU(Ax − b) = 0 for all x, we get (A(F ) − b) ⊂ {U}⊥, i.e.,
Pf ⊂ {U}⊥. Also, the fact that {U}⊥∩K is a face of K follows from U �K+ 0.

The result in [11, Lemma 7.1] is for more general convex, vector valued functions.
However, the linearity of (P) means that it is equivalent to our statement above.

We now use the algorithm for finding Pf (presented in [11]) to show the relation
between the two duals of (P). We see that each step of the algorithm finds a smaller
dimensional face Pk which contains the minimal cone Pf . We show that

P+
k = P + Ws

k , Ws
k = (Pk)

⊥.

There is one difference with the algorithm discussed here and the one from [11]; here
we find the points in the relative interior of the complementary faces, rather than
an arbitrary point (which may be on the boundary). This guarantees the immediate
correspondence with the dual (ELSD).

Step 1
Define P0 := P and note that, since W0 = 0 in (3.3),

U1 := {U � 0 : A∗U = 0, traceUb = 0}.

Choose Û1 ∈ relint (U1). (If Û1 = 0, then Slater’s condition holds for (P) and
we STOP.) Further, let

P1 := (F(U1))
c (= {Û1}⊥ ∩ P0 < P0).

We can now define the following equivalent program to (P) and its Lagrangian
dual.

(RP1)
p∗ = max ctx

s.t. Ax �P1
b

x ∈ ℜm.

(DRP1)
d∗1 = min trace bU

s.t. A∗U = c
U �(P1)+ 0.

Note that p∗ ≤ d∗1 ≤ d∗. From Corollary 2.1 and Lemma 2.1 we conclude that

(P1)
+ = (P ∩ P1)

+ = P + (P1)
⊥



STRONG DUALITY FOR SEMIDEFINITE PROGRAMMING 651

so that

(P1)
+ = P + ((F(U1))

c)⊥, (P1)
⊥ = WS

1 .

Therefore, we get the following equivalent program to (DRP1).

(ELSD1)

d∗1 = min trace b(U + (W + W t))
s.t. A∗(U + (W + W t)) = c

A∗U1 = 0, traceU1b = 0

U � 0,

[

I W t

W U1

]

� 0.

Step 2
We can now apply the same procedure to the program (RP1). Since WS

1 =
(P1)

⊥, we get

U2 := {U � 0 : (U + V ) �(P1)+ 0, A∗(U + V ) = 0, trace (U + V )b = 0}.

Choose Û2 ∈ relint (U2). (If Û2 = 0, then the generalized Slater’s condition
holds for (RP1) and we STOP.)

P2 := (F(U2))
c (= {Û2}⊥ ∩ P1 < P1).

We get a new equivalent program to (P) and its Lagrangian dual.

(RP2)
p∗ = max ctx

s.t. Ax �P2
b

x ∈ ℜm.

(DRP2)
d∗2 = min trace bU

s.t. A∗U = c
U �(P2)+ 0.

We now have p∗ ≤ d∗2 ≤ d∗1 ≤ d∗. From Corollary 2.1 and Lemma 2.1 we
conclude that

(P2)
+ = (P ∩ P2)

+ = P + (P2)
⊥

and

(P2)
+ = P + ((F(U2))

c)⊥, (P2)
⊥ = WS

2 .

Therefore, we get the following equivalent program to (DRP2).

(ELSD2)

d∗2 = min trace b(U + (W + W t))
s.t. A∗(U + (W + W t)) = c

A∗U1 = 0, traceU1b = 0
A∗(U2 + (W1 + W t

1)) = 0,
trace (U2 + (W1 + W t

1))b = 0

U � 0,

[

I W t
1

W1 U1

]

� 0
[

I W t

W U2

]

� 0.
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. . . Step k . . .
The remaining steps of the algorithm and the regularization are similar, and we

see that after k ≤ min{m,n} steps we obtain the equivalence of (RP) with (RPk),
and (ELSD) with (ELSDk). The following theorem clarifies some of the relationships
between the various sets.

