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Abstract

We review a few of the relavitely recent developments in cone programming that seem to have
important applications in financial planning. In particular, we go over the semidefinite programming
representation of a polynomial inequality as given by Nesterov. We mention some relevant references
which show the power of cone programming in portfolio optimization. Then we turn to the recent
work of Lobo et al. which showed how to use Second Order Cone Programs to model portfolio
optimization problems with transaction costs. We extend their model to a multi-period decision
making situation and we allow cash infusions into the portfolio every period. We conclude with
some computational experiments using real data.
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1 Introduction

One of the most important ingredients of successful applications of optimization is the proper fore-
casting of uncertain parameters of the problem. In many cases we deal with uncertainties in data
and parameters by estimating high-order expected behavior. Indeed, in most cases when there is
significant uncertainty, the expected value of a parameter is a poor way to represent the real problem
as a mathematical, deterministic optimization problem.

Research in optimization under uncertainty has been flourishing during the last two decades. The
main approaches are covered under the terms: Stochastic Programming and Robust Optimization.

Applications in the area of optimization under uncertainty have also been increasing in number
as well as in practical impact. One of the most popular and visible applications is in the Financial
Markets.

This paper is geared towards financial applications. In such application many restrictions on the
variables based on the variance in the data can be expressed as variable vectors lying in nice convex
cones. Many other restrictions based on higher-order moments can be expressed as certain scalar
polynomials being nonnegative for every choice of its argument. Such positivity requirements can be
equivalently expressed as certain variable matrix being symmetric positive definite.

In this paper, we first review these fundamental representation techniques (see Section 1.1 and
Section 2). All the convex cones used in our formulations are unified under a well-behaved set of
convex cones called symmetric cones (see the next section for a definition). We then turn to the
financial applications and introduce portfolio optimization (see Section 1.2 and 2.2).

In Section 3, we focus on the portfolio optimization model proposed by Lobo et al. [14]. We
(slightly) extend their model in two ways:

1. We allow for cash infusions in each planning period.

2. We allow for multiple periods.

In Section 4, we compare the performance of Lobo et al. model and our modifications using real
data and computational experiments.

1.1 Symmetric Cone Optimization

Convex optimization problems, the problems of minimizing a convex function over a convex set, make
up a very large and relatively well-behaved class of optimization problems.

Currently, many of the most successful approaches in the theory and algorithms treat convex
optimization problems in conic form. A popular name for such form is cone programming problems.
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Cone programming problem is the problem of optimizing (minimizing or maximizing) a linear
function of finitely many real variables subject to the vector of real variables lying in the intersection
of a prescribed affine subspace and a convex cone. Below, we introduce some notation and describe
the cone programming problems in terms of the notation.

Given a linear operator A : R
n 7→ R

m that is surjective, b ∈ R
m and c ∈ R

n, consider the cone
programming problem

(P ) inf 〈c, x〉
A(x) = b,

x ∈ K,

where K ⊂ R
n is a closed convex cone.

Note that K ⊆ R
n is a cone if ∀x ∈ K and ∀λ > 0, λx ∈ K.

Under very mild assumptions, all convex optimization problems can be formulated as cone pro-
gramming problems, see for instance [18, 23].

Any linear operator A : R
n 7→ R

m can be represented by m elements of R
n. That is, there exist

A1, A2, . . . , Am ∈ R
n such that:

[A(x)]i = 〈Ai, x〉, ∀i ∈ {1, 2, . . . ,m}.

Then A being surjective is equivalent to {A1, A2, . . . , Am} being linearly independent. Indeed the
latter condition can be easily checked.

We denote by S
n the space of n × n symmetric matrices over the reals. S

n
+ denotes the cone of

symmetric, positive semidefinite matrices in S
n. In the above optimization problem, setting

K := S
n1

+ ⊕ S
n2

+ ⊕ · · · ⊕ S
nr

+

yields a Semidefinite Programming (SDP) problem. For x, s ∈ S
n, we write x � s to mean (s−x) ∈ S

n
+.

Many financial applications can be treated via second order cones. An (n + 1) dimensional second
order cone is defined as

SOCn :=

{(

x0

x

)

∈ R ⊕ R
n : x0 ≥ ‖x‖2

}

.

We also call the cone L(SOCn) a second order cone, for every nonsingular linear transformation
L : R

n+1 7→ R
n+1. For example the cone

cl

{(

x0

x

)

∈ R ⊕ R
n : x0x1 ≥ x2

2 + x2
3 + · · · + x2

n, x0 > 0

}

is equal to the image of SOCn under such a nonsingular linear transformation (cl(·) denotes the
closure).
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If we use
K := SOCn1 ⊕ SOCn2 ⊕ · · · ⊕ SOCnk ,

then we have a Second Order Cone Programming (SOCP) problem.

Note that every cross-section of SOCn with x0 := α > 0 gives an Euclidean Ball in R
n. This cone

is also called ice-cream cone, light cone or Lorentz cone.

The cone K ⊆ R
n is defined to be pointed if K

⋂
(−K) = {0}, which is equivalent to say that K

contains no lines.

