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Preface

The following is a set of class notes for the Math 146 course I am currently
teaching at the University of Waterloo in January, 2024. They are a work in progress,
and – this being the “first edition” – they are replete with typos. A student should
approach these notes with the same caution he or she would approach buzz saws;
they can be very useful, but you should be alert and thinking the whole time you have
them in your hands.

Just one short comment about the Exercises at the end of each chapter. These
are of varying degrees of difficulty. Some are much easier than Assignment Questions,
and some are of a comparable level of difficulty. Those few Supplementary Examples
and Exercises that are marked by an asterisk are definitely worth doing, as they are
crucial to understanding the underlying concepts. The marked exercises are also of
varying levels of difficulty, but it is better for the reader to discover some things on
his/her own, since the reader will then understand and retain those things better.
The only way to learn mathematics is to do mathematics.

In our humble opinion, an excellent approach to reading these notes is as follows.
● One first gathers the examples of vector spaces from the second and third

chapters. One then reads the statements of the theorems, propositions,
corollaries, etc., and interprets those results for each of those examples.
The purpose of the theory is to understand and unify the examples.

● To learn the proofs, we recommend that one read the statement of a given
theorem or proposition, and tries to prove the result oneself. If one gets
stuck at a certain point in the proof, one reads the proof until one gets past
that point, and then one resumes the process of proving the result oneself.

Also, one should keep in mind that if one doesn’t know where to start, one can
always start with the definition, which means that one always knows where to start.
Just saying.

I strongly recommend that the reader consult other textbooks as well as these
notes. As ridiculous as this may sound, there are other people who can write as well
as, if not better than, your humble author and it is important that the reader find
the source which best suits the reader. Moreover, by consulting multiple sources, the
reader will discover results not covered in any single reference. I shall only mention
three references, namely the book of Friedberg, Insel and Spence [FIS97], the book
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of Hoffman and Kunze [HK71], and the book of Strang [Str88]. The library will
have other books which you may prefer to these.

I would like to thank (I didn’t get the first name) Bell, J. Broden, J. Huang,
S.L. Kaur, S. Li, V. Satish and L. Zhou for bring some typos to my attention. Any
remaining typos and mistakes are the fault of my colleagues. You know which ones.

April 8, 2024
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The reviews are in!

He is a writer for the ages, the ages of four to eight.
Dorothy Parker

This paperback is very interesting, but I find it will never replace a
hardcover book - it makes a very poor doorstop.

Alfred Hitchcock

It was a book to kill time for those who like it better dead.
Rose Macaulay

That’s not writing, that’s typing.
Truman Capote

Only the mediocre are always at their best.
Jean Giraudoux
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CHAPTER 1

The Axiom of Choice, posets and Zorn’s Lemma

Sleep is my favourite thing in the world. It’s the reason I get up in
the morning.

Ross Smith

1. The Axiom of Choice

1.1. In this Chapter we shall acquire some very basic knowledge about the Ax-
iom of Choice. A number of important results arising in different areas of modern
mathematics are known to be equivalent to the Axiom of Choice, including one re-
sult which will play a crucial role for us, namely: Zorn’s Lemma. Further equivalent
formulations of the Axiom of Choice include the Hahn-Banach Theorem in Func-
tional Analysis, Krull’s Theorem in Ring Theory, Tychonoff’s Theorem in topology,
and – closer to our hearts in relation to this course – the fact that every vector space
admits a Hamel basis.

While the Axiom of Choice is relatively easy to understand, and while it may in
fact appear to be a self-evident truth, it implies things which on the surface appear
to be either false, or impenetrable. To quote Jerry Bona:

The Axiom of Choice is obviously true, the well-ordering principle
obviously false, and who can tell about Zorn’s lemma?

1.2. Let’s begin with an analogy. Suppose that one is given a collection of
boxes, and that in each box there is a pair of identical socks. A seemingly innocent
question is whether one can pull a sock out of each box. Of course, if there are only
finitely many boxes to begin with, then there is no problem in doing so. One pulls
a sock out of the first box, then a second sock out of the second box, then a third
sock from the third box, and so on, until one reaches the last box and completes the
task in a most satisfactory if unfulfilling way. But what if the collection of boxes
we are given is infinite? Since one can never stop the procedure, how do we know
that we can actually obtain a sock from each and every box? Still, isn’t it obvious
that we can? What if we have uncountably many boxes – say, one box for each real
number? Would that make a difference? We couldn’t just order the boxes as we do
the natural numbers. Still, what’s the problem? After all, each box has a pair of
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2 1. THE AXIOM OF CHOICE, POSETS AND ZORN’S LEMMA

socks, and we know we can pull a sock out of any given box. And why do we need
so many socks anyway?

1.3. To better understand the underlying issue from a mathematical viewpoint,
let’s begin by replacing “boxes” with sets, and “socks” with elements of those sets.
We will also need to know what we mean by “picking an element from each set”. To
that end, we first define unions, intersections, and choice functions.

1.4. Definition. Let ∅ ≠ Λ,X be sets and suppose that {Xλ}λ∈Λ is a set of
subsets of X. Then we define the union of the Xλ’s to be

∪λ∈ΛXλ = {x ∈X ∶ x ∈Xλ for some λ ∈ Λ},

and the intersection of the Xλ’s to be

∩λ∈ΛXλ = {x ∈X ∶ x ∈Xλ for all λ ∈ Λ}.

Exercise: What should ∩λ∈∅Xλ and ∪λ∈∅Xλ mean?

1.5. Definition. Let Λ /= ∅ and let {Xλ}λ∈Λ be a set of subsets of a set X.
We define the product of the sets Xλ to be:

∏
λ∈Λ

Xλ = {f ∶ Λ→ ∪λ∈ΛXλ ∶ f(λ) ∈Xλ for all λ ∈ Λ}.

If such a function f exists, it is called a choice function.

Note: If Xλ0 = ∅ for some λ0 ∈ Λ, then f(λ0) ∈Xλ0 is false, and so ∏λ∈ΛXλ = ∅.

Given non-empty sets X and Y , we define

XY = {f ∶ Y →X ∶ f is a function} = ∏
y∈Y

Xy,

where Xy =X for all y ∈ Y .

1.6. Do choice functions always exist?
(a) Suppose that Λ is a finite, non-empty set and that for all λ ∈ Λ, ∅ ≠ Xλ

is a set. Then the answer is “yes”. This follows from the basic axioms of
Zermelo-Fraenkel set theory.

In particular, the basic axioms of Zermelo-Fraenkel set theory say that
if you have a finite number of boxes, each of which contains a pair of socks,
then you can take a sock out of each box.

The reader is referred to the excellent text of R. André [And14] for
more detail about Set Theory, although I make no promises that André will
mention socks anywhere in the text.
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(b) Let Λ be an arbitrary non-empty set. For each λ ∈ Λ, suppose that ∅ ≠
Xλ ⊆ N. Given λ ∈ Λ, define f(λ) to be the least element of Xλ. Then
f ∈∏λ∈ΛXλ is a choice function. Note: here we have a rule for picking an
element from each Xλ, and that rule applies to every Xλ simultaneously!

(c) Let Λ be an arbitrary non-empty set. Suppose that for each λ ∈ Λ, Pλ
consists of a pair {Lλ,Rλ} of shoes (where Lλ is the left shoe, and Rλ is
the right shoe). Given λ ∈ Λ, set g(λ) = Lλ. Then g ∈ ∏λ∈Λ Pλ is a choice
function.

Note: Once again we have a rule for picking an element from each Xλ,
and that rule applies to every Xλ simultaneously!

(d) For each n ≥ 1, let Bn denote a pair of identical socks. How do we specify a
choice function f ∈∏n∈NBn? Here, what rule do we have for selecting one
sock from the pair? By Zermelo-Fraenkel set theory, we can do this for one
pair at a time, but how do we do it simultaneously for all pairs?

1.7. The above question prompted the following quote from the mathematician
(and philosopher) Bertrand Russel(1872-1970):

To choose one sock from each of infinitely many pairs of socks
requires the Axiom of Choice, but for shoes the Axiom is not
needed.

As the reader will undoubtedly come to appreciate over their undergraduate
career, it is twentieth century’s obsession with socks which drove most of the math-
ematics discovered over the last 116 years.

1.8. One way to circumvent the question of how do we know that we can choose
one sock from amongst each pair in an infinite collection of pairs of socks is to assume
we can.

The Axiom of Choice [AC]. If Λ /= ∅ is a set and for each λ ∈ Λ, Xλ is a
non-empty subset of a set X, then ∏λ∈ΛXλ /= ∅.

Exercise: Prove that the Axiom of Choice is equivalent to the following:
The Axiom of Choice - disjoint set version [ACD]. Suppose that Λ /= ∅ is a
set and that

(i) for all λ ∈ Λ, Xλ is a non-empty subset of a universe X, and
(ii) Xλ ∩Xβ = ∅ if λ /= β ∈ Λ.

Then ∏λ∈ΛXλ /= ∅.

Exercise: Prove that the Axiom of Choice is equivalent to the following statement.
Given a non-empty set X there exists a function f ∶ P(X) / {∅} → X so that

f(A) ∈ A for all A ∈ P(X) / {∅}.
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1.9. At first glance, it would seem madness to even try to imagine that the
Axiom of Choice is not true. As it turns out, we can appeal to the Principle of
you’re damned if you do and you’re damned if you don’t to begin to appreciate the
can of worms we have just opened.

It can be shown (in fact it has been shown) that the Axiom of Choice implies the
following: it is possible to “carve up” the unit ball in R3 into finitely many pieces
and, using only rotations and translations, to reassemble those pieces into two balls
each having the same volume as the original unit ball. This is known as the Banach-
Tarski Paradox. As one might imagine, this result is non-constructive. It does not
tell you how to cut the unit ball. It would be unwise yet strangely thirst-quenching
to test this out on a bag of oranges using a typical kitchen knife.

On the other hand, the negation of (AC) implies the existence of two sets A and
B so that neither of these can be mapped injectively into the other. It is unclear
that this is a world in which we would like to live.

Our next goal is to obtain a couple of equivalent formulations of the Axiom of
Choice which will prove useful both in analysis and in algebra. Before describing
these equivalent formulations, we shall pause to develop some notation and defini-
tions.

2. Partially ordered sets

2.1. We mentioned the Axiom of Choice in part because it is equivalent to Zorn’s
Lemma – which is the axiom we are really interested in in this course – and because
it is much easier to interpret than Zorn’s Lemma. To understand the statement
of Zorn’s Lemma, we first need to examine the concept of a partially ordered set,
also known as posets. Understanding posets will also help us to understand what
is meant by a maximal linearly independent set, or what is meant by the smallest
subspace which contains a given set S of vectors in a vector space. But we are getting
ahead of ourselves.

2.2. Definition. A relation R on a set X is a subset of the Cartesian product
X ×X = {(x, y) ∶ x, y ∈X}. We write xRy if (x, y) ∈ R.

A relation ≤ is called a partial order on X if it satisfies
(i) x ≤ x for all x ∈X (reflexivity);
(ii) x ≤ y and y ≤ z implies that x ≤ z (transitivity);
(iii) x ≤ y and y ≤ x implies that x = y (anti-symmetry).

The ordered pair (X,≤) is called a partially ordered set, or simply a poset.
Informally, it is also customary to refer to X as the poset with partial order ≤.

A chain C in X is a subset of X such that for any x, y ∈ C, either x ≤ y or y ≤ x.
Alternatively, these are called totally ordered sets or linearly ordered sets.
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2.3. Example.
(a) (R,≤) is a totally ordered (and hence a partially ordered) set using the

usual order on R. Similarly, (Q,≤) is a totally ordered set using the same
partial order.

(b) The list of words in the dictionary forms a totally ordered set with the
usual lexicographic ordering.

2.4. Example. Let X /= ∅ be a set. Consider the power set P(X). For
A,B ∈ P(X), define A ≤ B to mean A ⊆ B. We say that P(X) is (partially)
ordered by inclusion. Then (P(X),≤) is a poset. If X has more than one
element, then (P(X),≤) is not a chain.

Suppose X = {1,2,3,4,5} and that P(X) is ordered by inclusion. Then
C = {{2},{2,5},{2,3,5}}

is a chain in P(X). The set D = {{2},{2,5},{1,3,5}} is not a chain.

2.5. Example. Let X /= ∅ be a set. Consider the power set P(X). For
A,B ∈ P(X), define A ≤ B to mean A ⊇ B. We say that P(X) is ordered by
containment. Then (P(X),≤) is a poset. If X has more than one element, then
(P(X),≤) is not a chain.

2.6. Example. Let
X = C([0,1],R) ∶= {f ∶ [0,1]→ R ∶ f is continuous}.

For f, g ∈ X, define f ≤ g if f(x) ≤ g(x) for all x ∈ [0,1]. Then (X,≤) is a partially
ordered set.

2.7. Example. Consider X = N, the set of positive integers, and for m,n ∈ N,
define m ≤ n if m divides n, written m∣n. Then for k,m,n ∈ N,

● k∣k, so k ≤ k.
● If k ≤m and m ≤ k, then k divides m and m divides k, so k =m.
● If k ≤m and m ≤ n, then k∣m – say m = km0, and m∣n – say n =mn0, and

thus n = km0n0. Hence k∣n, i.e. k ≤ n.
Thus (N,≤) is a partially ordered set. In this case, 2 ≤ 4, but 2 /≤ 3.

2.8. Definition. Let (X,≤) be a poset. We say that x ∈ X is maximal in X
if y ∈ X and x ≤ y implies x = y. We say that m ∈ X is a maximum element in
X if m ≥ y for all y ∈X.

We say that z ∈ X is minimal in X if y ∈ X and y ≤ z implies y = z. The
element n ∈X is a minimum element in X if y ∈X implies that n ≤ y.

The distinction between a maximal element and a maximum element is that a
maximum element must be comparable to (and at least as big as) every element of
the poset (X,≤). A maximal element need only be as big as those elements in X
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to which it is actually comparable. A analogous statement holds for minimum and
minimal elements.

2.9. Example.
(a) Let X = {1,2,3,4,5,6}, and denote by P0(X) the collection of proper sub-

sets of X, partially ordered by inclusion. (Recall that a subset A ⊆ X is
proper if A /= X.) Then N1 = {1,2,3,4,5} and N2 = {1,3,4,5,6} are two
distinct maximal elements of P0(X). Neither of these is a maximum ele-
ment; for example, Y = {6} ∈ P0(X), but Y /≤ N1. In fact, P0(X) does not
have a maximum element at all.

(b) Let X = (0,1), equipped with the usual order inherited from (R,≤). Again,
X does not have a maximum element. In this case, it also does not have
a maximal element. Moreover, (R,≤) itself does not have any maximal
elements.

(c) Exercise: Every finite poset has a maximal element. (It is also a worth-
while exercise to describe all 3 element posets to get a feeling for what is
going on.)

2.10. Definition. Let (X,≤) be a poset and A ⊆ X. We say that y ∈ X is an
upper bound for A if a ≤ y for all a ∈ A. We say that x ∈X is a lower bound for
A if x ≤ a for all a ∈ A.

We say that β ∈ X is the least upper bound (lub), or supremum (sup) for
A if

● β is an upper bound for A, and
● if y is any upper bound for A, then β ≤ y.

Similarly, we say that α ∈ X is the greatest lower bound (glb) or infimum
(inf) for A if

● α is a lower bound for A, and
● if x is any lower bound for A, then x ≤ α.

2.11. Example.
(a) (R,≤) has the least upper bound property, where ≤ is the usual ordering

on R. If ∅ /= A ⊆ R is bounded above, then A has a least upper bound β.
If A = ∅, then for any b ∈ R, b is an upper bound for A. Indeed, if

b were not an upper bound for A = ∅, then there would exist an element
a ∈ A such that b /≤ a, which is false. Since b is an upper bound for ∅ for
all b ∈ R, we say that the least upper bound of ∅ is −∞.

Here, −∞ is not a number! The statement sup∅ = −∞ is to be inter-
preted as saying that any b ∈ R is an upper bound for ∅.

Note that using the same logic, we write ∞ = inf ∅, as every b ∈ R is
also a lower bound for ∅.
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(b) Let X be a non-empty set and let P(X) denote its power set, partially
ordered by inclusion. If {Xλ}λ∈Λ ⊆ P(X), then ∪λ∈ΛXλ is the l.u.b. of
{Xλ}λ∈Λ, and ∩λ∈ΛXλ is the g.l.b. of {Xλ}λ∈Λ.

(c) Consider (Q,≤) where ≤ denotes the usual total order inherited from R.
The set A = {x ∈ Q ∶ x2 < 2} is bounded above, but there is no least upper
bound for A in Q. Indeed, if b ∈ Q and b >

√
2, then there exists another

rational number d ∈ (
√

2, b), and thus d is an upper bound for A and d < b,
so b is not the supremum of A. If b ∈ Q and b <

√
2, then clearly b is not

even an upper bound for A, so it is not a supremum for A.
The Axiom of Choice was introduced by Zermelo in order to prove his Well-

ordering Principle. To explain this, we first need a couple of definitions.

2.12. Definition. A non-empty poset (X,≤) is said to be well-ordered if
every non-empty subset A ⊆X has a mimimum element.

It immediately follows that every well-ordered set is totally ordered, since if
x, y ∈ X and (X,≤) is well-ordered, then either x = min(x, y) and so x ≤ y, or
y = min(x, y) and so y ≤ x. In other words, any two elements in X can be compared.

2.13. Example.
(a) The set N is well-ordered with the usual ordering, whereas R is not.
(b) Let ω + 7 = {1,2,3, ...., ω, ω + 1, ω + 2, ..., ω + 6}. Define a partial order on

ω + 7 by setting n ≤ ω + k for all n ≥ 1, 0 ≤ k ≤ 6 and ω + i ≤ ω + j if
0 ≤ i ≤ j ≤ 6. The ordering on N ⊆ ω + 7 is the usual ordering on N. Then
ω + 7 is well-ordered.

2.14. Theorem. The following are equivalent:
(i) The Axiom of Choice (AC): given a non-empty collection {Xλ}λ∈Λ of non-

empty sets, ∏λ∈ΛXλ /= ∅.
(ii) Zorn’s Lemma (ZL): Let (Y,≤) be a poset. Suppose that every chain C ⊆ Y

has an upper bound. Then Y has a maximal element.
(iii) The Well-Ordering Principle (WO): Every non-empty set Z admits a well-

ordering.
Proof. This result has been moved to PM433. You may consult the appendix to
this Chapter for a proof.

◻

2.15. Remark. A number of other results are known to be equivalent to the
Axiom of Choice. We mention only two:

● If X and Y are non-empty, disjoint sets and X is infinite, then there exists
a bijection between X × Y ∶= {(x, y) ∶ x ∈X,y ∈ Y }, and X ∪ Y .

● If X is an infinite set, then there exists a bijection between X and X ×X.
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Appendix

A1.1. In this Appendix we shall provide a proof of the equivalence of the Axiom
of Choice, Zorn’s Lemma and the Well-Ordering Principle. We begin with the
definition of an initial segment, which will be required in the proof.

A1.2. Let (X,≤) be a poset, C ⊆X be a chain in X and d ∈ C. We define

P (C,d) = {c ∈ C ∶ c < d}.

An initial segment of C is a subset of the form P (C,d) for some d ∈ C.

A1.3.
(a) For each r ∈ R, (−∞, r) is an initial segment of (R,≤).
(b) For each n ∈ N, {1,2, ..., n} is an initial segment of N.

A1.4. Theorem. The following are equivalent:
(i) The Axiom of Choice (AC): given a non-empty collection {Xλ}λ∈Λ of non-

empty sets, ∏λ∈ΛXλ /= ∅.
(ii) Zorn’s Lemma (ZL): Let (Y,≤) be a poset. Suppose that every chain C ⊆ Y

has an upper bound. Then Y has a maximal element.
(iii) The Well-Ordering Principle (WO): Every non-empty set Z admits a well-

ordering.
Proof.

(i) implies (ii): This is the most delicate of the three implications. We shall
argue by contradiction.

Suppose that (X,≤) is a poset such that every chain in X is bounded
above, but that X no maximal elements. Given a chain C ⊆X, we can find
an upper bound uC for C. Since uC is not a maximal element, we can find
vC ∈ X with uC < vC . We shall refer to such an element vC as a strict
upper bound for C.

By the Axiom of Choice, for each chain C in X, we can choose a strict
upper bound f(C). If C = ∅, we arbitrarily select x0 ∈X and set f(∅) = x0.

We shall say that a subset A ⊆X satisfies property L if
(I) The partial order ≤ on X when restricted to A is a well-ordering of A,

and
(II) for all x ∈ A, x = f(P (A,x)).
● Claim 1: if A,B ⊆ X satisfy property L and A /= B, then either A is an
initial segment of B, or B is an initial segment of A.

Without loss of generality, we may assume that A / B /= ∅. Let

x = min {a ∈ A ∶ a /∈ B}.
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Note that x exists because A is well-ordered. Then P (A,x) ⊆ B. We shall
argue that B = P (A,x). If not, then B / P (A,x) /= ∅, and using the
well-orderedness of B,

y = min {b ∈ B ∶ b /∈ P (A,x)}

exists. Thus P (B,y) ⊆ P (A,x).

Let z = min (A / P (B,y)). Then z ≤ x = min (A / B).

● Subclaim 1: P (A, z) = P (B,y).
By definition, P (A, z) ⊆ P (B,y).
To obtain the reverse inclusion, we first argue that if t ∈ P (B,y) =
A∩P (B,y), then P (A, t)∪ {t} ⊆ P (B,y). By hypothesis, t ∈ P (B,y),
so suppose that u ∈ P (A, t). Now t ∈ P (B,y) ⊆ P (A,x), so u < t < x
implies that u ∈ P (A,x). In other words, P (A, t) ⊆ P (A,x) ⊆ B. But
then u ∈ B and u < t < y implies that u ∈ P (B,y).
We now have that if s ∈ P (B,y), then P (A, s) ∪ {s} ⊆ P (B,y) ⊆
P (A,x) ⊆ A. This forces s < z ∶= min (A /P (B,y)), so that s ∈ P (A, z).
Together, we find that P (B,y) ⊆ P (A, z) ⊆ P (B,y), which proves the
subclaim.

Returning to the proof of the claim, we now have that z = f(P (A, z)) =
f(P (B,y)) = y. But y ∈ B, so y /= x. Hence z < x. Thus y = z ∈ P (A,x),
contradicting the definition of y. We deduce that P (A,x) = B, and hence
that B is an initial segment of A, thereby proving our claim.

Suppose that A ⊆ X has property L, and let x ∈ A. It follows from the
above argument that given y < x, either y ∈ A or y does not belong to any
set B with property L.

Let V = ∪{A ⊆X ∶ A has property L}.
● Claim 2: We claim that if w = f(V ), then V ∪ {w} has property L.

Suppose that we can show this. Then V ∪ {w} ⊆ V , so w ∈ V , a
contradiction. This will complete the proof.

● Subclaim 2a: First we show that V itself has property L. We must show
that V is well-ordered, and that for all x ∈ V , x = f(P (V,x)).

(a) V is well-ordered.
Let ∅ /= B ⊆ V . Then there exists A0 ⊆ X so that A0 has property
L and B ∩ A0 /= ∅. Since A0 is well-ordered and ∅ /= B ∩ A0 ⊆ A0,
m ∶= min(B ∩A0) exists. We claim that m = min(B).
Suppose that y ∈ B. Then there exists A1 ⊆X so that A1 has property
L and y ∈ A1. Now, both A0 and A1 have property L:

◇ if A0 = A1, then m = min(B ∩A1), so m ≤ y.
◇ if A0 /= A1, then either



10 1. THE AXIOM OF CHOICE, POSETS AND ZORN’S LEMMA

● A0 is an initial segment of A1, so A0 = P (A1, d) for some
d ∈ A1. Then

m = min(B ∩A0) = min(B ∩A1),

since r ∈ A1 ∖A0 implies that m < d ≤ r. Hence m ≤ y;, or
● A1 is an initial segment of A0, say A1 = P (A0, d) ⊆ A0 for

some d ∈ A0. Then

m = min(B ∩A0) ≤ min(B ∩A1).

Hence m ≤ y.
In both cases we see that m ≤ y. Since y ∈ B was arbitrary, m =
min(B).
Thus, any non-empty subset B of V has a minimum element, and so
V is well-ordered.

(b) Let x ∈ V . Then there exists A2 ⊆ X with property L so that x ∈ A2.
Then x = P (A2, x). Suppose that y ∈ V and y < x. Then there exists
A3 ⊆ X with property L so that y ∈ A3. Since A2 and A3 both have
property L, either

● A2 = A3, and so y ∈ A2; or
● A2 = P (A3, d) for some d ∈ A3. Since x ∈ A2, P (A2, x) = P (A3, x)

and therefore y ∈ A2; or
● A3 = P (A2, d) for some d ∈ A2. Then y ∈ A3 implies that y ∈ A2.

In any of these three cases, y ∈ A2. Hence P (V,x) ⊆ P (A2, x). Since
A2 ⊆ V , we have that P (A2, x) ⊆ P (V,x), whence P (A2, x) = P (V,x).
But then

x = f(P (A2, x)) = f(P (V,x)).

By (a) and (b), V has property L.

We now return to the proof of Claim 2. That is, we prove that if
w = f(V ), then V ∪ {w} has property L.
(I) V ∪ {w} is well-ordered.

We know that V is well-ordered by part (a) above. Suppose that
∅ /= B ⊆ V ∪ {w}. If B ∩ V /= ∅, then by (a) above, m ∶= min(B ∩ V )
exists. Clearlym ∈ V impliesm ≤ f(V ) = w, som = min(B∩(V ∪{w})).
If ∅ /= B ⊆ V ∪ {w} and B ∩ V = ∅, then B = {w}, and so w = min(B)
exists.
Hence V ∪ {w} is well-ordered.

(II) Let x = V ∪ {w}. If x ∈ V , then x = f(P (V,x)) by part (a). If x = w,
then

P (V ∪ {w}, x) = P (V ∪ {w},w) = V,

so x = w = f(V ) = f(P (V ∪ {w}, x)).
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By (I) and (II), V ∪ {w} has property L. As we saw in the statement
following Claim 2, this completes the proof that the Axiom of Choice implies
Zorn’s Lemma. Now let us never speak of this again.

(ii) implies (iii): Let X /= ∅ be a set. It is clear that every finite subset F ⊆X
can be well-ordered. Let A denote the collection of pairs (Y,≤Y ), where
Y ⊆ X and ≤Y is a well-ordering of Y . For (A,≤A), (B,≤B) ∈ A, observe
that A is an initial segment of B if the following two conditions are met:
● A ⊆ B and a1 ≤A a2 implies that a1 ≤B a2;
● if b ∈ B / A, then a ≤B b for all a ∈ A.
Let us partially order A by setting (A,≤A) ≤ (B,≤B) if A is an initial

segment of B. Let C = {Cλ}λ∈Λ be a chain in A.
Then (exercise): ∪λ∈ΛCλ is an upper bound for C.
By Zorn’s Lemma, A admits a maximal element, say (M,≤M). We

claim that M = X. Suppose otherwise. Then we can choose x0 ∈ X / M
and set M0 = M ∪ {x0}. define a partial order on M0 via: x ≤M0 y if
either (a) x, y ∈ M and x ≤M y, or (b) x is arbitrary and y = x0. Then
(M0,≤M0) is a well-ordered set and (M,≤M) < (M0,≤M0), a contradiction
of the maximality of (M,≤M). Thus M = X and ≤M is a well- ordering of
X.

(iii) implies (i): Suppose that {Xλ}λ∈Λ is a non-empty collection of non-empty
sets. Let X = ∪λ∈ΛXλ. By hypothesis, X admits a well-ordering ≤X . Since
each ∅ /=Xλ ⊆X, it has a minimum element relative to the ordering on X.
Define a choice function f by setting f(λ) to be this minimum element of
Xλ for each λ ∈ Λ.

◻
We include a proof of an exercise mentioned earlier in the notes:

A1.5. Proposition. The following are equivalent:
(a) The Axiom of choice: if Λ /= ∅ and for each λ ∈ Λ there exists a non-empty

set Xλ, then
Πλ∈ΛXλ /= ∅.

(b) If ∅ /= ∅, then there exists a function
g ∶ P(X) ∖ {∅}→X

such that g(Y ) ∈ Y for all Y ⊆X.
Proof.

(a) implies (b).
Suppose (a) holds. Let ∅ /= X be a set and set Λ = P(X) ∖ {∅}. For

each Y ∈ Λ, set ZY = Y /= ∅.
By the Axiom of Choice, there exists a choice function

f ∈ ΠY ∈ΛZY = ΠY ∈ΛY.

But then f(Y ) ∈ ZY = Y for each Y ∈ Λ = P(X) ∖ {∅}.
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That is, (b) holds.
(b) implies (a).

Suppose that (b) holds.
Let ∅ /= Λ be a set and suppose that Xλ is a non-empty set for each

λ ∈ Λ. Let Y = ∪λ∈ΛXλ.
By hypothesis, there exists a function g ∶ P(Y ) ∖ {∅} → Y so that

g(W ) ∈ W for all W ∈ P(Y ) ∖ {∅}. In particular, each Xλ ∈ P(Y ) ∖ {∅},
and so g(Xλ) ∈Xλ for all λ ∈ Λ.

Define f(λ) = g(Xλ), λ ∈ Λ. Then f is a choice function, so (a) holds.
◻

A1.6. Culture.
(a) The basic axioms of set theory are referred to as the Zermelo-Fraenkel

Axioms, or (ZF).
Gödel proved that the Axiom of Choice is consistent with (ZF), but that

(ZF) does not by itself imply the Axiom of Choice. Cohen then developed
the theory of “forcing” to prove that (ZF) plus the negation of the Axiom
of Choice is also consistent.

(b) It is known that the Riemann hypothesis is true in (ZF) if and only if it is
true in (ZFC), namely (ZF) plus the Axiom of Choice.

(c) The generalized Continuum hypothesis (GCH) is known to be independent
of (ZFC), however (ZF) plus (GCH) together imply the Axiom of Choice
(AC).

(d) Tarski tried to publish the result which says that the Axiom of Choice (AC)
is equivalent to the assertion that ∣A∣ = ∣A×A∣ whenever A is infinite in the
Comptes Rendus. It was not accepted. Fréchet said that the equivalence
of two true statements is not something new, while Lebesgue said that any
implication between two false propositions is of no interest.

A1.7. In our definition of unions and intersections of sets (Definition 1.4), we
first specified a “universe” X and then required each of the sets Xλ to be a subset
of that universe X. There is a good reason for this, namely: there is no universe of
“all sets”.

Suppose to the contrary that V is the “set of all sets”. We can then use the basic
axioms of set theory (in particular the so-called Axiom of Subsets to define the
set

A ∶= {x ∈ B ∶ x /∈ x}.
Thus y ∈ A if and only if y /∈ y. Then A is a set, and since B is the “set of all sets”,
A ∈ B. This raises the question: is A ∈ A?

● If A ∈ A, then A ∈ B and A ∈ A, so by definition of A, A /∈ A, a contradiction.
● We conclude that A /∈ A. But then A ∈ B and A /∈ A, so A ∈ A, a contradic-

tion.
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The problem is that we supposed that there exists a “universal set” V containing
all sets. This doesn’t happen. Thus, when dealing with problems in set theory, we
should first define which collection of sets we wish to consider – i.e. we should define
the “universe” under discussion.
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Exercises for Chapter 1.

Exercise 1.1.
Let X be a set with 0 ≤ n <∞ elements. Prove that the power set

P(X) ∶= {Y ∶ Y ⊆X}
of X has 2n elements.

Exercise 1.2.
Given a set ∅ ≠X and a collection of subsets Xα, α ∈ Λ of X, what does ∪λ∈∅Xλ

mean? What does ∩λ∈∅Xλ mean?

Exercise 1.3.
Prove that the Axiom of Choice is equivalent to each of the following:
(a) The Axiom of Choice - disjoint set version [ACD]. Suppose that

Λ /= ∅ and that
(i) for all λ ∈ Λ, Xλ is a non-empty set, and
(ii) Xλ ∩Xβ = ∅ if λ /= β ∈ Λ.
Then ∏λ∈ΛXλ /= ∅.

(b) Given a non-empty set X there exists a function f ∶ P(X) ∖ ∅ → X such
that f(A) ∈ A for all A ∈ P(X) ∖ ∅.

Exercise 1.4.
Prove that every finite poset (X,≤) has a maximal element and a minimal ele-

ment. Give examples of a finite poset (X,≤) where X has a maximum element but
no minimum element, and examples where it has both a maximum and a minimum
element.



CHAPTER 2

Vector spaces and subspaces

Somewhere on this globe, every ten seconds, there is a woman giving
birth to a child. She must be found and stopped.

Sam Levenson

1. Vector spaces: examples, definitions and very basic facts

1.1. Pure Mathematics is the study of mathematical objects and of the rela-
tionships between them. When we find enough interesting examples of a given
phenomenon, we establish a definition to describe that property. The extent to
which the definition can be used to predict and explain new phenomena determines
its value. Few definitions are more useful and pervasive than that of a vector space.

Let us begin by examining a few seemingly disparate examples of mathematical
objects, and let us try to find a commonality amongst them.

Throughout these notes, we will be dealing with ordered pairs (V,F), where V
is a certain non-empty set which we will soon call a vector space, and F is a field.
Amongst the most important examples of vector spaces are those for which F = R
or F = C. Certainly results hold equally well in both of these cases with essentially
identical proofs. In such cases, rather that repeating the same proof twice, we simply
write K to mean either of R or C.

We begin with a definition which will be used throughout the course, and far,
far beyond.

1.2. Definition. Let F be a field and m,n ∈ N. An m × n matrix over F is a
function

a ∶ {1,2, . . . ,m} × {1,2, . . . , n} → F
(i, j) ↦ aij .

We typically write this function in the form

a = [aij]m×n

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋮

am1 am2 ⋯ amn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

15
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(If m and n are understood, we sometimes abbreviate this to a = [aij].
The collection of all m × n matrices over F is denoted by Mm×n(F), and when

m = n, we abbreviate this to Mn(F).
Given a = [aij] ∈Mm×n(F), we define the transpose of a to be

at ∶= [aji] ∈Mn×m(F).

If a ∈Mm×n(F), it is clear that (at)t = a.
We allow ourselves a mild abuse of notation by conflating a = (a1, a2, . . . , an)

with a = [a1 a2 ⋯ an]. Thus we have that

(a1, a2, . . . , an)t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
⋮
an

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

An element of M1×n(F) is often referred to as a row vector, while an element of
Mm×1(F) is often referred to as a column vector. Clearly there is a bijection
between M1×n(F) and Mn×1(F) induced by the transpose map a↦ at.

We next consider a number of familiar mathematical sets, which we observe to
have a common structure, namely: in each case, we can add members of the set, as
well as multiply elements of the set by scalars.

1.3. Example. Let F be a field, m ≥ 1 be an integer, and consider the set
V ∶= Fm ∶= F × F ×⋯ × F (m times). That is,

V = {(x1, x2, . . . , xm) ∶ xj ∈ F,1 ≤ j ≤m}.

We define two operations + ∶ V × V → V and ⋅ ∶ F × V → V as follows. For x =
(x1, x2, . . . , xm), y = (y1, y2, . . . , ym) ∈ V and κ ∈ F, we set

x + y ∶= (x1 + y1, x2 + y2, . . . , xm + ym), and

κ ⋅ x ∶= (κx1, κx2, . . . , κxm).
Thus Fm = M1×m(F) is the set of all row vectors of length m with entries in F. In
many instances (we shall come across such instances when studying linear maps be-
tween finite-dimensional vector spaces and their representations as matrices), there
is a good reason to denote the elements of V = Fm as column vectors, that is, as ele-
ments of Mm×1(F). Of course, when representing elements of Fm as column vectors,
the operations become: given x, y ∈ V = Fm,

x + y ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 + y1
x2 + y2

⋮
xm + ym

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and κ ⋅ x ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

κx1
κx2
⋮

κxm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that amongst other properties, x + y = y + x and κ(x + y) = κx + κy for all
x, y ∈ V and κ ∈ F. If 0 ∶= (0,0, . . . ,0) ∈ V = Fm, then 0 + x = x for all x ∈ Fm.
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We emphasise that the idea of expressing elements of Fm either as row vectors or
as column vectors is not simply a fetish of the current author, but rather a common
practice. It should not cause problems. Furthermore, it is also a common practice
(which we shall often adopt) to simply write κx to mean κ ⋅x when κ ∈ F and x ∈ V.

1.4. Example. Let
C([0,1],K) ∶= {f ∶ [0,1]→ K ∶ f is continuous}.

As we always do with functions, given f, g ∈ C([0,1],K) and κ ∈ K, we define (for all
x ∈ [0,1])

(f + g)(x) = f(x) + g(x),
and

(κf)(x) = κ(f(x)).
That is, we define addition and scalar multiplication pointwise.

From Calculus, we know that f + g and κf ∈ C([0,1],K), and that f + g = g + f
and κ(f + g) = κf +κg when κ ∈ K. If z(x) = 0 for all x ∈ [0,1], then z ∈ C([0,1],K),
and f + z = f = z + f for all f ∈ C([0,1],K).

1.5. Example. Let F be a field and consider

T2(F) ∶= {[a b
0 d

] ∶ a, b, d ∈ F} .

Given A = [a1 b1
0 d1

] and B = [a2 b2
0 d2

] ∈ T2(F), define

A +B ∶= [a1 + a2 b1 + b2
0 d1 + d2

] ,

and for κ ∈ F,

κA = [κa1 κb1
0 κd1

] .

Note that A +B,κA ∈ T2(F), A +B = B +A and κ(A +B) = κA + κB. Moreover, if

Z ∶= [0 0
0 0], then Z ∈ T2(K) and A +Z = A = Z +A for all A ∈ T2(F).

1.6. Notation. Given non-empty sets A and B, we write BA to denote the set
of all functions from A to B. That is,

BA ∶= {f ∶ A→ B ∶ f is a function}.

This raises the question: doesn’t this contradict our previous notation of Fm?
The answer may surprise you. Given m ∈ N, if we identify m with the set

Λm ∶= {1,2, . . . ,m}, then

FΛm ∶= {f ∶ Λm → F ∶ f is a function} = {f ∶ {1,2, . . . ,m}→ F ∶ f is a function}.
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But a function is determined by its value at every point in the domain (i.e. if two
functions f, g ∶ A → B satisfy f(x) = g(x) for all x ∈ A, then f = g), and so we can
alternatively define

FΛm ∶= {(f(1), f(2), . . . , f(m)) ∶ f a function from Λm to F}.
(That is, if we know the function f ∶ {1,2, . . . ,m} → F, then we know f(j) ∈ F for
all 1 ≤ j ≤m, and conversely, if we know the values of f(j), 1 ≤ j ≤m, then we know
exactly which function f is.) Since xk ∶= f(k) ∈ F can be arbitrary, we see that

FΛm = {(x1, x2, . . . , xm) ∶ xj ∈ F,1 ≤ j ≤m}

is precisely what we call Fm. In other words, Fm is just an abbreviation for FΛm !

1.7. Example. The next example is not so familiar, but demonstrates how
we may construct new, abstract, sets which behave in much the same way as the
familiar sets we have listed above.

Consider V ∶= {αpig + β dog ∶ α,β ∈ F}, with the understanding that
α1 pig + β1 dog = α2 pig + β2 dog

if and only if α1 = α2 and β1 = β2. Given x ∶= α1pig+β1dog and y ∶= α2pig+β2dog,
and given κ ∈ F, define

x + y ∶= (α1 + α2)pig + (β1 + β2)dog
and

κx ∶= (κα1)pig + (κβ1)dog.
Again, x + y and κx ∈ V.

In fact, if z = α3pig + β3dog, then x + y = y + x, (x + y) + z = x + (y + z),
κ1(κ2x) = (κ1κ2)x, and more. Exactly how much more we shall now see. For
example, note that e ∶= 0pig + 0dog has the property that x + e = x = e + x for all
x ∈ V, and that if x = αpig + βdog, then y ∶= (−α)pig + (−β)dog has the property
that x + y = e = y + x.

The commonality in the above examples leads us to invent the following defini-
tion.

1.8. Definition. A vector space (or linear space) over a field F consists
of a non-empty set V equipped with two binary operations

● addition: + ∶ V × V → V, and
● scalar multiplication: ⋅ ∶ F × V → V

which satisfy:
(VS 1) V is closed under addition; that is, if x, y ∈ V, then x + y ∈ V.
(VS 2) For all x, y ∈ V, x + y = y + x.
(VS 3) For all x, y, z ∈ V, (x + y) + z = x + (y + z).
(VS 4) There exists an element 0 ∈ V such that x + 0 = x for all x ∈ V.
(VS 5) For all x ∈ V there exists an element yx ∈ V such that x + yx = 0.
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(VS 6) V is closed under scalar multiplication; that is, if x ∈ V and κ ∈ F, then
κx ∈ V.

(VS 7) For all x ∈ V, 1 ⋅ x = x.
(VS 8) For all x ∈ V and α,β ∈ F, α(βx) = (αβ)x.
(VS 9) For all α ∈ F and x, y ∈ V, α(x + y) = αx + αy.

(VS 10) For all α,β ∈ F and x ∈ V, (α + β)x = αx + βx.
Elements of V are called vectors, while elements of F are called scalars.

1.9. Example. Let F be a field and m,n ∈ N. The set of all m × n matrices
over F forms a vector space over F. That is,

Mm×n(F) ∶= {a = [aij] ∶ aij ∈ F,1 ≤ i ≤m,1 ≤ j ≤ n}.

Given a = [aij], b = [bij] ∈Mm×n(F) and κ ∈ F, we define

a + b ∶= [aij + bij],

and
κa ∶= [κaij].

In particular, Fn is a vector space over F, whether we view elements of Fn as row
vectors or as column vectors.

1.10. Example. Let m ∈ N. Then Cm is a vector space over C. It is also a
vector space over R, and it is even a vector space over Q.

More generally, if V is a vector space over a field F, and if G is a subfield of F,
then V is a vector space over G.

1.11. Example. Let S ≠ ∅ be a set and F be a field. We define

FS ∶= {f ∶ S → F ∶ f a function},

and
F(S) ∶= {f ∈ FS ∶ f(x) = 0 except for finitely many values of x ∈ S}.

Both FS and F(S) are vector spaces over F. Note that FS = F(S) if and only if S is
finite.

1.12. Example. The set C([0,1],K) from Example 1.4 is a vector space over
K, as is the set T2(K) from Example 1.5.
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1.13. Example. Let F be a field. Define the set
F[x] ∶= {p ∶= p0 + p1x +⋯ + pmxm ∶m ∈ N, pk ∈ F,0 ≤ k ≤m}.

The element pj ∈ F is referred to as the jth coefficient of p, and if p ≠ 0, then the
degree of p is defined to be

deg (p) ∶= max{j ∈ N ∶ pj ≠ 0}.
We do not define the degree of the zero polynomial z(x) = 0.

F[x] is the set of polynomials with coefficients in F, and it is a vector space
over F.

If m ∈ N is fixed, then the set Fm[x] ∶= {p ∶= p0+p1x+⋯+pmxm ∶ pk ∈ F,0 ≤ k ≤m}
of all polynomials of degree at most m is also a vector space over F.

1.14. Example. The following sets are all vector spaces over K ∈ {R,C}.
(a) `N∞(K) ∶= {x = (xn)n ∈ KN ∶ supn ∣xn∣ <∞}.
(b) `N1 (K) ∶= {x = (xn)n ∈ KN ∶ ∑n ∣xn∣ <∞}.
(c) c(K) ∶= {x = (xn)n ∈ KN ∶ limn xn exists}.
(d) c0(K) ∶= {x = (xn)n ∈ KN ∶ limn xn = 0}.

1.15. Example. The set V ∶= {αpig + β dog ∶ α,β ∈ F} from Example 1.7 is a
vector space over F.

1.16. Example. Consider the set W ∶= {f ∈ R[0,1] ∶ f(1
2) = 1}. Let

g(x) =
⎧⎪⎪⎨⎪⎪⎩

0 x ≠ 1
2

1 x = 1
2

and h(x) = 1, x ∈ [0,1],

so that g, h ∈W.
Then (g + h)(1

2) = g(1
2) + h(

1
2) = 1 + 1 = 2, which implies that g + h /∈ W. In

particular, W is not a vector space over R.

Having defined a vector space, let us now establish a couple of basic facts about
them that depend only upon the definition, and not upon the specificities of any
given example.

1.17. Proposition. Cancellation
Let V be a vector space over a field F. Let x, y, z ∈ V and suppose that

x + y = x + z.
Then y = z.
Proof. Suppose that x + y = x + z. Choose vx ∈ V such that vx + x = 0. Then

y = 0 + y = (vx + x) + y = vx + (x + y)
= vx + (x + z) = (vx + x) + z = 0 + z = z.

