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Abstract

Triangulations are used in simplicial algorithms to find the fized points of continuous functions
or upper semi-continuous mappings; applications arise from economics and optimization. The
performance of simplicial algorithms is very sensitive to the triangulation used. Using a facetal
description, we modify Dang’s D, triangulation to obtain a more efficient triangulation of
the unit hypercube in R™ and then by means of translations and reflections we derive a new
triangulation, Dll, of R". We show that D] uses fewer simplices (asymptotically 30% fewer)
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and the surface density. We also compare the results of Haiman’s recursive method for getting
asymptotically better triangulations from Dy, D} and other triangulations.
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1 Introduction

Scarf[Sc67] was the first to provide a constructive proof of Brouwer’s and Kakutani’s fixed-point
theorems, which have important applications in proving the existence of competitive price equi-
libria in certain economic models. Scarf used the notion of primitive sets, but most subsequent
work used triangulations to discretize the continuous problem. The resulting methods to com-
pute the approximate fixed-points , known as simplicial algorithms, are described, for instance
in Allgower and Georg[AG80,AG90], Eaves[Ea84], and Todd[To76]. The performance of such
methods depends critically on the triangulation used, and this led to much work on devising
efficient triangulations of R”. Among those used in simplicial algorithms are those of Freuden-
thal[Fr42], Tucker(Lefschetz[Lef49] p. 140), Todd[To84], and Dang[Da89], known as Ky, Ji, J;,
and D; respectively. These triangulations have relatively simple descriptions of their simplices
and their pivoting rules, i.e., rules indicating the adjacent simplex found when a specified vertex
of a given simplex of the triangulation is dropped. Other triangulations, with attractive prop-
erties but with much more complicated descriptions and pivoting rules, are one independently
devised by Sallee[Sa82], and by Lee[Le85], and Sallee’s middle cut triangulation[Sa84]. In this
paper we will modify Dang’s triangulation to get a more efficient triangulation which we denote
D;.

A triangulation of an n—dimensional convex subset of R™ is a locally finite collection of
n—dimensional simplices which cover the subset and any two of which intersect in a common
face (possibly empty). All of the triangulations above (except J;) also triangulate the unit cube
I'":=10,1]", in that their simplices in I" form a triangulation of R™. The triangulations of R"
are then obtained by replicating this triangulation using reflections and/or translations. One
basic measure of such a triangulation is the number of simplices used to triangulate I"™. This
is n! for K; and Jy, about (e — 2)n! for Dy, and about (e — 2)%n! for D]. The triangulation
of Lee[Le85] and Sallee[Sa82] is slightly better, and that of Sallee[Sa84] is considerably better,
but at a price of increased complexity.

An n—simplex can be described as the convex hull of n + 1 affinely independent vertices
or, alternatively, as the solution set of n + 1 linear inequalities, provided it is bounded with
nonempty interior. The latter description, called a facetal description, often provides a simpler
proof that a given collection of simplices forms a triangulation see, e.g., Todd[To76,To84]. We
use this description to derive Dll. A typical simplex of Ky or J; in I"™ has the form

{geR":1>2,>2>...> 2, >0}

all possible orderings of the components give the n! simplices in I" (the triangulations differ in
how this triangulation of I"™ is replicated to cover R™). A typical simplex of D; in I" can easily
be shown to be of the form

{z e R" :2y,29,...,2p >

where 1 < p < n. As we shall see, the typical simplices of D/1 have a more symmetrical facetal
description which also distinguishes the last n — ¢ + 1 components of z, where 1 < p < g < n.

Section 2 defines D/1 and proves that it is indeed a triangulation. In section 3 we provide the
pivot rules of Dll. Finally, section 4 compares all the triangulations mentioned above according



to the number of simplices in the unit cube, their diameters, and their average directional
or surface densities. We conclude by comparing the results of applying Haiman’s recursive
method[Ha91] for obtaining yet better triangulations from these.

2 The Triangulation D;

We first describe how we triangulate the unit cube I™ := [0, 1]*. Copies of the triangulation are
then constructed by standard methods (using reflections and translations) to give a triangulation
of R™.

Let el,e?,...,e" denote the standard basis of R™ and let e := > e/. We divide the unit
cube into a shell S and a core C, which is a neighborhood of the diagonal from 0 to e. We
triangulate S and C separately; the collection of all the resulting simplices triangulates the unit
cube.

