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1 IntroductionScarf[Sc67] was the �rst to provide a constructive proof of Brouwer's and Kakutani's �xed-pointtheorems, which have important applications in proving the existence of competitive price equi-libria in certain economic models. Scarf used the notion of primitive sets, but most subsequentwork used triangulations to discretize the continuous problem. The resulting methods to com-pute the approximate �xed-points , known as simplicial algorithms, are described, for instancein Allgower and Georg[AG80,AG90], Eaves[Ea84], and Todd[To76]. The performance of suchmethods depends critically on the triangulation used, and this led to much work on devisinge�cient triangulations of Rn. Among those used in simplicial algorithms are those of Freuden-thal[Fr42], Tucker(Lefschetz[Lef49] p. 140), Todd[To84], and Dang[Da89], known as K1, J1, J 01,and D1 respectively. These triangulations have relatively simple descriptions of their simplicesand their pivoting rules, i.e., rules indicating the adjacent simplex found when a speci�ed vertexof a given simplex of the triangulation is dropped. Other triangulations, with attractive prop-erties but with much more complicated descriptions and pivoting rules, are one independentlydevised by Sallee[Sa82], and by Lee[Le85], and Sallee's middle cut triangulation[Sa84]. In thispaper we will modify Dang's triangulation to get a more e�cient triangulation which we denoteD01.A triangulation of an n�dimensional convex subset of Rn is a locally �nite collection ofn�dimensional simplices which cover the subset and any two of which intersect in a commonface (possibly empty). All of the triangulations above (except J 01) also triangulate the unit cubeIn := [0; 1]n, in that their simplices in In form a triangulation of Rn. The triangulations of Rnare then obtained by replicating this triangulation using reections and/or translations. Onebasic measure of such a triangulation is the number of simplices used to triangulate In. Thisis n! for K1 and J1, about (e � 2)n! for D1, and about (e � 2)2n! for D01. The triangulationof Lee[Le85] and Sallee[Sa82] is slightly better, and that of Sallee[Sa84] is considerably better,but at a price of increased complexity.An n�simplex can be described as the convex hull of n + 1 a�nely independent verticesor, alternatively, as the solution set of n + 1 linear inequalities, provided it is bounded withnonempty interior. The latter description, called a facetal description, often provides a simplerproof that a given collection of simplices forms a triangulation see, e.g., Todd[To76,To84]. Weuse this description to derive D01. A typical simplex of K1 or J1 in In has the formfx 2 Rn : 1 � x1 � x2 � : : : � xn � 0g;all possible orderings of the components give the n! simplices in In (the triangulations di�er inhow this triangulation of In is replicated to cover Rn). A typical simplex of D1 in In can easilybe shown to be of the formfx 2 Rn : x1; x2; : : : ; xp � Ppi=1 xi � 1p� 1 � xp+1 � : : : � xn � 0g;where 1 < p � n. As we shall see, the typical simplices of D01 have a more symmetrical facetaldescription which also distinguishes the last n� q + 1 components of x, where 1 < p < q < n.Section 2 de�nes D01 and proves that it is indeed a triangulation. In section 3 we provide thepivot rules of D01. Finally, section 4 compares all the triangulations mentioned above according2



to the number of simplices in the unit cube, their diameters, and their average directionalor surface densities. We conclude by comparing the results of applying Haiman's recursivemethod[Ha91] for obtaining yet better triangulations from these.2 The Triangulation D01We �rst describe how we triangulate the unit cube In := [0; 1]n. Copies of the triangulation arethen constructed by standard methods (using reections and translations) to give a triangulationof Rn.Let e1; e2; : : : ; en denote the standard basis of Rn and let e := Pj ej . We divide the unitcube into a shell S and a core C, which is a neighborhood of the diagonal from 0 to e. Wetriangulate S and C separately; the collection of all the resulting simplices triangulates the unitcube.C is the convex hull of 0, e, ei for i 2 N := f1; 2; : : : ; ng, and e � ek for k 2 N . Wetriangulate it into 2n + 2 simplices as follows: First the hyperplane fx : eTx = 1g cuts o� thesimplex �� := convf0; e1; e2; :::; eng (1)and the hyperplane fx : eTx = n � 1g cuts o� the simplex�+ := convfe; e� e1; e� e2; :::; e� eng: (2)What remains is convfe1; e2; :::; en; e � e1; e� e2; :::; e� eng which is an a�ne transformationof the standard octahedron convf�e1;�e2; :::;�eng. We triangulate this into 2n simplices,corresponding to the 2n partitions of N into I [K; a typical simplex is�I;K = convf12e; ei; i 2 I; e� ek ; k 2 Kg (3)(which corresponds to the simplex convf0;�ei; i 2 I; ek; k 2 Kg of the canonical triangulationof the standard octahedron). It is clear that this provides a triangulation of C (note that it ispossible to use just 2n�1 + 2 simplices by joining the center simplices in pairs; if 1 2 I , replace12e by e � e1, while if 1 2 K, replace 12e by e1. Then all simplices include e1 and e � e1. Forsymmetry, we have retained the central vertex 12e).For future reference we need a facetal (by linear inequalities) description of the octahedronconvfei; i 2 N; e � ek ; k 2 Ng as well as the simplices described above. We write x(I) forPi2I xi, etc.Lemma 2.1. With the notation above, convfei; i 2 N; e� ek; k 2 Ng = fxj(jKj � 1)x(I)�(jI j � 1)x(K) � jKj � 1 for all partitions I [K of Ng.Proof : It su�ces to check that the inequality given is satis�ed at equality by ei, i 2 I ,and e� ek; k 2 K, and strictly by the other vertices, so that it describes the facet convfei; i 2I; e� ek; k 2 Kg of the octahedron. 2For the next result, we call 0, 12e, or e the 0th vertex of any simplex it appears in, while ejor e� ej is the jth vertex of a simplex it appears in.3