Theorem 4.1. For some k ≤ min{m,n}, we have

F(Uk) = (Pk)
c, and U1 ⊂ U2 ⊂ · · · ⊂ Uk = · · · = Um = (Pf )c.(4.3)

Ws
k = (Pk)

⊥ = ((F(Uk))
c)⊥, WS

1 ⊂ · · · ⊂ WS
k = · · · = WS

m = (Pf )⊥.(4.4)

Proof. The nesting is clear from the definitions and is discussed in [33, Lemma 3]
(for Wk). Moreover, in [33, Lemma 2] it is shown that for k ∈ {1, 2, . . . ,m},

(b−Ax)U = 0 and (b−Ax)W = 0 ∀x ∈ F,U ∈ Uk,W ∈ Wk.

Therefore, the inclusions in (Pf )c, (Pf )⊥ follow. Equality follows from the dimension
of the feasible set, F ⊂ ℜm, and a partial converse of Lemma 4.1; i.e., if Uc

k 6= Pf ,
then the system (4.1), with U 6= 0, is consistent. See [11, Corollary 7.1].

4.2. Duals of (D). Similar results can be obtained for the dual of (D); i.e.,
we can use the minimal cone to close the duality gap and we can get an explicit
representation for the minimal cone. The extended Lagrange–Slater dual of the dual
(D) is

(ELSDD)
d∗ = max trace ctx

subject to A(x + (Z + Zt)) � b
Z ∈ Zm,

for Zm to be derived below.
We can reformulate the dual (D) to the form of (P), i.e., define the cone

S = ℜm × P, (S+ = {0}m × P)

and the constraint operator G : ℜm × Sn → Sn

G

(

x
V

)

:= Ax + V, G∗U =

(

A∗U
U

)

.

The dual (D) is equivalent to

(ED)
d∗ = min trace bU

subject to G∗U �S+

(

c
0

)

.

We have the following equivalence to Lemma 4.1.
Lemma 4.2. Suppose Sf

D < K < S+. The system

φ =

(

x
Ax

)

�K+ 0, tracextc = 0(4.5)
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is consistent only if

the minimal cone Sf
D ⊂ ({φ}⊥ ∩K) < K.(4.6)

Proof. Suppose that φ is found from (4.5) and U ∈ FD. Now

〈

φ,G∗U −
(

c
0

)〉

= xt(A∗U − c) + traceU(Ax)

= −xtc + traceU(Ax−Ax) = 0,

since xtc = 0. We get G(FD)−(
c

0
) ⊂ φ⊥, i.e., the minimal cone Sf

D ⊂ {φ}⊥. Finally,

the fact that {φ}⊥ ∩K is a face of K follows from φ ∈ K+; i.e., {φ}⊥ is a supporting
hyperplane containing Sf .

The faces of S and S+ directly correspond to faces of P.
Lemma 4.3.

1. If D ⊂ S+, then F(D) = 0 ×K, where K < P.
2. If D ⊂ S, then F(D) = ℜm ×K, where K < P.

Proof. The statements follow from the definitions.
We also need a result similar to Lemma 2.1.
Lemma 4.4. Suppose that D is a convex cone and D ⊂ S. Let

K :=

{(

x
W + W t

)

: x ∈ ℜm, U � WW t for some

(

y
U

)

∈ D

}

.

Then

K = ((F(D))c)⊥

=

{(

x
W + W t

)

:

[

I W t

W U

]

� 0 for some

(

y
U

)

∈ D

}

.

Proof. The proof is very similar to the proof of Lemma 2.1. The difference is
that we have to account for the cone S+ being the direct sum 0m × P. We include
the details for completeness.

Suppose that (
x

W + W t ) ∈ K, i.e., U � WW t for some (
y

U
) ∈ D. Then there

exists a matrix H such that W = UH; see (2.5). Therefore, traceWV = 0 for all

(
0
V

) ∈ (F(D))c ⊂ S+; i.e.,

(

x
W + W t

)

∈ ((F(D))c)⊥.

To prove the converse, suppose that (
x

V
) ∈ ((F(D))c)⊥ and (

y

U
) ∈ D ∩

relint (F(D)). Let U be orthogonally diagonalized by Q = [Q1Q2]:

U = QtDiag (d1 0)Q, QtQ = I,

with Q1, n× r, d1 > 0. Therefore,

F(D) =

{(

x
Q1BQt

1

)

: B � 0, B ∈ Sr, x ∈ ℜm

}
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and

(F(D))c =

{(

0
Q2BQt

2

)

: B � 0, B ∈ Sn−r, 0 ∈ {0}m
}

.

