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Abstract

Families of expander graphs were first constructed by Margulis from discrete groups with
property (T). The notion of expander graphs has been generalised to the framework of quantum
channels by several authors within the framework of quantum information theory. In this work,
we use property (T) discrete quantum groups to construct quantum expanders in two ways. The
first approach obtains a quantum expander family from finite-dimensional irreducible unitary
representations, extending earlier work of Harrow. The second approach directly generalises
Margulus’ original approach and is based on a quantum analogue of a Schreier graph using
the theory of coideals. We apply our machinery to discrete quantum groups with property (T)
coming from compact bicrossed products.

1 Introduction and Background

1.1 Classical expanders
We begin by recalling the definition of a (classical) expander graph, and outline the construction
of an expander family from a property (T) group due to Margulis [Mar73]. Our main reference for
this section is the book of Kowalski [Kow19].

1.1.1 Expander graphs

Definition 1.1. A (simple undirected loop-free) graph is a pair of sets G = (V,E), where V is the
set of vertices and E is the set of edges, corresponding to pairs of distinct elements from V . We
assume V is finite unless otherwise specified. For a graph G, we use the following notation:

• The neighbourhood of a vertex v ∈ V is N(v) = {u ∈ V |{u, v} ∈ E}.

• We say G is d-regular if |N(v)| = d for all v ∈ V .
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• Given X, Y ⊆ V , write E(X, Y ) = {{x, y} ∈ E|x ∈ X, y ∈ Y } for the set of edges be-
tween X and Y .

• The adjacency matrix, written A(G), is the |V | × |V | matrix with entries labelled by pairs
of vertices such that A(G)x,y = 1 iff {x, y} ∈ E and 0 otherwise.

Definition 1.2. The expansion constant (or Cheeger constant) of a graph G is

h(G) = min

{
|E(U, V \U)|

min{|U |, |V \U |}

∣∣∣∣∅ ⊊ U ⊊ V

}
.

Note that we have to restrict to connected graphs for this to be non-zero: the expansion constant
of any disconnected graph is 0.

The expansion constant is closely related to the spectral gap of the adjacency matrix of the
graph. This relationship gives an important tool for studying expansion properties. First, note that
if G is d-regular, then the largest eigenvalue of A(G) is d, and if G is connected, the multiplicity
of this eigenvalue is 1. Denote the second-largest eigenvalue of A(G) by λ2(G). Then, the spectral
gap is d− λ2(G), which relates to h(G) as follows.

Theorem 1.3 (Discrete Cheeger inequalities [Dod84, AM85]). Let G be a connected d-regular
graph. Then,

1

2
(d− λ2(G)) ≤ h(G) ≤

√
2d(d− λ2(G)).

There is a slightly stronger form of the upper bound, given by
√
d2 − λ2(G)2 due to [Moh89].

See [Kow19] for extensions of these inequalities to non-regular graphs.

Definition 1.4. Let η > 0 and d ∈ N. We say a graph G is a (d, η)-expander if it is d-regular and
h(G) ≥ η. A (d, η)-expander family is a sequence (Gn) of d-regular graphs such that |Gn| → ∞
and h(Gn) ≥ η.

An important use of expanders is in expander random walk sampling. Informally, a random
walk on an expander graph reaches any vertex in the graph very quickly. One application of this is
to reduce the amount of randomness needed to take an average of a function over the vertices, by
taking the average over a short random walk [AKS87]. See [Gil98] for the formal statement and a
full proof. Importantly for our context, in the random walk picture, a d-regular graph G gives rise
to a bistochastic matrix 1

d
A(G), which is the description which quantises most naturally.

1.1.2 Property (T) groups and expanders

A natural way to construct examples of regular graphs is from groups.

Definition 1.5. Let Γ be a finitely-generated group with a generating set S that is symmetric,
i.e. S−1 = S. The Cayley graph of Γ with respect to S is the graph C(Γ, S) = (Γ, E) with
E = {{g, gs}|g ∈ Γ, s ∈ S}.

Note that C(Γ, S) is finite if Γ is finite and is infinite for infinite finitely-generated groups. Also,
the Cayley graph can be defined with respect to an arbitrary set S, but if it is not a generating set,
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C(Γ, S) will not be connected. As will be noted below for quotient spaces, the notion of a Cayley
graph can be extended to sets on which Γ acts.

The Margulis construction of expanders [Mar73, Lub10] relies on a group with Kazhdan’s
property (T). We give only the definition for discrete groups here, as this is relevant to our situation.

Definition 1.6. Let Γ be a discrete group and π : Γ → B(H) be a unitary representation. For
a finite set S ⊆ Γ and ϵ > 0, we say that v ∈ H\{0} is an (S, ϵ)-invariant vector for π if
∥π(g)v − v∥ < ϵ∥v∥ for all g ∈ S.

We say Γ has property (T) if for every unitary representation π on a Hilbert space H such that
there exists an (S, ϵ)-invariant vector for all finite sets S ⊆ Γ and ϵ > 0, there exists an invariant
vector v ∈ H\{0}, that is π(g)v = v for all g ∈ Γ.

Property (T) is equivalent to the existence of a Kazhdan pair: a fixed pair (S, ϵ) with S a finite
symmetric generating set, and ϵ > 0 such that if a unitary representation has an (S, ϵ)-invariant
vector, then it has an invariant vector.

We now state the main result of Margulis.

Theorem 1.7 (Margulis [Mar73]). Let Γ be a discrete group with property (T), and let (S, ϵ) be a
Kazhdan pair for Γ such that S is a generating set. For any subgroup of finite index H ≤ Γ,

h(C(Γ/H, S)) ≥ ϵ2

4
.

In the above theorem, C(Γ/H, S) denotes the induced Schreier coset graph on the quotient
space Γ/H . The vertices are given by the cosets {gH : g ∈ Γ} = Γ/H , and the edges are given
by

E = {{gH, sgH} | s ∈ S} .

Hence, this construction gives rise to an (|S|, 4−1ϵ2)-expander, and if Γ has a sequence of sub-
groups with arbitrarily large finite index, then the construction gives an (|S|, 4−1ϵ2)-expander fam-
ily.

Example 1.8. The group Γ = SL3(Z) has property (T), and admits a Kazhdan pair (S, ϵ), where
S = {I ± eij|i ̸= j}, for eij the canonical matrix units, and ϵ = 1

42
√
3+860

> 0.001 [Sha99, Kas05].
Also, by taking the quotients SL3(Z) → SL3(Zp) for p prime we get an infinite sequence of
quotient groups of strictly increasing order. Thus, by the theorem above, we get a (12, 0.25×10−6)-
expander family.

In Section 4 we extend Margulis’ theorem to the setting of discrete quantum groups (cf. Theo-
rem 4.6).

1.2 Quantum expanders
In this section, we define what we mean by a quantum expander and recall the construction of Har-
row [Har07] that allows us to construct a quantum expander from a classical expander constructed
from a finite group, as in the previous section. In Section 2 we generalise this class of quantum
expanders to those arising from discrete quantum groups.
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1.2.1 Quantum bistochastic maps

The notion of a quantum expander was first introduced in [Has07a]. There are two different ways
that quantum expanders are represented in the literature: they can be represented as tuples of
operators, as in [Has07a, Has07b, LQW+22], or they can be represented as quantum channels, as
in [Har07]. We use the latter definition, as all of the spectral and expansion properties are most
readily phrased in this setting, and it naturally generalises the presentation of an expander graph as
a bistochastic matrix.

Definition 1.9. Let K be a finite-dimensional Hilbert space. We call a linear map Φ : B(K) → B(K)
a quantum bistochastic map if it is completely positive, trace-preserving, and unital. We say Φ is
undirected if it is hermitian with respect to the Hilbert-Schmidt inner product. We say Φ is con-
nected if its 1-eigenspace is one-dimensional.

Example 1.10 ([LQW+22]). Given a d-regular graph G = (V,E), there is a natural way to con-
struct a quantum bistochastic map from it. First, we construct a family of disjoint vertex cycle
covers for G inductively. Pick an arbitrary vertex cycle cover G1 of G, that is a 2-regular subgraph
that contains all the vertices of G. It must be composed of a disjoint union of cycles. Now, remove
the edges of G1 from G, giving a d − 2-regular graph. We repeat this process ⌊d/2⌋ times to get
disjoint cycle covers G1, . . . , G⌊d/2⌋. If d is even, there are no remaining edges. If d is odd, the re-
maining graph is 1-regular, consisting of a disjoint union of pairs of vertices with one edge between
them. Let this graph be G′. For each i, we can write the adjacency matrix A(Gi) = P2i−1 + P2i,
where P2i−1 is a permutation matrix corresponding to traversing the cycles in one direction, and
P2i = P ∗

2i−1 is the permutation matrix corresponding to travelling in the other direction. In the case
that d is odd, let Pd = A(G′): this is a hermitian permutation matrix. Now, we can define the map
ΦG : B(CV ) → B(CV ) by

ΦG(ρ) =
1

d

d∑
i=1

PiρP
∗
i

Note that this map is not uniquely determined by G but depends on the choice of permutations Pi,
which are not uniquely determined by the above procedure. By construction, ΦG is a completely
positive linear map, and as the permutation matrices are unitary, this is also a mixed-unitary chan-
nel, and hence both trace-preserving and unital. Thus, ΦG is a quantum bistochastic map.

Also, we see that the action of ΦG on the diagonal subspace D = span { |x⟩⟨x||x ∈ V } ∼= CV

is exactly the action of the normalised adjacency matrix 1
d
A(G) on CV (where CV is identified

with the diagonal subalgebra of B(CV )). In fact,

ΦG( |x⟩⟨x|) =
1

d

d∑
i=1

Pi |x⟩⟨x|P ∗
i =

1

d

∑
y∈N(x)

|y⟩⟨y| .

Next, we see that ΦG is undirected. For i = 1, . . . , ⌊d/2⌋, P ∗
2i−1 = P2i and if d is odd, P ∗

d = Pd, so
ΦG is hermitian.

However, note that ΦG may not be connected even if G is. For example, consider the graph

G with two vertices and one edge connecting them. Then, the adjacency matrix A(G) =
[
0 1
1 0

]
.