Lemma 2.2.a) �� = fx 2 Rnjx(N) � 1; xj � 0; j 2 Ng.Moreover, if x 2 ��, the jth barycentric coordinate of x is positive i� the inequality indexed byj is satis�ed strictly. (Here x(N) � 1 is indexed 0.)b) �+ = fx 2 Rnjx(N) � n � 1; xj � 1; j 2 Ng. Moreover, if x 2 �+, the jth barycentriccoordinate of x is positive i� the inequality indexed by j is satis�ed strictly. (Again, the �rst-listed inequality is indexed by 0.)c) �I;K = fx 2 Rnj(jKj� 1)x(I)� (jI j� 1)x(K) � jKj� 1; xi � x(N)�1n�2 ; i 2 I; xk � x(N)�1n�2 ; k 2Kg:Moreover, if x 2 �I;K , the jth barycentric coordinate of x is positive i� the inequality indexedby j is satis�ed strictly. (Again, the �rst-listed inequality is indexed by 0.)Proof : In each case, we merely check that all the vertices satisfy all the inequalities, strictlyi� the indices correspond. 2Now we de�ne the shell S and its subdivision. Let 1 < p < q < n and let � be a permutationof N . Then let�p;q;� := fxjx�(1); : : : ; x�(p) � x(f�(1);:::;�(p)g)�1p�1 � x�(p+1) � : : : � x�(q�1) � x(f�(q);:::;�(n)g)n�q �x�(q); : : : ; x�(n)gand let S be the union of all such �p;q;�.(Note that the order of f�(1); : : : ; �(p)g and off�(q); : : : ; �(n)g is immaterial.) By summing the �rst p inequalities above, except that indexedby �(i),we can deduce that x�(i) � 1 for each i less than or equal to p. Proceeding similarly withthe last n�q+1 inequalities yields x�(k) � 0 for each k greater than or equal to q. Hence �p;q;�is in the unit cube. It is easy to �nd an x satisfying all inequalities strictly, whence one can seethat �p;q;� contains an open ball. Since it is de�ned by n + 1 inequalities, it is an n�simplex.We label the inequalities �(1); : : : ; �(p); �(p+ 12); : : : ; �(q � 12); �(q); : : : ; �(n), as they appearabove. Of course, �(p+ 12) is a purely formal notation, connoting that it is "between �(p) and�(p+ 1)" in some sense.Lemma 2.3. The vertices of �p;q;� aree�(i); i = 1; 2; : : : ; p; (4:1)jXi=1 e�(i); j = p; p+ 1; : : : ; q � 1; (4:2)and e� e�(k); k = q; q + 1; : : : ; n: (4:3)If indexed by �(1); : : : ; �(p) : �(p+ 12); : : : ; �(q� 12);and �(q); : : : ; �(n), then they correspond tothe facets with the same index. That is, each vertex is o� just the facet with the same index.Proof : Again, merely check the inequalities. 2Given x 2 [0; 1]n, let us suppose the components of x are ordered:1 � x1 � : : : � xn � 0:4