C is the convex hull of 0, e, e for i € N := {1,2,...,n}, and e — e* for k € N. We
triangulate it into 2" + 2 simplices as follows: First the hyperplane {z : eT2 = 1} cuts off the
simplex

o_ :=conv{0,e', €%, ... "} (1)

and the hyperplane {z : €Tz = n — 1} cuts off the simplex

1

oy :=convi{e,e—e'e—e’ ... e—e"}. (2)

What remains is conv{el, e, ....e" e — el e — e2,....e — €™} which is an affine transformation
1) 1) 1) 1) 1) 1) 1)

of the standard octahedron conv{ze!,+e?, ..., 2e"}. We triangulate this into 2" simplices,
corresponding to the 2™ partitions of N into I U K; a typical simplex is

1.
UI,K:conv{ﬁe’el’ieIae_ekakGK} (3)

(which corresponds to the simplex conv{0, —e',i € I,e* k € K} of the canonical triangulation
of the standard octahedron). It is clear that this provides a triangulation of C' (note that it is
possible to use just 2"~! + 2 simplices by joining the center simplices in pairs; if 1 € I, replace
%e by e — e!, while if 1 € K, replace %e by e!. Then all simplices include e! and e — e!. For
symmetry, we have retained the central vertex %e).

For future reference we need a facetal (by linear inequalities) description of the octahedron
conv{e’,;i € N,e — e* k € N} as well as the simplices described above. We write z(I) for

Yier i, ete.

Lemma 2.1. With the notation above, conv{e’,i € N,e — e*, k ¢ N} = {z|(|K| — D)z(I) —
(Il = 1)z(K) < |K| — 1 for all partitions I UK of N}.

Proof : It suffices to check that the inequality given is satisfied at equality by €, i € I,
and e — e*, k € K, and strictly by the other vertices, so that it describes the facet conv{e?,i €

I,e—e* k € K} of the octahedron. O

For the next result, we call 0, %e, or e the 0" vertex of any simplex it appears in, while e/

or e — e is the j** vertex of a simplex it appears in.



Lemma 2.2.

a)o_={z € R"|2(N)<1l,2; >0,j € N}.

Moreover, if & € o_, the j*" barycentric coordinate of z is positive iff the inequality indexed by
j is satisfied strictly. (Here z(N) < 1 is indexed 0.)

b) o, = {&¢ € R*|2(N) > n—1,2; < 1,j € N}. Moreover, if ¢ € o, the j** barycentric
coordinate of ¢ is positive iff the inequality indexed by j is satisfied strictly. (Again, the first-
listed inequality is indexed by 0.)

¢) o1k = {z € R"|(|K| - V)z(I) — (1| - Da(K) < |K|-1,2; > 2L i e I 2y, < 2L
Moreover, if ¢ € o1, the j* barycentric coordinate of z is positive iff the inequality indexed
by j is satisfied strictly. (Again, the first-listed inequality is indexed by 0.)

Proof : In each case, we merely check that all the vertices satisfy all the inequalities, strictly
iff the indices correspond. a

Now we define the shell § and its subdivision. Let 1 < p < ¢ < n and let = be a permutation
of N. Then let

Opam = {2|@n()s oy Bapy > LILfOL > gy > > gy > SElenl])

Tr(q)r -+ Tr(n)}

and let S be the union of all such o, ,,.(Note that the order of {m(1),...,7(p)} and of
{m(g),...,m(n)}is immaterial.) By summing the first p inequalities above, except that indexed
by m(%),we can deduce that Zr(;) < 1for each ¢ less than or equal to p. Proceeding similarly with
the last n — g+ 1 inequalities yields @) > 0 for each k greater than or equal to g. Hence oy ¢ »
is in the unit cube. It is easy to find an z satisfying all inequalities strictly, whence one can see
that o, 4~ contains an open ball. Since it is defined by n 4 1 inequalities, it is an n—simplex.
We label the inequalities w(1),...,7(p);7(p + %), oo m(g - %), 7(q),...,m(n), as they appear
above. Of course, w(p + %) is a purely formal notation, connoting that it is ”between 7(p) and
m(p+ 1)” in some sense.

Lemma 2.3. The vertices of 0, 4 » are

e i=1,2,... p; (4.1)
j .
Ze”(’),j:p,p—l—l,...,q—l; (4.2)
=1
and
e—e™® k=g, q+1,..., n. (4.3)

If indexed by w(1),...,7(p) : 7(p+ %), oo m(g— %);and 7(q),...,m(n), then they correspond to
the facets with the same index. That is, each vertex is off just the facet with the same index.

Proof : Again, merely check the inequalities. a

Given z € [0,1]™, let us suppose the components of  are ordered:

1>z,>...>2z, > 0.