Now
(

x
V

)

∈ ((F(D))c)⊥

implies that

0 = traceV Q2BQt
2 = traceQt

2V Q2B ∀B � 0,

i.e.,

Qt
2V Q2 = 0.

This implies that Q2Q
t
2V Q2Q

t
2 = 0 as well. Note that Q2Q

t
2 is the orthogonal projec-

tion onto N (U). Therefore, the nonzero eigenvalues of V correspond to eigenvectors
in the eigenspace formed from the column space of Q1. Since the same must be true
for V V t, this implies that αU � V V t for some α > 0 large enough; i.e., V ∈ K.

Now define the following sets:

Dk = {(Vi, Zi)
k
i=1 : Axi + (Zi−1 + Zt

i−1) � 0, xt
ic = 0,

Vi = Axi, Vi � ZiZ
t
i ∀i = 1, . . . , k, Z0 = 0}

Vk = {Vk : (Vi, Zi)
k
i=1 ∈ Dk}

Zk = {Zk : (Vi, Zi)
k
i=1 ∈ Dk}.

The extended Lagrange–Slater dual of the dual (D) can now be stated.

(ELSDD)
d∗ = max trace ctx

subject to A(x + (Z + Zt)) � b
Z ∈ Zm.

Step 1
Define T0 := S+ and P0 := P and note that, since Z0 = 0,

V1 :=

{

Ax : φ =

(

x
Ax

)

, φ �T
+

0

0, xtc = 0

}

= {V : V = Ax � 0, xtc = 0}.

Choose V̂1 ∈ relint (V1). (If V̂1 = 0, then the generalized Slater’s condition
holds for (ED) and we STOP.) Further, let

T1 := (F(V1))
c (= {V̂1}⊥ ∩ T0 < T0).

Therefore,

T1 = {0}m × P1,

thus defining the face P1 < P0.
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We can now define the following equivalent program to (ED) and its La-
grangian dual.

(RED1)

d∗ = min trace bU
s.t. A∗U = c

U �P1
0

or G∗U �T1

(

c
0

)

.

(DRED1)

p∗1 = max ctx
subject to Ax �(P1)+ b

x ∈ ℜm

or Gφ =T
+

1

b, φ �T
+

1

0.

Note that p∗ ≤ p∗1 ≤ d∗. From Corollary 2.1 we conclude that

(P1)
+ = (P ∩ P1)

+ = P + (P1)
⊥

so that

(T1)
+ = S + ((F(V1))

c
)
⊥
.

Therefore, Lemma 4.4 yields the following equivalent SDP to (DRED1).

(ELSDD1)

p∗1 = max ctx
s.t. Ax + (Z + Zt) � b

Ay � 0, cty = 0
[

I Zt

Z Ay

]

� 0.

Step 2
We can now apply the same procedure to the program (RED1).

V2 :=

{

Ax : φ =

(

x
Ax

)

, φ �T
+

1

0, xtc = 0

}

= {V : V = Ax �P1
0, xtc = 0}.

Choose V̂2 ∈ relint (V2). (If V̂2 = 0, then the generalized Slater’s condition
holds for (DRP1) and we STOP.) Let

T2 := (F(V2))
c

(= {V̂2}⊥ ∩ T1 < T1).

We get a new equivalent program to (D) and its Lagrangian dual.

(RED2)

d∗ = min trace bU
s.t. A∗U = c

U �P2
0

or G∗U �T2

(

c
0

)

.

(DRED2)

p∗2 = max ctx
subject to Ax �(P2)+ b

x ∈ ℜm

or Gφ =T
+

2

b, φ �T
+

2

0.
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We now have p∗ ≤ p∗1 ≤ p∗2 ≤ d∗. From Corollary 2.1 we get

(P2)
+ = (P ∩ P2)

+ = P + (P2)
⊥

so that

(T2)
+ = S + ((F(V2))

c)⊥.

Therefore, Lemma 4.4 yields the following equivalent SDP to (DRP2).

(ELSDD2)

p∗2 = max ctx
s.t. Ax + (Z + Zt) � b

Ay + (Z + Zt) � 0, cty = 0
[

I Zt

Z Ay

]

� 0

Ay1 + (Z1 + Zt
1) � 0, cty = 0

[

I Zt
1

Z1 Ay1

]

� 0.