For p > 1 and q < n let us write x1p := x(f1; 2; : : : ; pg);xqn := x(fq; : : : ; ng);f(p) := x1p � 1p� 1 ; andg(q) := xqnn� q :(We suppress the dependence of f and g on x.) We can think of f(p) as approximately theaverage of p largest components of x and g(q) as approximately that of the n� q + 1 smallest.In fact, if 1 = x1 and xn = 0, f(p) is the average of the p largest components of x without thelargest, and similarly for g(q).Clearly f(p) and g(q) are important in the description of �p;q;�, where � is the identitypermutation. The following result is very useful.Lemma 2.4. Let p > 1 and q < n. Thena) f(p+ 1) = p�1p f(p) + 1pxp+1;b) g(q � 1) = n�qn�q+1g(q) + 1n�q+1xq�1;c) xp+1f<;=; >gf(p) according as xp+1f<;=; >gf(p+ 1);d) xq�1f<;=; >gg(q) according as xq�1f<;=; >gg(q� 1).e) If 2 < p < n � 1, then f(p � 1) � g(p) and g(p) � xp imply f(p) � g(p+ 1), and the thirdinequality is strict if either of the �rst two is.f) If 2 < p < n � 1, then f(p) � g(p+ 1) and xp � f(p) imply f(p � 1) � g(p), and the thirdinequality is strict if either of the �rst two is.Proof : Parts (a) and (b) follow directly from the de�nition. Since f(p + 1) is a strictconvex combination of f(p) and xp+1, part (c) follows; similarly, part (d) follows from (b). Forpart (e), the hypotheses imply that f(p), as a strict convex combination of f(p � 1) and xp,is at most g(p). But g(p) is a convex combination of g(p + 1) and xp, so g(p) � xp impliesg(p+ 1) � g(p). This gives the weak inequality, and the claim on when it is strict follows also.Part (f) is similar. 2We can now show that our simplices cover the unit cube:Proposition 2.1. The simplices ��, �+, �I;K and �p;q;�, where I , K, p, q, and � range overall appropriate values, cover the unit cube.Proof : Choose x 2 [0; 1]n, and, without loss of generality, assume1 � x1 � x2 � : : :� xn�1 � xn � 0:Since x1; x2 � 1, we �nd that x1; x2 � f(2) = x1+x2�12�1 , and since xn�1; xn � 0, we see thatxn�1; xn � g(n� 1) = xn�1+xnn�(n�1) .Nowwe proceed as follows. We have x1; x2; : : : ; xp � f(p) for p = 2, and g(p) � xq; : : : ; xn�1; xnfor q = n � 1. If xp+1 > f(p) and p < q � 1 we replace p by p + 1. Then if xq�1 < g(q) and5



p < q� 1 we replace q by q� 1. By (c) and (d) in lemma 2.4, we see that x1; : : : ; xp � f(p) andg(q) � xq; : : : ; xn are preserved.Suppose the procedure ends with p < q andx1 � : : : � xp � x1p � 1p� 1 � xp+1 � : : : � xq�1 � xqnn� q � xq � : : :� xn:Then x 2 �p;q;�, where � is again the identity permutation.Otherwise, we want to increase p or decrease q, but we cannot since p = q � 1. Hencex1 � : : :� xp � f(p);g(p+ 1) � xp+1 � : : :� xn;xp < g(p+ 1) or xp+1 > f(p).In either case, g(p + 1) > f(p). Now (e) in lemma 2.4 implies that g(j + 1) > f(j) forp � j < n�1, and (f) implies that g(j+1) > f(j) for 2 � j � p. We can now show that x 2 C.If x(N) � 1 or x(N) � n� 1 then x 2 �� or x 2 �+ respectively. If 1 � x(N) � n� 1 thenthe inequality (jKj � 1)x(I)� (jI j � 1)x(K) � jKj � 1is satis�ed for I = ; and I = N . Since x � 0 and x � e, this inequality is satis�ed for I or K asingleton. So assume I has j elements, 1 < j < n� 1, then the inequality is certainly satis�edif (jKj � 1)x1j � (jI j � 1)xj+1;n � jKj � 1;since the left hand side only increases by taking the indices of the j largest components of xas I and those of the n � j + 1 smallest as K. But this inequality is exactly equivalent tof(j)� g(j + 1) � 0, which holds as shown above. Hence if x lies in no �p;q;�, nor in �� or �+,it lies in the octahedron convfei; i 2 N; e� ek; k 2 Ng and hence in some �I;K . 2Since there are clearly only a �nite number of simplices in our description, to show that wehave a triangulation it only remains to show that any point in the unit cube lies in the relativeinterior of just one face of a simplex of our collection. First, we need the following lemma.Lemma 2.5. Suppose x 2 � := �p;q;� and x 2 �0 := �p0;q0;�0 . Thenx(f�(1); : : : ; �(p)g)� 1p� 1 x(f�0(1); : : : ; �0(p0)g)� 1p0 � 1and x(f�(q); : : : ; �(n)g)n� q = x(f�0(q0); : : : ; �0(n)g)� 1n� q0 :Proof : Without loss of generality we assume that � is the identity, so thatx1 � x2 � : : : � xn:Since also x�0(1) � : : : � x�0(n);6



