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Abstract. Low-rank matrix recovery (LMR) is a rank minimization problem subject to linear

equality constraints, and it arises in many fields such as signal and image processing, statis-

tics, computer vision, system identification and control. This class of optimization problems is

generally NP-hard. A popular approach replaces the rank function with the nuclear norm of

the matrix variable. In this paper, we extend and characterize the concept of s-goodness for a

sensing matrix in sparse signal recovery (proposed by Juditsky and Nemirovski [Math Program,

2011]) to linear transformations in LMR. Utilizing the two characteristic s-goodness constants,

γs and γ̂s, of a linear transformation, we derive necessary and sufficient conditions for a linear

transformation to be s-good. Moreover, we establish the equivalence of s-goodness and the null

space properties. Therefore, s-goodness is a necessary and sufficient condition for exact s-rank

matrix recovery via the nuclear norm minimization.

1. Introduction

Low-rank matrix recovery (LMR for short) is a rank minimization problem (RMP) with linear

constraints, or the affine matrix rank minimization problem which is defined as follows:

minimize rank(X), subject to AX = b,(1)

where X ∈ Rm×n is the matrix variable, A : Rm×n → Rp is a linear transformation and b ∈ Rp.
Although specific instances can often be solved by specialized algorithms, the LMR is NP-hard.

A popular approach for solving LMR in the systems and control community is to minimize

the trace of a positive semidefinite matrix variable instead of its rank (see, e.g., [2, 24]). A

generalization of this approach to non-symmetric matrices introduced by Fazel, Hindi and Boyd

[13] is the famous convex relaxation of LMR (1), which is called nuclear norm minimization

(NNM):

min ‖X‖∗ s.t. AX = b,(2)
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where ‖X‖∗ is the nuclear norm of X, i.e., the sum of its singular values. When m = n and the

matrix X := Diag(x), x ∈ Rn, is diagonal, the LMR (1) reduces to sparse signal recovery (SSR),

which is the so-called cardinality minimization problem (CMP):

min ‖x‖0 s.t. Φx = b,(3)

where ‖x‖0 denotes the number of nonzero entries in the vector x, and Φ ∈ Rm×n is a given

sensing matrix. A well-known heuristic for SSR is the `1-norm minimization relaxation (basis

pursuit problem):

min ‖x‖1 s.t. Φx = b,

where ‖x‖1 is the `1-norm of x, i.e., the sum of absolute values of its entries.

LMR problems have many applications and they appeared in the literature of a diverse set

of fields including signal and image processing, statistics, computer vision, system identification

and control. For more details, see the recent survey paper [29]. LMR and NNM have been the

focus of some recent research in optimization community, see, e.g., [1, 3, 5, 9, 19, 20, 21, 22, 28,

29, 31, 33]. Although there are many papers dealing with algorithms for NNM such as interior-

point methods, fixed point and Bregman iterative methods and proximal point methods, there

are fewer papers dealing with the conditions that guarantee the success of the low-rank matrix

recovery via NNM. For instance, following the program laid out in the work of Candès and Tao

in compressed sensing (CS, see, e.g., [6, 8, 11]), Recht, Fazel and Parrilo [29] provided a certain

restricted isometry property (RIP) condition on the linear transformation which guarantees that

the minimum nuclear norm solution is the minimum rank solution. Recht, Xu and Hassibi

[31, 30] gave the null space property (NSP) which characterizes a particular property of the null-

space of the linear transformation, which is also discussed by Oymak, Fazel et al. in [26, 27].

Note that NSP states a necessary and sufficient condition for exactly recovering the low-rank

matrix via nuclear norm minimization. Recently, Chandrasekaran, Recht, Parrilo and Willsky

[7] proposed that a fixed s-rank matrix X0 can be recovered if and only if the null space of A
does not intersect the tangent cone of the nuclear norm ball at X0.

In the setting of CS, there are other characterizations of the sensing matrix, under which

`1-norm minimization can be guaranteed to yield an optimal solution to SSR, in addition to

RIP and null-space properties, see, e.g., [12, 14, 15, 16]. In particular, Juditsky and Nemirovski

[14] established necessary and sufficient conditions for a sensing matrix to be “s-good” to allow

for exact `1-recovery of sparse signals with s nonzero entries when no measurement noise is

present. They also demonstrated that these characteristics, although difficult to evaluate, lead

to verifiable sufficient conditions for exact SSR and to efficiently computable upper bounds on

those s for which a given sensing matrix is s-good. Furthermore, they established instructive

links between s-goodness and RIP in the CS context. One may wonder whether we can generalize

the s-goodness concept to LMR and still maintain many of the nice properties as done in [14].

Here, we deal with this issue. Our approach is based on the singular value decomposition (SVD)

of a matrix and the partition technique generalized from CS. In the next section, following

Juditsky and Nemirovski’s terminology, we propose definitions of s-goodness and G-numbers,

γs and γ̂s, of a linear transformation in LMR and then, we provide some basic properties of

G-numbers. In Section 3, we characterize s-goodness of a linear transformation in LMR via
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G-numbers. We consider the connections between the s-goodness, NSP and RIP in Section 4.