. . . Step k . . .

5. Homogenization. In section 3.1.1, we have shown that an ordinary linear
programming problem can have an infinite number of dual programs for which strong
duality holds. This includes the standard Lagrangian dual. However, this is not the
case for SDP. First, the standard Lagrangian dual can result in a duality gap; see [33,
Example 1]. Moreover, the duality gap may be 0, but the dual may not be attained,
see [33, Example 5].

However, we have seen that the two equivalent duals (DRP) and (ELSD) both
provide a zero duality gap and dual attainment, i.e., strong duality. Since LP is a
special case of SDP (ℜn

+ arises as the direct sum of n 1 × 1 semidefinite cones), we
conclude that there are examples of SDP where there are many duals for which strong
duality holds. A natural question to ask is whether there is any type of uniqueness
for the strong duals, and, among the strong duals, what is the “strongest”; i.e., which
is the “closest” to the standard Lagrangian dual.

Therefore, we now look at general optimality conditions for (P). We do this by
using the homogenized semidefinite program (assume the optimal objective function
value p∗ is known):

(HP)

0 = max ctx + t(−p∗) (= 〈a,w〉)
subject to Ax + t(−b) + Z = 0 (Bw = 0)

w ∈ K = ℜm ×ℜ+ × P



w =





x
t
Z







 .

The above defines the vector a, the linear operator B, and the convex cone K. Let
FH denote the feasible set, i.e.,

FH = N (B) ∩K,

where N denotes null space.
Note that if t = 0 in a feasible solution of (HP), then B(αw) = 0 for all α ∈ ℜ,

and

w =

(

x

0
Z

)

.
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Therefore, ctx > 0 implies that p∗ = ∞ (since there exists x such that Ax � 0, ctx > 0
implies (P) is unbounded). If t > 0 in a feasible solution of (HP), then

w =

(

1
t
x

1
1
t
Z

)

is feasible, which implies that ctx + t(−p∗) ≤ 0. Therefore,

Bw = 0, w ∈ K implies 〈a,w〉 ≤ 0.(5.1)

This shows that 0 is in fact the optimal value of (HP), and (HP) is an equivalent
problem to (P).

One advantage of (HP) is that we know a feasible solution, namely, the origin.
Recall the polar of a set C:

C+ = {φ : 〈φ, c〉 ≥ 0∀c ∈ C}.

With this definition, the optimality conditions for (HP) are simply that the negative
of the gradient of the objective function is in the polar of the feasible set; i.e., from
(5.1) we conclude that

a =





c
−p
0



 ∈ −(N (B) ∩K)+





optimality
conditions

for HP



 .(5.2)

This yields the asymptotic optimality conditions (up to closure):




c
−p
0



 ∈ −(R(B∗) + K+),(5.3)

where the adjoint operator

B∗U =





A∗U
−trace bU

U





and the polar cone

K+ = {0} × ℜ+ × P.

We have used the fact that the polar of the intersection of sets is the closure of the
sum of the polars of the sets and that P is self-polar; i.e., P = P+. Note that if
the closure in (5.3) is not needed, then these optimality conditions, along with weak
duality for (P) and (D), p ≤ trace bU, yield optimality conditions for (P); i.e., (5.3)
with closure is equivalent to





c
−p
0



 =





A∗U
−trace bU

U



−





0
α
V









dual feasibility
strong duality
dual feasibility



(5.4)

for some α ≥ 0, V � 0. This yields the optimality conditions for (P):

A∗U = c, U � 0(dual feasibility),

p = trace bU (strong duality).
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(Note that strong duality is equivalent to complementary slackness.) We have proved
the following.

Theorem 5.1. p ∈ ℜ is the optimal value of (P) if and only if (5.3) holds.
Moreover, suppose that (5.3) holds but





c
−p
0



 /∈ R(B∗) −K+.(5.5)

Then p is still the optimal value of (P), but either there is a duality gap or the dual
(D) is unattained ; i.e., strong duality fails for (P) and (D).

The above theorem provides a way of generating examples where strong duality
fails; i.e., we need to find examples where the right-hand side of (5.5) is not closed,
and then we can pick a vector that is in the closure but not the preclosure.