As such, ΦG(ρ) = A(G)ρA(G), whose 1-eigenspace is span{I, A(G)} and hence has dimension
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two. Nevertheless, as will be seen in the next subsection, if we see the Pi as corresponding to the
generators of a group in the left-regular representation, we can restrict to a block corresponding to
an irreducible representation and hence recover connectedess (and expansion).

We now come to a natural notion of expansion constant for quntum bistochastic maps intro-
duced in [Has07b]. See also [LQW+22].

Definition 1.11. The quantum (edge) expansion of a quantum bistochastic map Φ : B(K) → B(K)
is

hQ(Φ) = min

{
Tr[(I − Π)Φ(Π)]

min{Tr(Π),Tr(I − Π)}

∣∣∣∣Π ∈ B(K) projector, Π ̸= 0, I

}
.

Remark. One can make sense of the above definition of expansion in the setting of a finite von
Neumann algebra M equipped with a faithful normal tracial state τ : M → C, and a τ -preserving
completely positive map Φ :M →M . In this case, τ replaces the usual trace Tr in Definition 1.11.
The advantage of this more general setup is that it also captures the classical notion of expansion
for d-regular graphs G = (V,E), where one takes M = C(V ) (the algebra of functions on V ) and
τ the uniform probability on V . See the discussion in [Has07b] for more details.

Note that, as for a classical graph, there is nontrivial expansion only if the map is connected,
according to our definition of connectedness.

Lemma 1.12. If a quantum bistochastic map Φ is not connected, hQ(Φ) = 0.

Proof. First, note that I is an eigenvector of Φ with eigenvalue 1. If the dimension of the 1-
eigenspace is not one, there exists a hermitian matrix X such that Φ(X) = X , as Φ is hermitian-
preserving. Thus, taking a linear combination of I and X , there is a positive matrix P that is
not full rank such that Φ(P ) = P . Let Π be the projector onto the support of P . Then there
exist λ, µ > 0 such that λΠ ≤ P ≤ µΠ. As such, Φ(Π) ≤ 1

λ
Φ(P ) = 1

λ
P ≤ µ

λ
Π, giving that

Tr[(I − Π)Φ(Π)] ≤ µ
λ
Tr[(I − Π)Π] = 0 and hence hQ(Φ) = 0. ■

The notion of expansion above gives rise to a natural analogue of the Cheeger inequalities. As
seen classically in the previous section, there is a relationship between the second-largest eigen-
value λ2(Φ) and the quantum expansion.

Theorem 1.13 ([Has07b]). Let Φ : B(H) → B(H) be a connected undirected quantum bistochas-
tic map. Then,

1

2
(1− λ2(Φ)) ≤ hQ(Φ) ≤

√
2(1− λ2(Φ)).

Note that the statement of the above theorem differs by a factor of d from Theorem 1.3, the case
of classical graphs. This is because hQ(Φ) is defined for the quantum analogue of the bistochastic
matrix 1

d
A(G), and not for the adjacency matrix A(G).

In order to properly speak about expanders in the quantum setting, we must first have a good
notion of degree for a quantum bistochastic map. Let K be a finite dimensional Hilbert space and
Φ : B(K) → B(K) be a quantum channel. Let {Ki}di=1 ⊆ B(K) be a family of Kraus operators
for Φ. That is, Φ can be represented as

Φ(ρ) =
d∑
i=1

KiρK
∗
i .
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The minimal size 1 ≤ d ≤ (dimK)2 of a family of Kraus operators representing Φ is called the
Kraus rank of Φ. Note that the Kraus rank of Φ is the rank of the Choi matrix JΦ =

∑
ij eij ⊗

Φ(eij) ∈ B(K)⊗B(K). Following [Har07, LY23, LQW+22], we make the following definition.

Definition 1.14. The degree of quantum bistochastic map Φ : B(K) → B(K), deg Φ, is defined
to be the Kraus rank of Φ.

Note that for classical d-regular graphs G, the somewhat complicated extension of 1
d
A(G) to a

quantum bistochastic map ΦG in Example 1.10 has the nice property that it is degree-preserving.
On the other hand, the “canonical” extension of 1

d
A(G) to a different quantum bistochastic map

Φ̃G by using the Kraus operators {d−1
2 eij | i, j ∈ E} is not degree-preserving.

With the notion of degree in hand, we can finally define quantum expanders (also called quan-
tum edge expanders).

Definition 1.15. Let η > 0 and d ∈ N. We say a quantum bistochastic map Φ is a (d, η)-expander
if deg Φ = d and hQ(Φ) ≥ η. A (constant degree d) (d, η)-expander family is a sequence Φn :
B(Kn) → B(Kn) of(d, η)-expanders such that dimKn → ∞.

1.2.2 Quantum adjacency matrices

The above definition of degree for quantum bistochastic maps may seem somewhat unnatural,
given that it assigns a global degree d to every quantum bistochastic map Φ (even those coming
from non-regular graphs). Instead, one might try to restrict to a special class of quantum bistochas-
tic maps Φ which have the property that there exists d > 0 such that dΦ is some sort of quantum
analogue of a “{0, 1}-matrix”. This idea has been formalized in [MRV18], and leads to the notion
of a quantum graph and a quantum adjacency matrix. See also [Daw24, Was23, CW22] for a
treatment that is closer to ours below. In the following definition, we restrict to what are called
tracial quantum graphs, as they are what will appear in all our examples.

Definition 1.16. [MRV18] Let M =
⊕

aMna be a finite-dimensional von Neumann algebra, let
ψ :M → C be the faithful trace given by ψ =

∑
a naTrMna

(·), and let m :M ⊗M →M denote
the multiplication map. A completely positive map A : M → M is called a quantum adjacency
matrix if it satisfies

m(A⊗ A)m∗ = A,

where m∗ : M → M ⊗M denotes the Hilbert space adjoint of m induced by the Hilbert space
structures coming from the traces ψ and ψ ⊗ ψ. The pair G = (M,A) is called a quantum graph.
We say that a quantum graph G = (M,A) is undirected if A is hermitian with respect to the
canonical Hilbert space structure on M induced by ψ.

When M is abelian, the above notions reduce to the usual ones for graphs and adjacency
matrices. See the discussion in [MRV18, Daw24] for example

For quantum graphs G = (M,A), the notion of regularity is quite natural to define.

Definition 1.17. An undirected quantum graph G = (M,A) is d-regular if A1 = A∗1 = d1 for
some d > 0.
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Remark. In [Was23] the definition of quantum graph is extended to the setting of infinite-dimensional
M being given by infinite direct products of matrix algebras. Here the technical issue is that m∗

is unbounded, so care must be taken in interpreting the definition of a quantum adjacency matrix.
The theory of infinite quantum graphs is important and quite natural as it naturally models the
notion of a Cayley graph for an infinite discrete quantum group [Was23]. This notion of quantum
Cayley graph will be introduced and used in Section 4.

Example 1.18. Consider the map ΦG constructed in Example 1.10 from a d-regular graph. Set
A = dΦG. Then the pair (B(CV ), A) is a d-regular quantum graph. Indeed, using m∗( |u⟩⟨v|) =
|V |−1

∑
w∈V |u⟩⟨w| ⊗ |w⟩⟨v|, we have

m ◦ (A⊗ A) ◦m∗( |u⟩⟨v|) = |V |−1
∑
w,i,j

Pi |u⟩⟨w|P ∗
i Pj |w⟩⟨v|P ∗

j

= |V |−1
∑
i,j

Tr(P ∗
i Pj)Pi |u⟩⟨v|P ∗

j

= dΦG( |u⟩⟨v|)
= A( |u⟩⟨v|),

as Tr(P ∗
i Pj) = |V |δi,j since the {Pi}i are disjoint permutations.

Note that if G = (M,A) is a d-regular quantum graph, then Φ = 1
d
A will define a quantum

bistochastic map on M . When M = B(K) is a full matrix algebra, one can ask whether the two
notions of degree we have introduced agree. Fortunately they do, and this is the next result.

Proposition 1.19. A completely positive map A : B(K) → B(K) is a quantum adjacency matrix
if and only if the normalised Choi matrix

PA :=
1

dimK
∑
ij

eij ⊗ A(eij)

is a projection. If (B(K), A) is moreover a d-regular quantum graph, then

d = rank(PA) = the Kraus rank of A.

Proof. The first claim is a well-known fact about quantum graphs on full matrix algebras. See
for example [CW22, Lemma 1.6 and Proposition 1.7]. The second claim is just a computation.
Indeed, if A1 = d1, then

Kraus rank of A = rank(PA)
= (Tr⊗Tr)(PA)

=
1

dimK
∑
i

Tr(A(eii))

= d ■

In particular, for regular quantum graphs (B(K), A) over full matrix algebras, the degree d is an
integer between 1 and (dimK)2, and it is easy to see that every value of d in this range is attained,
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for example by taking Φ to be the mixed-unitary channel corresponding to an equal mixture of d
orthogonal unitaries.

It is important to note that for general quantum graphs, G = (M,A) there does not seem
to exists a definition of the expansion constant hQ(G) (although a natural one is implicit in our
discussion above - see the Remark following Definition 1.11.) More importantly, a version of the
Cheeger inequality Theorem 1.13 beyond the case of matricial quantum graphs (i.e., those with
M = B(K) - which are already covered by Theorem 1.13) does not exist. A general version
of the Cheeger inequality for (even non-tracial) quantum graphs has recently been announced in
forthcoming work of Junk [Jun24]. In any case, even without expansion constants and Cheeger
inequalities, we can still talk about spectral gap for the bistochastic map Φ = d−1A associated to
a d-regular quantum G = (M,A), and use this spectral gap to define (d, η)-expanders in this case.
This is what we shall do in Section 4, where we consider quantum analogues of Schreier graphs
associated to quantum Cayley graphs of discrete quantum groups.

1.2.3 Quantum expanders from classical expanders

In this final section, we recall the construction of a quantum expander based on a finite group due
to Harrow [Har07].