Given K ⊆ R
n, the dual cone of K is

K∗ := {s ∈ R : 〈x, s〉 ≥ 0,∀x ∈ K}.

Suppose that cone K ⊆ R
n has nonempty interior. Then:

• K is homogeneous if for every pair x, y ∈ int(K) (denoting the interior of K), there exists a
nonsingular and linear transformation L such that , L(K) = K and L(y) = x.

• K is self-dual if there exists an inner product under which K = K∗.

• K is symmetric if it is homogeneous and self-dual.

Now, we list some fundamental results on some of the elementary properties of convex cones.

Theorem 1.1. Let K ⊆ R
n. If K is a pointed, closed convex cone with nonempty interior, then so is

K∗.

Theorem 1.2. Let K ⊆ R
n. Then K is a closed convex cone iff K∗∗ = K.

Corollary 1.1. Let K ⊆ R
n. Then K is a pointed, closed convex cone with nonempty interior iff K∗

is.

Theorem 1.3. Let K ⊆ R
n be a closed convex cone. Then

int(K) = {x ∈ K : 〈x, s〉 > 0, ∀s ∈ K∗\{0}}.

Both S
n
+ and the SOCn are pointed, closed convex cones with nonempty interior. Moreover, they

are homogeneous and self-dual; hence, they are symmetric.

For the rest of the paper, the main convex cones we deal with will be S
n
+ and SOCn. Most

of the models will only use second order cones. However, if we want to include more complicated
constraints in our model, such as simple polynomial inequalities stipulating that a scalar polynomial
be nonnegative, then we would utilize the results of Section 2 and the cone of symmetric positive
definite matrices.
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1.2 Portfolio Optimization

In his seminal paper [16], Markowitz introduced mathematical modeling techniques to solve the port-
folio selection problem for a large private investor or an institutional investor. Markowitz’s work
provided a starting point for most of the work in the area of portfolio optimization.

In the book [15], Markowitz analyzed the Mean-Variance(M-V) portfolio selection problem. The
problem is modelled as a parametric quadratic programming problem with general linear inequality
constraints:

min f(x) := −tµTx +
1

2
xT V x

s.t. Ax ≤ b

c1 ≤ x ≤ c2,

where µ is an n-vector of expected returns, V is an n×n covariance matrix, x is an n-vector of amount
of asset holdings, A is an m × n matrix, b is an m-vector, t is a parameter (usually nonnegative)
and c1, c2 ∈ R

n
+ are bounds on the holdings. Note that the objective function is quadratic and the

constraints are linear. The function f(x) is called utility function in [15].

An obvious drawback of the basic Markowitz model is that it needs the mean µ and variance
V computed (estimated), and then uses µ, V in a deterministic quadratic programming setting.
During the last decade, a new area called robust optimization provided a very intriguing approach to
uncertainty in optimization problems [2].

Instead of using a single estimate of an uncertain part of the data (or parameters) as in the Mean-
Variance(M-V) portfolio selection model, robust optimization approach describes a set of possible
values for that uncertain data (or parameters), which is called the uncertainty region. Then the
robust portfolio selection problems try to find the optimal strategy under the assumption that the
worst possible scenario in the uncertainty region can happen [1, 9, 21].

Many financial investment companies use the notion of market driving factors in their forecasting
techniques. They choose a small set of indicators (say, order of 10) that reflect the basic tendencies
of the financial market. Below, vector f is the vector representing such market driving factors.

Define the return
r := µ + V T f + ε,

where µ is the vector of expected returns, f ∼ ℵ(0, F ) is the vector of returns of the factors that drive
the market, V is the matrix of factor loadings of the n assets and ε ∼ ℵ(0,D) is the vector of residual
returns, where x ∼ ℵ(a,A) denotes that x is a multivariate normal random variable with mean vector
a and covariance matrix A. Then

r ∼ ℵ(µ, V T FV + D).

Goldfarb and Iyengar [9] noted that the eigenvalues of the residual covariance matrix D are typically
much smaller than those of the covariance matrix V T FV implied by the factors. Thus, the covariance
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matrix of return r is usually dominated by V T FV . In some cases, the lower-rank property of F and
V can reduce the complexity of calculation for the covariance matrix.

We do not employ the robust portfolio selection approach in this paper. However, as we point out
in Section 3, our formulations can be extended to the robust optimization model.

Our portfolio optimization problems with fixed transactions costs are cast as convex optimization
problems. As we review in Section 3, convex portfolio optimization problems include those with linear
transactions costs, margin and diversification constraints, and limits on variance and on shortfall
risk. Recent theoretical and computational developments in SDP and SOCP, especially interior-point
methods, provide us with fast algorithms, good modeling techniques and robust software for many
nonlinear convex optimization problems.

2 SDP representation of positive polynomials

Moment problems, involving first k order moment of random variables, have proven to be applicable
to different areas such as computational finance, operations research and stochastic optimization.
Employing duality theory and other representation tools, SDP can be used to represent the moment-
type optimization problems. In this section, we will review the key connections between moment
problems and SDP representations. In Section 2.1, some fundamental theorem and results are outlined.
In Section 2.2, some examples of the financial applications are introduced.