We eventually obtain that δ2s < 0.472 ⇒ A satisfies NSP ⇔ γ̂s(A) < 1/2 ⇔ γs(A) < 1 ⇔ A is

s-good.

Let W ∈ Rm×n, r := min{m,n} and let W = UDiag(σ(W ))V T be the SVD of W , where

U ∈ Rm×r, V ∈ Rn×r, and Diag(σ(W )) is the diagonal matrix of σ(W ) = (σ1(W ), . . . , σr(W ))T

which is the vector of the singular values of W . Also let Ξ(W ) denote the set of pairs of matrices

(U, V ) in the SVD of W , i.e.,

Ξ(W ) := {(U, V ) : U ∈ Rm×r, V ∈ Rn×r,W = UDiag(σ(W ))V T }.

For s ∈ {0, 1, 2, . . . , r}, we say W ∈ Rm×n is a s-rank matrix to mean that the rank of W is no

more than s. For a s-rank matrix W , it is convenient to take W = Um×sWsV
T
n×s as its SVD where

Um×s ∈ Rm×s, Vn×s ∈ Rn×s are orthogonal matrices and Ws = Diag((σ1(W ), . . . , σs(W ))T ). For

a vector y ∈ Rp, let ‖ · ‖d be the dual norm of ‖ · ‖ specified by ‖y‖d := maxv{〈v, y〉 : ‖v‖ ≤ 1}.
In particular, ‖ · ‖∞ is the dual norm of ‖ · ‖1 for a vector. Let ‖X‖ denote the spectral or the

operator norm of a matrix X ∈ Rm×n, i.e., the largest singular value of X. In fact, ‖X‖ is the

dual norm of ‖X‖∗. Let ‖X‖F :=
√
〈X,X〉 =

√
Tr(XTX) be the Frobenius norm of X, which

is equal to the `2-norm of the vector of its singular values. We denote by XT the transpose of

X. For a linear transformation A : Rm×n → Rp, we denote by A∗ : Rp → Rm×n the adjoint of

A.

2. Definitions and Basic Properties

2.1. Definitions. We first go over some concepts related to s-goodness of the linear transfor-

mation in LMR (RMP). These are extensions of those given for SSR (CMP) in [14].

Definition 2.1. Let A : Rm×n → Rp be a linear transformation and s ∈ {0, 1, 2, . . . , r}. We

say that A is s-good, if for every s-rank matrix W ∈ Rm×n, W is the unique optimal solution

to the optimization problem

minX∈Rm×n{‖X‖∗ : AX = AW}.(4)

We denote by s∗(A) the largest integer s for which A is s-good. Clearly, s∗(A) ∈ {0, 1, . . . , r}.
To characterize s-goodness we introduce two useful s-goodness constants: γs and γ̂s, we call γs

and γ̂s G-numbers.

Definition 2.2. Let A : Rm×n → Rp be a linear transformation, β ∈ [0,+∞] and s ∈
{0, 1, 2, . . . , r}. Then,

(i) G-number γs(A, β) is the infimum of γ ≥ 0 such that for every matrix X ∈ Rm×n with

singular value decomposition X = Um×sV
T
n×s (i.e., s nonzero singular values, all equal to 1),

there exists a vector y ∈ Rp such that

‖y‖d ≤ β and A∗y = UDiag(σ(A∗y))V T ,(5)

where U = [Um×s Um×(r−s)], V = [Vn×s Vn×(r−s)] are orthogonal matrices, and

σi(A∗y)

 = 1, if σi(X) = 1,

∈ [0, γ], if σi(X) = 0,
i ∈ {1, 2, . . . , r}.
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If there does not exist such y for some X as above, we set γs(A, β) = +∞.

(ii) G-number γ̂s(A, β) is the infimum of γ ≥ 0 such that for every matrix X ∈ Rm×n with s

nonzero singular values, all equal to 1, there exists a vector y ∈ Rp such that A∗y and X share

the same orthogonal row and column spaces

‖y‖d ≤ β and ‖A∗y −X‖ ≤ γ.(6)

If there does not exist such y for some X as above, we set γs(A, β) = +∞ and to be compatible

with the special case given by [14], we write γs(A), γ̂s(A) instead of γs(A,+∞), γ̂s(A,+∞),

respectively.