For p > 1 and ¢ < n let us write
Tip -= J)({]_, 2,.. 'ap})a

Ty, = 2({g,...,n}),

n—q'

(We suppress the dependence of f and g on z.) We can think of f(p) as approximately the
average of p largest components of  and g(g) as approximately that of the n — ¢ + 1 smallest.
In fact, if 1 = 2; and z,, = 0, f(p) is the average of the p largest components of z without the
largest, and similarly for g(g).

Clearly f(p) and g(g) are important in the description of o,,,, where ¢ is the identity
permutation. The following result is very useful.

Lemma 2.4. Letp > 1 and ¢ < n. Then

a) flp+1) = E2f(p) + Lzpi1;

b) 9(a— 1) = ;2 479(a) + soiagea-1i

c) z,41{<,=,>}f(p) according as z,+1{<,=,>}f(p+1);

d) z,-1{<,=,>}g9(q) according as z,_1{<,=, >}g(g—1).

e) If2 < p<n-—1,then f(p—1) < g(p) and g(p) > z, imply f(p) < g(p+ 1), and the third
inequality is strict if either of the first two is.

f)If2 <p<n-—1,then f(p) < g(p+1) and z, > f(p) imply f(p — 1) < g(p), and the third
inequality is strict if either of the first two is.

Proof : Parts (a) and (b) follow directly from the definition. Since f(p + 1) is a strict
convex combination of f(p) and z,41, part (c) follows; similarly, part (d) follows from (b). For
part (e), the hypotheses imply that f(p), as a strict convex combination of f(p — 1) and z,,
is at most g(p). But g(p) is a convex combination of g(p + 1) and z,, so g(p) > z, implies
g(p+1) > g(p). This gives the weak inequality, and the claim on when it is strict follows also.
Part (f) is similar. ]

We can now show that our simplices cover the unit cube:

Proposition 2.1. The simplices o_, 0, o1 and 0, , ., where I, K, p, q, and 7 range over
all appropriate values, cover the unit cube.

Proof : Choose z € [0, 1], and, without loss of generality, assume
1>z 22> ...2 201 > 2, 2 0.

Since 21,25 < 1, we find that z;,zo > f(2) = “¥%=L and since @,_1,z, > 0, we see that

2—1
Tpn—1+Tn
n—(n—1) "

Now we proceed as follows. We have #1, z5,...,2, > f(p) forp =2,and g(p) > 24, ..., Zpn_1, 2y
forg=n—-1. If 2,41 > f(p) and p < ¢ — 1 we replace p by p+ 1. Then if 2,1 < g(q) and

Tp_1,Tn < g(n_ 1) =



p < ¢—1 we replace ¢ by ¢ — 1. By (c) and (d) in lemma 2.4, we see that zq,...,2, > f(p) and
9(q) > z4, ..., @, are preserved.

Suppose the procedure ends with p < ¢ and

zp— 1 Zgn

2312>

> Ty > > Tpr1 > ... 2 Tgo1 2

> pr, > ... > 2,
p—1 n—q =1 "

Then z € 0, ,,, where ¢ is again the identity permutation.

Otherwise, we want to increase p or decrease ¢, but we cannot since p = ¢ — 1. Hence

l‘lZ---Zl'pi(P);

gP+1) > 2pp1 > .. 2> @

zp < g(p+1) or zp11 > f(p)-
In either case, g(p+ 1) > f(p). Now (e) in lemma 2.4 implies that g(j + 1) > f(j) for
p < j<n-—1, and (f) implies that g(j+1) > f(j) for 2 < j < p. We can now show that z € C.
Ifz(N)<lorz(N)>n—1then z € o_ or € o respectively. If 1 < z(N) <n —1 then
the inequality
(1Kl =12(I) = (| - e(K) < |K[ -1

is satisfied for I = ) and I = N. Since ¢ > 0 and z < e, this inequality is satisfied for 7 or K a
singleton. So assume I has j elements, 1 < 7 < n — 1, then the inequality is certainly satisfied
if
(1Kl = D21 — (| - Dejpra < |K| -1,

since the left hand side only increases by taking the indices of the j largest components of
as I and those of the n — 7 + 1 smallest as K. But this inequality is exactly equivalent to
f(7) —g(7 +1) <0, which holds as shown above. Hence if z lies in no ¢, 4, nor in o_ or o,
it lies in the octahedron conv{e’,i € N,e — e*, k € N} and hence in some oI K- a

Since there are clearly only a finite number of simplices in our description, to show that we
have a triangulation it only remains to show that any point in the unit cube lies in the relative
interior of just one face of a simplex of our collection. First, we need the following lemma.