2.1 Mathematical Foundations

Nesterov [17] showed that the set of coefficients of a degree n univariate polynomial, which generate
polynomials with non-negative values for every choice of the argument can be represented as an
intersection of the positive semidefinite cone with an affine space. Here, we outline this result and
some related theory.

Pn denotes the (n + 1)−dimensional vector space. p ∈ Pn is written as

p(t) =

n∑

k=0

pkt
k.

Defining
τn := (1, t, t2, . . . , tn)T ∈ Pn,

we have p(t) = 〈p, τn〉.

The cone of non-negative polynomials is the cone of all coefficient vectors p for which the underlying
polynomial is non-negative for all values of t. (It is easy to show that such a polynomial must be of
even degree.) That is

K2n :=
{
p ∈ P2n : p(t) ≥ 0, for all t ∈ R

}
.
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The following elementary result is well-known.

Theorem 2.1. (i) A polynomial of odd degree can not be nonnegative on R.(That is, if p(t) ≥ 0,
∀t ∈ R, then the degree of p(t) is even.)

(ii) A polynomial is nonnegative on the whole of R iff the polynomial can be expressed as a sum of
squares of polynomials.

Proof.

(i) Suppose p(t) has odd degree, deg(p) = 2k + 1 for some k ∈ Z+. Then, the coefficient of t2k+1 is
nonzero by definition. Let us denote it by p2k+1.

If p2k+1 > 0, then p(t) → −∞, as t → −∞.

If p2k+1 < 0, then p(t) → −∞, as t → +∞.

Therefore, p(t) is not nonnegative on the whole R when deg(p) is odd.

(ii) If p(t) can be expressed as a sum of squares of polynomials, then clearly p(t) ≥ 0 for all t ∈ R.

Suppose that p(t) ≥ 0 for all t ∈ R. Let λi be its real roots with multiplicity mi, for i ∈ {1, . . . , r},
and aj + ιbj , aj − ιbj be its complex roots for j ∈ {1, . . . , h}, where ι :=

√
−1. Further let 2k

denote the degree of p. Then

p(t) = p2k

r∏

i=1

(t − λi)
mi

h∏

j=1

[
(t − aj)

2 + b2
j

]

= p2k[(t − λ1)
m1/2(t − λ2)

m2/2 · · · (t − a1) · · · (t − ah)]2

+p2k[(t − λ1)
m1/2 · · · (t − ah−1)bh]2

+p2k[(t − λ1)
m1/2 · · · (t − ah−2)bh−1bh]2

+ · · ·

=

k∑

i=0





k∑

j=0

cijt
j





2

,

where cij is the coefficient for xj in the ith polynomial of the sum. We expressed p(t) as a sum
of squares of polynomials.

�

As it will become clearer, it seems more natural to treat cones like K2n as the squares of some other
object. There are many versions of this. For instance, we may be interested only in non-negative values
of t or only in t ∈ [0, 1], etc. Generalizations of this subject include representations of sets described
as the solution set of systems of polynomial inequalities on several variables. For such studies, the
sum of squares representation approach has been extremely fruitful. (See for instance, [11, 12, 20]; for
systems of quadratic inequalities, see [10].)
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Let Ek denote the kth (n + 1) × (n + 1) cross diagonal matrix:

E0 :=









1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0









, E1 :=












0 1 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0












,

E2 :=














0 0 1 0 . . . 0

0 1 0 0 . . . 0

1 0 0 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 0














, . . . , E2n :=









0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 1









.

Theorem 2.2. [17]

K2n =
{
p ∈ P2n : pk = 〈X,Ek〉, k ∈ {0, 1, . . . , 2n}, X � 0

}
.

Proof.

Let T :=
{
p ∈ P2n : pk = 〈X,Ek〉, k ∈ {0, 1, . . . , 2n}, X � 0

}
, we will prove that T = K2n.

(i) For ∀p ∈ T , X := (xij), pk = 〈X,Ek〉 =
∑

i+j=k+2

xij,

p(t) =
2n∑

k=0

pkt
k =

2n∑

k=0

∑

i+j=k+2

xijt
k

= τT
n Xτn.

As X � 0, we have τT
2nXτ2n ≥ 0 for ∀t ∈ R.

Hence, p(t) ≥ 0 for ∀t ∈ R. Therefore, T ⊆ K2n.

(ii) Using the same notation as in the proof of the Theorem 2.1, for ∀p ∈ K2n, p(t) =
∑n

i=0(
∑n

j=0 cijt
j)2.

Let C be the (n + 1) × (n + 1) matrix whose (ij)th entry is cij .

Define X := CTC, note that
∑n

j=0 cijt
j = (Cτn)i, we obtain

p(t) = τT
n CTCτn = τT

n Xτn

=

2n∑

k=0




∑

i+j=k+2

xij



 tk.
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Thus, pk =
∑

i+j=k+2 xij = 〈X,Ek〉, and X = CTC � 0.