From the above definition, we easily see that the set of values that γ takes is closed. Thus,

when γs(A, β) < +∞, for every matrix X ∈ Rm×n with s nonzero singular values, all equal to

1, there exists a vector y ∈ Rp such that

‖y‖d ≤ β and σi(A∗y)

 = 1, if σi(X) = 1,

∈ [0, γs(A, β)], if σi(X) = 0,
i ∈ {1, 2, . . . , r}.(7)

Similarly, for every matrix X ∈ Rm×n with s nonzero singular values, all equal to 1, there exists

a vector ŷ ∈ Rp such that A∗ŷ and X share the same orthogonal row and column spaces

‖ŷ‖d ≤ β and ‖A∗ŷ −X‖ ≤ γ̂s(A, β).(8)

Observing that the set {A∗y : ‖y‖d ≤ β} is convex, we obtain that if γs(A, β) < +∞, then

for every matrix X with at most s nonzero singular values and ‖X‖ ≤ 1 there exist vectors y

satisfying (7) and there exist vectors ŷ satisfying (8).

2.2. Basic Properties of G-numbers. In order to characterize the s-goodness of a linear

transformation A, we study the basic properties of G-numbers. We begin with the result that

G-numbers γs(A, β) and γ̂s(A, β) are convex nonincreasing functions of β.

Proposition 2.3. For every linear transformation A and every s ∈ {0, 1, . . . , r}, G-numbers

γs(A, β) and γ̂s(A, β) are convex nonincreasing functions of β ∈ [0,+∞].

Proof. We only need to demonstrate that the quantity γs(A, β) is a convex nonincreasing

function of β ∈ [0,+∞]. It is evident from the definition that γs(A, β) is nonincreasing for given

A, s. It remains to show that γs(A, β) is a convex function of β. In other words, for every pair

β1, β2 ∈ [0,+∞], we need to verify that

γs(A, αβ1 + (1− α)β2) ≤ αγs(A, β1) + (1− α)γs(A, β2), ∀α ∈ [0, 1].

The above inequality follows immediately if one of β1, β2 is +∞. Thus, we may assume β1, β2 ∈
[0,+∞). In fact, from the argument around (7) and the definition of γs(A, ·), we know that for

every matrix X = UDiag(σ(X))V T with s nonzero singular values, all equal to 1, there exist

vectors y1, y2 ∈ Rp such that for k ∈ {1, 2},

‖yk‖d ≤ βk and σi(A∗yk)

 = 1, if σi(X) = 1,

∈ [0, γs(A, βk)], if σi(X) = 0,
i ∈ {1, 2, . . . , r}.(9)
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It is immediate from (9) that ‖αy1 + (1− α)y2‖d ≤ αβ1 + (1− α)β2. Moreover, from the above

information on the singular values of A∗y1,A∗y2, we may set A∗yk = X + Yk, k ∈ {1, 2} such

that

XTYk = 0, XY T
k = 0, rank(Yk) ≤ r − s, and ‖Yk‖ ≤ γs(A, βk).

This implies for every α ∈ [0, 1],

XT [αY1 + (1− α)Y2] = 0, X [αY1 + (1− α)Y2]T = 0,

and hence rank [αY1 + (1− α)Y2] ≤ r − s, X and [αY1 + (1− α)Y2] have orthogonal row and

column spaces. Thus, noting that A∗ [αy1 + (1− α)y2] = X + αY1 + (1− α)Y2, we obtain that

‖αy1 + (1− α)y2‖d ≤ αβ1 + (1− α)β2 and

σi(A∗(αy1 + (1− α)y2)) =

 1, if σi(X) = 1,

σi(αY1 + (1− α)Y2), if σi(X) = 0,

for every α ∈ [0, 1]. Combining this with the fact

‖αY1 + (1− α)Y2‖ ≤ α‖Y1‖+ (1− α)‖Y2‖ ≤ αγs(A, β1) + (1− α)γs(A, β2),

we obtain the desired conclusion. �

The following observation that G-numbers γs(A, β), γ̂s(A, β) are nondecreasing in s is imme-

diate.

Proposition 2.4. For every s′ ≤ s, we have γs′(A, β) ≤ γs(A, β), γ̂s′(A, β) ≤ γ̂s(A, β).

We further investigate the relationship between the G-numbers γs(A, β) and γ̂s(A, β).

Proposition 2.5. Let A : Rm×n → Rp be a linear transformation, β ∈ [0,+∞] and s ∈
{0, 1, 2, . . . , r}. Then we have

γ := γs(A, β) < 1 ⇒ γ̂s

(
A, 1

1 + γ
β

)
=

γ

1 + γ
<

1

2
;(10)

γ̂ := γ̂s(A, β) <
1

2
⇒ γs

(
A, 1

1− γ̂
β

)
=

γ̂

1− γ̂
< 1.(11)

Proof. Let γ := γs(A, β) < 1. Then, for every matrix Z ∈ Rm×n with s nonzero singular

values, all equal to 1, there exists y ∈ Rp, ‖y‖d ≤ β, such that A∗y = Z + W , where ‖W‖ ≤ γ

and W and Z have orthogonal row and column spaces. For a given pair Z, y as above, take