Proposition 1.20 ([Har07]). Let Γ be a finite group with symmetric generating set S, and let
π : Γ → U(H) be a nontrivial irreducible unitary representation. Then, the quantum channel

Φ(ρ) =
1

|S|
∑
g∈S

π(g)ρπ(g)∗

is a connected undirected quantum bistochastic map such that λ2(Φ) ≤ 1
|S|λ2(C(Γ, S)).

We outline the idea of the proof below, as it contains many of the key conceptual ideas that
will be used throughout the rest of the paper. Note that the adjacency matrix of the Cayley graph
C(Γ, S), when viewed as an operator on the Hilbert space ℓ2(Γ), is given by

∑
g∈S λ(g), where λ

is the left-regular representation. The left-regular representation decomposes as a direct sum of all
irreducible representations with multiplicity given by the dimension. Hence the trivial represen-
tation g 7→ 1 corresponds to the one-dimensional 1-eigenspace of the adjacency matrix, and for
any non-trivial unitary irreducible representation ρ, the largest eigenvalue of

∑
g∈S ρ(g) is upper-

bounded by λ2(C(Γ, S)). Then, the matrix representation of Φ (viewed as a Hilbert space operator
on B(H) ∼= H ⊗ H̄), is given by 1

|S|
∑

g∈S π(g) ⊗ π(g). Representation theory then tells is that
this operator can be decomposed as a direct sum of blocks of the form

∑
g∈S ρ(g) for irreducible ρ,

and there is only a single one-dimensional block in this decomposition corresponding to the trivial
representation. Hence, we get the bound on the second-largest eigenvalue.

1.3 Quantum groups
This section recalls some well known facts about quantum groups based on notes by Maes and Van
Daele [MvD98], adjusting the notation to be more in line with recent papers [Fim10, Was23]. See
also the book [NT13] for many of the results stated below without proof. We will focus on compact
quantum groups, discrete quantum groups, the duality between them and their representations, and
end the section with the definition by Fima of property (T) for discrete quantum groups [Fim10].
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1.3.1 Compact quantum groups

Definition 1.21. A compact quantum group G is a pair (A,∆) of a unital C*-algebra A and a
∗-homomorphism ∆ : A→ A⊗min A, called the comultiplication, satisfying

i. (id⊗∆) ◦∆ = (∆⊗ id) ◦∆,

ii. The sets (A⊗ 1)∆(A) and (1⊗ A)∆(A) are linearly dense in A⊗min A.

In the following, the algebra A will be denoted by C(G) as it generalises the continuous func-
tions on a compact group G. In this classical case, ∆ : C(G) → C(G) ⊗min C(G) = C(G × G)
is given by ∆f(s, t) = f(st) for f ∈ C(G) and s, t ∈ G. Then properties (i) and (ii) for ∆ are
just reformulations of the associativity and left/right cancellation properties (respectively), which
completely characterise continuous group laws on compact Hausdorff spaces.

Any compact quantum group admits an analogue of the unique Haar probability measure. See
for example [NT13, Theorem 1.2.1].

Theorem 1.22. For any compact quantum group G, there exists a unique state h : C(G) → C,
called the Haar state, satisfying

(id⊗h)(∆(a)) = h(a)1 = (h⊗ id)(∆(a))

for all a ∈ C(G).

Two notions of representation will play a role in this work. The first is the usual notion of a
(continuous) unitary representation derived from the theory of locally compact groups. The second
one corresponds to ordinary ∗-representations of the C*-algebra C(G). These two notions of
representation are dual to each other in the sense of Pontryagin duality, as formulated in Proposition
1.27. Below we will make use of the leg numbering notation, and denote by B0(H) the C*-algebra
of compact operators on a Hilbert space H.

Definition 1.23. A unitary representation of G on a Hilbert space H is a unitary element u ∈
M(B0(H)⊗ C(G)) such that

(id⊗∆)(u) = u12u13,

where M(A) denotes the C*-algebra of multipliers of a given C*-algebra A. A closed subspace
K ⊂ H is called invariant if (p⊗ 1)u(p⊗ 1) = u(p⊗ 1), where p is the orthogonal projection onto
K. A representation u is called irreducible if the only invariant closed subspaces are {0} and H.

The next definition is not standard, but it is a useful concept nontheless. Note that transpose
maps with respect to different bases are related by unitary conjugation, so the definition is well-
defined.

Definition 1.24. Let T : B(H) → B(H) be the transpose map with respect to an orthonormal
basis. A unitary representation u of a compact quantum group G on a finite-dimensional Hilbert
space H is called a bi-unitary representation if (T ⊗ id)(u) is also unitary.

As with groups, there is a concept of intertwiners for compact quantum groups and a version
of Schur’s lemma (Lemma 1.26).
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Definition 1.25. Let v, w be unitary representations of a compact quantum group G on H1 and H2,
respectively. An intertwiner between v and w is an element S ∈ B(H1,H2) such that (S ⊗ 1)v =
w(S ⊗ 1). Two unitary representations are called unitarily equivalent if there exists a intertwiner
between them that is unitary. The space of intertwiners from u to v is denoted Mor(u, v).

Notation. Irred(G) denotes the equivalence classes of irreducible (unitary) representations of G.
For any x ∈ Irred(G) we fix a representative ux on Hilbert space Hx.

Lemma 1.26. A unitary representation u is irreducible if and only if all intertwiners between u
and itself are scalar multiples of the identity.

Denote by O(G) the vector space spanned by the matrix coefficients of the irreducible repre-
sentations of G, i.e.

O(G) = span{uxξ,η = (ωξ,η ⊗ id)ux : x ∈ Irred(G), ξ, η ∈ Hx} ⊆ C(G),

where ωξ,η(a) = ⟨ξ|a|η⟩ for a ∈ B(Hx). O(G) is a dense unital ∗-algebra of C(G), and the
comultiplication ∆ restricts to a unital ∗-homomorphism ∆ : O(G) → O(G) ⊗ O(G), turning
O(G) into a Hopf ∗-algebra. The fact that O(G) is a ∗-algebra follows from the existence of the
tensor product, contragredient, and complete reducibility of finite dimensional representations. It
turns out that O(G) is the unique dense Hopf ∗-subalgebra of C(G).

Since O(G) is spanned by coefficients of unitary operators, it admits a universal C*-completion,
denoted by C(Gmax). The comultiplication ∆ extends continuously to a comultiplication ∆max

on C(Gmax), making the pair (C(Gmax),∆max) a compact quantum group, called the maximal
version of G. The Haar measure h restricts to a faithful state on O(G), and the resulting C*-
completion of O(G) obtained by performing the GNS construction with respect to h is denoted by
C(Gmin). The comultiplication ∆ on O(G) extends continuously to a comulitplication ∆min on
C(Gmin), and the resulting compact quantum group is called the minimal (or reduced) version of
G.

For any initial C*-realization (C(G),∆) of a compact quantum group G, one has quotient
maps

C(Gmax) → C(G) → C(Gmin)

extending the identity map on O(G) and intertwining the comultiplications. Since O(G) is
uniquely determined by any of these C*-completions and conversely any of these C*-completions
can be recovered from O(G), they are all just different C*-algebraic manifestations of a single
compact quantum group structure G. This is analogous to the fact that a discrete group Γ can be
encoded C*-algebraically in more than one way (e.g. via its full C*-algebra C∗(Γ), or its reduced
C*-algebra C∗

r (Γ)).

1.3.2 Discrete quantum groups, duality, and property (T)

Discrete quantum groups can be defined axiomatically using the language of multiplier Hopf ∗-
algebras [VD96], or equivalently as structures dual to compact quantum groups. We follow the
latter approach, as it best suits our needs.

Let G be a compact quantum group. Associated to G, we define the C*-algebra

C0(Ĝ) =

c0⊕
x∈Irred(G)

B(Hx)

10



and the von Neumann algebra

ℓ∞(Ĝ) =
ℓ∞∏

x∈Irred(G)

B(Hx)

For x ∈ Irred(G), the minimal central projection associated to B(Hx) ⊂ C0(Ĝ) ⊂ ℓ∞(Ĝ)
is denoted by px. More generally, for E ⊆ Irred(G), we write pE =

∑
x∈E px, with the sum

converging σ-weakly in ℓ∞(Ĝ). We also denote by Trx the canonical un-normalised trace on
B(Hx), dimx = Trx(1) = dimHx, and dimE =

∑
x∈E dimx for any subset E ⊆ Irred(G).

At times, we will also work with C00(Ĝ) ⊂ C0(Ĝ), the dense ∗-subalgebra of finitely supported
elements.

There exists a normal injective co-associative ∗-homomorphism ∆̂ : ℓ∞(Ĝ) → ℓ∞(Ĝ)⊗ℓ∞(Ĝ)
given by ∆̂(apx)S = Sapx for all a ∈ ℓ∞(Ĝ), S ∈ Mor(ux, uy ⊗ uz), x, y, z ∈ Irred(G). Equiva-
lently, ∆̂ can be defined in terms of the unitary

V =
⊕

x∈Irred(G)

ux ∈M(C0(Ĝ)⊗ C(Gmax)).

Then ∆̂ is uniquely determined by the identity

(∆̂⊗ id)V = V13V23.

Although we will have little need for them here, we mention that ℓ∞(Ĝ) comes equipped with left
and right invariant weights, ĥL and ĥR, satisfying the formal identities

(ĥR ⊗ id)∆̂(a) = ĥR(a)1 & (id⊗ĥL)∆̂(a) = ĥL(a)1 (a ∈ ℓ∞(Ĝ)).

The quadruple Γ = Ĝ = (ℓ∞(Ĝ), ∆̂, ĥL, ĥR) is the discrete quantum group dual to G. We also
denote by ℓ1(Ĝ) = (ℓ∞(Ĝ))∗, the predual of ℓ∞(Ĝ). ℓ1(Ĝ) is a completely contractive Banach
algebra with convolution product given by

ψ ⋆ φ = (ψ ⊗ φ) ◦ ∆̂ (ψ, φ ∈ ℓ1(Ĝ)).