There are many conditions, called constraint qualifications, that guarantee the
closure condition in (5.3). In fact, this closure has been referred to as a weakest
constraint qualification, [21, 37]. As an example of a closure condition, see, e.g., [23,
pp. 104–105]. If C,D are closed convex sets and the intersection of their recession
cones is {0}, then D − C is closed. (Here the recession cone of a convex set C is the
set of all points x such that x + C ⊂ C.) Therefore, for a subspace V and a convex
cone K,

V ∩K = {0} implies V + K is closed.

In our case, several conditions for the closure (constraint qualifications) are given in
[13, Theorem 3.1]. For example, the cone generated by the set FH −K is the whole
space or Slater’s condition

∃x̂ ∈ F such that Ax̂ ≺ b.

One approach to guarantee the closure condition is to find sets, T , to add to
attain the closure. Equivalently, find sets, C, C+ = T , to intersect with K to attain
the closure so that

(N (B) ∩K)+ = (N (B) ∩ (K ∩ C))+ = R(B∗) + K+ + C+.(5.6)

On the other hand, note that the following is always true:

(N (B) ∩ (K ∩ C))+ = R(B∗) + K+ + C+.

There are some trivial choices for the set, e.g., C = N (B)∩K. Another choice would
be (N (B) ∩K)f .

The above translates into choosing sets that contain the minimal cone Pf . Since
we want a small set of dual multipliers, we would like to find large sets that contain Pf

but for which the above closure conditions hold. Some SDPs can be decomposed into
parts, a linear part and a nonlinear part. Multipliers for the linear part correspond
to linear programming; i.e., we choose the standard set of multipliers. However, we
cannot choose a smaller set than (Pf )+ for the nonlinear part. (For a similar result,
see, for instance, Boyd et al. [14, pp. 31–32].)

Suppose both problems (P) and (D) have feasible solutions (so that if there is a
duality gap then it is finite). Consider the set

Z = {Z ∈ P : Z = b−Ax for some x ∈ ℜm}.
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If Z ∩ int(P) 6= ∅ then we have an interior point and strong duality holds for the
Lagrangian dual. Otherwise, Z ⊂ ∂P. In particular, there exists a permutation
matrix P and a block diagonal matrix structure in Sn such that Z ∈ Z implies that
P Z PT is a block diagonal matrix which lies in the subspace defined by the block
diagonal structure. We pick P such that each of the blocks has one of the following
properties:

• Type I blocks: Block i is an LP (that is, the block matrix is a diagonal matrix).
In this case strong duality holds for many duals including the Lagrangian dual.

• Type II blocks: Block i is not an LP, but (5.3) holds and (5.5) does not hold.
In this case strong duality holds for many duals including the Lagrangian dual.

• Type III blocks: Block i is not an LP, but conditions (5.3) and (5.5) both hold.
In this case, we can find linear objective functions for which (D) is feasible but strong
duality does not hold for the Lagrangian dual.

In the case where the objective function is separable with respect to this partition,
the duality for Type I and Type II blocks is well understood. For Type III blocks we
showed that as long as (5.3) and (5.5) hold, there will be objective functions for which
(D) is feasible, yet strong duality does not hold for (P) and (D). The reader may find
it useful to generate examples by taking direct sums of examples from Freund [17]
and Ramana [32].

Finally, we make some remarks about the ramifications of these results. We
assumed throughout that (P) is feasible. Under this assumption, (ELSD) is feasible if
and only if p∗ < +∞. If we also assume that p∗ < +∞, then we have d∗ = p∗ (here,
d∗ is the optimal value of (ELSD)) and d∗ is attained. We showed that in the dual
problem (ELSD), the set Wm is precisely the subspace (Pf )⊥. Let us consider the
following family of problems parameterized by M > 0:

(P̃M)

sup ctx
subject to Ax � b

A∗(I)tx ≤ M − trace (b)
x ∈ ℜm,

(ELSD̃M)

min trace b(U + W ) + (M − trace (b))z
subject to A∗(U + W ) − zA∗(I) = c

W ∈ Wm = (Pf )⊥

U � 0, z ≥ 0.

Proposition 5.1. Suppose (P) is feasible and p∗ < +∞. Then there exists a
feasible solution (Ũ , W̃ , z̃) of (ELSD̃M) such that Ũ ≻ 0, z̃ > 0. Moreover, for a
given M , there exist optimal solutions of (P) with trace (b − Ax) ≤ M if and only if
there exist optimal solutions of (P̃M) and every optimal solution of (P̃M) is an optimal
solution of (P).