So p ∈ T . Therefore, K2n ⊆ T .

Combining (i) and (ii), we conclude that K2n = T .

�

The dual of the cone K2n also has a nice description as the next result shows (it can be proved
using Theorem 2.2).

Lemma 2.1. [17] (K2n)∗ = {s ∈ P2n :
∑2n

k=0 skEk � 0}.

Using Theorem 1.3 and Lemma 2.1, we can establish the following fact.

Lemma 2.2. [17] int(K2n) = {p ∈ P2n : p2n > 0, p(t) > 0,∀t ∈ R}.

Using Lemma 2.2 and Corollary 1.1, we can establish the next fact.

Theorem 2.3. [17] K2n and K∗
2n are pointed, closed convex cones with nonempty interiors.

Here, we give a direct argument proving that K∗
2n has nonempty interior.

Proposition 2.1. There exists s̄ ∈ P2n such that
∑2n

k=0 s̄kEk ≻ 0.

Proof. Let t0 < t1 < . . . < tn ∈ R. Define

s̄ :=












1 1 . . . 1

t0 t1 . . . tn

t20 t21 . . . t2n
...

...
. . .

...

t2n
0 t2n

1 . . . t2n
n












e ∈ P2n.

Take ∀p ∈ P2n 6= 0,

pT (

2n∑

k=0

skEk)p =

2n∑

k=0

skp
T Ekp =

n∑

i=0

p(ti)
2 > 0,

because such a polynomial p can have at most n real roots unless p is identically zero. Hence,
s̄ ∈ int(K∗

2n), K∗
2n has nonempty interior and

∑2n
k=0 skEk ≻ 0.

�
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The next result is useful in applying interior-point methods.

Theorem 2.4. [17] If p ∈ int(K2n) then the set

{X � 0 : 〈X,Ek〉 = pk, for all k ∈ {0, 1, . . . , 2n}}

is bounded and there exists X ≻ 0 such that 〈X,Ek〉 = pk for all k ∈ {0, 1, . . . , 2n}.

Proof.

Fix p ∈ int(K2n), and let X̄ ∈ {X � 0 : 〈X,Ek〉 = pk, for all k ∈ {0, 1, . . . , 2n}}. Pick s̄ ∈
int(K∗

2n), and define S̄ :=
∑2n

k=0 s̄kEk > 0,

〈X̄, S̄〉 = 〈X̄,

2n∑

k=0

s̄kEk〉 =

2n∑

k=0

s̄kpk.

Since p and s̄ are fixed,
∑2n

k=0 s̄kpk = constant > 0. Then for every X̄ as above, it satisfies 〈X̄, S̄〉 =
constant. Note that {

X � 0 : 〈X, S̄〉 =

2n∑

k=0

s̄kpk = constant

}

is compact. Therefore, {X � 0 : 〈X,Ek〉 = pk, for all k ∈ {0, 1, . . . , 2n}} is bounded for every p ∈
int(K2n).

By Lemma 2.1, (K2n)∗ = {s ∈ P2n :
∑2n

k=0 skEk ∈ S
n
+}. By Lemma 2.1, ∃s̄ ∈ K∗

2n such that
∑2n

k=0 skEk ∈ S
n
++. Besides, by Theorem 2.3, K2n and K∗

2n are pointed, closed convex cones with
nonempty interiors. Therefore by Theorem 2.2,

K2n = K∗∗
2n = {A(X) : X ∈ S

n
+},

where A : S
n → R

2n+1 such that [A(X)]i = 〈Ei, X〉, ∀i ∈ {0, 1, . . . , 2n}. Then,

K∗
2n = {s : A

∗(s) ∈ S
n
+}.

(A∗ denotes the adjoint of A, such that

〈A∗(s),X〉 = 〈s, A(X)〉, ∀X ∈ S
n, s ∈ R

2n+1).

By standard duality theory, there exists X̄ ∈ S
n
++ such that A(X̄) ∈ K2n. Then there exists X̂ ∈ S

n
+

such that A(X̂) ∈ int(K2n).

�

Polynomials that are non-negative on the half-line, R+, or on an interval [0, 1] can be treated
similarly. Trigonometric polynomials

p(t) =

n∑

k=0

pk (cos t + ι sin t)
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can also be dealt with in an analogous way.

A central fact related to the above theorem (and its proofs) is that a polynomial is nonnegative on
the whole of R iff the polynomial can be expressed as a sum of squares of polynomials. These types
of results go back at least a hundred years.

It has been well known that a polynomial p, with coefficients from R, is nonnegative on the whole
real line iff there exist polynomials p1 and p2 with real coefficients such that

p(t) = [p1(t)]
2 + [p2(t)]

2 .

If we only require that p(t) ≥ 0, for all t ∈ R+, then there exist polynomials p1, p2, p3, and p4 such
that

p(t) = [p1(t)]
2 + [p2(t)]

2 + t
(

[p3(t)]
2 + [p4(t)]

2
)

.