it follows that x(f�0(1); : : : ; �0(p0)g) is the sum of the p0 largest components of x. We thereforeneed to show that f(p) = f(p0), and similarly that g(q) = g(q0). We prove just the �rst. Assumethat p0 > p. By lemma 2.4(a), f(j) � xj+1 implies f(j+1) � f(j) and f(j+1) � xj+1 � xj+2.Hence f(p) � f(p + 1) � : : : � f(p0). Now either xp+1 = f(p) or xp+1 < f(p). In the �rstcase, f(p + 1) = f(p), while in the second, lemma 2.4(c) shows that xp+2 � xp+1 < f(p + 1).Thus, as we proceed from p to p0, either f(p) = f(p+ 1) = : : : = f(p0), as desired, or at somestage xj+1 < f(j), in which case xj+2 < f(j+1); : : : ; xp0 < f(p0� 1), which implies xp0 < f(p0).But x 2 �0 shows that the p0 largest components of x are at least f(p0), a contradiction. Hencef(p) = f(p0).A similar argument yields g(q) = g(q0). 2Proposition 2.2. Each x 2 [0; 1]n lies in the relative interior of just one face of a simplex ofour collection.Proof : If x 2 �, then the face of � containing x in its relative interior is called the carrierof x in �; its vertices are just those corresponding to the positive barycentric coordinates of xin �.If x lies in no �p;q;�, then by proposition 2.1 x lies in the core C, and the result is clear.Suppose therefore that x 2 � := �p;q;�, and assume without loss of generality that � is theidentity.We show �rst that any vertex of the carrier of x in � is a vertex of the carrier of x inany other simplex of our collection in which x lies, and then the converse follows easily. Wedistinguish several cases.First, let ei be a vertex of the carrier of x in �. Then the ith barycentric coordinate of x in� is positive, so by lemma 2.3 xi > x1p � 1p� 1 :If x 2 �0 := �p0;q0;�0 , then lemma 2.5 shows that the ith barycentric coordinate of x in �0 is alsopositive, so ei is also a vertex of the carrier of x in �0. If x 2 �00 := �I;K , then the argumentin the proof of lemma 2.5 shows that f(p) � f(n) so that xi > x1n�1n�1 ; hence ei is also a vertexof the carrier of x in �00 by lemma 2.2. If x 2 ��, then xi > xn � 0 shows that ei is a vertexof the carrier of x in ��. Finally, we show that x cannot belong to �+ as follows: For j = 1 toq � 1, xj � xqn(n�q) , with at least one strict inequality. Hence (n� q)x1;q�1 > (q � 1)xqn. Adding(q � 1)x1;q�1 to both sides gives(q � 1)x1n < (n� 1)x1;q�1 � (n� 1)(q � 1);so x1n < n� 1 and x =2 �+.Next, let v := e1+ : : :+ep+ : : :+ej be a vertex of the carrier of x in �, so that the inequalityindexed j + 12 of � is strict: xj > xj+1;where xj replaced by f(p) if j = p, and xj+1 is replaced by g(q) if j = q � 1. Supposex 2 �0 := �p0;q0;�0 . There is a gap between the jth largest component of x (or f(p)) and the7



(j+1)st (or g(q)), and since f(p) = f(p0) and g(q) = g(q0), this also holds true when x is regardedas a member of �0. The vertex v is just the sum of the coordinate vectors corresponding to thej largest components of x, this is also a vertex of the carrier of x in �0. Also, f(p) > g(q) andxp+1 � g(q) if p < q � 1, so in this case f(p + 1) > g(q). Continuing, f(q � 1) > g(q), whichimplies that x violates one of the inequalities de�ning C, so lies in none of its simplices.Now let e� ek be a vertex of the carrier of x in �. Then we havexk < xqnn� q :The argument follows exactly the lines of that for the �rst case. (Alternatively, we may replacex by e�x, the permutation � = � by its reverse, p by n+1�q and q by n+1�p; the argumentis then identical.)Hence every vertex of the carrier of x in � is also a vertex of the carrier of x in every othersimplex containing it. To show the reverse, we simply observe that if x lies in a simplex thenthe barycentric coordinates of x in that simplex is unique. This completes the proof. 2We have proved the following result.Theorem 2.1. The simplices ��, �+, f�I;Kg, and f�p;q;�g triangulate the unit cube [0; 1]n.To triangulate Rn, we �rst reect our triangulation in each of the coordinate hyperplanesxj = 0, to get a triangulation of [�1; 1]n. Then we translate this triangulation by each vectorin (2Z)n (with even integer components) to triangulate Rn. Each unit cube corresponds to avector v 2 (2Z)n and a sign vector s 2 f�1;+1gn, and is the set fxjxj between vj and vj + sj ,j 2 Ng. This is the image of the unit cube [0; 1]n under the nonsingular a�ne transformationx ! (v + �x), where � is the nonsingular diagonal matrix whose diagonal entries are thecomponents of s. Then an explicit description of the vertices of the resulting simplex is obtainedby applying the same transformation to the vertices of ��, �+, f�I;Kg, and f�p;q;�g given inequations (1), (2), (3), (4.1), (4.2), (4.3). We call the resulting triangulation of Rn D01; it is amodi�cation of Dang's D1 triangulation [Da89].
8