◻



1. VECTOR SPACES: EXAMPLES, DEFINITIONS AND VERY BASIC FACTS 21

1.18. Proposition. Let V be a vector space over a field F.
(a) The element 0 from (VS 4) satisfying x + 0 = x for all x ∈ V is unique.
(b) Given x ∈ V, the element yx ∈ V for which x + yx = 0 is unique. We denote

it by −x.
(c) For any x ∈ V, 0 ⋅ x = 0.
(d) For all κ ∈ F, x ∈ V, we have

(−κx) = −(κx).

(e) For all κ ∈ F, κ0 = 0.
(f) For all κ ∈ F and x ∈ V we have

−(κx) = κ(−x).

Proof.
(a) Suppose that z1, z2 ∈ V and that zi + x = x = x + zi, i = 1,2 for all x ∈ V.

Then
x + z1 = x = x + z2.

By Proposition 1.17, z1 = z2. Thus the neutral element under addition is
unique, and we denote it by 0.

(b) Let x ∈ V, and suppose that y1, y2 ∈ V and x + y1 = 0 = x + y2. By Propo-
sition 1.18, y1 = y2. Since the additive inverse of x is unique, we denote it
by −x.

(c) Let x ∈ V. Then

0 ⋅ x + 0 = 0 ⋅ x = (0 + 0) ⋅ x = 0 ⋅ x + 0 ⋅ x.

By Proposition 1.17, 0 ⋅ x = 0.
(d) Let κ ∈ F and x ∈ V. Then

0 = 0 ⋅ x = (−κ + κ) ⋅ x = (−κ) ⋅ x + κ ⋅ x.

By uniqueness of additive inverses,

−(κx) = (−κ)x.

(e) Let κ ∈ F. Then

κ0 + 0 = κ0 = κ(0 + 0) = κ0 + κ0.

By Proposition 1.17, κ0 = 0.
(f) Let κ ∈ F and x ∈ V. Then

0 = κ0 = κ(x + (−x)) = κx + κ(−x).

By the uniqueness of additive inverses (i.e. (b)), κ(−x) = −(κx) = (−κ)x.
◻
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2. Subspaces

2.1. In many areas of mathematics, we are interested in algebraic objects which
are subsets of larger algebraic objects and which inherit a similar structure using
the operations defined on the larger object. For example, you will have seen in a
previous course that C is a field, and that R ⊆ C is a field using the same operations
of addition and multiplication inherited from C. We say that R is a subfield of C.
Note that Q is a subfield of both R and of C.

In this course, we are studying vector spaces, and so – unsurprisingly – the
substructures we are considering will be called subspaces.

2.2. Definition. Let V be a vector space over a field F. A subset W ⊆ V of V
is called a subspace of V if W is a vector space over F with respect to the addition
and scalar operation it inherits from V.

Keeping in mind that vector spaces are non-empty, we see that in order to be a
subspace of V, W must be non-empty. Let 0 ≠ w ∈ W. Since W is a vector space,
κw ∈W for all κ ∈ F. In particular, if W is a subspace of V, then 0 ⋅w = 0 ∈W.

2.3. Example. With V as above, the sets W1 ∶= V and W2 ∶= {0} are always
subspaces of V. They are called trivial subspaces.

Many properties of vector spaces automatically hold for subsets. In fact, we
have the following:

2.4. Theorem. (The subspace test) Let V be a vector space over F and
W ⊆ V. The following are equivalent:

(a) W is a subspace of V.
(b) W ≠ ∅, and for all κ ∈ F, w1,w2 ∈W we have {κw1,w1 +w2} ⊆W.
(c) W ≠ ∅, and for all κ ∈ F, w1,w2 ∈W we have κw1 +w2 ∈W.

Proof.
(a) implies (b). If W is a subspace of V, then W is itself a vector space, so

by definition, W ≠ ∅. Also by definition, if κ ∈ F, w1,w2 ∈W, then κw1 and
w1 +w2 ∈W.

(b) implies (c). Suppose that (b) holds. Then W ≠ ∅ by hypothesis. Let
κ ∈ F, w1,w2 ∈W. Then κw1 ∈W by (b), and so (κw1) +w2 ∈W, again by
(b). Thus (c) holds.

(c) implies (a). Suppose that (c) holds. Let w1,w2,w3 ∈W and κ ∈ F.
● By (c), 1 ⋅ w1 + w2 = w1 + w2 ∈ W. (Note that 1 ⋅ w1 = w1 because
w1 ∈W ⊆ V, and 1 ⋅ x = x for all x ∈ V.)

● w1 +w2 = w2 +w1 because this holds in V, and W ⊆ V.
● (w1 +w2) +w3 = w1 + (w2 +w3) because this holds in V, and W ⊆ V.
● 0 = −1 ⋅w1 +w1 ∈W.
● −w1 = (−1) ⋅w1 + 0 ∈W.
● κw1 = κw1 + 0 ∈W.



2. SUBSPACES 23

● 1 ⋅w1 = w1 because this holds in V, and W ⊆ V.
● if α,β ∈ F, then α(βw1) = (αβ)w1 because this holds in V, and W ⊆ V.
● κ(w1 +w2) = κw1 + κw2 because this holds in V, and W ⊆ V.
● If α,β ∈ F, then (α + β)w1 = αw1 + βw1 because this holds in V, and
W ⊆ V.

By definition, W is a vector space, and thus W is a subspace of V.
◻

2.5. Exercise. In parts (b) and (c) of the above Theorem, we may replace the
condition that W ≠ ∅ by the condition that 0 ∈W.

2.6. Example.
Let m,n ∈ N and let F be a field. Recall that given T = [tij] ∈ Mm×n(F), we

define the transpose of T to be

T t ∶= [tji] ∈Mn×m(F).

If F = R or F = K, we define the adjoint of T to be T ∗ ∶= [tji], where z denotes
the complex conjugate of z ∈ K. In the case where K = R, T ∗ = T t.

Then (Mn(F))sym ∶= {T ∈Mn(F) ∶ T = T t} is a subspace of Mn(F).

Observe that the set (Mn(C))sa ∶= {T ∈ Mn(C) ∶ T = T ∗} is a vector space over
R, but it is not a vector space over C! (Why not?)

We say that T ∈ Mn(C) is self-adjoint or hermitian if T = T ∗. If F is a field
and S ∈Mn(F) satisfies S = St, we say that S is symmetric.

2.7. Definition. Let n ∈ N and T = [tij] ∈Mn(F). We define the trace of T to
be

tr(T ) ∶= t11 + t22 +⋯ + tnn =
n

∑
k=1

tkk.

We then define
sln(F) ∶= {T ∈Mn(F) ∶ tr(T ) = 0}.

2.8. Example.
Given a field F and n ∈ N, sln(F) is a subspace of Mn(F).

2.9. Example.
Let F ⊆ [0,1] be a closed set. Define

∆F ∶= {f ∈ C([0,1],K) ∶ f(x) = 0 for all x ∈ F}.

Then ∆F is a subspace of C([0,1],K).
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2.10. Example.
(a) Consider V ∶= R, as a vector space over R. Then {0,R} are the trivial

subspaces of V over R. Are there any others?
Suppose {0} ≠W is a subspace of R, and let 0 ≠ w ∈W. For all κ ∈ R,

we must have κw ∈W. But if 0 ≠ w ∈W ⊆ R, then {κw ∶ κ ∈ R} = R, and so
W = R.

That is, the only subspaces of R (as a vector space over R) are the
trivial subspaces.

(b) Consider R2 as a vector space over R. We leave it as an exercise for the
reader to show that if W is a subspace of R2, then W is one of
● {0} or R2 – the trivial subspaces; or
● a line passing through the origin.

(c) Similarly, R3 is a vector space over R, and the subspaces of R3 are of the
form
● {0} or R3 – the trivial subspaces;
● a line passing through the origin; or
● a plane passing through the origin.

2.11. Theorem. Let V be a vector space and (Wλ)λ∈Λ be a family of subspaces
of V. Then

W ∶= ∩λ∈ΛWλ

is a subspace of V.
Proof. Since each Wλ is a subspace of V, we see that 0 ∈Wλ for all λ ∈ Λ. Thus

0 ∈ ∩λ∈ΛWλ ≠ ∅.

Also, if x, y ∈W and κ ∈ F, then for any λ ∈ Λ, x, y ∈Wλ. Since Wλ is a subspace of
V, it follows that κx + y ∈Wλ. Since λ was arbitrary,

κx + y ∈W = ∩λ∈ΛWλ,

and so by the Subspace Test, W is a subspace of V.
◻

2.12. Notation. Given a vector space V over a field F and two non-empty
subsets A,B ⊆ V, we define

A +B ∶= {a + b ∶ a ∈ A, b ∈ B}.

If A = {a}, we usually write a +B instead of {a} +B. Yes, we really are wild like
that.
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2.13. Definition. Let V be a vector space over a field F and let W ⊆ V be a
subspace of V. For v ∈ V, the set

{v} +W ∶= {v +w ∶ w ∈W}

is called the coset ofW containing v. We normally write v+W instead of {v}+W,
and we refer to v as a representative of the coset v +W. .

2.14. Example. Thus, if v ∈ R2, then the coset of W passing containing v is
one of the following.

● If W = {0}, then v +W = {0} = {v}, just the set containing v.
● If W = R2, then v +R2 = R2.
● If W is a line passing through the origin, then v +W is a line parallel to W

but passing through v.

2.15. Example. Thus, if v ∈ R3 and W is a subspace of R3, then the coset of
W passing containing v is one of the following.

● If W = {0}, then v + {0} = {v}; just the set containing v, and if W = R3,
then v +R3 = R3.

● If W is a line in R3 passing through the origin, then v +W is a line parallel
to the line W but passing through v.

● If W is a plane in R3 which contains the origin, then v +W is a plane
parallel to the plane W but passing through v.

2.16. Exercise. We note that in general, the representative of a coset is not
unique. If v ∈ V and W is a subspace of V, then for any w ∈ W, v + w is another
representative of v +W. As we shall soon see, every representative of v +W is of
this form for some w ∈W.

With this in mind – when might the representative of v +W be unique?

2.17. Proposition. Let V be a vector space over a field F and let W be a
subspace of V. Then:

(a) v +W is a subspace of V if and only if v ∈W.
(b) x +W = y +W if and only if x − y ∈W.

Proof.
(a) Suppose first that v +W is a subspace of V. Then 0 ∈ v +W, and therefore

0 = v +w for some w ∈W. But additive inverses are unique in V, and thus
−v ∈W. Since W is a subspace of V, v = (−1)(−v) ∈W.

Next, suppose that v ∈W. Since W is a subspace of V, v +W = {v +w ∶
w ∈ W} ⊆ W. If w0 ∈ W, then w0 − v ∈ W as W is a subspace. But then
w0 = v+(w0−v) ∈ v+W. This shows thatW ⊆ v+W, which in turn implies
that W = v +W. in particular, v +W =W is a subspace of V.
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(b) If x +W = y +W, then x = x + 0 ∈ y +W and so x = y +w for some w ∈W,
i.e., x − y = w ∈W.

Conversely, suppose that x−y ∈W. Then (x−y)+W =W, by part (a).
Hence

y +W = y + ((x − y) +W)
= {y + (x − y) +w ∶ w ∈W}
= {x +w ∶ w ∈W}
= x +W.

◻

2.18. Proposition. Let V be a vector space over a field F, and let W be a
subspace of V. Let

Q ∶= {x +W ∶ x ∈ V}
denote the collection of all cosets of W in V. We define two operations on Q as
follows. Given x +W and y +W ∈ Q and κ ∈ F, we set

(x +W) + (y +W) ∶= (x + y) +W, and
κ(x +W) ∶= (κx) +W.

Then
(a) These operations are well-defined. That is, if x1+W = x2+W and y1+W =

y2 +W, then (x1 + y1) +W = (x2 + y2) +W, and (κx1) +W = (κx2) +W.
(b) Furthermore, Q is a vector space with these operations.

The space Q is called the quotient space of V modulo W, and is usually
denoted by V/W.

Proof.
(a) Suppose that x1+W = x2+W and y1+W = y2+W. Then (x1−x2), (y1−y2) ∈
W. Since W is a subspace of V,

(x1 + y1) − (x2 + y2) = x1 − x2 + y1 − y2 ∈W,

and so by Proposition 2.17,
(x1 + y1) +W = (x2 + y2) ∈W.

Similarly, if x1+W = x2+W, then (x1−x2) ∈W. SinceW is a subspace
of V,

κx1 − κx2 = κ(x1 − x2) ∈W,

and so by Proposition 2.17,
(κx1) +W = (κx2) +W.

(b) We shall prove half of this result, and leave the remaining half as an exercise.
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● If x +W and y +W ∈ Q, then (x +W) + (y +W) = (x + y) +WinQ, so
Q is closed under addition.

● For x +W, y +W, z +W ∈ Q,
((x +W) + (y +W)) + (z +W) = ((x + y) +W) + (z +W)

= ((x + y) + z) +W
= (x + (y + z)) +W
= (x +W) + ((y + z) +W)
= (x +W) + ((y +W) + (z +W)).

Thus addition is associative in Q.
● For all x +W, y +W ∈ Q,

(x +W) + (y +W) = (x + y) +W = (y + x) +W = (y +W) + (x +W).
● For all x +W ∈ Q,

(0 +W) + (x +W) = (0 + x) +W = x +W = (x +W) + (0 +W).
Thus 0 +W is the additive neutral element of Q.

● If x +W ∈ Q, then (x +W) + ((−x) +W) = (x + (−x)) +W = 0 +W, so
(−x) +W = −(x +W).

The remaining parts are similar.
◻

2.19. Example. Let V = R3, viewed as a vector space over R, and let W =
{(x, y, z) ∈ R3 ∶ x + y + z = 0}. Clearly W is a subspace of V.

Then
V/W = {(x0, y0, z0) +W ∶ (x0, y0, z0) ∈ R3}.

If (x0, y0, z0) /∈W, (i.e. if (x0, y0, z0)+W ≠ (0,0,0)+W), then for any (x1, y1, z1) ∈ R3¡
we have that

(x1, y1, z1) +W = α((x0, y0, z0) +W),
where α ∶= x1 + y1 + z1

x0 + y0 + z0
. (Note that the denominator is not zero!).

This shows that V/W “looks one-dimensional” - it just consists of multiples of
one element, namely of (x0, y0, z0) +W.
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Supplementary Examples

S2.1. Example. The set W ∶= {f ∈ K[0,1] ∶ f(1
2) ≠ 0} is not a vector space over

K.

S2.2. Example. The set W ∶= {f ∈ K[0,1] ∶ f(1
3) = 0 = f(2

3)} is a vector space
over K.

S2.3. Example. The set W ∶= {T = [tij] ∈Mn(R) ∶ tij ≥ 0 for all 1 ≤ i, j ≤ n} is
not a vector space over R.

S2.4. Example. Whereas C is a vector space over Q, it is not the case that Q
is a vector space over C.

S2.5. Example. The set D ∶= {f ∶ (0,1) → R ∶ f is differentiable on (0,1)} is a
vector space over R. This is proven in Math 147.

S2.6. Example. The set

R([0,1],R) ∶= {f ∶ [0,1]→ R ∶ f is Riemann integrable on [0,1]}

is a vector space over R. This is proven in Math 148.

S2.7. Example. The set P ∶= {(x,x2) ∶ x ∈ R} is not a subspace of R2.

S2.8. Example. Let m,n ∈ N and suppose that F is a field. Let V be a vector
space over F. Then

Mm×n(V) ∶= {T = [tij] ∶ tij ∈ V,1 ≤ i ≤m,1 ≤ j ≤ n}

is a vector space over F.

In particular, V ∶=M23×7(C([0,1],C)) is a vector space over C. A typical element
of V is a 23× 7 matrix [fij], where each fij is a continuous function from [0,1] into
C.

S2.9. Example. *
Let F be a field and V, W be vector spaces over F. Then

V ⊕W ∶= {(v,w) ∶ v ∈ V,w ∈W}

is a vector space over F, where we set (v1,w1) + (v2,w2) ∶= (v1 + v2,w1 + w2) and
κ(v,w) ∶= (κv, κw) for all (v1,w1), (v2,w2), (v,w) ∈ V ⊕W and κ ∈ F. This is
often called the external direct sum of V and W. Of course, we can extend this
definition using n ∈ N spaces instead of just two. In fact, we can extend it to an
infinite direct sum. We’ll return to this later.
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S2.10. Example. *
Let F be a field, and suppose that Y is a vector space over F. Suppose that V

and W are two subspaces of Y satisfying
(i) V ∩W = {0}, and
(ii) Y = V +W ∶= {v +w ∶ v ∈ V,w ∈W}.

Then we say that Y is the internal direct sum of V andW, and we write Y = V+̇W.

We leave it as an exercise for the reader to show that in this case, there exists a
bijective map T ∶ Y → V ⊕W which satisfies:

T (κy1 + y2) = κTy1 + Ty2 for all κ ∈ F, y1, y2 ∈ Y.
This last condition is the assertion that the map T is “linear”, and when T is
bijective, we refer to it as a linear isomorphism between Y and V ⊕W. We shall
have much more to say about these later in the course.

S2.11. Example. *
Consider a homogeneous system of linear equations over F. That is, sup-

pose that m,n ∈ N and that aij ∈ F for all 1 ≤ i ≤ m,1 ≤ j ≤ n. Consider the system
of equations:

a11x1 + a12x2 + ⋯ + a1nxn = 0
a21x1 + a22x2 + ⋯ + a2nxn = 0

⋮ ⋮ = 0
am1x1 + am2x2 + ⋯ + amnxn = 0

The solution set of this system, namely the set S of all n-tuples x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Fn

which satisfy this set of equations is a vector space over F. (Why is S ≠ ∅?)

S2.12. Example.
Let n ∈ N and let F be a field. Let T = [tij] ∈Mn(F) and suppose that ∑ni=1 tii ≠ 0.

Then
Mn(F)/sln(F) = {κT + sln(F) ∶ κ ∈ F}.
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Appendix

A2.1. It was Descartes who first determined that points in our usual three-
dimensional Euclidean space could be described by ordered triples, and similarly
points in two-dimensional space could be described by order pairs. The current
definition of a vector space appears to be due to Giuseppe Peano. He’ll be the one
you want to blame if the going gets tough, not me.

Incidentally, the emergence of vector spaces of functions is due to a number of
people, including Lebesgue, Banach and Hilbert.

A2.2. In Definition 2.2.2, we required that a subspaceW of a vector space V over
a field F must carry the addition and scalar multiplication operations it inherits from
V. To be very precise, the addition operator + is V is really the map + ∶ V × V → V
that sends an ordered pair (x, y) to x + y. When talking about a subspace W, we
really mean +∣W ∶W×W →W, which means that we are restricting both the domain
of + toW ×W, as well as the codomain of + toW. ForW to be a subspace, we must
know that W is closed under the addition operation in V. This is a consequence
of the Subspace Test. Similarly, the scalar multiplication of W is really the scalar
multiplication of V restricted to the domain F ×W, with codomain W. Again, for
W to be a subspace, it is necessary thatW be closed under the scalar multiplication
operation on V.
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Exercises for Chapter 2

Exercise 2.1.
Let V be a vector space over a field F and let W and Y be subspaces of V. Give

necessary and sufficient conditions for W ∪Y to be a subspace of V.

Exercise 2.2.
Note that Q is a subfield of R. If V is a vector space over R, prove that V is a

vector space over Q. Is the converse true?

Exercise 2.3.*
Let Λ ≠ ∅ be a set, and for each λ ∈ Λ, let Vλ be a vector space. Let V ∶= ∪λ∈ΛVλ,

and define
∏
λ∈Λ
Vλ ∶= {f ∶ Λ→ V ∶ f(λ) ∈ Vλ for all λ ∈ Λ}.

We refer to this as the direct product of the spaces Vλ.
We normally write

(xλ)λ∈Λ
to denote the function f ∶ Λ ∈ V for which xλ ∶= f(λ) for all λ. In fact, when Λ is
understood, we even abbreviate this to (xλ)λ.

Given (xλ)λ and (yλ)λ ∈∏λ Vλ, and given κ ∈ F, define
(xλ)λ + (yλ)λ ∶= (xλ + yλ)λ

κ(xλ)λ ∶= (κxλ)λ.
Prove that ∏λ Vλ is a vector space over F with these operations.

Note: this is not the first time you have seen this sort of thing. A sequence
(xn)n of real numbers is really just a function f ∶ N → R, where xn ∶= f(n) for all
n ≥ 1. All we have done is to change the index set from the natural numbers to an
arbitrary index set, which amounts to changing the domain of the function from N
to Λ.

If Λ is finite, this becomes a more familiar notion. By relabelling, we assume
that Λ = {1,2, . . . , n} for the appropriate n ∈ N (namely n is the cardinality of Λ, i.e.
the number of elements in Λ), and then

∏
λ∈Λ
Vλ = V1 × V2 ×⋯ × Vn = {(x1, x2, . . . , xn) ∶ xj ∈ Vj ,1 ≤ j ≤ n}.

Finally, if Vi = Vj ,1 ≤ i, j ≤ n, then

∏
λ∈Λ
Vλ = Vn1 ,

the set of n-tuples with entries in V1. N
When Λ is infinite, the notion of direct sum also exists, and is defined as

⊕λ∈ΛVλ ∶= {(xλ)λ∈Λ ∶ xλ = 0 for all but finitely manyλ ∈ Λ}.
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The Subspace Test may be applied to the direct sum to prove that it is a subspace
of the direct product. (When Λ is finite, the direct sum and the direct product
coincide.)

Exercise 2.4.
Is Q a subspace of R? (Think about this one!)

Exercise 2.5.
Recall the vector space V ∶= {αpig + β dog ∶ α,β ∈ K} from Example 1.7. Let

W ∶= {αpig + 7αdog ∶ α ∈ K}. Determine whether or not W is a subspace of V.

Exercise 2.6.
Let F be a field, n ∈ N, and define

Tn(F) ∶= {T = [tij] ∈Mn(F) ∶ tij = 0 if 1 ≤ j < i ≤ n}.
Prove that Tn(F) is a subspace of Mn(F).

Exercise 2.7.
Let V be a vector space over a field F and let {xλ ∶ λ ∈ Λ} be a non-empty

collection of vectors in V. Define

W = {
n

∑
j=1

κjxλj
∶ n ∈ N, κj ∈ F, λj ∈ Λ,1 ≤ j ≤ n}.

Prove or disprove that W is a subspace of V.

Exercise 2.8.*
Let V and W be vector spaces over the same field F. A map T ∶ V →W is said

to be linear if
T (κx + y) = κTx + Ty for all κ ∈ F, x, y ∈ V.

Let L(V,W) ∶= {T ∶ V →W ∶ T is linear}. Prove that L(V,W) is a vector space over
F.

Exercise 2.9.
Consider V = Rn as a vector space over R, and for 1 ≤ k ≤ n, define ek ∶=

(0,0, . . . ,0,1,0, . . .0), where the unique “1” appears in the kth position. Let W be
a vector space over R, and let w1,w2, . . . ,wn ∈W.

Prove that there exists exactly one linear map T ∶ V → W such that Tek = wk,
1 ≤ k ≤ n.

Exercise 2.10.*
Let V and W be vector spaces over the same field, and let T ∈ L(V,W) be a

fixed linear map. The kernel of T is the set kerT ∶= {x ∈ V ∶ Tx = 0}, while the
range of T is the set ranT ∶= {Tx ∶ x ∈ V}.

Prove that ker T is a subspace of V and that ranT is a subspace of W.
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Exercise 2.11.
Let F be a field. Recall from Exercise 1.6 above that Tn(F) is a vector space

over F. Let Wn ∶= {T ∈ Tn(F) ∶ tr(T ) = 0}.
(a) Prove that Wn is a subspace of Tn(F).
(b) Find a matrix A ∈ T2(F) such that

T2(F)/W2 = {α(A +W) ∶ α ∈ F}.

(c) Let Y ∶= {W = [w11 0
0 w22

] ∶ w11,w22 ∈ F,w11 +w22 = 0}. Find two matrices

A,B ∈ T2(F) such that
T2(F)/Y ∶= {α(A +Y) + β(B +Y) ∶ α,β ∈ F}.

Can you extend your construction to the case where n ≥ 3?





CHAPTER 3

Linear spans and linear independence

I can speak Esperanto like a native.
Spike Milligan

1. Linear spans

1.1. The two most important concepts in vector space theory are those of the
linear span and of linear independence (or the dual notion, linear depen-
dence) of a given set S of vectors in a vector space V over a field F.

We begin by adopting the practice of simply writing “a vector space” instead of
“a vector space over a field F” when there is only one field being considered. When
multiple fields come into play at once and we wish to emphasise this – we might
be looking at the “dimension” of C as a vector space over C, over R, or even over
Q – we will have to explicitly mention which field we are dealing with at any given
moment.

1.2. With the above convention, we let V be a vector space and S ⊆ V be a
non-empty set of vectors. The set S may be finite or infinite. To understand linear
spans, I would like to make an analogy which will hopefully be of use to you.

Suppose that V = R2 as a vector space over the field Q, and that ∅ ≠ S ⊆ V.
Imagine that you have a robot stationed at the origin (0,0) ∈ R2 that can move
around in R2. The issue is that it is only programmed to take very specific (multiples
of, or scaled) “steps”. The steps in question are precisely those determined by
elements of S; and the “multiple” in question means that we can multiply that
step in S by an element κ ∈ F - in this case F = Q. If 0 ≠ s ∈ S and κ ∈ Q is negative,
then the step κs means that the step is taken in the exact opposite direction of that
of s, and the length of the step is ∣κ∣ times the length of the step s. No other kinds of
steps are permitted. We shall give a precise definition of linear combinations in just
a moment, but for the time being, let’s agree that a linear combination of elements
of S means that

● we allow the robot to concatenate these scaled steps a finite number of
times – each time taking a “scaled step” as above. So - we are adding a
finite number of “extended permissible steps” together.

35
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The notion of “the linear span of S” is the answer to the question: starting at
the origin (0,0), to which points in R2 can our robot walk?

This is the intuition, and not a mean ice-breaker at the kind of parties to which
we are likely to be invited. Let us now formalise it, that is, let us make it precise so
that we can do mathematics. Both at those parties and elsewhere.

1.3. Definition. Let V be a vector space over a field F and ∅ ≠ S ⊆ V. A vector
x ∈ V is said to be a linear combination of vectors in S if there exists a finite
number of vectors u1, u2, . . . , un ∈ S and scalars κ1, κ2, . . . , κn ∈ F such that

x = κ1 u1 + κ2 u2 +⋯ + κn un.

We refer to the κj’s as the coefficients of x relative to {u1, u2, . . . , un}.
We write span S to denote the set of all possible linear combinations of elements

of S, and we call this the linear span of S.
Note: By convention, we define span∅ ∶= {0}.

At this point, it might – no, make that it would – be a good idea for the reader
to look at Exercise 2.7 to see if anything looks familiar.

1.4. Remark. With this level of generality, the coefficients of a vector x ∈ V
relative to {u1, u2, . . . , un} are not necessarily uniquely determined. For example, if
V = R2 as a vector space over R, and u1 = u2 ∈ V, then 2u1 + 5u2 = 7u2 = 3u1 + 4u1.
In fact, 2u1 + 5u2 = κ1u1 + κ2u2 whenever κ1 + κ2 = 7. In this case, the coefficients
are non-unique because of (essentially) trivial reasons, and we can get around this
particular “non-uniqueness issue” by requiring all of the uj ’s to be distinct. Another
trivial reason why the linear combination is not “unique” is that if x = κ1u1 + κ2u2
and if u3 /∈ {u1, u2}, then x = κ1u1 + κ2u2 + 0u3. Again, we can get around this
“non-uniqueness issue” by asking that all of the coefficients of the vectors uj should
be non-zero.

This still does not solve the problem of “non-uniqueness”, however. With V = R2

as above, if we let S = {u1 = (1,0), u2 = (0,1), u3 = (1,1)}, and if we set x =
(2,1), then x = 2u1 + 1u2 = u1 + u3. This lack of uniqueness is in no way trivial,
and we shall examine it more closely below. In fact, this last example of “non-
uniqueness” represents the notion of “linear dependence”, which is one of the most
crucial concepts we shall deal with in this course.

1.5. Example.
(a) Let V = R3, F = R and S = {(1,0,0), (0,1,0), (0,0,1)}. Then

spanRS = R3.

Indeed, if p ∶= (x0, y0, z0) ∈ R3, then

p = x0(1,0,0) + y0(0,1,0) + z0(0,0,1).
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(b) If V = R3, F = Q and S = {(1,0,0), (0,1,0), (0,0,1)}. Then
spanQS = Q3 ∶= {(q1, q2, q3) ∶ qj ∈ Q,1 ≤ j ≤ 3}.

Indeed, if p ∶= (q1, q2, q3) ∈ Q3, then
p = q1(1,0,0) + q2(0,1,0) + q3(0,0,1).

Thus spanQS ⊇ Q3. Conversely, if α,β, γ ∈ Q, then

α(1,0,0) + β(0,1,0) + γ(0,0,1) = (α,β, γ) ∈ Q3,

so that spanQS ⊆ Q3. Hence equality holds.
(c) Let V = C3, F = C and S = {(q, r,0) ∶ q, r ∈ Q}. We claim that

spanC S = Ω ∶= {(w, z,0) ∶ w, z ∈ C}.
This time S contains infinitely many vectors. However, an arbitrary linear
combination of elements of S is of the form

p ∶= κ1(q1, r1,0) + κ2(q2, r2,0) +⋯ + κn(qn, rn,0),
where κj ∈ C and qj , rj ∈ Q, 1 ≤ j ≤ n, so that

p = (
n

∑
j=1

κjqj ,
n

∑
j=1

κjrj ,0).

In particular, the third coordinate is zero, so spanC S ⊆ Ω.
Conversely, given (w, z,0) ∈ Ω, we have

(w, z,0) = w(1,0,0) + z(0,1,0) ∈ spanC S,
so spanC S = Ω.

(d) Consider the vector space C([0,1],R) over R and the set S = {1, x, x2, x3, . . .} ⊆
C([0,1],R). In Math 147, one learns that

sin x =
∞

∑
n=0

(−1)n+1

n!
x2n+1.

Nevertheless, sinx /∈ spanR S.
The key is that a linear combination can only involve finitely many

elements of S at a time. So how do we know that there isn’t some other
finite linear combination of vectors in S, say p(x) ∶= p0 + p1x + p2x

2 + ⋯ +
pmx

m, satisfying p(x) ∶= sinx? Hint: consider derivatives!

Given a vector space V, let Subsp(V) ∶= {W ∶W is a subspace of V}. As seen in
Chapter One, we may partially order Subsp(V) by inclusion, so that for subspaces
Y and Z of V, Y ≤ Z if Y ⊆ Z. If S ⊆ V, then the smallest subspace that
contains S is taken to mean the minimum element M of the partially ordered set
SubspS(V) = {W ∈ Subsp(V) ∶ S ⊆W}. We leave it as an exercise for the reader to
show that

M = ∩{W ∈ Subsp(V) ∶ S ⊆W}.
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1.6. Theorem. Let V be a vector space and S ⊆ V. Then spanS is the smallest
subspace of V that contains S.

That is, if W ⊆ V is a subspace of V and S ⊆W, then spanS ⊆W.
Proof. We claim that

spanS = ∩{W ∈ Subsp(V) ∶ S ⊆W}.

If we can show this, then clearly spanS ⊆ W whenever W is a subspace of V that
contains S.

First observe that if S = ∅, then spanS = {0} by convention, while if S ≠ ∅, then
with s ∈ S, we have that 0 = 0 ⋅ s ∈ spanS. Thus, in either case, 0 ∈ spanS ≠ ∅.

Next note that if x, y ∈ spanS, then there exist s1, s2, . . . , sn, t1, t2, . . . , tm ∈ S,
and α1, α2, . . . , αn, β1, β2, . . . , βm ∈ F such that x = ∑nj=1 αjsj and y = ∑mk=1 βktk.
Suppose that γ ∈ F. Then

γx + y = γ
n

∑
j=1

αjsj +
m

∑
k=1

βktk =
n

∑
j=1

γαjsj +
m

∑
k=1

βktk ∈ spanS.

By the Subspace Test, spanS is a subspace of V. Moreover, s = 1 ⋅ s ∈ spanS for
all s ∈ S, so that spanS contains S. Writing W0 ∶= spanS, we see that

W0 ∈ {W ∈ Subsp(V) ∶ S ⊆W}.

In particular, therefore,

W0 ⊇ {W ∈ Subsp(V) ∶ S ⊆W}.

If W ⊆ V is a subspace of V and W contains S, then for any {s1, s2, . . . , sn} ⊆
S ⊆W and κ1, κ2, . . . , κn ∈ F, have that (as W is a subspace of V),

n

∑
j=1

κjsj ∈W.

Thus
W0 = spanS ⊆ ∩{W ∈ Subsp(V) ∶ S ⊆W}.

Combining these two containments, we find that

spanS = {W ∈ Subsp(V) ∶ S ⊆W},

which completes the proof.
◻

1.7. Definition. A subset S of a vector space V is said to span V (or to
generate V) if

span S = V.
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1.8. Exercise. Let V = C2[x] ∶= {p0 + p1x + p2x
2 ∶ p0, p1, p2 ∈ C}, viewed as a

vector space over C.
(a) The set S1 ∶= {1, x, x2} is a generating set for V.
(b) The set S2 ∶= {1,1+x,1+x+x2, x2, x+x2,3+2ix2,−x+x2} is also a generating

set for V.
(c) The set V is itself a generating set for V. This example has nothing to do

with the specific form of V set out above. If W is any vector space over a
field F, then W is a generating set for W.

1.9. Example. Let F be a field and m,n ∈ N. For 1 ≤ i ≤ m,1 ≤ j ≤ n, define
the matrix Ei,j ∈Mm×n(F) to be the matrix all of whose entries are zero except for
the (i, j)-entry which is 1 ∈ F.

Given A = [aij] ∈Mm×n(F), we have that

A =
m

∑
i=1

n

∑
j=1

aijEij ,

and so {Ei,j ∶ 1 ≤ i ≤m,1 ≤ j ≤ n} is a generating set for Mm×n(F).
We shall refer to the Ei,j ’s as the standard matrix units in Mm×n(F).

1.10. Example. Let V = C([0,1],R), viewed as a vector space over R. Let
S = {1, x, x2, x3, . . .}. We shall define

P ∶= {p0 + p1x +⋯ + pnxn ∶ n ≥ 1, pj ∈ R,0 ≤ j ≤ n}
denotes the set of all polynomials with real coefficients, thought of as continuous
functions restricted to the interval [0,1] (so that P ⊆ C([0,1],R)). (The only differ-
ence between P and R[x] is that we are thinking of elements of R[x] as “abstract
polynomials” in an indeterminate x, whereas we are specifically thinking of elements
of P as real-valued functions on [0,1]. Later, we shall learn how to deal with this
kind of phenomenon and we will be able to “identify” R[x] with P.)

Note that P is then a subspace of V and S is a generating set for P (but not for
V as we have seen above).

Culture: although it is beyond the scope of this course, it can be shown that
any generating set for C([0,1],R) must be uncountable.

1.11. Example. Recall that if p1, p2 and p3 ∈ R3 are three non-collinear points,
and if we set x ∶= p2 − p1, y ∶= p3 − p1, then the (uniquely determined) plane Π
containing these three points is given by

{p1 + αx + βy ∶ α,β ∈ R}.
Thus, letting W ∶= {αx+ βy ∶ α,β ∈ R} = span{x, y}, we see that W is a subspace of
R3, and Π = p1 +W is a coset of that subspace.

1.12. Exercise. Let V = R3. Is (−2,0,3) a linear combination of u ∶= (1,3,0)
and v ∶= (2,4,−1)? How can one decide?
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1.13. Exercise. Let V be a vector space and S1 ⊆ S2 be subsets of V. Then
spanS1 ⊆ spanS2.

In particular, if S1 generates V, then so must any set S2 that contains S1.

2. Linear independence

2.1. We argued in Section 1 above that the linear span of a set S of vectors in
a vector space V is trying to tell us which points in the vector space you can reach
if you start at the origin and you are only allowed to move in (multiples of) the
directions prescribed by the vectors in S.

Of course, since x + y = y + x whenever x and y lie in V, it is always possible
to change the order of the steps that you take to get from the origin 0 to a point
p ∈ spanS. The question of “linear independence” asks whether or not there is
anything other than this that you can do to get back to the origin? In other words,
does S contain “redundant” vectors that you could just as well have done without and
still obtained the same linear span? If so, we shall say that S is linearly dependent.

The above paragraph is, of course, rather vague. We shall need a precise math-
ematical definition of redundancy, which we now provide.

2.2. Definition. Let V be a vector space and S ⊆ V. The set S is said to be
linearly dependent if there exist finitely many distinct vectors y1, y2, . . . , yn ∈ S and
(not necessarily distinct) scalars κ1, κ2, . . . , κn ∈ F, at least one of which is non-zero,
such that

κ1 y1 + κ2 y2 +⋯ + κn yn = 0.
If no such finite subset of S exists, we say that S is linearly independent.

2.3. It follows immediately from the definition that S is linearly independent if
and only if for all choices of distinct vectors y1, y2, . . . , yn ∈ S and scalars κ1, κ2, . . . , κn,
the equation κ1y1 + κ2y2 +⋯κnyn = 0 implies that κj = 0, 1 ≤ j ≤ n.

Secondly, in our definition of linear dependence, we require that at least one,
but not necessarily all, of the κ′js ∈ F should be non-zero. By simply removing any
terms of the linear combination for which the coefficient is zero, we see that we could
just as well have defined linear dependence by requiring that all of the coefficients
κj should be non-zero, and yet ∑nj=1 κjyj = 0.

Given distinct vectors u1, u2, . . . , um in a vector space V, it is clear that if αj ∶= 0,
1 ≤ j ≤ m, then α1u1 + α2u2 +⋯ + αnun = 0. It will be useful to refer to this as the
trivial representation of 0 as a linear combination of u1, u2, . . . , um.

2.4. Example. Let V be a vector space and S ⊆ V. If 0 ∈ S, then S is linearly
dependent.

To see this, note that 0 ∈ S, 0 ≠ 1 ∈ F, and 1 ⋅ 0 = 0, meaning that a non-trivial
linear combination of vectors in S (in this case just the one vector 0 itself) yields 0.
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2.5. Example.
(a) In R3, the set S = {(2,1,3), (−1,0,1), (0,1,5)} is linearly dependent.
(b) In R3, the set S = {(2,1,3), (−1,0,1)} is linearly independent.
(c) Let V = C2 as a vector space over C. Then S = {(1,1), (1 + i,1 + i)} is

linearly dependent.
(d) Let V = C2 as a vector space over R. Then S = {(1,1), (1 + i,1 + i)} is

linearly independent.
A comparison of (c) and (d) shows that the choice of the underlying field is an

integral part of the definition of linear independence/dependence.

2.6. Example. Consider the real vector space
R5[x] = {p0 + p1 x + p2 x

2 + p3 x
3 + p4 x

4 + p5 x
5 ∶ pj ∈ R,0 ≤ j ≤ 5}.

For each 0 ≤ j ≤ 5, define the polynomial
qj(x) = 1 + x +⋯ + xj .

Then S ∶= {q0, q1, q2, q3, q4, q5} is linearly independent.

2.7. Theorem. Let V be a vector space and S ⊆ V be a linearly independent
set. Suppose that x ∈ V ∖ S. The following statements are equivalent:

(a) S ∪ {x} is linearly dependent.
(b) x ∈ spanS.

Proof.
(a) implies (b). Suppose that S ∪ {x} is linearly independent. Then we can

find s1, s2, . . . , sn ∈ S and κ1, κ2, . . . , κn, κn+1 ∈ F, and not all equal to 0 such
that

κ1s1 + κ2s2 +⋯ + κnsn + κn+1x = 0.
If κn+1 = 0, then at least one of the other κj ’s is not zero, proving that
{s1, s2, . . . , sn} is linearly dependent, and thus S is linearly dependent, a
contradiction. Thus κn+1 ≠ 0.

But then

x = (−κn+1)−1κn+1x = (−κn+1)−1
n

∑
j=1

κjsj =
n

∑
j=1

((−κn+1)−1κj)sj ∈ spanS.

(b) implies (a). If x ∈ spanS, then there exist s1, s2, . . . , sn ∈ S and α1, α2, . . . ,
αn ∈ F such that

x =
n

∑
j=1

αjsj .

But then
0 = (−1) ⋅ x + α1s1 + α2s2 +⋯ + αnsn.

Since at least one of the coefficients in this linear combination is non-zero
(namely the coefficient of x, which is −1), S ∪ {x} is linearly dependent.

◻
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2.8. Example. Let V be a vector space and x, y ∈ V with x ≠ y. Then {x, y} is
linearly dependent if and only if one of x and y is a multiple of the other.

(Why didn’t we just say “if and only if y is a multiple of x”?)

2.9. Example. Let n ∈ N and F be a field. The set S ∶= {Ei,j ∶ 1 ≤ i, j ≤ n} of all
matrix units in Mn(F) is both linearly independent and a generating set for Mn(F).
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Supplementary Examples

S3.1. Example. Let F be a field and n ∈ N. Let Ei,j , 1 ≤ i, j ≤ n denote the
standard matrix units of Mn(F). Then S ∶= {Ei,j ∶ 1 ≤ i ≤ j ≤ n} is a spanning set
for the space Tn(F) of upper-triangular n × n matrices over F.

S3.2. Example. Let V =M2(R), and set

S = {[1 0
0 −1] , [

0 1
0 0] , [

0 0
1 0]} .

Then S is a generating set for sl2(R) ∶= {T = [ti,j] ∈M2(R) ∶ tr(T ) = 0}.

S3.3. Example. Recall from Example 2.1.7 the vector space V ∶= {αpig +
β dog ∶ α,β ∈ K}, with the understanding that

α1 pig + β1 dog = α2 pig + β2 dog

if and only if α1 = α2 and β1 = β2.
Then S ∶= {pig,dog} is a spanning set for V, and the understanding we listed

above ensures that pig and dog are linearly independent!
Note that S2 ∶= {pig + dog,pig − dog} is another spanning set for V. Are

y1 ∶= pig + dog and y2 ∶= pig − dog linearly independent?

S3.4. Example. Let p ∈ N be a prime number and recall that F ∶= Zp is a field.
As in Example 1.??, for any m ≥ 1, Fm may be thought of as a vector space over F
– either as row vectors, or as column vectors.

How many vectors are there in V ∶= (Z3)4? An arbitrary element of (Z3)4 looks
like x = (x1, x2, x3, x4), where xj ∈ Z3 for each 1 ≤ j ≤ 4. This yields 81 = 34 possible
vectors. A spanning set for V is V itself, but more interestingly, if we set e1 =
(1,0,0,0), e2 = (0,1,0,0), e3 = (0,0,1,0) and e4 = (0,0,0,1), then E ∶= {e1, e2, e3, e4}
is a spanning set for V which is also linearly independent.

S3.5. Example. Let V be a vector space over a field F, and suppose that
{Wλ}λ∈Λ is a collection of subspaces of V. Then

W ∶= ∩λ∈ΛWλ

is a subspace of V.
Indeed, since each Wλ is a subspace of V, we have that 0 ∈Wλ for all λ ∈ Λ. But

then 0 ∈W, so W ≠ ∅.
If x, y ∈W and κ ∈ F, then for each λ ∈ Λ, x, y ∈Wλ and since Wλ is a subspace

of V,
κx + y ∈Wλ for allλ ∈ Λ.

Hence κx + y ∈W, so W is a subspace of V.
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S3.6. Example. Suppose that x = (3,7), y = (−π, e) and z = (−4,1) ∈ R2,
the latter viewed as a vector space over R. We claim that S = {x, y, z} is linearly
dependent.

To see this, we try to solve the equation:
α1x + α2y + α3z = 0,

which translates to the system of equations
3α1 − πα2 − 4α3 = 0
7α1 + eα2 + 1α3 = 0.

This, like every homogeneous system of m equations in n variables (where m < n),
has infinitely many solutions.

In this particular instance, we can set α2 ∶= t, and then we must solve
3α1 − 4α3 = πt
7α1 + 1α3 = −et.

Adding four times the second row to the first yields:
31α1 = (π − 4e)t,

or equivalently,
α1 =

π − 4e
31

t,

and plugging this into the second equation yields

α3 = −et −
7(π − 4e)

31
t.

The point is that each choice of t ∈ R yields a choice of α1, α2, α3 ∈ R which imple-
ments the linear dependence of x, y and z.

For example, we can take t = 1, α1 = π−4e
31 , α2 = 1 and α3 = −e − 7(π−4e)

31 .

This technique of solving the problem leads one to ask: can we find three vectors
x, y, z ∈ R2 such that S = {x, y, z} is linearly independent?