A unitary representation of Ĝ on a Hilbert space H is a unitary U ∈M(C0(Ĝ)⊗B0(H)) such
that

(∆̂⊗ id)(U) = U13U23.

By faithfully representing C(Gmax) on a Hilbert space H, one can regard the unitary V defined
above is a special example of a unitary representation of Ĝ. V is a multiplicative unitary in the
sense of [BS93].

For a discrete quantum group Ĝ, one can also define co-unit and (generally unbounded) an-
tipode maps. The co-unit is the normal state ϵ̂ : ℓ∞(Ĝ) → C given by ϵ̂(x) = xp0, where p0 is the
rank one central projection corresponding to the trivial representation of G. For our purposes, it
suffices to densely define the antipode Ŝ : ℓ∞(Ĝ) → ℓ∞(Ĝ) by (Ŝ ⊗ id)U = U∗ for any unitary
representation of Ĝ.

As one would expect, unitary representations of a discrete quantum group Ĝ are in one-to-one
correspondence with ∗-representations of the C*-algebra of the dual compact quantum group G,
and vice versa. This duality is encoded precisely in terms of the multiplicative unitary V .

11



Proposition 1.27. For any unitary representationU of Ĝ on H there exists a unique ∗-homomorphism
π : C(Gmax) → H such that (id⊗π)(V) = U . Conversely, for any unitary representation u of G
on H there exists a unique ∗-homomorphism ρ : ℓ∞(Ĝ) → B(H) such that (ρ⊗ id)(V) = u.

We conclude this recap of quantum groups by giving the definitions of property (T) and Kazh-
dan pairs for discrete quantum groups, which were introduced by Fima [Fim10]. For a unitary
representation U of a discrete quantum group Ĝ on H, we write Ux for Upx as element of
B(Hx) ⊗ B(H). Below, in the quantum case, we deviate slightly from our previous notation
(S, ϵ) for Kazhdan pairs, and instead write (E, ϵ). This is to avoid possible confusion with the
antipodes S and Ŝ.

Definition 1.28. Let Ĝ be a discrete quantum group and U a unitary representation of Ĝ on H.

• We say that U has an invariant vector if there exists a unit vector ξ ∈ H such that for all
x ∈ Irred(G) and η ∈ Hx, we have that

Ux(η ⊗ ξ) = η ⊗ ξ.

• Let E ⊂ Irred(G) be a finite subset and ϵ > 0. We say that U has an (E, ϵ)-invariant vector
if there exists a unit vector ξ ∈ H such that for all x ∈ E and η ∈ Hx we have that

∥Uxη ⊗ ξ − η ⊗ ξ∥ < ϵ∥η∥.

• We say that U has almost invariant vectors if, for all finite E ⊂ Irred(G) and all ϵ > 0, U
has an (E, ϵ)-invariant vector.

• We say that Ĝ has property (T) if every unitary representation of Ĝ having almost invariant
vectors has a non-zero invariant vector.

• A pair (E, ϵ), where E ⊂ Irred(G) is finite and ϵ > 0 is called a Kazhdan pair if every
unitary representation of Ĝ having an (E, ϵ)-invariant vector also has a non-zero invariant
vector.

As shown in [Fim10], discrete quantum groups with property (T) are unimodular and finitely
generated. Here unimodular means that the Haar measure h on G is a tracial state. Equivalently,
unimodularity is characterised at the level of Ĝ by the equality of the left and right Haar weights.
In this case, the Haar weight ĥ = ĥL = ĥR is the semifinite trace given by

ĥ(apx) = dim xTrx(apx) (x ∈ Irred(G), a ∈ ℓ∞(Ĝ)).

A discrete quantum group Ĝ is unimodular if and only if O(G) is finitely generated as a ∗-algebra.
Equivalently, there exists a finite subset E ⊂ Irred(G) containing the trivial representation such
that any finite dimensional unitary representation of G is generated by E by taking direct sums,
tensor products and subrepresentations. Such a set E called a generating set for Ĝ.

As is in the case of ordinary discrete groups, discrete quantum groups with property (T) always
admit a Kazhdan pair.

Proposition 1.29 ([Fim10]). A discrete quantum group Ĝ has property (T) if and only if there
exists a finite generating set E ⊂ Irred(G) and an ϵ > 0 such that (E, ϵ) is a Kazhdan pair.
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A consequence of unimodularity for property (T) discrete quantum groups is the bi-unitarity of
all finite-dimensional unitary representations of the compact dual quantum group.

Proposition 1.30. Let G be a compact quantum group such that Ĝ has property (T). Then all
unitary representations of G are bi-unitary.

Proof. Let u =
∑

ij eij ⊗ uij ∈ Mn(C)⊗O(G) be a finite dimensional unitary representation of
G, and let T be the transpose map on Mn(C). Put v = (T ⊗ id)(u∗) =

∑
ij eij ⊗ u∗ij . Then v is a

representation of G (the contragredient of u) and v is clearly unitary iff (T ⊗ id)(u) is unitary.
On the other hand, by the proof of [MvD98, Proposition 6.4], R1/2vR−1/2 is unitary, where

R = (id⊗h)(v∗v). But using the fact that the Haar measure h is tracial, we obtain

R = (id⊗h)(v∗v) =
∑
ijk

eij ⊗ h(ukiu
∗
kj) =

∑
ijk

eij ⊗ h(u∗kjuki) = (T ⊗ h)(u∗u) = 1. ■

1.4 Quantum channels from quantum groups
As in the case of groups discussed in Section 1, quantum groups and their representations naturally
give rise to interesting quantum channels. There are many ways in which one can construct quan-
tum channels of various flavours from these more general algebraic structures – see for example
[Ver22, BCLY20, CN13, LY22]. Here we will just introduce the natural analogue of the mixed
unitary channels associated to representations of finite or discrete groups. We emphasise, however,
that in this more general setup, the resulting quantum channels are not necessarily mixed unitary.
Below, we present two constructions of quantum channels, from compact and discrete quantum
groups, and show that due to the duality these constructions are equivalent. Ultimately, we see that
the duality allows two perspectives on a class of channels, which can become useful when studying
examples.

We first begin with the construction of quantum channels from compact quantum groups.

Proposition 1.31. Let G be a compact quantum group, u a finite-dimensional unitary representa-
tion of G on a Hilbert space H, π a ∗-representation of C(Gmax) on a finite-dimensional Hilbert
space K, and ϕ a state on B(H). Then Φ = Φu,ϕ,π : B(K) → B(K), given by

Φ(x) = (ϕ⊗ id)
(
(id⊗π)(u)(1⊗ x)(id⊗π)(u∗)

)
,

is a normal unital completely positive map. If u is a bi-unitary (i.e. if G is of Kac type ⇐⇒ Ĝ is
unimodular), then Φ is trace-preserving.

Proof. The map Φ is a composition of completely positive maps, so it is completely positive. Next,

Φ(1) = (ϕ⊗ id)
(
(id⊗π)(u)(1⊗ 1)(id⊗π)(u∗)

)
= (ϕ⊗ id)

(
(id⊗π)(uu∗)

)
= 1,

so Φ is unital. If u is bi-unitary, write u as u =
∑

ij eij ⊗ uij . Then

Tr(Φ(x)) =
∑
ijkl

ϕ(eijelk) Tr(π(uij)xπ(u
∗
kl)) =

∑
ijk

ϕ(eik) Tr(xπ(ukju
∗
ij)) =

∑
i

ϕ(eii) Tr(x),

showing that Φ is trace-preserving, since ϕ is a state. ■
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One can equivalently describe the above class of ucp maps in terms of the dual discrete quantum
group. Let Γ = Ĝ be a discrete quantum group, U ∈M(C0(Γ)⊗B0(K)) a unitary representation
of Γ on a finite dimensional Hilbert space K, and ψ ∈ ℓ1(Γ) a normal state. Then it is easy to see
that Ψ = Ψψ,U : B(K) → B(K), given by

Ψ(x) = (ψ ⊗ id)(U(1⊗ x)U∗),

is a normal unital completely positive map.
In the next proposition, we will need the notion of a finitely supported element ψ ∈ ℓ1(Ĝ):

There exists a finite rank central projection p ∈ C00(Ĝ) such that ψ(xp) = ψ(x) for all x ∈ ℓ∞(Ĝ)

Proposition 1.32. Let G be a compact quantum group. For every map Φ = Φu,ϕ,π arising in
Proposition 1.31, there exists a finitely supported state ψ ∈ ℓ1(Ĝ) and a unitary representation U
of Ĝ such that Φ = Ψψ,U . Conversely, given a finitely supported state ψ ∈ ℓ1(Ĝ) and a finite-
dimensional unitary representation U of Ĝ on K, then the UCP map Ψψ,U : B(K) → B(K) is
given by Ψψ,U = Φu,ϕ,π for u, ϕ, π as in Proposition 1.31.

Proof. Let u, π, ϕ, and Φ be as in Proposition 1.31. By Proposition 1.27, U = (id⊗π)(V) is a
unitary representation of Ĝ and there exists a (normal) *-homomorphism ρ : ℓ∞(Ĝ) → B(H)
such that (ρ⊗ id)(V) = u. Now ψ = ϕ ◦ ρ is a normal state in ℓ1(Ĝ) and we find

Φ(x) = (ϕ⊗ id)
(
(ρ⊗ π)(V)(1⊗ x)(ρ⊗ π)(V∗)

)
= (ψ ⊗ id)(U(1⊗ x)U∗) = Ψ(x). ■

Note that ψ finitely supported because it is supported on the central summands of ℓ∞(Ĝ) associated
to the irreducible subrepresentations of u.

Conversely, if we start with a pair {ψ,U} as in the statement of the proposition, we obtain a
unique morphism π : C(Gmax) → B(K) from U via Pontryagin duality, and we obtain a pair
{ϕ, u} from the state ψ via the GNS representation. Note that the finite support condition on ψ
endures that u is a finite dimensional representation of G.

We end this section with a description of the fixed points of the ucp maps Ψψ,U for the cases that
will concern us. To do this, we recall a well-known result about fixed points of quantum channels.