3 Pivot RulesHere we describe the rules for obtaining the adjacent simplex �0 2 D01, which contains allvertices of � 2 D01 except a speci�ed one v. We con�ne ourselves to the case where � � [0; 1]n.Case 1: � = ��. If v = 0, it is replaced by v0 = 12e, and �0 = �I;K where I = N , K = ;. Ifv = ei, then it is replaced by v0 = �ei, and �0 is the reection of � in xi = 0.Case 2: � = �+. If v = e, it is replaced by v0 = 12e, and �0 = �I;K where I = ;, K = N . Ifv = e � ek , then it is replaced by v0 = e+ ek , and �0 is the reection of � in xk = 1.Case 3: � = �I;K . If v = ei, then it is replaced by v0 = e � ei, and �0 = �I 0;K0 whereI 0 = Infig, K 0 = K [ fig. If v = e � ek , then it is replaced by v0 = ek , and �0 = �I 0;K0 withI 0 = I [ fkg, K 0 = Knfkg. Finally, if v = 12e, then if I = N v0 = 0 and �0 = ��; if I = ; v0 = eand �0 = �+; else v0 =Pi2I ei and �0 = �p;q;�, where p = jI j = q � 1 and � is any permutationplacing all i 2 I before all k 2 K.Case 4: � = �p;q;�. Suppose v = ej . Then v0 = Ppi=1 e�(i) � ej and �0 = �p�1;q;�0 , where �0moves j to position p, i.e.,�0(p) = j, (if it was not already there), as long as p > 2. If p = 2,then f�(1); �(2)g= fj; j 0g, v0 = ej + 2ej0 , and �0 is the reection of � in xj0 = 1.Suppose v = Ppi=1 e�(i). Then v0 = e�(p+1), and �0 = �p+1;q;�, as long as p < q � 1. Ifp = q � 1, then v0 = 12e and �0 = �I;K , where I = f�(1); : : : ; �(p)g, K = f�(q); : : : ; �(n)g.Suppose v = Pji=1 e�(i), p < j < q � 1. Then v0 = Pj�1i=1 e�(i) + e�(j+1) and �0 = �p;q;�0 ,where �0 = (�(1); : : : ; �(j � 1); �(j+ 1); �(j); �(j+ 2); : : : ; �(n)).Suppose v =Pq�1i=1 e�(i). Then v0 = e� e�(q�1) and �0 = �p;q�1;�, as long as p < q� 1. (Thecase p = q � 1 was considered earlier.)Finally, suppose v = e � ej . Then v0 = Pq�1i=1 e�(i) + ej and �0 = �p;q+1;�0 , where �0moves j to position q (if it was not already there), as long as q < n � 1. If q = n � 1, thenf�(n� 1); �(n)g= fj; j 0g, v0 = e� ej � 2ej0 , and �0 is the reection of � in xj0 = 0.
9



4 E�ciency MeasuresThe performance of simplicial algorithms is very sensitive to the triangulation used. To eval-uate the triangulations several measures of e�ciency have been proposed in the literature, seeTodd[To76]. In this section we calculate the values of the e�ciency measures for the new trian-gulation D01 and compare them with those of D1 and other previously developed triangulations.Here, we consider D01 with \paired" simplices in the core, i.e., without the interior vertex 12e.4.1 The Number of Simplices in the Unit CubeLet Pn(D01) be the number of simplices used by D01 to triangulate In. The number of simplicesin the core is 2 + 2n�1, and we count the number of simplices in the shell as follows: We know2 � p < q � n � 1 and the order of the indices �(j) for j 2 f1; : : : ; pg (and similarly forj 2 fq; : : : ; ng) is irrelevant. Therefore, given p and q we choose p indices out of n indices, thenwe choose (n � q + 1) indices out of (n � p) indices, and �nally we have (q � p � 1)! di�erentways of ordering indices �(j) for j 2 fp+ 1; : : : ; q � 1g.So, for any given p and q we have np! n � pn� q + 1!(q � p� 1)! = n!(n� p)!p! (n� p)!(q � p� 1)!(n� q + 1)!(q � p� 1)! = n!p!(n� q + 1)!simplices. Hence Pn(D01) = 2 + 2n�1 + n�1Xq=3 q�1Xp=2 n!p!(n� q + 1)!� 2 + 2n�1 + n�1Xq=3 n!(n� q + 1)! 1Xp=2 1p!= 2 + 2n�1 + (e� 2)n! n�1Xq=3 1(n� q + 1)!� 2 + 2n�1 + (e� 2)n! 1Xk=2 1k!= 2 + 2n�1 + (e� 2)2n!:(We use e for the base of the natural logarithm since e is reserved for the vector of ones.)Moreover, it is easy to see that the ratio of the left hand side and the right hand side approaches1 as n!1. Hence we haveTheorem 4.1. Pn(D01) � (e� 2)2n! + 2n�1 + 2; andlimn!1 Pn(D01)n! = (e� 2)2:10