Lemma 2.5. Suppose & € 0 := 04 and & € ¢’ := 0, oy . Then

z({r(1),...,m(p)}) —Le({~'(Q),...,7"(p)}) - 1
p—1 p—1

and
z({7(g), .- 7(n)}) _ e({'(¢),..., 7' (W)}) -1

n—gq n—gq

Proof : Without loss of generality we assume that 7 is the identity, so that
12Ty ... Ty

Since also



it follows that 2({x’(1),...,#’(p")}) is the sum of the p’ largest components of z. We therefore
need to show that f(p) = f(p'), and similarly that g(¢) = g(¢’). We prove just the first. Assume
that p’ > p. By lemma 2.4(a), f(j) > ;41 implies f(7 +1) < f(j) and f(7 +1) > 241 > @j4s.
Hence f(p) > f(p+1) > ... > f(p'). Now either 2,11 = f(p) or 2,41 < f(p). In the first
case, f(p+ 1) = f(p), while in the second, lemma 2.4(c) shows that z,45 < 2,41 < f(p+1).
Thus, as we proceed from p to p/, either f(p) = f(p+ 1) = ... = f(p'), as desired, or at some
stage 241 < f(J), in which case ;15 < f(j+1),..., 2y < f(p' — 1), which implies 2,y < f(p').
But z € o’ shows that the p’ largest components of z are at least f(p’), a contradiction. Hence
f(p) = £(p).

A similar argument yields g(¢) = g(¢’)- O

Proposition 2.2. Fach z € [0,1]" lies in the relative interior of just one face of a simplex of
our collection.

Proof : If # € o, then the face of ¢ containing 2 in its relative interior is called the carrier
of  in o; its vertices are just those corresponding to the positive barycentric coordinates of
in o.

If z lies in no oy, 4, then by proposition 2.1 z lies in the core C, and the result is clear.
Suppose therefore that ¢ € o := 0,4, and assume without loss of generality that = is the
identity.

We show first that any vertex of the carrier of z in o is a vertex of the carrier of z in
any other simplex of our collection in which 2 lies, and then the converse follows easily. We
distinguish several cases.

First, let e be a vertex of the carrier of # in ¢. Then the i*" barycentric coordinate of z in
o is positive, so by lemma 2.3
Lip — 1
z; > 2~
p—1
If € 0/ := 0y y n, then lemma 2.5 shows that the i** barycentric coordinate of z in ¢’ is also
positive, so e’ is also a vertex of the carrier of z in /. If z € ¢ := o1 K, then the argument

in the proof of lemma 2.5 shows that f(p) > f(n) so that z; > mé"__ll; hence €' is also a vertex

of the carrier of  in ¢~ by lemma 2.2. If 2 € o_, then z; > 2, > 0 shows that ¢’ is a vertex
of the carrier of # in o_. Finally, we show that z cannot belong to o as follows: For j =1 to
g—-1,2; > %’ with at least one strict inequality. Hence (n — ¢)z1,4-1 > (¢ — 1)24,. Adding

(¢ — 1)z 4—1 to both sides gives
(¢ = Dzin < (n = 1z1g-1 < (n—1)(¢ - 1),

sozi, <m—1land z ¢ o,.
Next,let v :=el4...+eP+.. .+ 7 be a vertex of the carrier of z in o, so that the inequality
indexed j + % of o is strict:
T; > T4,
where z; replaced by f(p) if j = p, and ;1 is replaced by g(¢) if j = ¢ — 1. Suppose
¢ € o' := 0,y . There is a gap between the j** largest component of @ (or f(p)) and the



(7+1)* (or g(q)), and since f(p) = f(p') and g(q) = g(¢’), this also holds true when = is regarded
as a member of /. The vertex v is just the sum of the coordinate vectors corresponding to the
7 largest components of z, this is also a vertex of the carrier of # in ¢’. Also, f(p) > g(¢) and
zp+1 > g(q) if p < ¢ — 1, so in this case f(p+ 1) > g(¢). Continuing, f(g — 1) > g(g), which
implies that @ violates one of the inequalities defining C, so lies in none of its simplices.

Now let € — ¥ be a vertex of the carrier of # in o. Then we have

Tgn

rp < .
n—9q
The argument follows exactly the lines of that for the first case. (Alternatively, we may replace
2 by e —z, the permutation m# = ¢ by its reverse, p by n4+1— ¢ and ¢ by n+1 — p; the argument
is then identical.)

Hence every vertex of the carrier of z in o is also a vertex of the carrier of # in every other
simplex containing it. To show the reverse, we simply observe that if z lies in a simplex then
the barycentric coordinates of # in that simplex is unique. This completes the proof. O

We have proved the following result.
Theorem 2.1. The simplices o_, o4, {01k}, and {0}, 4} triangulate the unit cube [0, 1]™.