Proof. We apply the strong duality theorem to the pair (P) and (ELSD) to
establish the existence of (Ū , W̄ ) such that A∗(Ū + W̄ ) = c, W̄ ∈ Wm, and Ū � 0.
Now, defining Ũ := Ū + I, W̃ := W̄ , z̃ := 1, we see that the first part of the
proposition is proved. The second part of the proposition easily follows from the
definition of (P̃M).

6. Conclusion. In this paper we have studied dual programs that guarantee
strong duality for SDP. In particular, we have seen the relationships that exist between
(DRP) (the dual of the regularized primal program (RP)) and (ELSD) (the extended
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Lagrange–Slater dual). (DRP) uses the minimal cone Pf which, in general, cannot
be computed exactly. (ELSD) shows that a regularized dual can be written down
explicitly.

The pair (P) and (D) are the usual pair of dual programs used in SDP. This
yields primal–dual interior-point methods when both programs satisfy the Slater CQ,
i.e., strict feasibility. However, there are classes of problems where the CQ fails; see
e.g., [39]. These problems arise from relaxations of 0,1 combinatorial optimization
problems with linear constraints. In fact, for these problems, the Slater CQ fails for
the primal while it is satisfied for the dual. Therefore, in theory, there is no duality
gap between (P) and (D).

However, one can question whether (D) is still the true dual of (P) in this case. It
is true that perturbations in b will yield the dual value d∗ as the perturbations go to
0 when we can guarantee that we maintain the semidefinite constraint exactly. If we
could do this, then we could solve any SDP independent of any regularity condition;
i.e., we would only have to solve a perturbed dual to get the optimum value of the
primal. However, the key here is that we cannot maintain the semidefinite constraint
exactly; i.e., (D) is not a true dual of (P) in this case. It is the dual with respect to
perturbations in the equality constraint Ax+Z = b but not if we allow perturbations
in the constraint Z � 0 as well (i.e., not if we replace Z � 0 by a nonnegativity
constraint on the smallest eigenvalue λmin(Z) ≥ 0).

Unlike LP, the solutions and optimal values of SDP may be doubly exponential
rational numbers or even irrational. Note that the optimal value being doubly expo-
nential means that the size (the number of bits required to express the value in binary)
is an exponential function of the size of the input problem (P). However, in some cases
it may be possible to find, a priori, upper bounds on the sizes of some primal and
dual optimal solutions. Alizadeh [1] suggests that it may even be possible to bound
the feasible solution sets of (P) and (D) a priori. Nevertheless, this is impossible even
for an LP. For if the feasible region of (P) is bounded then the feasible region of (D)
is unbounded and vice versa. Hence, one cannot hope to solve an SDP to exact op-
timality or, for that matter, find feasible solutions of semidefinite inequality systems
in polynomial time. However, a challenging open problem is to determine if a given
rational semidefinite system has a solution. This problem is called the semidefinite
feasibility problem (SDFP). In [33] it was shown, by using (ELSD), that SDFP is not
NP-complete unless NP=Co-NP.

It may be interesting to try to interpret the significance of (ELSD) in terms of
the computational complexity of solving SDPs which do not satisfy the Slater CQ.
We do have a dual program, (ELSD), that can be written down in polynomial time.
However, we still do not know how to solve (P) and (ELSD) in polynomial time by a
symmetric, primal–dual interior-point algorithm.
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Brunswick, NJ, 1995.
[34] T. W. Reiland, Optimality conditions and duality in continuous programming. ii. The linear

problem revisited, J. Math. Anal. Appl., 77 (1980), pp.329–343.
[35] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[36] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.
[37] H. Wolkowicz, Geometry of optimality conditions and constraint qualifications: The convex

case, Math. Programming, 19 (1980), pp. 32–60.
[38] H. Wolkowicz, Some applications of optimization in matrix theory, Linear Algebra Appl., 40

(1981), pp. 101–118.
[39] Q. Zhao, S. Karisch, F. Rendl, and H. Wolkowicz, Semidefinite Programming Relaxations

for the Quadratic Assignment Problem, Research report, University of Waterloo, Waterloo,
Ontario, Canada, 1995.