S3.7. Example. We know that R is a vector space over R. Let S = {1, π}.
Then S is linearly dependent. Indeed, we must solve the equation

κ1 ⋅ 1 + κ2π = 0.
This admits an easy solution: take κ1 = −π and κ2 = 1. (This solution is not unique.)

However, R is also a vector space over Q. Viewed this way, S is linearly inde-
pendent. Indeed, consider α1, α2 ∈ Q – not both equal to zero – satisfying

α1 ⋅ 1 + α2 ⋅ π = 0.
It is easy to see that if α1 ≠ 0, then we can’t have α2 = 0, while if α2 ≠ 0, then α1 ≠ 0.
Hence both α1, α2 are non-zero.

But then
π = −α1

α2
∈ Q,
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which is known to be false! (If we don’t know that this is false – replace π by
√

2 /∈ Q.
This you should be able to prove!)

S3.8. Example. Recall that in Example 1.?? we defined c0(R) ∶= {x = (xn)n ∈
RN ∶ limn xn = 0}.

For each n ≥ 1, define en ∶= (0,0, . . . ,0,1,0,0, . . .), where the unique “1” occurs
in the nth coordinate. Let S ∶= {e1, e2, e3, . . .}. Then

spanS = c00(R) ∶= {x = (x1, x2, x3, . . .) ∶ xj = 0 except for finitely many j ∈ N}.

As such, the vector y ∶= (1, 1
2 ,

1
3 ,

1
3 , . . .) ∈ c0(R), but y /∈ spanS.

S3.9. Example. Let V be a vector space over K and suppose that S ∶= {x, y} ⊆
V is linearly independent. We claim that the set S0 ∶= {x − y, x + y} is also linearly
independent. Indeed, if α,β ∈ K are not both zero and α(x − y) + β(x + y) = 0, then

(α + β)x + (−α + β)y = 0.

But S is linearly independent by hypothesis, and so α + β = 0 = −α + β, from which
we deduce that α = 0 = β, and thus S0 is linearly independent.

Something interesting happens, however, when the characteristic of the field is
two. (In case you are not familiar with the characteristic of a field, we shall consider
the special case where F = Z2 (which just so happens to have characteristic two).

Thus, let V ≠ {0} be a vector space over the field Z2, and suppose that S ∶=
{x, y} ⊆ V is linearly independent. Then S0 ∶= {x − y, x + y} is never linearly inde-
pendent. The reason is that in this case, −y = y (because −1 = 1 in Z2), and thus
x − y = x + y, meaning that

1 ⋅ (x − y) + (−1) ⋅ (x + y) = 1 ⋅ (x − y) + 1 ⋅ (x + y) = 0.

Fields of characteristic two play a special role in vector space and matrix theory,
and a great many theorems include a phrase such as: “let V be a vector space over
a field of characteristic not equal to two”. Just saying.

S3.10. Example. Let V ∶= R, viewed as a vector space over Q. Let p and q ∈ N
be distinct prime numbers. Then S ∶= {√p,√q} is linearly independent.

Indeed, suppose that α,β ∈ Q and α
√
p + β√q = 0. Note that by multiplying by

a sufficiently large integer (namely the product of the denominators of α and β), we
may assume without loss of generality that α and β are integers!

Hence

0 = (α√p + β√q)2

= α2p + 2αβ√pq + β2q,

whence
√
pq = −α

2p + β2q

2αβ
∈ Q.
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Write √
pq = a

b , where a, b ∈ Z and a and b have no common prime factors. Then

pq = a
2

b2
,

so p must divide a2 and hence it must divide a. But then p does not divide b and
so p2 divides a2 and thus a2

b2 = pq, a contradiction.
Thus S is linearly independent.

If p, q, and r ∈ N are three distinct prime numbers, is S3 ∶= {√p,√q,
√
r} linearly

independent (over Q)? What if we consider
S∞ ∶= {

√
2,

√
3,

√
5,

√
7, . . .},

the set of square roots of every prime number. Is S∞ linearly independent in R over
Q?
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Appendix

A3.1. Linear algebra pervades many areas of mathematics. To wit.
If α ∈ R, then we say that α is algebraic if there exist finitely many integers

κ0, κ1, . . . , κn – not all equal to zero!!! – such that
κ0α

0 + κ1α
1 + κ2α

2 +⋯κnαn = 0.
Otherwise, we say that α is transcendental.

Note that this condition is equivalent to the existence of rational numbers
γ0, γ1, . . . , γn (again, not all equal to 0) such that

γ0α
0 + γ1α

1 + γ2α
2 +⋯γnαn = 0.

(You should convince yourselves that if the γj ’s as above exist, then so do the κj ’s.)
As such, the question of whether or not α ∈ R is algebraic or transcendental

becomes a question of whether the set
S ∶= {1, α,α2, α3, . . .}

is “linearly dependent” or “linearly independent” in R over the field Q.

In case you are not aware of this fact: both e and π are transcendental. The
proofs are not entirely trivial.

Note that α ∶=
√

2 is algebraic, as can be seen by taking κ0 = 2, κ1 = 0 and
κ2 = −1 to get

κ0α
0 + κ1α

1 + κ2α
2 = 2 ⋅ 1 + 0 ⋅

√
2 + (−1) ⋅ (

√
2)2 = 2 − 2 = 0.

Culture. Is the set Λ of all algebraic numbers countable or uncountable?



48 3. LINEAR SPANS AND LINEAR INDEPENDENCE

Exercises for Chapter 3

Exercise 3.1.
Find a finite generating set for the set (Mn(R))sym of symmetric matrices over

R.

Exercise 3.2.
Note that Q is a subfield of R. If V is a vector space over R, prove that V is a

vector space over Q. Is the converse true?

Exercise 3.3.
Consider the set S ∶= {sinx, cosx, sin(2x), cos(2x), sin(3x), cos(3x)} in the real

vector space C([0,1],R). Is S linearly dependent, or linearly independent?

Exercise 3.4.*
Let V be a vector space over a field F, and suppose that S1 ⊆ S2 ⊆ V. Prove that

if S1 is linearly dependent, then so is S2. Thus, if S2 is linearly independent, then
so is S1.

That is, any subset of a linearly independent set is linearly independent. This
should satisfy our “intuition”. If a set has no built-in redundancy, we shouldn’t
expect any of its subsets to have any redundancy. Of course, intuition is not proof
– you are required to produce the latter!

Exercise 3.5.*
Let V be a vector space over a field F, and suppose that S ⊆ V. Show that S is

linearly dependent if and only if there exists a proper subset S0 ⊆ S of S (proper
here means that S0 ≠ S) such that

spanS0 = spanS.

Exercise 3.6.
Let V be a vector space over a field F, and suppose that S is a spanning set for

V. If W is a subspace of V, then
SQ ∶= {y +W ∶ y ∈ S}

is a spanning set for the quotient space V/W.

Exercise 3.7.
Suppose that V is a vector space over a field F and that W is a subspace of V.

Suppose that L ⊆ V is a linearly independent set.
(a) Does LQ ∶= {y +W ∶ y ∈ L} have to be linearly independent in V/W? Prove

it is true or provide a counterexample to show that it can be false.
(b) Can LQ ever be linearly independent in V/W? Give an example to show

that it can be, or prove that it can never be.
(c) Give a necessary and sufficient condition for LQ to be linearly independent

in V/W.
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Exercise 3.8.
Let V = {0} as a vector space over a field F. Is S1 ∶= ∅ linearly independent or

linearly dependent in V? Is S2 ∶= {0} linearly independent or linearly dependent in
V?

Exercise 3.9.
Let V be a vector space over Q, and suppose that L ∶= {y1, y2, y3} is linearly

independent in V. Let
● w1 ∶= 3y1 − 2y2 + 7y3;
● w2 ∶= 3y1 + 2y2 − 6y3; and
● w3 ∶= y1 + y2 − 3y3.

Determine whether or not L2 ∶= {w1,w2,w3} is linearly independent in V.

Exercise 3.10.*
Let V and W be vector spaces over a common field F. Recall from Exercise 2.8

that a map T ∶ V →W is said to be linear if
T (κx + y) = κTx + Ty for all κ ∈ F, x, y ∈ V.

Suppose that B = {bλ}λ∈Λ ⊆ V is a linearly independent subset of V which also
spans V. For each λ ∈ Λ, let wλ ∈W be arbitrary.

Prove that there exists a unique linear map T ∶ V →W such that Tbλ = wλ for
all λ ∈ Λ.

Compare this with the result from Exercise 2.9. Think about what might be
underlying this phenomenon.





CHAPTER 4

Bases and dimension

If you want to know what God thinks of money, just look at the people
he gave it to.

Dorothy Parker

1. Hamel bases

1.1. The word “basis” appears in more than one area of mathematics, and it
can mean different things to different people. In dealing with vector spaces, one
usually interprets “basis” to mean what is technically known as a “Hamel basis”.
When dealing with so-called Banach or Hilbert spaces (which are vector spaces with
extra properties), there are other types of “bases” that may be more natural and
useful to consider, e.g. Hilbert space bases. Those are, however, not vector space
bases when the underlying space is infinite-dimensional. In this course, we are only
interested in “vector space” bases, i.e. Hamel bases, and it is standard to simply
refer to these as “bases”.

1.2. Definition. A (Hamel) basis for a vector space V is a maximal linearly
independent set B ⊆ V. That is, B is linearly independent, and if B ⊆ D ⊆ V where
D is linearly independent, then D = B.

1.3. Proposition. Let V be a vector space over a field F and let B ⊆ V. The
following are equivalent.

(a) B is a basis for V.
(b) B is linearly independent and generates V.

Proof. This is an immediate consequence of Theorem 3.2.7.
◻

1.4. Example. The set B ∶= ∅ is a basis for V = {0}.

51
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1.5. Example.
(a) Let V = Fn be a vector space over the field F. The standard basis for Fn

is B ∶= {ek}nk=1, where

ek = (0,0, . . . ,0,1,0, . . . ,0),

with the unique “1” appearing at the kth coordinate, 1 ≤ k ≤ n.
(b) Let m,n ∈ N and consider V = Mm×n(F) as a vector space over F. The

standard basis for Mm×n(F) is the set

B ∶= {Ei,j}1≤i≤m,1≤j≤n,

the set of matrix units.
(c) The standard basis for F[x] is B = {1, x, x2, x3, . . .}.
(d) If n ∈ N, the standard basis for Fn[x] is B = {1, x, x2, . . . , xn}.
(e) Consider C([0,1],R) as a vector space over R. Does this vector space have

a basis? If so, what is it?

1.6. Theorem. Let V be a vector space over a field F, and let B ⊆ V. The
following are equivalent:

(a) B is a basis for V.
(b) Given 0 ≠ x ∈ V, there exists a unique choice of non-zero scalars κ1, κ2, . . . ,

κn and distinct vectors b1, b2, . . . , bn ∈ B such that

x =
n

∑
j=1

κjbj .

Note: the order of the terms here doesn’t matter - since addition is commutative in
a vector space, we can always permute the terms. Also, no uniqueness is possible if
we allow zero coefficients, or if we allow repetition of vectors – e.g. if b1 = b2 – and
so to have the definition make sense, we are obliged to add the conditions that we
did.
Proof.

(a) implies (b). Let 0 ≠ x ∈ V = spanB. Thus we can find b1, b2, . . . , bm ∈ B
and α1, α2, . . . , αm ∈ F ∖ {0} such that

x = α1b1 + α2b2 +⋯ + αmbm.

Suppose that we can also find d1, d2, . . . , dn ∈ B and β1, β2, . . . , bn ∈ F ∖ {0}
such that

x = β1d1 + β2d2 +⋯ + βndn.
Let p ∶= ∣{b1, b2, . . . , bm} ∩ {d1, d2, . . . , dn}∣. By reindexing the bi’s and the
dk’s, we may assume without loss of generality that bi = di, 1 ≤ i ≤ p. Thus

{b1, b2, . . . , bm} ∪ {d1, d2, . . . , dn} =
{b1, b2, . . . , bp, bp+1, bp+2, . . . , bm, dp+1, dp+2, . . . , dn}.
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Moreover,

0 = x − x

=
p

∑
i=1

(αi − βi)bi +
n

∑
j=p+1

αjbj +
n

∑
k=p+1

−βkdk.

Since B is linearly independent, we see that αj = 0, p+1 ≤ j ≤m and βk = 0,
p + 1 ≤ k ≤ n. Since αj , βk were non-zero, we conclude that p =m = n, and
then we note that αi = βi, 1 ≤ i ≤ p = m = n, which means that the linear
combination was indeed unique.

(b) implies (a). Suppose that (b) holds. Then every 0 ≠ x ∈ V lies in spanB,
and of course, 0 ∈ spanB, so that spanB = V. Suppose that B is not linearly
independent. Then we can find b1, b2, . . . , bm ∈ B and κ1, κ2, . . . , κm ∈ F∖{0}
such that

0 =
m

∑
j=1

κjbj .

Since V ≠ {0} and spanB = V, there exists 0 ≠ d ∈ B. Then

d = 1d

= 1d +
m

∑
j=1

κjbj

are two distinct linear combinations giving rise to d. By eliminating the
terms of the second expansion with 0 coefficients, we obtain a contradiction
of (b). That is, (b) implies that B is linearly independent, and is thus a
basis.

◻

1.7. Theorem. Let V be a vector space and suppose that S ⊆ V be a finite
spanning set for V. Then S contains a basis B for V.
Proof. Let J ∶= {L ⊆ S ∶ L is linearly independent}. Every L ∈ J is finite with
∣L∣ ≤ ∣S ∣, and so we can choose L0 ∈ J such that ∣L0∣ ≥ ∣L∣ for all L ∈ J .

If s ∈ S ∖ L0, then L0 ∪ {s} is linearly independent, so s ∈ spanL0. Thus S ⊆
spanL0, whence

V = spanS ⊆ spanL0.

Thus L0 is a linearly independent set which spans V, and so it is a basis for V which
is contained in S.

◻
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1.8. Example. Consider Q2[x] ∶= {p = p0+p1x+p2x
2 ∣ p0, p1, p2 ∈ Q} as a vector

space over Q. Let
S = {1,1 + x,2 + x,4 + 2x,x + x2},

and observe that spanS = Q2[x].
Note that B1 ∶= {1,1+x,x+x2} and B2 ∶= {1+x,2+x,x+x2} are both bases for

Q2[x], and Bj ⊆ S, j = 1,2.
It is interesting to note that B1 and B2 have the same number of elements. Is this

just a “fluke”, or is there something behind this? Before answering this question,
we require a Lemma, and an interesting result of Steinitz.

1.9. Lemma. Let V be a vector space over the field F, and let S ∶= {s1, s2, . . . , sm},
T ∶= {y1, y2, . . . , yn} ⊆ V.

(a) If T ⊆ spanS and S ⊆ spanT , then spanS = spanT .
(b) If y ∈ spanS but y /∈ span {s1, s2, . . . , sm−1}, then

sm ∈ span {s1, s2, . . . , sm−1, y},
and so

spanS = span {s1, s2, . . . , sm−1, y}.
(c) If C ⊆ V, then span (S ∪ C) = span ({s1, s2, . . . , sm−1, y} ∪ C).

Proof.
(a) As we have seen, if X ⊆ V is any set, then spanX is the smallest subspace

of V which contains X . In other words,
spanX = ∩{W ∶W is a subspace of V and X ⊆W}.

It follows that if T ⊆ spanS, then spanS is a subspace of V that contains
T , and thus spanS is just one of the spacesW occurring in the intersection
above. Hence

spanT ⊆ spanS.
By symmetry, if S ⊆ T , then spanS ⊆ spanT , and so equality follows.

(b) Let T ∶= {s1, s2, . . . , sm−1, y}.
Since y ∈ spanS, we can find κ1, κ2, . . . , κm ∈ F such that

y = κ1s1 + κ2s2 +⋯ + κmsm.
If κm = 0, then y ∈ span {s1, s2, . . . , sm−1}, a contradiction. Thus κm ≠ 0.

From this it follows that
κmsm = y − κ1s1 − κ2s2 −⋯ − κm−1sm−1,

or equivalently,
sm = (κm)−1y − (κm)−1κ1s1 − (κm)−1κ2s2 −⋯ − (κm)−1κm−1sm−1.

Thus sm ∈ spanT .
Since sj ∈ spanT for all 1 ≤ j ≤ m − 1, we conclude that S ⊆ spanT .

But T ⊆ spanS as well, and so by part (a), spanS = spanT , as claimed.
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(c) Again, we set T = {s1, s2, . . . , sm−1, y}. If C ⊆ V, then

span (S ∪ C) = span (spanS ∪ spanC)
= span (spanT ∪ spanC)
= span (T ∪ C).

◻

1.10. Theorem. (Steinitz’s Replacement Theorem)
Let V be a vector space, n ∈ N and suppose that S ⊆ V is a set with n elements.

Suppose that L ∶= {y1, y2, . . . , ym} ⊆ spanS is linearly independent. Then
(a) there exists H ⊆ S such that H has n −m elements, and

spanS = span (L ∪H).

(b) In particular, m ≤ n.
Proof. We shall argue by induction on m. If m = 0, there is nothing to prove.

Now suppose that m ≥ 1, and that the result holds whenever L has fewer than m
elements. We shall prove that the result holds when L has m elements, completing
the induction step and thereby the proof as well. Note that the induction step
implies that n ≥ (m − 1).

Let L = {y1, y2, . . . , ym} ⊆ V be a linearly independent set. Then {y1, y2, . . . , ym−1}
is a linearly independent set with m − 1 < m elements, and so our induction hy-
pothesis implies that we can find a subset H0 ⊆ S with n − (m − 1) elements, say
H0 = {tm, tm+1, tm+2, . . . , tn} ⊆ S such that

spanS = span ({y1, y2, . . . , ym−1} ∪H0).

Recall that ym ∈ spanS, but ym /∈ span {y1, y2, . . . , ym−1}, as L is linearly inde-
pendent. Therefore we can choose m ≤ q ≤ n such that

ym ∈ span {y1, y2, . . . , ym−1, tm, tm+1, . . . , tq},

but
ym /∈ span {y1, y2, . . . , ym−1, tm, tm+1, . . . , tq−1}.

In particular, we must have n ≥m (otherwise ym /∈ spanS). By Lemma 1.9,

span {y1, y2, . . . , ym−1, tm,tm+1, . . . , tq−1, tq} =
span {y1,y2, . . . , ym−1, tm, tm+1, . . . , tq−1, ym},

and so with H = {tm, tm+1, . . . , tq−1, tq+1, . . . , qn}, again by Lemma 1.9, we have

spanL ∪H = span ({y1, y2, . . . , ym−1} ∪H0) = spanS.

◻
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1.11. Corollary. Let {0} ≠ V be a vector space over a field F with a finite basis
containing d ∈ N elements. Then every basis for V has exactly d elements.
Proof. Let B and D be bases for V, and suppose that B has d elements. We claim
that D has at most d elements. Indeed, if D has more than d elements, then we can
choose a linearly independent subset L = {y1, y2, . . . , yd+1} ⊆ D.

But then L ⊆ V = spanB, and so by Steinitz’s Theorem above, d + 1 < d, an
obvious contradiction. Thus D has at most d elements. We can therefore say that
D has m ≤ d elements.

Interchanging the roles of B and D, we conclude that d ≤m, whence d =m.
◻

Of course, the only basis for V = {0} is B ∶= ∅, so the above result also applies
in this case.

In light of Corollary 1.11, the notion of dimension is well-defined.

1.12. Definition. A vector space V over a field F is said to be finite-dimen-
sional if it admits a basis B consisting of a finite number of elements. In this case,
by Corollary 1.11, any two bases for V over F contain the same number of elements
– say n – and we say that the dimension of V over F is n. We write dimF V = n,
or, if F is understood, dim V = n.

If V does not admit a finite basis over F, then we say that V in infinite-
dimensional, and we write dimF V =∞.

1.13. Example.
(a) If V = {0}, then B ∶= ∅ is a basis for V, so dim V = 0.
(b) If V = Fn for some n ≥ 1, then dim V = n.
(c) The space Fn[x] is n + 1-dimensional.
(d) Let m,n ∈ N. The space Mm×n(F) is mn-dimensional over F.
(e) Note: the underlying field is crucial to the notion of dimension! For exam-

ple, dimC C = 1, while dimR C = 2, and dimQ C =∞.

1.14. Corollary. Let n ∈ N, and let V be an n-dimensional vector space over a
field F.

(a) If S ⊆ V is a generating set for V, then ∣S ∣ ≥ n. If S = n, then S is in fact
a basis for V.

(b) Is L ⊆ V is linearly independent, then ∣L∣ ≤ n, and if ∣L∣ = n, then L is a
basis for V.

(c) Every linearly independent subset L of V can be extended to a basis for V.
Proof.

(a) Let S be a generating set for V, so that spanS = V. Since dim V = n,
we can find a basis B = {b1, b2, . . . , bn} for V. By definition, B is linearly
independent, and obviously B ⊆ V = spanS.

By Steinitz’s Theorem, S has at least n elements.
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Suppose that ∣S ∣ = n. By Theorem 1.7, there exists a subset T ⊆ S
which is a basis for V. But then T must have n elements (as every basis
for V has n elements), which implies that S = T is a basis for V.

(b) Let L ⊆ V be a linearly independent set, and let B = {b1, b2, . . . , bn} be a
basis for V. Then B generates V, and so L ⊆ spanB. By Steinitz’s Theorem,
L can have at most n elements.

Furthermore, if ∣L∣ = n, then Steinitz’s Theorem implies that we can
find a subset H ⊆ B with n − n = 0 elements such that

V = spanB = span (L ∪H) = spanL.

Thus L spans V and L is linearly independent; i.e. L is a basis for V.
(c) Let L be a linearly independent set in V, and let B = {b1, b2, . . . , bn} be

a basis for V. In particular, B generates V, and so L ⊆ spanB. By (b),
m ∶= ∣L∣ < n. By Steinitz’s Theorem, we can find a subset H ⊆ B such that
H has n −m elements, and

span (L ∪H) = spanB = V.

Thus L ∪H is a spanning set for V and L ∪H has exactly n elements. By
part (a), L ∪H is a basis for V (which obviously extends L).

◻

1.15. Example.
(a) Since L ∶= {(2,1), (1,7)} ⊆ R2 is linearly independent over R, it is a basis

for R2.
(b) The set T ∶= {(1,6,9,1), (2,1,3,1), (8,8,8,1)} ⊆ R4 cannot possibly gener-

ate R4, since it contains only three vectors. Since T is a linearly independent
set, it generates a three-dimensional subspace of R4.

1.16. Theorem. Let W be a subspace of a finite-dimensional vector space V
over a field F. Then W is finite-dimensional, and dimFW ≤ dimF V.

Moreover, if dimFW = dimF V, then W = V.
Proof. Let n ∶= dimF V. If W = {0}, then ∅ is a basis for W and so dim W = 0 ≤ n.

Otherwise, we may choose an element 0 ≠ w1 ∈ W. Clearly {w1} is linearly
independent. If W = span {w1}.

● If span {w1} = W, we stop. Otherwise there exists w2 ∈ W ∖ span {w1},
which implies that {w1,w2} is linearly independent.

● If span {w1,w2} =W, we stop. Otherwise there exists w3 ∈W∖span {w1,w2},
which implies that {w1,w2,w3} is linearly independent.

● More generally, having chosen linearly independent vectors w1,w2, . . . ,wk ∈
W, if span {w1,w2, . . . ,wk} =W, we stop. Otherwise there exists wk+1 ∈W∖
span {w1,w2, . . . ,wk}, which implies that {w1,w2, . . . ,wk,wk+1} is linearly
independent.
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This process must stop after a finite number – say m – of steps, since any lin-
early independent subset of W is a linearly independent subset of V, and thus
by Corollary 1.14, it can have at most n elements. In particular, m ≤ n, and
{w1,w2, . . . ,wm} must span W (that being the reason why we stopped), implying
that dimFW =m ≤ n = dimF V.

If m = n, then {w1,w2, . . . ,wn} is a linearly independent set inW ⊆ V, and hence
it must be a basis for V, implying that W = span {w1,w2, . . . ,wn} = V.

◻

1.17. Example.
Let W ∶= {p = p0 + p1x+ p2x

2 ∈ R2[x] ∶ p0 + 2p1 + 3p2 = 0}. Then W is a subspace
of R2[x], and

B ∶= {1 + 4x − 3x2,3x − 2x2}
is a basis for W.

1.18. Example. The set B ∶= {Eij}1≤i≤j≤n of matrix units in Mn(F) is a basis
for the subspace Tn(F).

1.19. Proposition. Let V be a vector space over a field F, and suppose that
Y,Z are finite-dimensional subspaces V. Then:

(a) Y +Z ∶= {y + z ∶ y ∈ Y, z ∈ Z} is a finite-dimensional subspace of V.
(b) dim (Y +Z) = dim Y + dim Z − dim (Y ∩Z).
(c) Suppose that V = Y + Z. Then V = Y+̇Z if and only if dim V = dim Y +

dim Z.
Hint. Let {u1, u2, . . . , uk} be a basis for Y ∩Z, and extend it to bases for Y and Z
respectively.

Proof.
(a) That Y +Z is a subspace is left as a routine exercise.

Let BY ∶= {y1, y2, . . . , ym} be a basis for Y, and BZ ∶= {z1, z2, . . . , zn} be
a basis for Z. Then

Y +Z = span {y1, y2, . . . , ym, z1, z2, . . . , zn}.
That is, BY ∪ BZ is a finite generating set for Y + Z. By Theorem 1.7,
BY ∪ BZ contains a basis for Y +Z. Thus dim (Y +Z) ≤m + n.

(b) Now Y ∩ Z is a subspace of the finite-dimensional subspace Y + Z, and
as such, Y ∩ Z is itself finite-dimensional. Set k ∶= dim (Y ∩ Z), and let
{u1, u2, . . . , uk} be a basis for Y ∩Z.

By Corollary 1.14, we may extend {u1, u2, . . . , uk} to a basis
ΛY ∶= {u1, u2, . . . , uk, b1, b2, . . . , bm−k}

for Y, and also to a basis
ΛZ ∶= {u1, u2, . . . , uk, d1, d2, . . . , dn−k}

for Z.
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We claim that Ω ∶= ΛY ∪ΛZ is a basis Y +Z. Of course, Ω ⊆ Y +Z, and
so span Ω ⊆ Y +Z. If v = y + z ∈ Y +Z, then y ∈ span ΛY ⊆ span (ΛY ∪ΛZ)
and z ∈ span ΛZ ⊆ span (ΛY ∪ΛZ), whence

y + z ∈ span (ΛY ∪ΛZ) = span Ω.

That is, Ω generates Y +Z. To see that Ω is linearly independent, suppose
that we can find scalars α1, α2, . . . , αk, β1, β2, . . . , βm−k and γ1, γ2, . . . , γn−k
such that

0 =
k

∑
i=1
αiui +

m−k

∑
j=1

βjbj +
n−k

∑
p=1

γpdp.

Then
k

∑
i=1
αiui +

m−k

∑
j=1

βjbj = −
⎛
⎝

n−k

∑
p=1

γpdp
⎞
⎠
∈ Y ∩Z,

so that
k

∑
i=1
αiui +

m−k

∑
j=1

βjbj = δ1u1 + δ2u2 +⋯ + δkuk

for a unique choice of δi, 1 ≤ i ≤ k. In particular, αi = δi, 1 ≤ i ≤ k, and
βj = 0, 1 ≤ j ≤m − k.

Hence

0 =
k

∑
i=1
αiui +

n−k

∑
p=1

γpdp.

But ΛZ is a basis for Z, and so αi = 0, 1 ≤ i ≤ k and γp = 0, 1 ≤ p ≤ n − k.
Since all of the coefficients are zero, Ω is linearly independent. Since it

also spans Y +Z, it is a basis for Y +Z. Thus

dim (Y +Z) = ∣Ω∣
= k + (m − k) + (n − k)
=m + n − k
= dim Y + dim Z − dim(Y ∩Z).

(c) Now V = Y +Z and dim V = dim Y + dim Z − dim (Y ∩Z).
● If V = Y+̇Z, then Y ∩Z = {0}, so dim (Y ∩Z) = 0 and

dim V = dim Y + dim Z.

● If dim V = dim Y +dim Z, then we must have dim (Y ∩Z) = 0, so that
Y ∩Z = {0}, and therefore V = Y+̇Z.

◻
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1.20. Proposition. Let V be a finite-dimensional vector space. If Y is a sub-
space of V, then there exists a subspace Z of V such that

V = Y+̇Z.

Proof. Let n = dim V < ∞. Since Y is a subspace of a finite-dimensional space,
we see that Y is finite-dimensional by Theorem 1.16 and m ∶= dim Y ≤ n. Let
BY ∶= {b1, b2, . . . , bm} be a basis for Y. By Corollary 1.14, we can extend BY to a
basis BV = {b1, b2, . . . , bm, z1, z2, . . . , zn−m} for V.

Define Z = span{z1, z2, . . . , zn−m}. Then V = Y +Z and dim V = dim Y + dim Z.
By Proposition 1.19 above, V = Y+̇Z.

◻

We say that Z is a complement of Y, and this Proposition says that every
subspace of a (finite-dimensional) vector space is complemented. We mention (for
the sake of culture) that the same is every subspace of V is complemented even if V
is infinite-dimensional. Note that the complement need not be unique!!

Continuing with our cultural interlude: in later courses you will discover vector
spaces equipped with a topology – that is, a notion of “open” and “closed” sets.
At that point, the question might arise as to whether a closed subspace of V is
topologically complemented, meaning that it admits a complement in the above sense,
but that that complement is also “closed”. This often fails, and makes life both
difficult and interesting to those studying Functional Analysis. This marks the end
of our cultural interlude. Back to “reality”.

1.21. Example.
Let V = R3 and Y ∶= {x = (x1, x2, x3) ∈ R3 ∶ 2x1 − x2 = 0}. Then Y =

span{(1,2,0), (1,2,1)}, and one complement of Y is

Z1 = span{(0,1,0)},

while another complement of Y is

Z2 = span{(1,1,0)}.

In fact, Y admits infinitely many complements.

1.22. Theorem. Let W be a subspace of a finite-dimensional vector space V.
Let {u1, u2, . . . , uk} be a basis for W, and extend this to a basis

B = {u1, u2, . . . , uk, uk+1, uk+2, . . . , un}

for V. Then
(a) {uk+1 +W, uk+2 +W, . . . , un +W} is a basis for V/W, and
(b) dim V = dim W + dim (V/W).

Proof.
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(a) Let v ∈ V. Since B is a basis for V, we can find scalars α1, α2, . . . , αn ∈ F
such that

v = α1u1 + α2u2 +⋯ + αnun.
Thus

v +W =
n

∑
j=1

αj(uj +W).

For 1 ≤ j ≤ k, uj +W = 0 +W, as uj ∈W. Hence

v +W =
n

∑
j=k+1

αj(uj +W).

That is, {uk+1 +W, uk+2 +W, . . . , un +W} generates V/W.
Next, suppose that αj ∈ F, k + 1 ≤ j ≤ n and that

(
n

∑
j=k+1

αjuj) +W =
n

∑
j=k+1

αj(uj +W) = 0 +W.

Then
(

n

∑
j=k+1

αjuj) ∈W = span {u1, u2, . . . , uk},

say

(
n

∑
j=k+1

αjuj) =
k

∑
i=1
βiui

for an appropriate choice of scalars β1, β2, . . . , βk. Since B is linearly inde-
pendent, we conclude that αj = 0 = βi, 1 ≤ i ≤ k, k + 1 ≤ j ≤ n.

Thus {uk+1 +W, uk+2 +W, . . . , un +W} is linearly independent, and so
it is a basis for V/W.

(b) By part (a),
dim V = n = k + (n − k) = dim W + dim (V/W).

◻

2. Infinite-dimensional vector spaces

2.1. A number of the results we have obtained regarding linear dependence and
independence did not require our vector space to be finite-dimensional. For example,
we saw in Theorem 3.2.7 that if V is a vector space, L ⊆ V is linear independent and
x ∈ V ∖L, then L ∪ {x} is linearly dependent if and only if x ∈ spanL.

So far we have shown that every finite-dimensional vector space V over a field F
admits a (Hamel) basis, and that any two such bases have the same cardinality (i.e.
in this setting, we simply mean “the same number of elements”. The proof that an
arbitrary infinite-dimensional vector space admits a basis is much, much deeper. In
fact, the proof requires a new axiom, independent of the usual Zermelo-Fraenkel
Axioms of set theory. The concept we have in mind is Zorn’s Lemma, which we
developed in Chapter 1. Let’s (finally) put it to good use.
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2.2. Theorem. Let V be a vector space over a field F. Then V admits a basis.
Proof. Let Ω = {L ⊆ V ∶ L is linearly independent}. Since ∅ ∈ Ω, Ω /= ∅.

Let C = {Lλ}λ∈Λ be a chain in Ω, where Ω is ordered by inclusion.
Let

L ∶= ∪λ∈ΛLλ.
Clearly, if L is linearly independent, then L will be an upper bound for C in Ω. Thus
we must prove that L is linearly independent. We argue by contradiction.

Suppose otherwise. Then there exist vectors x1, x2, ..., xn ∈ L and scalars
κ1, κ2, ..., κn ∈ F (not all equal to zero) such that ∑nj=1 kjxj = 0. Now, each xj ∈ Lλj

for some λj ∈ Λ. Since C is a chain, there existsm ∈ {1,2, ..., n} so that xk ∈ Lλk
⊆ Lλm

for all 1 ≤ k ≤ n. But then {x1, x2, ..., xn} ⊆ Lλm and so Lλm is linearly dependent, a
contradiction.

Thus L is linearly independent, and so L ∈ Ω is an upper bound for C.

By Zorn’s Lemma, there exists a maximal element M ∈ F . Suppose that
spanM /= V. Then there exists 0 /= y ∈ V but y /∈ spanM . But then M ∪ {y} is
linearly independent, and M <M ∪ {y}, contradicting the maximality of M .

Hence spanM = V, and M ∈ Ω implies M is linearly independent, so M is a
basis for V.

◻

2.3. Remark. In fact, it can be shown that if B1 and B2 are two bases for a
given vector space V over a field F, then there exists a bijection between B1 and B2.
We say that B1 and B2 have the same cardinality. This allows us to define the
notion of dimension of an infinite-dimensional space as the cardinality of any one of
its bases.

2.4. Remark. A much deeper result than Theorem 2.2 above is that the Axiom
of Choice is equivalent (over the Zermelo-Fraenkel Axioms) to the statement that
every vector space admits a basis. This is due to Blass [Bla84], and the proof is
beyond the scope of this course.

The following result is also known to be equivalent to the Axiom of Choice.
● Let V be a vector space over the field F and suppose that L ⊆ S ⊆ V, where
L is a linearly independent subset of V, and spanS = V. Then there exists
a basis B for V satisfying J ⊆ B ⊆ S.



SUPPLEMENTARY EXAMPLES 63

Supplementary Examples

S4.1. Example. The Lagrange Interpolation Formula. From an abstract
point of view, all bases for a given vector space were created equal. On the other
hand, when dealing with a specific vector space, there may exist some basis or bases
which are, as the saying goes, “more equal than others”. By this we mean that a
certain basis may reduce the number or the complexity of computations required
to resolve certain problems. This is a vague statement which is worth demystifying
with an example.

Consider the case of the vector space Fn[x], where n ∈ N and F is infinite.

Let {θ0, θ1, θ2, . . . , θn} be distinct scalars in an infinite field F. Define the poly-
nomials:

pi(x) ∶=
n

∏
k=0
k≠i

(x − θk)(θi − θk)−1.

Observe that for 1 ≤ j ≤ n,

fi(θj) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if i = j
0 ifi ≠ j.

The elements of L ∶= {p0, p1, p2, . . . , pn} are referred to as Lagrange polynomials,
and it is not hard to see that they lie in Fn[x].

We claim that L is linearly independent. If we can show this, then the fact that
∣L∣ = n + 1 = dim Fn[x] implies that L must be a basis for Fn[x].

To that end, suppose that α0, α1, . . . , αn ∈ F and that
n

∑
i=0
αipi = 0.

It then follows that for each 0 ≤ j ≤ n,

αj =
n

∑
i=0
αipi(θj) = 0,

from which our claim immediately follows.

Now suppose that g ∈ Fn[x] is an arbitrary element. We would like to express g
as a linear combination of our basis L. Normally, this can be an involved process.
However, thanks to our judicious choice of basis, we find that if g = ∑ni=0 βipi, then
for each 0 ≤ j ≤ n,

βj =
n

∑
i=0
βipi(θj) = g(θj),

and thus
g =

n

∑
i=0
g(θi)pi.
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This is called the Lagrange Interpolation Formula, because it tells us that g is
the unique function in Fn[x] which takes on the values g(θj) at θj , 0 ≤ j ≤ n.

S4.2. Example. Let us find the unique polynomial g ∈ R2[x] satisfying g(0) =
1, g(1) = 2 and g(2) = 5.

Following the analysis above, we consider θ0 = 0, θ1 = 1 and θ2 = 2. We then
define

p0(x) = (x − 1)(0 − 1)−1 ⋅ (x − 2)(0 − 2)−1 = 1
2
(x − 1)(x − 2);

p1(x) = (x − 0)(1 − 0)−1 ⋅ (x − 2)(1 − 2)−1 = −(x)(x − 2)

p2(x) = (x − 0)(2 − 0)−1 ⋅ (x − 1)(2 − 1)−1 = 1
2
(x)(x − 1).

Remark. On an exam, it would be worth checking that p0(θj) = δi,j , where δi,j

denotes the Kronecker delta function, i.e. δi,j ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if i = j
0 if i ≠ j.

Arguing as above,

g =
2
∑
i=0
g(θi)pi

= g(θ0)p0 + g(θ1)p1 + g(θ2)p2

= g(0)p0 + g(1)p1 + g(2)p2

= 1p0 + 2p1 + 5p2

= 1
2
(x2 − 3x + 2) + 2(−x2 + 2x) + 5(1

2
x2 − 1

2
x).

S4.3. Example. Note that if F is an infinite field and if θ0, θ1, θ2, . . . , θn are
(n+1) distinct elements of F, then by the Lagrange Interpolation Formula, the only
polynomial q of degree at most n which satisfies q(θj) = 0 for all 0 ≤ j ≤ n is the zero
polynomial.

The (easy) computation is left to the reader.
Of course - there exists a non-zero polynomial r(x) = r0 + r1x + ⋯ + rn+1x

n+1

satisfying r(θj) = 0, 0 ≤ j ≤ n. (Why can we say “of course”?)

S4.4. Example. Recall the vector space V = {αpig + β dog ∶ α,β ∈ K} from
Example 2.1.7. Then {pig,dog} is a basis for V over K!

In the case where K = C, note that B1 ∶= {pig, ipig,dog, idog} is a basis for V
as a vector space over R, as is B2 ∶= {pig, (1 + i)pig,−dog, (3 + ei)dog}.
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S4.5. Example. Let V andW be vector spaces over a field F and suppose that
B1 (resp. B2) is a basis for V (resp. W). Let

B ∶= {(x,0), (0, y) ∶ x ∈ B1, y ∈ B2}.

We claim that B is a basis for the vector space V ×W. To see this, we must show
that B spans V ×W and that B is linearly independent.

● Let (v,w) ∈ V×W. Choose αi ∈ F, xi ∈ B1, 1 ≤ i ≤m such that v = ∑mi=1 αixi.
Similarly, choose βj ∈ F, yj ∈ B2, 1 ≤ j ≤ n such that w = ∑nj=1 βjyj . Then

(v,w) = (v,0) + (0,w)

= (
m

∑
i=1
αixi,0) + (0,

n

∑
j=1

βjyj)

=
m

∑
i=1
αi(xi,0) +

n

∑
j=1

βj(0, yj) ∈ spanB.

● To see that B is linearly independent, suppose that (xi,0), (0, yj) ∈ B,
1 ≤ i ≤ m, 1 ≤ j ≤ n are distinct vectors and that there exist αi, βj ∈ F,
1 ≤ i ≤m, 1 ≤ j ≤ n such that

m

∑
i=1
αi(xi,0) +

n

∑
j=1

βj(0, yj) = (
m

∑
i=1
αixi,

n

∑
j=1

βjyj) = (0,0).

Then ∑mi=1 αixi = 0 = ∑nj=1 βjyj . Since each of the sets {x1, x2, . . . , xm}
and {y1, y2, . . . , yn} is linearly independent, this implies that αi = βj = 0 for
all i and j, proving that B is linearly independent.

Thus B is a basis for V ×W.

Question. Is C ∶= {(b1, b2) ∶ b1 ∈ B1, b2 ∈ B2} also a basis for V ×W?

S4.6. Example. Let V be a vector space over a field F and let x, y ∈ V be
linearly independent vectors. Let J ∶= {x+ y, x− y}. It is interesting to ask whether
or not J is linearly independent.

Suppose that α,β ∈ F and α(x + y) + β(x − y) = 0. Then (α + β)x + (α − β)y = 0,
and since {x, y} is linearly independent,

α + β = 0 = α − β.

From this we see that 2β = 0, and we might be tempted to conclude that β = 0. This,
however, fails miserably if char(F) = 2 - e.g. if F = Z2. In fact, if char(F) = 2, then
1 = −1 in F, and so x + y = x − y, and therefore {x + y, x − y} is linearly dependent.

If char(F) ≠ 2, then 2β = 0 implies that β = 0, whence α = 0, and then {x+y, x−y}
is linearly independent.

This highlights the important fact that in dealing with vector spaces, the case
where the characteristic of the underlying field is 2 must often be treated separately.



66 4. BASES AND DIMENSION

S4.7. Example. Let (M2(C))sa ∶= {T = [tij] ∈ M2(C) ∶ tij = tji,1 ≤ i, j ≤ 2}.
Recall that an element of (M2(C))sa is said to be a self-adjoint matrix, also known
as an hermitian matrix.

We claim that (M2(C))sa is a vector space over R.
Note that if T = [tij], R = [rij] ∈ (M2(C))sa and κ ∈ R, then κT +R = [κtij +rij],

and
κtji + rji = κtji + rji = κtij + rij .

Since the zero matrix clearly lies in (M2(C))sa, it is non-empty, and hence is a
subspace of M2(C), viewed as a vector space over R.

We invite the reader to verify that
● dimR(M2(C)) = 8;
● {E11,E22,E11 +E22, iE12 − iE21} is a basis for (M2(C))sa over R, and so
● dimR(M2(C))sa = 4.

Question. Is (M2(C))sa a vector space over C?

S4.8. Example. Let V be a vector space over a field F and suppose that Y,Z
are subspaces of V. We claim that that the following are equivalent:

(a) Y ∩Z = {0}.
(b) For all 0 ≠ y ∈ Y, 0 ≠ z ∈ Z, the set {y, z} is linearly independent in V.

Proof.
(a) implies (b). We argue by contradiction. Suppose that there exist 0 ≠ y ∈ Y

and 0 ≠ z ∈ Z such that {y, z} is linearly dependent. Choose α,β ∈ F, not
both equal to zero, such that αy + βz = 0.

If α ≠ 0, then αy ≠ 0, whence βz ≠ 0, and thus β ≠ 0. Thus y = α−1βz ∈
Y ∩Z, contradicting the assumption that Y ∩Z = {0}. This completes this
step.

(b) implies (a). Again, we argue by contradiction. Suppose that there exists
a non-zero vector w which lies in Y ∩Z. Set y = w = z. Then 1y+(−1)z = 0,
so {y, z} is linearly dependent.

◻

S4.9. Example. Let {p, q} ⊆ F[x] be linearly independent polynomials. Let us
prove that if min(deg p,deg q) ≥ 1, then {p, q, pq} is also linearly independent.

Write p(x) = p0 + p1x + ⋯ + pnxn where pn ≠ 0 (note that n ≥ 1 by hypothesis),
and similarly, write q(x) = q0+q1x+⋯qmxm where qm ≠ 0 (and again, m ≥ 1). Then,
for an appropriate choice of rj ∈ F, 0 ≤ j ≤m + n, we have that

pq(x) = r0 + r1x +⋯ + rm+nxm+n,
and rm+n = pnqm ≠ 0. Let α,β, γ ∈ F and suppose that

αp + βq + γ(pq) = 0.
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By considering the coefficient of xm+n (and keeping in mind that m+n > max(m,n)
as m,n ≥ 1), we see that α0 + β0 + γrm+n = 0. But rm+n ≠ 0 then implies that γ = 0.
Hence

αp + βq = 0.
Since {p, q} is linearly independent by hypothesis, this implies that α = 0 = β, which
in turn shows that {p, q, pq} is linearly independent.

What happens if min(deg p,deg q) < 1?

S4.10. Example. Let V be a vector space over a field F and suppose that L =
{x1, x2, x3} ⊆ V is linearly independent. We claim thatM ∶= {x1, x1+x2, x1+x2+x3}
is also linearly independent.