A related, interesting question goes back to Hermite (in 1894). He asked whether every polynomial
p of degree at most n, with the property

p(t) > 0, ∀t ∈ (−1, 1),

can be expressed as

p(t) =
∑

i,j≥0: i+j≤n

aij(1 − t)i(1 + t)j ,

where aij ≥ 0. It was quickly answered “no.” However, Hausdorff (in 1921) proved that if the
restriction i+ j ≤ n on the maximum degree of the representing polynomial is relaxed then the answer
is “yes.” That is, there exist aij ≥ 0, for all i, j such that

p(t) =
∑

i,j≥0

aij(1 − t)i(1 + t)j .

2.2 Financial Applications

Black-Scholes formula is successful in pricing derivatives under the assumption that the underlying
asset follows a Geometric Brownian Motion and no arbitrage profit exists [5].

Let S be the price of underlying asset, one typical kind of random walk that S follows is Geometric
Brownian Motion, which can be expressed as:

dS

S
= µdt + σφ

√
dt,

where µ is the drift rate, σ is the volatility and φ ∼ ℵ(0, 1). Moreover, there are no arbitrage
opportunities when all risk-free portfolios earn the risk-free rate of return. By constructing an hedging
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portfolio consists of 1 share of asset and α share of option, the Black-Scholes differential equation can
be derived as:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
= rV,

where V is the price of option and r is risk-free interest rate.

The Black- Scholes formula was extremely influential in forming the succeeding research in the area
as well as the practice of the companies’ operations in the markets, for instance [4][8]. As a result,
many questions arose. If we do not assume the motion of underlying asset, only some moments of the
price of the asset were given, such as expected price, variance, can we get a reliable value or bound
for the price of the derivatives using only no arbitrage theory?

In order to apply the no-arbitrage theory, Cox and Ross in [6] showed that it is sufficient to assume
the existence of a probability distribution π for the price of underlying asset. Under this probability
measure, we can define and calculate the moments of the asset price X. Based on the definition and
properties of moments, we can formulate an optimization model for the underlying financial problems.
The model is solvable efficiently, utilizing together the developments in algorithms for SDP, and the
theory of SDP representations in Section 2.1.

Bertsimas and Sethuraman [3] discussed the applications of such SDP representations in financial
mathematics. One example is to maximize the expected payoff of a call option given n moments
(q1, q2, . . . , qn) for the price of asset. Let q0 := 1, then the model can be expressed as:

max Eπ[max(0,X − k)] =

∫ ∞

0
max(0, t − k)π(t)dt

s.t. Eπ[Xi] =

∫ ∞

0
tiπ(t)dt = qi, i ∈ {0, 1, 2, . . . , n}

π(t) ≥ 0,

where k is the strike price for the call option, X is the spot price for underlying asset on maturity,
and max(0,X − k) is the payoff for the call option.

The dual of the problem is:

min

n∑

i=0

yiqi

s.t.
n∑

i=0

yit
i ≥ max(0,X − k), ∀t ≥ 0.

Note that the constraints of dual problem can be expressed as cones of non-negative polynomials.
Therefore, by Theorem 2.2 discussed before, the above optimization problem can be formulated as an
instance of SDP.
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3 Portfolio Selection Model

3.1 Lobo et al. Model for single-period

Considering an investment on different types of portfolio, we want to maximize the expected return,
taking transaction costs into account, and subject to several kinds of constraints for feasibility.

The single-period portfolio selection model below was introduced by Lobo et al. [14]. The current
holdings in n assets are w := (w1, . . . , wn)T . The amounts (in number of units, not dollars) transacted
in these assets are given in the vector x := (x1, . . . , xn)T . After the transactions, the new holdings
in the portfolio is (w + x). Let φ(x) denote the sum of all transaction costs. The problem can be
expressed as:

max āT (w + x)

s.t. pT x + φ(x) ≤ ξ

(w + x) ∈ S,

where ā is the vector of expected returns on each asset, p is the price for assets at the beginning of
the period, ξ is the cash amount invested in this period. Then pT x is the investment needed for x,
plus the transaction costs φ(x), must be less than or equal to the budget ξ. S is the set of feasible
portfolios. We will discuss a variety of transaction cost functions and portfolio constraints later.

We can also add one asset wn+1 to express the holding of cash on hand and xn+1 is the cash
transacted during this period to involve the cash invested in this period. Then the above problem
becomes:

max āT (w + x)

s.t. pT x + φ(x) ≤ ξ + wn+1

(w + x) ∈ S,

where ān+1 = 1, pn+1 = 1 and φn+1(xn+1) = 0.

Assume that the transaction costs can be separated, φ(x) is the sum of the transaction cost
associated with each asset, φ(x) =

∑n
i=1 φi(xi), where φi is the transaction cost function for asset i.

There are several types of functions φi(xi) for real world applications, and we will focus on the
linear transaction cost functions, such as

φi(xi) =

{

a+
i xi if xi ≥ 0

−a−i xi if xi ≤ 0
or φi(xi) =







0 if xi = 0

β+
i + a+

i xi if xi > 0

β−
i − a−i xi if xi < 0,

where a+
i , a−i are the different transaction costs associated with buying and selling asset i, and xi =

x+
i − x−

i with x+
i ≥ 0, x−

i ≥ 0 are used to express the amount of buying and selling of the asset i.
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In practice, the transaction costs can be nonconvex (especially when we are planning for small
investors). However, we can use convex relaxation methods to approximate them.