4.2 The Diameter of D01Let � and � 0 be the two facets of a triangulation. The distance between � and � 0 is de�nedas the minimum number of adjacent simplices that must be visited to get from � to � 0 , i.e. if�0; �1; : : : ; �m is a sequence of simplices in the triangulation such that � � �0, � 0 � �m and �iand �i+1 are adjacent for all i 2 f0; 1; : : : ; m� 1g, then this sequence of simplices de�ne a pathof length (m+ 1). So,the distance between � and � 0 is de�ned as the minimum length of sucha path. The diameter of a triangulation is the distance between the farthest two facets, or inother words, the maximum of all such distances.For our analysis, it is easier to work with full-dimensional simplices. We will �nd themaximum distance between two simplices in D01; the diameter is then one more.If I [K is a partition of N 0 := f2; : : : ; ng, we will denote by �0I;K the simplex convfe1; e�e1; ei; i 2 I; e� ek; k 2 Kg. Let �0� := �0N 0 ;; and �0+ := �0;;N 0 . Then �� is adjacent to �0�, �+ isadjacent to �0+, and clearly any �0I;K is a distance of at most n=2 from either �0� or �0+.Now let � := �p;q;� be in the shell, and assume that � is the identity permutation. LetI = f1; 2; : : : ; pg, J = fp + 1; : : : ; q � 1g, and K = fq; : : : ; ng. From � we can reach �0� inat most n � 1 steps as follows. First cross the facet de�ned by f(p) = xp+1, so that indexp + 1 moves from J to I . Then successively move p + 2; : : : ; q � 1 from J to I ; jJ j steps arenecessary. Now p has become q � 1; move across the facet de�ned by f(p) = g(q). The vertexe1+e2+ : : :+ep is replaced by e�e1, and we have entered the core. Finally, move the elementsof K one by one into I , in jKj steps. The total is jJ j+ 1 + jKj = n � jI j+ 1. Since jI j � 2, atmost n� 1 steps are necessary. Similarly, at most n� 1 steps are necessary to move from � to�0+ (actually only n � 2, since 1 2 I does not have to be moved).Since n� 1 � n=2, it follows that we can move from any simplex to any other simplex in atmost 2n� 2 steps, via either �0� or �0+.We now show that 2n�2 steps are necessary to go from �0 := �p;q;�0 , where p = 2, q = n�1,and �0 = (2; 3; 1; 4; 5; : : : ; n), (here n � 5) to �00 := �p;q;�00 , where �00 = (n; n�1; : : : ; 5; 4; 1; 3; 2).Let I 0 = f2; 3g, J 0 = f1; 4; 5; : : : ; n � 2g, K 0 = fn � 1; ng, and I 00 = K 0 , J 00 = J 0 , K 00 = I 0 .We let I , J , K denote the index sets during a typical simplex on the path from �0 to �00 . Firstconsider an index j 2 J 0 . If it leaves J at some step, it has to return at a later step, so wecharge this index two steps. If it remains in J at all steps, then each index in I 0 and K 0 mustcross this index, so we charge this index four steps. This accounts four at least 2jJ 0 j = 2n � 8steps.Next, if we never reach the core, then each index in I 0 [K 0 must enter J then leave at theother end, for two steps each or eight in total. This gives 2n steps in all. Hence we must reachthe core and leave it again; this costs two steps.Finally, each index in I 0 [ K 0 must cross from one end to the other. (Notice that none ofthe indices is the special index 1, which is "at both ends" in the core.) This takes at least onestep for each such index, for a total of 4. Hence 2n� 2 steps in all are necessary.When we add the extra one to account for the diameter for the facets, we haveTheorem 4.2. diam(D01) = 2n� 1. 11