To triangulate R™, we first reflect our triangulation in each of the coordinate hyperplanes
z; = 0, to get a triangulation of [—1,1]". Then we translate this triangulation by each vector
in (2Z)™ (with even integer components) to triangulate R™. Each unit cube corresponds to a
vector v € (2Z)" and a sign vector s € {—1,+1}", and is the set {z|z; between v; and v; + s;,
j € N}. This is the image of the unit cube [0, 1]" under the nonsingular affine transformation
¢ — (v + Xz), where ¥ is the nonsingular diagonal matrix whose diagonal entries are the
components of s. Then an explicit description of the vertices of the resulting simplex is obtained
by applying the same transformation to the vertices of o_, o4, {07k}, and {0, 4~} given in
equations (1), (2), (3), (4.1), (4.2), (4.3). We call the resulting triangulation of R™ D}; it is a
modification of Dang’s D; triangulation [Da89].



3 Pivot Rules

Here we describe the rules for obtaining the adjacent simplex ¢’ € D), which contains all
vertices of o € D} except a specified one v. We confine ourselves to the case where o C [0, 1]™.
Case 1: 0 =o_. If v =0, it is replaced by v' = fe, and ¢/ = 07,5 where I =N, K = 0. If
v = €', then it is replaced by v’ = —¢?, and ¢ is the reflection of ¢ in z; = 0.
Case 2: ¢ = oy. If v = ¢, it is replaced by v/ = e, and 0/ = o7 x where I =, K = N. If
v =e — e*, then it is replaced by v’ = e + €*, and ¢’ is the reflection of ¢ in z, = 1.
Case3: 0 = o1x. If v = e*, then it is replaced by v/ = e — ¢, and o/ = o g Where
I' = I\{i}, K' = KU {i}. If v = e — €*, then it is replaced by v/ = e*, and ¢’ = o1 g/ with
r _IU{k} K'= K\{k} Flnally,lfv_—e thenif I =N v/ =0 and o’ _cr_,1fI_(Z)v =e
and ¢’ = oy;else v/ =) ;.;¢* and 0/ = 0}, 4, where p=|I| = ¢ — 1 and 7 is any permutation

placing all ¢ € I before all k € K.

p 7 1 1
€7 () _ ¢i and o/ = Op_14x, Where w

Case 4: 0 = 0p g.x. Suppose v = e/, Then v/ =
moves j to position p, i.e.,7'(p) = j, (if it was not already there), as long as p > 2. If p = 2,
then {w(1),7(2)} = {4,7'}, v = e’ + 2¢7' and ¢’ is the reflection of & in zy =1.

Suppose v = Y%_ €™, Then v/ = ¢tV and ¢’ = g1 4, as long as p < ¢ — 1. If
teand o' = o7 i, where I = {n(1),...,7(p)}, K = {n(q),...,7(n)}.

Suppose v = Zgzl e"@ p < j<qg—1. Then v/ = Zf;ll e™() 4 m(+1) and o = Op g’
where 7' = (x(1),...,7(j — 1), 7(7+1),7(4),7(7 + 2),...,7(n)).

Suppose v = Zf:_ll e™®). Then v/ = e — e™4~1) and ¢’ = Opqg—1m as long as p < ¢ —1. (The
case p = ¢ — 1 was considered earlier.)

p=gq—1,then v =

: _ j q—1 =(3) j r 1
Finally, suppose v = e — ¢/. Then v/ = > e + e/ and ¢’ = 0p 441,47, Where 7

moves j to position ¢ (if it was not already there), as long as g < n—1. If ¢ = n — 1, then
{r(n—1),7(n)}={4,i'}, v' =e— e — 2¢7, and ¢’ is the reflection of ¢ in z; = 0.



4 [Efficiency Measures

The performance of simplicial algorithms is very sensitive to the triangulation used. To eval-
uate the triangulations several measures of efficiency have been proposed in the literature, see
Todd[To76]. In this section we calculate the values of the efficiency measures for the new trian-
gulation D] and compare them with those of D; and other previously developed triangulations.

Here, we consider D] with “paired” simplices in the core, i.e., without the interior vertex %e.

4.1 The Number of Simplices in the Unit Cube

Let P,(D7) be the number of simplices used by D] to triangulate I"™. The number of simplices
in the core is 24+ 2”71, and we count the number of simplices in the shell as follows: We know
2 < p < ¢ <n-—1 and the order of the indices w(j) for j € {1,...,p} (and similarly for
7 €{q,...,n}) isirrelevant. Therefore, given p and ¢ we choose p indices out of n indices, then
we choose (n — ¢ + 1) indices out of (n — p) indices, and finally we have (¢ — p — 1)! different
ways of ordering indices w(j) for j € {p+1,...,¢ — 1}.