The feasible set of portfolios S can be discussed in different ways, we will focus on the expression
through convex constraints. With convexity, the underlying optimization problems can be solved
efficiently by special software based on interior-point methods.

Diversification constraints, limit the amount invested on each asset i. Suppose, we require that
no more than a fraction γ of cash can be invested on fewer than r assets so that we can avoid the
concentration on any small subset of assets to hedge the risk for investment.

r∑

i=1

(p ⊙ x)[i] ≤ γpTx,

where p ⊙ x :=









p1x1

p2x2

...

pnxn









, x[i] denotes the ith largest component of x.

An alternative way to express the ith largest component is via introducing new variables y ∈
R

n, t ∈ R. In what follows, e ∈ R
n denotes the vector of all ones.

γpT x ≥ rt + eT y

t + yi ≥ pixi , ∀ i ∈ {1, . . . , n}
yi ≥ 0 , ∀ i ∈ {1, . . . , n}.

(1)

If the constraints (1) are satisfied, γpT x ≥ rt + eT y, and rt + eT y is greater than the sum of any r
items of t + yi. Combining with t + yi ≥ pixi, it is also greater than or equal to any r items of p ⊙ x,
so that γpT x is greater than or equal to the sum of r largest components of p ⊙ x, which is what we
need. (See Lobo et al. [14].)

Short selling constraints, limit the maximum amount of short selling allowed on asset i.

wi + xi ≥ −si , ∀ i ∈ {1, . . . , n}

Variance constraints, are based upon the variance matrix Σ. The variance matrix is calculated
based upon the historical data.

Note that the value of holdings at the end of the period is W = aT (w + x), where a is a random
vector for price of assets. The value of holdings is also a random vector

W = aT (w + x) ∼ ℵ(µ, σ2),
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where µ = āT (w + x) and σ2 = E(W − EW )2 = (w + x)T Σ(w + x).

Note that ā and Σ can be estimated by the mean vector and the variance matrix of historical
data [14]. If covariance terms are estimated independently and the variance matrix Σ̃ is not positive
semidefinite, we can compute W ∈ S

n
+, such that ‖W − Σ̃‖ is minimized, to estimate Σ.

One method is to compute the eigenvalue decomposition of Σ̃:

Σ̃ =

n∑

i=1

λiqiq
T
i ,

where λi is an eigenvalue of Σ̃ and qi ∈ R
n is the corresponding eigenvector. Then

W :=
∑

i:λi≥0

λiqiq
T
i ∈ S

n
+,

is a semidefinite estimation of the variance matrix.

Denoting the maximum standard deviation by σmax, we express the variance constraints as:

(w + x)T Σ(w + x) ≤ σ2
max ⇐⇒‖ Σ1/2(w + x) ‖≤ σmax.

This constraint can be expressed as a second-order cone constraint
(

σmax

Σ1/2(w + x)

)

∈ SOCn.

Instead of the matrix square root Σ1/2 of Σ, we can also use the Choleski factor GT of Σ, where
G is the unique lower triangular matrix such that GGT = Σ. The speed of calculation of the Choleski
decomposition in practice is much faster than the calculation of square root, even though they are
both O(n3) in theory. Moreover, the computation of the Choleski factor seems more numerically stable
than the computation of the square root. Then the constraints can be expressed as:

‖ GT (w + x) ‖≤ σmax ⇐⇒
(

σmax

GT (w + x)

)

∈ SOCn.

Short risk constraints: Assume that the return vector a has a Gaussian distribution, a ∼ ℵ(ā,Σ).
We want to require that the wealth W at the end of the period be larger than W low under a probability
no-less than η:

Prob(W ≥ W low) ≥ η.

We have W = aT (w + x) ∼ ℵ(µ, σ2), and let Φ(z) denote the cumulative distribution function of a
zero mean, unit variance Gaussian variable. Then,

Prob

(
W − µ

σ
≤ W low − µ

σ

)

≤ (1 − η) =⇒ W low − µ

σ
≤ Φ−1(1 − η) = −Φ−1(η)

=⇒ µ − W low ≥ Φ−1(η)σ.
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Combining with µ = āT (w + x) and σ2 = (w + x)T Σ(w + x), we obtain

Φ−1(η) ‖ Σ1/2(w + x) ‖≤ āT (w + x) − W low ⇐⇒
(

(āT (w + x) − W low)/Φ−1(η)

Σ1/2(w + x)

)

∈ SOCn.

Using Choleski decomposition, such constraints can be expressed as

Φ−1(η) ‖ GT (w + x) ‖≤ āT (w + x) − W low ⇐⇒
(

(āT (w + x) − W low)/Φ−1(η)

GT (w + x)

)

∈ SOCn.