Indeed, if α,β, γ ∈ F and αx1 + β(x1 + x2) + γ(x1 + x2 + x3) = 0, then
(α + β + γ)x1 + (β + γ)x2 + γx3 = 0.

Since {x1, x2, x3} is linearly independent (by hypothesis), this force (α + β + γ) =
(β + γ) = γ = 0. But then α = β = γ = 0, prove that M is linearly independent.

Such an argument can clearly be extended to more than three vectors.
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Appendix

A4.1. The notion of linear dependence of a set L of vectors in a vector space V
indicates redundancy. If L is linearly dependent, then one can remove at least one
vector – say x – from L to obtain a set M = L ∖ {x} such that spanL = spanM.
Of course, this doesn’t mean that the choice of x is arbitrary, just that such an x
exists in L. Of course, L might or might not generate the whole space - that is not
the issue.

The idea that a set S in V generates or spans V means that one can achieve
any vector in V using a finite linear combination of vectors from S. If S spans V, it
might have built-in redundancy, or it might not.

When dealing with bases, one asks that the set B be large enough to span the
entire space, yet small enough to not include any redundancy. As Goldilocks would
say, B has to be just right.

A4.2. It is crucial to keep in mind that we only consider finite linear combina-
tions of vectors in a vector space. What would an infinite linear combination even
mean? For those of you who have seen series in Calculus, you might be thinking
that one considers sums of the form ∑∞n=1 xn, where xn ∈ R, so why can’t one do this
here?

The answer is that in mathematics, one never considers infinite sums. The
notation ∑∞n=1 xn is misleading in that sense. Recall that we say that a sequence
(xn)n ∈ RN is said to be summable if

α ∶= lim
N→∞

N

∑
n=1

xn

exists in R, in which case we denote α by ∑∞n=1 xn. As such, we are not adding
infinitely many terms of the sequence, but rather adding finitely many terms, and
then taking limits of the sequence of partial sums we obtain in that manner.

In order to be able to do this in a vector space context, one would need to have a
notion of convergence. The technical term for this is to say that one needs to define
a topology on the vector space. Many, many, many interesting vector spaces admit
interesting topologies, and so in those spaces, we can consider limits of finite sums
of vectors. But the fact remains the same – we never consider sums of infinitely
many vectors, just limits of sums of finitely many vectors at a time.

A similar comment applies to verifying whether a subset S of a vector space V
is linearly independent. To verify this, one must verify that every finite subset of S
is linearly independent – one can never take infinite linear combinations of vectors
in S, even if S is infinite.

A4.3. In future courses, you may come across vector spaces imbued with a
topology, and the word “basis” may have a different meaning there. For example, a
Hilbert space H is a complete inner product space, and a Hilbert space basis for
H is a maximal orthonormal set in H. (Hilbert spaces will be dealt with in future
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courses.) When H is infinite-dimensional, a Hilbert space basis is never a vector
space basis (i.e. a Hamel basis). Having said that, Hilbert space bases tend to prove
more useful than Hamel bases to study Hilbert spaces and the operators upon them.

But to repeat what was said in the main text: since the only type of bases we
deal with in this course are Hamel bases, we drop the adjective “Hamel” to improve
the readability of the text.
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Exercises for Chapter 4

Exercise 4.1. Let V be a vector space over a field F and let B ⊆ V. Prove that the
following are equivalent:

(a) B is a basis for V – i.e. it is a maximal linearly independent subset of V.
(b) B is linearly independent, and spanB = V.

Exercise 4.2. Let V = C([0,1],R). Determine which sets of functions in V form a
linearly independent set.

(a) f1(x) = 3x; f2(x) = x + 5; f3(x) = 2x2; f4(x) = (x + 1)2.
(b) f1(x) = (x + 1)2; f2(x) = x2 − 1; f3(x) = 2x2 + 2x − 3.
(c) f1(x) = 1; f2(x) = ex; f3(x) = e−x.
(d) f1(x) = 1 − x; f2(x) = x(1 − x); f3(x) = 1 − x2.

Exercise 4.3. Let V be a vector space over C, and suppose that x, y, z ∈ V are
linearly independent. Prove that (x + y), (y + z), and (x + z) are also linearly inde-
pendent.

Exercise 4.4. Let F be a field and V =M2(F). Let Y denote the set of matrices in
V of the form

[x −x
y z

] ,

and let Z denote the set of matrices in V of the form

[ a b
−a c

] .

(a) Prove that Y and Z are subspaces of V.
(b) Find dim Y, dim Z, dim (Y +Z) and dim (Y ∩Z).

Exercise 4.5. Let V be a vector space and Y,Z be subspaces of V.
(a) If S1 (resp. S2) is a spanning set for Y (resp. for Z), is S1 ∩ S2 a spanning

set for Y ∩Z?
(b) If B1 (resp. B2) is a basis for Y (resp. for Z), is B1 ∪ S2 a basis for Y +Z?

Exercise 4.6. Let V be a vector space and Y,Z be subspaces of V. Suppose that
Y ∩Z = {0} and that V = Y +Z ∶= {y + z ∶ y ∈ Y, z ∈ Z}.

Prove that for all x ∈ V, there exist unique vectors y ∈ Y, z ∈ Z such that x = y+z.

Exercise 4.7. Let V = C([0,1],R). Let p0 denote the constant function p0(x) = 1,
x ∈ [0,1], and for n ∈ N, let pn(x) = xn, x ∈ [0,1].

Prove that for all N ∈ N, the set LN ∶= {p0, p1, . . . , pN} is linearly independent.

Exercise 4.8. (Culture) Prove that dimQ R =∞.
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Exercise 4.9. Let n ∈ N, and recall that Tn(F) denotes the set of n × n upper-
triangular matrices over F. Find dim Tn(F).

Exercise 4.10. Find three vectors x, y, z ∈ R3 such that {x, y, z} is linearly depen-
dent, but each of {x, y}, {y, z} and {x, z} is linearly independent.





CHAPTER 5

Linear transformations and matrices

A cowboy asked me if I could help him round up 18 cows. I said,
“Yes, of course. That’s 20 cows.”

Jake Lambert

1. Linear maps

1.1. Mathematics is the study of mathematical objects and the relationships
between them. The relationships between them are determined by maps from each
object to the other. When two mathematical objects share a common structure –
for example, when they are both groups, rings, topological spaces or, as is of interest
to us presently, vector spaces over the same field – it is both natural and useful to
consider maps that respect that structure.

In the case of vector spaces V and W over a common field F, we know that
the vector space structure implies that both V and W admit a binary operation
called “addition”, as well as a binary operation on F×V (resp. F×W) called “scalar
multiplication”. For this reason, the most important maps between them are maps
which respect addition and scalar multiplication. We shall call such maps linear.

1.2. Definition. Let V and W be vector spaces over the field F. A function
T ∶ V →W is said to be linear if for all κ ∈ F and x, y ∈ V,

T (κx + y) = κTx + Ty.

We denote the set of linear maps from V to W by L(V,W).

1.3. Remark. We leave it to the reader to prove that the condition above
defining linearity is equivalent to either of the following two conditions:

(a) T (κx) = κT and T (x + y) = Tx + Ty for all κ ∈ F, x, y ∈ V.
(b) For all n ≥ 1, x1, x2, . . . , xn ∈ V and κ1, κ2, . . . , κn ∈ F we have

T (
n

∑
j=1

κjxj) =
n

∑
j=1

κjTxj .

73
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In particular,
T (0V) = T (0 ⋅ 0V) = 0(T 0V) = 0W

whenever T is linear.

1.4. Example.
(a) The map

T1 ∶ R2 → R2

(x, y) ↦ (2x + 3y, y)
is linear.

(b) The map
T2 ∶ R2 → R2

(x, y) ↦ (x2 + y,0)
is not linear.

(c) Let V = C([0,1],R) and W = R. Define
T3 ∶ V → W

f ↦ ∫
1

0 f(t)dt.
Then T3 is linear, as is the map

T4 ∶ V → V
[T4 f](x) ∶= ∫

x
0 f(t)dt, x ∈ [0,1].

(d) Let V = R[x], the set of polynomials in x, considered as a subspace of
C([0,1],R). The map

T5 ∶ V → V
f ↦ f ′

is linear. That is, differentiation is linear on the space of polynomials.
(e) Let V and W be vector spaces over the field F. The map Zx = 0W for all

x ∈ V is linear, ie. Z ∈ L(V,W). We refer to this as the zero map. .
Similarly, the map I ∶ V → V defined by Ix = x for all x ∈ V is linear.

We refer to this as the identity map.
If W ⊆ V is a subspace of V, we refer to the map ι ∶W → V defined by

ιw = w for all w ∈W as the inclusion map. Note that ι = I if and only if
W = V.

1.5. Example. Let V = C[x]. We define two operators D and Mx ∈ L(V) as
follows:

D(p0 + p1x + p2x
2 +⋯ + pnxn) ∶= p1 + 2p2x + 3p3x

2 +⋯ + npnxn−1,

(this just looks like differentiation), and
Mx(p0 + p1x + p2x

2 +⋯ + pnxn) ∶= p0x + p1x
2 +⋯ + pnxn+1,

so that Mx is multiplication by x).
We leave it to the reader to verify that these are indeed linear maps.
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Observe that

(DMx−MxD)(p0 + p1x + p2x
2 +⋯ + pnxn)

=D(p0x + p1x
2 +⋯ + pnxn+1) −Mx(p1 + 2p2x + 3p3x

2 +⋯ + npnxn−1)
= (p0 + 2p1x + 3p2x

2 +⋯ + (n + 1)pnxn) − (p1x + 2p2x
2 +⋯ + npnxn)

= p0 + p1x + p2x
2 +⋯ + pnxn

= I(p0 + p1x + p2x
2 +⋯ + pnxn).

Since p = p0 + p1x + p2x
2 +⋯ + pnxn ∈ C[x] was arbitrary, DMx −MxD = I.

Culture. This example is not as innocuous as it might look. A formulation of
Heisenberg’s Uncertainty Principle states that one cannot simultaneously mea-
sure with perfect accuracy both the position and momentum of a particle. A mathe-
matical formulation of this Principle casts momentum as Mx and position as D; the
fact that the difference can be a non-zero multiple of the identity is interpreted as
saying that one cannot find common eigenvalues for Mx and D, where eigenvalues
correspond to observable states of the system. We point out, however, that in the
world of Physics, the underlying vector space is not C[x].

1.6. Example.
(a) Rotations in R2. Let θ ∈ R. Given (x, y) ∈ R2, we may write x =

r cosα, y = r sinα for some α ∈ R, where r =
√
x2 + y2. Define

Rθ(x, y) = Rθ(r cosα, r sinα)
= (r cos(α + θ), r sin(α + θ))
= (x cos θ − y sin θ, x sin θ + y cos θ).

Then Rθ is rotation by an angle of θ radians around the origin in the
counterclockwise direction. It is linear.

(b) Reflection about the x-axis. The map

F1 ∶ R2 → R2

(x, y) ↦ (x,−y)

represents the reflection of R2 about the x-axis. It is linear. (How would
one define F2, the reflection about the y-axis. Is it linear?)

(c) The projection onto the y-axis. The map

P2 ∶ R2 → R2

(x, y) ↦ (0, y)

represents the projection of R2 onto the y-axis. It is linear. (How would
one define P1, the reflection onto the x-axis. Is it linear?)
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1.7. Theorem. Let V and W be vector spaces over a field F. Given R,T ∈
L(V,W) and κ ∈ F, we define

(R + T )x ∶= Rx + Tx, x ∈ V

and
(κT )x ∶= κ(Tx), x ∈ V.

With these operations, L(V,W) is a vector space over F.
Proof. We leave the proof of this as an exercise* for the reader.

◻

The next definition actually appears in the Exercises at the end of Chapter 1.

1.8. Definition. Let V,W be vector spaces over a field F and suppose that
T ∈ L(V,W). Then the kernel of T is

ker T ∶= {x ∈ V ∶ Tx = 0W},

and the range of T is
ranT ∶= {Tx ∶ x ∈ V}.

1.9. Remark. Note that 0V ∈ ker T , so that ker T ≠ ∅, and that if x, y ∈ ker T
and κ ∈ F, then

T (κx + y) = κTx + Ty = κ0W + 0W ,

so that κx + y ∈ ker T and the latter is a subspace of V.
As for the range of T , again, T0V = 0W ∈ ranT , so that ranT ≠ ∅, and if

w, z ∈ ranT – say w = Tx and z = Ty for some x, y ∈ V – and if κ ∈ F, then

κw + z = κTx + Ty = T (κx + y) ∈ ranT,

so that ranT is a subspace of W.

1.10. Definition. Let V and W be vector spaces over the field F and let T ∈
L(V,W). The nullity of T is

nulT ∶= dim ker T,

and the rank of T is
rank T ∶= dim ranT.
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1.11. Example. Let

T ∶ R2 → R3

(x, y) ↦ (2x + y,6x,x − y).

If (x, y) ∈ ker T , then T (x, y) = (0,0,0), whence 2x + y = 0, 6x = 0 and x − y = 0.
Solving this system of equations yield x = 0 = y. Thus

ker T = {0R2} = {(0,0)}.

Thus nulT = dim {(0,0)} = 0.
As for the range of T , T (1,0) = (2,6,1) and T (0,1) = (1,0,−1), and so for

x, y ∈ R,

T (x, y) = T (x,0) + T (0, y) = xT (1,0) + yT (0,1) = x(2,6,1) + y(1,0,−1).

That is,
ranT = span{(2,6,1), (1,0,−1)}.

Since {(2,6,1), (1,0,−1)} is linearly independent, rank T = dim ranT = 2.

1.12. Proposition. Let V and W be vector spaces and T ∶ V →W be a linear
map. Let S ∶= {xα}α∈Λ be a spanning set for V. Then

ranT = span {Txα}α∈Λ.

Proof. Let w ∈ ranT . Then w = Tx for some x ∈ V. Since S is a spanning set for
V, there exist xα1 , xα2 , . . . , xαn ∈ S and κ1, κ2, . . . , κn ∈ F such that x = ∑nj=1 κjxαj .
But then

w = Tx = T (
n

∑
j=1

κjxαj) =
n

∑
j=1

κjTxαj ∈ span {Txα}α∈Λ.

◻

1.13. Example. Suppose that T ∶ R2 → R3 is linear, that T (1,1) = (1,0,2) and
T (2,3) = (1,−1,4). Since {(1,1), (2,3)} is a basis for R2, it generates R2, and so
from Proposition 1.12,

ranT = span{(1,0,2), (1,−1,4)}.

For example,

T (8,11) = T [2(1,1) + 3(2,3)]
= 2 ⋅ T (1,1) + 3 ⋅ T (2,3)
= 2(1,0,2) + 3(1,−1,4)
= (5,−3,16).
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Observe that we can completely determine T just by knowing what it does to this
basis. Indeed, (1,0) = 3(1,1) − 1(2,3), and (0,1) = −2(1,1) + 1(2,3), and thus if
(x, y) ∈ R2, then

(x, y) = x(1,0) + y(0,1)
= x(3(1,1) − 1(2,3)) + y(−2(1,1) + 1(2,3))
= (3x − 2y)(1,1) + (−x + y)(2,3).

It follows that

T (x, y) = T ((3x − 2y)(1,1) + (−x + y)(2,3))
= (3x − 2y)T (1,1) + (−x + y)T (2,3)
= (3x − 2y)(1,0,2) + (−x + y)(1,−1,4)
= (2x − y, x − y,2x).

1.14. Example.
(a) Let V = `∞(N) ∶= {(xn)n ∈ RN ∶ supn ∣xn∣ <∞}. Define the linear map

S ∶ V → V
(xn)n ↦ (0, x1, x2, x3, . . .).

(You should verify that S is indeed linear.) It is called the unilateral
forward shift operator. Then S is injective - i.e. ker S = {0}, and nulS =
0. We leave it as an exercise for the reader to show that rank S =∞.

We may also define the linear map

T ∶ V → V
(xn)n ↦ (x2, x3, x4, . . .).

Again, rank T =∞. This time, ker T = span {e1}, where e1 = (1,0,0,0, . . .).
(b) Let n ∈ N and F be a field. Define the map Jn ∈ L(Fn) via

J((x1, x2, . . . , xn)) = (x2, x3, . . . , xn,0).

This maps is known as the n × n nilpotent Jordan cell.
Then ker Jn = span e1, so nulJn = 1. Also, rankJn = n − 1, as ranJn =

Fn−1 ⊕ {0}.
Jordan cells will be extremely important in the second linear algebra

course.

The next Theorem is sometimes referred to as the Dimension Theorem, al-
though you should not be alarmed if you ask someone what the “Dimension The-
orem” is and they are unable to tell you (even though they know the result very
well).
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1.15. Theorem. [The Dimension Theorem] Let V and W be vector spaces
over a field F and T ∈ L(V,W). If V is finite-dimensional, then

nulT + rank T = dim V.

Proof. Now ker T is a subspace of the finite-dimensional space V, so dim ker T ≤
dim V <∞. Let m ∶= dim ker T and n ∶= dim V. Let {u1, u2, . . . , um} be a basis for
ker T . We may extend this to a basis B ∶= {u1, u2, . . . , um, v1, v2, . . . , vn−m} for V.

As we have seen earlier, if we set Z ∶= span{v1, v2, . . . , vn−m}, then Z is a com-
plement to ker T ; i.e. ker T +Z = V, and Z ∩ ker T = {0}.

Now

ranT = span {Tu1, Tu2, . . . , Tum, T v1, T v2, . . . , T vm}
= span{Tv1, T v2, . . . , T vn−m},

as Tuj = 0 for all j. We claim that {Tv1, T v2, . . . , T vn−m} is linearly independent.
Indeed, if κj ∈ F, 1 ≤ j ≤ n −m, and if ∑n−mj=1 κjTvj = 0, then by linearity of T ,

T (
n−m

∑
j=1

κjvj) = 0,

so that ∑n−mj=1 κjvj ∈ Z ∩ ker T = {0}. But {v1, v2, . . . , vn−m} is linearly independent,
being a subset of a linearly independent set, and thus κj = 0 for all 1 ≤ j ≤ n −m.
That is,

D ∶= {Tv1, T v2, . . . , T vn−m}

is linearly independent. Thus D is a basis for ranT , and so rankT = dim ranT =
n −m = dim V − nulT , completing the proof.

◻

Few results are as “standard” as the next one.

1.16. Proposition. Let V and W be vector spaces over a field F and T ∈
L(V,W). The map T is injective if and only if ker T = {0}.
Proof. Suppose first that T is injective. Since T0V = 0W (this holds for any linear
map from V to W), we have that ker T = {0V}.

Conversely, suppose that ker T = {0V}. If x, y ∈ V and Tx = Ty, then T (x− y) =
Tx − Ty = 0W , and so x − y ∈ ker T = 0V ; i.e. x = y. Hence T is injective.

◻

As a consequence of the Dimension Theorem, we can show the following.
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1.17. Theorem. Let V and W be vector spaces over a field F and suppose that
dim V = dim W <∞. Let T ∈ L(V,W). The following statements are equivalent.

(a) T is injective.
(b) T is surjective.
(c) rank T = dim V.

Proof.
(a) Suppose that T is injective. By the Dimension Theorem,

dim ranT = rank T = dim V − nulT = dim V − 0 = dim V = dim W.

Thus ranT =W, and so T is surjective.
(b) Suppose that T is surjective. Then

dim V = dim W = dim ranT = rank T.

(c) Suppose that rank T = dim V. Then

dim V = rank T = dim V − nulT

implies that nulT = 0, i.e. ker T = {0}. By Proposition 1.16, T is injective.
◻

1.18. Example.
(a) The above theorem fails spectacularly when the dimensions of V and W

are infinite. For example, let

V =W = `∞(N) = {x = (xn)n ∈ RN ∶ sup
n

∣xn∣ <∞}.

Define
S ∶ `∞(N) → `∞(N)

(xn)n ↦ (0, x1, x2, x3, . . .).
We refer to S as the unilateral forward shift operator on `∞(N).

Then ker S = {0}, but S is not onto.
(b) Let

T ∶ R3 → R2

(x, y, z) ↦ (x + y, y + z).
Then T is surjective, but not injective.

(c) Let θ ∈ R and consider

Rθ ∶ R2 → R2

(x, y) ↦ (x cos θ + y sin θ,−x sin θ + y cos θ).

The Rθ is injective, hence surjective.

The next theorem is incredibly useful.
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1.19. Theorem. Let V and W be vector spaces over the field F and suppose
that B ∶= {bα}α∈Λ is a basis for V. Given arbitrary vectors wα ∈ W, α ∈ Λ, there
exists one and only one linear map T ∈ L(V,W) such that

Txα = wα, α ∈ Λ.

Proof. This will appear as an assignment Question.
◻

1.20. Example. Recall that {1, x, x2, x3, . . .} is a basis for C[x] over C. By
Theorem 1.19, there exists a unique linear map T ∶ C[x] → C[x] such that T1 = 0
and Txn = nxn−1, n ≥ 1. Since the differentiation operator Dp = p′ satisfies this
property, we must have T =D.

2. From linear maps to matrices

2.1. Matrices do not exist purely because they do. Their «raison d’être» is
that they are an amazing computational tool that allows one to better understand
linear maps, which is what we are “really” interested in. In fact, it is our need
to understand the composition of linear maps that will give rise to the “unusual”
multiplication of matrices that you may have seen before.

2.2. Definition. Let n ∈ N and let V be an n-dimensional vector space over
a field F. An ordered basis for V is an element B● ∶= (b1, b2, . . . , bn) ∈ Vn, where
B ∶= {b1, b2, . . . , bn} is a basis for V.

2.3. Remarks. The difference between an ordered basis and a basis is that with
an ordered basis, we are keeping track of which basis element is written first, which
is written second, etc.. A basis is just a set, so that

B ∶= {b1, b2, . . . , bn} = {bn, bn−1, . . . , b2, b1},

whereas B● ∶= (b1, b2, . . . , bn) ≠ (bn, bn−1, . . . , b2, b1) =∶ C●.
Thus, B● ∶= ((1,0,0), (0,1,0), (0,0,1)) is an ordered basis for F3, while D● ∶=

((0,1,0), (1,0,0), (0,0,1)) is a distinct ordered basis for F3.

In most of the cases below, we shall only be using an ordered basis, and to
simplify the notation, we just refer to the ordered basis B = (b1, b2, . . . , bn).

The connection between linear maps and matrices arises through the identifica-
tion of a vector in an n-dimensional vector space V over a field F with the n-tuple
in Fn consisting of the coordinates of that vector with respect to a specified ordered
basis. As we shall see – linear maps act upon vectors, while matrices act upon
coordinates.
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2.4. Definition. Let V be an n-dimensional vector space over a field F and let
B ∶= (b1, b2, . . . , bn) be an ordered basis for V. Let x ∈ V, and choose κ1, κ2, . . . , κn ∈ F
so that

x =
n

∑
j=1

κjbj .

(Recall that the fact that B is a basis implies that the κj’s are uniquely determined.)
The coordinate vector of x relative to B is:

[x]B ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

κ1
κ2
⋮
κn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Fn.

2.5. Example. Let V = R2[x] ∶= {p0+p1x+p2x
2 ∶ pj ∈ R,0 ≤ j ≤ 2}. Consider two

ordered bases for V, namely B = (1+x,1+x2,1+x+x2) and C = (1+x+x2,1+x2,1+x).
Let p = 4 + 5x + 2x2 = 2(1 + x) − 1(1 + x2) + 3(1 + x + x2).
Then

[p]B =
⎡⎢⎢⎢⎢⎢⎣

2
−1
3

⎤⎥⎥⎥⎥⎥⎦
and [p]C =

⎡⎢⎢⎢⎢⎢⎣

3
−1
2

⎤⎥⎥⎥⎥⎥⎦
.

The vector p has not changed – its coordinates with respect to two different
coordinate systems (i.e. ordered bases) has.

2.6. Example. A very special and useful case is the following. Let n ∈ N and
suppose that V = Fn. Let B ∶= (e1, e2, . . . , en) ∈ Vn denote the standard ordered
basis for Fn, so that ek = (0,0, . . . ,0,1,0, . . . ,0), with the unique “1” occurring at
the kth coordinate, 1 ≤ k ≤ n. Then

[ek]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
0
1
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

More generally, if x = (x1, x2, . . . , xn) ∈ Fn, then

[x]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

In other words, x looks strikingly similar to its coordinate vector [x]B! Again, this
is a very special setting! You shouldn’t expect this kind of thing in general.
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We are now in a position to associate a matrix to each linear map T ∈ L(V,W),
when V and W are finite-dimensional.

2.7. Definition. Let V and W be finite-dimensional vector spaces over a field
F and let T ∈ L(V,W). Let D = (v1, v2, . . . , vn) be an ordered basis for V, and
C = (w1,w2, . . . ,wm) be an ordered basis for W. (We are choosing the letter D to
indicate that it is a basis for the domain, while C indicates that it is an ordered basis
for the codomain.)

For each 1 ≤ j ≤ n, we write

Tvj =
m

∑
i=1
αijwi.

(The choice of the αij’s is unique!)
The matrix of T relative to D and C is:

[T ]CD ∶= [αij] ∈Mm×n(F).
In the case where W = V and D = C, we also write

[T ]D = [αij] ∈Mn(F).

2.8. Example. Let D and C denote the standard ordered bases for R3 and R1

respectively, so that D = (e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1)) and C = (f = 1).
Define

T ∶ R3 → R1

(x, y, z) ↦ 2x + y − 3z.
Then

Te1 = T (1,0,0) = 2 = 2f
Te2 = T (0,1,0) = 1 = 1f
Te3 = T (0,0,1) = −3 = −3f,

and so
[T ]CD = [2 1 −3] ∈M1×3(R).

2.9. Example. Let
T ∶ M2(F) → M2(F)

A ↦ At.

Let B = (E11,E12,E21,E22) be the standard ordered basis for M2(F).
Then

[T ]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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2.10. Theorem. Let V and W be finite-dimensional vector spaces with ordered
bases D = (v1, v2, . . . , vn) and C = (w1,w2, . . . ,wm) respectively. Let R,T ∈ L(V,W)
and κ ∈ F. Then

(a) [R + T ]CD = [R]CD + [T ]CD; and
(b) [κT ]CD = κ [T ]CD.

Thus the map
Φ ∶ L(V,W) → Mm×n(F)

T ↦ [T ]CD
is a linear bijection.
Proof.

(a) Let R,T ∈ L(V,W). Write [R]CD = [rij] and [T ]DD = [tij]. For each 1 ≤ j ≤ n,

(R + T )(vj) = Rvj + Tvj =
m

∑
i=1
rijwi +

m

∑
i=1
tijwi = (

m

∑
i=1

(rij + tij))wi.

It follows that

[R + T ]CD = [rij + tij] = [rij] + [tij] = [R]CD + [T ]CD.

(b) The proof is similar to that of (a) above. If κ ∈ F, then for all 1 ≤ j ≤ n,

(κT )(vj) = κ(Tvj) = κ
m

∑
i=1
tijwi =

m

∑
i=1

(κtij)wi.

Thus
[κT ]CD = [κtij] = κ[tij] = κ[T ]CD.

◻

2.11. Remark. It is important to note that Φ depends not only on V and W,
but also upon D and C; in other words, Φ = ΦD,C . We drop the subscripts to improve
the readability.

2.12. Example. Let V = R3 with standard ordered basis D = (e1, e2, e3) and
W = R2 with standard ordered basis C = (f1, f2). Suppose that R ∶ V → W is the
map R(x, y, z) = (2x + y, z). Then

[R]CD = [2 1 0
0 0 1] .
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2.13. Example. Suppose that V is a vector space with ordered basis D =
(v1, v2, . . . , vn) and W is a vector space over the same field with ordered basis C =
(w1,w2, . . . ,wm). By Theorem 2.10, given a matrix A = [αij] ∈ Mm×n(F), we may
associate to it a linear map TA ∶ V →W via:

TAvj =
m

∑
i=1
αijwi, 1 ≤ j ≤ n.

We may then extend the definition of TA to all of V by linearity - see Theorem 1.19.
Observe that TA ∈ L(V,W) and that [TA]CD = A.

For example, suppose that

V = span{sin x, sin 2x, cos x},

and that
W = span{ex, log(1 + x)},

thought of as subspaces of C([0,2π],R). Set D = (sin x, sin 2x, cos x) and C =
(ex, log(1 + x)) as ordered bases for V and W respectively.

If A = [8 −2
√

3
1 −1 0 ] ∈M2×3(R), then the associated map satisfies:

TA sin x = 8ex + 1 log(1 + x)
TA sin 2x = −2ex − 1 log(1 + x)

TA cos x =
√

3ex + 0 log(1 + x).

It follows that

TA(κ1 sin x+κ2 sin 2x+κ3 cos x) = (8κ1−2κ2+
√

3κ3)ex+(1κ1−1κ2+0κ3) log(1+x).

3. Composition of functions

3.1. There is a property that functions have that go beyond simply adding
them and scaling them, namely: given functions f and g, we can compose functions,
provided that the range of g is a subset of the domain of f .

3.2. Theorem. Let V,W,Y and Z be vector spaces over the field F. Suppose
that R,R1,R2 ∈ L(V,W), S,S1, S2 ∈ L(W,Y), and T ∈ L(Y,Z). Then S ○ R is
linear. Furthermore,

(a) S ○ (R1 +R2) = S ○R1 + S ○R2;
(b) (S1 + S2) ○R = S1 ○R + S2 ○R;
(c) T ○ (S ○R) = (T ○ S) ○R;
(d) IW ○R = R = R ○ IV ;
(e) κ(S ○R) = (κS) ○R = S ○ (κR).
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Proof. Most of the proof is routine and is left to the reader. We will only prove
that S ○R is linear. Indeed, if v1, v2 ∈ V and κ ∈ F, then

(S ○R)(κv1 + v2) = S(R(κv1 + v2))
= S(κRv1 +Rv2)
= κS(Rv1) + S(Rv2)
= κ(S ○R)(v1) + (S ○R)(v2).

Thus S ○R ∈ L(V,Y).
◻

3.3. With the notation from Theorem 3.2, suppose that D = (v1, v2, . . . , vn),
M = (w1,w2, . . . ,wm) and C = (y1, y2, . . . , yp) are ordered bases for V, W and Y
respectively.

Write [R]MD = [rij], [S]CM = [sij]. Let us determine [S ○R]CD.
Now for 1 ≤ j ≤ n,

(S ○R)vj = S(Rvj)

= S(
m

∑
k=1

rkjwk)

=
m

∑
k=1

rkj(Swk)

=
m

∑
k=1

rkj (
p

∑
i=1
sikyi)

=
p

∑
i=1

(
m

∑
k=1

sikrkj) yi

Letting qij ∶= ∑mk=1 sikrkj , 1 ≤ i ≤ p, 1 ≤ j ≤ n, we find that

[S ○R]CD = [qij].

In light of this, we define the product of matrices in such a way that
[S ○R]CD = [S]CM ⋅ [R]MD ,

namely: given A = [aij] ∈Mm×n(F) and B = [bij] ∈Mp×m(F), we set
B ⋅A ∶= [dij] ∈Mp×n(F),

where
dij ∶=

m

∑
k=1

bikakj , 1 ≤ i ≤ p,1 ≤ j ≤ n.

In other words, the entire reason for this form of multiplying matrices is because
we wish the product of matrices to represent the composition of linear maps.
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We remark that there does exist a “näıve” version of matrix multiplication,
whereby – if A = [aij],B = [bij] ∈ Mm×n(F) – we set B ∗ A ∶= [bijaij], and this is
referred to as Schur multiplication or Hadamard multiplication. Because it
does not represent the composition of B with A, we shall not consider it here, al-
though it is relevant when one studies tensor products of vector spaces. In particular,
it arises in quantum information theory.

3.4. Example.

(a) [1 2 3
4 5 6]

⎡⎢⎢⎢⎢⎢⎣

1
0
−1

⎤⎥⎥⎥⎥⎥⎦
= [−2

−2] .

(b) [4 9
1 1] [

−1 0
2 1] = [14 9

1 1].

As an immediate consequence of the definition of the product of matrices we
obtain:

3.5. Corollary. If V is a finite-dimensional vector space with ordered basis D,
and if R,S ∈ L(V), then

[SR]D = [S]D [R]D.

3.6. Example. Consider the maps

R ∶ R4[x] → R3[x]
p ↦ p′

and
S ∶ R3[x] → R4[x]

q0 + q1x + q2x
2 + q3x

3 ↦ q0x + 1
2q1x

2 + 1
3q2x

3 + 1
4q3x

4.

LetD = (1, x, x2, x3, x4) be the standard ordered basis for R4[x], and C = (1, x, x2, x3)
be the standard ordered basis for R3[x]. Then

[R]CD =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

and

[S]DC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
1 0 0 0
0 1

2 0 0
0 0 1

3 0
0 0 0 1

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Thus

[SR]D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

while

[RS]C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that [RS]C = [IR3[x]]C . Is this surprising?

3.7. Notation. Let n ∈ N. We write

In ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1
0 0 ⋱
0 0 1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈Mn(F),

while
On ∶= [0ij].

3.8. Definition. Given A = [αij] ∈ Mm×n(F), we define the left multiplica-
tion operator LA ∈ L(Fn,Fm) via

LAx = Ax, x ∈ Fn.

Here, Ax denotes the matrix product, where x and thus Ax are written as column
vectors.

In higher-level analysis courses, the map A↦ LA is often referred to as the left
regular representation. Now you know.

3.9. Example. If A =
⎡⎢⎢⎢⎢⎢⎣

1 0
−1 1
0 2

⎤⎥⎥⎥⎥⎥⎦
∈M3×2(R), then LA ∶ R2 → R3 is the map

LA [x1
x2

] =
⎡⎢⎢⎢⎢⎢⎣

1 0
−1 1
0 2

⎤⎥⎥⎥⎥⎥⎦
[x1
x2

] =
⎡⎢⎢⎢⎢⎢⎣

x1
−x1 + x2

2x3

⎤⎥⎥⎥⎥⎥⎦
.

The following exercise is very important.
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3.10. Exercise. The left regular representation

Ψ ∶ Mm×n(F) → L(Fn,Fm)
A ↦ LA

is a linear bijection of vector spaces, and if D and C are the standard ordered bases
for Fn and Fm respectively, then

[LA]CD = A.

Our next result is an immediate consequence of Theorem 3.2, based upon our
definition for the multiplication of matrices. We shall prove the first part of (a), and
leave the remainder of the proof as an exercise.

3.11. Theorem. Let m,n, p, q ∈ N and F be a field. Let A,A1,A2 ∈ Mm×n(F),
B,B1,B2 ∈Mp×m(F). Then

(a) B(A1 +A2) = BA1 +BA2 and (B1 +B2)A = B1A +B2A;
(b) For all κ ∈ F, κ(BA) = (κB)A = B(κA);
(c) ImA = A = AIn;
(d) If V is an n-dimensional vector space over F and D is any ordered basis

for V, then [IV]D = In.
Proof. We prove that B(A1 + A2) = BA1 + BA2 via a direct computation. If
B = [bij],A1 = [xij] and A2 = [yij], then A1 +A2 = [xij + yij] and so

B(A1 +A2) = [qij],

where qij = ∑mk=1 bik(xkj + ykj) = ∑
m
k=1 bikxkj +∑

m
k=1 bikykj .

Letting rij = ∑mk=1 bikxkj and sij = ∑mk=1 bikykj , 1 ≤ i ≤ p, 1 ≤ j ≤ n, we find that
BA1 = [rij], BA2 = [sij] and qij = rij + sij for all i, j, so that

B(A1 +A2) = [qij] = [rij + sij] = [rij] + [sij] = BA1 +BA2.

◻

3.12. Theorem. Let V and W be finite-dimensional vector spaces over the field
F with ordered bases D and C respectively. If T ∈ L(V,W) and x ∈ V, then

[Tx]C = [T ]CD [x]D.

Proof. As usual, we write D = (v1, v2, . . . , vn) and C = (w1,w2, . . . ,wm). Given
x ∈ V, we find κ1, κ2, . . . , κn ∈ F such that x = ∑nj=1 κjvj . Thus

[x]D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

κ1
κ2
⋮
κn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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If [T ]CD = [tij], then by definition of [T ]CD, we have that for all 1 ≤ j ≤ n,

Tvj =
m

∑
i=1
tijwi.

Thus

Tx = T (
n

∑
j=1

κjvj) =
n

∑
j=1

κjTvj =
n

∑
j=1

κj(
m

∑
i=1
tijwi) =

m

∑
i=1

(
n

∑
j=1

tijκj)wi,

so that

[Tx]C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑nj=1 t1jκj
∑nj=1 t2jκj

⋮
∑nj=1 tmjκj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [tij]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

κ1
κ2
⋮
κn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [T ]CD[x]D.

◻

3.13. Example. Consider T ∶ R3 → R2 defined by T (x, y, z) = (x + 2y + 3z,4x +
5y + 6z) as in Example 3.4. Let e1 = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1) ∈ R3;
f1 = (1,0) and f2 = (0,1) ∈ R2. Let D = (e2, e3, e1) be an ordered basis for R3,
C = (f2, f1) be an ordered basis for R2.

If x = (1,2,−1) ∈ R3, then [x]D =
⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦
, and

[Tx]C = [T ]CD[x]D = [5 6 4
2 3 1]

⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦
= [8

2] ,

so that
T (1,2,−1) = 8f2 + 2f1 = (2,8) ∈ R2,

which agrees with the original formula for T (1,2,−1) = (1 + 4 − 3,4 + 10 − 6)!
(Note: this last statement is useful to keep in mind. If one is required to perform

such a calculation on an assignment or a test – then one can check one’s answer before
submitting it!!!)

4. Invertibility

4.1. Recall that if X and Y are sets and f ∶ X → Y is a function, then f is
invertible if there exists a function g ∶ Y →X such that f ○ g = idY and g ○ f = idX ,
where idX ∶ X → X is the function idX(x) = x for all x ∈ X and idY ∶ Y → Y is the
function idY (y) = y for all y ∈ Y .
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Recall also that a necessary and sufficient condition for a function f to be in-
vertible (as a function) is that f be a bijection, i.e. that it is both injective and
surjective.

4.2. Definition. Let V and W be vector spaces over a field F and suppose that
T ∶ V →W is a linear map. We say that T is invertible (as a linear map) if there
exists R ∈ L(W,V) such that R ○ T = IV and T ○R = IW .

On the face of it, it seems harder for a linear map to be invertible than for a
general function to be invertible, since we are requiring that the inverse function
should also be linear. Having said this, we have the following theorem.

4.3. Theorem. Suppose that V and W are vector spaces over a field F and
that T ∈ L(V,W). If T is invertible as a function (i.e. if T is a bijection), and if
R ∶ W → V is the unique function satisfying R ○ T = IV and T ○R = IW , then R is
linear, and so T is invertible as a linear map.
Proof. Let w1,w2 ∈W and κ ∈ F. Since T is bijective, we can find unique vectors
v1, v2 ∈ V such that Tv1 = w1 and Tv2 = w2. Consider

R(κw1 +w2) = R(κTv1 + Tv2)
= R(T (κv1 + v2)) as T is linear
= IV(κv1 + v2)
= κv1 + v2

= κRw1 +Rw2.

Thus R is itself linear.
◻

4.4. Remarks.
● Suppose that T ∈ L(V,W) is invertible. Since its inverse is unique, we

denote it by T−1 ∈ L(W,V).
● If V,W and Y are vector spaces over a field F and R ∈ L(V,W) and T ∈
L(W,Y) are invertible, then so is T ○ R ∈ L(V,Y), and in this case (T ○
R)−1 = R−1 ○ T−1 ∈ L(Y,V).

● If T ∈ L(V,W) is invertible, then (T−1)−1 = T .

4.5. Example.
(a) Suppose that V is a vector space over R, that dim V = 2, and that B =

{v1, v2} is a basis for a vector space V. Define T ∈ L(V) via
T (κ1v1 + κ2v2) = (κ1 + 5κ2)v1 + (2κ2)v2.

Then T is invertible, and T−1 is the map

T−1(α1v1 + α2v2) = (1α1 −
5
2
α2)v1 + (1

2
α2)v2.
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Indeed, consider the map R(α1v1 + α2v2) = (1α1 − 5
2α2)v1 + (1

2α2)v2.
Then

(T ○R)v1 = T (Rv1)
= Tv1

= v1

= (IV)v1,

while
(T ○R)v2 = T (Rv2)

= T (−5
2
)v1 + (1

2
)v2

= −5
2
Tv1 +

1
2
Tv2

= −5
2
v1 +

1
2
(5v1 + 2v2)

= v2

= (IV)v2.

Since T ○R and IV agree on a basis B for V, we have that T ○R = IV .
A similar calculation shows that R ○ T = IV , and thus R = T−1.
This leave us with two questions:
● Where did our candidate for T−1 come from? We seem to have pulled

it out of a hat.
● Is there a simpler/better way to do this?

(b) Consider the unilateral forward shift operator S ∈ L(`∞(N)):
S ∶ `∞(N) → `∞(N)

(xn)n ↦ (0, x1, x2, . . .).
Define

T ∶ `∞(N) → `∞(N)
(xn)n ↦ (x2, x3, x4, . . .).

Then T ○ S = id`∞(N), so that S is left-invertible. Is S invertible? Why
or why not? The operator T is typically referred to as the unilateral
backward shift.

4.6. Proposition. Let V and W be vector spaces over a field F and suppose
that T ∈ L(V,W) is invertible. Then V is finite-dimensional if and only if W is, in
which case dim V = dim W.
Proof. Suppose first that dim V = n < ∞. Let {v1, v2, . . . , vn} be a basis for
V. Then T is surjective, and so W = span {Tv1, T v2, . . . , T vn}, implying that W
is finite-dimensional and dim W ≤ n. But T is injective and {v1, v2, . . . , vn} is lin-
early independent, so that {Tv1, T v2, . . . , T vn} is linearly independent inW, whence
dim W ≥ n. Together, these imply that dim V = dim W.
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Conversely, if dim W = n < ∞, then we apply the above argument using the
inverse map R = T−1 ∶ W → V, since R is again invertible and linear. We conclude
that dim V = dim W <∞.

◻

4.7. Theorem. Suppose that V andW are finite-dimensional vector spaces over
a field F and that dim V = dim W. Let T ∈ L(V,W). The following are equivalent:

(a) T is injective.
(b) T is invertible.
(c) T is surjective.

Proof. Recall by the Dimension Theorem that nulT + rankT = dim V.
(a) implies (b). Suppose that T is injective. Then nulT = 0 and so rankT =

dim V = dim W <∞. But then ranT =W, and so T is surjective as well.
(b) implies (c). This is a triviality.
(c) implies (a). Once again, from the Dimension Theorem, it easily follows

that nulT = 0, and thus ker T = {0}, or equivalently, T is injective.
◻

4.8. Theorem. Let V and W be vector spaces over a field F, and let T ∈
L(V,W).

(a) T is injective if and only if T is left-invertible.
(b) T is surjective if and only if T is right-invertible.

Proof.
(a) Suppose that T is injective. Let BV be a basis for V and consider the set
D ∶= {Tb ∶ b ∈ BV} ⊆W. Since BV is linearly independent and T is injective,
we find that D is linearly independent. As such, we can extend D to a basis
BW ∶= D ∪ {wα}α∈Λ} for W.

We may then define a linear map R ∈ L(W,V) by setting R(Tb) ∶= b
for all b ∈ BV , and R(wα) = 0 for all α ∈ Λ, and extending this definition by
linearity to all of W.

Note that R ○ T ∈ L(V), and that for each b ∈ BV ,

(R ○ T )(b) = R(Tb) = b = IVb.

Since linear maps are completely determined by their actions on a basis for
their domains, R ○ T = IV . Thus T is left-invertible.

Now suppose that T is left-invertible and choose R ∈ L(W,V) such that
R ○T = IV . If x ∈ ker T , then x ∈ ker R ○T = ker IV = {0}, so x = 0. Thus T
is injective.

(b) Suppose that T ∶ V → W is surjective. Let BW be a basis for W, and for
each b ∈ BW , choose vb ∈ V such that Tvb = b. (This is possible because T
is surjective.). Once again, we define R ∈ L(W,V) by specifying its action
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on the basis BW for W and extending by linearity to all of W. In this case,
we do this by setting Rb = vb for each b ∈ BW .

Then for each b ∈ BW , we have
(T ○R)b = T (Rb) = Tvb = b = IWb.

As before, since linear maps are completely determined by their actions on
a basis for their domains, T ○R = IW . Thus T is right-invertible.

Now suppose that T is right-invertible and choose R ∈ L(W,V) such
that T ○R = IW . Since IW is surjective, so is T .

◻

By combining the previous two results, we easily obtain the following.

4.9. Corollary. Suppose that V andW are finite-dimensional vector spaces over
a field F and that dim V = dim W. Let T ∈ L(V,W). The following are equivalent:

(a) T is left-invertible.
(b) T is invertible.
(c) T is right-invertible.