ỹ := 1
1+γ y. Then we have ‖ỹ‖∗ ≤ 1

1+γβ and

‖A∗ỹ − Z‖ ≤ max

{
1− 1

1 + γ
,

γ

1 + γ

}
=

γ

1 + γ
,

where the first term under the maximum comes from the fact that A∗y and Z agree on the

subspace corresponding to the nonzero singular values of Z. Therefore, we obtain

γ̂s

(
A, 1

1 + γ
β

)
≤ γ

1 + γ
<

1

2
.(12)
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Now, we assume that γ̂ := γ̂s(A, β) < 1/2. Fix orthogonal matrices U ∈ Rm×r, V ∈ Rn×r. For

an s-element subset J of the index set {1, 2, . . . , r}, we define a set SJ with respect to orthogonal

matrices U, V as

SJ :=
{
x ∈ Rr : ∃y ∈ Rp, ‖y‖d ≤ β, A∗y = UDiag(x)V T with |xi| ≤ γ̂ for i ∈ J̄

}
.

In the above, J̄ denotes the complement of J . It is immediately seen that SJ is a closed convex

set in Rr. Moreover, we have

Claim 1. SJ contains the ‖ · ‖∞-ball of radius (1− γ̂) centered at the origin in Rr.

Proof. Note that SJ is closed and convex. Moreover, SJ is the direct sum of its projections onto

the pair of subspaces

LJ := {x ∈ Rr : xi = 0, i ∈ J̄} and its orthogonal complement L⊥J = {x ∈ Rr : xi = 0, i ∈ J}.

Let Q denote the projection of SJ onto LJ . Then, Q is closed and convex (because of the direct

sum property above and the fact that SJ is closed and convex). Note that LJ can be naturally

identified with Rs, and our claim is the image Q̄ ⊂ Rs of Q under this identification contains

the ‖ · ‖∞-ball Bs of radius (1 − γ̂) centered at the origin in Rs. For a contradiction, suppose

Bs is not contained in Q̄. Then there exists v ∈ Bs \ Q̄. Since Q̄ is closed and convex, by a

separating hyperplane theorem, there exists a vector u ∈ Rs, ‖u‖1 = 1 such that

uT v > uT v′ for every v′ ∈ Q̄.

Let z ∈ Rr be defined by

zi :=

{
1, i ∈ J,
0, otherwise.

By definition of γ̂ = γ̂s(A, β), for s-rank matrix UDiag(z)V T , there exists y ∈ Rp such that

‖y‖d ≤ β and

A∗y = UDiag(z)V T +W,

whereW and UDiag(z)V T have the same orthogonal row and column spaces, ‖A∗y−UDiag(z)V T ‖ ≤
γ̂ and ‖σ(A∗y)−z‖∞ ≤ γ̂. Together with the definitions of SJ and Q̄, this means that Q̄ contains

a vector v̄ with |v̄i − sign(ui)| ≤ γ̂, ∀i ∈ {1, 2, . . . , s}. Therefore,

uT v̄ ≥
s∑
i=1

|ui|(1− γ̂) = (1− γ̂)‖u‖1 = 1− γ̂.

By v ∈ Bs and the definition of u, we obtain

1− γ̂ ≥ ‖v‖∞ = ‖u‖1‖v‖∞ ≥ uT v > uT v̄ ≥ 1− γ̂,

where the strict inequality follows from the facts that v̄ ∈ Q̄ and u separates v from Q̄. The

above string of inequalities is a contradiction, and hence the desired claim holds. ♦

Using the above claim, we conclude that for every J ⊆ {1, 2, . . . , r} with cardinality s, there

exists an x ∈ SJ such that xi = (1− γ̂), ∀i ∈ J . From the definition of SJ , we obtain that there

exists y ∈ Rp with ‖y‖d ≤ (1− γ̂)−1β such that

A∗y = UDiag(σ(A∗y))V T ,
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where σi(A∗y) = (1− γ̂)−1xi = 1 if i ∈ J , and σi(A∗y)i ≤ (1− γ̂)−1γ̂ if i ∈ J̄ . Thus, we obtain

that

γ̂s := γ̂s(A, β) <
1

2
⇒ γs

(
A, 1

1− γ̂
β

)
≤ γ̂

1− γ̂
< 1.(13)

To conclude the proof, we need to prove that the inequalities we established:

γ̂s

(
A, 1

1 + γ̂
β

)
≤ γ

1 + γ
and γs

(
A, 1

1− γ̂
β

)
≤ γ̂

1 + γ̂

are both equations. This is straightforward by an argument similar to the one in the proof of

Theorem 1 in [14]. We omit it for the sake of brevity. �

We end this section with a simple argument which illustrates that for a given pair (A,s),

γs(A, β) = γs(A) and γ̂s(A, β) = γ̂s(A), for all β large enough.