3.2 Portfolio selection model for multi-period with cash infusions

There are many situations in practice when we need to discuss the selection of portfolios problem
under a multi-period model, which means that we will deal with a long time in the future, and divide
it into several periods, such as 12 months in one year. During each period, the investor might have
some scheduled income to be invested on assets. Based on the partial information about the future
periods, we can consider certain utility function for the whole planning horizon. In each period, the
assets transacted must be subject to the constraints on the feasible portfolios.

Based upon the previous discussion about the single-period model, we can design similar constraints
for the new model. We will deal with the multi-period model using m separate single periods, with
different mean vectors and variance matrices for each period. We require that the amount of assets at
the end of each period also be feasible, satisfying the constraints of transaction costs, diversification,
etc.

We define x̂ ∈ R
n×m = (x̂1, x̂2, . . . , x̂m) to be our variable for the new model, where the vector x̂i

denotes the amount of assets transacted during the ith period. In order to express different amounts for
buying and selling assets, we transform the variable space to R

2mn, so that the vector x̂+
i corresponds

to the amounts of assets bought in the period i and the vector x̂−
i corresponds to the amounts of

assets sold in the period i. The variable can be expressed as:

x̂ :=

















x̂+
1

x̂+
2
...

x̂+
m

x̂−
1
...

x̂−
m

















∈ R
2mn ≥ 0.

We then define xi := x̂+
i −x̂−

i to be the transaction amounts during the ith period. yj := (
∑j

i=1 xi)+w
is the total asset holdings at the end of period j.
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In order to express this relationship in matrix notation, we can define a transfer matrix Tj such
that yj = Tj x̂ + w, where Tj ∈ R

n×(2mn),

Tj :=













1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

. . .

. . .

. . .

. . .

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
︸ ︷︷ ︸

j

0 . . .

0 . . .
...

. . .

0 . . .

−1 0 . . . 0

0 −1 . . . 0
...

...
. . .

...

0 0 . . . −1

−1 . . . 0

0 . . . 0
... . . .

...

0 . . . −1
︸ ︷︷ ︸

j

0 . . .

0 . . .
...

. . .

0 . . .













.

Objective function: Our objective is to maximize the expected return at the end of the whole
planning horizon

max āT
mym = āT

m(w +
∑m

i=1 xi),

where ām is the expected return on each asset for period m, w is the vector of holdings in each asset
at the beginning of the planning horizon.

Transaction cost constraints: Using the same notation as above

pT
j xj + φ(xj) ≤ ξj , ∀j ∈ {1, . . . ,m},

where φ(xj) is under the same definition as in the single-period model, and we will still focus on the
linear form of the transaction cost. ξj is the fixed investment for the period j. Note that we can use
real asset prices p1 for the first period, and p2, . . . , pm can be estimated by the mean historic prices
for periods 2, . . . ,m, which are ā1, . . . , ām−1.

We can also add one dummy asset to express the holding of cash on hand, and denote it by ζi for
i ∈ {1, . . . ,m}. Then the above system of inequalities becomes:

pT
j xj + φ(xj) + ζj ≤ ξj + ζj−1 , ∀j ∈ {1, . . . ,m}.

Diversification constraints: Using the constraint discussed in the single-period model:

∑r
i=1(pj ⊙ xj)[i] ≤ γpT

j (xj) , ∀j ∈ {1, . . . ,m}.

The alternative way to express the ith largest component can also be applied here, as in (1).

Short selling constraints: s ∈ R
n is the vector of lower bounds (which could also represent a credit

line).

yj ≥ −s , ∀j ∈ {1, . . . ,m}.

Variance constraints:

‖ Σ
1/2
j (yj) ‖≤ (σmax)j , ∀j ∈ {1, . . . ,m}.
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Note that when we begin to forecast the future return for a long time horizon, the variance matrix
Σj and mean vector āj are calculated from previous data for each period, and they can only reflect
partial information. Throughout the course of the horizon, we can update them to include the new
information. Also, different variance matrices and mean vectors for each period can include the
monthly or seasonal changes on the values of the assets in the portfolio.

Short risk constraints: based on the same assumption as in the single-period model, can be repre-
sented as

Φ−1(η) ‖ Σ
1/2
j (yj) ‖≤ āT

j (yj) − W low , ∀j ∈ {1, . . . ,m}.

The previous discussion on the Choleski decomposition of the variance matrix is also applicable
here. Moreover, the corresponding constraints are also representable as second order cone constraints.

We note that our models presented in this section can be extended using the robust optimization
approach. Under some suitable assumptions, the resulting optimization problems are still SOCPs.

4 Computational results

4.1 Data description

The historical data for our experiment are obtained from the database of CRSP (The Center for
Research in Security Prices), which creates and maintains premier historical US databases for publicly
traded stocks (NASDAQ, AMEX, NYSE), indices, bond, and mutual fund securities. The database
used is maintained and supported by SOAR (School of Accountancy Research) at the University of
Waterloo.