4.10. Theorem. Let V,W,Y and Z be finite-dimensional vector spaces over F
and suppose that R ∈ L(V,W), T ∈ L(W,Y) and S ∈ L(Y,Z). Then

rank (STR) ≤ rank (T ).
If S and R are invertible, then

rank (STR) = rank (T ).

Proof. It is clear that ran (TR) ⊆ ran (T ), and thus
ran (STR) = {Sy ∶ y ∈ ran (TR)} ⊆ {Sy ∶ y ∈ ran (T )} = ran (ST ).

Thus rank (STR) ≤ rank (ST ). If L ∶= {y1, y2, . . . , yp} is a basis for ranT (so
that rankT = p, then {Sy1, Sy2, . . . , Syp} is a spanning set for ran (ST ), and thus
rank (ST ) ≤ p = rankT . Thus

rank (STR) ≤ rank (ST ) ≤ rank (T ).
Now suppose that S,R are invertible. Although we won’t appeal to it, observe

that we then have dim V = dim W and dim Y = dim Z. Observe that R is surjective,
and thus

ranT = {Tw ∶ w ∈W} = {TRv ∶ v ∈ V} = ran (TR).
In particular, rank (TR) = rank (T ). If L = {y1, y2, . . . , yp} is a basis for ran (T ) =
ran (TR), then as before, {Sy1, Sy2, . . . , Syp} is a spanning set for ran (ST ) =
ran (STR). But S is injective and L is linearly independent, implying that the
set {Sy1, Sy2, . . . , Syp} is linearly independent, and hence a basis for ran (STR).
Thus

rank (STR) = rank (ST ) = p = rank (T ).
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◻

4.11. Remark. With the notation of the above theorem, we find that
rank (TR) = rank (IY TR) ≤ rank (T ).

On the other hand, Theorem 4.10 also implies that
rank (TR) = rank (TRIV) ≤ rank (R).

Thus, as a general rule, we have that
rank (TR) ≤ min(rank (T ), rank (R)).

In order to answer the questions from part (a) of Example 4.5, we turn our
attention to matrices.

4.12. Definition. Let n ∈ N and let F be a field. A matrix T ∈ Mn(F) is said
to be invertible if there exists R ∈Mn(F) such that TR = In = RT .

4.13. Remark. Recall from Definition 3.8 that for each A ∈ Mn(F), we may
define the left multiplication operator LA ∈ L(Fn) via LAx = Ax, x ∈ Fn.

If A ∈Mn(F) is invertible and R = A−1 ∈Mn(F), then
LRLA = LRA = LIn = IFn = LIn = LAR = LALR.

Thus A ∈Mn(F) invertible implies that LA ∈ L(Fn) is invertible with inverse LA−1 .
Conversely, suppose that LA ∈ L(Fn) is invertible and that T ∈ L(Fn) = (LA)−1.

Let D denote the standard ordered basis for Fn, and recall that [LA]D = A. Thus
[T ]DA = [T ]D [LA]D = [TLA]D = [IV]D = In

= [IV]D = [LAT ]D
= [LA]D [T ]D = A [T ]D.

Thus LA ∈ L(Fn) invertible implies that A ∈ Mn(F) is invertible with inverse
[(LA)−1]D, where D is the standard ordered basis for Fn.

4.14. Example. The matrix A = [3 1
1 4] ∈M2(Q) is invertible with inverse

A−1 = 1
11

[ 4 −1
−1 3 ] .

We now extend the above analysis to obtain our key result regarding invertibility
of linear maps on finite-dimensional spaces. It says that to determine if a linear map
T between finite-dimensional spaces is invertible, one need only verify whether its
matrix with respect to (any) pair of ordered bases is invertible, and if it is, then one
can use matrix inversion to determine the inverse of T .
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4.15. Theorem. Suppose that V and W are finite-dimensional vector spaces
over a field F. Let D and C be ordered bases for V and W respectively, and suppose
that T ∈ L(V,W).

Then T is invertible if and only if [T ]CD is invertible, in which case

[T−1]DC = ([T ]CD)−1.

Proof. Suppose first that T ∈ L(V,W) is invertible. As we have just seen, this
implies that n ∶= dim V = dim W. Now

In = [IV]D = [T−1T ]D = [T−1]DC [T ]CD,
and

In = [IW]C = [TT−1]C = [T ]CD [T−1]DC .
Thus

([T ]CD)−1 = [T−1]DC .

Now suppose that [T ]CD is invertible in Mn(F) with inverse [rij] ∈Mn(F). Recall
that given a basis (e.g. C = {w1,w2, . . . ,wn}) for a vector space W, we may define a
linear map on that space by specifying what it does to that basis and extending by
linearity.

In our case, we set Rwj ∶= ∑ni=1 rijvi, 1 ≤ j ≤ n. Then [R]DC = [rij], and so

[RT ]D = [R]DC [T ]CD = [rij] [T ]CD = In = [IV]D,
so that RT = IV . Similarly,

[TR]C = [T ]CD [R]DC = [T ]CD [rij] = In = [IW]C ,
and so TR = IW . That is, T is invertible with inverse R.

◻

4.16. Example. Let
T ∶ R2 → R2

(x, y) ↦ (3x + y, x + 4y).

Let D = C denote the standard ordered basis for R2. Then [T ]D = [3 1
1 4]. By

Example 4.14,

[T −1]D = 1
11

[ 4 −1
−1 3 ] ,

and thus
T−1(x, y) = ( 4

11
x − 1

11
y,− 1

11
x + 3

11
y).

The moral of the story is that if we can compute inverses of matrices, then we
have a very effective way of computing inverses of linear maps. We are interested in
linear maps – and matrices will be the tool we use to understand these maps!
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If X and Y are non-empty sets and f ∶X → Y is a bijection, then we can think of
Y as being a relabelled version of X. Of course, sets have no algebraic structure in
general, so we shouldn’t ask that our bijective maps be anything other than exactly
that – bijective maps. When dealing with vector spaces, we place more stringent
conditions on our bijections.

4.17. Definition. Let V and W be vector spaces over the field F. We say that
V is isomorphic to W, and we write V ≃W, if there exists an invertible linear map
T ∶ V →W. We say that T is an isomorphism from V to W.

4.18. Remark. The relation ≃ is an equivalence relation on the class of all
vector spaces. That is,

(a) The identity map IV implements the isomorphism of V with V, so V ≃ V
whenever V is a vector space.

(b) If V ≃W via T ∶ V →W, thenW ≃ V via T−1 ∶W → V. Thus V ≃W implies
W ≃ V.

(c) If V ≃ W via T ∶ V → W and W ≃ Y via R ∶ W → Y, then W ≃ Y via
R ○ T ∶ V → Y. Thus V ≃ Y and Y ≃ Y implies that V ≃ Y.

Vector spaces are truly wondrous objects. Up to isomorphism, they are com-
pletely determined by their dimension! The technical way to say this is: the cardinal-
ity of a vector space basis is a complete invariant for vector spaces up to isomorphism.
We are now officially cool.

4.19. Theorem. Let V and W be vector spaces over a field F. The following
conditions are equivalent.

(a) V ≃W.
(b) There exist bases BV for V and BW for W and a bijection Φ ∶ BV → BW .

Consequently, if dim V = n ∈ N, then V ≃ Fn.
Remark. Of course, when V and W are finite-dimensional, condition (b) is merely
the statement that dim V = dim W, and then we can choose any bases BV for V and
BW for W.

In fact, it can be shown that if Z is any vector space over F and if B1 and B2
are bases for Z, then there exists a bijection f ∶ B1 → B2. This allows us to define
the dimension of an infinite-dimensional vector space as the cardinality of any of
its bases (which one may think of as the single equivalence class under bijective
correspondence of all bases for Z). Using this notion, we find that once again, (b)
becomes the statement that dim V = dim W.

Proof.
(a) implies (b). Suppose first that V ≃ W. Let T ∶ V → W be an invertible

map, and let BV = {vλ}λ∈Λ. Define BW ∶= {Tvλ}λ∈Λ. Clearly T is a bijection
between BV and BW , so there remains only to show that BW is a basis for
W.
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Now T is surjective and BV generates V, so BW generates W. Also, T
is injective and BV is linearly independent, so BW is linearly independent.
It follows that BW is indeed a basis forW, completing the proof of this half
of the Theorem.

(b) implies (a). Now suppose that BV and BW are bases for V and W
respectively, and that f ∶ BV → BW is a bijection. We define a linear map
T ∶ V →W by setting Tb ∶= f(b) for all b ∈ BV , and extending T to all of V
by linearity.

Since f is surjective,

ranT = span {Tb ∶ b ∈ BV} = span {d ∶ d ∈ BW} =W.

Thus T is surjective. If x ∈ ker T , then we may write x = ∑nj=1 κjbj for some
b1, b2, . . . , bn ∈ BV and κ1, κ2, . . . , κn ∈ F. Then

0W = T (
n

∑
j=1

κjbj) =
n

∑
j=1

κjTbj =
n

∑
j=1

κjf(bj).

But f(bj) ∈ BW for all 1 ≤ j ≤ n, and f is injective. Thus

{f(b1), f(b2), . . . , f(bn)} ⊆ BW

is linearly independent, which implies that κj = 0, 1 ≤ j ≤ n, and therefore
x = 0V . Hence T is injective, so it is an isomorphism of V onto W.

◻

4.20. Definition. Let V be an n-dimensional vector space over F and let D be
an ordered basis for V. The standard representation of V with respect to D is
the (soon to be proven to be linear) map:

%D ∶ V → Fn
x ↦ [x]D.

4.21. Theorem. Let V be an n-dimensional vector space over F and let D be
an ordered basis for V. The standard representation %D ∶ V → Fn of V with respect
to D is an isomorphism.
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Proof. Write D = (d1, d2, . . . , dn) and let (e1, e2, . . . , en) be the standard basis for
Fn. Let x = ∑nj=1 αjdj and y = ∑nj=1 βjdj ∈ V, and let κ ∈ F. Then

%D(κx + y) = %D(
n

∑
j=1

(καj + βj)dj)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

κα1 + β1
κα2 + β2

⋮
καn + βn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= κ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1
α2
⋮
αn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β1
β2
⋮
βn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= κ%D(x) + %D(y).

Thus %D is linear.

If x ∈ ker %D, then

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= %D(x), so x = ∑nj=1 0dj = 0. Thus ker %D = {0}, and so

%D is injective. But dim V = n = dim Fn, so that %D is also surjective, and thus %D
is an isomorphism.

◻

4.22. Example. Consider V = R2[x], and D = (1, x, x2). Then %D ∶ R2[x]→ R3

is the map

%D(p0 + p1x + p2x
2) =

⎡⎢⎢⎢⎢⎢⎣

p0
p1
p2

⎤⎥⎥⎥⎥⎥⎦
.

We may now reinterpret Theorem 2.10 in terms of isomorphisms.

4.23. Theorem. Let V andW be finite-dimensional vector spaces of dimensions
n and m respectively. For each choice of ordered bases D and C for V and W
respectively, the map

Φ ∶ L(V,W) → Mm×n(F)
T ↦ [T ]CD

is an isomorphism of vectors spaces.
In particular, dim L(V,W) = dim Mm×n(F) =mn.
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4.24. Remark. When V =W and D = C, the map Φ satisfies an extra property,
namely: for all R,T ∈ L(V),

Φ(TR) = [TR]D = [T ]D [R]D = Φ(T )Φ(R).

We say that Φ is multiplicative.

4.25. We may also reinterpret Theorem 3.12 as saying that the following di-
agram commutes: that is, %C ○ T = L[T ]CD

○ %D.

V W

Fn Fm

T

%D %C

L[T ]CD

4.26. Let V and W be vector spaces over a field F, and suppose that T ∶ V →W
is a surjective linear map. Define

T ∶ V/ker T → W
x + ker T ↦ Tx.

4.27. Proposition. Let V and W be vector spaces over a field F, and suppose
that T ∶ V → W is a surjective linear map. Let π ∶ V → V/ker T denote the
canonical quotient map π(x) = x + ker T for all x ∈ V. Then:

(a) T is well-defined.
(b) T is linear.
(c) T is an isomorphism.
(d) The diagram

V V/ker T

W

π

T T

commutes. That is, T = T ○ π.
Proof.
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(a) Suppose that x1 + ker T = x2 + ker T . Then x2 − x1 ∈ ker T , so Tx1 − Tx2 =
T (x1 − x2) = 0. That is,

T (x1 + ker, T ) = Tx1 = Tx2 = T (x2 + ker T ),

and so T is well-defined.
(b) Let x + ker T, y + ker T ∈ V/ker T , and let κ ∈ F. Then

T (κ(x + ker T ) + (y + ker T )) = T ((κx + y) + ker T )
= T (κx + y)
= κTx + Ty
= κT (x + ker T ) + T (y + ker T ).

Thus T is linear.
(c) Suppose that x + ker T ∈ ker T . Then Tx = T (x + ker T ) = 0, so that

x ∈ ker T . But then x + ker T = 0 + ker T . Hence T is injective.
For any w ∈W, we have that w = Tx for some x ∈ V as T is surjective.

But then w = Tx = T (x + ker T ), and so T is also surjective.
(d) For any x ∈ V,

Tx = T (x + ker T ) = T ○ π(x),

whence T = T ○ π.
◻

5. Change of basis

5.1. On an abstract level, all bases for a given vector space are created equal.
Having said that – depending on the situation, and to coin a phrase – some bases
might be more equal than others. For example, while {1, x, x2, . . . , xn} might seem
like the most natural basis for Fn[x], we have seen that Lagrange polynomials can
be extremely useful on a computational level.

A natural question becomes: how do we translate coordinates from one basis to
another?

5.2. Theorem. Let D and C be two ordered bases for a finite-dimensional vector
space V. Define the matrix Q ∶= [IV]CD. Then

(a) Q is invertible, with Q−1 = [IV]DC , and
(b) for v ∈ V, [v]C = Q[v]D.

Proof.
(a) This is an immediate consequence of Theorem 4.15, as the identity map IV

is obviously invertible in L(V) – it is its own inverse!
(b) This is Theorem 3.12 applied to the map IV .

◻
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5.3. The matrix Q = [IV]CD is called the change of coordinate matrix, and
it converts D-coordinates into C-coordinates. If Q = [qij], D = (v1, v2, . . . , vn) and
C = (w1,w2, . . . ,wn), then for each 1 ≤ j ≤ n,

vj =
n

∑
i=1
qijwi.

5.4. Example. Let V = R2, D ∶= ((1,1), (1,−1)) and C = ((1,2), (2,1)) as
ordered bases for V. Then

[IV]CD = [[v1]C ∶ [v2]C]
= [[(1,1)]C ∶ [(1,−1)]C]

= [1/3 −1
1/3 1 ] .

Hence

[(1,1)]C = Q[(1,1)]D = Q [1
0] = [1/3

1/3] .

Once again – we don’t have to accept this on faith – we can check! The vector

[1/3
1/3] relative to C-coordinates represents

1
3
w1 +

1
3
w2 =

1
3
(1,2) + 1

3
(2,1) = (1,1).

Having established a relationship between coordinates of a vector in a vector
space with respect to two ordered bases, we now consider the relationship between
the matrix of a linear map T ∈ L(V) with respect to two ordered bases. The following
is an immediate result of how we defined the product of two (and hence of finitely
many) matrices.

5.5. Theorem. Let V be a finite-dimensional vector space and T ∈ L(V). Let
D and V be ordered bases for V, and set Q ∶= [IV]CD. Then

[T ]D = [IV]DC [T ]C [IV]CD = Q−1 [T ]C Q.

Proof. Simply note that T = IV ○ T ○ IV , and thus

[T ]D = [IV ○ T ○ IV]D = [IV ○ T ]DC [IV]CD = [IV]DC [T ]C [IV]CD = Q−1 [T ]C Q.

◻
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5.6. Definition. Two matrices A,B ∈ Mn(F) are said to be similar if there
exists R ∈Mn(F) invertible such that B = S−1AS. We write A ∼ B if A is similar to
B.

If V is a vector space and S,T ∈ L(V), then S and T are said to be similar if
there exists an invertible linear map Y ∈ L(V) such that T = Y −1SY . We also write
S ∼ T if S is similar to T .

5.7. Remarks.
(a) Similarity of matrices is an equivalence relation on Mn(F) and similarity

of linear maps is an equivalence relation on L(V). Thus for all A1,A2,A3 ∈
Mn(F), we have
● A1 ∼ A1;
● if A1 ∼ A2, then A2 ∼ A1; and
● if A1 ∼ A2 and A2 ∼ A3, then A1 ∼ A3.

The proof of these three conditions is left as an exercise. The same analysis
applies to similarity of linear maps in L(V).

(b) Theorem 5.5 is the statement that if V is a finite-dimensional vector space,
T ∈ L(V), and D and C are ordered bases for V, then [T ]D and [T ]C are
similar.

(c) If V is n-dimensional with ordered basis D, and if T,R ∈ L(V), then T is
similar to R if and only if [T ]D is similar to [R]D.

5.8. Example. Define the map
T ∶ R2 → R2

(x, y) ↦ (1
2x +

1
2y,

1
2x +

1
2y).

LetD = ((1,0), (0,1)) be the standard ordered basis for F2, and let C = ((1,1), (1,−1))
be a second ordered basis for R2.

Then [T ]D = 1
2 [1 1

1 1]. Moreover

Q = [IV]CD
= [[(1,0)]C ∶ [(0,1)]C]

= 1
2

[1 1
1 −1] .

Meanwhile,
Q−1 = [IV]DC = [[(1,1)]D ∶ [(1,−1)]D]

= [1 1
1 −1] .

Thus
[T ]C = Q−1 [T ]D Q = 1

2
[1 1
1 −1]

1
2
[1 1
1 1] [1 1

1 −1] = [1 0
0 0] .
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5.9. Example. Let A ∈Mn(F) and D = (v1, v2, . . . , vn) be an ordered basis for
Fn. Let B = (e1, e2, . . . , en) denote the standard ordered basis for Fn, and consider
the left regular representation LA ∶ Fn → Fn defined by LAx = Ax, x ∈ Fn.

As we have seen in Exercise 3.10, [LA]B = A. It now follows that
[LA]D = [IFn]DB [LA]B [IFn]BD = Q−1AQ,

where Q = [IFn]BD.

But Q = [IFn]BD is the matrix whose jth column consist of the entries of vj ,
1 ≤ j ≤ n.

Let us consider a concrete example. Suppose that

A =
⎡⎢⎢⎢⎢⎢⎣

1 2 3
4 5 6
−1 −2 −3

⎤⎥⎥⎥⎥⎥⎦
.

Let D = ((1,1,1), (0,1,1), (0,0,1)). Then

[LA]D =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
1 1 1

⎤⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎣

1 2 3
4 5 6
−1 −2 −3

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
1 1 1

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
−1 1 0
0 −1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 2 3
4 5 6
−1 −2 −3

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
1 1 0
1 1 1

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

6 5 3
9 6 3
−21 −16 −9

⎤⎥⎥⎥⎥⎥⎦
.
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Supplementary Examples

S5.1. Example. Let V and W be vector spaces over a common field F, and
let F ∶= {f ∶ V → W ∣ f is a function}. For f, g ∈ F and κ ∈ F, define (f + g)(x) =
f(x) + g(x) and (κf)(x) ∶= κ(f(x)) for all x ∈ V.

It is tedious but simple to verify that F becomes a vector space over F. If one
does this, then one may then apply the Subspace Test to L(V,W) to obtain that it
too is a vector space over F.

S5.2. Example. Let us recall the rotation operator Rθ from Example 1.6. That
is, given θ ∈ R, we define

Rθ ∶ R2 → R2

(x, y) ↦ (x cos θ − y sin θ, x sin θ + y cos θ).
Relative to the standard ordered basis D = C = (e1, e2) for R2, we see that

Rθ(e1) = Rθ [
1
0] = [cos θ

sin θ] ,

while
Rθ(e2) = Rθ [

0
1] = [− sin θ

cos θ ] .

Since the coordinates of a vector in Rm relative to the standard basis look like the
vector itself, we see that

[Rθ]CD = [cos θ − sin θ
sin θ cos θ ] .

S5.3. Example. Let us next consider the projection operator Py from Exam-
ple 1.6 (c), namely:

P2 ∶ R2 → R2

(x, y) ↦ (0, y).
Again, if we let D = C = (e1, e2) be the standard ordered basis for R2, then

P2(e1) = Py(1,0) = (0,0),
and

P2(e2) = Py(0,1) = (0,1).
Arguing as in the above example,

[Py]CD = [0 0
0 1] .

We leave it to the reader to show that if P1(x, y) ∶= (x,0) denotes the projection of
R2 onto the x-axis, then relative to D = C = (e1, e2),

[Px]DD = [1 0
0 0] .
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S5.4. Example. Let D = ((1,2), (1,3)) and C = ((3,23), (1,−5)) be ordered
bases for R2. Suppose that

T (x, y) = (4x − y,−x + 5y), (x, y) ∈ R2.

Then

T (1,2) = (2,9) = 1
2
(3,23) + 1

2
(1,−5)

T (1,3) = (1,14) = 1
2
(3,23) − 1

2
(1,−5).

Thus
[T ]CD = [1/2 1/2

1/2 −1/2] =
1
2
[1 1
1 −1] .

S5.5. Example. Let us find the inverse of the matrix A ∶=
⎡⎢⎢⎢⎢⎢⎣

1 1 −1
2 1 −1
1 1 1

⎤⎥⎥⎥⎥⎥⎦
.

We must solve
⎡⎢⎢⎢⎢⎢⎣

1 1 −1
2 1 −1
1 1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1 x2 x3
y1 y2 y3
z1 z2 z3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

This leads us to solve three systems of three equations in three variables. We
shall solve for x1, y1, z1 and leave the other cases as an exercise.

By calculating the first column of the product, we have

S5.6. Example. Let 2 ≤ n ∈ N and V = Tn(F). DefineW ∶= {w = [wij] ∈ Tn(F) ∶
wkk = 0,1 ≤ k ≤ n}.

Consider the map
T ∶ V → Fn

[xij] ↦ (x11, x22, . . . , xnn).
If a = [aij , b = [bij] ∈ Tn(F) and κ ∈ F, then

T (κa + b) = T (κ[aij] + [bij])
= T ([κaij + bij])
= (κa11 + b11, κa22 + b22, . . . , κann + bnn)
= κ(a11, a22, . . . , ann) + (b11, b22, . . . , bnn)
= κ Ta + Tb,

proving that T is linear.
Now a ∈ ker T if and only if (a11, a22, . . . , ann) = Ta = (0,0, . . . ,0); that is, if and

only if a ∈ W. Thus ker T = W. Also, if x = (x11, x22, . . . , xnn) ∈ Fn and d ∶= [dij],
where dkk = xkk, 1 ≤ k ≤ n and dij = 0 if i ≠ j, then Td = x, so that T is surjective.

It follows from the First Isomorphism Theorem for vector spaces that
Tn(F)/W = Tn(F)/ker T ≃ ranT = Fn.
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S5.7. Example. Let V ∶= C1((0,1),R) ∶= {f ∶ (0,1)→ R ∶ f ′ is continuous on (0,1)}.
Let

D ∶ V → C((0,1),R)
f ↦ f ′.

Clearly D is linear.
Given g ∈ C((0,1),R), we may define h(x) = ∫

x
0 g(t)dt, x ∈ (0,1). Then

h is continuous on (0,1), and in fact, by the Fundamental Theorem of Calcu-
lus, h ∶ (0,1) → R is differentiable on (0,1) and h′(x) = g(x), x ∈ (0,1). Thus
h ∈ C1((0,1),R) and Dh = g, proving that D is surjective.

Note that if f ∈ ker D, then f ′ = 0, so f must be a constant function: that is,
there exists α ∈ R such that f(x) = α, x ∈ (0,1). Thus ker D ≃ R. (Consider the
map Θ ∶ ker D → R that sends f(x) = α for all x ∈ (0,1) to α ∈ R.)

By the First Isomorphism Theorem for vector spaces,

C1((0,1),R)/R = V/ker D ≃ ranD = C((0,1),R).

S5.8. Example. Let A = [1 3
1 1] ∈ M2(Q). Let D = (d1 ∶= [1

1] , d2 ∶= [1
2]) be an

ordered basis for Q2. Let B = (e1, e2) be the standard ordered basis for A2. Then

[LA]D = [[LAd1]D [LAd2]D] = [[Ad1]D [Ad2]D] .

Now Ad1 = [1 3
1 1] [

1
1] = [4

2], while Ad2 = [1 3
1 1] [

1
2] = [7

3].

Consider Ad1 = [4
2] = q11d1 + q21d2 = q11 [

1
1] + q21 [

1
2]. Solving for q11, q21 yields

[q11
q21

] = [ 6
−2] .

Similarly, solving for Ad2 = [7
3] = q12d1 + q22d2 yields

[q12
q22

] = [11
−4] .

Thus [LA]D = [ 6 11
−2 −4], and

[ 6 11
−2 −4] = [LA]D = [IQ2]DB [LA]B [IQ2]BD = Q−1AQ,

where Q = [IQ2]BD.
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Now [IR2]BD = [[IQ2d1]B [IQ2d2]B] = [1 1
1 2] .. Thus we are claiming that

[ 6 11
−2 −4] = [1 1

1 2]
−1

[1 3
1 1] [

1 1
1 2] .

We can verify this without calculating [1 1
1 2]

−1
. Indeed, [LA]D = Q−1AQ is equiva-

lent to the equation
Q[LA]D = AQ,

and so we only need check that

[1 1
1 2] [ 6 11

−2 −4] = [1 3
1 1] [1 1

1 2] ,

which is easily verified, as both are equal to [4 7
2 3].

S5.9. Example. Let V and W be finite-dimensional vector spaces over a field
F, and let D1,D2 be two ordered bases for V and C1,C2 be two ordered bases for W.
Then

[T ]C
2

D2 = [IW]C2
C1

[T ]D2
D1

[IV]D1
D2
.

For example, let D1 = (e1, e2, e3) be the standard ordered basis for V = R3 and
D2 = ((1,1,2), (1,2,1), (2,1,0)). Let C1 = (f1, f2) be the standard ordered basis for
R2, and C2 = ((1,1), (2,1)).

Let T ∶ R3 → R2 be the linear map defined by T (x, y, z) = (2x + 3y,4y + z).
Then

[T ]C1
D1

= [[Te1]C1 [Te2]C1 [Te3]C1]

= [[
2
0]
C1

[3
4]
C1

[0
2]
C1

]

= [2 3 0
0 4 1] .

Next,

[IR3]D1
D2

= [[(1,1,2)]D1 [(1,2,1)]D1 [(2,1,0)]D1] =
⎡⎢⎢⎢⎢⎢⎣

1 1 2
1 2 1
2 1 0

⎤⎥⎥⎥⎥⎥⎦
.

Also,

[IR2]C2
C1
= [[f1]C2 [f2]C2] = [−1 2

1 −1] .
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Thus

[T ]C2
D2

= [−1 2
1 −1] [2 3 0

0 4 1]
⎡⎢⎢⎢⎢⎢⎣

1 1 2
1 2 1
2 1 0

⎤⎥⎥⎥⎥⎥⎦

= [ 7 10 1
−1 −1 3] .

Once again, we can check that this is right!!!

T (1,1,2) = (5,6) = 7(1,1) + (−1)(2,1)
T (1,2,1) = (8,9) = 10(1,1) + (−1)(2,1)
T (2,1,0) = (7,4) = 1(1,1) + 3(2,1).

Maybe not all of life is good, but this part is.

S5.10. Example. Let 2 ≤ nıN and T ∈Mn(F). We define the similarity orbit
of T to be

S(T ) ∶= {S−1TS ∶ S ∈Mn(F) invertible}.
Recall that for X = [xij] ∈Mn(F), we defined the trace of X to be

tr(X) ∶=
n

∑
k=1

xkk.

Recall also from Assignment 6 that if X,Y ∈ Mn(F), then tr(XY ) = tr(Y X). It
follows that tr(⋅) is constant on similarity orbits: that is, if T ∈Mn(F) and Y ∈ S(T ),
then tr(Y ) = tr(T ). Indeed, choose S ∈Mn(F) invertible such that Y = S−1TS. Then

tr(Y ) = tr(S−1TS) = tr(S(S−1T )) = tr(T ).

Observe also that if Y = S−1TS, then Y 2 = (S−1TS)2 = S−1T 2S, and more
generally, by a routine induction argument, for k ≥ 1, Y k = S−1T kS. If p(x) =
p0 + p1x +⋯ + pnxn ∈ F[x], then

p(S−1TS) = S−1p(T )S.
This simple fact will prove very useful in your next linear algebra course.



110 5. LINEAR TRANSFORMATIONS AND MATRICES

Appendix - dual spaces

A5.1. Given two vector spaces V and W over a field F, we have seen that
L(V,W) is a vector space. One particularly important instance of this phenomenon
is when W = F.

A5.2. Definition. Let V be a vector space. The vector space L(V,F) is called
the (algebraic) dual space of V, and is denoted by V#. Elements of V# are
referred to as linear functionals.

A5.3. Example. Let V = C([0,2π],R). Fix a function g ∈ C([0,2π],R) and
define

µg ∶ C([0,2π],R) → R
f ↦ ∫

2π
0 f(x)g(x)dx.

Then µg is a linear functional on V.
Exercise. The map

Φ ∶ V → V#

g ↦ µg

is itself linear. It can be shown to be injective as well, but this is harder.

The maps of the form µg, g ∈ V are not all of the linear functionals on V. For
example, for each x0 ∈ [0,2π], we may define the evaluation functional

δx0 ∶ C([0,2π],R) → R
f ↦ f(x0).

Unlike the linear functionals µg above, the evaluation functionals have an extra
property, namely they are multiplicative. That is, for all f, h ∈ C([0,2π],R),

δx0(fh) = (fh)(x0) = f(x0)h(x0) = δx0(f) δx0(h).

Interestingly, the evaluation functionals are the only multiplicative linear functionals
on C([0,2π],R). The standard proof of this is not easy.

A5.4. Example. Consider the map

tr ∶ Mn(F) → F
T = [tij] ↦ ∑nj=1 tjj .

Then tr is a linear functional, referred to as the trace on Mn(F). When F = R or
F = C, it can be shown that tr is the unique linear functional ϕ satisfying ϕ(RT ) =
ϕ(TR) for all R,T ∈Mn(F).
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A5.5. Example. For 1 ≤ j ≤ n, the maps

γj ∶ Fn → F
x = (x1, x2, . . . , xn) ↦ xj

are linear functionals, called coordinate functionals.
If dim V = m, we have seen that for any order basis D = (v1, v2, . . . , vm) for V,

the map
Φ ∶ V → Fm

v ↦ [v]D
is an isomorphism. Thus, for 1 ≤ j ≤m, the maps

γj ○Φ ∶ V → F
∑mi=1 κivi ↦ κj

is a linear functional.

A5.6. Remark. If dim V = n <∞, then

dim V# = dim L(V,F) = dim V ⋅ dim F = dim V.

Thus V ≃ V# as vector spaces.

A5.7. Proposition. Suppose that n ∈ N and that V is an n-dimensional vector
space over the field F. Suppose that D = (v1, v2, . . . , vn) is an ordered basis for V,
and let D# ∶= (γ1, γ2, . . . , γn) denote the n-tuple of coordinate functionals defined in
Example A5.5.

Let us show that D# is an ordered basis for V#, called the dual basis to D.
First note that

γj(vi) = δij =
⎧⎪⎪⎨⎪⎪⎩

1 if i = j
0 if i ≠ j.

(The function δij is known as the Kronecker delta function.) Thus, if κ1, κ2, . . . , κn ∈
F and ∑nj=1 κjγj = 0, then for each 1 ≤ i ≤ n,

0 = (
n

∑
j=1

κjγj)(vi) = κi.

Thus D# is linearly independent. Since ∣D#∣ = n = dim V#, D# is a basis for V#.

A5.8. Example. If V = Fn and D = {e1, e2, . . . , en} is the standard ordered
basis for V, then D# = {γ1, γ2, . . . , γn} where γj(ei) = δij is the dual basis to D. In
this special instance, we often write e#

j instead of γj .
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A5.9. Let V be a vector space. Consider the double dual V# # = (V#)# =
L(V#,F) of V. We leave it as an exercise for you to show that the map

Γ ∶ V → V# #

v ↦ v̂,

where v̂(ϕ) = ϕ(v) for all ϕ ∈ V# is linear. When dim V <∞, Γ is an isomorphism,
and D̂ ∶= {v̂1, v̂2, . . . , v̂n} is the dual basis to D#!

A5.10. Example. Let V = R3[x] and D = {1, x, x2, x3} be an ordered basis for
V. The D# = {γ0, γ1, γ2, γ3}, where

γj(xi) = δij .

Thus for 0 ≤ j ≤ 3,
γj(p0 + p1x + p2x

2 + p3x
3) = pj .

If ϕ ∈ V#, then there exist α0, α1, α2, α3 ∈ R such that

ϕ(p0 + p1x + p2x
2 + p3x

3) =
3
∑
i=0
αipi.

Also,

x̂i(γj) = γj(xi) = δij , 0 ≤ i, j ≤ 3.

A5.11. Definition. Suppose that V,W are vector spaces over the field F, and
let T ∈ L(V,W). We define the adjoint of T to be the map

T# ∶ W# → V#

ϕ ↦ T#ϕ,

where (T#ϕ)(v) = ϕ(Tv), v ∈ V.

A5.12. Example. Let V = R3[x] and W = R2[x]. Let D = (1, x, x2, x3) and
C = (1, x, x2) denote the standard ordered bases for V and W respectively. Then
D# = (γ0, γ1, γ2, γ3) and C# = (θ0, θ1, θ2), where

γj(xi) = δij , 0 ≤ i, j ≤ 3,

and
θj(xi) = δij , 0 ≤ i, j ≤ 2.

Let D ∶ R3[x]→ R2[x] denote the usual derivative map

D(p0 + p1x + p2x
2 + p3x

3) = p1 + 2p2x + 3p3x
2.
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ThenD# ∶ (R2[x])# → (R3[x])# is the map which satisfies (for all κ0, κ1, κ2 ∈ R):
[D#(κ0θ0 + κ1θ1 + κ2θ2)](p0 + p1x + p2x

2 + p3x
3)

= [κ0θ0 + κ1θ1 + κ2θ2](D(p0 + p1x + p2x
2 + p3x

3))
= [κ0θ0 + κ1θ1 + κ2θ2](p1 + 2p2x + 3p3x

2)
= κ0 ⋅ p1 + κ1 ⋅ (2p2) + κ2 ⋅ (3p3)
= κ0 ⋅ p1 + (2κ1) ⋅ p2 + (3κ2) ⋅ p3.

A5.13. Theorem. Suppose that V,W are finite-dimensional vector spaces
over the field F, and let T ∈ L(V,W). The adjoint T# of T is linear. If D (resp. C)
is an ordered basis for V (resp. W), and if D# (resp. C#) is the dual basis to D
(resp. C), then

[T#]D
#

C# = ([T ]CD)t.

Indeed, we leave it to the reader to verify that in Example A5.12 above,

[D]CD =
⎡⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 2 0
0 0 0 3

⎤⎥⎥⎥⎥⎥⎦
,

while

[D#]D
#

C# =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 2 0
0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Exercises for Chapter 5

Exercise 5.1.
Let V and W be vector spaces, and let B = {bα}α∈Λ be a basis for V. Suppose

that S,T ∈ L(V,W) and that Sbα = Tbα for all α ∈ Λ.
Prove that S = T .

Exercise 5.2.
Let m,n ∈ N and F be a field. Suppose that A ∈Mm×n(F), and define

LA ∶ Fn → Fm
x ↦ Ax.

Let D = {e1, e2, . . . , en} denote the standard basis for Fn, and C = {f1, f2, . . . , fm}
denote the standard basis for Fm.

Prove that [LA]CD = A.

Exercise 5.3.
This question is a bit difficult, but it is interesting, important, and within reach.

Let V = C([0,1],R), and consider the linear map V ∈ L(C([0,1],R)) defined by

[V f](x) ∶= ∫
x

0
f(t)dt, x ∈ [0,1].

Prove that if ker V = {0}.

Exercise 5.4.

Observe that the matrix S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1 2 0
2 −1 0 2 1
1 1 1 1 −1
0 3 1 0 −1
1 2 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is invertible. Suppose that

T ∈M5(C) and that S−1TS = J5 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(a) Recall from Math 147/148 that exp(z) = ∑∞n=0
1
n!z

n. Using this, find exp(T ).
(b) Recall from Math 147/148 that sin(z) = ∑∞n=1(−1)n+1 1

(2n−1)!z
n. Using this,

find sin(T ).
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Exercise 5.5.
Let S ∈M5(C) be the matrix from Exercise 5.4 above. Suppose that X ∈M5(C)

and that S−1XS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(a) Recall from Math 147/148 that exp(z) = ∑∞n=0
1
n!z

n. Using this, find exp(X).
(b) Recall from Math 147/148 that sin(z) = ∑∞n=1(−1)n+1 1

(2n−1)!z
n. Using this,

find sin(X).

Exercise 5.6.
Let n ∈ N and suppose that E ∈ L(Cn) satisfies E = E2. Show that there exists

a basis B = {b1, b2, . . . , bn} for Cn and 1 ≤ k ≤ n such that

[E]B = [Ik E2
0 0n−k

]

for some matrix E2 ∈Mk×(n−k)(C).

Exercise 5.7.
Let n ∈ N and suppose that E = E2, F = F 2 are two idempotent operators in

L(Cn). Prove that E is similar to F if and only if rankE = rankF .
Hint. Let P ∈ L(Cn) be the linear operator whose matrix relative to the standard
basis E ∶= {e1, e2, . . . , en} for Cn is

[P ]E = [Ik 0
0 0n−k

] .

Prove that any idempotent of rank equal to k is similar to P .

Exercise 5.8.
Let B and D be two bases for a vector space V over the a field F. Suppose that

R,T ∈ L(Cn) and that
[R]B = [T ]D.

Prove that R is similar to T .

Exercise 5.9.
Let A = [1 2

0 4] and B = [3 5
0 7] ∈ T2(C). Consider the maps

LA ∶ T2(C) → T2(C)
T ↦ AT

and RB ∶ T2(C) → T2(C)
T ↦ TB.

(a) Show that LARB = RBLA ∈ L(T2(C)).
(b) For which α ∈ C does there exist 0 ≠ Tα ∈ T2(C) such that

(LA −RB)(Tα) = αTα?
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Exercise 5.10.
Let A ∈M2(C) and consider the map

δA ∶ M2(C) → M2(C)
T ↦ AT − TA.

(a) Prove that δA(XY ) =XδA(Y ) + δA(X)Y for all X,Y ∈M2(C).
(b) Prove that δA is not invertible.

Culture. The map δA is referred to as an inner derivation on M2(C).



CHAPTER 6

Matrix operations and systems of linear equations

My dad has suggested that I register for a donor card. He’s a man
after my own heart.

Masai Graham

1. Elementary matrix operations

1.1. In this Chapter we shall learn how to use matrices to solve linear equations.
The familiar techniques used to solve such systems correspond to matrix operations
that preserve the rank of the matrix. These techniques involve:

(a) interchanging two equations;
(b) multiplying an equation by a non-zero constant; and
(c) adding a multiple of one equation to another to help eliminate variables

from an equation.
To a system S of the form:

a11x1 + a12x2 + ⋯ + a1nxn = b1
a21x1 + a22x2 + ⋯ + a2nxn = b2

⋮ ⋯ ⋮
am1x1 + am2x2 + ⋯ + amnxn = bm

we shall associate the matrix

A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1n b1
a21 a22 ⋯ a2n b2
⋮ ⋯ ⋮

am1 am2 ⋯ amn bm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

In light of this, the following definitions are motivated.

1.2. Definition. Let A ∈ Mm×n(F). An elementary row operation on A is
one of the following:

(a) interchanging two rows of A;
(b) multiplying a row by a non-zero scalar from F; and
(c) adding a scalar multiple of one row to another.

117



118 6. MATRIX OPERATIONS AND SYSTEMS OF LINEAR EQUATIONS

By changing the word “row” for the word “column” in (a), (b), (c), we may
analogously define elementary column operations.

If A = [aij] ∈Mm×n(F), we denote the ith row of A by ri(A), and the jth column
of A by cj(A). When no confusion may arise, we abbreviate this notation to ri and
cj, 1 ≤ i ≤m,1 ≤ j ≤ n.

1.3. Example. Let A = [1 2 3 4
5 6 7 8] ∈M2×4(R).

(a) Interchanging c1 and c2 of A yields:

B = [2 1 3 4
6 5 7 8] .

(b) Adding (−5)r1 of B to r2 yields:

B1 ∶= [1 2 3 4
0 −4 −8 −12] .

(c) multiplying r2 of B1 by −1
4 yields:

B2 ∶= [1 2 3 4
0 1 2 3] .

(d) Adding (−2)r2 of B2 to r1 yields:

B3 ∶= [1 0 −1 −2
0 1 2 3 ] .

1.4. Definition. An elementary matrix E ∈ Mn(F) is one obtained from In
by a single elementary operation on In.

We leave it as an exercise for the reader to show that if E ∈Mn(F) is an elemen-
tary matrix, then one can obtain E from In by an elementary row operation, and
one can also obtain E from In by an elementary column operation.

1.5. Example. Let E =
⎡⎢⎢⎢⎢⎢⎣

1 0 4
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
∈M3(Q).

Then E is obtained from I3 either
(a) by adding 4 ⋅ r3 of I3 to r1; or
(b) by adding 4 ⋅ c1 of I3 to c3.

Alternatively, if F =
⎡⎢⎢⎢⎢⎢⎣

2 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
∈M3(Q), then F can be obtained from I3 either

by
(a) multiplying r1 of I3 by 2; or
(b) by multiplying c1 of I3 by 2.
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1.6. Theorem. Let A ∈ Mm×n(F). Suppose that B is obtained from A by an
elementary row operation. Let E be the elementary matrix obtained from Im by the
same elementary operation. Then B = EA.

The converse also holds. That is to say: if E ∈Mm(F) is obtained from Im by an
elementary row operation, the B ∶= EA is the matrix obtained from A by the same
elementary row operation.
Proof. The proof is a routine calculation and is left as an exercise.

◻

We remark that there is a corresponding result for column operations. An matrix
C is obtained from A by an elementary operation if and only if there exists an
elementary operation E ∈Mn(F) obtained from In through the same operation such
that C = AE. Note that in dealing with column operations, multiplication by E is
now on the right, which means that we must have E ∈Mn(F).

1.7. Example. Let E =
⎡⎢⎢⎢⎢⎢⎣

0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎦
. Then E is obtained from I3 by interchang-

ing r1 and r3. If A = [aij] ∈M3(F), then

EA =
⎡⎢⎢⎢⎢⎢⎣

a31 a32 a33
a21 a22 a23
a31 a32 a33

⎤⎥⎥⎥⎥⎥⎦
is obtained from A by the same elementary row operation.

Of course, E is also obtained from I3 by interchanging c1 and c3. If A = [aij] ∈
M3(F), then

AE =
⎡⎢⎢⎢⎢⎢⎣

a13 a12 a11
a23 a22 a21
a33 a32 a31

⎤⎥⎥⎥⎥⎥⎦
is obtained from A by the same elementary column operation.

1.8. Theorem. Elementary matrices are invertible, and their inverses are of
the same type.
Proof.

(a) If E is obtained from In by interchanging ri and rj , then E = E−1.
(b) If E is obtained from In by scaling ri by 0 ≠ κ, then E−1 is obtained from

In by scaling ri by κ−1.
(c) If E is obtained from In by adding κ ⋅ ri to rj , then E−1 is obtained from

In by adding −κ ⋅ ri to rj .
◻
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2. Rank and matrix inversion

2.1. Our goal in this section is to devise an algorithm to compute the inverse of
a matrix, and hence of a linear map between finite-dimensional spaces. Elementary
row operations are the building blocks of this algorithim.

2.2. Definition. Let A ∈ Mm×n(F). The rank of A is defined to be rank LA,
where LA is the left-regular representation of A; that is,

LA ∶ Fn → Fm
x ↦ Ax.

Recall that A ∈ Mn(F) is invertible if and only if LA ∈ L(Fn) is invertible, and
that if dim V = n <∞ and T ∈ L(V), then T is invertible if and only if T is surjective,
i.e. if and only if rank T = n. Thus A ∈Mn(F) is invertible if and only if rank A = n.

2.3. Theorem. Let V,W be finite-dimensional vector spaces with ordered bases
D and C respectively. Let T ∈ L(V,W). Then rank T = rank [T ]CD.
Proof. Let n ∶= dim V and m ∶= dim W. Recall that the map

ΓW ∶ W → Fm
w ↦ [w]C

is an isomorphism of W onto Fm. By Theorem 5.4.10,

rankT = rank (ΓW ○ T ) = dim ran (ΓW ○ T )

= dim {[Tv]C ∶ v ∈ V} = dim {[T ]CD [v]D ∶ v ∈ V}

= rankL[T ]CD
= rank [T ]CD.