So, for any given p and ¢ we have

n n—p B n! (n—p)! B n!
(P)(”—Hl)(q_p_l)!_(n—p)!p!(q—p—l)!( —q+1 )(q p-1)i= pl(n—g+1)!

simplices. Hence

n—1g-1
n—1
Pu(Dy) =242 +q§;p22p n—q+)
<2+2nl+nzlnilOOl
el Gl Y L ¥ 2
n—1 = 1
=242 —|—(e—2)n!;m

> 1
nl _ 1 -
<242 e 2n E k!

=242""1 4 (e —2)nl

(We use e for the base of the natural logarithm since e is reserved for the vector of ones.)
Moreover, it is easy to see that the ratio of the left hand side and the right hand side approaches
1 as » — co. Hence we have

Theorem 4.1. P,(D)) < (e — 2)?n! +2""1 42, and
P, (D,
lim 7( )

n— oo n.

=(e— 2)2.

10



4.2 The Diameter of D,

Let 7 and 7 be the two facets of a triangulation. The distance between 7 and 7' is defined
as the minimum number of adjacent simplices that must be visited to get from 7 to 7 ie. if
09,01, ..., 0 i a sequence of simplices in the triangulation such that T C oy, ' C o, and o;
and o;,1 are adjacent for all 7 € {0,1,...,m — 1}, then this sequence of simplices define a path
of length (m + 1). So,the distance between 7 and 7 is defined as the minimum length of such
a path. The diameter of a triangulation is the distance between the farthest two facets, or in
other words, the maximum of all such distances.

For our analysis, it is easier to work with full-dimensional simplices. We will find the
maximum distance between two simplices in Dll; the diameter is then one more.

If ] UK is a partition of N’ := {2,...,n}, we will denote by U;—K the simplex conv{el,e —
elieticIe—ef ke K} Let o ::cr;v,m (IDN’
adjacent to cril_, and clearly any cr;— % 1s a distance of at most n/2 from either o or cril_.

! . . ! .
and o, := 0, .. Then o_ is adjacent to 0_, o is

Now let o := 0,4 be in the shell, and assume that 7 is the identity permutation. Let
I={1,2,....,p},J={p+1,....,q—1}, and K = {q,...,n}. From o we can reach ¢_ in
at most n — 1 steps as follows. First cross the facet defined by f(p) = 2,41, so that index
p + 1 moves from J to I. Then successively move p+ 2,...,¢ — 1 from J to I; |J| steps are
necessary. Now p has become ¢ — 1; move across the facet defined by f(p) = g(g). The vertex
el +e2+... 4¢P is replaced by e — e!, and we have entered the core. Finally, move the elements
of K one by one into I, in | K| steps. The total is |J| + 1+ |K|=n — |I| 4+ 1. Since |I| > 2, at
most n — 1 steps are necessary. Similarly, at most n — 1 steps are necessary to move from o to
cril_ (actually only n — 2, since 1 € I does not have to be moved).

Since n — 1 > n/2, it follows that we can move from any simplex to any other simplex in at
most 2n — 2 steps, via either o or CT:|_-

We now show that 2n — 2 steps are necessary to go from o = %

and 7’ = (2,3,1,4,5,...,n), (here n > 5) to o' = 0, 4" Where = (n,n—1,...,5,4,1,3,2).
Let I' = {2,3}, J ={1,4,5,....n -2}, K ={n—1,n},and I' =K', J' =J K" =1T.
We let I, J, K denote the index sets during a typical simplex on the path from o too . First
consider an index j € J'. If it leaves J at some step, it has to return at a later step, so we
charge this index two steps. If it remains in J at all steps, then each index in I' and K" must
cross this index, so we charge this index four steps. This accounts four at least 2|J/| =2n—8

steps.

.y Wherep=2,¢g=n-1,

Next, if we never reach the core, then each index in I' U K’ must enter J then leave at the
other end, for two steps each or eight in total. This gives 2n steps in all. Hence we must reach
the core and leave it again; this costs two steps.

Finally, each index in I’ U K’ must cross from one end to the other. (Notice that none of
the indices is the special index 1, which is ”at both ends” in the core.) This takes at least one
step for each such index, for a total of 4. Hence 2n — 2 steps in all are necessary.

When we add the extra one to account for the diameter for the facets, we have

Theorem 4.2. diam(D,) = 2n — 1.

11



Note that even though the diameter of D/1 is 2n — 1, when we take a line that goes through
the unit cube it might intersect as many as }(n —4)(n — 5) simplices. In diameter calculations,
we free ourselves in taking the shortest distance between two facets, as a result the shortest
path does not necessarily follow a line.