Note that even though the diameter of D01 is 2n� 1, when we take a line that goes throughthe unit cube it might intersect as many as 12(n� 4)(n� 5) simplices. In diameter calculations,we free ourselves in taking the shortest distance between two facets, as a result the shortestpath does not necessarily follow a line.4.3 The Surface Density of D01The average directional density of a triangulation, a measure introduced by Todd[To76], wasshown to be equivalent to the surface density of the same triangulationby Eaves and Yorke[EY84],as long as it satis�es certain regularity conditions, which hold for D01. In fact they showed theequivalence for a larger class. The equivalence holds for tilings which do not have to haveconvex cells. They concluded that given a subdivision of Rn, the average directional densitydoes not depend on how the cells are assembled, but it does depend on the cells used, and theygive the following relationship:Average directional density = (Surface density).gn, wheregn = �(n=2)(n� 1)�(1=2)�((n� 1)=2) :Here, we calculate the volumes and the surface areas of the simplices in D01. Then we cancompute the surface density of D01, SD(D01), by two means:SD(D01) = P�2D01;��In SA(�)P�2D01;��In V ol(�) = X�2D01;��In SA(�)or SD(D01) = P�2D01;��In SD(�)V ol(�)P�2D01;��In V ol(�) = X�2D01;��In SD(�)V ol(�):Here SA(�), SD(�), and V ol(�) denote the surface area, the surface density, and the volumeof simplex �. Note that the second equation implies that the worst surface density over allindividual simplices cannot be better than the surface density of the triangulation.In order to calculate the volume of a simplex, we construct an (n + 1) by (n + 1) matrixM� whose columns are the vertices of that particular simplex � augmented with a +1 in the(n+1)st position. Then the absolute value of the determinant of the constructed matrix dividedby n! is the volume of the simplex.To calculate the area of a particular facet, we take the vertices of the facet, �nd the normal ofthe hyperplane de�ned by the facet, and create a new point by taking a unit step (in Euclideannorm) from a vertex of the facet in the direction of the normal. Then the convex hull of thevertices of the facet and the new point de�ne an n�simplex, and n times the volume of thissimplex is the same as the surface area of the facet.12



4.3.1 The Simplices in the CoreWe have two di�erent types of simplices in the core. �� = convf0; e1; e2; : : : ; eng and �+ =convfe� e1; e� e2; : : : ; e� en; eg are of type 1 and the rest of type 2.For type 1 simplices we have V ol(��) = 1n! :One of the facets of �� is convfe1; : : : ; eng, and all other n facets are congruent to convf0; e1; : : : ; en�1g.Hence SA(��) = SA(convfe1; : : : ; eng) + nSA(convf0; e1; : : : ; en�1g) = n+pn(n� 1)! :So we get the surface density of type 1 simplices:SD(��) = SA(��)V ol(��) = (n+pn)n:Let �0 be a type 2 simplex. Then we haveV ol(�0) = (n� 2)n! :Note that any type 2 simplex has e1 and e� e1 as its vertices. Let �1 and �2 be the facets thatwe get from �0 by throwing away e1 and e � e1 respectively. All other facets of �0 have thesame surface area; let �3 denote such a facet. Let p be the number of ei's that are vertices of�0 ; then the surface areas of the facets of �0 are as follows:SA(�1) = p(n� p+ 1)(p� 2)2 + (p� 1)(n� p)2(n� 1)! ;SA(�2) = pp(n� p� 1)2 + (n� p)(p� 1)2(n� 1)! ;SA(�3) = p(n� 2)(n� 3) + 2(n� 1)! :So if �0p is a type 2 simplex with parameter p we getSA(�0p) = SA(�1) + SA(�2) + (n� 1)SA(�3):From this formula we can easily get an upper bound on the surface densities of the type 2simplices independent of p: SA(�0p) � n(n � 2) + npn(n� 1)! ;SD(�0p) � n2 + n2pnn � 2 :13



4.3.2 The Simplices in the ShellFor a generic simplex �p;q;� in the core, we construct the corresponding matrix Mp;q;n as de-scribed at the beginning of this section.