◻

The next result is an immediate consequence of the definition of the rank of a
matrix combined with Theorem 5.4.10.

2.4. Theorem. Let B ∈Mm×n(F) and A ∈Mp×m(F). Then

rank (AB) ≤ min(rank (A), rank (B)).

When one of the terms is invertible, we can do better.
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2.5. Theorem. Let A ∈ Mm×n(F). Suppose that R ∈ Mm(F) and S ∈ Mn(F)
are invertible matrices. Then

rank A = rank RA = rank AS = rank RAS.

Proof. Note that LR ∈ L(Fm) and LS ∈ L(Fn) are invertible. By Theorem 5.4.10,

rankA = rankLA = rank (LRLA) = rank (LRA) = rank (RA),

and

rankA = rankLA = rank (LALS) = rank (LAS) = rank (AS).

Finally, combining these two equalities:

rankA = rank (AS) = rank (R(AS)).

◻

2.6. Corollary. Elementary row and column operations preserve the rank of a
matrix.

2.7. Notation. We define the column space of the matrix A ∈ Mm×n(F) to
be

Col(A) ∶= span{c1,c2, . . . ,cn} ⊆ Fm,

where cj denotes the jth column of A, 1 ≤ j ≤ n. Analogously, we define the row
space of A to be

Row(A) ∶= span{r1,r2, . . . ,rm} ⊆ Fn,

where ri denotes the ith row of A, 1 ≤ i ≤m.

2.8. Theorem. Let A ∈ Mm×n(F). Then rankA = dim Col(A) is the number
of linearly independent columns of A.
Proof. It suffices to note that if D = (e1, e2, . . . , en) is the standard ordered basis
for Fn, then

ranLA = span {Aej ∶ 1 ≤ j ≤ n} = span {cj ∶ 1 ≤ j ≤ n} = Col(A).

From this, the result immediately follows.
◻
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2.9. Example. Let A =
⎡⎢⎢⎢⎢⎢⎣

0 −2 4
1 1 −1
3 4 −5

⎤⎥⎥⎥⎥⎥⎦
. Now,

1c1 + (−2)c2 − 1c3 = 0,

so rank A ≤ 2. Since the first two columns of A are linearly independent, rank A ≥ 2,
whence rank A = 2.

Alternatively, we may apply elementary operations to determine the rank of A.

A =
⎡⎢⎢⎢⎢⎢⎣

0 −2 4
1 1 −1
3 4 −5

⎤⎥⎥⎥⎥⎥⎦

R1↔R2Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 −1
0 −2 4
3 4 −5

⎤⎥⎥⎥⎥⎥⎦
R3+(−3)R1Ð→

⎡⎢⎢⎢⎢⎢⎣

1 1 −1
0 −2 4
0 1 −2

⎤⎥⎥⎥⎥⎥⎦

R2↔R3Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 −1
0 1 −2
0 −2 4

⎤⎥⎥⎥⎥⎥⎦
R3+(2)R2Ð→

⎡⎢⎢⎢⎢⎢⎣

1 1 −1
0 1 −2
0 0 0

⎤⎥⎥⎥⎥⎥⎦

R1+(−1)R2Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 1
0 1 −2
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

Clearly rank A = 2.

2.10. Theorem. Let A ∈ Mm×n(F), and suppose that rank A = r. Then r ≤
min(m,n), and by a finite number of elementary row and column operations, A can
be transformed into the matrix

D = [Ir 0
0 0]

m×n

.

The proof of this result has been (unfairly, perhaps?) relegated to the Appendix
of this Chapter. As for the first statement, it is clear that

rank A = rank LA = dim ranLA ≤ dim Fm =m.

But as we saw above, rank A is the number of linearly independent columns of A,
of which there can be no more than the total number of columns of A, namely n.

Let us nevertheless illustrate the process from this theorem with an example:

2.11. Example. Let A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 0
2 5 5 1
−2 −3 0 3
3 4 −2 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. Then D = I4.
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 0
2 5 5 1
−2 −3 0 3
3 4 −2 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

R2+(−2)R1; R3+(2)R1; R4+(−3)R1Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 0
0 1 3 1
0 1 2 3
0 −2 −5 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

R1+(−2)R2; R3+(−1)R2; R4+(2)R2Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −5 −2
0 1 3 1
0 0 −1 2
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(−1)R3Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −5 −2
0 1 3 1
0 0 1 −2
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

R1+(5)R3; R2+(−3)R3; R4+(−1)R3Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −12
0 1 0 7
0 0 1 −2
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

R1+(12)R4; R2+(−7)R4; R3+(2)R4Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2.12. Corollary. Let A = Mm×n(F) and suppose that rank A = r. Then there
exist invertible matrices B ∈Mm(F) and C ∈Mn(F) such that

D = [Ir 0
0 0] = BAC.

Furthermore, each of B and C is a product of elementary matrices.
Proof. Each row operation in Theorem 2.10 corresponds to multiplying by an ele-
mentary row matrix on the left, and each elementary column operation corresponds
to multiplying by an elementary column matrix on the right. Since these are invert-
ible, so are their products.

◻

2.13. Example. Let A =
⎡⎢⎢⎢⎢⎢⎣

1 2 3 4
2 5 7 9
3 7 10 13

⎤⎥⎥⎥⎥⎥⎦
.
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A =
⎡⎢⎢⎢⎢⎢⎣

1 2 3 4
2 5 7 9
3 7 10 13

⎤⎥⎥⎥⎥⎥⎦

R2+(−2)R1; R3+(−3)R1Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 3 4
0 1 1 1
0 1 1 1

⎤⎥⎥⎥⎥⎥⎦
R1+(−2)R2; R3+(−1)R2Ð→

⎡⎢⎢⎢⎢⎢⎣

1 0 1 2
0 1 1 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
c3+(−1)c1; c4+(−2)c1Ð→

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 1 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
c3+(−1)c2; c4+(−1)c2Ð→

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

Now, to construct B, we consider:

I3 =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

R2+(−2)R1; R3+(−3)R1Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0
−2 1 0
−3 0 1

⎤⎥⎥⎥⎥⎥⎦
R1+(−2)R2; R3+(−1)R2Ð→

⎡⎢⎢⎢⎢⎢⎣

5 −2 0
−2 1 0
−1 −1 1

⎤⎥⎥⎥⎥⎥⎦
.

Thus B =
⎡⎢⎢⎢⎢⎢⎣

5 −2 0
−2 1 0
−1 −1 1

⎤⎥⎥⎥⎥⎥⎦
. Note that

BA =
⎡⎢⎢⎢⎢⎢⎣

5 −2 0
−2 1 0
−1 −1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 2 3 4
2 5 7 9
3 7 10 13

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 1 2
0 1 1 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

To construct C, we consider:

I4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

c3+(−1)c1; c4+(−2)c1Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −2
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

c3+(−1)c2; c4+(−1)c2Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −2
0 1 −1 −1
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Thus C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −2
0 1 −1 −1
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. It follows that

BAC = (BA)C =
⎡⎢⎢⎢⎢⎢⎣

1 0 1 2
0 1 1 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −2
0 1 −1 −1
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

2.14. Corollary. Let A ∈Mm×n(F). Then
(a) rank At = rank A.
(b) The rank of A is equal to the dimension of Row (A). Thus, rank A repre-

sents the number of linearly independent rows of A.
Proof. By Theorem 2.10, we can find invertible matrices B and C such that

BAC = [Ir 0
0 0] .

Note that r = rank (BAC) = rank (A) as B and C are invertible.
But it is also clear that r = rank (BAC)t = rank (CtAtBt) and that Ct, Bt are

also invertible. Thus
r = rank (At) = rank (A).

The second statement follows immediately from this.
◻

2.15. Corollary. Let A ∈Mn(F). The following are equivalent.
(a) A is invertible.
(b) A is the product of elementary matrices.

Proof.
(a) implies (b). By Corollary 2.12 above applied to the case where m = n = r,

we can find B,C ∈Mn(F) such that In = BAC. Thus

B−1C−1 = B−1InC
−1 = B−1(BAC)C−1 = A.

But if B = EjEj−1Ej−2⋯E2E1, then B−1 = E−1
1 E−1

2 ⋯E−1
j−1E

−1
j , and each E−1

i

is again an elementary matrix. Thus B−1, and similarly C−1, is a product
of elementary matrices, meaning that A is also a product of elementary
matrices.

(b) implies (a). Since each elementary matrix is invertible, any finite product
of elementary matrices must also be invertible.

◻
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2.16. Example. Let

D ∶ R3[x] → R3[x]
p ↦ p′.

With respect to the standard ordered basis D = (1, x, x2, x3) for R3[x],

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
has rank equal to 3. Thus D is not invertible.

2.17. Definition. Let A ∈ Mm×n(F), B ∈ Mm×p(F). The augmented matrix
[ A B ] is the matrix whose first n columns are those of A, and whose last p
columns are those of B.

2.18. Example. If A = [1 2
3 4] and B = [5 6 7 8

9 10 11 12], then

[ A B ] = [ 1 2 5 6 7 8
3 4 9 10 11 12 ] .

2.19. Exercise. Let F be a field and m,n, p, q ∈ N. Given A ∈ Mm×n(F),
B ∈Mm×p(F) and T ∈Mq×m(F),

T [A ∣B] = [TA ∣ TB].

2.20. Inverting matrices. Suppose that A ∈ Mn(F) is invertible. Let G ∶=
[ A In ] ∈Mn×2n(F).

SinceA is invertible, we know by Corollary 2.15 that we may writeA = E1E2⋯Ep,
where Ej is an elementary matrix, 1 ≤ j ≤ p. Since elementary matrices are invertible
and their inverses are also elementary matrices,

A−1 = E−1
r E−1

r−1⋯E−1
2 E−1

1 .

Combining this with the above exercise, we see that

A−1G = A−1[ A In ] = [ In A−1 ].

In other words, if A ∈Mn(F) and we apply a sequence of row operations to [ A In ]
to obtain [ In B ], then B = A−1.
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2.21. Example. Consider A =
⎡⎢⎢⎢⎢⎢⎣

1 2 1
−1 1 2
1 0 1

⎤⎥⎥⎥⎥⎥⎦
∈M3(R). We leave it as an exercise

for the reader to show that

[ A In ] =
⎡⎢⎢⎢⎢⎢⎣

1 2 1 1 0 0
−1 1 2 0 1 0
1 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→

⎡⎢⎢⎢⎢⎢⎣

1 0 0 1
6 −1

3
1
2

0 1 0 1
2 0 −1

2
0 0 1 −1

6
1
3

1
2

⎤⎥⎥⎥⎥⎥⎦
.

Thus

A−1 =
⎡⎢⎢⎢⎢⎢⎣

1
6 −1

3
1
21

2 0 −1
2

−1
6

1
3

1
2

⎤⎥⎥⎥⎥⎥⎦
.

2.22. Example. Let A = [1 2
1 1]. Then

[ A In ] = [ 1 2 1 0
1 1 0 1 ]Ð→ [ 1 0 −1 2

0 1 1 −1 ] ,

and therefore

A−1 = [−1 2
1 −1] .

3. Systems of linear equations

3.1. In this system we use what we have learnt about matrices to help us solve
systems of linear equations. Given a system S of m equations in n unknowns,

a11x1 + a12x2 + ⋯ + a1nxn = b1
a21x1 + a22x2 + ⋯ + a2nxn = b2

⋮ ⋯ ⋮
am1x1 + am2x2 + ⋯ + amnxn = bm

the matrix A ∶= [aij] ∈Mm×n(F) is called the coefficient matrix of S. . By writing

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Fn, b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
⋮
bm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Fm,

the system S may be written as the single equation Ax = b, or as LAx = b, where
LA ∈ L(Fn,Fm).
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A solution to the system S is a vector s =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
⋮
sn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Fn such that As = b. The set

Sol(S) ∶= {s ∈ Fn ∶ As = b}

is called the solution set of the system.

The system S is said to be consistent if Sol(S) ≠ ∅, otherwise we say that S is
inconsistent.

Furthermore, the system S is said to be homogeneous if b = 0m ∈ Fm. Then
0n ∈ Sol(S), and so the system is automatically consistent. In fact, by the Dimension
Theorem, we have the following.

3.2. Theorem. If S is a homogeneous system Ax = 0 of m linear equations in
n unknowns, then Sol(S) = ker LA. Thus S is a subspace of Fn, and

dim Sol(S) = n − rank LA = n − rank A.

3.3. Example. Consider the homogeneous system S of linear equations:

x1 + 2x2 − x3 = 0
2x1 + x2 + x3 = 0

As above, we may write this as a single matrix equation:

[1 2 −1
2 1 1 ]

⎡⎢⎢⎢⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
= [0

0] .

The solution set to the system S is Sol(S) = ker LA, where A = [1 2 −1
2 1 1 ]. Note

that
dim Sol(S) = n − rank LA = 3 − 2 = 1,

so that Sol(S) is a 1-dimensional space. Since
⎡⎢⎢⎢⎢⎢⎣

1
−1
−1

⎤⎥⎥⎥⎥⎥⎦
∈ ker LA, we see that

Sol(S) = ker LA = span{
⎡⎢⎢⎢⎢⎢⎣

1
−1
−1

⎤⎥⎥⎥⎥⎥⎦
} = {

⎡⎢⎢⎢⎢⎢⎣

a
−a
−a

⎤⎥⎥⎥⎥⎥⎦
∶ a ∈ F}.
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3.4. Corollary. If Sol(S) is a homogeneous system Ax = 0 of m equations in n
unknowns, where 1 ≤m < n, then the system has a non-zero solution.
Proof. This follows immediately from Theorem 3.2, since if A is the matrix corre-
sponding to the linear system, then rank A ≤m < n, so

dim Sol(S) = n − rank A > 0.

◻

Suppose that Ax = b represents a system of m linear equations in n unknowns.
Then the equation

Ax = 0

is called the homogeneous system corresponding to Ax = b. We shall refer to
the associated homogeneous system as Shom.

3.5. Theorem. Let S be a consistent system Ax = b of m equations in n un-
knowns. Let s0 ∈ Sol(S). Then

Sol(S) = s0 + Sol(Shom) = {s0 + k ∶ k ∈ Sol(Shom)}.

In other words, Sol(S) is a coset of Sol(Shom) in Fn/Sol(Shom), and it has any
particular solution s0 of the system S as its representative.
Proof. Let s0 ∈ Sol(S).

Let k ∈ Sol(Shom). Then A(s0 +k) = As0 +Ak = b+0 = b, so s0 +k ∈ Sol(S). That
is,

s0 + Sol(Shom) ⊆ Sol(S).

Next, let s1 ∈ Sol(S). Then As1 = b = As0, so k ∶= s1 − s0 ∈ Sol(Shom). That is,

Sol(S) ⊆ s0 + Sol(Shom).

This completes the proof.
◻

3.6. Example. Consider the system S given by:

x1 + 2x2 − x3 = 3
2x1 + x2 + x3 = 3
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The homogeneous system Shom associated to S is the system from Example 3.3

above. Note that
⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
is a particular solution to this system. By Theorem 3.5,

Sol(S) =
⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
+ Sol(Shom)

=
⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
+
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a
−a
−a

⎤⎥⎥⎥⎥⎥⎦
∶ a ∈ F

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1 + a
1 − a
−a

⎤⎥⎥⎥⎥⎥⎦
∶ a ∈ F

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

3.7. Example. Let us consider the system S given by:

x1 + 2x2 + x3 + x4 = 1
x2 − x3 + x4 = 1

Let A = [1 2 1 1
0 1 −1 1] denote the coefficient matrix of the system. We must

find Sol(Shom) = ker LA. Let E be an elementary matrix in M2(F), and observe that
Ax = 0 if and only if EAx = E0 = 0. In other words, if B is the matrix obtained
from A by performing elementary row operations on A, then ker LB = ker LA.Now

[1 2 1 1
0 1 −1 1]Ð→ [1 0 3 −1

0 1 −1 1 ] .

Setting x4 = a, x3 = b ∈ F, we solve for x2 = −a + b and x1 = a − 3b. Thus

Sol(Shom) = ker LA = {(a− 3b,−a+ b, b, a) ∶ a, b ∈ F} = span {(1,−1,0,1), (−3,1,1,0)}.

In particular, dim Sol(Shom) = 2. (We can check this by noting that rank A = 2, so
nulA = 4 − rank A = 4 − 2 = 2.)
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Observe that (0,0,0,1) ∈ Sol(S), and so by the above Theorem,

Sol(S) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ Sol(Shom)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ a

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ b

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∶ a, b ∈ F

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a − 3b
−a + b
b

1 + a

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∶ a, b ∈ F

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

When the coefficient matrix A of a system S is invertible, we obtain the following.

3.8. Theorem. Let S be the system Ax = b consisting of n equations in n
unknowns. If the corresponding coefficient matrix A ∈Mn(F) is invertible, then the
system is consistent and admits the unique solution Sol(S) = {A−1b}.

Conversely, if the system S admits a unique solution, then A must be invertible.
Proof. Suppose that A ∈ Mn(F) is invertible. Clearly A(A−1b) = b, and thus
A−1b ∈ Sol(S). Also, if s ∈ Sol(S), then As = b implies that s = A−1(As) = A−1b, so
Sol(S) = {A−1b}.

Conversely, suppose that Ax = b admits a unique solution. By Theorem 3.5,

{A−1b} = Sol(S) = A−1b + Sol(Shom).

Thus Sol(Shom) = {0}.
By Theorem 3.2,

0 = dim(Sol(Shom)) = n − rank A,
implying that rank A = n, and thus that A is invertible.

◻

3.9. Example. Consider the system S given by

x1 + 3x2 = 4
2x1 + 5x2 = 3

The corresponding coefficient matrix is A = [1 3
2 5], which is invertible with inverse

A−1 = [−5 3
2 −1] .
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Thus
Sol(S) = {A−1b} = {[−5 3

2 −1] [4
3]} = {[−11

5 ]} .

3.10. Definition. Given a system S of m linear equations in n unknowns, say
Ax = b, the matrix [ A b ] is called the augmented matrix of the system.

3.11. Remark. It is worth noting that any vector Ax is a linear combination
of the columns of A, and if y = ∑nj=1 κjcj(A), then

y = A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

κ1
κ2
⋮
κn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ ranLA.

In other words, ranLA = Col(A).

3.12. Theorem. The system S defined by Ax = b is consistent if and only if
rank A = rank [ A b ].
Proof. As just noted, ranLA = Col(A), and so Ax = b is consistent if and only if
b ∈ Col(A); i.e. if and only if

rank A = dim Col(A) = dim Col([ A b ]) = rank ([ A b ]).
◻

3.13. Example. Consider the system S given by:
⎡⎢⎢⎢⎢⎢⎣

1 2 −1
2 1 2
1 −4 7

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
3
4

⎤⎥⎥⎥⎥⎥⎦
.

Then rank A = 2, while rank [ A b ] = 3. By Theorem 3.12, the system S is
inconsistent, i.e. it does not have a solution.

3.14. Solving linear equations. We now turn our attention to the problem
of solving a system of linear equations. We begin with a definition.

3.15. Definition. Two systems S1 and S2 of linear equations are said to be
equivalent if they admit the same solution set.

3.16. Theorem. Let Ax = b represent a system of m linear equations in n
unknowns over a field F. Let C ∈ Mm(F) be an invertible matrix. Then Ax = b is
equivalent to the system CAx = Cb.
Proof. We leave this as an exercise for the reader.

◻
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3.17. Corollary. Applying a finite number of elementary row operations to a
system of linear equations results in an equivalent system.

3.18. Given a system S of m linear equations in n unknowns represented as Ax =
b, we wish to apply elementary row operation to the augmented matrix [ A b ] of
the system so as to yield:

● an upper triangular matrix in which the first non-zero entry
of each row is 1, and this entry occurs to the right of the first
non-zero entry of any preceding row.

3.19. Example. Consider the system S given by:

x1 − 4x2 − x3 + x4 = 3
2x1 − 8x2 + x3 − 4x4 = 9
−x1 + 4x2 − 2x3 + 5x4 = −6

The augmented matrix corresponding to S is:
⎡⎢⎢⎢⎢⎢⎣

1 −4 −1 1 3
2 −8 1 −4 9
−1 4 −2 5 −6

⎤⎥⎥⎥⎥⎥⎦
Ð→ ⋯Ð→

⎡⎢⎢⎢⎢⎢⎣

1 −4 −1 1 3
0 0 1 −2 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

3.20. Example. Consider the system S given by:

x1 + 2x2 − x3 + x4 = 2
2x1 + x2 + x3 − x4 = 3
x1 + 2x2 − 3x3 + 2x4 = 2

The augmented matrix corresponding to S is:
⎡⎢⎢⎢⎢⎢⎣

1 2 −1 1 2
2 1 1 −1 3
1 2 −3 2 2

⎤⎥⎥⎥⎥⎥⎦
Ð→ ⋯Ð→

⎡⎢⎢⎢⎢⎢⎣

1 2 −1 1 2
0 1 −1 1 1

3
0 0 1 −1

2 0

⎤⎥⎥⎥⎥⎥⎦
.

3.21. Definition. A matrix A ∈Mm×n(F) is said to be in reduced row eche-
lon form if

(a) any row containing a non-zero entry precedes a zero row;
(b) the first non-zero entry in any row is the only non-zero entry in its column;

and
(c) the first non-zero entry of each row is 1, and this entry occurs to the right

of the first non-zero entry of any preceding row.
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3.22. Example. Which of the following are in reduced row echelon form?

(a) A1 =
⎡⎢⎢⎢⎢⎢⎣

1 1 0
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

(b) A2 =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
.

(c) A3 = [2 0 0
0 1 0].

(d) A4 =
⎡⎢⎢⎢⎢⎢⎣

1 0 4 0 3
0 1 2 0 9
0 0 0 1 4

⎤⎥⎥⎥⎥⎥⎦
.

(e) A5 =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
.

The procedure below for reducing a matrix to its reduced row echelon form is
called Gaussian elimination.

3.23. Example. Solve the system S given by:

3x1 − x2 + x3 − x4 + 2x5 = 5
x1 − x2 − x3 − 2x4 − x5 = 2

5x1 − 2x2 + x3 − 3x4 + 3x5 = 10
2x1 − x2 − 2x4 + x5 = 5

The augmented matrix corresponding to S1 is:
⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 1 −1 2 5
1 −1 −1 −2 −1 2
5 −2 1 −3 3 10
2 −1 0 −2 1 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→ ⋯Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 2 3
0 1 2 0 5 7
0 0 0 1 −1 −3
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

This corresponds to the equivalent system S2 given by:

x1 + x3 + 2x5 = 3
x2 + 2x3 + 5x5 = 7

x4 − x5 = −3

To solve this system, we assign parameters to the non-leading variables (i.e.
the variables which do not correspond to a leading one in the non-augmented matrix
of the system), and we use these to solve for the leading variables:
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In our case, the non-leading variables are x5 and x3; we set x5 = t ∈ F, x3 = s ∈ F
and obtain:

x5 = t
x4 = −3 + t
x3 = s
x2 = 7 − 5t + 2s
x1 = 3 − 2t + s.

The solution set is therefore

Sol(S1) = Sol(S2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 − 2t + s
7 − 5t + 2s

s
−3 + t
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∶ s, t ∈ F

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
7
0
−3
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ span

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
−5
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

.

3.24. Theorem. Let S be the system Ax = b of m non-zero equations in n
unknowns over a field F. Suppose that rankA = rank[ A b ] and that [ A b ] is
in reduced row echelon form. Then

(a) rankA =m.
(b) if the general solution to the system obtained through Gaussian elimination

is
s = s0 + κ1u1 + κ2u2 +⋯ + κn−mun−m,

where s0, uj ∈ Fn are fixed and κj ∈ F, 1 ≤ j ≤ n −m are arbitrary, then

D ∶= {u1, u2, . . . , un−m}

is a basis for
ker A ∶= ker LA = Sol(Shom).

Moreover, s0 may be replaced by any other solution t0 to the original system
Ax = b.

Proof.
(a) Since all of the rows of [A ∣ b] are non-zero (by hypothesis), and since

[A ∣ b] is assumed to be in reduced row-echelon form, each row must have
a leading 1 that is the only non-zero entry in its column. This means that
there must be m linearly independent columns, and so rank [A ∣ b] = m.
Since rankA = rank [A ∣ b] by hypothesis, it follows that rankA =m.

(b) Choose arbitrary κi ∈ F, 1 ≤ i ≤ n −m, and let s1 = s0 +∑n−mj=1 κjuj . Note
that s0 = s0 +∑n−mj=1 0uj is given as another solution to the system Ax = b.
Thus As1 = b = As0, and so

s1 − s0 =
n−m

∑
j=1

κjuj ∈ ker LA = Sol(Shom).
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Since the κj ’s were arbitrary,
span{u1, u2, . . . , un−m} ⊆ Sol(Shom) = ker LA.

Conversely, if y ∈ Sol(Shom), then A(s0 + y) = As0 + Ay = As0 = b, so
s0 + y ∈ {s0 + ∑n−mj=1 αjuj ∶ αj ∈ F,1 ≤ j ≤ n − m}. In particular, y0 ∈
span{u1, u2, . . . , un−m}, and thus

ker LA = Sol(Shom) ⊆ span {u1, u2, . . . , un−m}.
Thus

ker LA = Sol(Shom) = span {u1, u2, . . . , un−m}.
But rank LA = rank A = m, whence nulLA = n −m. Since {uj ∶ 1 ≤ j ≤

n −m} spans the n −m dimensional space ker LA, it must be a basis for
that space.

If t0 ∈ Sol(S) is arbitrary, then t0 + ker LA = s0 + ker LA since At0 = b =
As0 implies that t0 − s0 ∈ ker LA, and thus t0 and s0 are representatives of
the same coset in Fn/ker LA.

◻

3.25. Theorem. Suppose that A ∈ Mm×n(F), and that B is obtained from A
through a finite number of elementary row operations. Let c1(A),c2(A), . . . ,cn(A)
denote the columns of A, and c1(B),c2(B), . . . ,cn(B) denote the columns of B.
Given α1, α2, . . . , αn ∈ F, we have that

n

∑
j=1

αjcj(A) = 0 if and only if
n

∑
j=1

αjcj(B) = 0.

Proof. Let M be the matrix which implements the sequence of elementary row
operations so that B =MA. Then M is invertible, cj(B) =Mcj(A), and so cj(A) =
M−1cj(B). From this the result easily follows.

◻

3.26. Example. Suppose that the reduced row echelon form of a matrix A is
given by

B ∶=
⎡⎢⎢⎢⎢⎢⎣

1 0 2 0 −2
0 1 −5 0 −3
0 0 0 1 6

⎤⎥⎥⎥⎥⎥⎦
.

Determine A if the first, second and fourth columns are given by
⎡⎢⎢⎢⎢⎢⎣

1
−1
3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
−1
1

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

1
−2
0

⎤⎥⎥⎥⎥⎥⎦
.

Note that B =MA, where M is invertible (being the product of the elementary
row operations that induce the elementary operations on A). Thus Theorem 3.25
applies.
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Since c3(B) = 2c1(B) − 5c2(B), it follows that

c3(A) = 2c1(A) − 5c2(A) = 2
⎡⎢⎢⎢⎢⎢⎣

1
−1
3

⎤⎥⎥⎥⎥⎥⎦
− 5

⎡⎢⎢⎢⎢⎢⎣

0
−1
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
3
1

⎤⎥⎥⎥⎥⎥⎦
.

Since c5(B) = −2c1(B) − 3c2(B) + 6c4(B), it follows that

c5(A) = −2c1(A) − 3c2(A) + 6c4(A) = (−2)
⎡⎢⎢⎢⎢⎢⎣

1
−1
3

⎤⎥⎥⎥⎥⎥⎦
+ (−3)

⎡⎢⎢⎢⎢⎢⎣

0
−1
1

⎤⎥⎥⎥⎥⎥⎦
+ 6

⎡⎢⎢⎢⎢⎢⎣

1
−2
0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

4
−7
−9

⎤⎥⎥⎥⎥⎥⎦
.

Thus

A =
⎡⎢⎢⎢⎢⎢⎣

1 0 2 1 4
−1 −1 3 −2 −7
3 1 1 0 −9

⎤⎥⎥⎥⎥⎥⎦
.

3.27. Example. Let

A =
⎡⎢⎢⎢⎢⎢⎣

1 2 1 −1 2
1 1 1 0 3
3 2 3 −2 1

⎤⎥⎥⎥⎥⎥⎦
Ð→ ⋯Ð→ B =

⎡⎢⎢⎢⎢⎢⎣

1 0 1 0 1
0 1 0 0 2
0 0 0 1 3

⎤⎥⎥⎥⎥⎥⎦
.

Since c1(B),c2(B),c4(B) are linearly independent, so are c1(A),c2(A), and
c4(A). Also,

c3(B) = c1(B) and c5(B) = c1(B) + 2c2(B) + 3c4(B),

whence c3(A) = c1(A) and

c5(A) = c1(A) + 2c2(A) + 3c4(A).

Keep in mind yet again that on an exam or assignment, you can check your
answer!

3.28. Example. Let L ∶= {L1 ∶= [1 2
3 4] , L2 ∶= [0 1

2 3]}, and observe that L is

linearly independent in M2(C). Let us extend L to a basis for M2(C).
The standard basis for M2(C) is B ∶= {E11,E12,E21,E22}.
Recall that the map Φ ∶M2(C)→ C4 defined by Φ(A) = [A]B is an isomorphism,

and that isomorphisms preserve linearly independent sets. We therefore consider
the matrix A ∈M4×6(C) whose columns are [L1]B, [L2]B, [E11]B, . . . , [E22]B.

That is, consider

A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0
2 1 0 1 0 0
3 2 0 0 1 0
4 3 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

rowÐ→ ⋯ reduceÐ→ B ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 3 −2
0 1 0 0 −4 3
0 0 1 0 −3 2
0 0 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Since {c1(B),c2(B),c3(B),c4(B)} is linearly independent, so is the set
{c1(A),c2(A),c3(A),c4(A)}. Since Φ is an isomorphism, this means that L ex-
tends to the linearly independent set

M ∶= {[1 2
3 4] , [

0 1
2 3] ,E11,E12} .

But dim M2(C) = 4, so M must be a basis, as it is linearly independent in M2(C)
and it has four elements.

3.29. Example. The set
S ∶= {s1 = (1,2,3,4), s2 = (1,1,0,0), s3 = (6,7,3,4), s4 = (2,1,0,0)}

spans a subspace W of R4. Let us find a basis B for W such that B ⊆ S.
Let D = (e1, e2, e3, e4) be the standard ordered basis for R4, and again note that

the map Φ ∶ R4 → R4 defined by Φ(x) = [x]D is an isomorphism. (In fact, it looks
like the identity map because we chose the standard basis! The only difference is
that we are writing the coordinate vectors as columns instead of rows. Having said
the “only” difference, it is an important one!)

Writing [s1]D, [s2]D, [s3]D, [s4]D as columns of a matrix A, we find that

A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 6 2
2 1 7 1
3 0 3 0
4 0 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→ ⋯Ð→ B ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 5 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since c1(B),c2(B),c4(B) are linearly independent, so are c1(A),c2(A),c4(A).
Since c3(B) = c1(B) + 5c2(B), we have that

c3(A) = c1(A) + 5c2(A) ∈ span{c1(A),c2(A),c4(A)}.
Thus s3 ∈ span {s1, s2, s4} and we may take

B = {s1, s2, s4} = {(1,2,3,4), (1,1,0,0), (2,1,0,0)}.
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Supplementary Examples

S6.1. Example. Let F be a field and A = [a b
c d

] ∈ M2(F). Suppose that

∆ ∶= ad − bc ≠ 0, and let

Y ∶= ∆−1 [ d −b
−c a

] .

An easy calculation then shows that
AY = I2 = Y A,

and so Y = A−1.
If ∆ = 0, then rankA < 2 (check!), and so A is not invertible.
In the next Chapter, we shall refer to ∆ as the determinant of A, and we

shall generalise the notion of determinants to all matrices in Mn(F), showing that
a matrix B ∈ Mn(F) is invertible if and only if Det (B) ≠ 0. Unfortunately, the
computation of B−1 when B is invertible is not going to be as nice as the the one
above for 2 × 2 matrices over F.

S6.2. Example.

S6.3. Example.

S6.4. Example.

S6.5. Example.

S6.6. Example.

S6.7. Example.

S6.8. Example.

S6.9. Example.

S6.10. Example.
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Appendix

Let’s prove Theorem 6.2.10. We begin with a Lemma.
A6.1 Lemma. Let m,n ∈ N and F be a field. Suppose that 0 ≠ A ∈ Mm×n(F).
Then there exist invertible matrices B ∈ Mm(F) and C ∈ Mn(C) such that if T =
[tij] ∶= BAC, then

(i) t11 = 1;
(ii) t1j = 0 if 2 ≤ j ≤ n; and
(iii) ti1 = 0 if 2 ≤ i ≤m.

Proof. Recall that applying elementary row operations to A is equivalent to multi-
plying A on the left by an (invertible) elementary matrix in Mm(F), while applying
elementary column operations to A is equivalent to multiplying A on the right by an
(invertible) elementary matrix in Mn(F). Thus if we can obtain the matrix T from
A through a finite sequence of elementary operations, this completes the proof.

The hypothesis that 0 ≠ A implies that there exist 1 ≤ i0 ≤ m, 1 ≤ j0 ≤ n such
that ai0j0 ≠ 0. Consider the sequence of elementary operations:

A
ri0↔r1
Ð→ A1

cj0↔c1
Ð→ A2

a−1
ij0

r1
Ð→ A3.

This has the effect of first moving the (i0, j0) entry of A to the (1, j0) spot, then
to the (1,1) spot, and then changing it from ai0,j0 to 1. In other words, if we set
X = A3 and write X = [xij], then x11 = 1. (Note that if i0 = 1, then the operation of
switching rows i0 and 1 is just doing nothing, which is represented by multiplication
on the left by the identity matrix. A similar statement holds if j0 = 1, or if ai0j0 = 1
to begin with.)

Next, consider the chain of elementary operations

X
c2+(−x12)c1Ð→ X2

c3+(−x13)c1Ð→ X3
c4+(−x14)c1Ð→ ⋯ ⋯

cn+(−x1n)c1Ð→ Xn.

Letting Y = Xn and writing Y = [yij], we find that y11 = 1 and y1j = 0 for all
2 ≤ j ≤ n.

We then apply the following chain of elementary operations.

Y
r2+(−y21)r1Ð→ Y2

r3+(−y31)r1Ð→ Y3
r4+(−y41)r1Ð→ ⋯ ⋯

rm+(−ym1)r1Ð→ Ym.

Let T ∶= Ym, and observe that T was obtained from A by at most 3 + (n − 1) +
(m − 1) < ∞ elementary operations, so that T = BAC for some invertible matrices
B and C (namely the products of the elementary matrices applied above). Write
T = [tij].

Now, since none of these operations in the last chain affected the first row of
Y , we find that t11 = 1 and t1j = 0, 2 ≤ j ≤ n. The purpose of the last chain of
elementary operations was to eliminate any non-zero entries in the first column of
the last (m − 1) rows, and thus we have that ti1 = 0 for all 2 ≤ i ≤m.

This is exactly what we wanted.
◻
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A6.2 Theorem. Let A ∈ Mm×n(F), and suppose that rank A = r. Then
r ≤ min(m,n), and by a finite number of elementary row and column operations, A
can be transformed into the matrix

D = [Ir 0
0 0]

m×n

.

Proof. That r ≤ min(m,n) was proven in the main body of the notes.
As for the second statement, we shall argue by induction on m, the number of

rows of A.

Case One. m = 1. If A = 0, there is nothing to do, and the result holds. If A ≠ 0,
then by Lemma A6.1, we can find B ∈M1(F) and C ∈Mn(F) such that

T = BAC = [1 0 0 ⋯ 0 0].
Since rankA ≥ 1 (as A ≠ 0) and since rankA ≤ 1 = m, we have completed the proof
in this case.

Case Two. m > 1. Let M ≥ 2 and suppose that the result holds for all matrices
in Mm×n(F) where m <M . We must prove that it holds if A ∈MM×n(F).

Again, if A = 0, there is nothing to do and the result holds. Thus we may suppose
that A ≠ 0.

By Lemma A6.1, we can find invertible matrices (i.e. products of elementary
matrices) B0 ∈MM(F) and C0 ∈Mn(F) such that if T = B0AC0 = [tij], then

(i) t11 = 1;
(ii) t1j = 0 if 2 ≤ j ≤ n; and
(iii) ti1 = 0 if 2 ≤ i ≤m.

Thus

T = [1 0
0 T4

] ,

where T4 ∈ M(M−1)×(n−1)(F). By our induction hypothesis, we can apply finitely
many elementary row operations involving only rows 2 through M and finitely many
elementary column operations involving only columns 2 through n so that the re-
sulting matrix D is of the form

D =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 Is 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
,

where s = rank (T4). Since D was obtained from T using finitely many elementary
operations, and since T was obtained from A through finitely many elementary op-
erations, we conclude that D was obtained from A through finitely many elementary
operations, and thus

D = BAC
for some invertible matrices B ∈MM(F) and C ∈Mn(F).
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That r ∶= s+1 = rankA is now clear, since this is dim Col(D) = rankD = rankA,
as elementary operations do not affect the rank of a matrix.

◻
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Exercises for Chapter 6

Exercise 6.1.
Recall from Exercise 2.19 that if F is a field and m,n, p, q ∈ N, then, given

A ∈Mm×n(F), B ∈Mm×p(F) and T ∈Mq×m(F),
T [A ∣B] = [TA ∣ TB].

Of course, if there is any justice in the world (and let’s face it, do we really believe
that there is?), then there should be a corresponding result for multiplication on the
right. Well, despite the appeal to justice in the world, there actually is a dual result.

Given C ∈Mn×q(F) and D ∈Mp×q(F), we define

[C
D

] ∈M(n+p)×q(F)

as the matrix whose first n rows are the rows of C and whose last p rows are the
rows of D. Your new mission, should you choose to accept it, is to verify that

[A ∣ B] [C
D

] = AC +BD ∈Mm×q(F).

Exercise 6.2.
There’s no stopping us now. Let F be a field, and n1, n2, . . . , nr ∈ N. Set n =

∑rj=1 nj . For each 1 ≤ i, j ≤ r, suppose that Aij ,Bij ∈Mni×nj(F).
Let A = [Aij],B = [Bij], which we may think of as elements of Mn(F) (if we

disregard∗∗ the “[”’s and “]”’s around each of the matrices Aij and Bij). Show that
AB = [Cij],

where Cij = ∑rk=1AikBkj .

For example∗∗, if n1 = 2, n2 = 3 and n = n1 + n2 = 5, we conflate
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[1 2
6 7] [3 4 5

8 9 10]
⎡⎢⎢⎢⎢⎢⎣

11 12
16 17
21 22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

13 14 15
18 19 20
23 24 25

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Exercise 6.3.
Prove that in Example 3.22 of this Chapter, the answers are: yes for (d), and

no for (a), (b), (c) and (e). That is, in each case you must justify the answer.

Exercise 6.4.

Exercise 6.5.

Exercise 6.6.

Exercise 6.7.

Exercise 6.8.

Exercise 6.9.

Exercise 6.10.



CHAPTER 7

Determinants

Whenever someone says “I don’t believe in coincidences”, I say: “Oh
my God, me neither!”

Alasdair Beckett-King

1. The basics

1.1. In this section we shall associate to every square matrix A ∈ Mn(F) an
element α ∈ F called the determinant of A, denoted by det (A). The importance of
determinants can be overstated. For example, if one were to say that determinants
are more important than the Fundamental Theorem of Calculus, I think that most
working mathematicians, and even the lazy ones, would disagree. But they are
useful.

For example, we shall see below that the matrix A is invertible if and only if
det (A) ≠ 0, and so a very nice application of determinants is to determine the
invertibility of a matrix A, and hence the consistency and uniqueness of solutions to
systems of n linear equations in n unknowns. Determinants also have geometrical
interpretations which time (or rather a lack of time) does not allow us to explore.

Theorem 7.1.15 below essentially says that the determinant function yields a
group homomorphism from the (generally non-abelian) group GLn(F) ∶= {T ∈Mn(F) ∶
T is invertible} to the abelian group F∖ {0}, which can’t be all bad. Indeed, this is
nothing to sneeze at unless you are allergic to groups and group homomorphisms.

In this section we develop the basic properties of the determinant function. Alas,
it is not as nice as the trace functional on Mn(F), but we shouldn’t judge it just
based upon that.

1.2. Definition. Let F be a field. If A ∶= [a] ∈ M1(F), then we define the
determinant of A to be

Det(A) ∶= a ∈ F.

If B ∶= [b11 b12
b21 b22

] ∈M2(F), we define the determinant of B to be

Det(B) ∶= b11b22 − b21b12.

145
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1.3. Remarks. Suppose that k ∈ {1,2}, and let A,B ∈ Mk(F). We invite the
reader to verify the following.

(a) A is invertible if and only if detA ≠ 0;
(b) det(AB) = det(A) ⋅ det(B); and
(b) if A ∈Mk(F) is invertible, then det(A−1) = (det(A))−1.

1.4. Definition. Let n ∈ N, F be a field and A = [aij] ∈Mn(F). Given 1 ≤ i, j ∈
n, we define the (i, j)-submatrix Âij of A to be the (n− 1)× (n− 1) matrix obtained
from A by deleting the ith row and the jth column.

Having defined the determinants of 1×1 and 2×2 matrices over F, given 3 ≤ n ∈ N,
we now recursively defined the determinant of a matrix A = [aij] ∈ Mn(F) as
follows:

det(A) ∶=
n

∑
i=1

(−1)i+1 ai1 det(Âi1).

For 1 ≤ i, j ≤ n, the element
det(Âij) ∈ F

is referred to as the (i, j) minor of A, and

(−1)i+j det(Âij) ∈ F
is called the (i, j) cofactor of A.

The above definition of det(A) is then called the expansion by cofactors on
the first column of A.

1.5. Example.

(a) If B = [b11 b12
b21 b22

] ∈ M2(F), then B̂11 = [b22] ∈ M1(F), while B21 = [b12] ∈

M1(F). If we expand the determinant of B by cofactors along the first
column, we obtain:

det(B) = (−1)1+1b11det(B̂11) + (−1)2+1b21det(B̂21)
= b11(b22) + (−1)b21(b12).

This agrees with our original definition of det(B) - which is good news
indeed.

(b) Let T = [tij] ∈M3(F). Then

det(T ) = (−1)1+1t11 det [t22 t23
t32 t33

] + (−1)2+1t21 det [t12 t13
t32 t33

]

(−1)3+1t31 det [t12 t13
t22 t23

]

= t11(t22t33 − t23t32) − t21(t12t33 − t13t32) + t31(t12t23 − t13t22)
= t11t22t33 + t13t32t21 + t31t12t23 − t11t23t32 − t21t12t33 − t31t13t22.



1. THE BASICS 147

1.6. Exercise. Suppose that T = [tij] ∈ Tn(F). Then a routine induction
argument shows that

det(T ) = t11 t22 t33 ⋯ tnn.

In particular, det(In) = 1 for all n ≥ 1.

1.7. Theorem. Let n ∈ N and A = [aij],B = [bij] and C = [cij] ∈ Mn(F).
Suppose that there exists 1 ≤ p ≤ n such that

● ri(A) = ri(B) = ri(C) if 1 ≤ i ≠ p ≤ n; and
● rp(A) = rp(B) + rp(C).

Then
det(A) = det(B) + det(C).

Proof. We shall argue by induction on n.
The base case is n = 1. Here A = [b11 + c11], B = [b11] and C = [c11]. Thus

detA = b11 + c11 = detB + detC.

Now suppose that N > 1 and that the result holds if n < N . Let A = [aij],
B = [bij], C = [cij], and suppose that the conditions of the Lemma hold, namely

● ri(A) = ri(B) = ri(C) if 1 ≤ i ≠ p ≤ n; and
● rp(A) = rp(B) + rp(C).

By definition,

detA =
N

∑
i=1

(−1)i+1ai1 det Âi1.

Now ap1 = bp1 + cp1, and Âp1 = B̂p1 = Ĉp1, so

ap1det Âp1 = (bp1 + cp1)det Âp1
= bp1det Âp1 + cp1det Âp1
= bp1det B̂p1 + cp1det Ĉp1

If 1 ≤ i ≠ p ≤ N , then Âi1, B̂i1 and Ĉi1 are identical, except that for some qi,
the qth

i row of A satisfies aqi,j = bqi,j + cqi,j , 2 ≤ j ≤ n. (One can explicitly calculate
what qi is, but we just need to know that the induction hypothesis works no matter
which row that is.)