4.3 The Surface Density of D

The average directional density of a triangulation, a measure introduced by Todd[To76], was
shown to be equivalent to the surface density of the same triangulation by Eaves and Yorke[EY84],
as long as it satisfies certain regularity conditions, which hold for Dll. In fact they showed the
equivalence for a larger class. The equivalence holds for tilings which do not have to have
convex cells. They concluded that given a subdivision of R", the average directional density
does not depend on how the cells are assembled, but it does depend on the cells used, and they
give the following relationship:

Average directional density = (Surface density).g,,, where

. I(n/2)
" T - DI/ (- 1)/2)

Here, we calculate the volumes and the surface areas of the simplices in Dll. Then we can
compute the surface density of Dll, SD(Dll), by two means:

’ ZO’ED/ oCI? SA(U)
SD(D,) = > v Vol(o) Y SA(o)
oceDy,oCI? o‘EDi,o‘CI"
or
. YooeD o SD(a)Vol(a)
SD(D)) = =1oct o = Y SD(e)Vol(o).
ZUGDivf’CI" ol(7) s€Dj oCIn

Here SA(o), SD(o), and Vol(o) denote the surface area, the surface density, and the volume
of simplex o. Note that the second equation implies that the worst surface density over all
individual simplices cannot be better than the surface density of the triangulation.

In order to calculate the volume of a simplex, we construct an (n+ 1) by (n + 1) matrix
M, whose columns are the vertices of that particular simplex ¢ augmented with a +1 in the
(n+1)** position. Then the absolute value of the determinant of the constructed matrix divided
by n! is the volume of the simplex.

To calculate the area of a particular facet, we take the vertices of the facet, find the normal of
the hyperplane defined by the facet, and create a new point by taking a unit step (in Euclidean
norm) from a vertex of the facet in the direction of the normal. Then the convex hull of the
vertices of the facet and the new point define an n—simplex, and n times the volume of this
simplex is the same as the surface area of the facet.

12



4.3.1 The Simplices in the Core

We have two different types of simplices in the core. o_ = conv{0,el,e? ..., "} and o, =
conv{e —el,e —e?,...,e — e", e} are of type 1 and the rest of type 2.
For type 1 simplices we have
1
Vol(o_) = E
One of the facets of o_ is conv{el, ..., e"}, and all other n facets are congruent to conv{0,e?,..., e 1}.

Hence

SA(o_) = SA(conv{e’, ..., e"}) + nSA(conv{0,e’, ..., " 1}) = Zf_f'

So we get the surface density of type 1 simplices:

SD(o_) = % = (n++v/n)n.

Let ¢ be a type 2 simplex. Then we have

(n-2)
n!

Vol(c) =
Note that any type 2 simplex has e! and e — e! as its vertices. Let 7 and 7 be the facets that
we get from o by throwing away e! and e — e! respectively. All other facets of o' have the
same surface area; let 75 denote such a facet. Let p be the number of e¢*’s that are vertices of
o' then the surface areas of the facets of ¢ are as follows:

S R (G

SA(r) = Vp(n—p— 1():1(;1!—1?)(1?— 1)2,

SA(r3) = Vin _(i)(_n1;!3) + 2_

So if cr; is a type 2 simplex with parameter p we get
SA(a,) = SA(m) + SA(ms) + (n — 1)SA(7s).

From this formula we can easily get an upper bound on the surface densities of the type 2
simplices independent of p:

i _nn—-2)+nyn
SA(Up) < (n _ 1)| )

2
SD(O’;) <n?+ nyn

n—2"
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4.3.2 The Simplices in the Shell

For a generic simplex o, ,, in the core, we construct the corresponding matrix M, ,, as de-
scribed at the beginning of this section.

Tpxp E(p-1)x(a-p)

E(q-1)x(n-g+1)

Mpgn = triu(E(q_p) X (q—p))

0 (B - I)(n—q+1)><(n—q-l—1)

where E, .. is the r x t matrix of ones, I, is the » X r identity matrix, and ¢riu(A) is an upper
triangular matrix which is the upper triangular portion of A. Hence

(P-1(n-q)

1
Vol(oy4,.) = a|det(Mp7q7n)| = o

Let 7p_1 4—1,n—1 be a facet of g, ,, which does not have one of the first p vertices of o, ,, (all
such facets are congruent). We find

n—q)vp>—3p+3

(n—1)!