Theorem 1.33. [Wat15, Theorem 4.25] Let Φ : MN → MN be a unital CPTP map with Kraus
decomposition Φ(ρ) =

∑
iKiρK

∗
i . The set of fixed points of Φ is the commutant of the Kraus

operators {Ki}′.

Note that this result is independent of the choice of Kraus representation.
Now let Ĝ be a discrete quantum group with finite generating set E ⊂ Irred(G), and let

U ∈ M(C0(Ĝ) ⊗ B0(K)) a finite-dimensional representation. Let pE =
∑

x∈E px ∈ C00(Ĝ) be
the largest central projection supported on E, and let ψ ∈ ℓ1(Ĝ) be a state supported on E. That
is, ψ(pEx) = ψ(x) for all x ∈ ℓ∞(Ĝ).

In the following two results, we consider the associated normal UCP map Ψψ,U : B(K) →
B(K). This map should be interpreted as the quantum group generalization of the mixed unitary
channel

ρ 7→
∑
s∈E

ψ(s)π(s)ρπ(s)∗, (1)

where ψ is some probability density supported on a generating set E of a group Γ.
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Theorem 1.34. Assume that the restriction of ψ to pEℓ∞(Ĝ)pE =
⊕

s∈E B(Hs) is faithful and
that Ψψ,U is trace-preserving (which holds automatically if Ĝ is unimodular). Then ρ ∈ B(K) is a
fixed point of Ψψ,U if and only if it is an intertwiner of U .

Proof. Let U s ∈ B(Hs)⊗ B(K) denote the sth component of U for s ∈ Irred(G). Also let ψs be
the restriction of ψ to B(Hs). Choosing appropriate bases of matrix units esij of B(Hs), we may
assume that the density of ψs is diagonal and so ψs(eij) = λi,sδi,j > 0. (These coefficients are all
non-zero by the faithfulness assumption.) Then we compute

Ψψ,U(ρ) =
∑
s∈E

∑
a,b,c

ψs(e
s
ab)U

s
acρ(U

s
bc)

∗

=
∑
s∈E

∑
a,c

λa,sU
s
acρ(U

s
ac)

∗.

By Theorem 1.33, ρ is a fixed point of Ψψ,U if and only if
√
λa,sU

s
acρ = ρ

√
λa,sU

s
ac for all s ∈ E

and 1 ≤ a, c ≤ dimHs. As E is generating, we conclude that (1⊗ ρ)U = U(1⊗ ρ). The reverse
implication is immediate. ■

An immediate consequence of interest in the next section is:

Corollary 1.35. If U is an irreducible finite dimensional representation of a unimodular discrete
quantum group Ĝ, the eigenvalue 1 of the unital channel Ψψ,U has multiplicity 1.

2 Quantum expanders from property (T) quantum groups

Throughout this section we fix a discrete quantum group Ĝ with property (T), along with a fixed
Kazhdan pair (E, ϵ) for Ĝ. We furthermore can and will always take E to be symmetric. That
is, E = Ē, where Ē = {x̄ : x ∈ E} and x̄ denotes the conjugate representation associated to
x ∈ Irred(G). In the following proposition, we let HE =

⊕
x∈E Hx and consider the natural

embedding pEℓ
∞(Ĝ)pE ⊂ B(HE). Let ψE be the normal tracial state on ℓ∞(Ĝ) defined by

ψE(a) = 1
dimHE

TrB(HE)(apE). Note that ψE is nothing other than the normalised trace on HE ,
lifted to ℓ∞(Ĝ) in the obvious way. We are interested in studying the expansion properties of the
channel

ΨψE ,U : B(K) → B(K), ΨψE ,U(ρ) = (ψE ⊗ id)(U(1⊗ ρ)U∗) (ρ ∈ B(K)), (2)

where U ∈M(C0(Ĝ)⊗B0(K)) is a finite-dimensional irreducible unitary representation of Ĝ on
K.

We begin with a definition and a couple of observations.

Definition 2.1. A normal linear functional ψ ∈ ℓ1(Ĝ) is called symmetric if

ψ ◦ Ŝ = ψ.

Lemma 2.2. Let ψ ∈ ℓ1(Ĝ) be a symmetric state. For any unitary representation V ∈M(C0(Ĝ)⊗
B0(K)), the map X = (ψ ⊗ id)V ∈ B(K) is self-adjoint.
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Proof. Note that Ŝ is (densely) defined by the equations (Ŝ ⊗ id)V = V ∗ for all unitary represen-
tations of Ĝ. Because ψ is positive, we have

X∗ = ((ψ ⊗ id)V )∗ = (ψ ⊗ id)(V ∗) = (ψ ◦ Ŝ ⊗ id)V = (ψ ⊗ id)V = X. ■

Note that the above lemma applies to the case where ψ = ψE , since ψE ◦ Ŝ = ψĒ = ψE . Here
we use the symmetry condition E = Ē

Lemma 2.3. Let H be a finite dimensional Hilbert space and 0 < ϵ < 1. Suppose A ∈ B(H)
satisfies ∥A∥ ≤ 1 and there exists a unit vector η ∈ H such that Re ⟨η|Aη⟩ ≤ 1− ϵ. Then,

Re tr(A) ≤ 1− ϵ

dimH
.

Proof. Write d = dimH. Extend η to an orthonormal basis η1 = η, η2, . . . , ηd for H. Then,

Re tr(A) =
1

d
Re(( ⟨η1|A|η1⟩+ . . .+ ⟨ηd|A|ηd⟩)) ≤

1

d
(1− ϵ+ d− 1) = 1− ϵ

d
. ■

We now come to an estimate which will lead to the main result of the section.

Proposition 2.4. Let V ∈ M(C0(Ĝ) ⊗ B0(K)) be an unitary representation of Ĝ on a Hilbert
space K. Let K0 ⊂ K be the closed invariant subspace of invariant vectors for V . Then, for any
unit vector ξ ∈ K⊥

0 ,

Re ⟨ξ|(ψE ⊗ id)(V )|ξ⟩ ≤ 1− ϵ2

2 dimHE

.

Proof. Consider the restriction of V to K⊥
0 , on which it remains a representation of Ĝ, but now

without invariant vectors. Fix a unit vector ξ ∈ K⊥
0 . Since (E, ϵ) is a Kazhdan pair for Ĝ, there

exists some unit vector η ∈ HE such that ∥V η ⊗ ξ − η ⊗ ξ∥ ≥ ϵ. This gives

ϵ2 ≤ ∥V η ⊗ ξ − η ⊗ ξ∥2 = 2− 2Re⟨η ⊗ ξ|V |η ⊗ ξ⟩ ⇐⇒ Re⟨η ⊗ ξ|V |η ⊗ ξ⟩ ≤ 1− ϵ2

2

Applying Lemma 2.3 to the contraction A = (id⊗ωξ,ξ)V ∈ B(HE) and noting that ψE is the
normalised trace on HE , we obtain the result. ■

Applying a Frobenius reciprocity argument, we can use Proposition 2.4 to immediately deduce
the spectral gap of the channels of interest ΨψE ,U .

Theorem 2.5. Let U ∈ M(C0(Ĝ) ⊗ B0(K)) be a finite-dimensional irreducible representation.
Then

λ2(ΨψE ,U) ≤ 1− ϵ2

2 dimHE

.

Proof. Consider the unitary representation V = U ⊗ Ū on the Hilbert space K ⊗ K̄. Here Ū is
the conjugate representation of U acting on K̄ associated to the discrete quantum group (see for
example [DSV17, Definition 1.2] for the construction of U Eric: Ū?). Under the canonical unitary
isomorphism of Hilbert spaces B(K) ∼= K⊗K̄; |ξ⟩⟨η| 7→ ξ⊗ η̄ (where B(K) is equipped with the
usual trace-inner product), we have that ΨψE ,U is identified with the self-adjoint map

Y = (ψE ⊗ id)(V ) ∈ B(K ⊗ K̄).
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Now, by self-adjointness of ΨψE ,U (or, equivalently, Y ), we have

λ2(ΨψE ,U) = sup
{
ReTr(X∗ΨψE ,U(X))

}
,

where the supremum is taken over X ∈ B(K) such that ∥X∥2 = 1 and X is orthogonal to the
1 eigenspace of ΨψE ,U . By Corollary 1.35, this eigenspace is exactly C1, and corresponds to the
one-dimensional subspace (K ⊗ K̄)0 of invariant vectors for V . Thus, we may apply Proposition
2.4 to deduce

ReTr(X∗Ψψ,U(X)) ≤ 1− ϵ2

2 dimHE

,

for all such X . ■

Applying Theorem 1.13, we immediately obtain the following

Corollary 2.6. The channels ΨψE ,U considered in Theorem 2.5 have quantum edge expansion

hQ(ΨψE ,U) ≥
ϵ2

4 dimHE

in the sense of [LQW+22].

Note that the lower bound on the expansion constant is independent of the size of the Hilbert
space K on which the representation U acts. Moreover, the channels ΨψE ,U have degree uniformly
bounded by |E| :=

∑
x∈E(dimHx)

2. Indeed, this follows from the fact that, after choosing appro-
priate bases, ΨψE ,U has the explicit Kraus form

ΨψE ,U(ρ) =
1

dimHE

∑
s∈E

∑
1≤i,j≤dimx

Ux
ijρ(U

x
ij)

∗ (ρ ∈ B(K)),

where Ux = (Ux
ij) ∈ B(Hx)⊗B(K) is the block of U associated to a given x ∈ Irred(G).

In particular, the problem of construction of explicit bounded degree expander families reduces
to that of finding an increasing family of finite-dimensional irreducible representations of Ĝ.

Theorem 2.7. Let Ĝ be an infinite property (T) discrete quantum group with symmetric Kazhdan
pair (E, ϵ). Let (Ui)i∈N be a sequence of finite-dimensional irreducible unitary representations
on Hilbert spaces Ki with limi dimKi = ∞. Then the family of bistochastic quantum channels
(Ψi)i∈N, with Ψi = ΨψE ,Ui

forms a bounded degree quantum expander family with quantum edge
expansion

inf
i∈N

hQ(Ψi) ≥
ϵ2

4 dimHE

.