Proposition 2.6. Let A : Rm×n → Rp be a linear transformation and β ∈ [0,+∞]. Assume

that for some ρ > 0, the image of the unit ‖ · ‖∗-ball in Rm×n under the mapping X 7→ AX
contains the ball B = {x ∈ Rp : ‖x‖1 ≤ ρ}. Then for every s ∈ {1, 2, . . . , r},

β ≥ 1

ρ
and γs(A) < 1 ⇒ γs(A, β) = γs(A),

β ≥ 1

ρ
and γ̂s(A) <

1

2
⇒ γ̂s(A, β) = γ̂s(A).

Proof. Fix s ∈ {1, 2, . . . , r}. We only need to show the first implication. Let γ := γs(A) < 1.

Then for every matrix W ∈ Rm×n with its SVD W = Um×sV
T
n×s, there exists a vector y ∈ Rp

such that

‖y‖d ≤ β and A∗y = UDiag(σ(A∗y))V T ,

where U = [Um×s Um×(r−s)], V = [Vn×s Vn×(r−s)] are orthogonal matrices, and

σi(A∗y)

 = 1, if σi(W ) = 1,

∈ [0, γ], if σi(W ) = 0,
i ∈ {1, 2, . . . , r}.

Clearly, ‖A∗y‖ ≤ 1. That is,

1 ≥ ‖A∗y‖ = max
X∈Rm×n

{〈X,A∗y〉 : ‖X‖∗ ≤ 1} = max
X∈Rm×n

{〈u, y〉 : u = AX, ‖X‖∗ ≤ 1}.

From the inclusion assumption, we obtain that

max
X∈Rm×n

{〈u, y〉 : u = AX, ‖X‖∗ ≤ 1} ≥ max
u∈Rp
{〈u, y〉 : ‖u‖1 ≤ ρ} = ρ‖y‖∞ = ρ‖y‖d.

Combining the above two strings of relations, we derive the desired conclusion. �

3. S-goodness and G-numbers

We first give the following characterization result of s-goodness of a linear transformation A
via the G-number γs(A), which explains the importance of γs(A) in LMR.

Theorem 3.1. Let A : Rm×n → Rp be a linear transformation, and s be an integer s ∈
{0, 1, 2, . . . , r}. Then A is s-good if and only if γs(A) < 1.
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Proof. Suppose A is s-good. Let W ∈ Rm×n be a matrix of rank s ∈ {1, 2, . . . , r}. Without

loss of generality, let W = Um×sWsV
T
n×s be its SVD where Um×s ∈ Rm×s, Vn×s ∈ Rn×s are

orthogonal matrices and Ws = Diag((σ1(W ), . . . , σs(W ))T ). By the definition of s-goodness of

A, W is the unique solution to the optimization problem (4). Using the first order optimality

conditions, we obtain that there exists y ∈ Rp such that the function fy(x) = ‖X‖∗ − yT [AX −
AW ] attains its minimum value over X ∈ Rm×n at X = W . So, 0 ∈ ∂fy(W ), or A∗y ∈ ∂‖W‖∗.
Using the fact (see, e.g., [34])

∂‖W‖∗ = {Um×sV T
n×s+M : W and M have orthogonal row and column spaces, and ‖M‖ ≤ 1},

it follows that there exist matrices Um×(r−s), Vn×(r−s) such that A∗y = UDiag(σi(A∗y))V T

where U = [Um×s Um×(r−s)], V = [Vn×s Vn×(r−s)] are orthogonal matrices and

σi(A∗y)

 = 1, if i ∈ J,

∈ [0, 1], if i ∈ J̄ ,

where J := {i : σi(W ) 6= 0} and J̄ := {1, 2, . . . , r} \ J . Therefore, the optimal objective value of

the optimization problem

min
y,γ

γ : A∗y ∈ ∂‖W‖∗, σi(A∗y)

 = 1, if i ∈ J,

∈ [0, γ], if i ∈ J̄ ,

(14)

is at most one. For the given W with its SVD W = Um×sWsV
T
n×s, let

Π :=

{
conv{M ∈ Rm×n : the SVD ofM is M = [Um×s Ūm×(r−s)]

(
0s 0

0 σ(M)

)
[Vn×s V̄n×(r−s)]

T

}
.

It is easy to see that Π is a subspace and its normal cone (in the sense of variational analysis,

see, e.g., [32] for details) is specified by Π⊥. Thus, the above problem (14) is equivalent to the

following convex optimization problem with set constraint

min
y,M

{
‖M‖ : A∗y − Um×sV T

n×s −M = 0,M ∈ Π
}
.(15)

We will show that the optimal value is less than 1. For a contradiction, suppose that the

optimal value is one. Then, by Theorem 10.1 and Exercise 10.52 in [32], there exists a Lagrange

multiplier D ∈ Rm×n such that the function

L(y,M) = ‖M‖+ 〈D,A∗y − Um×sV T
n×s −M〉+ δΠ(M)

has unconstrained minimum in (y,M) equal to 1, where δΠ(·) is the indicator function of Π. Let

(y∗,M∗) be an optimal solution. Then, by the optimality condition 0 ∈ ∂L, we obtain that

0 ∈ ∂yL(y∗,M∗), and 0 ∈ ∂ML(y∗,M∗).