....
Mp;q;n := (E � I)(n�q+1)�(n�q+1)triu(E(q�p)�(q�p))00 E(q�1)�(n�q+1)E(p�1)�(q�p)Ip�p

eTwhere Er�t is the r� t matrix of ones, Ir�r is the r�r identity matrix, and triu(A) is an uppertriangular matrix which is the upper triangular portion of A. HenceV ol(�p;q;�) = 1n! jdet(Mp;q;n)j = (p� 1)(n� q)n! :Let �p�1;q�1;n�1 be a facet of �p;q;� which does not have one of the �rst p vertices of �p;q;� (allsuch facets are congruent). We �ndSA(�p�1;q�1;n�1) = (n� q)pp2 � 3p+ 3(n� 1)! :14



Similarly, we get �p;q;n�1 as a facet of �p;q;� when we throw away one of the last (n� q + 1)vertices of �p;q;� (again all such facets are congruent). We �ndSA(�p;q;n�1) = (p� 1)p(n � q + 1)2 � 3(n� q + 1) + 3(n� 1)! :Finally, we de�ne � jp;q�1;n�1 as the facet obtained when the jth vertex, j 2 fp+ 1; : : : ; qg of�p;q;� is thrown away. We �ndSA(� jp;q�1;n�1) = 8>>>>>>>>>>>>>><>>>>>>>>>>>>>>: p2(n�q)(p�1)(n�1)! j 6= q; j 6= p+ 1;(n�q)pp2�p+1(n�1)! j = q 6= p+ 1;(p�1)p(n�q+1)2�(n�q+1)+1(n�1)! j = p+ 1 6= q;p(n�q+1)(p�1)2+p(n�q)2(n�1)! j = q = p+ 1.So, we have p facets like �p�1;q�1;n�1, (n� q + 1) facets like �p;q;n�1, and (q � p) facets like� jp;q�1;n�1. Thus the total surface area for the simplex �p;q;� isSA(�p;q;�) = pSA(�p�1;q�1;n�1) + (n� q + 1)SA(�p;q;n�1) + qXp+1SA(� jp;q�1;n�1)As n! 1 the worst surface density is given by the simplices which have small p and largeq as parameters. In particular, the worst simplices are those with p = 2 and q = n� 1 givingSD(�2;n�1;�) = p2n2 + o(n2):Note that the surface density of the triangulation cannot be worse than the worst simplexin the triangulation, therefore SD(D01) � p2n2 + o(n2):(In fact, there are n!4 simplices with p = 2 and q = n�1, with total volume 14 . If we next considerthe simplices with p = 3 and q = n � 1 or p = 2 and q = n � 2, which have almost as bad asurface density, the volume increases to 712 . Continuing, we �nd that SD(D01) = p2n2+o(n2):)4.4 Comparison of the Triangulations in Terms of the E�ciency MeasuresWe de�ne P1 of a triangulation as limn!1 Pnn! , where Pn is the number of simplices of thetriangulation in In. Then we have the following table:15



Triangulation P1 DiameterFreudenthal(1942), K1 1 O(n2)Tucker(1949), J1 1 O(n2)Sallee(1982) and Lee(1985) 0.4762 not knownSallee(1984) 0 O(n2)Dang(1989), D1 0.7183 2n� 3D01 0.5159 2n� 1In terms of P1, D01 is superior to J1, K1, and D1. In terms of their diameters D1 and D01are the only ones which are known to have O(n) bounds. In terms of the surface densities, D01 isslightly better than J1, K1, and D1, yet asymptotically they all have the same surface densityp2n2 + o(n2):(We note that Dang[Da89] made an error in computing the surface density ofD1.)4.5 Asymptotically Better TriangulationsWe �rst mention an elegant result by Haiman[Ha91]:Theorem 5.1. If In can be triangulated into Pn simplices then Ikn can be triangulated into[(kn)!=(n!)k]P kn = �kn(kn)! simplices, where � = (Pn=n!)1=n.Note that according to the measure Rn := (Pn=n!)1=n, R1 = limn!1Rn we have R1 = 1for all triangulations in the previous table. Haiman's result implies that if a triangulationachieves some Rn = � for some n then the same number � is asymptotically achievable, i.e.R1 = �. In other words, this result enables us to get triangulations with P1 = 0 from thosewhich have P1 < 1.(Note that this is weaker than saying that R1 = � < 1 which is also true.)Using this result we can de�ne new triangulations recursively using those in the previoustable and choose the best possible � for each triangulation:
16



Sallee[82] and Lee[85]
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We observe that for each triangulation Rn converges to 1 very fast. As a result the bestvalue for � is achieved for n < 10 for all these triangulations (as expected, smaller � values areachieved by those triangulations which have smaller P1 values).Finally, we note that all triangulations in table 2 except D01 achieve the minimum valueof P3, all except D1 achieve the minimum for P4, and all except D1 achieve(or are within1 of) the minimum for P5. See Mara[Ma76], Cottle[Co82], B�ohm[B�o88], and Hughes[Hu90].Hughes also shows that any triangulation that slices alternate corners o� the unit cube in R6cannot achieve fewer than 324 simplices which is achieved by Sallee's middle-cut triangulation;however, Hughes[Hu92] recently showed that 6-cube can be triangulated into 312 simplices.17
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