4.2 Software package

We use Sedumi 1.05, an add-on toolbox for MATLAB. It implements the self-dual embedding technique
for optimization problems over symmetric cones [22]. The version of MATLAB is 6.5 under the
workstation of Windowsr XP and UNIX. The machine for our experiment is powered by processor
Intel Pentiumr M 1.3 G, with 256MB DDR SDRAM. The server for UNIX is a Sun UltraSPARC
IIe with speed 648 MHz and memory 1.5 GB.

4.3 Experiments

We present the results of two groups of runs. In the first group, we pick 20 stocks and we compare
the performance of the multi-period model against the performance of the single-period model where
the cash infusion varies. In the second group, to experiment with a larger SOCP problem, we pick 60
stocks.
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For stocks on 20 companies with Nasdaq company number between 60006000 and 60006200,
such as RAYMOND, GRIFFON, KEY TRON, LIFELINE, MAIR HOL, UNIFIRST, LAFARGE,
BURLINGT, we selected the monthly average price between Jan 1st, 1993 and Dec 31th, 2003. We
used the data from Jan 1st, 1993 and Dec 31th, 2002 to forecast the optimal investment strategy for
the whole year 2003 (under a pre-determined cash flow for each month in 2003). The objective is to
maximize the total profit earned at the end of 2003.

The process for the experiment can be stated as:

1. Estimate the mean vectors and the variance matrices ā1, ā2, . . . , ām,Σ1,Σ2, . . . ,Σm from the
historical data.

2. • Use ā1,Σ1, under single-period model to find optimal decision x1 for the 1st period

• Use ā1, ā2, . . . , ām,Σ1,Σ2, . . . ,Σm, under multi-period model to find optimal decision x̃1 for
the 1st period.

3. Apply x1 and x̃1 to the 1st month and update mean vector and variance matrix ā2, . . . , ām,Σ2, . . . ,Σm,
go back to step 2 to forecast the optimal strategy beginning with the next month.

Repeat the process above until the end of mth month.

For transaction cost and constraint parameters, we choose:

a+
i = 3.5 a−i = 2 β+

i = β−
i = 0 , ∀i ∈ {1, . . . , 20}.

For the Diversification constraints, we used the formulation (1). The parameters in (1) and short
selling constraints are:

r = 3 γ = 0.7 si = 0 , ∀i ∈ {1, . . . , 20}.

For the variance constraints and short risk constraints, we select:

σmax =
√

1500 η =

(

η1

η2

)

=

(

80%

95%

)

W low =

(

50

25

)

.

We carry out the process described above. The first experiment is with cash flow 200 for each
month and initial amount w = 0, and the second experiment is with cash flow 100 for each month and
initial amount w = 0.

Adding another asset to express the cash holdings for each period, the third experiment follows
the same process discussed above. The cash flow is 50 for each month while parameters stay the same

except W low =

(

0

−10

)

and σmax =
√

1000.

We increase the size of the problem as discussed before, still following the same process for the
experiment.
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4.4 Numerical result and analysis

The summary of the optimal strategy and holdings for the first three experiments are listed below:

Result for experiment with cash flow 200

value of the commodity holdings 1044.9

Single-period model total transaction costs 414.8612

total cash and commodity holdings 1044.9+12×200-414.8612 =3030.04

value of the commodity holdings 1131.4

Multi-period model total transaction costs 371.8835

total cash and commodity holdings 1131.4+12×200-371.8835=3159.51

Result for experiment with cash flow 100

value of the commodity holdings 722.2259

Single-period model total transaction costs 289.8983

total cash and commodity holdings 722.2259+12×100-289.8983 =1632.36

value of the commodity holdings 852.7675

Multi-period model total transaction costs 281.7293

total cash and commodity holdings 852.7675+12×100-281.7293=1771.04

Result for experiment with cash flow 50 and new variable for cash on hand

value of the commodity holdings 377.7366

Single-period model cash holdings 208.2462

total cash and commodity holdings 585.9828

value of the commodity holdings 231.3497

Multi-period model cash holdings 415.2706

total cash and commodity holdings 646.6203

Based on the above results, we can see the advantage of our multi-period model. The single-period
model is more ’greedy’, and the multi-period model considers future decisions when adjusting the
portfolio in the current period. The multi-period model provides us with better investment strategy
at the end of the planning horizon. Note that ’better’ means bigger value of holdings at the end and
smaller total transaction costs.

We selected another set of stocks from 100 companies with Nasdaq company number between
60007000 AND 60008000. The number of assets is 60. The underlying optimization problem for
multi-period model had 1573 variables and 5293 constraints.
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For the last experiment, we used the same parameters as above except:

σmax :=
√

5000, W low :=

(

−50

−100

)

,

and the cash infusion for each month was set to 300. Solving this largest model took 35 iterations of
the interior-point code with total of 535.8 seconds computing time.

Result for experiment with 60 assets

value of the commodity holdings 4597.8

Single-period model cash holdings 300

total cash and commodity holdings 4897.8

value of the commodity holdings 5309.1

Multi-period model cash holdings 0

total cash and commodity holdings 5309.1

Further details on the data and the solutions can be found on the web [13].
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