Thus by the induction hypothesis, det Âi1 = det B̂i1+det Ĉi1, and since ai1 = bi1 =
ci1, we get

ai1det Âi1 = ai1det B̂i1 + ai1det Ĉi1
= bi1det B̂i1 + ci1det Ĉi1.
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Thus

detA =
N

∑
i=1

(−1)i+1(bi1det B̂i1 + ci1det Ĉi1)

=
N

∑
i=1

(−1)i+1bi1det B̂i1 +
N

∑
i=1

(−1)i+1ci1det Ĉi1

= detB + detC.
This concludes the induction step and the proof.

◻

1.8. Theorem. Let n ∈ N, F be a field, κ ∈ F and A ∈Mn(F).
(a) If 1 ≤ p ≤ n and B ∈ Mn(F) is obtained from A by multiplying rp(A) by κ,

then
det(B) = κdet(A).

(b) If rp(A) = 0 ∈ Fn for some 1 ≤ p ≤ n, then
det(A) = 0.

Proof.
(a) We argue by induction on n.

If n = 1, the result obviously holds. Let N ∈ N and suppose that
the result holds when n < N . Let B = [bij] ∈ MN(F), and suppose that
ri(B) = ri(A) if 1 ≤ i ≠ p ≤ N ; rp(B) = κrp(A).

Then Âp1 = B̂p1, so

bp1det(B̂p1) = κap1det(Âp1).

For 1 ≤ i ≠ p ≤ N , one row of B̂i1 is κ times the same row of Âi1, and so by
our induction hypothesis,

det(B̂i1) = κdet(Âi1).
Since bi1 = ai1 when i ≠ p,

bi1det(B̂i1) = κai1det(Âi1).
Thus

det(B) =
N

∑
i=1

(−1)i+1bi1det(B̂i1)

=
N

∑
i=1

(−1)i+1κai1det(B̂i1)

= κ
N

∑
i=1

(−1)i+1ai1det(B̂i1)

= κdet(A).
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(b) Let B be the matrix obtained from A by multiplying rp(A) by κ = 0. By
part (a),

det(B) = 0 det(A) = 0.
On the other hand, B = A, from which the result follows.

◻
By combining Theorem 1.7 and Theorem 1.8, we see that det (⋅) is linear in any

row. See the Appendix at the end of the Chapter for more details.

1.9. Corollary. Let n ∈ N and A = [aij] ∈Mn(F). If B = −A, then
det (B) = (−1)ndet (A).

Proof. Let A0 = A and for 1 ≤ k ≤ n, let Ak be the matrix obtained from Ak−1
by multiplying the kth row of Ak−1 by −1. Note that B = An and that det (Ak) =
(−1)det (Ak−1) for each 1 ≤ k ≤ n, so that

det(B) = det(An) = (−1)det(An−1)
= (−1)2det(An−2)
= (−1)3det(An−3)
= ⋯
= (−1)ndet(A0) = (−1)ndet(A).

◻

1.10. Theorem. Let n ∈ N, F be a field, κ ∈ F and A ∈ Mn(F). If 1 ≤ p ≠ q ≤ n
and B is obtained from A by interchanging rp(A) and rq(A), then

det(B) = −det(A).

Proof.
We argue by induction on n.

Step 1. The case where n = 2 is a simple calculation: if A = [a11 a12
a21 a22

], then

B = [a21 a22
a11 a12

] ,

and so
det (B) = (a21a12 − a22a11) = −(a11a22 − a21a22) = det (A).

Step 2. Let 3 ≤ N <∞ and suppose that the result holds whenever n < N , 1 ≤ p ≠
q ≤ n. Let A ∈ MN(F), and let B be obtained from A by interchanging the pth and
the qth rows of A. We first observe that it suffices to prove that det (T ) = −det (A)
in the case where T is obtained from A by interchanging the first row and any other
row of A. Indeed, suppose that the conclusion holds in this case.
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Let T0 = A and consider the sequence of operations:

A = T0
r1↔rpÐ→ T1

r1↔rqÐ→ T2
r1↔rpÐ→ T3 = B.

Since each Tk is obtained from Tk−1 by interchanging the first row and another
row of Tk−1, 1 ≤ k ≤ 3, we find that

det (B) = det (T3) = −det (T2) = det (T1) = −det (T0) = −det (A).

Thus we shall prove the result when n = N , p = 1 and 2 ≤ q ≤ N , completing the
induction step and the proof.

Writing A = [aij],B = [bij] ∈MN(F), we have that

det (A) =
n

∑
i=1

(−1)i+1ai1det (Âi1),

and
det (B) =

n

∑
i=1

(−1)i+1bi1det (B̂i1).

If 1 ≤ i ≤ N and i /∈ {1, q}, then ai1 = bi1 and B̂i1 is obtained from Âi1 by
interchanging two of the rows of the latter matrix. Since B̂i1, Âi1 ∈ MN−1(F), our
induction hypothesis implies that

det (B̂i1) = −det (Âi1).
Thus

(−1)i+1bi1det (B̂i1) = −((−1)i+1ai1det (Âi1)).
There remains to consider the cases where i = 1 and i = q. We claim that

(−1)q+1aq1det (Âq1) = −(−1)1+1b11det (B̂11)
and

(−1)1+1a11det (Â11) = −(−1)q+1bq1det (B̂q1).
If this holds, then from the above formulae for det (A) and det (B), we find that

det (B) = −det (A)
and we are done. We prove the first of these equalities - the proof of the second
being similar.

Observe first that aq1 = b11. Next, note that B̂11 is obtained from Âq1 by
reordering the rows r1,r2, . . . ,rq−1 of Âq1 into the order r2,r3, . . . ,rq−1,r1. But this
can be accomplished by a finite sequence of operations, each consisting of switching
only two rows of the previous (N − 1) × (N − 1) matrix. Indeed, let X0 ∶= Âq1 and
consider the sequence of operations:

Âq1 =X0
r1↔r2Ð→ X1

r2↔r3Ð→ X2
r3↔r3Ð→ X3⋯Ð→ ⋯

rq−2↔rq−1Ð→ Xq−2 = B̂11.

By the induction hypothesis (keeping in mind that N − 1 < N),
det (Xj) = −det (Xj−1), 1 ≤ j ≤ q − 2,
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and so
det (Âq1) = (−1)q−2det (B̂11).

Thus

(−1)q+1(aq1det (Âq1)) = (−1)q+1(b11(−1)q+2det (B̂11)) = −b11(−1)1+1det (B̂11),

as claimed. The second identity holds by symmetry. This completes the proof.
◻

1.11. Theorem. Let n ∈ N, F be a field, κ ∈ F and A ∈Mn(F).
(a) If A has two identical rows, then

det(A) = 0.

(b) If 1 ≤ p ≠ q ≤ n and B is obtained from A be adding κrp(A) to rq(A), then

det(B) = det(A).

Proof.
(a) We shall argue by induction on n. When n = 2, this is a routine calculation

which we leave to the reader. Suppose that 3 ≤ N ∈ N and that det (X) = 0
whenever 2 ≤ n < N and X ∈Mn(F) has two identical rows.

Let T be the matrix obtained from A by interchanging rp(A) and
r1(A). (If p = 1, we set T = A.)

Let B be the matrix obtained from T by interchanging rq(T ) and
r2(T ). (If q = 2, we set B = T .)

As a consequence of Theorem 1.10, we easily find that det (B) = ±det(A).
Note that r1(B) = r2(B) and that

det (B) =
N

∑
i=1

(−1)i+1bi1 det (B̂i1).

Now, if 3 ≤ i ≤ n, then B̂i1 ∈ MN−1(F) has two identical rows, and so
det (B̂i1) = 0 by the induction hypothesis. Thus

det (B) = (−1)1+1b11det (B̂11) + (−1)2+1b21det (B̂21).

But b11 = b21 and B̂11 = B̂21, so that

det (B) = 0.

Since det (A) = ±det (B), we see that det (A) = 0 as well.
(b) Let C be the matrix obtained from A by replacing the qth row of A by the

pth row of A; that is,

ri(C) = ri(A), 1 ≤ i ≠ q ≤ n; and
rq(C) = rp(A).
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Let D be the matrix obtained from C by multiplying the qth row of C by
κ, so that

ri(D) = ri(C) = ri(A), 1 ≤ i ≠ q ≤ n; and
rq(C) = κrq(C) = κrp(A).

By Theorem 1.8, det (D) = κdet (C). But C has two identical rows, and so
from part (a) above, det (C) = 0. Thus det (D) = 0.

Note that

ri(B) = ri(A) = ri(D), 1 ≤ i ≠ q ≤ n; and
rq(B) = rq(A) + rq(D).

By Theorem 1.7,

det (B) = det (A) + det (D) = det (A) + 0 = det (A).

◻

1.12. Remark. In the case where the characteristic of the field F is not equal
to 2, part (a) of Theorem 1.11 admits a much simpler proof, namely: if A has two
identical rows rp and rq with 1 ≤ p ≠ q ≤ n, we let B be the matrix obtained from A
by interchanging these two rows.

On the one hand, det (B) = −det (A) by Theorem 1.10, but on the other hand,
B = A and so det (B) = det (A). This shows that

det (A) = −det (A),

and if char(F) ≠ 2, then det (A) = 0.
A number of references appear to have overlooked the issue of the characteristic

of F and falsely claimed this as the proof for all fields. Caveat emptor.

Recall that if B is a matrix obtained from the matrix A ∈Mn(F) by performing
an elementary row operation, and if E is the elementary matrix obtained from In
by performing the same elementary row operation, then B = EA. Combining that
with the previous Theorems immediately yields the following:

1.13. Proposition. Let n ∈ N, κ ∈ F and A ∈Mn(F).
(a) If E is the elementary matrix obtained from In by multiplying one of its rows

by κ ∈ F, then , det(EA) = κdet(A). In particular, det (E) = det (EIn) =
κdet (In) = κ.

(b) If E is the elementary matrix obtained from In by interchanging two of
its rows, then det (EA) = −detA. In particular, det (E) = det (E) =
det (EIn) = −1det (In) = −1.

(c) If E is the elementary matrix obtained from In by adding κrp(In) to rq(In),
then det (EA) = det (A). In particular, det (E) = det (EIn) = det (In) = 1.
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1.14. Remark. Observe that in each of the above three cases, we find that

● for any A ∈Mn(C) and any elementary matrix E, we have
det(EA) = det (E) det (A).

By an easy induction argument, if X = E1E2⋯Eq, where Ej is an elementary
matrix, 1 ≤ j ≤ q, then

det (XA) =
⎛
⎝

q

∏
j=1

det (Ej)
⎞
⎠

det (A).

In particular, by setting A = In, we see that det(X) =∏nj=1 det (Ej).
Recall also that if rank (A) = r, then there exist invertible operators B,C ∈

Mn(C) such that

BAC = [Ir 0
0 0n−r

] .

1.15. Theorem. Let A,B ∈Mn(F). Then
(a) det(AB) = det(A)det(B).
(b) If S ∈Mn(F) is invertible, det(S−1) = (det(S))−1.
(c) If A ∼ B, then det(A) = det(B).

Proof.
(a) We consider two cases.

Case One. If A is invertible, then by Corollary 6.??, A invertible
implies that we may write as a finite product of elementary matrices, say
A = E1E2⋯Eq. The result now follows from Remark 1.14.

Case Two.
Now suppose that A is not invertible, so that r ∶= rank (A) < n. It

follows that dim (Row(A)) = r < n, and so there exists a row rq(A) which
is a linear combination of the remaining rows of A, say

rq(A) = ∑
1≤j≠q≤n

κjrj(A).

Let T0 = A and for 1 ≤ j ≠ q ≤ n, let Tj be the matrix obtained from A
by adding −κjrj(Tj−1) to rj(Tj−1). Then rq(Tn) = 0, and so det (Tn) = 0.
But by Theorem 1.11,

det (Tn) = det (Tn−1) = ⋯ = det (Tq+1)
= det (Tq−1) = ⋯ = det (T1) = det (T0) = det (A).

Thus det (A) = 0.
Applying the same argument to AB which also has rank at most A

(and thus less than n), we see that
det (AB) = 0 = det(A)det (B).
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(b) If S ∈Mn(F) is invertible, then

1 = det (In) = det (SS−1) = det (S) det (S−1),

from which the result immediately follows.
(c) If B ∼ A, then there exists S ∈Mn(C) such that B = S−1AS. It follows that

det (B) = det (S−1AS) = det (S−1) det (A) det (S) = det (A).

◻

1.16. Exercise. Let n ∈ N and suppose that E ∈ Mn(F) is an elementary
matrix. Then det(Et) = det(E).

1.17. Corollary. If A ∈Mn(F), then det(A) = det(At).
Proof. If A is not invertible, then the row space of A has dimension less than n,
and so the column space of At has dimension less than n, implying that At is not
invertible either. Thus if A is not invertible, then

det (A) = 0 = det (At).

If A is invertible, then we can find elementary matrices Ej , 1 ≤ j ≤ r such that
A = E1E2⋯Er. By the above Exercise, detE = det(Et) for any elementary matrix,
and so

det (At) = det (Et
rE

t
r−1⋯Et

1)

=
r

∏
j=1

det (Et
j)

=
r

∏
j=1

det (Ej)

= det (E1E2⋯Er)
= det(A).

◻

1.18. Corollary. Let A ∈ Mn(F) and suppose that B is the matrix obtained
from A by interchanging two columns of A. Then

detB = −det(A).

Moreover, the determinant function is linear in each column (in the sense of
Exercise 7.1).

We have used the next Proposition earlier without stating it in its gory detail.
We are now ready to do so.
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1.19. Proposition. Let A ∈Mn(F) and enumerate the rows of A as
(r1,r2, . . . ,rn).

Let 1 ≤ q ≤ n and suppose that B is the matrix whose rows are
(r2,r3, . . . ,rq,r1,rq+1,rq+2, . . . ,rn).

We shall say that B is obtained from A by cyclically permuting the first q rows
of A.

Then
det (B) = (−1)q−1det (A).

Similarly, if B is obtained from A by cyclically permuting the first q columns of
A, then

det (B) = (−1)q−1det (A).

Proof. Clearly the second statement follows from the first by simply considering
transposes.

As for the first statement, let T0 = A and for each 1 ≤ j ≤ q − 1, let Tj be
the matrix obtained from Tj−1 by interchanging rj(Tj−1) and rj+1(Tj−1). A simple
calculation shows that Tq−1 = B, whence

det (B) = det (Tq−1)
= (−1)det (Tq−2)
= (−1)2det (Tq−3)
= ⋯
= (−1)q−1det (T0)
= (−1)q−1det (A).

◻

1.20. Lemma. Let A ∈ Mn(F) and suppose that there exists 1 ≤ p, q ≤ n such
that rp = eq, where eq = (0,0, . . . ,0,1,0, . . . ,0) with the non-zero entry occurring in
the qth position.. Then

det (A) = (−1)p+q det (Âpq).

Proof. Case 1. q = 1. Then

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 ⋯ a1n
a21 a22 a23 ⋯ a2n
⋮ ⋮
1 0 0 ⋯ 0
⋮ ⋮
an1 an2 an3 ⋯ ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now det (A) = ∑ni=1(−1)i+1ai1 det (Âi1).
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But if 1 ≤ i ≠ p ≤ n, then Âi1 admits a row of 0’s, and thus det (Âi1) = 0.
Moreover, ap1 = 1, and hence

det (A) = (−1)p+1ap1det (Âp1) = (−1)p+1det (Âp1),
as required.

Case 2. 2 ≤ q ≤ n.
Let B be the matrix obtained from A by cyclically permuting the first q columns

of A. By Proposition 1.19,
det (B) = (−1)q−1det (A).

Since B is of the form required for Case 1,
det (B) = (−1)p+1det (B̂p1).

Finally, we leave it to the reader to verify that B̂p1 = Âpq, and thus

det (A) = (−1)q−1(−1)p+1det(B̂p1) = (−1)p+qdet (Âpq).
◻

1.21. Theorem. Let A ∈Mn(F). Then
(a) for any 1 ≤ p ≤ n,

det (A) =
n

∑
j=1

(−1)p+japjdet (Âpj).

(b) For any 1 ≤ q ≤ n,

det (A) =
n

∑
i=1

(−1)i+qaiqdet (Âiq).

In other words, we may expand the determinant along any row or any column.
Proof. The proof of (b) follows from that of (a) by considering transposes. Thus,
we restrict our attention to (a).

Let A = [aij] ∈Mn(F) and note that rp(A) = (ap1, ap2, ap3, . . . , apn) = ∑nj=1 apjej .
By the linearity of the determinant in any row (see Exercise 1), and by Lemma 1.20,

det (A) =
n

∑
j=1

apj det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1(A)
r2(A)

⋮
rp−1(A)

ej
rp+1(A)

⋮
rn(A)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
n

∑
j=1

apj(−1)p+jdet (Âpj).

◻
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It is time we considered an example.

1.22. Example. Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 0 −1 3
3 −2 4 0
6 1 3 0
7 2 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

We wish to calculate det (A).
By Theorem 1.21, we may calculate it by expansion along any row or any col-

umn. Since the fourth column has two zero entries, this will reduce the number of
calculations we must make.

Thus

det (A) = (−1)1+43 det
⎡⎢⎢⎢⎢⎢⎣

3 −2 4
6 1 3
7 2 0

⎤⎥⎥⎥⎥⎥⎦
+ 0(∗) + 0(∗) + (−1)4+45 det

⎡⎢⎢⎢⎢⎢⎣

2 0 −1
3 −2 4
6 1 3

⎤⎥⎥⎥⎥⎥⎦
.

Let T1 =
⎡⎢⎢⎢⎢⎢⎣

3 −2 4
6 1 3
7 2 0

⎤⎥⎥⎥⎥⎥⎦
and T2 =

⎡⎢⎢⎢⎢⎢⎣

2 0 −1
3 −2 4
6 1 3

⎤⎥⎥⎥⎥⎥⎦
.

To calculate det (T1), we might expand along the third row, since it has a zero
entry.

det (T1) = (−1)3+1 7 det [−2 4
1 3] + (−1)3+2 2 det [3 4

6 3] + 0(∗)

= 7(−6 − 4) − 2(9 − 24)
= −40.

To calculate det (T2), we might expand along the first row, since it has a zero
entry.

det (T2) = (−1)1+1 2 det [−2 4
1 3] + 0(∗) + (−1)1+3 (−1)det [3 −2

6 1 ] + 0(∗)

= 2(−6 − 4) + (−1)(3 + 12)
= −35.

From above, we see that
det (A) = (−3)det (T1) + (5)det (T2) = (−3)(−40) + (5)(−35) = −55.
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Supplementary Examples

S7.1. Example. Suppose that we wish to determine whether or not the vectors
x1 = (3,2,1), x2 = (31,2,−2) and x3 = (9,−6,5) ∈ R3 are linearly independent.
Consider

A =
⎡⎢⎢⎢⎢⎢⎣

3 2 1
31 2 −2
9 −6 5

⎤⎥⎥⎥⎥⎥⎦
,

the matrix whose ith row is xi, 1 ≤ i ≤ 3.
Then det(A) = −556 ≠ 0. It follows that A is invertible, and so the rows of A are

linearly independent; i.e. {x1, x2, x3} is linearly independent.

Note that had det(A) been equal to zero, then A would not have been invertible,
and so the rows of A would have been linearly dependent. In other words, this test
works in both cases.

S7.2. Example. The following example is based upon Cramer’s Rule, which
is proved in Theorem A7.6.

Consider the system S of two equations in two unknowns given by
3x1 + 5x2 = 4
2x1 − 4x2 = 3

Observe that the coefficient matrix A = [3 5
2 −4] is invertible, as (for example)

det(A) = −22 ≠ 0. As such, the system is consistent, and the solution is given by

x = A−1 [4
3] .

Applying Cramer’s Rule, we see that with x = [x1
x2

], we have

x1 = det(A)−1 ⋅ det([4 5
3 −4]) = −

1
22

(−31) = 31
22
,

and

x2 = det(A)−1 ⋅ det([3 4
2 3]) = −

1
22

(1) = − 1
22
.

S7.3. Example. Using the same system S as in Example S7.3, we can use
Theorem A7.5 to determine A−1:

We find that cof(A) = [−4 −2
−5 3 ], and thus adj(A) = [−4 −5

−2 3 ], so that

A−1 = − 1
22

[−4 −5
−2 3 ] ,
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and therefore
x = − 1

22
[−4 −5
−2 3 ] [4

3] = −
1
22

[−31
1 ] = [31/22

−1/22] .

This answers agrees with that found above, which is a positive sign about the
overall consistency of mathematics.

S7.4. Example. Using the same system S as in Example S7.3, we can also
compute the inverse of A directly as follows:

[3 5 1 0
2 −4 0 1]Ð→ [1 5/3 1/3 0

2 −4 0 1]

Ð→ [1 5/3 1/3 0
0 −22/3 −2/3 1]

Ð→ [1 5/3 1/3 0
0 1 1/11 −3/22]

Ð→ [1 0 2/11 5/22
0 1 1/11 −3/22]

so that
A−1 = [2/11 5/22

1/11 −3/22] ,

after which we find that x = A−1 [4
3] = [31/22

−1/22] is the unique solution to the system.

S7.5. Example. We could also have solved the system by applying Gaussian
elimination, which is far less painful than its name might suggest.

3x1 + 5x2 = 4
2x1 − 4x2 = 3

We apply elementary row operations to the augmented system [A b] to put it in
rref.

[A∣b] = [3 5 4
2 −4 3]

Ð→ [1 5/3 4/3
2 −4 3 ]Ð→ [1 5/3 4/3

0 −22/3 1/3]

Ð→ [1 5/3 4/3
0 1 −1/22]Ð→ [1 0 31/22

0 1 −1/22]
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Thus Sol(S) = {[31/22
−1/22]}.

The last four examples shows that, even without alluding to taxidermal tenden-
cies, there are often multiple ways to accomplish the same task.

S7.6. Example. Let A =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
3 6 0
−2 3 19

⎤⎥⎥⎥⎥⎥⎦
∈M3(Q).

Since det(A) = det(At), and since At =
⎡⎢⎢⎢⎢⎢⎣

1 3 −2
0 6 3
0 0 19

⎤⎥⎥⎥⎥⎥⎦
is upper-triangular, we find

that
det(A) = 1 ⋅ 6 ⋅ 19 = 105.

Alternatively, we could have expanded det(A) directly by cofactors along the
first row to find:

det(A) = (−1)1+1(1)det [6 0
3 19] = 1 ⋅ (6(19) − 0(3)) = 105.

S7.7. Example. Suppose that p1 = (x1, y1), p2 = (x2, y2) and p3 = (x3, y3) are
three points in R2. We may view R2 as the xy-plane of R3, and thereby identify
p1, p2, p3 with the points q1 = (x1, y1,0), q2 = (x2, y2,0) and q3 = (x3, y3,0) sitting in
R3. Of course p1, p2, p3 are collinear if and only if q1, q2, and q3 are collinear.

In fact, we given q1, q2, q3 in the xy-plane of R3, we can translate the points
upwards by one unit (i.e. in the direction of the positive z-axis) to obtain points

wk ∶= qk + (0,0,1), 1 ≤ k ≤ 3,

and the points w1,w2,w3 will be collinear if and only if q1, q2, q3 are, and thus if and
only if p1, p2, p3 are.

But {w1,w2,w3} are collinear if and only if there exists α ∈ R such that w3 =
w1 + α(w2 −w1) = (1 − α)w1 + αw2 ∈ span {w1,w2}, and this in turn happens if and
only if det(A) = 0, where rk(A) = wk, 1 ≤ k ≤ 3.

Putting this all together, p1, p2, p3 are collinear if and only if

det
⎡⎢⎢⎢⎢⎢⎣

x1 y1 1
x2 y2 1
x3 y3 1

⎤⎥⎥⎥⎥⎥⎦
= 0.

For example, if p1 = (1,3), p2 = (5,3) and p3 = (2,2), then

det
⎡⎢⎢⎢⎢⎢⎣

1 3 1
5 3 1
2 2 1

⎤⎥⎥⎥⎥⎥⎦
= −4 ≠ 0,

so the points p1, p2, p3 are not collinear.
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S7.8. Example. Let’s put Example S7.7 to better use. Suppose we are asked
to find the equation of the line in R2 passing through p1 ∶= (1,7) and p2 ∶= (4,6).
Any point (x, y) on the line must be collinear with p1 and p2, so from the above
analysis,

det
⎡⎢⎢⎢⎢⎢⎣

x y 1
1 7 1
4 6 1

⎤⎥⎥⎥⎥⎥⎦
= 0.

That is,
x + 3y − 22 = 0,

or equivalently,

y = −1
3
x + 22

3
.

More generally, if p1 = (x1, y1) and p2 = (x2, y2) are two points in R2, then the
equation of the linear through these points is given by the equation

det
⎡⎢⎢⎢⎢⎢⎣

x y 1
x1 y1 1
x2 y2 1

⎤⎥⎥⎥⎥⎥⎦
= 0.

S7.9. Example. We leave it to the reader to convince themselves (by ap-
plying similar arguments to those that were so profitably used in Example S7.7)
that the equation of the plane in R3 passing through the (non-collinear) points
p1 = (x1, y1, z1), p2 = (x2, y2, z2) and p3 = (x3, y3, z3) is given by the equation

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x y z 1
x1 y1 y3 1
x2 y2 z2 1
x3 y3 z3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

For example, if p1 = (3,2,1), p2 = (5,3,7) and p3 = (2,−1,1), then the equation
of the plane π passing through these three points is:

0 = det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x y z 1
3 2 1 1
5 3 7 1
2 −1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 18x − 6y − 5z − 37.

Note: It is important that the three points be non-collinear, otherwise the
calculation of the determinant of the matrix will be zero regardless of the choice
of (x, y, z) ∈ R3, which stands to reason, geometrically speaking, as three collinear
points and any other point will always lie in the same plane.
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S7.10. Example. The next Example is based upon Exercise 7.3 at the end of
this Chapter. It states that if x = (x1, x2, x3) and y = (y1, y2, y3) ∈ R3, then x is
perpendicular to y if and only if

⟨x, y⟩ ∶= x1y1 + x2y2 + x3y3 = 0.

Now suppose that v = (v1, v2, v3) and w = (w1,w2,w3) ∈ R3 are linearly indepen-
dent. Consider

z ∶= det
⎡⎢⎢⎢⎢⎢⎣

e1 e2 e3
v1 v2 v3
w1 w2 w3

⎤⎥⎥⎥⎥⎥⎦
= (v2w3 −w2v3)e1 − (v1w3 −w1v3)e2 + (v1w2 −w1v2)e3.

Now we could do the unthinkable and we treat e1, e2 and e3 as the standard basis
vectors for R3, and use this to compute z. This, however, makes no sense as we can’t
have e1 be both a vector in R3, and a single entry in the matrix whose determinant
we are computing. In order to avoid doing something that is basically so against
the laws of nature, we just define z to be the vector in R3 whose coordinates are the
coefficients of e1, e2 and e3 above. There – no harm done, our consciences are clean,
and we obtain the same result.

With this convention, we find that z = (v2w3 −w2v3,−v1w3 +w1v3, v1w2 −w1v2).
Then

(a) ⟨z, v⟩ = v1(v2w3 −w2v3) + v2(−v1w3 +w1v3) + v3(v1w2 −w1v2) = 0, and
(b) ⟨z,w⟩ = w1(v2w3 −w2v3) +w2(−v1w3 +w1v3) +w3(v1w2 −w1v2) = 0.

Thus z is perpendicular to both v and w. In fact, a finer analysis can be done
so that one can determine the “orientation” of the system v,w, z, but we shall not
discuss this here.
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Appendix

A7.1. We made a bold claim just after Theorem 7.1.8 that “det(⋅) is linear in
any row”.

Of course, by considering transposes, we see that det(⋅) is also “linear” in any
column.

Let’s prove this. The first thing that we shall do will be to use induction to
extend Theorem 7.1.7 as follows:

Theorem. Let m,n ∈ N with m ≥ 2, and suppose that A,B1,B2, . . . ,Bm ∈ Mn(F).
Suppose that there exists 1 ≤ p ≤ n such that

● ri(A) = ri(Bj) for all 1 ≤ j ≤m and 1 ≤ i ≤ p ≤ n; and
● rp(A) = rp(B1) + rp(B2) +⋯rp(Bm).

Then
det(A) = det(B1) + det(B2) +⋯ + det(Bm).

Proof. If m = 2, then this is exactly Theorem 7.1.7.
Now suppose that M ≥ 3 and that the result holds whenever we have m < M .

Let B1,B2, . . . ,BM ∈Mn(F) with
● ri(A) = ri(Bj) for all 1 ≤ j ≤M and 1 ≤ i ≠ p ≤ n; and
● rp(A) = rp(B1) + rp(B2) +⋯rp(BM).

Let C ∈Mn(F) be the matrix satisfying
● ri(C) = ri(A) for all 1 ≤ i ≠ p ≤ n; and
● rp(C) = rp(B1) + rp(B2) +⋯rp(BM−1).

Note that
● ri(A) = ri(C) = ri(BM) for all 1 ≤ i ≠ p ≤ n; and
● rp(A) = rp(C) + rp(BM).

Since our result holds for m = 2, we find that

det(A) = det(C) + det(BM).

By the induction step, however,

det(C) = det(B1) + det(B2) +⋯ + det(BM−1).

Thus
det(A) = det(B1) + det(B2) +⋯ + det(BM),

completing the induction step and the proof.
◻
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A7.2. Here is the promised version of linearity we claimed above.

Corollary. Let n ∈ N and A ∈Mn(F). Fix 1 ≤ p ≤ n and write rp(A) = ∑nj=1 apjej,
where D = (e1, e2, . . . , en) is the standard ordered basis for Fn.

For 1 ≤ j ≤ n, let Bj ∈Mn(F) be the matrix satisfying
● ri(Bj) = ri(A) for all 1 ≤ i ≠ p ≤ n; and
● rp(Bj) = ej.

Then
det (A) =

n

∑
j=1

apjdet(Bj).

Proof. For 1 ≤ j ≤ n, let Dj ∈Mn(F) be the matrix obtained from Bj by multiplying
the pth row of Bj by apj . Then

● ri(A) = ri(Dj) for all 1 ≤ i ≠ p ≤ n; and
● rp(A) = rp(D1) + rp(D2) +⋯ + rp(Dn).

By the above Theorem,
det(A) = det(D1) + det(D2) +⋯ + det(Dn).

On the other hand, by Theorem 7.1.8(a),
det(Dj) = apjdet(Bj), 1 ≤ j ≤ n.

Thus
det (A) =

n

∑
j=1

apjdet(Bj).

◻

A7.3 An application of determinants. Let n ∈ N, F be a field, and A =
[aij] ∈Mn(F). We define the cofactor matrix of A to be the matrix

cof(A) ∶= [(−1)i+jdet(Âij)].
In other words, the (i, j)-entry of cof(A) is the (i, j)-cofactor of A.

We next define the adjugate of A to be adj(A) ∶= (cof(A))t.

A7.4 Examples. Let A =
⎡⎢⎢⎢⎢⎢⎣

1 3 1
3 0 1
−2 2 1

⎤⎥⎥⎥⎥⎥⎦
.

Then

cof(A) =
⎡⎢⎢⎢⎢⎢⎣

−2 −5 6
−1 3 −8
3 2 −9

⎤⎥⎥⎥⎥⎥⎦
,

while

adj(A) =
⎡⎢⎢⎢⎢⎢⎣

−2 −1 3
−5 3 2
6 −8 −9

⎤⎥⎥⎥⎥⎥⎦
.
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Observe furthermore that det(A) = −11, implying that A is invertible.

Here is where something interesting happens: consider

A ⋅ 1
det(A)

adj(A) = − 1
11

⎡⎢⎢⎢⎢⎢⎣

1 3 1
3 0 1
−2 2 1

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

−2 −1 3
−5 3 2
6 −8 −9

⎤⎥⎥⎥⎥⎥⎦

= − 1
11

⎡⎢⎢⎢⎢⎢⎣

−11 0 0
0 −11 0
0 0 −11

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

Let us prove that this is not just a coincidence.

A7.5 Theorem. Let n ∈ N, F be a field, and A = [aij] ∈Mn(F). Then

A ⋅ adj(A) = det(A)In.

In particular, if A is invertible, then

A−1 = det(A)−1adj(A).

Proof. The proof relies heavily upon the following elementary and useful observa-
tion:

if X = [xij] ∈Mm×q(F) and Y = [yij] ∈Mq×n(F), then

X ⋅ Y = [zij] ∈Mm×n(F),

where zij = ri(X) ⋅ cj(Y ).

Returning to the proof, let 1 ≤ i ≠ j ≤ n, and let B be the matrix obtained from
A by replacing the jth row of A by the ith row of A, and leaving all other rows of A
unchanged.

Then rj(B) = ri(A) = ri(B), and so det(B) = 0, as it has two identical rows. In
particular, if we expand the determinant of B by cofactors along the jth row, then
we obtain

0 = det(B) =
n

∑
k=1

(−1)j+kbjkdet(B̂jk).

Note, however, that bjk = aik and B̂jk = Âjk for 1 ≤ k ≤ n, and therefore

0 =
n

∑
k=1

(−1)j+kaikdet(Âjk) =
n

∑
k=1

aik ((−1)j+kdet(Âjk)) = ri(A) ⋅ cj(adj(A)).

That is, if i ≠ j, then ri(A) ⋅ cj(adj(A)) = 0.
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On the other hand, for any 1 ≤ i ≤ n,

det(A) =
n

∑
j=1

(−1)i+jaijdet(Âij) =
n

∑
j=1

aij ((−1)i+jdet(Âij)) = ri(A) ⋅ ci(adj(A)).

Thus for all 1 ≤ i ≤ n, ri(A) ⋅ ci(adj(A)) = det(A).

By applying these results to the observation at the start of the proof, we find
that

A ⋅ adj(A) = [ri(A) ⋅ cj(adj(A))] = det(A)In.
The second statement follows trivially from this.

◻

A7.6. The following technique for solving linear equations is known as Cramer’s
Rule.
Theorem. Let n ∈ N, F be a field and S be a system Ax = b of n linear equations
in n unknowns which admits a unique solution over F. (Equivalently, suppose that
A ∈ Mn(F) is invertible.) For 1 ≤ j ≤ n, let Aj be the matrix obtained from A by
replacing the jth column of A by b. Then

Sol(S) = {x},
where x = (x1, x2, . . . , xn)t is given by xj = det(Aj) ⋅ (det(A))−1.
Proof. The hypothesis that A ∈Mn(F) is invertible implies that det(A) ≠ 0. More-
over, we have seen that Sol(S) = {x}, where

x = A−1b.

But from above, A−1 = det(A)−1adj(A), and so
x = det(A)−1adj(A)b.

Using the observation from the beginning of the previous proof, we obtain that for
each 1 ≤ i ≤ n,

xi = det(A)−1 ri(adj(A)) ⋅ c1(b)
= det(A)−1 ri(adj(A)) ⋅ b

= det(A)−1
n

∑
j=1

bj ((−1)i+jdet(Âij))

= det(A)−1 ⋅ det(Aj).
◻
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Exercises for Chapter 7

Exercise 7.1.
Let α0, α1, α2, . . . , αn ∈ F and define the matrix

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α0 α2
0 ⋯ αn0

1 α1 α2
1 ⋯ αn1

1 α2 α2
2 ⋯ αn2

⋮ ⋮ ⋮ ⋱ ⋮
1 αn α2

n ⋯ αnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Find det (V ).

Exercise 7.2.
Let x = (x1, x2) and y = (y1, y2) ∈ R2. Prove that x is perpendicular to y if and

only if
⟨x, y⟩ ∶= x1y1 + x2y2 = 0.

Exercise 7.3.
Let x = (x1, x2, x3) and y = (y1, y2, y3) ∈ R3. Prove that x is perpendicular to y

if and only if
⟨x, y⟩ ∶= x1y1 + x2y2 + x3y3 = 0.

Exercise 7.4.
Let K ∈ {R,C}, n ∈ N, and let y = (yj)nj=1, z = (zj)nj=1 ∈ Kn. We define the inner

product of y and z to be:

⟨y, z⟩ ∶=
n

∑
j=1

yjzj .

Of course, when K = R, the complex conjugate is superfluous, and we obtain the
formulae indicated in the two previous exercises for n = 2 and n = 3 respectively.

Prove that
(a) ⟨x,x⟩ ≥ 0, and ⟨x,x⟩ = 0 if and only if x = 0.
(b) ⟨κx, y⟩ = κ⟨x, y⟩ for all vectors x, y and κ ∈ K.
(c) ⟨x, y⟩ = ⟨y, x⟩ for all vectors x, y, and
(d) ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩ for all vectors x, y, z.

Exercise 7.5.
More generally, let V be a vector space over K ∈ {R,C}. Any function

⟨⋅, ⋅⟩ ∶ V × V → K
(x, y) ↦ ⟨x, y⟩

satisfying the four properties (a) - (d) of Exercise 7.4 above is called an inner
product on V.
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Let V = C([0,1],C) as a vector space over C. For f, g ∈ V, define

⟨f, g⟩ ∶= ∫
1

0
f(x)g(x)dx.

Prove that this defines an inner product on C([0,1],C).

Exercise 7.6.
Let V = C([0,1],C) as a vector space over C, and let r ∈ C([0,1],C) be a function

satisfying r(x) > 0 for all x ∈ [0,1]. For f, g ∈ V, define

⟨f, g⟩ ∶= ∫
1

0
r(x)f(x)g(x)dx.

Prove that this defines an inner product on C([0,1],C).
Would this still be the case if there were an interval [a, b] ⊆ [0,1] where r(x) = 0

for all x ∈ [a, b]?

Exercise 7.7.

Let A =
⎡⎢⎢⎢⎢⎢⎣

1 3 7
0 18 −245
0 0 2

⎤⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎣

12 0 0
−4 2 0
15 24 8

⎤⎥⎥⎥⎥⎥⎦
. Find det(AB).

Exercise 7.8.
Let A ∈M3(C). Prove or disprove the following statement: there exists a matrix

D =
⎡⎢⎢⎢⎢⎢⎣

α 0 0
0 β 0
0 0 γ

⎤⎥⎥⎥⎥⎥⎦
∈M3(C) such that tr(DA) ∈ R and det(DA) ∈ R.

Exercise 7.9.
Let n ∈ N and N ∈Mn(F). We say that N is nilpotent of order k if Nk = 0 ≠

Nk−1. For example,

J3 ∶=
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
is nilpotent of order 3 in M3(F).

Suppose that N is nilpotent of order k in Mn(F). Prove that det(N) = 0.

Exercise 7.10.
Let n ∈ N and E ∈Mn(F). We say that E is idempotent E2 = E. For example,

E ∶= [1 1023451
0 0 ]

is idempotent in M2(F).
Suppose that E is idempotent in Mn(F). Prove that det(E) = {1,−1}.



CHAPTER 8

An introduction to eigenvalues and eigenvectors

Hedgehogs - why can’t they just share the hedge?

Dan Antopolski

1. Eigenvalues, eigenvectors and eigenspaces

1.1. The last chapter of these notes will deal with eigenvalues, eigenvectors, and
diagonalisation of matrices. Given more time, we would cover these in much greater
depth. A number of issues regarding eigenvalues and eigenvalues will be dealt with
in Math 245.

1.2. Definition. Let V be a vector space over a field F and let T ∈ L(V). An
element α ∈ F is said to be an eigenvalue for T if there exists 0 ≠ x ∈ V such that
Tx = αx. We then say that x is an eigenvector for T corresponding to α.

We denote by σp(T ) the set of all eigenvalues of T . (The notation reflects the
fact that the set of eigenvalues of T is also known as the point spectrum of T .)

Note that x ∈ V is an eigenvector for T ∈ L(V) if and only if x ≠ 0 and x ∈
ker (T − αI). More generally, therefore, given a vector space V, T ∈ L(V) and β ∈ F
as above, we define the eigenspace E(T ;α) of T corresponding to α as

E(T ;α) ∶= ker (T − αI).

1.3. As always, we extend such concepts from linear maps (acting on finite-
dimensional vector spaces) to matrices via the left-regular representation, so that
if n ∈ N, F is a field and A ∈ Mn(F), we say that α is an eigenvalue of A with
corresponding eigenvector 0 ≠ x ∈ Fn provided that α is an eigenvalue of LA ∈ L(Fn)
with corresponding eigenvector x. We leave it to the reader’s overactive imagination
to consider what an eigenspace for A corresponding to α might be.

169



170 8. AN INTRODUCTION TO EIGENVALUES AND EIGENVECTORS

1.4. Examples.
(a) Let T ∈ L(R3) be the operator T (x, y, z) = (7x−2y,−2x+6y−2z,−2y+5z).

Consider v1 = (1,2,2), v2 = (−2,−1,2), v3 = (2,−2,1). Then
T (v1) = (3,6,6) = 3v1

T (v2) = (−12,−6,12) = 6v2

T (v3) = (18,−18,9) = 8v3

Thus v1 is an eigenvector for T corresponding to the eigenvalue α1 = 3; v2
is an eigenvector for T corresponding to the eigenvalue α2 = 6, and v3 is an
eigenvalue for T corresponding to the eigenvalue α3 = 9.

(b) Let A = [0 −1
1 0 ] ∈M2(R). If α ∈ R, x = [x1

x2
] ∈ R2 and LAx = αx, then

[αx1
αx2

] = αx = LAx = [0 −1
1 0 ] [x1

x2
] = [−x2

x1
] .

Thus αx1 = −x2 and αx2 = x1.
If x2 ≠ 0, then −x2 = αx1 = α(αx2) = α2x2, a contradiction as α2 = −1

has no solution with α ∈ R. Thus x2 = 0.

But then x1 = αx2 = α0 = 0, so that x = [0
0] is not an eigenvector of A.

In other words, A has no eigenvectors, and hence no eigenvalues either.

(c) Let A = [0 −1
1 0 ] ∈M2(C). Let x = [ 1

−i]. Then

LAx = [0 −1
1 0 ] [ 1

−i] = [i1] = i [
1
−i] ,

so that x = [ 1
−i] is an eigenvector for A corresponding to the eigenvalue

α = i.
We leave it to the reader to verify that −i is also an eigenvalue for A,

and to find an eigenvector for A corresponding to −i.

1.5. Theorem. Let n ∈ N, F be a field, and A ∈ Mn(F). Then α ∈ F is an
eigenvalue for A (that is, α ∈ σp(A) if and only if det (A − αIn) = 0, or equivalently
if and only if (A − αIn) is not invertible.
Proof. Consider the following sequence of statements, where each of the last five
statements is equivalent to the one above it (and thus to all of the others). The
equivalence that proves our Theorem is that of the first and fifth statements.

● α ∈ σp(LA);
● there exists 0 ≠ x ∈ ker (LA − αIFn);
● (LA − αIFn) = LA−αIn is not invertible;
● (A − αIn) is not invertible;
● det(A − αIn) = 0.
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● rank (A − αIn) < n.
◻

1.6. Remark. Let n ∈ N and let F be a field. So far we have defined the
determinant of an element A = [aij] ∈ Mn(F) recursively by setting det([a]) = a
whenever [a] ∈M1(F) and then using the formula

det (A) =
n

∑
i=1

(−1)i+1(ai1)det(Âij),

where Âij ∈Mn−1(F) is the matrix obtained from A by deleting the ith row and the
first column.

Using elementary row and column operations, we were able to obtain a good
deal of information about the determinant function, including the fact that

det(AB) = det(A) ⋅ det(B)

for all A,B ∈Mn(F).

In what follows we wish to define det(A) when A ∈Mn(F[x]). That is, suppose
that A = [aij], where each aij is a polynomial in x with coefficients in F for 1 ≤ i, j ≤ n.
Clearly we may set det([a11]) ∶= a11, and for n ≥ 1, we can apply the same recursive
formula as above, namely:

det (A) =
n

∑
i=1

(−1)i+1(ai1)det(Âij),

where Âij ∈Mn−1(F) is the matrix obtained from A by deleting the ith row and the
first column.

The question of whether or not det(AB) = det(A)⋅det(B) when A,B ∈Mn(F[x])

is less clear. For example, if A = [ 3 + x2 2 + x + x3

π + ex − 19
√

2x5 −17 + x9 ] ∈ M2(R[x]), is it

obvious that we can perform elementary row operations on A to put it in reduced
row echelon form? (This strategy was behind our proof of the multiplicativity of the
determinant function.)

While not obvious, it happens to be true. Strangely enough, our inspiration
comes from looking at matrices with integer entries. Suppose that A,B ∈ Mn(Z).
Then A,B ∈ Mn(Q), and so det(AB) = det(A) ⋅ det(B) when thinking of A and B
as matrices with rational entries. But given T ∈ Mn(Z), the formula for det(T ) is
the same whether we view T as having integer entries or rational entries, implying
that

det(AB) = det(A) ⋅ det(B)
when thinking of A and B as matrices with integer entries as well.

What does this have to do with matrices with entries in F[x]? To answer this,
we first ask ourselves “how were we able to find a field, in this case Q, that contained
Z?”
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We shall give a very abridged version of the construction, leaving the verification
of the details to the interested reader.