SA(Tp-14-1n-1) = (
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Similarly, we get 7, ;,—1 as a facet of ¢, ;,, when we throw away one of the last (n — ¢+ 1)
vertices of 0, 4, (again all such facets are congruent). We find

p—1)Vn—g+1)2-3(n-g+1)+3
(n—1)! '

SA(Tpgn-1) = (

Finally, we define 7'1'37(1_17”_1 as the facet obtained when the j** vertex, j € {p+1,...,¢} of
Opgq,. is thrown away. We find

Vi alle=l) iFGiFp+ 1

oalroptl j=a#p+L

. (-1
SA(r! ) =

p7q_17n_1

o o1

=) j=g9=p+1

So, we have p facets like 7,1 4_1 n—1, (R — ¢ + 1) facets like 7, 4 ,_1, and (¢ — p) facets like

7_.7

og—lm—1- Thus the total surface area for the simplex o, ,, is

q .
SA(0pq.) = PSA(Tp-1,4-1,n-1) + (0 — ¢+ 1)SA(Tpg,n—1) + Z SA(T;,q—l,n—l)
pt1

As n — oo the worst surface density is given by the simplices which have small p and large
g as parameters. In particular, the worst simplices are those with p = 2 and ¢ = n — 1 giving

SD(02m-1,) = V2n% + o(n?).

Note that the surface density of the triangulation cannot be worse than the worst simplex
in the triangulation, therefore

SD(D;) < V2n? + o(n?).

(In fact, there are %! simplices with p = 2 and ¢ = n—1, with total volume %. If we next consider
the simplices with p = 3 and ¢ =n — 1 or p = 2 and ¢ = n — 2, which have almost as bad a

surface density, the volume increases to 7. Continuing, we find that SD(D)) = v/2n%+o(n?).)

4.4 Comparison of the Triangulations in Terms of the Efficiency Measures

We define P, of a triangulation as lim,, . %, where P, is the number of simplices of the
triangulation in I"™. Then we have the following table:
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‘ Triangulation H P, H Diameter ‘

Freudenthal(1942), K 1 O(n?)
Tucker(1949), J; 1 O(n?)
Sallee(1982) and Lee(1985) || 0.4762 || not known
Sallee(1984) 0 O(n?)
Dang(1989), D; 0.7183 | 2n—3
| D, J05159 [ 2n-1 |

In terms of P, D/1 is superior to Jy, Ki, and D;. In terms of their diameters D; and D/1
are the only ones which are known to have O(n) bounds. In terms of the surface densities, D; is
slightly better than J;, K3, and Dy, yet asymptotically they all have the same surface density
v/2n? 4 o(n?).(We note that Dang[Da89] made an error in computing the surface density of
Dl.)

4.5 Asymptotically Better Triangulations

We first mention an elegant result by Haiman[Ha91]:

Theorem 5.1. If I™ can be triangulated into P, simplices then I*"

[(kn)!/(n")¥| Pk = p*"(kn)! simplices, where p = (P, /n!)'/".

can be triangulated into

Note that according to the measure R,, := (Pn/n!)l/", R =1lim, , R, we have R, =1
for all triangulations in the previous table. Haiman’s result implies that if a triangulation
achieves some R,, = p for some n then the same number p is asymptotically achievable, i.e.
R, = p. In other words, this result enables us to get triangulations with P,, = 0 from those
which have P, < 1.(Note that this is weaker than saying that R., = p < 1 which is also true.)

Using this result we can define new triangulations recursively using those in the previous
table and choose the best possible p for each triangulation:
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Sallee[82] and Lee[85] Sallee [84] D, D,
n
P, R, P, R, P, R, P, R,

3 5 .9410 5 .9410 5 .9410 6 1

4 16 .9036 16 .9036 18 16 .9036
5 67 67 8900 87 9377 68
6 364 .8925 324 .8754 518 .9466 384 .9005
7 2445 9018 1962 .8739 3621 .9539 2628 9112
8 19296 9120 13248 L8701 28962 .9595 20864 9201
9 173015 .9210 106181 8724 260651 .9639 187356 .9292
10 1720924 .9281 931300 8728 2606502 9675 1872496 .9360

We observe that for each triangulation R,, converges to 1 very fast. As a result the best
value for p is achieved for n < 10 for all these triangulations (as expected, smaller p values are

achieved by those triangulations which have smaller P, values).

Finally, we note that all triangulations in table 2 except D/1 achieve the minimum value
of Ps, all except D; achieve the minimum for P,, and all except D; achieve(or are within
1 of) the minimum for P;. See Mara[Ma76], Cottle[Co82], B6hm[B588], and Hughes[Hu90].
Hughes also shows that any triangulation that slices alternate corners off the unit cube in R®
cannot achieve fewer than 324 simplices which is achieved by Sallee’s middle-cut triangulation;

however, Hughes[Hu92] recently showed that 6-cube can be triangulated into 312 simplices.
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