The conditions of Theorem 2.7 are of course immediately satisfied if Ĝ is residually finite in
the sense of [BBCW20], that is, when O(G) is residually finite dimensional as a ∗-algebra.

Corollary 2.8. Let Ĝ be an infinite discrete quantum group with property (T). If Ĝ is residually
finite, then Ĝ gives rise to a bounded degree family of quantum expanders.
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Remark. Note that in the presence of property (T), the results of [BBCW20] show that resid-
ual finiteness of Ĝ is in fact equivalent to Ĝ having the a priori weaker Kirchberg Factorization
Property. In terms of the Haar state on G, this latter condition is equivalent to the Haar state
h : C(Gmax) → C being a so-called amenable trace. At this time, it is not clear to us whether
checking for the Factorization Property is any easier than directly verifying residual finiteness.
In the next section, we will explore examine some natural examples quantum groups with prop-
erty (T), arising from compact bicrossed products of residually finite discrete groups, and their
associated expanders.

2.1 Spectral gap for channels associated to non-tracial states
In the previous section, we only considered expansion properties of the channels ΨψE ,U : B(K) →
B(K), where U is an irreducible finite-dimensional unitary representation of Ĝ on K, and ψE is
the tracial state on ℓ∞(Ĝ) associated to the normalised trace on B(HE). In this section, we outline
how much of the same analysis may be extended if one replaces ψE with any faithful symmetric
state ψ supported on pEℓ∞(Ĝ)pE ⊂ B(HE). We shall see from our estimates below that any
deviation of ψ from the canonical trace ψE gives rise to weaker lower bound on the spectral gap.
This might suggest that the tracial case is optimal when considering expansion properties. On the
other hand, the weaker bound obtained below in the non-tracial case may just be a consequence of
our crude estimates and could possibly be improved.

The main technical ingredient we need is a non-tracial extension of Lemma 2.3.

Lemma 2.9. Let H be a finite dimensional Hilbert space, 0 < ϵ < 1, and σ a density matrix in
B(H) with smallest eigenvalue λ. Suppose A ∈ B(H) satisfies ∥A∥ ≤ 1 and there exists a unit
vector η ∈ H such that Re ⟨η|Aη⟩ ≤ 1− ϵ. Then,

ReTr(σA) ≤ 1− λϵ.

Proof. Let d = dimH. Extend η to an orthonormal basis η1 = η, . . . , ηd for H. Write ρ =
λ1 + (1− dλ)ρ′, where ρ′ = ρ−λ1

1−dλ is also a density matrix. Then,

ReTr(ρA) = λReTr(A) + (1− dλ) ReTr(ρ′A) ≤ 1− dλ+ λRe
d∑
i=1

⟨ηi|A|ηi⟩ ≤ 1− ϵλ. ■

Let ψ : B(HE) → C be a fixed faithful state, which we also regard as a normal state on ℓ∞(Ĝ)
with central support pE . Assume that ψ is symmetric. Write ψ = Tr(σ·) for a unique density
σ ∈ B(HE), and let 0 < λ ≤ 1

dimHE
be the minimal eigenvalue of σ.

Theorem 2.10. Let U ∈ M(C0(Ĝ) ⊗ B0(K)) be a finite-dimensional irreducible representation.
Then for the channel

Ψψ,U : B(K) → B(K), Ψψ,U(ρ) = (ψ ⊗ id)(U(1⊗ ρ)U∗) (ρ ∈ B(K)),

λ2(Ψψ,U) ≤ 1− λϵ2

2
.
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Proof. As in the case of ψ = ψE studied in the previous subsection, it suffices to show that

Re ⟨ξ|(ψ ⊗ id)(V )|ξ⟩ ≤ 1− λϵ2

2
, (3)

for any representation V ∈M(C0(Ĝ)⊗B0(K)) and any unit vector ξ ∈ (K0)
⊥, the complement of

the fixed vectors. This latter estimate follows immediately from Lemma 2.9 and property (T). ■

Remark. One may also observe that the channels Ψψ,U still have degree bound given by |E| =∑
x∈E(dimHx)

2.

3 Expanders associated to bicrossed product quantum groups
In this section, we apply the general theory of the previous section to analyse concrete examples
of quantum expanders. As we have seen in Theorem 2.7, the construction of an explicit expander
family simply requires as input a residually finite discrete quantum group Ĝ with property (T).
While there are nowadays many new and interesting examples of genuine infinite discrete quantum
groups with property (T) [VV19, FMP17, RV24], surprisingly little seems to be known about their
representation theory and their residual finiteness. One class of examples where these properties
are nevertheless well-understood are quantum groups arising from bicrossed products. We now
very briefly introduce the notion of a (compact) bicrossed product quantum group. For more
details we refer to [FMP17, Section 3].

Let G and Γ be a compact and a discrete group, respectively, forming a matched pair in the
sense that they are realised as trivially-intersecting closed subgroups of a locally compact group
H , with the property that the product ΓG has full Haar measure in H . This amounts to giving a
left action α of Γ on G and a right action β of G on Γ satisfying certain compatibility conditions
(i.e. [?, Proposition 3.3] Eric: FMP17?).

From a quadruple (Γ, G, α, β) as above, one can construct a compact quantum group G =
G(Γ, G, α, β), as explained in [VV03] or [FMP17, Section 3.2]; we denote it by G(Γ, G, α, β)
when we wish to be explicit about the matched pair structure, and reserve the present notation
of Γ, G, α, β, and G throughout the current section. The dual discrete quantum groups Ĝ will
provide, under certain conditions, non-trivial examples of discrete quantum groups with property
(T).

Let us now discuss the construction of G. Let Am = Γ ⋉α,f C(G) be the full crossed prod-
uct C*-algebra and A = Γ ⋉α C(G) the reduced crossed product C*-algebra. Let ω denote the
canonical injective maps from C(G) to Am and from C(G) to A. For γ ∈ Γ we denote by uγ
the canonical unitaries in either Am or A. The bicrossed product construction endows Am with a
comultiplication making it a compact quantum group. This is done as follows. First, for each coset
γ ·G ∈ Γ/G, we define

vγ·G = (vrs)r,s∈γ·G ∈ M|γ·G| ⊗ C(G),

where vrs = χAr,s is the characteristic function of the set Ar,s = {g ∈ G|βg(r) = s}. Note that
vγ·G is a magic unitary over C(G), that is, a matrix whose rows and columns are projection-valued
measures (PVMs). Finally, the comultiplication is given by the unique unital *-homomorphism
∆m : Am → Am ⊗ Am such that

∆m ◦ ω = (ω ⊗ ω) ◦∆G and ∆m(uγ) =
∑
v∈γ·G

uγω(vγ,r)⊗ ur (γ ∈ Γ). (4)
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Then G = (Am,∆m) is a compact quantum group, called the (compact) bicrossed product associ-
ated to the matched pair (Γ, G).

The final piece of information we need concerns the description of the irreducible unitary
representations of G. For each γ ∈ Γ, we consider the orbit γ ·G ∈ Γ/G and define

V γ·G =
∑

r,s∈γ·G

er,s ⊗ urω(vr,s) ∈ M|γ·G| ⊗ Am.

Then V γ·G determines an irreducible unitary representation of G, and the family {V γ·G}γ·G∈Γ/G

of representations are pairwise inequivalent and satisfy V γ·G ≃ V γ−1·G. Moreover, any irreducible
unitary representation of G is equivalent to a subrepresentation of V γ·G⊗vx for some γ ·G ∈ Γ/G
and x ∈ Irred(G), where vx = (id⊗ω)(ux).

3.1 Property (T) and the bicrossed product construction
To the best of our knowledge, a complete classification of property (T) for the duals Ĝ of a compact
bicrossed product G(Γ, G, α, β) in terms of the input data is not known. However, several impor-
tant results have been obtained [FMP17, VV19]. In particular, [FMP17, Theorem 4.3] shows that
Ĝ has property (T) whenever Γ has property (T) andG is finite. Moreover, in this case, the proof of
[FMP17, Theorem 4.3] shows that if (E, ϵ) is a Kazhdan pair for Γ, Eric: and? v is a fundamental
representation of G, then (the irreducible components of) {V γ·G ⊗ v}γ∈E is a Kazhdan set for Ĝ.

As a concrete example, one can take any natural number n ≥ 3 and any prime number p ≥ 3.
Let Γ = SLn(Z), G = SLn(Fp), and consider the action α given by αγ(g) = [γ]g[γ]−1, and β
being the trivial action. The resulting discrete quantum group Ĝ then has property (T). Moreover,
Ĝ is residually finite by [BBCW20, Theorem 4.2].

In the work [VV19], a very large class of compact bicrossed products G whose duals have
property (T) was discovered using triangle presentations and related constructions. These examples
are somewhat more interesting than the above one, because they arise from matched pairs where G
is also infinite (and therefore Ĝ is not commensurable with a classical property (T) group). As an
example (cf. [VV19, Remark 6.3]), one can let K be a commutative local field with ring of integers
O. Put H = PGL(3,K) and G = PGL(3,O). Let Γ < H be a subgroup such that H = ΓG and
Γ ∩ G = {e}. Then the dual of the compact bicrossed product G associated to the matched pair
(Γ, G) has property (T).

3.2 Channels corresponding to the bicrossed product construction
Let us briefly describe the general flavour of the channels that one can expect from bicrossed prod-
uct quantum groups. We will use the notation of the previous section. Let U be a finite dimensional
unitary representation of Ĝ on a finite-dimensional Hilbert space K, and let π : C(G) → B(K) be
the associated ∗-homomorphism.