Direct calculation yields that

AD = 0, and 0 ∈ −D + ∂‖M∗‖+ Π⊥.

Then there exist DJ ∈ Π⊥ and DJ̄ ∈ ∂‖M∗‖ such that D = DJ + DJ̄ . Notice that Corollary

6.4 in [18] implies that for DJ̄ ∈ ∂‖M∗‖, DJ̄ ∈ Π and ‖DJ̄‖∗ ≤ 1. Therefore, 〈D,Um×sV T
n×s〉 =

〈DJ , Um×sV
T
n×s〉 and 〈D,M∗〉 = 〈DJ̄ ,M

∗〉. Moreover, 〈DJ̄ ,M
∗〉 ≤ ‖M∗‖ by the definition of
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the dual norm of ‖ · ‖. This together with the facts AD = 0, DJ ∈ Π⊥ and DJ̄ ∈ ∂‖M∗‖ ⊆ Π

yield

L(y∗,M∗) = ‖M∗‖ − 〈DJ̄ ,M
∗〉+ 〈D,A∗y∗〉 − 〈DJ , Um×sV

T
n×s〉+ δΠ(M∗)

≥ −〈DJ , Um×sV
T
n×s〉+ δΠ(M∗).

Thus, the minimum value of L(y,M) is attained, L(y∗,M∗) = −〈DJ , Um×sV
T
n×s〉, when M∗ ∈

Π, 〈DJ̄ ,M
∗〉 = ‖M∗‖. We obtain that ‖DJ̄‖∗ = 1. By assumption, 1 = L(y∗,M∗) = −〈DJ , Um×sV

T
n×s〉.

That is,
∑s

i=1(UTm×sDVn×s)ii = −1. Without loss of generality, let SVD of the optimal M∗ be

M∗ = Ũ

(
0s 0

0 σ(M∗)

)
Ṽ T , where Ũ := [Um×s Ũm×(r−s)] and Ṽ := [Vn×s Ṽn×(r−s)]. From the

above arguments, we obtain that

i) AD = 0,

ii)
∑s

i=1(UTm×sDVn×s)ii =
∑

i∈J(ŨTDṼ )ii = −1,

iii)
∑

i∈J̄(ŨTDṼ )ii = 1.

Clearly, for every t ∈ R, the matrices Xt := W + tD are feasible in (4). Note that

W = Um×sWsV
T
n×s = [Um×s Ũm×(r−s)]

(
Ws 0

0 0

)
[Vn×s Ṽn×(r−s)]

T .

Then, ‖W‖∗ = ‖ŨTWṼ ‖∗ = Tr(ŨTWṼ ). From the above equations, we obtain that ‖Xt‖∗ =

‖W‖∗ for all small enough t > 0 (since σi(W ) > 0, i ∈ {1, 2, . . . , s}). Noting that W is the

unique optimal solution to (4), we have Xt = W , which means that (ŨTDṼ )ii = 0 for i ∈ J .

This is a contradiction, and hence the desired conclusion holds.

We next prove that A is s-good if γs(A) < 1. That is, we let W be an s-rank matrix and

we show that W is the unique optimal solution to (4). Without loss of generality, let W be

a matrix of rank s′ 6= 0 and Um×s′Ws′V
T
n×s′ be its SVD, where Um×s′ ∈ Rm×s′ , Vn×s′ ∈ Rn×s′

are orthogonal matrices and Ws′ = Diag((σ1(W ), . . . , σs′(W ))T ). It follows from Proposition

2.4 that γs′(A) ≤ γs(A) < 1. By the definition of γs(A), there exists y ∈ Rp such that

A∗y = UDiag(σ(A∗y))V T , where U = [Um×s′ Um×(r−s′)], V = [Vn×s′ Vn×(r−s′)]

σi(A∗y)

 = 1, if σi(W ) 6= 0,

∈ [0, 1), if σi(W ) = 0.

Now, we have the optimization problem of minimizing the function

f(X) = ‖X‖∗ − yT [AX −AW ] = ‖X‖∗ − 〈A∗y,X〉+ ‖W‖∗

over all X ∈ Rm×n such that AX = AW . Note that 〈A∗y,X〉 ≤ ‖X‖∗ by ‖A∗y‖ ≤ 1 and the

definition of dual norm. So, f(X) ≥ ‖X‖∗ − ‖X‖∗ + ‖W‖∗ = ‖W‖∗ and this function attains

its unconstrained minimum in X at X = W . Hence X = W is an optimal solution to (4). It

remains to show that this optimal solution is unique. Let Z be another optimal solution to the

problem. Then f(Z) − f(W ) = ‖Z‖∗ − yTAZ = ‖Z‖∗ − 〈A∗y, Z〉 = 0. This together with the

fact ‖A∗y‖ ≤ 1 imply that there exist SVDs for A∗y and Z such that:

A∗y = ŨDiag(σ(A∗y))Ṽ T , Z = ŨDiag(σ(Z))Ṽ T ,



10 LINGCHEN KONG, LEVENT TUNÇEL, NAIHUA XIU

where Ũ ∈ Rm×r and Ṽ ∈ Rn×r are orthogonal matrices, and σi(Z) = 0 if σi(A∗y) 6= 1. Thus,

for σi(A∗y) = 0,∀i ∈ {s′ + 1, . . . , r}, we must have σi(Z) = σi(W ) = 0. By the two forms

of SVDs of A∗y as above, Um×s′V
T
n×s′ = Ũm×s′ Ṽ

T
n×s′ where Ũm×s′ , Ṽ

T
n×s′ are the corresponding

submatrices of Ũ , Ṽ , respectively. Without loss of generality, let

U = [u1, u2, . . . , ur], V = [v1, v2, . . . , vr] and Ũ = [ũ1, ũ2, . . . , ũr], Ṽ = [ṽ1, ṽ2, . . . , ṽr],

where uj = ũj and vj = ṽj for the corresponding index j ∈ {i : σi(A∗y) = 0, i ∈ {s′+ 1, . . . , r}}.
Then we have

Z =
s′∑
i=1

σi(Z)ũiṽ
T
i , W =

s′∑
i=1

σi(W )uiv
T
i .

From Um×s′V
T
n×s′ = Ũm×s′ Ṽ

T
n×s′ , we obtain that

r∑
i=s′+1

σi(A∗y)ũiṽ
T
i =

r∑
i=s′+1

σi(A∗y)uiv
T
i .

Therefore, we deduce

r∑
i=s′+1,σi(A∗y) 6=0

σi(A∗y)ũiṽ
T
i +

r∑
i=s′+1,σi(A∗y)=0

ũiṽ
T
i

=
r∑

i=s′+1,σi(A∗y) 6=0

σi(A∗y)uiv
T
i +

r∑
i=s′+1,σi(A∗y)=0

uiv
T
i

=: Ω.

Clearly, the rank of Ω is no less than r − s′ ≥ r − s. From the orthogonality property of U, V

and Ũ , Ṽ , we easily derive that

ΩT ũiṽ
T
i = 0, ΩTuiv

T
i = 0, for all i ∈ {1, 2, . . . , s′}.

Thus, we obtain ΩT (Z −W ) = 0, which implies that the rank of the matrix Z −W is no more

than s. Since γs(A) < 1, there exists ỹ such that

σi(A∗ỹ)

 = 1, if σi(Z −W ) 6= 0,

∈ [0, 1), if σi(Z −W ) = 0.

Therefore, 0 = ỹTA(Z −W ) = 〈A∗ỹ, Z −W 〉 = ‖Z −W‖∗. Then Z = W . �

For the G-number γ̂s(A), we directly obtain the following equivalent theorem of s-goodness

from Proposition 2.5 and Theorem 3.1.

Theorem 3.2. Let A : Rm×n → Rp be a linear transformation, and s ∈ {1, 2, . . . , r}. Then A
is s-good if and only if γ̂s(A) < 1/2.

4. S-goodness, NSP and RIP

This section deals with the connections between s-goodness, the null space property (NSP) and

the restricted isometry property (RIP). We start with establishing the equivalence of NSP and
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G-number γ̂s(A) < 1/2. Here, we say A satisfies NSP if for every nonzero matrix X ∈ Null(A)

with the SVD X = UDiag(σ(X))V T , then we have

s∑
i=1

σi(X) <
r∑

i=s+1

σi(X).

For further details, see, e.g., [26, 27, 30, 31] and references therein.

Proposition 4.1. For the linear transformation A, γ̂s(A) < 1/2 if and only if A satisfies NSP.

Proof. We first give an equivalent representation of the G-number γ̂s(A, β). We define a

compact convex set first:

Ps := {Z ∈ Rm×n : ‖Z‖∗ ≤ s, ‖Z‖ ≤ 1}.

Let Bβ := {y ∈ Rp : ‖y‖d ≤ β} and B := {X ∈ Rm×n : ‖X‖ ≤ 1}. By definition, γ̂s(A, β) is

the smallest γ such that the closed convex set Cγ,β := A∗Bβ + γB contains all matrices with

s nonzero singular values, all equal to 1. Equivalently, Cγ,β contains the convex hull of these

matrices, namely, Ps. Note that γ satisfies the inclusion Ps ⊆ Cγ,β if and only if for every

X ∈ Rm×n,

max
Z∈Ps
〈Z,X〉 ≤ max

Y ∈Cγ,β
〈Y,X〉 = max

y∈Rp,W∈Rm×n
{〈X,A∗y〉+ γ〈X,W 〉 : ‖y‖d ≤ β, ‖W‖ ≤ 1}

= β‖AX‖+ γ‖X‖∗.(16)

For the above, we adopt the convention that whenever β = +∞, β‖AX‖ is defined to be

+∞ or 0 depending on whether ‖AX‖ > 0 or ‖AX‖ = 0. Thus, Ps ⊆ Cγ,β if and only if

maxZ∈Ps{〈Z,X〉 − β‖AX‖} ≤ γ‖X‖∗. Using the homogeneity of this last relation with respect

to X, the above is equivalent to

max
Z,X
{〈Z,X〉 − β‖AX‖ : Z ∈ Ps, ‖X‖∗ ≤ 1} ≤ γ.