The integers Z are an example of what is known as an integral domain. An
integral domain is a non-empty set D with two operations + and ⋅ (referred to as
addition and multiplication) satisfying:

(d1) x + y ∈D for all x, y ∈D;
(d2) (x + y) + z = x + (y + z) for all x, y, z ∈D;
(d3) there exists 0 ∈D such that x + 0 = x = 0 + x;
(d4) for each x ∈D there exists an element y ∈D such that x + y = 0 = y + x;
(d5) x + y = y + x for all x, y ∈D.
(d6) x ⋅ y ∈D for all x, y ∈D;
(d7) x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z for all x, y, z ∈D;
(d8) x ⋅ (y + z) = x ⋅ y + x ⋅ z for all x, y, z ∈D;
(d9) (x + y) ⋅ z = x ⋅ z + y ⋅ z for all x, y, z ∈D;

(d10) there exists an element 1 ≠ 0 such that 1 ⋅ x = x = x ⋅ 1 for all x ∈D.
(d11) x ⋅ y = y ⋅ x for all x, y ∈D;
(d11) If x, y ∈D and x ⋅ y = 0, then either x = 0 or y = 0.

The first five conditions should be reminiscent of the definition of a vector space.
Indeed, the first five conditions define what is known as an abelian group under
addition, and both vector spaces and integral domains are abelian groups under
addition.

As a first exercise, we leave it to the reader to verify that F[x] is also an integral
domain whenever F is a field.

Of course, we think of rational numbers as numbers of the form a

b
, where a, b ∈ Z

and b ≠ 0. It is not hard to see that we could just as easily write this as an ordered
pair (a, b) ∈ Z × (Z ∖ {0}). There is a slight complication, however, in that we know
that (for example) 3

15
= −9
−45

. This is verified by noting that 3(−45) = 15(−9). Given
an integral domain D, we define an equivalence relation on D× (D∖{0}) by setting
(a1, b1) ≡ (a2, b2) if a1 ⋅ b2 = a2 ⋅ b1.

We then define two operations + and ⋅ on E ∶= {[(a, b)] ∶ a, b ∈D, b ≠ 0} as follows:

[(a, b)] + [(c, d)] = [(ad + bc, bd)],

and
[(a, b)] ⋅ [(c, d)] ∶= [(ac, bd)].

(We should think of [(a, b)] as the equivalent of a
b

, and our usual addition and
multiplication of rational numbers then explains the two operations above.) Of
course, since we are dealing with equivalence classes of ordered pairs, it behooves us
to verify that these operations are well-defined! (In other words, is 3

4 +
1
2 = 6

8 +
−23
−46?)

The well-definedness of the two operations is the second exercise left to the reader.



1. EIGENVALUES, EIGENVECTORS AND EIGENSPACES 173

The third exercise left to the reader is to show that (E,+, ⋅) is an integral domain,
and that if [(a, b)] ≠ [(0,1)] ∈ E (note that [(0,1)] is the zero-element of E as per
condition d3 above – think of it as 0

1
), then [(a, b)] is invertible under multiplication

with inverse [(b, a)]. (After all, you would expect the inverse of a
b

to be b

a
!)

Together, these conditions imply that E is a field. In the same way that the map
ϕ ∶ Z→ Q defined by ϕ(n) = n

1 for all n ∈ Z embeds a copy of Z into Q, the map

% ∶ D → E
d ↦ [(d,1)]

embeds a copy of D into E. We may therefore conflate, or identify, D with the
subset %(D) ⊆ E and think of D as sitting “inside” its field of quotients E. When
doing this, we suppress the “%” altogether and just write D ⊆ E.

Finally, in our case, E ∶= {[(f(x), g(x)] ∶ f(x), g(x) ∈ F[x], g(x) ≠ 0} is a field
which contains a copy of F[x], namely %(F[x]) = {[(f(x),1] ∶ f(x) ∈ F[x]}. Again,
we tend to think of F[x] as a subset of E, and some people with a funny disposition

might even write f(x)
g(x)

to mean [f(x), g(x)] ∈ E.

Thus, when given A = [aij] ∈Mn(F[x]), we may view A as an element of Mn(E),
and all of the familiar properties of determinants hold because E is a field. In
particular, if A,B ∈Mn(F) ⊆Mn(E), then

det(AB) = det(A) ⋅ det(B) ∈ E.

We needed all of this to be able to define the characteristic polynomial of a
matrix A ∈Mn(F), which we now do.

1.7. Definition. Let n ∈ N and F be a field. Given A ∈Mn(F), the character-
istic polynomial of T is the polynomial

pA(x) ∶= det (A − xIn) ∈ F[x].

1.8. Example. Let A = [−3 2
7 −11] ∈M2(C). Then

pA(x) = det (A − xIn)

= det [−3 − x 2
7 −11 − x]

= (−3 − x)(−11 − x) − 2(7)
= x2 + 14x + 19.
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1.9. Proposition. Let n ∈ N, F be a field, and A ∈ Mn(F1[x]). Then det(A) ∈
Fn[x].
Proof. We shall argue by induction on n.

If n = 1, thenA = [a11] where a11 = p11+q11x. By definition, det (A) = a11 ∈ F1[x].
Now let N ≥ 2 and suppose that the result holds for all matrices A ∈Mn(F1[x]),

1 ≤ n < N . Let B = [bij] ∈MN(F1[x]) ⊆MN(F[x]). By definition,

det(B) =
N

∑
i=1

(−1)i+1bijdet(B̂i1).

Now B̂i1 ∈MN−1(F1[x]), and so by our induction hypothesis,

det(B̂i1) ∈ FN−1[x], 1 ≤ i ≤ N.

Since bi1 ∈ F1[x], we then have that

bi1det(B̂i1) ∈ FN [x], 1 ≤ i ≤ N,

and thus
det (B) ∈ FN [x],

completing the induction step.
◻

1.10. Theorem. Let n ∈ N, F be a field and A = [aij] ∈ F. Then pA(x) is a
polynomial of degree n in x.
Proof. Since A−xIn ∈Mn(F1[x]), from the above Proposition we find that pA(x) =
det(A−xIn) ∈ Fn[x]. To see that deg(pA(x)) = n, we once again argue by induction
on n.

If n = 1, then A = [a11] and so det(A − xI1) = det([a11 − x]) = a11 − x ∈ F1[x], as
required.

Suppose that N ≥ 2 and that the result holds for all 1 ≤ n < N . Let A = [aij] ∈
MN(F). Let B ∶= A − xIN = [bij], where bij ∈ F1[x] for all i, j. Then

det(A − xIN) =
N

∑
i=1

(−1)i+1bi1det(B̂i1).

For 2 ≤ i ≤ N , we have that B̂i1 ∈ MN−1(F1[x]), and so from Proposition 1.9,
det(B̂i1) ∈ FN−1[x]. Since bi1 ∈ F, 2 ≤ i ≤ N , we see that

N

∑
i=2

(−1)i+1bi1det (B̂i1) ∈ FN−1[x].

On the other hand, b11 = a11 − x has degree 1, and by our induction hypothesis,
det(B̂11) has degree N − 1, as B̂11 = Â11 − xIN−1. Thus

(−1)1+1b11det(B̂11)
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has degree N , and therefore

det(A − xIN) = det (B) =
N

∑
i=1

(−1)i+1bi1det(B̂i1)

has degree N . This completes the induction step, and hence the proof.
◻

1.11. Corollary. Let n ∈ N, F be a field, and A ∈Mn(F). Then A has at most
n distinct eigenvalues.
Proof. The eigenvalues of A are the roots of pA(x) which lie in F. Since pA(x) has
degree n, it can have at most n roots in F.

◻

1.12. Example. Let n ∈ N, F be a field, and A ∈Mn(F). Suppose that

pA(x) = x4 + x3 + x2 + x + 1.

(a) If F = Q, then pA(x) does not factor. Thus A has no eigenvalues.
(b) If F = R, then

pA(x) = (x2 +
√

5 + 1
2

x + 1) ⋅ (x2 −
√

5 + 1
2

x + 1) .

Again, A has no eigenvalues.
(c) If F = C, then

pA(x) = (x − α1)(x − α2)(x − α3)(x − α4),

where αk = cos(2kπ/5) + i sin(2kπ/5) ∈ C, 1 ≤ k ≤ 4. Thus A has four
eigenvalues.

(d) If F = Z5, then

pA(x) = (x − 1)4 = (x − 1)(x − 1)(x − 1)(x − 1).

Here A has one eigenvalue, namely 1. We shall soon define the multiplicity
of this eigenvalue to be 4.

1.13. Proposition. Let n ∈ N, F be a field, and A,B ∈Mn(F). If A and B are
similar, then pA(x) = pB(x).
Proof. Choose R ∈ Mn(F) invertible such that B = R−1AR. Then B − xIn =
R−1AR − xIn = R−1(A − xIn)R. Thus

pB(x) = det (B − xIn) = det (R−1(A − xIn)R) = (detR−1) (pA(x)) (detR) = pA(x).

◻



176 8. AN INTRODUCTION TO EIGENVALUES AND EIGENVECTORS

1.14. Corollary. Suppose that V is an n-dimensional vector space over F,
T ∈ L(V), and that D and C are two ordered bases for V. Then

det ([T ]D − xIn) = det ([T ]C − xIn).

Proof. This is an immediate consequence of the above Proposition combined with
the fact that [T ]D is similar to [T ]C via the matrix [IV]CD.

◻

Because the characteristic polynomial for the matrix for T doesn’t depend upon
the ordered basis that we choose to represent T , the following definition makes sense.

1.15. Definition. Let n ∈ N and V be an n-dimensional vector space over a
field F. Suppose that T ∈ L(V). Then the characteristic polynomial of T is the
degree-n polynomial

pT (x) = det ([T ]D − xIn),
where D is any ordered basis for V.

1.16. Example. Let T ∶ R2 → R2 be the map given by T (x, y) = (3x + 4y,9x −
7y). Let D = ((1,0), (0,1)) denote the standard ordered basis for R2. Then

[T ]D = [[T (1,0)]D [T (0,1)]D] = [[(3,9)]D [(4,−7)]D] = [3 4
9 −7] .

Thus

pT (x) = det ([T ]D − xI2)

= det [3 − x 4
9 −7 − x]

= (3 − x)(−7 − x) − (9)(4)
= x2 + 4x − 57.

2. Multiplicities of eigenvalues and diagonalisability

2.1. If V is a vector space over a field F and T ∈ L(V), we may define the
spectrum of T to be the set

σ(T ) = {α ∈ F ∶ (T − αIV) is not invertible.}

As we saw in Theorem 1.5, when dim V <∞, σ(T ) = σp(T ).
When dim V = ∞, this need not be the case. For example, let V = C([0,1],R)

be a vector space over R, and define the linear map
Mx ∶ C([0,1],R) → C([0,1],R)

f(x) ↦ xf(x).
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If f ∈ ker Mx, then [Mxf](x) = xf(x) = 0 for all x ∈ [0,1], and thus f(x) = 0 for all
x ∈ (0,1]. But f is continuous on [0,1], and therefore f(0) = limx→0+ f(x) = 0. That
is, f ≡ 0. Thus 0 /∈ σp(Mx).

On the other hand, Mx =Mx − 0IV is not invertible, since ranMx ≠ C([0,1],R).
(If g ∈ ranMx – say g = Mxf for some f ∈ C([0,1],R), then g(0) = [Mxf](0) =
0f(0) = 0.) Thus 0 ∈ σ(Mx).

A great deal of information about a linear map can be gleaned from its spectrum
and its point spectrum (and there exist many, many other types of spectrum as
well). In this introductory course, we shall limit ourselves to finite-dimensional
vector spaces where σ(T ) = σp(T ) is better behaved.

2.2. Definition. Let n ∈ N, and V be an n-dimensional vector space over a field
F. Suppose that α ∈ F is an eigenvalue for T ∈ L(V). We define the geometric
multiplicity of α to be

γT (α) ∶= dim ker (T − αI).
Since α ∈ σp(T ), we know that (z − α) divides pT (z), and this allows us to define
the algebraic multiplicity of α to be

µT (α) ∶= max{k ≥ 1 ∶ (z − α)k divides pT (z).}

As always, if A ∈ Mn(F), then we define the geometric (resp. algebraic) multi-
plicity of α ∈ σp(A) as the geometric (resp. algebraic) multiplicity of LA ∈ L(Fn).

2.3. Example.
(a) Let n ≥ 1, and let D = (e1, e2, . . . , en) be the standard ordered basis for Fn.

Let Jn ∈ Mn(F) be the n × n-Jordan cell, defined by setting Jn ∶= [a(n)ij ],
where a(n)ij = 0 if j ≠ i + 1, and a

(n)
i i+1 = 1, 1 ≤ i ≤ n − 1. Thus

Jn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 0 0 ⋯ 0 1
0 0 0 ⋯ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A routine inductive argument shows that pJn(x) = (0 − x)n = (−1)nxn, so
that 0 is an eigenvalue of algebraic multiplicity n for Jn. That is, µ(0) = n.

Note, however, that nulJn = dim ker Jn = 1, as ker Jn = Fe1. Thus
γJn(0) = 1 ≤ n = µJn(0),

with equality holding if and only if n = 1 in which case J1 = [0] ∈M1(F).
If you search the literature, you should not be surprised to see Jn refer

to both the linear map LJn and the matrix Jn = [LJn]D, where D is the
standard ordered basis for Fn. In fact, this holds general A ∈ Mn(F). We
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have been careful to distinguish between the two concepts as this is the
first time you are seeing the material. Most authors simply conflate [LA]D
and A ∈Mn(F). Just saying.

(b) Given m,n ∈ N and matrices A ∈ Mm(F) and B ∈ Mn(F), we define the
direct sum of A and B to be the matrix

A⊕B = [A 0
0 B

] ∈Mm+n(F).

For example, if A = −4I3 + J3 and B = 7I2 + J2, then with T ∶= A⊕B,

T ∶= A⊕B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 0 0 0
0 −4 1 0 0
0 0 −4 0 0
0 0 0 7 1
0 0 0 0 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Again, because this is upper triangular, as is T −xI5, it is easy to calculate
pT (x):

pT (x) = det (T − xI5) = (−4 − x)3(7 − x)2.

Thus σp(T ) = {−4,7}, µT (−4) = 3 and µT (7) = 2, while γT (−4) = 1 = γT (7).

(c) Let T =
⎡⎢⎢⎢⎢⎢⎣

19 −9 −6
25 −11 −9
17 −9 −4

⎤⎥⎥⎥⎥⎥⎦
∈M3(R). Then

pT (x) = det (T − xI3) = −x3 + 4x2 − 5x + 2.

By inspection, we see that α = 1 is a root of this polynomial, so that

pT (x) = (1 − x)(x2 − 3x + 2) = (1 − x)(x − 1)(x − 2) = −(x − 1)2(x − 2).

It follows that σp(T ) = {1,2}, that µT (1) = 2 and µT (2) = 1.
As for the geometric multiplicities of these eigenvalues, note that (by

solving homogeneous systems of three equations in three variables)

ker (T − 1I3) = ker
⎡⎢⎢⎢⎢⎢⎣

18 −9 −6
25 −12 −9
17 −9 −5

⎤⎥⎥⎥⎥⎥⎦
= span {

⎡⎢⎢⎢⎢⎢⎣

3
4
3

⎤⎥⎥⎥⎥⎥⎦
},

while

ker (T − 2I3) = ker
⎡⎢⎢⎢⎢⎢⎣

17 −9 −6
25 −13 −9
17 −9 −6

⎤⎥⎥⎥⎥⎥⎦
= span {

⎡⎢⎢⎢⎢⎢⎣

3
3
4

⎤⎥⎥⎥⎥⎥⎦
}.

Thus γT (1) = 1 = γT (2).

Observe that in each of the above examples, whenever T ∈Mn(F) and α ∈ σp(T ),
we have that γT (α) ≤ µT (α). This is not a coincidence.
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2.4. Proposition. Let n ∈ N, V be an n-dimensional vector space over a field
F, and T ∈ L(V). If α ∈ F is an eigenvalue of T , then

γT (α) ≤ µT (α).
That is, the geometric multiplicity of α is at most equal to the algebraic multiplicity
of α as an eigenvalue of T .
Proof. Let M = ker (T − αIn), and define d ∶= γT (α) = dimM. Let (v1, v2, . . . , vd)
be a basis for M, and extend this to an ordered basis

D = (v1, v2, . . . , vd, x1, x2, . . . , xn−d)
for V. Since Tvj = αvj , 1 ≤ j ≤ d, it follows that

[T ]D = [αId B
0 D

]

for some B ∈Md×(n−d)(F) and D ∈Mn−d(F). By Exercise 8.3,

pT (x) = pαId
(x) pD(x) = (α − x)d pD(x).

Thus (x − α)d divides pT (x), from which we deduce that µT (α) ≥ d = γT (α), as
required.

◻

2.5. Theorem. Let V be a vector space over a field F and T ∈ L(V). Suppose
that α ≠ β are distinct eigenvalues of T . If x (resp. y) is an eigenvector for T cor-
responding to α (resp. corresponding to β), then x and y are linearly independent.
Proof. Suppose that κ1, κ2 ∈ F and that κ1x + κ2y = 0. Then

0 = (T − αIV)0
= (T − αIV)(κ1x + κ2y)
= κ1(T − αIV)x + κ2(T − αIV)y
= κ10 + κ2(β − α)y
= κ2(β − α)y.

Since y is an eigenvector for T corresponding to β, we know that y ≠ 0, and since
β ≠ α, this forces κ2 = 0. But then κ1x = 0 and x ≠ 0, whence κ1 = 0 and so x and y
are linearly independent.

◻

2.6. Definition. Let n ∈ N and F be a field. We say that D ∈ Mn(F) is a
diagonal matrix if

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 0 0 ⋯ 0
0 d2 0 ⋯ 0
0 0 ⋱ ⋯ 0
⋮ ⋮
0 0 0 ⋯ dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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for some choice of d1, d2, . . . , dn ∈ F. We also denote this by D = diag(d1, d2, . . . , dn).
We say that B ∈Mn(F) is diagonalisable if B is similar to a diagonal matrix.

Finally, if V is an n-dimensional vector space over F and T ∈ L(V), then we say
that T is diagonalisable if there exists an ordered basis D for V relative to which
[T ]D is a diagonal matrix.

2.7. Remark. Note that if D = diag(d1, d2, . . . , dn) ∈ Mn(F), then each of the
standard basis vectors ej is an eigenvector for D corresponding to the eigenvalue dj ,
1 ≤ j ≤ n.

Suppose now that T ∈Mn(F) is diagonalisable, and choose R ∈Mn(F) invertible
such that D ∶= R−1TR is diagonal, say D = diag(α1, α2, . . . , αn). Set bj ∶= cj(R),
1 ≤ j ≤ n, and observe that the fact that R is invertible implies that

B ∶= (b1, b2, . . . , bn)

is an ordered basis for Fn. Moreover, R = [IFn]DB , and so R−1 = [IFn]BD. From this
we find that

D = R−1TR = [IFn]BD[LT ]D[IFn]DB = [LT ]B.
Using the observation at the start of this Remark, we see that

[LT bj]B = [LT ]B[bj]B =Dej = αjej = [αjbj]B,
whence Tbj = LT bj = αjbj , 1 ≤ j ≤ n.

In other words, the jth column of R is precisely an eigenvector of T corresponding
to the eigenvalue αj , 1 ≤ j ≤ n. We shall return to this in Proposition 2.9 below.

2.8. Example. Let T ∶ R2 → R2 be the map T (x, y) = (−14x+12y,−20x+17y).
Relative to the standard ordered basis D = (e1, e2) for R, we see that

[T ]D = [−14 12
−20 17] .

We leave it to the reader to verify that pT (x) = (x− 2)(x− 1), and thus σp(T ) =

{1,2}. Moreover, ker (T − 1I2) = span {[4
5]}, while ker (T − 2I2) = span {[3

4]}.

Let C ∶= ((4,5), (3,4)), and note that this is an ordered basis for R2 since eigen-
vectors corresponding to distinct eigenvalues are automatically linearly independent.

If we define R ∶= [IR2]CD, then R−1 = [IR2]DC = [4 3
5 4]. A routine calculation

(using elementary operations) shows that R = [ 4 −3
−5 4 ] .

Finally,

[T ]C = [IR2]DC [T ]D[IR2]DC = [ 4 −3
−5 4 ] [−14 12

−20 17] [4 3
5 4] = [1 0

0 2] .
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2.9. Proposition. Let n ∈ N, F be a field and V be an n-dimensional vector
space over F. A linear map T ∈ L(V) is diagonalisable if and only if there exists an
ordered basis for V consisting of eigenvectors of T .
Proof. Suppose that T is diagonalisable, and let D = (v1, v2, . . . , vn) be an ordered
basis for V for which [T ]D is diagonal, say [T ]D = diag(d1, d2, . . . , dn). If B ∶=
(e1, e2, . . . , en) is the standard ordered basis for Fn, then

[Tvj]D = [T ]D[vj]D = [T ]Dej = djej = [djvj]D,

implying that Tvj = djvj , 1 ≤ j ≤ n. Thus D consists of eigenvectors for T .
Conversely, if B ∶= (b1, b2, . . . , bn) is an ordered basis for V consisting of eigen-

vectors for T – say Tbj = βjbj , 1 ≤ j ≤ n – then
[T ]B = diag(β1, β2, . . . , βn),

and so T is diagonalisable.
◻

As a corollary to this result, we obtain:

2.10. Theorem. Let n ∈ N, F be a field and V be an n-dimensional vector space
over F. The following conditions are equivalent:

(a) The map T ∈ L(V) is diagonalisable.
(b) The characteristic polynomial pT (z) splits over F and γT (α) = µT (α) for

all α ∈ σp(T ).
Proof.

(a) implies (b). Suppose that the map T ∈ L(V) is diagonalisable. Let D be
an ordered basis for V relative to which [T ]D = diag(α1, α2, . . . , αn).

Clearly pT (x) = det (T −xIn) = (α1−x)(α2−x)⋯(αn−x), and so pT (x)
splits over F.

Also, for 1 ≤ j ≤ n,
ker ([T ]D − αjIn) = ker diag(α1 − αj , α2 − αj , . . . , αn − αj)

= span {ei ∶ ei = ej}.

Thus γT (αj) = ∣{ei ∶ ei = ej}∣ = µT (αj).
(b) implies (a). Conversely, suppose that the characteristic polynomial pT (z)

splits over F and γT (α) = µT (α) for all α ∈ σp(T ). Let

pT (x) = (α1 − x)µT (α1)(α2 − x)µT (α2)⋯(αr − x)µT (αr),

where ∑ri=1 µT (αi) = n. Since γT (αi) = µT (αi) for each 1 ≤ i ≤ r, we can
find an ordered basis Bi = (bi1, bi2, . . . , biµT (αi)

) for ker (T − αiIn).
By Assignment 7, B = (B1,B2, . . . ,Br) is a linearly independent set

containing ∑ri=1 µT (αi) = n elements, it must be a basis for V. By Proposi-
tion 2.9, T is diagonalisable.

◻
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2.11. Example. Let T ∶ R3 → R3 be the linear map T (x, y, z) = (8x + 3y −
4z,−3x + y + 3z,4x + 3y). Relative to the standard basis D = (e1, e2, e3) for R3, we
have

[T ]D =
⎡⎢⎢⎢⎢⎢⎣

8 3 −4
−3 1 3
4 3 0

⎤⎥⎥⎥⎥⎥⎦
.

Thus
pT (x) = det (T − xI3) = −(x − 4)2(x − 1).

Thus σp(T ) = {1,4}.

Now ker (T −4I3) = span {
⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
}, and so γT (4) = 1 < 2 = µT (4). By Theorem 2.10,

T is not diagonalisable.

2.12. Theorem. Let n ∈ N, F be a field and V be an n-dimensional vector space
over F. If T ∈ L(V) has n distinct eigenvalues in F, then T is diagonalisable.
Proof. Suppose that T has n distinct eigenvalues, say σp(T ) = {α1, α2, . . . , αn} with
αi ∈ F for all i and αi ≠ αj if i ≠ j. Now

pT (x) = (α1 − x)(α2 − x)⋯(αn − x),

and µT (αj) = 1 for all 1 ≤ j ≤ n, since all αi’s are distinct. Since γT (α) ≥ 1
when α ∈ σp(T ), and since γT (α) ≤ µT (α) for all α ∈ σp(T ), we conclude that
γT (αi) = 1 = µT (αi), 1 ≤ i ≤ n. By Theorem 2.10, T is diagonalisable.

◻

2.13. Example.

(a) The matrix A = [0 −1
1 0 ] is not diagonalisable over R, as it has no real

eigenvalues. On the other hand, over F = C, it has two eigenvalues i and
−i, and as such it is diagonalisable and with respect to the ordered basis
D = ((1,−i), (1, i)) consisting of the eigenvectors of A, we see that

[A]D = [i 0
0 −i] .

(b) If T ∈ M4(C) and σp(T ) = {1,3 + i,3 − i,14 + 5i}, then we conclude that
there exists a basis D for C4 relative to which

T = diag(1,3 + i,3 − i,14 + 5i).
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2.14. We illustrate the power of diagonalisability through the following exam-
ple. Let n ∈ N, F be a field and V be an n-dimensional vector space over F. Suppose
that T ∈ L(V) and that q(z) = 24z − 14z147. Let us find q(T ).

If we can find an ordered basis D for V relative to which

[T ]D = diag(d1, d2, . . . , dn),

then an easy induction argument shows that for all k ≥ 1,

[T k]D = ([T ]D)k = (diag(d1, d2, . . . , dn))k = diag(dk1, dk2, . . . , dkn).

From this we see that

[q(T )]D = diag(q(d1), q(d2), . . . , q(dn)),

and once we know [q(T )]D, we know q(T ).

Let us finish the course by illustrating this with a concrete example.

2.15. Example. Let T =
⎡⎢⎢⎢⎢⎢⎣

−1 7 −1
0 1 0
0 15 −2

⎤⎥⎥⎥⎥⎥⎦
∈ M3(R). Then a routine calculation

shows that
pT (x) = −(x − 1)(x + 1)(x + 2).

Thus σp(T ) = {1,−1,−2} has three distinct elements. Since T ∈M3(R), we conclude
that T is diagonalisable.

By solving systems of linear equations, we find that

● ker (T − 1I3) = span{
⎡⎢⎢⎢⎢⎢⎣

1
1
5

⎤⎥⎥⎥⎥⎥⎦
}.

● ker (T − (−1)I3) = span{
⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
}.

● ker (T − (−2)I3) = span{
⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
}.

LettingD = (e1, e2, e3) be the standard ordered basis for R3 and C = ((1,1,5), (1,0,0), (1,0,1)),
we let

R ∶= [IR3]DC =
⎡⎢⎢⎢⎢⎢⎣

1 1 1
1 0 0
5 0 1

⎤⎥⎥⎥⎥⎥⎦
,

and we calculate

R−1 = [IR3]CD =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 4 −1
0 −5 1

⎤⎥⎥⎥⎥⎥⎦
.
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Thus

Y ∶= [T ]C = R−1[LT ]DR =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 4 −1
0 −5 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

−1 7 −1
0 1 0
0 15 −2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 1 1
1 0 0
5 0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 −1 0
0 0 2

⎤⎥⎥⎥⎥⎥⎦
.

Suppose that q(x) = 13 + 24x3 − ex417. Then q(T ) = Rq(Y )R−1.
But

q(Y ) = 13I3 + 24Y 3 − eY 417

=
⎡⎢⎢⎢⎢⎢⎣

q(1) 0 0
0 q(−1) 0
0 0 q(2)

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

37 − e 0 0
0 −11 + e 0
0 0 61 − 2417e

⎤⎥⎥⎥⎥⎥⎦

Hence

q(T ) = Rq(Y )R−1 =
⎡⎢⎢⎢⎢⎢⎣

1 1 1
1 0 0
5 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

37 − e 0 0
0 −11 + e 0
0 0 61 − 2417e

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 4 −1
0 −5 1

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

37 − e −11 + e 61 − 2417e
37 − e 0 0

185 − 5e 0 61 − 2417e

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 4 −1
0 −5 1

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

−11 + e −312 + (e + 5 ⋅ 2417)e 72 − (1 + 2417)e
0 37 − e 0
0 −120 + (5 ⋅ 2417 − 5)e 61 − 2417e

⎤⎥⎥⎥⎥⎥⎦
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Supplementary Examples

S8.1. Example. LetW = C([0,1],R), and consider the map V ∈ L(W) defined
by:

[V f](x) ∶= ∫
x

0
f(t)dt, x ∈ [0,1].

This map is referred to as the Volterra operator on C([0,1],R).
Observe that [V f](0) = 0 for all f ∈ C([0,1],R), and thus there does not exist

f ∈ W such that V f = η, where η ∶ [0,1] → R is the constant function η(x) = 1 for
all x ∈ [0,1]. In particular, V is not surjective, and so

0 ∈ σ(V ) ∶= {α ∈ R ∶ (V − αIW) is not invertible}.

Nevertheless, 0 /∈ σp(V ). Indeed, suppose that 0 ≠ f ∈ W and that V f = 0.
Thus [V f](x) = 0 for all x ∈ [0,1]. Since f ≠ 0 and f is continuous, there exists
x0 ∈ (0,1) such that f(x0) ≠ 0. By replacing f by −f if necessary, we may assume
that f(x0) > 0. (Observe that if V f = 0, then V (−f) = −(V f) = 0, so this really is
“without loss of generality”.)

Let ε ∶= f(x0)/2 > 0. By continuity of f at x0, there exists δ > 0 such that
∣x − x0∣ < δ implies that ∣f(x) − f(x0)∣ < ε, and thus f(x) > f(x0) − ε = ε. Hence

[V f](x0) = ∫
x0

0
f(t)dt

= ∫
x0−δ

0
f(t)dt + ∫

x0

x0−δ
f(t)dt

= [V f](x0 − δ) + ∫
x0

x0−δ
f(t)dt

≥ 0 + ∫
x0

x0−δ
εdt

= 0 + ε(δ) > 0,

a contradiction.
Thus V does not have 0 as an eigenvalue, despite the fact that V − 0IW is not

invertible.

S8.2. Example. Let n ∈ N, V be a vector space of dimension n over a field F,
and T ∈ L(V). Suppose furthermore that α ∈ F is an eigenvalue of T , and choose
0 ≠ x ∈ V such that Tx = αx. Then {x} is linearly independent, and so we can extend
{x} to a basis B ∶= {x, b2, b2, . . . , bn} for V.
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Write [T ]B = [tij] ∈Mn(F), and observe that Tx = αx implies that [Tx]B ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

But [Tx]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t11
t21
⋮
tn1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

! Thus

[T ]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α t12 t13 ⋯ t1n
0 t22 t23 ⋯ t2n
0 t32 t33 ⋯ t3n
⋮ ⋮
0 tn2 tn3 ⋯ tnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t22 t23 ⋯ t2n
t32 t33 ⋯ t3n
⋮ ⋮
tn2 tn3 ⋯ tnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

also has an eigenvalue, we can repeat this argument

on the spaceW ∶= span{b2, b3, . . . , bn}. This observation, combined with the fact that
C is algebraically closed, is the key to Exercise 8.1 below.

S8.3. Example. Let T =
⎡⎢⎢⎢⎢⎢⎣

−1 2 0
−4 2 3
−4 −2 7

⎤⎥⎥⎥⎥⎥⎦
. Then (after some calculation) we find

that
pT (x) = det (T − xI3) = (1 − x)(3 − x)(4 − x).

Moreover,

● ker (T − 1I3) = span{
⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
};

● ker (T − 3I3) = span {
⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
}; and

● ker (T − 4I3) = span {[2 5 6]}.

Thus, if we letR =
⎡⎢⎢⎢⎢⎢⎣

1 1 2
1 2 5
1 2 6

⎤⎥⎥⎥⎥⎥⎦
, then more calculation shows thatR−1 =

⎡⎢⎢⎢⎢⎢⎣

2 −2 1
−1 4 −3
0 −1 1

⎤⎥⎥⎥⎥⎥⎦
,

and

R−1TR = diag(1,3,4) =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 3 0
0 0 4

⎤⎥⎥⎥⎥⎥⎦
.



SUPPLEMENTARY EXAMPLES 187

S8.4. Example. With T =
⎡⎢⎢⎢⎢⎢⎣

−1 2 0
−4 2 3
−4 −2 7

⎤⎥⎥⎥⎥⎥⎦
as in Example S8.3, suppose we wished

to find
Y ∶= 17T 6 + 5T 3 − 6T + 3I3.

Letting q(z) = 17z6 + 5z3 − 6z + 3, we find that Y = q(T ).
Now D = diag(1,3,4) = R−1TR, and so T = RDR−1. As previously noted, by

induction and linearity, we find that
p(T ) = p(RDR−1) = Rp(D)R−1

for any polynomial p(z), and thus q(T ) = R(q(D))R−1.
Again, the whole point of this exercise is that q(D) is easy to evaluate when D

is diagonal. Indeed,
q(D) = q(diag(1,3,4))

= diag(q(1), q(3), q(4))
= diag(17 + 5 − 6 + 3,17(36) + 5(33) − 6(3) + 3,17(46) + 5(43) − 6(4) + 3)
= diag(19,12513,69931).

Thus

q(T ) = R
⎡⎢⎢⎢⎢⎢⎣

19 0 0
0 12513 0
0 0 69931

⎤⎥⎥⎥⎥⎥⎦
R−1 =

⎡⎢⎢⎢⎢⎢⎣

−12457 −52309 102342
−24988 −174511 274596
−24988 −244442 344527

⎤⎥⎥⎥⎥⎥⎦
.

You might want to check by computing 17T 6 + 5T 3 − 6T + 3I3 directly. Then
again, you might not want to do so.

S8.5. Example. Let n ∈ N and F be a field. Then n × n Jordan cell is the
matrix

Jn ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
0 0 0 ⋱ ⋯ 0
⋮ ⋱ 0
⋮ 0 1
0 0 0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈Mn(F).

That is, if Jn = [x(n)ij ], then x
(n)
i i+1 = 1 for all 1 ≤ i ≤ n − 1, while x(n)ij = 0 if j ≠ i + 1.

Also, given Tj ∈ Mnj(F), 1 ≤ j ≤ m, we define the direct sum of the matrices
Tj to be

T ∶= T1 ⊕ T2 ⊕⋯⊕ Tm ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1 0 0 ⋯ 0
0 T2 0 ⋯ 0
0 0 ⋱ 0 ⋮
⋮ ⋱ ⋮
0 0 0 ⋯ Tm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈Mn(F),

where n = ∑mj=1 nj .
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If we set

T = (−3I4 + J4)⊕ (−3I4 + J4)⊕ (−3I3 + J3)⊕ (6I3 + J3)⊕ (2I2 + J2) ∈M16(F),

then T ∈ T16(F) is upper-triangular, and so the eigenvalues of T appear on its
diagonal, namely:

σp(T ) = {−3,6,2}.

Moreover, since T = [tij] is upper-triangular,

pT (x) =
16
∏
j=1

(tjj − x) = (x − (−3))11(x − 6)3(x − 2)2.

Thus µT (−3) = 11, µT (6) = 3, and µT (2) = 2.
As for the geometric multiplicity of these eigenvalues, we invite the reader to

verify that if D = (e1, e2, . . . , e16) is the standard ordered basis for F16, then
● ker (T + 3I16) = ker (T − (−3)I16) = span{e4, e8, e11}, and so γT (−3) = 3;
● ker (T − 6I16) = span{e14}, and so γT (6) = 1; while
● ker (T − 2I16) = span{e16}, and so γT (2) = 1.

By Theorem 8.2.10, T is not diagonalisable.
We leave it as an exercise for the reader to determine whether or not there exists

an example of a matrix R ∈M16(F) satisfying
(i) σp(R) = {−3,6,2},
(ii) µR(−3) = 11, µR(6) = 3, µR(2) = 2, and
(iii) γR(−3) = 5, γR(6) = 2 and γR(2) = 2.

S8.6. Example. Let T = [ 5 8
−4 5] ∈M2(R). In order for T to be diagonalisable,

a minimum necessary condition is that σp(T ) ⊆ R. Note, however, that

pT (x) = (5 − x)(5 − x) − (−4)(8) = (5 − x)2 + 32 ≥ 32 > 0 for all x ∈ R.

Thus σp(T ) = ∅, and so T has no hope of being diagonalisable.

More generally, if T = [α β
γ α

] ∈M2(R), then

pT (x) = (α − x)2 − γβ.

Thus if γβ < 0, pT (x) ≥ ∣βγ∣ > 0, and σp(T ) = ∅.

Suddenly the idea of computing q(T ) = T 2024+54T 102+3I2 seems very daunting.
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S8.7. Example. Let T = [ 5 8
−4 5] ∈ M2(R) as above. We can take advantage

of the fact that R ⊆ C to think of T as a 2 × 2 complex matrix. Suddenly, when
thinking of T ∈M2(C), we see that

pT (x) = (5 − x)2 + 32 = x2 − 10x + 57.

The complex roots of this polynomial are α1 ∶= 5 − 4
√

2i and α2 = 5 + 4
√

2i. Hence

σp(T ) = {α1, α2} = {5 − 4
√

2i,5 + 4
√

2i}.

Since T ∈ M2(C) has two distinct eigenvalues, it is diagonalisable, and so we may
use the techniques of Example S8.4 to compute q(T ) = T 2024 + 54T 102 + 3I2.

Since T ∈ M2(R), and since q(x) = x2024 + 54x102 + 3 has real coefficients, it
should be clear that q(T ) ∈ M2(R), even though the diagonal form of T in M2(C)
has complex entries. (It’s applying the similarities that will get rid of these for us.)

S8.8. Example. Let n ∈ N, F be a field, and T ∈ Mn(F). Suppose that
α ∈ σp(T ), and let d ∶= µT (α). Choose 0 ≠ y1 ∈ Fn such that Ty1 = αy1, and extend
the linearly independent set {y1} to a basis B1 ∶= (y1, b2, b3, . . . , bn) for Fn. Relative
to this basis, we find that

[T ]B ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α t12 t13 ⋯ t1n
0 t22 t23 ⋯ t2n
⋮ ⋮ ⋯ ⋮
0 tn2 tn3 ⋯ tnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [α T2
0 T4

] ,

where T2 = [t12 t13 ⋯ t1n] ∈ M1×(n−1)(F) and T4 = [tij]2≤i,j≤n ∈ Mn−1(F). By com-
puting pT (x) = det(T − xIn) by cofactors along the first column, we deduce that

pT (x) = (α − x)det(T4 − xIn−1) = (α − x)pT4(x).

If d = µT (α) > 1, then this means that (x − α)2∣pT (x), and therefore (x − α)∣pT4(x).
In other words, α ∈ σp(T4).

We may therefore repeat this argument with T4 to find a new basis

C = {y2, c3, c4, . . . , cn}

for span{b2, b3, . . . , bn} where

[T4]C = [α X2
0 X4

] ,

where X2 ∈ M1×(n−2)(F) and X4 ∈ Mn−2(F). Then with B2 ∶= (y1, y2, c3, c4, . . . , cn),
we find that

[T ]C = [Z1 Z2
0 Z4

] ,

where Z1 = [α ∗
0 α

].
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Again, if d ≥ 3, then the same logic shows that α ∈ σp(Z4) and we can repeat the
argument yet again. More generally, we can repeat the argument d times to find a
basis D relative to which

[T ]D = [Q1 Q2
0 Q4

] ,

where Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α r12 r13 ⋯ r1d
0 α r23 ⋯ r2d

⋱ ⋱ ⋮
⋮

0 0 ⋯ 0 α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈Md(F).

Once again, we find that pT (x) = pQ1(x)pQ4(x) = (α−x)dpQ4(x). Since µT (α) =
d, this implies that (x−α) does not divide pQ4(x), and so α is not an eigenvalue of
Q4.

The moral of the story is: you can get a lot of information about T from σp(T ),
and the algebraic and geometric multiplicities of α for each α ∈ σp(T ).

This is the content of the next linear algebra course.
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Appendix

A8.1. In a small number of texts, one refers to eigenvalues and eigenvectors
as characteristic values and characteristic vectors respectively. The adjective
“eigen” is of German origin, and can be used to mean “intrinsic to” or “inherent”
or even “characteristic” – to wit:

Sie, mit allem ihr eigenen Charme, hob das Pferd auf und warf es
auf den Fußballplatz.
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Exercises for Chapter 8

Exercise 8.1.*
This problem is challenging, but definitely worthwhile. The reader might first

want to consult Example S8.2 above.
Let n ∈ N and T = [tij] ∈Mn(C). Prove that there exists a basis B = {b1, b2, . . . , bn}

relative to which the matrix [T ]B of T is upper-triangular.

Exercise 8.2.
Let m,n ∈ N, F be a field, A ∈Mm(F) and B ∈Mn(F). Recall that

A⊕B ∶= [A 0
0 B

] ∈Mm+n(F).

Prove that pA⊕B(x) = pA(x)pB(x).

Exercise 8.3.
Let m,n ∈ N, F be a field, A ∈Mm(F), B ∈Mm+n(F), and D ∈Mn(F). Let

T ∶= [A B
0 D

] ∈Mm+n(F).

Prove that pT (x) = pA(x)pD(x), and that σp(T ) = σp(A) ∪ σp(D).

Exercise 8.4.
Let n ∈ N, F be a field, T ∈Mn(F), and D = [dij] ∈Mn(F) be a diagonal matrix

– i.e. dij = 0 if 1 ≤ i ≠ j ≤ n. Let {T}′ ∶= {X ∈Mn(F) ∶ TX = XT}, the commutant
of T . More generally, if F ⊆Mn(F), then

F ′ ∶= {X ∈Mn(F) ∶XF = FX for all F ∈ F}.
(a) Prove that {T}′ is a vector space over F, and that if X,Y ∈ {T}′, then

XY ∈ {T}′. (In fact, {T}′ is an algebra over F. That is, it is both a vector
space over F and a ring.)

(b) Describe {D}′.
(c) Show that there exists T0 ∈Mn(F) such that {D,T0}′ = FIn.

Exercise 8.5.
Let V be an n-dimensional vector space over C, and let T ∈ L(V). Recall that

a subspace M ⊆ V is said to be invariant for T if Tm ∈M for all m ∈M. In this
case, we may decompose V =M+̇N and relative to this decomposition,

T = [T1 T2
0 T4

] .

Let ∅ ≠ Ω ⊊ σp(T ) be a subset of the eigenvalues of T . Prove that there exists
an invariant subspace M for T such that with the above notation, σp(T1) = Ω and
σp(T4) = σp(T ) ∖Ω.
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Exercise 8.6.
Let n ∈ N, F be a field, α ∈ F and A ∈Mn(F). Prove that for j ≥ 1, ker (A−αIn)j

is invariant for all T ∈ {A}′.
We say that a subspace M of V is hyperinvariant for T ∈ L(V) if XM ⊆M

for all X ∈ {T}′. Thus ker (A − αIn)j is hyperinvariant for A.

Exercise 8.7.
Let V be a finite-dimensional vector space over a filed F. Given an example of

an operator T ∈ L(V), and of a subspace M ⊆ V which is invariant for T , but not
hyperinvariant for T .

Exercise 8.8.
Let n ∈ N, F be a field and A = [aij] ∈Mn(F). Suppose that σp(A) = {0}. Prove

that An = 0.
Hint. First find a basis D for Fn relative to which [LA]D is strictly upper-
triangular, that is: [LA]D ∈ Tn(F), and all of the diagonal values of [LA]D are also
equal to zero. It might help to consider Mk ∶= ker Ak, 1 ≤ k ≤ n.

Exercise 8.9.*
Let n ∈ N, F be a field of characteristic zero and A,B ∈ Mn(F). Let λA ∶

Mn(F) → Mn(F) be the map λA(X) = AX, and %B ∶ Mn(F) → Mn(F) be the map
%B(X) =XB.

(a) Show that λA and %B ∈ L(Mn(F)).
(b) Find σp(λA) and σp(%B).
(c) Let τ ∶= λA−%B. Show that σp(τ) ⊆ σp(A)−σp(B) ∶= {α−β ∶ α ∈ σp(A), β ∈

σp(B)}.
(d) Let δA ∶= λA − %A. Show that δA is not invertible, and find an element

X ∈Mn(F) such that X /∈ ran δA.
(e) Prove that δA(XY ) = XδA(Y ) + δA(X)Y . We refer to such a linear map

as a derivation.

Exercise 8.10.
Let n ∈ N, T ∈ Tn(C). Prove that there exists a sequence (Rm)m of invertible

matrices such that if X ∶= [x(m)

ij ] ∶= R−1
m TRm, then limm x

(m)

ij = 0 for all 1 ≤ i ≠ j ≤ n,
while x(m)

ii = tii for all 1 ≤ i ≤ n and m ≥ 1.
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