Let γ ∈ Γ be arbitrary, and let us analyze what kind of channels we can obtain if we use the
construction in Proposition 1.31 with E = {V γ·G}. Let ϕ be a state on M|γ·G|. Using Proposition
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1.31, we find the quantum channel Φ = ΦV γ·G,ϕ,π is given by

Φ(ρ) = (ϕ⊗ id)((id⊗π)(V γ·G)(I ⊗ ρ)(id⊗π)(V γ·G)∗)

= (ϕ⊗ id)

( ∑
r1,r2,s1,s2∈γ·G

(er1,s1 ⊗ π(ur1ω(vr1,s1)))(I ⊗ ρ)(er2,s2 ⊗ π(ur2ω(vr2,s2)))
∗

)

= (ϕ⊗ id)

( ∑
r1,r2,s∈γ·G

er1,r2 ⊗ (π(ur1ω(vr1,s))ρπ(ur2ω(vr2,s))
∗)

)

= (ϕ⊗ id)

( ∑
r1,r2,s∈γ·G

er1,r2 ⊗ (π(ur1)π(ω(vr1,s))ρπ(ω(vr2,s))
∗π(ur2))

∗)

)
.

Proposition 3.1. If ϕ is a trace, then Φ is a mixed unitary channel.

To prove this proposition, we first need an easy lemma.

Lemma 3.2. Let p1, . . . pn be orthogonal projections in MN that sum to the identity. Then the
channel

ρ 7→
n∑
i=1

piρpi

is a mixed unitary channel.

Proof. Define the operator

U =
n∑
k=1

e2πik/npk.

This is clearly a unitary. Moreover,

1

n

n∑
k=1

Ukρ(Uk)∗ =
1

n

n∑
k,l,m=1

e2πikl/nplρe
−2πikm/npm

=
1

n

n∑
k,l,m=1

e2πik(l−m)/nplρpm

=
n∑
l=1

plρpl.

This shows that the channel is indeed a mixed unitary channel. ■

Proof of Proposition 3.1. We will now assume that ϕ is the trace. In this case, the equation for Φ
above Proposition 3.1 becomes

Φ(ρ) =
1

|γ ·G|
∑

r,s∈γ·G

π(ur)π(ω(vr,s))ρπ(ω(vr,s))
∗π(ur)

∗. (5)

By Lemma 3.2 the channels

ρ 7→
∑
s∈γ·G

π(ω(vr,s))ρπ(ω(vr,s))
∗ (s ∈ γ ·G)
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are mixed unitaries, which in turn shows that Φ is a convex combination of compositions of unitary
channels, and hence itself mixed unitary. ■

Remark. The conclusion of Proposition 3.1 holds more generally if we consider channels built from
any direct sums of building block representations of the form V γ·G ⊗ vx, (γ ∈ Γ, x ∈ Irred(G))
and traces on the underlying multi-matrix algebras. Indeed, the channels associated to single tensor
products V γ·G ⊗ vx and traces are easily seen to be compositions of mixed unitary channels, and
passing to direct sums amounts to convex combinations of mixed unitary channels.

Remark. Proposition 3.1 does not rule out the possibility of obtaining non-mixed unitary expanders
from bicrossed product quantum groups when we work with non-tracial states ϕ on the spaces MN .
However, we know from the results of Section 2.1 that our bounds for spectral gap are governed
by the smallest eigenvalue of a ϕ (i.e., the tracal part of ϕ in the proof of Lemma 2.9), so even if
the resulting channel Φ was non-random unitary with good expansion, we would really only still
be looking at a convex combination of a mixed unitary quantum expander and a non-mixed unitary
channel whose expansion properties are unknown.

4 Coideals and spectral gap for quantum Schreier graphs
In Section 2, we saw how irreducible finite-dimensional representations of property (T) discrete
quantum groups can be used to construct quantum channels with uniform lower bounds on their
spectral gap. In this section, we outline another approach to constructing quantum expanders which
is closer in spirit to the classical construction of expander graphs of [Lub10, Mar73] obtained by
considering finite Schreier coset graphs associated to discrete groups with property (T). The key
idea is to consider the appropriate quantum analogue of the (finite) quotient spaces Γ/H , where
Γ is a property (T) discrete group, and H ≤ Γ is a (finite-index) subgroup. For discrete quantum
groups, this is captured by the notion of a coideal.

We use the notations of the previous sections for quantum groups. In particular, G always
denotes a compact quantum group and Ĝ denotes its dual discrete quantum group.

Definition 4.1. Let Ĝ be a discrete quantum group. A (left) coideal of Ĝ is a von Neumann
subalgebra M ⊆ ℓ∞(Ĝ) such that

∆̂(M) ⊆ ℓ∞(Ĝ)⊗M.

It is well-known [DKSS12] that when Ĝ = Γ is a classical discrete group, coideals in Γ are
in one-to-one correspondence with the homogeneous spaces Γ/H , where H ≤ Γ is a subgroup.
The identification is given by M = ℓ∞(Γ/H) ⊆ ℓ∞(Γ), the von Neumann subalgebra of functions
constant on the left cosets of H . For general discrete quantum groups Ĝ, this analogy breaks
down, and the theory of coideals turns out to be much richer than the study of quotients of Ĝ
by quantum subgroups. In particular, while the notion of quantum subgroup Ĥ ⊆ Ĝ is well
understood [DKSS12], and gives rise to a “quotient-type” coideal M = ℓ∞(Ĝ/Ĥ), the, not all
coideals arise from quantum subgroups. See for example [KK17, ASK24],and references therein.

Nonetheless, we still regard general coideals M ⊆ ℓ∞(Ĝ) as a kind of quantum homogeneous
space. In particular, every coideal M ⊆ ℓ∞(Ĝ) admits a natural ergodic “translation action” of Ĝ
on M , which we now describe.
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Definition 4.2. A (left) action of a discrete quantum group Ĝ on a von Neumann algebra M is a
normal unital ∗-homomorphism

α :M → ℓ∞(Ĝ)⊗M
satisfying the coassociativity condition

(∆̂⊗ id)α = (id⊗α)α.

We moreover call the action α ergodic if the fixed point algebra Mα = {x ∈ M : α(x) = 1⊗ x}
is trivial, i.e.,

Mα = C1.

The above definition generalises the usual notion of an action of a discrete group Γ on M by
∗-automorphisms. Indeed, if Γ is a classsical discrete group and Γ ↷α M is an action given by

Γ×M ∋ (g, x) 7→ αg(x) ∈M, (6)

then one can define a map (still denoted by α) α :M → ℓ∞(Γ)⊗M ∼=
∏ℓ∞

g∈ΓM via

α(x) = (αg(x))g∈Γ (x ∈M). (7)

Then one can easily verify that (7) satisfies Definition 4.2 if and only if (6) defines an action of Γ
on M in the usual sense.

Returning to coideals M ⊆ ℓ∞(Ĝ) of a discrete quantum group Ĝ, the restriction of the
comultiplication defines the canonical (left) action α := ∆̂|M of Ĝ on M . Again in the classical
case of a discrete group Γ, with M = ℓ∞(Γ/H) the coideal associated to a subgroup H ≤ Γ, the
action α is just the canonical left translation action of Γ on ℓ∞(Γ/H).

Actions of quantum groups on von Neumann algebras are strongly linked to the theory of
unitary representations. Indeed, if U ∈ M(C0(Ĝ) ⊗ B0(K)) is a unitary representation of a
discrete quantum group on a Hilbert space K, then

α : B(K) → ℓ∞(Ĝ)⊗B(K); x 7→ U∗(1⊗ x)U (x ∈ B(K))

defines an action of Ĝ on the von Neumann algebra B(K). Conversely, a deep result of Vaes
[Vae01] shows that any action α of Ĝ on a von Neumann algebra M is unitarily implemented
in the above sense. That is, one can find a faithful representation M ⊆ B(K) and a unitary
representation U ∈M(C0(Ĝ)⊗B0(K)) such that

α(x) = U∗(1⊗ x)U (x ∈M). (8)

Remark. In the above discussion, one could have equivalently defined unitarily implemented ac-
tions (8) via the formula x 7→ U(1⊗ x)U∗. The convention (8) just ensures that U is a representa-
tion of Ĝ, as apposed to a representation of the opposite quantum group Ĝop.

WhenM has admits a normal faithful α-invariant state φ in the sense that (id⊗φ)◦α = φ(·)1,
the unitary representation implementing α can be described somewhat explicitly [DSV17, Section
3]: Here one may take K = L2(M,φ), the GNS Hilbert space of φ. Then U is given via its adjoint
by

U∗(ξ ⊗ Λ(x)) = α(x)(ξ ⊗ Λ(1)) (x ∈M, ξ ∈ ℓ2(Ĝ)), (9)
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where Λ :M → L2(M,φ) is the GNS map and ℓ2(Ĝ) is the GNS Hilbert space of the (right) Haar
weight of Ĝ.

Let M,α, φ, U be as in the previous paragraph, and let ψ ∈ ℓ1(Ĝ) be a normal state. Then, just
as in Section 2.1, we obtain a normal UCP φ-preserving map

Ψ :M →M ; Ψ(x) = (ψ ⊗ id)α(x) (x ∈M). (10)

Thanks to (9), the canonical extension of Ψ to a bounded map Ψ̃ ∈ B(L2(M,φ)) (densely defined
by the formula Ψ̃(Λ(x)) = Λ(Ψ(x))) is given in terms of the implementing unitary representation
U by the formula

Ψ̃ = (ψ ⊗ id)(U∗). (11)

In particular, we have (Ψ̃)∗ = (ψ ⊗ id)U , so Ψ̃ is self-adjoint when ψ = ψ ◦ Ŝ.
A special case of interest to us in the sequel in which actions are always guaranteed to admit

faithful invariant states is when the underlying von Neumann algebra is finite-dimensional. This
result is surely folklore, but we provide a proof for self-containment.

Lemma 4.3. Let α be an action of a unimodular discrete quantum group Ĝ on a finite-dimensional
von Neumann algebra M . Then M admits a faithful α-invariant state.