Therefore, we obtain γ̂s(A, β) = maxZ,X{〈Z,X〉 − β‖AX‖ : Z ∈ Ps, ‖X‖∗ ≤ 1}. Furthermore,

γ̂s(A) = max
Z,X
{〈Z,X〉 : Z ∈ Ps, ‖X‖∗ ≤ 1,AX = 0}.(17)

For X ∈ Rm×n with AX = 0, let X = UDiag(σ(X))V T be its SVD. Then, we obtain the sum

of the s largest singular values of X as

‖X‖s,∗ = max
Z∈Ps
〈Z,X〉.

From (17), we immediately obtain that γ̂s(A) is the best upper bound on ‖X‖s,∗ of matrices

X ∈ Null(A) such that ‖X‖∗ ≤ 1. Therefore, γ̂s(A) < 1/2 implies that the maximum value of

‖ · ‖s,∗-norms of matrices X ∈ Null(A) with ‖X‖∗ = 1 is less than 1/2. That is,
∑s

i=1 σi(X) <

1/2
∑r

i=1 σi(X). Thus,
∑s

i=1 σi(X) <
∑r

i=s+1 σi(X) and hence A satisfies NSP. Now, it is easy

to see that A satisfies NSP iff γ̂s(A) < 1/2. �

Next, we consider the connection between restricted isometry constants and G-number of the

linear transformation in LMR. It is well known that, for a nonsingular matrix (transformation)

T ∈ Rp×p, the RIP constants of A and TA can be very different, as shown by Zhang [35] for the

vector case. However, the s-goodness properties of A and TA are always same for a nonsingular
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transformation T ∈ Rp×p (i.e., s-goodness properties enjoy scale-invariance in this sense). Recall

that the s-restricted isometry constant δs of a linear transformation A is defined as the smallest

constant such that the following holds for all s-rank matrices X ∈ Rm×n

(1− δs)‖X‖2F ≤ ‖AX‖22 ≤ (1 + δs)‖X‖2F .(18)

In this case, we say A possesses the RI(δs)-property (RIP) as in the CS context. For details, see

[4, 17, 23, 25, 29] and the references therein.

Proposition 4.2. Let A : Rm×n → Rp be a linear transformation and s ∈ {0, 1, 2, . . . , r}. For

any nonsingular transformation T ∈ Rp×p, γ̂s(A) = γ̂s(TA).

Proof. It follows from the nonsingularity of T that {X : AX = 0} = {X : TAX = 0}. Then,

by the equivalent representation of the G-number γ̂s(A, β) in (17),

γ̂s(A) = max
Z,X
{〈Z,X〉 : Z ∈ Ps, ‖X‖∗ ≤ 1,AX = 0}

= max
Z,X
{〈Z,X〉 : Z ∈ Ps, ‖X‖∗ ≤ 1, TAX = 0}

= γ̂s(TA).

�

For the RIP constant δ2s, Oymak, Mohan, Fazel and Hassibi [27] gave the current best bound

on the restricted isometry constant δ2s < 0.472, where they proposed a general technique for

translating results from SSR to LMR. Together with the above arguments, we immediately

obtain that

Theorem 4.3. δ2s < 0.472⇒ A satisfies NSP ⇔ γ̂s(A) < 1/2⇔ γs(A) < 1⇔ A is s-good.

Proof. Follows from Theorem 1 in [27], Proposition 4.1 and Theorems 3.1 and 3.2. �

The above theorem says that s-goodness is a necessary and sufficient condition for recovering

the low-rank solution exactly via nuclear norm minimization.

5. Conclusion

In this paper, we have showed that s-goodness of the linear transformation in LMR is a

necessary and sufficient conditions for exact s-rank matrix recovery via the nuclear norm min-

imization, which is equivalent to the null space property. Our analysis is based on the two

characteristic s-goodness constants, γs and γ̂s, and the variational property of matrix norm in

convex optimization. This shows that s-goodness is an elegant concept for low-rank matrix re-

covery, although γs and γ̂s may not be easy to compute. Development of efficiently computable

bounds on these quantities is left to future work. Even though we develop and use techniques

based on optimization, convex analysis and geometry, we do not provide explicit analogues to

the results of Donoho [10] where necessary and sufficient conditions for vector recovery special

case were derived based on the geometric notions of face preservation and neighborliness. The

corresponding generalization to low-rank recovery is not known, currently closest one being [7].
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