Proof. Let M ⊆ B(K) and let U ∈ M(C0(Ĝ) ⊗ B0(K)) be an implementing unitary for the
action α. We make use of the quantum Bohr compactification bĜ of Ĝ [Soł05]. By definition,
bĜ is the compact quantum group with C(bĜ) given by the C*-subalgebra of ℓ∞(Ĝ) generated
by the matrix coefficients of the so-called finite dimensional admissible unitary representations of
Ĝ, with comultiplication given by the restriction of ∆̂. Here, admissible means that the transpose
of U , when viewed as a matrix, is invertible. Since Ĝ is unimodular, every finite-dimensional
representation U is admissible [Vis17, Theorem 2.1], and since the action α is implemented by
U , which is a representation of bĜ, it can also be regarded as an action of bĜ on M . The claim
now follows from the fact that any action of a compact quantum group on a finite-dimensional von
Neumann algebraM admits a faithful invariant state ψ. Indeed, one can just take ψ = (h⊗ψ0)◦α,
where h is the Haar state of bĜ and ψ0 is any faithful state on M . ■

4.1 Quantum Cayley graphs and Schreier graphs
We now introduce quantum Schreier graphs. A quantum Schreier graph is a natural extension of the
notion of a quantum Cayley graph, as described in [Was23], and we start off by discussing these.
We note that a version of quantum Cayley graphs was also developed earlier by Vergnioux [Ver05],
using a rather different-looking, but ultimately equivalent language. We will use the notation and
terminology of [Was23] below.

Let Ĝ be a unimodular discrete quantum group. For x ∈ C00(Ĝ), we consider the normal
functional ωx := ĥ(·x) ∈ ℓ1(Ĝ). Given x, y ∈ C00(Ĝ), there exists a unique z ∈ C00(Ĝ) such
that ωz = ωx ⋆ ωy. This defines an associative product on C00(Ĝ), also called convolution, and
denoted z = x ⋆ y [Ver05, Ver07]. In fact, when Ĝ is unimodular, we have [BR17, Lemma 4.3]

x ⋆ y = (ωx ◦ Ŝ ⊗ id)∆̂(y). (12)
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In particular, the left convolution map y 7→ x ⋆ y is nothing other than the normal completely
bounded map Ψωx : ℓ∞(Ĝ) → ℓ∞(Ĝ) associaed to the action α = ∆̂ of Ĝ on ℓ∞(Ĝ). This map is
completely positive when ωx ◦ Ŝ is a positive functional.

To define a quantum Cayley graph over Ĝ, we fix a finite rank projection p ∈ C00(Ĝ) such
that Ŝ(p) = p, ϵ̂(p) = 0 and

∨
n∈N p

⋆n = 1ℓ∞(Ĝ). Define the normal completely positive map
A : ℓ∞(Ĝ) → ℓ∞(Ĝ) by

Ax = p ⋆ x (x ∈ ℓ∞(G)).

Definition 4.4 ([Was23]). The pair (ℓ∞(Ĝ), A) is called a quantum Cayley graph over Ĝ.

As explained in [Was23], when Γ = Ĝ is a classical discrete group, the above construction
yields p = χE , the characteristic function of a symmetric generating set e /∈ E = E−1 of Γ, and
Af(g) = (χE ⋆ f)(g) =

∑
s∈E f(sg) is the usual adjacency operator of the Cayley graph C(Γ, E).

We remark that quantum Cayley graphs are always d-regular quantum graphs with d = ĥ(p), since

A1 = ĥ(p)1.

We also note that
ĥ(Ax) = ĥ(p ⋆ x) = ĥ(p)ĥ(x),

for all x ∈ C00(Ĝ). As a consequence, the normalised adjacency operator is d−1A is a bistochastic
quantum channel relative to the tracial Haar weight ĥ.

Let M ⊆ ℓ∞(Ĝ) be a coideal. It is clear from the definitions that the quantum adjacecncy ma-
trix A associated to the quantum Cayley graph in Definition 4.4 leaves M invariant. In particular,
in the case of classical discrete groups, restriction A|M is the natural analogue of the adjacency
matrix of the associated Schreier coset graph. This leads us to the following definition.

Definition 4.5. Let (ℓ∞(Ĝ), A) be a (d-regular) quantum Cayley graph over Ĝ. For any coideal
M ⊆ ℓ∞(Ĝ), the pair (M,A|M) is called the (d-regular) quantum Schreier graph associated to the
generating projection p.

4.2 Spectral gap for quantum Schreier graphs
We now come to the main result of the section, which asserts that quantum Schrier graphs associ-
ated to property (T) quantum groups give rise to bounded degree expanders.

Let Ĝ be a discrete quantum group with property (T). Let (E, ϵ) be a fixed Kazhdan pair for
Ĝ with E = Ē. Let pE ∈ C00(Ĝ) be the central support of E, let M ⊆ ℓ∞(Ĝ) be a coideal, and
let (M,A|M) be the quantum Schreier graph associated to the generating projection pE . Finally,
assume that M admits a normal invariant state φ. In this case (thanks to the assumption Ŝ(p) = p),
we have that A|M extends to a self-adjoint map Ã|M : L2(M,φ) → L2(M,φ). By Lemma 4.3,
this is always true if dimM < ∞. We denote by λ2(M,E) ≤ 1 the second largest eigenvalue of
d−1Ã|M , where d = ĥ(pE) =

∑
s∈E(dim s)2 is the degreee.

Theorem 4.6. Let Ĝ and (E, ϵ) be as above. For any finite dimensional quantum Schreier graph
(M,A|M) be associated to pE , we have

λ2(M,E) ≤ 1− λϵ2

2

where λ = mins∈E
dimHs

d
.
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Proof. The proof is similar in spirit to the proofs of Theorems 2.5 and 2.10. Let φ be a faithful
invariant state on M with respect to the action α = ∆̂|M . Let U ∈M(C0(Ĝ)⊗B0(L

2(M,φ))) be
the unitary implementation of α. Then by (11), we need to compute the second largest eigenvalue
λ2(Ψ̃) of the self-adjoint map

Ψ̃ = (ψ ⊗ id)(U∗) = (ψ ⊗ id)(U),

where we are working with the Ŝ-invariant state ψ = d−1ĥ(·pE) ∈ ℓ1(Ĝ). Note that since the ac-
tion α = ∆̂|M is ergodic, it follows from equation (9) (describing U ) that the subspace L2(M,φ)0
of U -invariant vectors is exactly Λ(Mα) = CΛ(1).

We thus need to establish the inequality

inf
ξ∈Λ(1)⊥, ∥ξ∥=1

Re ⟨ξ|(ψ ⊗ id)(U)|ξ⟩ ≤ 1− λϵ2

2
(13)

Recalling now the notation HE =
⊕

s∈E Hs, and the canonical embedding pEℓ∞(Ĝ)pE ⊆ B(HE)
from Section 2, we may canonically extend ψ to a (non-tracial state) on B(HE) with eigenvalues
given (without multiplicity) by {dimHs

d
}s∈E . (The extended ψ is nothing more than ψ ◦ E, where

E : B(HE) → pEℓ
∞(Ĝ)pE is the trace-preserving conditional expectation.) With all this setup

in place, we now see that the desired inequality (13) is just a special case of the inequality (3)
obtained in the proof of Theorem 2.10. ■

5 Discussion
In this work, we provide two general approaches to construct quantum expanders from discrete
quantum groups with property (T). The first approach (Section 2) takes as input a property (T) dis-
crete quantum group together with a family of irreducible finite-dimensional representations with
growing dimension, while the second approach (Section 4) takes as input a property (T) discrete
quantum group together with a family of finite-dimensional coideals with unbounded dimension.
Ultimately, what is needed for either method to produce examples is a good understanding of the
finite-dimensional representation theory of a given property (T) discrete quantum group. However,
at this time, it appears that there is a dearth of non-classical examples where the finite dimensional
representation theory is well understood. In this section we will briefly discuss how the example
we do have (quantum expanders coming from bicrossed products) should be viewed and what steps
need to be taken to find more examples.

5.1 Quantum expanders coming from bicrossed products
The most natural quantum expanders coming from bicrossed products are convex combinations of
quantum channels of the form given in (5),

Φ(ρ) =
1

|γ ·G|
∑

r,s∈γ·G

π(ur)π(ω(vr,s))ρπ(ω(vr,s))
∗π(ur)

∗.
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However, taking the same convex combination of quantum channels of the form

Φ′(ρ) =
1

|γ ·G|
∑

r,s∈γ·G

π(ur)ρπ(ur)
∗,

which are quantum channels corresponding to the classical property (T) discrete group Γ, already
gives a quantum expander. If one composes two unital trace-preserving completely positive maps
Φ and Ψ, then a spectral gap of either Φ or Ψ ensures a spectral gap of at least the same size in
Φ ◦ Ψ. How should we then view the quantum expanders coming from bicrossed products? The
starting point is the quantum expander coming from the property (T) discrete group. This channel
is a mixed unitary channel, and in the quantum expander coming from the bicrossed product each
unitary conjugation is precomposed by a different quantum channel. In general, doing this would
no longer give you a quantum expander, but our results show that precomposing by these particular
quantum channels preserves the spectral gap.

5.2 Representation theory of other property (T) quantum groups
As mentioned previously, there are several recent geometric constructions which give rise to exam-
ples of property (T) discrete quantum groups that are different from the bicrossed product construc-
tion. These include the discrete quantum groups associated to triangle presentations [VV19], and
the quantisations of discrete groups [RV24]. As pointed out in [RV24], there is also the quantum
automorphism group Aut+(HS) of the Higman-Sims graph HS, whose dual is an infinite discrete
quantum group with property (T) . All of these examples provide new potential candidates for the
application of our machinery, as soon as their representation theory is understood. In particular,
we think it is a very interesting problem to better understand the structure of the quantum automor-
phism group of the Higman-Sims graph HS, Aut+(HS), and its discrete dual. For example, does
the Hopf*-algebra O(Aut+(HS)) have many non-abelian finite-dimensional representations? Is it
residually finite dimensional?

5.3 Finding examples of quantum Schreier graphs
The approach to quantum expanders via quantum Schreier graphs is very promising because, on
the one hand it gives a direct generalization of the classical construction of quantum expanders of
Margulus [Mar73], while on the other hand it yields potentially new types of quantum expanders
acting on general finite-dimensional von Neumann algebras (and not just full matrix algebras, as
is standard in the literature). The problem here again is to find non-trivial examples to apply these
tools. We leave open the problem of finding non-classical discrete quantum groups with property
(T) with large finite-dimensional coideals. Even for the property (T) quantum groups coming from
bicrossed products, we do not know much about the structure of their coideals.
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